Summary of the performance of sensors fabricated by using the nanocomposites of metal oxide nanoparticles (0-D) and graphene or graphene derivatives (GO, rGO).
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"293",leadTitle:null,fullTitle:"Practical Applications and Solutions Using LabVIEW™ Software",title:"Practical Applications and Solutions Using LabVIEW™ Software",subtitle:null,reviewType:"peer-reviewed",abstract:"The book consists of 21 chapters which present interesting applications implemented using the LabVIEW environment, belonging to several distinct fields such as engineering, fault diagnosis, medicine, remote access laboratory, internet communications, chemistry, physics, etc. The virtual instruments designed and implemented in LabVIEW provide the advantages of being more intuitive, of reducing the implementation time and of being portable.\nThe audience for this book includes PhD students, researchers, engineers and professionals who are interested in finding out new tools developed using LabVIEW.\nSome chapters present interesting ideas and very detailed solutions which offer the immediate possibility of making fast innovations and of generating better products for the market. The effort made by all the scientists who contributed to editing this book was significant and as a result new and viable applications were presented.",isbn:null,printIsbn:"978-953-307-650-8",pdfIsbn:"978-953-51-5551-5",doi:"10.5772/819",price:139,priceEur:155,priceUsd:179,slug:"practical-applications-and-solutions-using-labview-software",numberOfPages:488,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"8709b37736bf2d4359e98e5542cae86c",bookSignature:"Folea Silviu",publishedDate:"August 1st 2011",coverURL:"https://cdn.intechopen.com/books/images_new/293.jpg",numberOfDownloads:141465,numberOfWosCitations:45,numberOfCrossrefCitations:33,numberOfCrossrefCitationsByBook:3,numberOfDimensionsCitations:54,numberOfDimensionsCitationsByBook:3,hasAltmetrics:0,numberOfTotalCitations:132,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 3rd 2010",dateEndSecondStepPublish:"December 1st 2010",dateEndThirdStepPublish:"April 7th 2011",dateEndFourthStepPublish:"May 7th 2011",dateEndFifthStepPublish:"July 6th 2011",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"6084",title:"Prof.",name:"Silviu",middleName:null,surname:"Folea",slug:"silviu-folea",fullName:"Silviu Folea",profilePictureURL:"https://mts.intechopen.com/storage/users/6084/images/293_n.jpg",biography:"Folea, C., Silviu, PhD, is professor at the Technical University of Cluj-Napoca, Automation Department, Romania. His research interests include: embedded systems - hardware and software, reconfigurable systems, data acquisition, wireless networks and low power sensors. His software interests include LabVIEW graphical programming for Real Time and FPGA modules with courses taught at bachelor and master degree.\nProfessor Folea has twenty-three years of design experience in the embedded systems domain and in university teaching. IEEE Senior Member.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Technical University of Cluj-Napoca",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"599",title:"Computer Simulation",slug:"numerical-analysis-and-scientific-computing-computer-simulation"}],chapters:[{id:"17619",title:"Virtual Instrument for Online Electrical Capacitance Tomography",doi:"10.5772/19523",slug:"virtual-instrument-for-online-electrical-capacitance-tomography",totalDownloads:3391,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Zhaoyan Fan, Robert X. Gao and Jinjiang Wang",downloadPdfUrl:"/chapter/pdf-download/17619",previewPdfUrl:"/chapter/pdf-preview/17619",authors:[{id:"35218",title:"Dr.",name:"Robert",surname:"Gao",slug:"robert-gao",fullName:"Robert Gao"},{id:"61001",title:"MSc",name:"Jinjiang",surname:"Wang",slug:"jinjiang-wang",fullName:"Jinjiang Wang"},{id:"61002",title:"Dr.",name:"Zhaoyan",surname:"Fan",slug:"zhaoyan-fan",fullName:"Zhaoyan Fan"}],corrections:null},{id:"17620",title:"Low-Field NMR/MRI Systems Using LabVIEW and Advanced Data-Acquisition Techniques",doi:"10.5772/19751",slug:"low-field-nmr-mri-systems-using-labview-and-advanced-data-acquisition-techniques",totalDownloads:6016,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Aktham Asfour",downloadPdfUrl:"/chapter/pdf-download/17620",previewPdfUrl:"/chapter/pdf-preview/17620",authors:[{id:"36070",title:"Dr.",name:"Aktham",surname:"Asfour",slug:"aktham-asfour",fullName:"Aktham Asfour"}],corrections:null},{id:"17621",title:"DH V 2.0, A Pocket PC Software to Evaluate Drip Irrigation Lateral Diameters Fed from the Extreme with on-line Emitters in Slope Surfaces",doi:"10.5772/10620",slug:"dh-v-2-0-a-pocket-pc-software-to-evaluate-drip-irrigation-lateral-diameters-fed-from-the-extreme-wit",totalDownloads:3197,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"José Miguel Molina-Martínez, Manuel Jiménez-Buendía and Antonio Ruiz-Canales",downloadPdfUrl:"/chapter/pdf-download/17621",previewPdfUrl:"/chapter/pdf-preview/17621",authors:[null],corrections:null},{id:"17622",title:"Application of Virtual Instrumentation in Nuclear Physics Experiments",doi:"10.5772/19525",slug:"application-of-virtual-instrumentation-in-nuclear-physics-experiments",totalDownloads:5169,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Jiri Pechousek",downloadPdfUrl:"/chapter/pdf-download/17622",previewPdfUrl:"/chapter/pdf-preview/17622",authors:[{id:"35230",title:"Dr.",name:"Jiri",surname:"Pechousek",slug:"jiri-pechousek",fullName:"Jiri Pechousek"}],corrections:null},{id:"17623",title:"Real-Time Rapid Embedded Power System Control Prototyping Simulation Test-Bed Using LabVIEW and RTDS",doi:"10.5772/24255",slug:"real-time-rapid-embedded-power-system-control-prototyping-simulation-test-bed-using-labview-and-rtds",totalDownloads:5885,totalCrossrefCites:4,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Karen Butler-Purry and Hung-Ming Chou",downloadPdfUrl:"/chapter/pdf-download/17623",previewPdfUrl:"/chapter/pdf-preview/17623",authors:[{id:"56336",title:"Dr.",name:"Karen",surname:"Butler-Purry",slug:"karen-butler-purry",fullName:"Karen Butler-Purry"},{id:"56342",title:"Mr.",name:"Hong-Ming",surname:"Chou",slug:"hong-ming-chou",fullName:"Hong-Ming Chou"}],corrections:null},{id:"17624",title:"The Development of a Hardware-in-the-Loop Simulation System for Unmanned Aerial Vehicle Autopilot Design Using LabVIEW",doi:"10.5772/23272",slug:"the-development-of-a-hardware-in-the-loop-simulation-system-for-unmanned-aerial-vehicle-autopilot-de",totalDownloads:5277,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Yun-Ping Sun",downloadPdfUrl:"/chapter/pdf-download/17624",previewPdfUrl:"/chapter/pdf-preview/17624",authors:[{id:"51363",title:"Prof.",name:"Yun-Ping",surname:"Sun",slug:"yun-ping-sun",fullName:"Yun-Ping Sun"}],corrections:null},{id:"17625",title:"Equipment Based on the Hardware in the Loop (HIL) Concept to Test Automation Equipment Using Plant Simulation",doi:"10.5772/23862",slug:"equipment-based-on-the-hardware-in-the-loop-hil-concept-to-test-automation-equipment-using-plant-sim",totalDownloads:2969,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Eduardo Moreira, Rodrigo Pantoni and Dennis Brandão",downloadPdfUrl:"/chapter/pdf-download/17625",previewPdfUrl:"/chapter/pdf-preview/17625",authors:[{id:"39790",title:"Prof.",name:"Dennis",surname:"Brandão",slug:"dennis-brandao",fullName:"Dennis Brandão"},{id:"54127",title:"Dr.",name:null,surname:"Pantoni",slug:"pantoni",fullName:"Pantoni"},{id:"55254",title:"Mr.",name:"Eduardo",surname:"Moreira",slug:"eduardo-moreira",fullName:"Eduardo Moreira"}],corrections:null},{id:"17626",title:"Sophisticated Biomedical Tissue Measurement Using Image Analysis and Virtual Instrumentation",doi:"10.5772/21823",slug:"sophisticated-biomedical-tissue-measurement-using-image-analysis-and-virtual-instrumentation",totalDownloads:2855,totalCrossrefCites:9,totalDimensionsCites:19,hasAltmetrics:0,abstract:null,signatures:"Libor Hargaš, Dušan Koniar and Stanislav Štofan",downloadPdfUrl:"/chapter/pdf-download/17626",previewPdfUrl:"/chapter/pdf-preview/17626",authors:[{id:"45005",title:"Dr.",name:"Libor",surname:"Hargaš",slug:"libor-hargas",fullName:"Libor Hargaš"},{id:"45098",title:"Dr.",name:"Dusan",surname:"Koniar",slug:"dusan-koniar",fullName:"Dusan Koniar"},{id:"45099",title:"MSc.",name:"Stanislav",surname:"Stofan",slug:"stanislav-stofan",fullName:"Stanislav Stofan"}],corrections:null},{id:"17627",title:"Instrument Design, Measurement and Analysis of Cardiovascular Dynamics Based on LabVIEW",doi:"10.5772/22674",slug:"instrument-design-measurement-and-analysis-of-cardiovascular-dynamics-based-on-labview",totalDownloads:3966,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Wei He, Hanguang Xiao, Songnong Li and Delmo Correia",downloadPdfUrl:"/chapter/pdf-download/17627",previewPdfUrl:"/chapter/pdf-preview/17627",authors:[{id:"48674",title:"Dr.",name:"Hanguang",surname:"Xiao",slug:"hanguang-xiao",fullName:"Hanguang Xiao"},{id:"50605",title:"Prof.",name:"Wei",surname:"He",slug:"wei-he",fullName:"Wei He"},{id:"50606",title:"Dr.",name:"Songnong",surname:"Li",slug:"songnong-li",fullName:"Songnong Li"}],corrections:null},{id:"17628",title:"ECG Ambulatory System for Long Term Monitoring of Heart Rate Dynamics",doi:"10.5772/20946",slug:"ecg-ambulatory-system-for-long-term-monitoring-of-heart-rate-dynamics",totalDownloads:4568,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Agustín Márquez-Espinoza, José G. Mercado-Rojas, Gabriel Vega-Martínez and Carlos Alvarado-Serrano",downloadPdfUrl:"/chapter/pdf-download/17628",previewPdfUrl:"/chapter/pdf-preview/17628",authors:[{id:"41163",title:"Dr.",name:"Carlos",surname:"Alvarado-Serrano",slug:"carlos-alvarado-serrano",fullName:"Carlos Alvarado-Serrano"},{id:"41184",title:"MSc",name:"Agustín",surname:"Márquez-Espinoza",slug:"agustin-marquez-espinoza",fullName:"Agustín Márquez-Espinoza"},{id:"49566",title:"Dr.",name:"José G.",surname:"Mercado-Rojas",slug:"jose-g.-mercado-rojas",fullName:"José G. Mercado-Rojas"},{id:"74922",title:"MSc.",name:"Gabriel",surname:"Vega-Martínez",slug:"gabriel-vega-martinez",fullName:"Gabriel Vega-Martínez"}],corrections:null},{id:"17629",title:"Acoustical Measurement and Fan Fault Diagnosis System Based on LabVIEW",doi:"10.5772/22216",slug:"acoustical-measurement-and-fan-fault-diagnosis-system-based-on-labview",totalDownloads:4104,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Guangzhong Cao",downloadPdfUrl:"/chapter/pdf-download/17629",previewPdfUrl:"/chapter/pdf-preview/17629",authors:[{id:"46808",title:"Prof.",name:"Guangzhong",surname:"Cao",slug:"guangzhong-cao",fullName:"Guangzhong Cao"}],corrections:null},{id:"17630",title:"Condition Monitoring of Zinc Oxide Surge Arresters",doi:"10.5772/23761",slug:"condition-monitoring-of-zinc-oxide-surge-arresters",totalDownloads:9901,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Novizon, Zulkurnain Abdul-Malek, Nouruddeen Bashir and Aulia",downloadPdfUrl:"/chapter/pdf-download/17630",previewPdfUrl:"/chapter/pdf-preview/17630",authors:[{id:"28079",title:"Dr.",name:"Nouruddeen",surname:"Bashir",slug:"nouruddeen-bashir",fullName:"Nouruddeen Bashir"},{id:"53606",title:"Dr.",name:"Zulkurnain",surname:"Abdul-Malek",slug:"zulkurnain-abdul-malek",fullName:"Zulkurnain Abdul-Malek"},{id:"53607",title:"Dr.",name:"Yusuf",surname:"Novizon",slug:"yusuf-novizon",fullName:"Yusuf Novizon"},{id:"54553",title:"Dr.",name:"Aulia",surname:"-",slug:"aulia",fullName:"Aulia -"}],corrections:null},{id:"17631",title:"Remote Instrumentation Laboratory for Digital Signal Processors Training",doi:"10.5772/23742",slug:"remote-instrumentation-laboratory-for-digital-signal-processors-training",totalDownloads:4559,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Sergio Gallardo, Federico J. Barrero and Sergio L. Toral",downloadPdfUrl:"/chapter/pdf-download/17631",previewPdfUrl:"/chapter/pdf-preview/17631",authors:[{id:"11658",title:"Dr.",name:"Sergio",surname:"Toral",slug:"sergio-toral",fullName:"Sergio Toral"},{id:"11659",title:"Dr.",name:"Federico",surname:"Barrero",slug:"federico-barrero",fullName:"Federico Barrero"},{id:"53514",title:"MSc",name:"Sergio",surname:"Gallardo",slug:"sergio-gallardo",fullName:"Sergio Gallardo"}],corrections:null},{id:"17632",title:"Digital Image Processing Using LabView",doi:"10.5772/23285",slug:"digital-image-processing-using-labview",totalDownloads:36042,totalCrossrefCites:7,totalDimensionsCites:9,hasAltmetrics:0,abstract:null,signatures:"Rubén Posada-Gómez, Oscar Osvaldo Sandoval-González, Albino Martínez Sibaja, Otniel Portillo-Rodríguez and Giner Alor-Hernández",downloadPdfUrl:"/chapter/pdf-download/17632",previewPdfUrl:"/chapter/pdf-preview/17632",authors:[{id:"5221",title:"Dr.",name:"Otniel",surname:"Portillo Rodriguez",slug:"otniel-portillo-rodriguez",fullName:"Otniel Portillo Rodriguez"},{id:"43166",title:"Dr.",name:"Giner",surname:"Alor-Hernandez",slug:"giner-alor-hernandez",fullName:"Giner Alor-Hernandez"},{id:"51427",title:"Dr.",name:"Rubén",surname:"Posada-Gómez",slug:"ruben-posada-gomez",fullName:"Rubén Posada-Gómez"},{id:"55447",title:"PhD.",name:"Oscar",surname:"Sandoval-Gonzalez",slug:"oscar-sandoval-gonzalez",fullName:"Oscar Sandoval-Gonzalez"},{id:"90369",title:"Dr.",name:"Albino",surname:"Martínez-Sibaja",slug:"albino-martinez-sibaja",fullName:"Albino Martínez-Sibaja"}],corrections:null},{id:"17633",title:"Remote SMS Instrumentation Supervision and Control Using LabVIEW",doi:"10.5772/22540",slug:"remote-sms-instrumentation-supervision-and-control-using-labview",totalDownloads:8458,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Rafael C. Figueiredo, Antonio M. O. Ribeiro, Rangel Arthur and Evandro Conforti",downloadPdfUrl:"/chapter/pdf-download/17633",previewPdfUrl:"/chapter/pdf-preview/17633",authors:[{id:"48096",title:"Ph.D.",name:"Rafael",surname:"Figueiredo",slug:"rafael-figueiredo",fullName:"Rafael Figueiredo"},{id:"51067",title:"Prof.",name:"Evandro",surname:"Conforti",slug:"evandro-conforti",fullName:"Evandro Conforti"},{id:"83776",title:"MSc.",name:"Antonio Marcelo",surname:"O. Ribeiro",slug:"antonio-marcelo-o.-ribeiro",fullName:"Antonio Marcelo O. Ribeiro"},{id:"83777",title:"Prof.",name:"Rangel",surname:"Arthur",slug:"rangel-arthur",fullName:"Rangel Arthur"}],corrections:null},{id:"17634",title:"Lightning Location and Mapping System Using Time Difference of Arrival (TDoA) Technique",doi:"10.5772/23937",slug:"lightning-location-and-mapping-system-using-time-difference-of-arrival-tdoa-technique",totalDownloads:3519,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Zulkurnain Abdul-Malek, Aulia, Nouruddeen Bashir and Novizon",downloadPdfUrl:"/chapter/pdf-download/17634",previewPdfUrl:"/chapter/pdf-preview/17634",authors:[{id:"28079",title:"Dr.",name:"Nouruddeen",surname:"Bashir",slug:"nouruddeen-bashir",fullName:"Nouruddeen Bashir"},{id:"53606",title:"Dr.",name:"Zulkurnain",surname:"Abdul-Malek",slug:"zulkurnain-abdul-malek",fullName:"Zulkurnain Abdul-Malek"},{id:"54553",title:"Dr.",name:"Aulia",surname:"-",slug:"aulia",fullName:"Aulia -"}],corrections:null},{id:"17635",title:"Computer-Based Control for Chemical Systems Using LabVIEW® in Conjunction with MATLAB®",doi:"10.5772/19414",slug:"computer-based-control-for-chemical-systems-using-labview-in-conjunction-with-matlab-",totalDownloads:7380,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Syamsul Rizal Abd Shukor, Reza Barzin and Abdul Latif Ahmad",downloadPdfUrl:"/chapter/pdf-download/17635",previewPdfUrl:"/chapter/pdf-preview/17635",authors:[{id:"46795",title:"Mr.",name:"Reza",surname:"Barzin",slug:"reza-barzin",fullName:"Reza Barzin"},{id:"54525",title:"Prof.",name:"Abdul Latif",surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad"},{id:"238365",title:"Associate Prof.",name:"Syamsul Rizal",surname:"Abd Shukor",slug:"syamsul-rizal-abd-shukor",fullName:"Syamsul Rizal Abd Shukor"}],corrections:null},{id:"17636",title:"Dynamic Wi-Fi Reconfigurable FPGA Based Platform for Intelligent Traffic Systems",doi:"10.5772/34470",slug:"dynamic-wi-fi-reconfigurable-fpga-based-platform-for-intelligent-traffic-systems",totalDownloads:4543,totalCrossrefCites:3,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Mihai Hulea, George Dan Moiş and Silviu Folea",downloadPdfUrl:"/chapter/pdf-download/17636",previewPdfUrl:"/chapter/pdf-preview/17636",authors:[{id:"6084",title:"Prof.",name:"Silviu",surname:"Folea",slug:"silviu-folea",fullName:"Silviu Folea"},{id:"12986",title:"Prof.",name:"Mihai",surname:"Hulea",slug:"mihai-hulea",fullName:"Mihai Hulea"},{id:"112873",title:"MSc.",name:"George",surname:"Mois",slug:"george-mois",fullName:"George Mois"}],corrections:null},{id:"17637",title:"Extending LabVIEW Aptitude for Distributed Controls and Data Acquisition",doi:"10.5772/20416",slug:"extending-labview-aptitude-for-distributed-controls-and-data-acquisition",totalDownloads:5078,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Luciano Catani",downloadPdfUrl:"/chapter/pdf-download/17637",previewPdfUrl:"/chapter/pdf-preview/17637",authors:[{id:"38843",title:"Dr.",name:"Luciano",surname:"Catani",slug:"luciano-catani",fullName:"Luciano Catani"}],corrections:null},{id:"17638",title:"Graphical Programming Techniques for Effective, Fast and Responsive Execut",doi:"10.5772/24481",slug:"graphical-programming-techniques-for-effective-fast-and-responsive-execut",totalDownloads:4475,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Marko Jankovec",downloadPdfUrl:"/chapter/pdf-download/17638",previewPdfUrl:"/chapter/pdf-preview/17638",authors:[{id:"57662",title:"Dr.",name:"Marko",surname:"Jankovec",slug:"marko-jankovec",fullName:"Marko Jankovec"}],corrections:null},{id:"17639",title:"The Importance of a Deep Knowledge of LabVIEW Environment and Techniques in Order to Develop Effective Applications",doi:"10.5772/23836",slug:"the-importance-of-a-deep-knowledge-of-labview-environment-and-techniques-in-order-to-develop-effecti",totalDownloads:10114,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Riccardo de Asmundis",downloadPdfUrl:"/chapter/pdf-download/17639",previewPdfUrl:"/chapter/pdf-preview/17639",authors:[{id:"43508",title:"Prof.",name:"Riccardo",surname:"de Asmundis",slug:"riccardo-de-asmundis",fullName:"Riccardo de Asmundis"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:[{id:"65",label:"highly cited contributor"}]},relatedBooks:[{type:"book",id:"1485",title:"Applications of Monte Carlo Method in Science and Engineering",subtitle:null,isOpenForSubmission:!1,hash:"08abe20f1549c83cfb208c83e12ee7df",slug:"applications-of-monte-carlo-method-in-science-and-engineering",bookSignature:"Shaul Mordechai",coverURL:"https://cdn.intechopen.com/books/images_new/1485.jpg",editedByType:"Edited by",editors:[{id:"21994",title:"Prof.",name:"Shaul",surname:"Mordechai",slug:"shaul-mordechai",fullName:"Shaul Mordechai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1025",title:"Engineering Education and Research Using MATLAB",subtitle:null,isOpenForSubmission:!1,hash:"6e4cf9f0e6d7dccba13bc8edc4bf8e70",slug:"engineering-education-and-research-using-matlab",bookSignature:"Ali H. Assi",coverURL:"https://cdn.intechopen.com/books/images_new/1025.jpg",editedByType:"Edited by",editors:[{id:"12279",title:"Dr.",name:"Ali",surname:"Assi",slug:"ali-assi",fullName:"Ali Assi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1027",title:"Applications of MATLAB in Science and Engineering",subtitle:null,isOpenForSubmission:!1,hash:"64f208a73ca0da9038418788e86dfe28",slug:"applications-of-matlab-in-science-and-engineering",bookSignature:"Tadeusz Michałowski",coverURL:"https://cdn.intechopen.com/books/images_new/1027.jpg",editedByType:"Edited by",editors:[{id:"35273",title:"Prof.",name:"Tadeusz",surname:"Michalowski",slug:"tadeusz-michalowski",fullName:"Tadeusz Michalowski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3037",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 3",isOpenForSubmission:!1,hash:"1de63ac4f2c398a1304a7c08ee883655",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-3",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/3037.jpg",editedByType:"Edited by",editors:[{id:"12289",title:"Prof.",name:"Vasilios",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5323",title:"Modeling and Simulation in Engineering Sciences",subtitle:null,isOpenForSubmission:!1,hash:"684a6db4422b067b280c33faf661d747",slug:"modeling-and-simulation-in-engineering-sciences",bookSignature:"Noreen Sher Akbar and O. Anwar Beg",coverURL:"https://cdn.intechopen.com/books/images_new/5323.jpg",editedByType:"Edited by",editors:[{id:"184401",title:"Dr.",name:"Noreen",surname:"Sher Akbar",slug:"noreen-sher-akbar",fullName:"Noreen Sher Akbar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editedByType:"Edited by",editors:[{id:"12289",title:"Prof.",name:"Vasilios",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"405",title:"Computational Simulations and Applications",subtitle:null,isOpenForSubmission:!1,hash:"84a582eb7ec291ae468bc75d0fc9a101",slug:"computational-simulations-and-applications",bookSignature:"Jianping Zhu",coverURL:"https://cdn.intechopen.com/books/images_new/405.jpg",editedByType:"Edited by",editors:[{id:"62225",title:"Dr.",name:"Jianping",surname:"Zhu",slug:"jianping-zhu",fullName:"Jianping Zhu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"294",title:"MATLAB",subtitle:"A Ubiquitous Tool for the Practical Engineer",isOpenForSubmission:!1,hash:"e73ce10cff1d0b433ff4ce05c3f05061",slug:"matlab-a-ubiquitous-tool-for-the-practical-engineer",bookSignature:"Clara M. Ionescu",coverURL:"https://cdn.intechopen.com/books/images_new/294.jpg",editedByType:"Edited by",editors:[{id:"2002",title:"Prof.",name:"Clara",surname:"Ionescu",slug:"clara-ionescu",fullName:"Clara Ionescu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2830",title:"Advances in Modeling of Fluid Dynamics",subtitle:null,isOpenForSubmission:!1,hash:"63b0031c4189b213e315fe50e17bab66",slug:"advances-in-modeling-of-fluid-dynamics",bookSignature:"Chaoqun Liu",coverURL:"https://cdn.intechopen.com/books/images_new/2830.jpg",editedByType:"Edited by",editors:[{id:"143219",title:"Dr.",name:"Chaoqun",surname:"Liu",slug:"chaoqun-liu",fullName:"Chaoqun Liu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6217",title:"Computational Fluid Dynamics",subtitle:"Basic Instruments and Applications in Science",isOpenForSubmission:!1,hash:"0fb7b242fd063d519b361e5c2c99187b",slug:"computational-fluid-dynamics-basic-instruments-and-applications-in-science",bookSignature:"Adela Ionescu",coverURL:"https://cdn.intechopen.com/books/images_new/6217.jpg",editedByType:"Edited by",editors:[{id:"146822",title:"Prof.",name:"Adela",surname:"Ionescu",slug:"adela-ionescu",fullName:"Adela Ionescu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"expression-of-concern-integrated-vehicle-health-management-in-the-automotive-industry",title:"Expression of Concern: Integrated Vehicle Health Management in the Automotive Industry",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/79356.pdf",downloadPdfUrl:"/chapter/pdf-download/79356",previewPdfUrl:"/chapter/pdf-preview/79356",totalDownloads:2888,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/79356",risUrl:"/chapter/ris/79356",chapter:{id:"11531",slug:"integrated-vehicle-health-management-in-the-automotive-industry",signatures:"Steven Holland",dateSubmitted:null,dateReviewed:null,datePrePublished:null,datePublished:"September 27th 2010",book:{id:"5115",title:"Health Management",subtitle:null,fullTitle:"Health Management",slug:"health-management",publishedDate:"September 27th 2010",bookSignature:"Krzysztof Smigorski",coverURL:"https://cdn.intechopen.com/books/images_new/5115.jpg",licenceType:"CC BY-NC-SA 3.0",editedByType:"Edited by",editors:[{id:"12528",title:"Dr.",name:"Krzysztof",middleName:null,surname:"Smigorski",slug:"krzysztof-smigorski",fullName:"Krzysztof Smigorski"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null}},chapter:{id:"11531",slug:"integrated-vehicle-health-management-in-the-automotive-industry",signatures:"Steven Holland",dateSubmitted:null,dateReviewed:null,datePrePublished:null,datePublished:"September 27th 2010",book:{id:"5115",title:"Health Management",subtitle:null,fullTitle:"Health Management",slug:"health-management",publishedDate:"September 27th 2010",bookSignature:"Krzysztof Smigorski",coverURL:"https://cdn.intechopen.com/books/images_new/5115.jpg",licenceType:"CC BY-NC-SA 3.0",editedByType:"Edited by",editors:[{id:"12528",title:"Dr.",name:"Krzysztof",middleName:null,surname:"Smigorski",slug:"krzysztof-smigorski",fullName:"Krzysztof Smigorski"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null},book:{id:"5115",title:"Health Management",subtitle:null,fullTitle:"Health Management",slug:"health-management",publishedDate:"September 27th 2010",bookSignature:"Krzysztof Smigorski",coverURL:"https://cdn.intechopen.com/books/images_new/5115.jpg",licenceType:"CC BY-NC-SA 3.0",editedByType:"Edited by",editors:[{id:"12528",title:"Dr.",name:"Krzysztof",middleName:null,surname:"Smigorski",slug:"krzysztof-smigorski",fullName:"Krzysztof Smigorski"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"6616",leadTitle:null,title:"Essentials of Accident and Emergency Medicine",subtitle:null,reviewType:"peer-reviewed",abstract:"As physicians, we have a constant passion for improving and maintaining patient's care and safety. The book is divided into three parts focusing on the essentials of general concepts, diagnosis, and management of accident and emergency medicine, as well as an academic approach to teaching in the emergency setting. The chapters selected for this book are written by an excellent group of recognized emergency surgeons and physicians from different countries and cultures facilitating a comprehensive and interesting approach to the problems of emergency treatment. We hope this book will be helpful and used worldwide by medical students, clinicians, and researchers enhancing their knowledge and advancing their objectives by a book that intends to become a reference text for research and practice within accident and emergency medicine.",isbn:"978-1-78984-833-5",printIsbn:"978-1-78984-832-8",pdfIsbn:"978-1-83881-591-2",doi:"10.5772/intechopen.71634",price:139,priceEur:155,priceUsd:179,slug:"essentials-of-accident-and-emergency-medicine",numberOfPages:326,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"29c2ae810900eab0267a8fdb29646d24",bookSignature:"Ahmed Subhy Alsheikhly",publishedDate:"January 10th 2019",coverURL:"https://cdn.intechopen.com/books/images_new/6616.jpg",keywords:null,numberOfDownloads:19851,numberOfWosCitations:2,numberOfCrossrefCitations:6,numberOfDimensionsCitations:10,numberOfTotalCitations:18,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 19th 2017",dateEndSecondStepPublish:"November 9th 2017",dateEndThirdStepPublish:"January 8th 2018",dateEndFourthStepPublish:"March 29th 2018",dateEndFifthStepPublish:"May 28th 2018",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"5 years",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"144628",title:"Prof.",name:"Ahmad Subhy",middleName:"Humadi",surname:"Alsheikhly",slug:"ahmad-subhy-alsheikhly",fullName:"Ahmad Subhy Alsheikhly",profilePictureURL:"https://mts.intechopen.com/storage/users/144628/images/2666_n.jpg",biography:"Professor of Emergency Surgery and Medicine at Hamad Medical corporation and Weill Cornell medical college-Qatar, he received his MB, CHB degree from Salahaddin medical college, north of Iraq at 1983, then became a qualified surgeon by getting the fellowship of Arab Board in General Surgery at 1994, that was followed by the FRCSI (Fellow of the Royal College of surgeons in Ireland) at 2004. Now he is a member of the European society of intensive care medicine (ESICM), the American college of emergency physicians (ACEP) and international society of surgery (MISS/SIC). He has published more than 32 studies including original, case report and review articles all over the world, in addition to a book in Human anatomy and a chapter of Splenic artery aneurysm in a book titled (Aneurysm) at 2012. He has been participating very actively in large groups of conferences as presenter, supervised post graduate candidates, as well as sharing his clinical work as emergency physician and surgeon, training undergraduate medical students, and leading many researchers to achieve and publish their studies.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Weill Cornell Medical College in Qatar",institutionURL:null,country:{name:"Qatar"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"177",title:"Emergency Medicine",slug:"emergency-medicine"}],chapters:[{id:"61433",title:"Essentials in Accident and Emergency Medicine Radiation Injury: Response and Treatment",slug:"essentials-in-accident-and-emergency-medicine-radiation-injury-response-and-treatment",totalDownloads:938,totalCrossrefCites:0,authors:[{id:"241806",title:"Dr.",name:"Thomas J.",surname:"FitzGerald",slug:"thomas-j.-fitzgerald",fullName:"Thomas J. FitzGerald"}]},{id:"60871",title:"Shock",slug:"shock",totalDownloads:1431,totalCrossrefCites:0,authors:[null]},{id:"59521",title:"Approach to Fluid Therapy in the Acute Setting",slug:"approach-to-fluid-therapy-in-the-acute-setting",totalDownloads:1254,totalCrossrefCites:0,authors:[null]},{id:"62408",title:"Resuscitation Procedures in Emergency Setting",slug:"resuscitation-procedures-in-emergency-setting",totalDownloads:1670,totalCrossrefCites:0,authors:[null]},{id:"58936",title:"Disasters and Disaster Medicine",slug:"disasters-and-disaster-medicine",totalDownloads:1852,totalCrossrefCites:1,authors:[{id:"229291",title:"Dr.",name:"Abdulnasir F.H.",surname:"Al-Jazairi",slug:"abdulnasir-f.h.-al-jazairi",fullName:"Abdulnasir F.H. Al-Jazairi"}]},{id:"59320",title:"Point-of-Care Ultrasound in the Emergency Department",slug:"point-of-care-ultrasound-in-the-emergency-department",totalDownloads:1703,totalCrossrefCites:1,authors:[null]},{id:"61274",title:"The Evolving Role of Ultrasound in Emergency Medicine",slug:"the-evolving-role-of-ultrasound-in-emergency-medicine",totalDownloads:1396,totalCrossrefCites:1,authors:[{id:"221942",title:"Dr.",name:"Laura",surname:"Galdamez",slug:"laura-galdamez",fullName:"Laura Galdamez"}]},{id:"64561",title:"Musculoskeletal Injuries: Types and Management Protocols for Emergency Care",slug:"musculoskeletal-injuries-types-and-management-protocols-for-emergency-care",totalDownloads:2539,totalCrossrefCites:1,authors:[{id:"144628",title:"Prof.",name:"Ahmad Subhy",surname:"Alsheikhly",slug:"ahmad-subhy-alsheikhly",fullName:"Ahmad Subhy Alsheikhly"}]},{id:"60421",title:"Systematic Approach to Acute Cardiovascular Emergencies",slug:"systematic-approach-to-acute-cardiovascular-emergencies",totalDownloads:1627,totalCrossrefCites:2,authors:[null]},{id:"60116",title:"Emergency Management of Acute Ischaemic Stroke",slug:"emergency-management-of-acute-ischaemic-stroke",totalDownloads:1279,totalCrossrefCites:0,authors:[null]},{id:"62069",title:"Toxicology in Emergency Medicine",slug:"toxicology-in-emergency-medicine",totalDownloads:1789,totalCrossrefCites:0,authors:[null]},{id:"59641",title:"Problem of Burns in Children: Opportunities for Health Improvement",slug:"problem-of-burns-in-children-opportunities-for-health-improvement",totalDownloads:1435,totalCrossrefCites:0,authors:[null]},{id:"59992",title:"New Horizons in Emergency Medicine Teaching and Training",slug:"new-horizons-in-emergency-medicine-teaching-and-training",totalDownloads:938,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"177731",firstName:"Dajana",lastName:"Pemac",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/177731/images/4726_n.jpg",email:"dajana@intechopen.com",biography:"As a Commissioning Editor at IntechOpen, I work closely with our collaborators in the selection of book topics for the yearly publishing plan and in preparing new book catalogues for each season. This requires extensive analysis of developing trends in scientific research in order to offer our readers relevant content. Creating the book catalogue is also based on keeping track of the most read, downloaded and highly cited chapters and books and relaunching similar topics. I am also responsible for consulting with our Scientific Advisors on which book topics to add to our catalogue and sending possible book proposal topics to them for evaluation. Once the catalogue is complete, I contact leading researchers in their respective fields and ask them to become possible Academic Editors for each book project. Once an editor is appointed, I prepare all necessary information required for them to begin their work, as well as guide them through the editorship process. I also assist editors in inviting suitable authors to contribute to a specific book project and each year, I identify and invite exceptional editors to join IntechOpen as Scientific Advisors. I am responsible for developing and maintaining strong relationships with all collaborators to ensure an effective and efficient publishing process and support other departments in developing and maintaining such relationships."}},relatedBooks:[{type:"book",id:"6288",title:"Hot Topics in Burn Injuries",subtitle:null,isOpenForSubmission:!1,hash:"c13b370b0d6dd78067ad3761613cefdf",slug:"hot-topics-in-burn-injuries",bookSignature:"Selda Pelin Kartal and Dilek Bayramgürler",coverURL:"https://cdn.intechopen.com/books/images_new/6288.jpg",editedByType:"Edited by",editors:[{id:"72686",title:"Prof.",name:"Selda Pelin",surname:"Kartal",slug:"selda-pelin-kartal",fullName:"Selda Pelin Kartal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6432",title:"Hyperbaric Oxygen Treatment in Research and Clinical Practice",subtitle:"Mechanisms of Action in Focus",isOpenForSubmission:!1,hash:"574f9e3775c072d689ca7cab789dd590",slug:"hyperbaric-oxygen-treatment-in-research-and-clinical-practice-mechanisms-of-action-in-focus",bookSignature:"Ines Drenjančević",coverURL:"https://cdn.intechopen.com/books/images_new/6432.jpg",editedByType:"Edited by",editors:[{id:"186048",title:"Prof.",name:"Ines",surname:"Drenjančević",slug:"ines-drenjancevic",fullName:"Ines Drenjančević"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6151",title:"Noninvasive Ventilation in Medicine",subtitle:"Recent Updates",isOpenForSubmission:!1,hash:"77e2fc8d909ac2458e0087490ea02a6d",slug:"noninvasive-ventilation-in-medicine-recent-updates",bookSignature:"Mayank Vats",coverURL:"https://cdn.intechopen.com/books/images_new/6151.jpg",editedByType:"Edited by",editors:[{id:"148941",title:"Dr.",name:"Mayank",surname:"Vats",slug:"mayank-vats",fullName:"Mayank Vats"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7290",title:"Special Topics in Resuscitation",subtitle:null,isOpenForSubmission:!1,hash:"5cc25d9b8a8bec2e374939f147f4e007",slug:"special-topics-in-resuscitation",bookSignature:"Theodoros K. Aslanidis",coverURL:"https://cdn.intechopen.com/books/images_new/7290.jpg",editedByType:"Edited by",editors:[{id:"200252",title:"Dr.",name:"Theodoros",surname:"Aslanidis",slug:"theodoros-aslanidis",fullName:"Theodoros Aslanidis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9821",title:"Trauma and Emergency Surgery",subtitle:"The Role of Damage Control Surgery",isOpenForSubmission:!1,hash:"d5f6d0e79ff1167c8db9a24fa69ed232",slug:"trauma-and-emergency-surgery-the-role-of-damage-control-surgery",bookSignature:"Georgios Tsoulfas and Mohammad Meshkini",coverURL:"https://cdn.intechopen.com/books/images_new/9821.jpg",editedByType:"Edited by",editors:[{id:"57412",title:"Prof.",name:"Georgios",surname:"Tsoulfas",slug:"georgios-tsoulfas",fullName:"Georgios Tsoulfas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"70303",title:"A Review on Metal Oxide-Graphene Derivative Nano-Composite Thin Film Gas Sensors",doi:"10.5772/intechopen.90622",slug:"a-review-on-metal-oxide-graphene-derivative-nano-composite-thin-film-gas-sensors",body:'\nIn today’s world, gas/vapor sensors have received significant attention because of their important applications in numerous areas such as environmental monitoring at industry and domestic area [1], disease diagnosis [2], agriculture [3], industrial wastes [4], food quality monitoring, etc. The detection of gases like NO, NO2, NH3, CO, CO2, SO2, H2S, etc. is essential in many fields especially in environmental monitoring due to their toxicity and the related risk to the ecosystem [1, 2, 3, 4]. Detection of volatile organic compounds (VOCs) is of great importance in environmental safety, supervision of human health, and food quality monitoring [1, 2, 3]. The detection of frequently used VOCs like acetone [5], formaldehyde [6], methanol [7], etc. is essential because they produce toxic effects, even in low concentrations, on human health. Detection of ethanol in human breath is important to restrict the drunken driving-related issue [8]. Timely detection of released VOCs from stored vegetables and fruits is important to monitor their quality and freshness [9]. So, simple and reliable detections of gases and VOCs are important in everyday life.
\nMost of the existing commercial gas/vapor sensors are based on metal oxide (MO) semiconductors and polymer materials. However, the limitations of these gas sensors can be one or more as follows: costly, low sensitivity in lower ppm or ppb level, poor selectivity, limited lifetime, poor repeatability, difficult to miniaturization high power consumption [4, 10, 11], etc. As an alternative, nanostructured material-based gas/vapor sensors have gained significant importance due to many promising electrical, thermal, and optical characteristics combined with very high effective surface area, high sensitivity, fast response and recovery, selectivity, repeatability and stability [11], etc. Different carbon nanomaterials, such as graphene, graphene oxide (GO), carbon nanotube (CNT), charcoal, etc. have been shown to be promising gas/vapor sensing behavior due to the simple modifying their sensitivity by easy chemical treatments [12, 13, 14].
\nThe limitations of intrinsic graphene are: (i) difficult to synthesize in large scale, (ii) it has almost no functional groups that can use for the adsorption of gas/vapor molecules, and (iii) it has metallic behavior with almost zero band gap [4, 13]. The prime performance enhancement methods in graphene-based sensors are found to be suitable impurity doping, composite formation, functionalization, implementation in field-effect transistor (FET) structure, etc. In this situation, reduced graphene oxide (rGO), which is graphene functionalized with different oxygen groups that provide enhanced adsorption sites, is more favorable for improving sensitivity. Besides very high thermal stability, the rGO sample contains many dangling bonds which can act as adsorption sites for gas analytes [15, 16].
\nAlthough many literatures suggested that the gas sensing performance can be improved by the structural and morphological variations, this is an insufficient approach for the growing demands of the gas/vapor sensing device performance. Single component transition metal oxide and carbon-based materials still suffer from some limitations arising from their inadequate physical and chemical characteristics that may hinder their large scale applications for high-performance gas/vapor sensors. Owing to their variable chemical conformation, synergistic properties, heterostructured nano-hybrids components, and nanocomposites are expected to show more admirable gas/vapor sensing performance [15, 17].
\nMetal oxide nanostructures are frequently hybridized with (i) noble and transition metals like Pd, Pt, Au, Ag, Ni, Nb, and so on, (ii) other metal oxides, (iii) carbon-based nanomaterials like CNT, graphene, and graphene-derivatives like GO and rGO to improve the gas sensing performance. Among all these functionalized materials, graphene and its derivatives attract tremendous attention for hybridizing with nanostructured metal oxides for promising gas/vapor sensing applications. Improvement of gas sensing properties of graphene/metal oxides hybrids principally depends on the following four factors:
\n(i) graphene derivative like GO or rGO supplies more dangling bonds and active interaction sites for gas/vapor molecule adsorption/reaction; (ii) its large effective surface area also enhance the gas sensing performance [15, 16]; (iii) metal oxide nanostructures have been extensively discovered as gas/vapor sensors due to the relatively high sensitivity of their electrical conductance to the target adsorbents. Thus the presence of rGO layers on metal oxide surface, electrical properties exhibit large and fast changes in the occurrence of gases/vapors improving overall sensing performance of the sensor; (iv) while GO and rGO show ambipolar behavior in the electron and hole concentration, they show hole-dominant p-type conducting properties owing to the adsorbed water and oxygen molecular species. Also, a nanocomposite of p-type rGO with an n-type transition metal oxide form a p-n heterojunctions and the resulting complex nanostructure may exhibit better sensing performances than those of the individual materials. Numerous research has confirmed that the p-n heterojunction formed by p and n-type materials can play a positive role in the sensing mechanism [18, 19, 20].
\nHowever, a wide variety of nanostructured metal oxides and its composite with GO and rGO have been reported for efficient gas/vapor sensing applications in last one decade. In this chapter, we have categorized the graphene nanocomposites based on the morphology of metal oxides, that is, zero-dimensional (0-D like nanoparticles, quantum dots, etc.), one dimensional (1-D like nanorods, nanotubes, nanofibers, etc.), two dimensional (2-D like nanosheets, nanoplates, etc.), and three-dimensional (3-D like nanoflower, nanospheres, etc.). Synthesis, fabrication of graphene/nanoscale metal oxides nanocomposites and their performance assessment for gas/vapor sensing application are the main objective of the article.
\nIn this section, the synthesis of graphene and its derivatives like graphene oxide (GO) and reduced graphene oxides (rGO) is described in the first sub-section. Then the synthesis of nanoscale metal oxides, as well as the nanohybrid formation, is described in the next sub-section.
\nGraphene is considered as the parent of all graphitic forms [21]. The purest form of graphene is named as pristine graphene (with no heteroatomic contamination) where ‘scotch tape method’ widely accepted for producing the highest quality of graphene [22]. Graphene produced from micromechanical cleavage, that is, adhesive tape method can isolate only a small amount of graphene, hence this method is used to isolate graphene for research purposes. For large scale production of graphene, various methods have been reported in the literature which can be broadly classified into two categories: top-bottom approach and bottom-up approach [23].
\nTop-bottom methods mainly involve breaking of the van der Waals bonds which hold layers of graphene to form graphite [22]. Top-bottom approach involves electrochemical exfoliation, exfoliation of graphite intercalation compounds (GIC), micromechanical cleavage, solvent-based exfoliation of graphite oxide, arc discharge, etc. [23]. Among these methods, exfoliation of graphite oxide has received great attention as graphite oxide is easily produced by oxidation of graphite as reported in the Hummers method. Graphite oxide is exfoliated to obtain graphene oxide which is reduced to form reduced graphene oxide (rGO). Reduction process can be thermal, chemical, or UV-based method [24]. Bottom-up approach involves forming of large-area graphene sheet via growth over the substrates and one of the most potential methods is chemical vapor deposition (CVD) [23].
\nAlong with graphene, researchers have also worked on the synthesis of graphene oxide (GO) as well as reduced graphene oxide (rGO) in recent years. rGO nanoparticles was prepared by thermal reduction of GO which is again obtained from Hummer’s method [25]. However, the required quality of graphene and graphene derivatives (rGO, GO) depends on its applications and based on that the methods of production are decided. Till date, CVD [26, 27] and modified Hummer’s method [28, 29, 30] are most suitable for the synthesis of graphene and GO, respectively, in context of the formation of metal oxide/graphene, metal oxide/rGO, metal oxide/GO nanocomposite.
\nSynthesis of hybrid graphene with different nanoscale metal oxides are classified in four categories, that is, graphene/0-D metal oxides, graphene/1-D metal oxides, graphene/2-D metal oxides, and graphene/3-D metal oxides.
\nSynthesis of metal oxide nanoparticles (NPs) and GO/rGO composites which was used for efficient gas sensing applications is described in this section. Among all the metal oxides, SnO2 was reported mostly to synthesize nano composites with graphene and its derivatives (GO and rGO). At the same time, nanoparticles of metal oxides were preferred majorly to prepare the monohybrids with GO and rGO. Different chemical synthesis techniques were followed to develop the nanocomposites of metal oxide/rGO like hydrothermal, solvothermal, flame spray pyrolysis, etc. [31, 32].
\nHydrothermal is one of the commonly reported techniques for preparing metal oxide nanoparticles-rGO composites. Among different metal oxides, SnO2 nanoparticles were reported extensively to prepare nano-hybrid with rGO for efficient gas sensing application [33, 34, 35, 36, 37, 38, 39, 40, 41, 42]. SnO2/rGO [33, 34, 35] nano-hybrid was prepared by facile hydrothermal treatment where precursor was prepared with mixture of SnCl4, HCl, H2O, and GO (or rGO). Heating temperatures were reported as 120°C [33] and 180°C [34, 35] whereas the heating time was 12 h, consistent for all the reports. Different weight% (0.5–5 wt.%) of Au was added in the SnO2/rGO nanocomposite by using HAuCl4 salt to study the effect of Au concentration on the sensitivity of SnO2/rGO gas sensors [34]. Scanning electron micrograph (SEM) of SnO2/rGO films which was used for promising gas sensing application are represented in Figure 1(a and b). Mishra et al. reported rGO/SnO2 nanocomposite by surfactant-assisted hydrothermal method, in which hexamethyldisilazane (HDMS) was used as a surfactant [36]. Ghosh et al. [37] reported SnO2 nanoparticle synthesis by hydrothermal method and SnO2/rGO film synthesis by mixing of SnO2 nanoparticles with GO. The GO-SnO2 mixture was then ultrasonicated to obtain uniform dispersion. Then the sample was drop cast on the platinum electrode and heated at 160°C to reduce GO and get SnO2/rGO hybrid sensing layer [37]. The hydrothermal method was also used for the synthesis of SnO2/rGO hybrid with a high concentration of oxygen vacancy [40, 42] and Pt-activated SnO2 nanoparticles-rGO hybrid [41]. Transmission electron micrograph (TEMs) of SnO2 quantum dot decorated on rGO surface is represented in Figure 2(a–c).
\nSEM image of hydrothermally grown SnO2 nanoparticles and rGO composites reported by (a) Zhang et al. [
TEM images of hydrothermally grown SnO2 nanoparticles and rGO composites (a) SnO2 quantum dot on rGO film surface [
NiO/rGO nanohybrid [39] was prepared via two-step hydrothermal treatment. NiO nanoparticles powder was prepared by hydrothermal method using NiCl4·6H2O as the source of Ni and then calcined at 400°C. NiO nanoparticle powder was then mixed with rGO solution and treated by hydrothermal method with a various ratio of NiO/rGO as 2:1, 4:1, and 8:1 (Figure 3).
\nSEM of hydrothermally grown (a) NiO NPs and (b) NiO/rGO nanocomposites with 2:1 ratio [
Undoped and Ni-doped SnO2 nanoparticle and graphene composites were developed by flame spray pyrolysis (FSP) method as reported in references [32, 43], respectively. About 0.1−2 wt.% Ni-doped SnO2 nanoparticles were synthesized by FSP technique and graphene was produced from graphite by the electrolytic exfoliation technique. Then, a paste was prepared by mixing Ni-doped SnO2 and graphene powder and finally spin coating method was used to deposit a film for gas sensing application. Bright field (BF) TEM images of 0.5 wt.% SnO2 NPs loaded graphene composites and 2 wt.% Ni doped SnO2 NPs loaded graphene composites are represented in Figure 4(a) and (b), respectively.
\nBF TEM images of 0.5 wt.% SnO2 NPs loaded graphene composites and 2 wt.% Ni-doped SnO2 NPs loaded graphene composites. Inset: Corresponding selected area electron diffraction (SAED) pattern [
ZnO/rGO composite was prepared by the solvothermal method for low-temperature acetylene sensing as reported by Iftekhar Uddin et al. [44, 45]. ZnO powder was prepared through the solvothermal method by using Zn(NO3)2 and NaOH in ethanol at 120°C. Ag-loaded ZnO/GO hybrid was synthesized by chemical route. AgNO3 was added to the ZnO/GO solution with 2:1 ratio, then stirred continuously for 30 min. Hydrazine hydrate was then added to the mixer to reduce GO at 110°C for 8 h [44]. Morphology of ZnO NPs and rGO nanocomposite is shown in Figure 5(a and b).
\nPlane-view FESEM micrographs of (a) pure ZnO nanoparticles and (b) ZnO nanoparticle rGO hybrids [
ZnO quantum dots (QDs) decorated on graphene nanosheets were synthesized by facile solution-processed method (Figure 6(a)). ZnO QDs were nucleated and grown on the surface of graphene by controlling the distribution density by reaction time and precursor concentration [46]. ZnO-rGO hybrid was prepared by wet chemical method followed by deposition of Au using HAuCl4, which was added to the ZnO-rGO dispersion. Finally, the addition of NaBH4 through sonication process completed the formation of ZnO QD [47]. To understand the impact of particle size on gas sensing performance, Tung et al. [48] prepared rGO-Fe3O4 nanoparticle hybrid with different particle sizes (5, 10, and 20 nm) via in situ chemical reduction of GO in presence of poly-ionic liquid (PIL) (Figure 6(b)). Kamal [49] prepared graphene-NiO nanoparticles composites by decomposition of nickel benzoate dihydrazinate complex used for hydrogen sensing application.
\nSEM images of (a) ZnO QDs/graphene nanocomposites [
Graphene oxide was synthesized from natural graphite flakes by Hummers’ method which was further used to prepare rGO-CuFe2O4 nanocomposite by combustion method [50]. In this process, sonicated GO was dissolved with 1:2 ratio of Cu2+ to Fe3+ salts and distilled water. The resulting mixture was stirred at 100°C to get a viscous solution which was further heated around 450°C in a muffle furnace. Finally, the mixture was frothed and it gave a foamy powder of nanocomposite (Figure 6(c)). The one-pot microwave-assisted non-aqueous sol-gel method was used to synthesize pure SnO2 nanoparticles and SnO2/rGO nanocomposite (Figure 6(d)) [51]. Kim et al. [52] reported the microwave-assisted the formation of SnO2/graphene nanocomposite in which mixture of SnO2 nanopowder and graphene flakes dispersed in ethanol, the resulting solution was dried. The dried powder mixture was treated in the commercial microwave heater for heating process. Microwave-treated powder was again dispersed in ethanol and then the solution was spray-coated on SiO2 substrate placed on a hot plate. Along with SnO2/graphene nanocomposite, a small amount of secondary SnOx (x < 2) nanoparticles were also deposited on the surface. Secondary SnOx nanoparticles tend to increase as the microwave heating time is increased [52].
\nOne dimensional (1-D) nanostructures of the metal oxide like nanotubes, nanorods, nanofibers, nanowires, etc. are considered as most promising for the detection of analytes in gaseous phases [53, 54]. Owing to its large surface-to-volume ratio, large open porosity and most importantly one of its dimension is comparable to the Debye length which enhances the gas sensitivity significantly. Gas sensing performance is improved further in 1-D materials by using as a nanocomposite with graphene, GO and rGO. Here, we reviewed different methods used for the synthesis of 1-D metal oxide nanostructure and its composite with graphene and graphene derivatives.
\nZnO nanowires (NW) and graphene hybrid architecture were reported by Yi et al. [55] where graphene sheets covered with thin metal layers were used as top electrodes for ZnO where graphene sheets coated with thin metal layers were employed as top electrodes for ZnO vertical-NW channels. The ZnO NWs-graphene/metal hybrid architectures maintained sufficient spaces between the NWs for easy and fast gas transport. However, ZnO nanorods (NRs) were synthesized by using hydrothermal reaction and graphene sheets were synthesized by the CVD method and transferred to the top of the ZnO NRs by PMMA treatment. The scanning electron micrograph of ZnO NRs-graphene/metal hybrid architectures are represented in Figure 7(a). Single crystalline WO3 nanorods on the surface of graphene were synthesized through a one-step hydrothermal method [56]. WO3 nanorods with 3.5 wt.% graphene composites improved gas sensitivity of 25 times showing good selectivity towards NO2. SEM image of WO3 nanorods and graphene hybrids is shown in Figure 7(b).
\nSEM images of 1-D metal oxides and graphene nanocomposites synthesized by hydrothermal route (a) ZnO NRs-Gr/M hybrid architectures [
Large-scale sandwich-like heterostructures of ZnO nanorod arrays with reduced graphene oxide sheets were reported by Zou et al. [30] as shown in Figure 7(c). Highly dense ZnO nanorods were grown by hydrothermal method and double sides coverage of reduced graphene sheets by ZnO NRs formed a sandwich like heterostructures of ZnO/graphene/ZnO for efficient ethanol detection.
\nElectrospinning is a potential and well-reported technique for the synthesis of nanofibers (NFs) network of metal oxides. N,N-dimethylformamide (DMF) and polyvinyl pyrrolidone (PVP) are mixed with target metal oxide precursor and the whole mixture is poured into a syringe having a suitable needle attached. A high voltage (a few kV, DC) is applied between the needle and the collector plate to get the NFs of the target metal oxides. In electrospinning method, composites of metal oxide NFs and graphene derivatives are synthesized by two different routes, that is, (i) GO or rGO solutions are added into the base mixture before electrospinning and (ii) synthesized NFs are decorated with GO or rGO solutions. rGO/Co3O4 NFs [57] and rGO/ZnONFs composites [54] were synthesized where rGO was added into the precursor before electrospinning and both the nanohybrids were tested towards different gases and vapors like NH3, ethanol, etc. rGO/Co3O4 NFs [58], rGO/SnO2 NFs [53], and rGO/WO3 NFs composites [59] were synthesized where Co3O4, SnO2, and WO3 nanofibers were synthesized by electrospinning method first and then functionalized with rGO solution. All three composites were used to detect acetone in the selective route. Figure 8(a) and (b) represents the TEM and SEM images of rGO/Co3O4 NFs [57] and rGO/ZnONFs composite [54], respectively. Here, rGO film was almost invisible due to the mixing of rGO in solution before electrospinning. rGO film was clearly visible in rGO/Co3O4 NFs [58] and rGO/SnO2 NFs [53] composites in SEM images shown in Figure 8(c) and (d) as the rGO functionalization was carried out after electrospinning.
\n(a) TEM images of rGO/Co3O4 NFs [
Synthesis of TiO2 nanotubes array was done by electrochemical anodization of metallic titanium films [60] and rGO/TiO2 nanotubes composite was synthesized by electrodeposition of rGO on TiO2 nanotubes [61, 62]. Electrodeposition method was also used to synthesize ZnO nanorods and selective electrochemical etching of those nanorods to synthesized ZnO nanotubes. rGO/ZnO nanotubes hybrid structure was synthesized by dip-coating technique for efficient alcohol sensing application [63].
\nOne step colloidal synthesis was employed for rGO/SnO2 quantum wire nanocomposite for room temperature H2S sensing [25]. Single crystal SnO2 nanowire was directly grown on the platinum electrode by thermal evaporation and composites was formed by using CVD grown graphene layer for efficient NO2 sensing [26]. Hydrolysis method was used in absence as well as in presence of GO to form ZnO nano-seed and GO supported ZnO nano-seed, respectively, and ultrathin ZnO nanorod/rGO mesoporous nanocomposites were synthesized for NO2 sensing [29].
\nMetal oxides nano-sheets and nameplates were functionalized with graphene and its derivatives for efficient gas sensing behavior. Ni-doped ZnO nanosheets were deposited on a p-Si substrate by using radio frequency (RF) sputtering techniques. GO was synthesized by Hummer’s method and reduced thermally at high temperature (600°C). rGO flakes were then decorated on Ni-doped ZnO nanosheets by drop-casting method. rGO/Ni-doped ZnO nanosheets were used for low ppm hydrogen detection [64]. Highly wrinkled SnO2/rGO composite was synthesized by one-time hydrothermal technique and used for the detection of ethanol at 250°C (Figure 9(a)) [65]. Nanocomposites of ZnO nanosheets and GO were synthesized for highly efficient acetone sensing. The nanocomposites sensor was flexible, high effective surface area and enhanced functional groups due to GO which were in favor of gas adsorption (Figure 9(b)) [66]. rGO/hexagonal WO3nanosheets hybrid materials were fabricated through the hydrothermal method and post-annealing treatment. 2-D porous WO3nanosheets were attached on rGO. The sensor based on 3.8 wt.% rGO/hexagonal-WO3composites offered promising sensing performance to H2S [67].
\nSEM images of rGO/2-D metal oxide nanocomposites (a) wrinkled SnO2/rGO composite [
3-D metal oxides like nanoflower and nanosphere were used to synthesize nanocomposites with graphene and its derivatives by the hydrothermal and sol-gel method [15, 68, 69, 70].
\nHybrids with flower-like hierarchical ZnO and rGO were synthesized by the facile and mild solution-processed method. Compared with the pristine flower-like ZnO, NO2 sensing was increased significantly in case of hierarchical rGO/ZnO hybrids [15]. A facile one-pot hydrothermal method was used to synthesize rGO/In2O3 composites. The flower-like hierarchical structure of In2O3 showed high effective surface area enhancing the active interaction sites. In the composite, rGO formed local p-n heterojunctions enhancing the gas sensing performance significantly. The rGO/In2O3 composite exhibited an excellent selectivity towards NO2 in the wide concentration range from 10 ppb to 1 ppm [68]. α-Fe2O3/rGO nanocomposites with nanosphere-like α-Fe2O3 structure were synthesized by a hydrothermal route at 120°C. α-Fe2O3 nanosphere was 40–50 nm in diameter and constructed by a few nanometer-sized nanoparticles where rGO was intercalated single sheets. These nanocomposites showed excellent response and selectivity towards NO2 at room temperature [69]. Graphene-WO3 nanostructure with gauze-like graphene nanosheets wrapping up spherical WO3 nanoparticles was synthesized by a facile sol-gel method. Graphene-wrapped WO3 nanocomposites offered uniform nanospheres with 200–400 nm diameter. Graphene/WO3 nanocomposites showed good sensitivity and selectivity to low concentrations of NO2 gas at room temperature when pure WO3 and graphene-based sensors did not show any response towards NO2 at room temperature [70]. Scanning electron micrograph of 3-D metal oxides and graphene nanocomposites is shown in Figure 10(a–d).
\nSEM images of (a) rGO/flower-like hierarchical ZnO composites [
Gas/vapor sensing performance of metal oxide nanoparticles (0-D) functionalized with graphene or graphene derivatives (GO, rGO) is represented in Table 1 where 37 references are considered for performance assessment of graphene/0-D metal oxide oxides composites sensors.
\nComposite material | \nTarget gas/vapor | \nOperating temperature (range) (°C) | \nConcentration and range (ppm) | \nResponse magnitude | \nResponse/recovery time (s) | \nRef. | \n
---|---|---|---|---|---|---|
Graphene-SnO2 nanoparticles | \nNO2 | \n150 (30–190) | \n5 (1–5) | \nRgas/Rair = 72.6 | \n129/107 | \n[52] | \n
rGO/SnO2 nanoparticles | \nAcetone | \nRoom temperature | \n2000 (10–2000) | \nRair − Rgas/Rair = 9.72% | \n95/141 | \n[33] | \n
Graphene aerogel-SnO2 nanoparticle | \nNO2 | \nRoom temperature | \n200 (10–200) | \nRgas − Rair/Rair = −12% | \n190/224 | \n[71] | \n
Graphene-SnO2 nanoparticles | \nH2 | \n50 | \n100 (1–100) | \nIgas/Iair = 6 | \n1.1/1.1 | \n[72] | \n
rGO-SnO2 quantum dots | \nH2 | \n200 | \n500 | \nRair − Rgas/Rair = 89.3% | \n∼50/∼155 | \n[36] | \n
LPG | \n250 | \n500 | \nRair − Rgas/Rair = 92.4% | \n∼80/∼155 | \n||
rGO/SnO2 nanoparticles | \nNH3 | \n200 (100–200) | \n1000 (25–2800) | \n— | \n— | \n[37] | \n
rGO/SnO2 nanoparticles | \nC2H2 | \n180 (100–300) | \n50 (0.5–500) | \nRair/Rgas = 12.4 | \n54/23 | \n[38] | \n
rGO-SnO2 nanoparticles | \nNO2 | \n30 (30–100) | \n1 (0.05–2) | \nRair/Rgas = 3.8 | \n14/190 | \n[40] | \n
rGO-SnO2 nanoparticles | \nNO2 | \nRoom temperature | \n5 (1–20) | \nIair − Igas/Iair = 65.5% | \n12/17 | \n[42] | \n
Graphene/SnO2 nanoparticles | \nNO2 | \n150 (25–350) | \n5 | \nRgas/Rair = 26342 | \n13/— | \n[43] | \n
rGO/SnO2 nanoparticles | \nNO2 | \n50 (30–60) | \n5 (0.5–500) | \nRair/Rgas = 3.31 (25% RH) | \n135/200 | \n[35] | \n
rGO/SnO2 nanoparticles | \nSO2 | \n60 (22–220) | \n500 (10–500) | \nRair − Rgas/Rgas = ∼22 | \n144/210 | \n[73] | \n
Graphene/SnO2 nanoparticles | \nNO2 | \nRoom temperature | \n100 (0.3–100) | \nGg − Go/Go = ∼11 | \n— | \n[74] | \n
Graphene/SnO2 nanoparticles | \nEthanol | \n350 (150–350) | \n1000 (50–1000) | \n965 | \n1.8/∼120 | \n[76] | \n
Graphene/SnO2 nanoparticles | \nNO2 | \n60 (25–120) | \n4 (1–4) | \nRg – Ra/Ra = ∼22 | \n— | \n[75] | \n
rGO/SnO2 nanoparticles | \nCO | \nRoom temperature | \n1600 (50–1600) | \nRg – Ra/Ra = 9.5% | \n∼60/∼60 | \n[76] | \n
Sulfonated graphene/SnO2 nanoparticles | \nNO2 | \nRoom temperature | \n5 (1–50) | \nRair − Rgas/Rgas = 1.203 | \n40/357 | \n[77] | \n
Graphene-SnO2 nanoparticle with doped Ni | \nAcetone | \n350 (150–350) | \n200 (1–50) | \nRair/Rgas = 169.7 | \n5.4/150 | \n[32] | \n
Graphene-Pd/SnO2 nanoparticles | \nH2 Ethanol | \nRoom temperature | \n20,000 200 (25–200) | \nRo − Rgas/Ro = 11%(H2), 14.8% (ethanol) | \n34/27 | \n[31] | \n
rGO/SnO2 nanoparticles decorated Au NPs | \nNO2 | \n50 (30–60) | \n50 (5–100) | \nRgas/Rair = 2.68 | \n19/20 | \n[34] | \n
rGO-SnO2 nanoparticles (activated by Pt) | \nMethanol | \n110 (20–180) | \n500 (10–500) | \nRair/Rgas = 203 | \n6/21 | \n[41] | \n
rGO/SnO2 nanoparticles (with Ag NPs) | \nNO2 | \nRoom temperature | \n5 (0.5–500) | \nRair/Rgas = 2.17 (25% RH) | \n49/339 | \n[78] | \n
Graphene-ZnO quantum dots | \nHCHO | \nRoom temperature | \n100 (25–100) | \nGg − Go/Go = 1.1 | \n30/40 | \n[46] | \n
Graphene/ZnO nanoparticles | \nC2H2 | \n250 (25–350) | \n100 (30–1000) | \nRair/Rgas = 143 | \n100/24 | \n[45] | \n
rGO/ZnO nanoparticles | \nNO2 | \n50 (25–140) | \n50 (5–275) | \nRg − Ra/Ra = 32% | \n96/1552 | \n[74] | \n
rGO/ZnO nanoparticles | \nNO2 | \nRoom temperature | \n5 (1–25) | \nRg – Ra/Ra = 25.6% | \n165/499 | \n[80] | \n
3-D rGO/ZnO nanoparticle | \nCO | \n200 | \n1000 (1–1000) | \nRg – Ra/Ra = 85.2% | \n7/9 | \n[81] | \n
rGO-ZnO/Ag nanoparticles | \nC2H2 | \n150 (25–250) | \n100 (1–1000) | \nRair/Rgas =21.2 | \n25/80 | \n[44] | \n
rGO/ZnO-Au nanoparticles | \nNO2 | \n80 (60–90) | \n100 (20–100) | \nRair − Rgas/Rair = 32.55 | \n27/86 | \n[47] | \n
Graphene-NiO nanoparticles | \nH2 | \n250 (100–350) | \n2000 (400–2000) | \nRg – Ra/Ra = 52.4% | \nNA | \n[49] | \n
rGO/NiO nanoparticles | \nCH4 | \n260 (20–400) | \n1000 (100–1000) | \nRair − Rgas/Rgas = 15.2 | \n16/20 | \n[39] | \n
rGO/NiO NP with SnO2 nanoplates | \nNO2 | \nRoom temperature | \n60 (5–60) | \nGg − Go/Go = 62.28 | \n220/835 | \n[82] | \n
rGO/CuO nanohybrid | \nNO2 | \n135 (25–225) | \n75 (1–75) | \nIgas − Iair/Iair = 51.7 | \n50/105 | \n[83] | \n
rGO/CuFe2O4 nanoparticles | \nNH3 | \n110 | \n200 (5–200) | \nRg – Ra/Ra = 24.41 | \n3/6 | \n[50] | \n
rGO/Fe3O4 nanoparticles | \nEthanol | \nRoom temperature | \n1 | \nRair − Rgas/Rgas = 1.86 | \n— | \n[48] | \n
NO2 | \n200 (250–450) | \n2.5 (1–5) | \nRair − Rgas/Rgas = 4.68 | \n— | \n||
Graphene/WO3 nanoparticle | \nNO2 | \n250 (200–300) | \n5 (1–20) | \nRgas/Rair = 133 | \n∼25/— | \n[84] | \n
Graphene-CeO2 nanoparticles | \nNO2 | \n— | \n(10–200 ppm) | \n— | \n— | \n[85] | \n
Summary of the performance of sensors fabricated by using the nanocomposites of metal oxide nanoparticles (0-D) and graphene or graphene derivatives (GO, rGO).
Graphene/metal oxide NPs (0-D) composites and its gas sensing performance were explored extensively in case of SnO2 where hydrothermal method was commonly used as the synthesis technique. The gas sensing performance of rGO/SnO2 NPs was further improved by functionalization with Pd, Au, Pt, and Ag nanoparticles [31, 34, 41, 78]. ZnO nanoparticles occupied the second position to use as a nanocomposite with graphene and its derivatives other metal oxide nanoparticles like NiO, CuO, WO3, Fe3O4, CeO2, etc. were reported as promising gas/vapor sensing composite materials with graphene and its derivatives. However, among all the target gases and vapors, NO2 was the mostly explored gas and detected successfully by graphene/metal oxide nanocomposite sensors [79]. Other gases like H2, NH3, CO, C2H2, CH4, SO2, and organic vapors like acetone, ethanol, methanol, and formaldehyde were detected successfully by using graphene/NP metal oxide hybrids. Sensors were tested at different temperature range varying from room temperature ∼25°C to 400°C. The average operating temperature of graphene/NP metal oxide nanocomposites was recorded below 150°C. Among the 37 research articles, room temperature sensing was reported by 13 groups of researchers mentioned in the literature. The detailed transient behavior of graphene/metal oxide NPs sensors is shown in Figure 11(a–f) where all the sensing was reported at room temperature. So, overall study confirms the lowering of gas sensing the temperature of metal oxide nanoparticles due to the formation of composites with graphene, GO, and rGO. Most of the article showed a lower detection limit of gases and vapors (<100 ppm). Depending on the surface morphology, sensing temperature and device structures the detection range varied from ppb to ppm level as shown in Table 1. Finally, the response magnitude and response/recovery time were fully dependent on the operating temperature and concentration range of the analyte. However, all the sensors showed adequate response magnitude towards the target gas/vapors. Response/recovery time increased and decreased with decrease and increase of operating temperature, respectively. Response time and recovery time varied from 1 s to 220 s and 1 s to 1552 s, respectively, as shown in Table 1. Wang et al. confirmed that the uniform distribution of SnO2 nanoparticles on rGO sheets is an effective factor for enhanced NO2 sensing performances [42]. The p-n junction existed in the interface of nanoparticle and rGO contributed to good room temperature NO2 sensing properties which is associated with the valid electron flow from SnO2 nanoparticle to rGO.
\nRoom temperature sensing of graphene (GO, rGO)/metal oxide nanoparticles composites. (a) NO2 sensing by graphene aerogel/SnO2 nanoparticle [
One dimensional (1-D) metal oxide like nanorods, nanotubes, nanowires, nanofibers, quantum nanowires, etc. functionalized by graphene, GO, and rGO were reported as the promising gas sensing materials. A total of 21 reports on graphene/1-D metal oxide nanocomposites have been summarized in Table 2 and compared in terms of target gas/vapors and its concentration, operating temperature, response magnitude, and response/recovery time. In the case of 1-D nanomaterials, ZnO was most explored metal oxide used to synthesize nanocomposites with rGO in the form of nanorods, nanotubes, and nanofibers. Other metal oxides are SnO2 nanofibers/nanorods, TiO2 nanotubes, Co3O4 nanofibers, WO3nanorods, αFe2O3 nanofibers, etc. reported for nanocomposites with graphene for gas sensing application. NO2 and ethanol were the mostly explored target gas and vapor in case of graphene/1-D metal oxide nanocomposites. Other selective gases and vapors are CO, H2S, CH4, H2, NH3, acetone, benzene, methanol, etc. Though the operating temperature range was in-between room temperature ∼25°C and 450°C, average sensing temperature was slightly high (∼200°C) in case of 1-D compared with 0-D metal oxide nanocomposites with graphene. However, the detection range of gases/vapors was quite small in case of graphene/1-D metal oxide nanocomposites where 1 ppm and below 1 ppm detection were reported frequently. Quite a high response magnitude and moderate response/recovery time were recorded in case of graphene/1-D metal oxide nanocomposites.
\nComposite material | \nTarget gas/vapor | \nOperating temperature (range) (°C) | \nConcentration and range (ppm) | \nResponse magnitude | \nResponse/recovery time (s) | \nRef. | \n
---|---|---|---|---|---|---|
rGO/ZnO nanorods | \nNO2 | \nRoom temperature | \n1 (0.120–1) | \nRgas − Rair/Rair = 50% | \n120/320 | \n[86] | \n
Functionalized graphene/ZnO nanorods | \nEthanol | \n340 (200–370) | \n100 | \nRair − Rgas/Rair = 93.5% | \n5/20 | \n[28] | \n
rGO/ZnO nanofibers | \nNO2 | \n400 (300–400) | \n5 (1–5) | \nRgas/Rair = 119 | \n143/259 | \n[54] | \n
CO | \n400 (300–400) | \n5 (1–5) | \nRair/Rgas = 22.6 | \n— | \n||
Non-oxidized graphene/ZnO nanofibers | \nAcetone | \n350 (250–450) | \n5 (1–5) | \nRair/Rgas = 18.5 | \n12.8/— | \n[59] | \n
rGO/ZnO nanotubes | \nEthanol | \n125 (27–150) | \n100 (1–800) | \n79.14% | \n41.1/98.32 | \n[63] | \n
rGO/ZnO nanorods | \nEthanol | \n260 | \n50 (5–50) | \nRair/Rgas = ∼27 | \n<10/<10 | \n[30] | \n
rGO/ZnO nanorods | \nNO2 | \nRoom temperature | \n1 (1–10) | \nRair − Rgas/Rgas = 1.19 | \n75/132 | \n[29] | \n
Graphene/ZnO nanorod doped by Au/Ti | \nEthanol | \n300 | \n50 (10–50) | \nRair/Rgas = ∼90 | \n— | \n[55] | \n
Au/Pd functionalized rGO/ZnO nanofiber | \nCO | \n400 (300–450) | \n5 (1–5) | \nRair/Rgas = 35.8 | \n191.3/82.1 | \n[87] | \n
C6H6 | \n400 (300–450) | \n5 (1–5) | \nRair/Rgas = 22.8 | \n110.3/318.2 | \n||
rGO/SnO2 nanofibers | \nH2S | \n200 | \n5 (1–5) | \nRair/Rgas = 33.7 | \n<198/<114 | \n[53] | \n
Acetone | \n350 (150–400) | \n5 (1–5) | \nRair/Rgas = 10.4 | \n<198/<114 | \n||
Graphene/SnO2 nanowires | \nNO2 | \n150 (100–250) | \n0.1 (0.01–0.1) | \nRair/Rgas = 11 | \n43/37 | \n[26] | \n
Graphene/SnO2 nanorods | \nH2S | \n260 | \n50 (1–50) | \nRair/Rgas = 130 | \n5/10 | \n[27] | \n
rGO/SnO2 quantum wires | \nH2S | \nRoom temperature | \n50 (10–100) | \nRair/Rgas = 33 | \n2/292 | \n[25] | \n
Nanoporous graphene hybrid-SnO2 nanorods | \nCH4 | \n150 (100–200) | \n1000 | \n|Rgas – Rair|/Rair = 24.9 % | \n369/519.8217.9/242 | \n[88] | \n
rGO/TiO2 nanotubes | \nH2 | \n200 (100–300) | \n480 (120–480) | \n|Ggas − Go|/Go = 37.6 | \n1110/<300 | \n[60] | \n
rGO/TiO2 nanotubes | \nMethanol | \nRoom temperature | \n800 (10–800) | \nRair − Rgas/Rair = 96.93% | \n18/61 | \n[61] | \n
GO/Co3O4 nanofibers | \nAcetone | \n300 (200–350) | \n5 (1–5) | \nRgas/Rair = 2.29 | \n— | \n[58] | \n
rGO/Co3O4 nanowires | \nNH3 | \nRoom temperature | \n50 (5–100) | \nΔR/Rair = 53.6% | \n4/300 | \n[57] | \n
rGO/Cu2O nanowires | \nNO2 | \nRoom temperature | \n2 (0.4–2) | \nIgas − Iair/Iair = 67.8% | \n— | \n[89] | \n
Graphene/WO3 nanorods | \nNO2 | \n300 | \n20 (0.025–20) | \nRgas/Rair = 202 | \n— | \n[56] | \n
rGO/αFe2O3 nanofibers | \nAcetone | \n375 (250–400) | \n100 (0.05–2) | \nRair/Rgas = 8.9 | \n3/9 | \n[18] | \n
Summary of the performance of the sensor fabricated by using the nanocomposites of 1-D metal oxides and graphene or graphene derivatives (GO, rGO).
Figure 12(a) represents very efficient H2S sensing for rGO/SnO2 quantum wires sensor for the concentration range of 10–100 ppm at room temperature. Being a room temperature sensing, the sensor showed a very fast response of 2 s only [25]. Highly selective NH3 sensing was reported for rGO/Co3O4 nanowires at room temperature as shown in Figure 12(b) where response time was only 4 s [57]. Improvised NO2 sensing was observed for rGO/Cu2O nanowires compared with the pure Cu2O nanowires and pure rGO in the concentration range of 0.4–2 ppm at room temperature (Figure 12(c)) [89]. However, the overall study envisages the potential gas sensing of 1-D metal oxides functionalized by graphene, GO, and rGO. The 1-dimensional structure of TiO2 nanotubes (NTs) in its hybrid with rGO provided large amount of gas interaction sites which lead to high response magnitude of the sensor [61].
\nRoom temperature transient response of graphene/1-D metal oxide nanocomposites sensors. (a) H2S detection by for rGO/SnO2 quantum wires [
Table 3 shows gas sensing performance of 2-D metal oxides and GO (or rGO) nanocomposites where ZnO, SnO2, and WO3 nanosheets were used as 2-D materials. Relatively high operating temperature was reported for graphene/2-D metal oxide nano composites. Average sensing temperature was more than 200°C. Moderate response magnitude, response/recovery time were recorded for graphene/2-D metal oxide nano composites. Transient behavior of GO/ZnO nanosheets in the exposure of 100 ppm acetone at 240°C and rGO/hexagonal WO3nanosheets in the exposure of 40 ppm H2S at 350°C are shown in Figure 13(a) and (b) [66, 67].
\nComposite material | \nTarget gas/vapor | \nOperating temperature (range) (°C) | \nConcentration and range (ppm) | \nResponse magnitude | \nResponse/recovery time (s) | \nRef. | \n
---|---|---|---|---|---|---|
rGO/Ni-doped ZnO nanoplates | \nH2 | \n150 | \n100 (1–100) | \n|Rair – Rgas|/Rair = 63.8% | \n28/— | \n[64] | \n
GO/ZnO nanosheets | \nAcetone | \n240 | \n100 (50–500) | \nRair/Rgas = 35.8% | \n13/7 | \n[66] | \n
rGO nanosheets/wrinkled SnO2 | \nEthanol | \n250 (150–300) | \n100 (5–5000) | \nRair/Rgas = 80% | \n9/457 | \n[65] | \n
rGO/hexagonal WO3 nanosheets | \nH2S | \n350 (50–400) | \n40 (0.01–40) | \n|Rgas – Rair|/Rair = 168.58% | \n7/55 | \n[67] | \n
Summary of the performance of a sensor fabricated by using the nanocomposites of 2-D metal oxides and graphene or graphene derivatives (GO, rGO).
Response behavior of (a) GO/ZnOnanosheets in the exposure of 100 ppm acetone at 240°C [
The gas sensing performance of nanocomposites developed by 3-D metal oxide and graphene derivatives are shown in Table 4. Nanoflowers and nanosphere structures were reported here. Interestingly, all the nanocomposites showed their selective behavior towards NO2. Operating temperature of the sensor was quite low and most of the cases room temperature sensing was reported. The detection range was quite high where lower and higher detection limit varied from a few ppb to 1000 ppm. Very high response magnitude was reported in case of graphene/3-D metal oxide nanocomposites. Reported response time and recovery time were quite high in the case of 3-D metal oxide composites compared with 0-D and 1-D metal oxide nanocomposites. Highly selective NO2 sensing was reported for rGO/ZnO nanoflower (1.7% rGO in ZnO) as shown in Figure 14(a). Promising NO2 sensing was observed for rGO/In2O3 nanoflower where the response was poor for pure In2O3nanoflower as shown in Figure 14(b). The nanoflower-shaped CuO nanostructure in its nanocomposite with rGO is effective to prevent the aggregation of rGO sheets and form porous structure with rGO, which greatly facilitate the adsorption and diffusion of gas molecules [92].
\nComposite material | \nTarget gas/vapor | \nOperating temperature (range) (°C) | \nConcentration and range (ppm) | \nResponse magnitude | \nResponse/recovery time (s) | \nRef. | \n
---|---|---|---|---|---|---|
rGO/ZnO nanoflower | \nNO2 | \n100 (50–150) | \n0.5 (0.005–0.5) | \nRgas/Rair = 12 | \n258/288 | \n[15] | \n
rGO/In2O3 nanoflower | \nNO2 | \n74 (25–110) | \n1 (0.01–1) | \nRgas/Rair = 1337 | \n208/39 | \n[68] | \n
rGO/Fe2O3 nanosphere | \nNO2 | \nRoom temperature | \n90 (0.18–90) | \nRair − Rgas/Rgas = 150.63% | \n80/1648 | \n[69] | \n
rGO/CuO nanoflower | \nNO2 | \nRoom temperature | \n1000 (0.25–1000) | \n|Rgas – Rair|/Rair = 6.61 % | \n76/232 | \n[90] | \n
Graphene/WO3 nanosphere | \nNO2 | \nRoom temperature | \n56 (7–56) | \nIgas – Iair/Iair = 40.8% | \n— | \n[70] | \n
rGO/WO3 porous nanoflakes | \nNO2 | \n90 (20–200) | \n10 (5–200) | \nRgas/Rair = 5% | \n4.1/5.8 | \n[91] | \n
Summary of the performance of sensor fabricated by using the nanocomposites of 3-D metal oxides and graphene or graphene derivatives (GO, rGO).
NO2 response of (a) rGO/ZnO nanoflower (1.7% rGO in ZnO) at 100°C [
Hybrids of graphene/nanoscale metal oxides have been extensively discussed in this chapter where the major focused area was synthesis/fabrication of monohybrid and its performance assessment for gas/vapor sensing applications. Detailed literature survey confirmed that metal oxide nanoparticle (0-D) are the most reported nanostructure used for the synthesis of nanocomposites with graphene (and GO and rGO) for potential gas sensing application while 1-D metal oxides like nanorods, nanotubes, nanowires, etc. were in the second place. Use of 2-D and 3-D metal oxides were relatively less to form composites with graphene. In chemical synthesis, GO/rGO functionalization was carried out in two routes, that is, (i) mixing of GO/rGO in precursor before synthesizing a nanostructure and (ii) functionalization by GO/rGO after synthesis of nanostructures. Hydrothermal was the most popular method followed by solvothermal, sol-gel, spray pyrolysis, etc. reported to synthesize a composite of 0-D metal oxides. Hydrothermal, electrospinning, electrochemical anodization, etc. were used for the synthesis of graphene/1-D metal oxide composites. Most of the 2-D and 3-D nanocomposites were grown by low-cost chemical methods. Therefore, the graphene/nanoscale metal oxide composites can synthesize via a cost-effective way.
\nAmong all the metal oxides, SnO2 was mostly reported materials in 0-D structure used in composites with graphene. Other popular metal oxides are ZnO, WO3 and TiO2 mostly used for 1-D metal oxide hybrid. A large number of the report showed NO2 selective behavior of rGO/metal oxide nanocomposite gas sensors especially for 3-D and 0-D metal oxide hybrids. Other reported gases/vapors are H2, NH3, CO, H2S, C2H2, ethanol, methanol, acetone, benzene, etc. A significant variation was observed in case of operating temperature of the sensors in case of different nanoscale metal oxides. The average sensing temperature was highest in case of 2-D nanocomposites and decreased from 1-D, 0-D and 3-D. However, the overall study confirmed the relatively low-temperature detection of gases and vapors after the formation of composites of graphene and nanoscale metal oxides. The detection range was varying from lower ppb to higher ppm level but most of the report was confined near a low ppm range (1–100 ppm). A significant improvement was also observed in case of response magnitude and response time/recovery time.
\nFinally, we would like to conclude with the comment that gas/vapor sensing performance was improved significantly due to the formation of nanohybrid of nanoscale metal oxides and graphene derivatives like GO and rGO. Further study may be necessary with these nano thin-film sensors to encourage the performance in terms of high selectivity and long-term stability. Then these hybrid sensors to make these nanocomposite sensors more suitable for practical applications.
\nThis work was supported in part by Department of Biotechnology grant (Letter No. BT/PR28727/NNT/28/1569/2018) and SPARC grant (SPARC/2018-2019/P1394/SL), Govt. of India.
\nCassava (
A typical cassava farm/plant/root.
Cassava root and a leaf.
Cassava is very rich in carbohydrate, and the calorie is high. It is energy given food which seriously help to mitigate the incidence of famine among the rural poor in sub-Sahara Africa and other places where it is cultivated. Also, cassava is rich in vitamin C, thiamine, riboflavin and niacin [1]. It is normally peeled and cooked to remove the cyanide acid.
The cyanide gas is volatile and would escape in the course of processing, making it and its bye-products fit for consumption. Relatedly, cassava mash is processed (by drying, roasting or boiling) into coarse flour and other food products. Furthermore, cassava could be cultivated for the sole purpose of harvesting its leaf (Figure 3).
Cassava leaves.
According to [2] the leaf contain about 27% protein when dried. Both the leaves and the roots can be fed to livestock, and the stem could serve as firewood. Also, starch, which is one of the by-products of cassava serves as raw materials in food manufacturing, pharmaceuticals, textiles, plywood, paper and adhesives, and for the production of ethanol.
Cultural practices are the activities involved in the cultivation of cassava from the decision to plant it, site selection and right up to the harvesting and post harvesting operations. There have been campaigns worldwide against practices that are inimical to the human environment. Farmers are being enjoined to embrace eco-friendly agriculture. It has been observed overtime that the traditional ways of farming is not sustainable. Traditional methods such as plowing, harrowing, ridging and other operations which disturb soil structure and disrupts soil micro-organic activities are being replaced by environmental-friendly agriculture (zero or minimum tillage). Also, the use of bio-nutrients such as organic fertilizers, mulching and integrated pest management (IPM) are to be chosen instead of mineral fertilizers and chemical pesticides. Mineral fertilizers are volatile and as such release harmful gases into the air. Also, the leaching of the mineral fertilizers into water below the soil and runoff by erosion cause pollution to the water bodies. Also, the residue of the mineral fertilizer is toxic to the soil and the environment.
Moreover, in order to mitigate the vagary of challenges associated with agriculture, farmers engage in the mix of different crops on the same plot of land. This strategy helps to reinforce soil fertility, and lessen the perennial problem of market and or price instability peculiar to agriculture and its products. For instance, having a mixture of nutrient-demanding and nutrient-giving crops such as cassava and any leguminous crop helps to stabilize the soil nutrient. Also, crop specific pests and diseases will not have freedom of self-perpetuation. The intercrops among other things enriched soil organic matter and reduce if not eliminate soil erosion and leaching of nutrients beyond the reach of plants’ roots. Having more than a crop on a plot of land is a form of diversification which enhances food security.
Cassava requires soil with a loose texture to allow for initial root penetration and strengthening. It’s susceptible to weed competition and too much moisture in the soil. Because of these factors, it is typically planted on soil that has been loosened and weed-free. Conventional tillage makes it easy to fix stakes in degraded and unstructured soils and provides well-drained, aerated conditions for the root system [3]. Crop yields on the other hand, are determined by soil conditions rather than tillage. Cassava stakes can also be planted in non-tilled soil and give good yields, as long as the soil is healthy, well-structured, and free of compaction. Soils that are pliable and rich in organic matter are the best for its cultivation.
Farmers usually plant stem cuttings (planting materials) on manually created mounds or ridges where soils possess weak physical qualities. Conventional plowing, especially with tractor-mounted plows, harrows, and other heavy machines, bury the protective cover of the soil, kills soil microorganisms, promotes fast decomposition of organic matter, and damages soil structure by pulverizing soil aggregates. Season after season of plowing or hoeing the soil at the same depth results into a compacted soil layer commonly located below the topsoil, and that makes it difficult for water and roots to penetrate. For ongoing crop production in such soils, mechanical loosening will be required, but at the expense of increased soil degradation. Growing cassava without tillage in the same soil may result in poorer yields in the first few years. However, in the long run, by decreasing mineralization, erosion, and water loss, organic matter may build up while also ensuring soil aggregate stability and internal drainage. Zero tillage enhances root function to the greatest extent possible. Once soil health has been restored, untilled land can generate high yields at a cheaper cost to both the farmer and the farming system’s natural resource base [4].
Another fundamental strategy for enjoying the full benefits of conservation tillage is maintaining a continuous ground cover. Because cassava’s initial development is slow, the soil is exposed to direct rain at the first few months of its growth, and the wide spacing between planted stakes favors the appearance of weeds. Therefore, ground cover is very crucial in cassava cultivation. Farmers cover the soil surface with mulch, such as crop residues, or grow cover crops, to protect the soil surface, reduce runoff and erosion, and inhibit weed growth. With little or no effort, cassava stakes can be planted simply through the mulch cover. Even during lengthy droughts, mulch cover protects the soil, reducing daily temperature changes and water loss. It raises the organic matter content of the soil and creates a favorable environment for soil microorganisms and wildlife below ground. It favors higher yields by improving physical soil conditions: lower soil temperatures, higher levels of moisture, increased water infiltration capacity, and lower evaporation [5].
Cassava is widely cultivated as a single crop in Thailand and southern Brazil, but intercropping is done by small-scale farmers in many parts of the tropics. Small scale farmers do normally produce early crops such as common beans, mung beans, peanuts, corn, upland rice, and various types of grain legumes between the Cassava rows. This method has many advantages. It protects the soil from the direct effects of rain, reduces soil erosion due to runoff, and limits weed growth in the early stages of cassava development. Intercropping also produces crops that can be harvested at different times of the year, increasing total net income per unit area and reducing the risk of total crop failure. For example, in southwestern Nigeria, corn and cassava are often cultivated at the beginning of the twice-yearly rainy season. Corn is harvested during a short rain break, after which cassava continues alone. The two plants have different pest and disease and growth requirements, so if one fails, the other can survive.
Cassava does well on poor soils, and can withstand erratic rainfall. Its ability to produce good yields without fertilizer/agrochemicals and or other external resources makes it one of most widely grown staple. However, cassava’s potential will not be realized until some important production constraints are addressed by high yield and well adapted cultivars. Cassava are more affected by biological restrictions than drought and high temperatures [3]. As the importance of cassava as a food, animal feed and industrial feedstock grows worldwide, there is a growing demand for varieties with specific characteristics and adaptation to different ecosystems. In Africa, new varieties are being developed as cultivation expands to dry savanna, semi-arid and subtropical regions and the transition to market-oriented production accelerates. Providing high-yielding, adapted cassava varieties to small-scale farmers via a specific system is very crucial. The system consists of three parts: conservation and distribution of genetic resources, variety development, production of high-quality and healthy planting materials and delivery to farmers.
The early introduction of cassava to Africa and Asia presented a limited gene choice that limits the diversity available to farmers to select new varieties. For instance, a single clone was cultivated by majority of the farmers in Thailand until the 1990s [5]. As researchers across different institutes and several domestic breeding programs take advantage of the vast national breeding programs, they have excellent combinations of many useful traits. The availability of varieties has improved significantly in recent decades the genetic diversity available in gene banks. Breeding of high-yielding varieties with resistance or tolerance to biological and non-biological stress contributes to a significant increase in cassava yield and overall production.
Stakes cut from healthy stems free of pests and diseases have a higher rate of sprouting and produce higher root yields. As a result, many farmers do not save cassava stems for planting and frequently source cuttings from neighbors or in local markets; under such conditions, assuring the quality of planting material is practically impossible. Effective systems for routine multiplication and distribution of disease-free planting material of improved varieties is essential for sustainable intensification. Although several protocols have been developed for the rapid multiplication of cassava, and could be scaled up for the dedicated production of material that meets quality standards [6], very few countries have a formal seed system for cassava multiplication.
For the production of cassava, it is essential to maintain genetic purity and use high quality planting materials that are free of diseases and pathogens. Because cassava propagates vegetatively (Figure 4), diseases and pests can continue for several generations.
(a) Cassava stem (b) Planted cassava stem cuttings.
This is a negligible problem with plant seeds. In addition, cassava cuttings are perishable, bulky, and cumbersome to transport and require significant storage space. Subsistence farmers usually harvest in small portions over a year, so storing stakes until the next planting is logistically challenging. Stakes cut from healthy stems free of pests and diseases have high germination rates and high root yields. As a result, many farmers do not preserve cassava stalks for planting and often procure cuttings from their neighbors or local markets. In such situations, it is virtually impossible to guarantee the quality of the planting material. An effective system for the daily reproduction and distribution of disease-free planting materials of improved cultivars is essential for sustainable production. Several protocols have been developed for rapid breeding of cassava and can be extended for targeted production of materials that meet quality standards [6]. Few countries have a formal stem multiplication system for cassava breeding.
To increase the efficiency of cassava stem production, IITA and Nigeria’s National Root Crops Research Institute have developed a rapid multiplication technology, which involves cutting cassava stems into stakes with 2 or 3 nodes, rather than the usual 5–7. With efficient field management, cassava stems can be harvested twice a year, at 6 and 12 months after planting, yielding around 50 times more stems than were used for planting [7]. In the absence of a national cassava seed system, cassava development programmes in a number of African countries have used a 3-tier community-based system of rapid multiplication to supply farmers with improved, healthy planting material [8]. At the top level, material from breeders is multiplied under optimal agronomic conditions on research stations and government farms to produce disease-free foundation seed. The secondary level involves further multiplication on farms often run by farmer groups, community organizations and NGOs. Certified material is then distributed to tertiary multiplication sites, which are the main and most readily accessible source of stems [9].
High participation in grassroots growth was achieved through the Great Lakes Cassava Initiative, managed by the Catholic Relief Services Foundation and supported by the Bill & Melinda Gates Foundation. It established a network of 6500 small breeding plots with an average size of 0.3 ha, each serving about 350 local farmers and contributing to the breeding of a total of 33.6 million stems. This initiative also introduced a low-cost quality control protocol based on visual assessments to assess variety purity and pest and disease assessments. The use of poor-quality planting material will remain one of the major causes of low cassava yields, especially in Latin America and Africa for some time to come. In the absence of efficient systems of multiplication and distribution, farmers can help to improve the situation using some simple local practices:
Take stems from healthy plants that are 8–12 months old, free of pests and diseases, growing in fertile soil, and producing high root yields. The primary stems of late-branching types with long, straight primary stems are the best.
Store cut stems in the shade, erect, with the base of the stems resting on dirt that has been loosened with a hoe and is frequently watered. Stems that have only been preserved for 5 days before being cut into stakes will sprout faster.
Just before planting, cut stems into stakes 20 cm long with 5–7 nodes each. The stakes should have a diameter of at least 3 cm, and the pith should be less than half the diameter of the stem.
Soak the stakes in hot water for 5–10 minutes before planting to destroy any pests or disease-causing organisms that may be present. It’s also easy to get the proper water temperature by mixing equal parts hot and cold water [10]. The stakes’ mother plants should have been appropriately fertilized to achieve large yields. Cassava plants cultivated on low-nitrogen, low-phosphorus, and low-potassium soil produce stakes that are also poor in those nutrients. In addition, they are low in starch, reducing sugars, and total sugars. Plants produced from low-nutrient stakes have a reduced rate of sprouting, produce fewer stems, and have poorer root yields as a result [11]. Some plants develop faster and produce more roots than others, even in a uniformly treated field. Farmers can boost the quantity of their next cassava harvest by only using stems from plants with strong root yields as planting material.
Rainfall is the only source of water for almost 80% of the world’s cropland. Rainfed cassava production accounts for up to 60% of worldwide agricultural output, and millions of the world’s poorest farmers rely on it for their livelihoods and food security. Irrigated agriculture produces up to three times more from the same unit area of land due to higher cultivation intensities and average yields. Agriculture, both rainfed and irrigated, faces significant obstacles. Irrigation is under increasing pressure to produce more crops with fewer drops and to lessen its negative environmental implications, such as soil salinization and nitrate poisoning of drinking water, as competition for increasingly precious water resources intensifies. More precise water-saving methods, including drip and micro-irrigation, should be used. Rainfed agricultural production is in grave danger as a result of climate change. By 2050, most scenarios predict a 30% or more decrease in rainfall runoff across large areas of Sub-Saharan Africa, South Asia, and Latin America. Crop yields are expected to drop in many developing countries as water flows grow more erratic, and the frequency of droughts and floods rises [12]. Nonetheless, a comprehensive review of agricultural water management indicated that rainfed areas have the highest potential for productivity gains [13]. However, better and drought-tolerant cultivars should be cultivated. In addition, widespread adoption of conservation tillage, mulching, and other soil management measures, as well as land deterioration and irrigation reversal should be practiced. Cassava, unlike most other food crops, does not have a crucial period for blooming and seed formation during which adequate soil moisture is required. It also has various water-saving defense mechanisms, and its roots can reach enormous depths to access subterranean moisture stores [14]. Therefore, cassava can tolerate droughts for a long period of time [6].
Cassava is nearly entirely a rainfed crop in most parts of the world. Rainfed cassava cultivation involves careful attention to planting dates, the use of planting methods and planting sites that make use of available soil moisture, and water-conserving soil management procedures. Cassava may be grown all year if rainfall is evenly distributed, but it cannot be planted during seasons of excessive rains or drought [15]. Farmers in locations where there is only one rainy season per year plant as soon as the rains begin, which is normally in April–May in the northern tropics and October–November in the southern tropics. As the topsoil begins to dry out with the coming of the dry season, new plants will grow deeper roots once established. Before the start of the 5-month rainy season in Andhra Pradesh, India, farmers plant cassava in well-watered nursery beds to induce sprouting and root development. The rooted stakes are relocated to the field as the rains begin. If the early rains fail to hold off and any of the transplanted stakes perish, they are replaced with newly sprouted stakes from the nursery beds. Farmers can make the most of the short wet season by using this method, which eliminates the need for irrigation. In lowland paddy fields, however, some farmers plant short-duration cassava in February, after the rice has been harvested and the soil is still wet.
In lowland paddy fields, however, some farmers plant short-duration cassava in February, after the rice has been harvested and the soil is still wet. During the dry months that follow, the crop benefits from the leftover soil moisture, and it is harvested after 8 months before the area is utilized again for rice. Because the plants receive adequate soil moisture throughout the most essential stage of their growth cycle, planting early in the rainy season will normally generate the largest yields. However, outputs depend on the cultivar of the crop planted. Also, the edaphic nature of the soil coupled with the maturity of the crop as well as the rainfall intensity reinforced to determine the harvest achieved by a farmer in a given year. Planting during the month of June for instance, resulted in yield of about 38 tonnes/hectare as against 26 tonnes/hectare at the beginning of dry season in October [15]. Later research at the same location in Thailand found that planting from August to November produced the highest average yield. A more recent experiment, this one conducted over 3 years, yielded a different outcome. Cassava root yields were highest when it was planted in December, early in the dry season, and harvested 11 months later, in November [16].
Under rainfed agriculture, planting practices must be adapted to the soil moisture levels. Plant stakes on the tops of ridges or mounds to keep the roots above the standing water when the soil is poorly drained and overly wet due to heavy rainfall. This will also help to prevent root rot. When cassava is planted on the flat land in Thailand during dry periods, the rates of stake sprouting and plant survival are much higher, owing to the somewhat increased soil moisture content in the top 30 cm of soil [17]. In heavy and wet soils, stakes should be planted at a shallow depth of 5–10 cm, but slightly deeper in light-textured and dry soils.
With minimal tillage, which enhances internal drainage, the risk of waterlogging is reduced. When tillage is employed, farmland is better worked during the time when the internal drainage of the soil is optimum. The advantage of this is that it gives room for the practice of zero tillage which further enhances the soil condition. Planting 2 months towards the end of rainy season is beneficial as it reduces weed menace.
Cassava benefits from extra irrigation during rainless times when planted near the end of the rainy season or when the rainy season is relatively short. On level or almost flat land, flood or furrow irrigation can be used, but on sloping soil, overhead sprinklers or a spinning water cannon may be more practical. Irrigation at 100% of the crop’s water needs increased the root production attained without irrigation. It also marginally enhanced the starch content of roots while significantly lowering the hydrogen cyanide concentration [18].
Drip irrigation, which saves water while keeping soil moisture at a level that is very beneficial to crop growth, is more successful in terms of water use efficiency. Drip irrigation saves water by giving modest and frequent water applications (it also allows the farmer to water the cassava plants but not the weeds). Drip irrigation of cassava generated roughly the same yields as flood irrigation in trials in the severely arid zone. When drip irrigation was employed with the same amount of water as flood irrigation, yields increased significantly, reaching 67.3 tonnes somewhere in India [19]. Experiments conducted in south-western Nigeria yielded similar results. Rainfed cassava yielded root yields of fewer than 5 tonnes per hectare during the growing season. In plots with supplemental drip irrigation, yields increased dramatically as the amount of water provided increased. Irrigation resulted in yields of about 30 tonnes at 100% rainfall.
Agriculture must literally return to its roots to attain the increased production required to fulfill present and future demand by recognizing the value of healthy soil, drawing on natural sources of crop nutrition, and properly applying mineral fertilizer. The overuse of mineral fertilizer in agricultural production has resulted in severe environmental consequences, such as soil acidification, water contamination, and air pollution. Fertilizer use that is more focused and sparing would save farmers money while also ensuring that nutrients reach crops and do not harm the air, soil, or rivers. The environmental impact of mineral fertilizer is a matter of management. In other words, the way with which fertilizers are used, particularly nitrogen (N) and phosphorus (P), affects whether this component of soil fertility management is beneficial to crops or harmful to the environment. Experience shows that crop nutrients from a mix of mineral fertilizer and organic sources, such as animal manure and trees and bushes, enrich the soil with nutrients, resulting in better and more sustainable yields of crops. Other biological relationships, such as those between plant roots and soil mycorrhizae, can improve crop nutrition. The foundation of a sustainable crop nutrition system that yields more is a mix of ecological processes and judicious application of mineral fertilizer [12]. On soils where many other crops would fail, cassava may flourish and generate reasonable yields. It has a great tolerance for low-phosphorus and can often thrive without the use of phosphorus fertilizer. This is because cassava has created a favorable relationship with a fungus group known as “vesicular-arbuscular mycorrhizae” [13]. Mycorrhizae, which may be found in almost all natural soils, penetrate the cassava root and feed on the sugars it produces. In exchange, the fungi’s long filaments transfer phosphate and micronutrients to the plant from the surrounding soil. Cassava can absorb enough phosphorus for optimum growth because to this mutual relationship.
The plant tops contain the majority of the nutrients taken by cassava during its growth [6]. After the root harvest, returning stems and leaves to the soil as leaf litter or mulch nourishes the soil with new organic matter, and some of the nutrients are re-used by the following crop. When the plant tops are recycled, the root harvest eliminates less soil nutrients than most other crops [3]. A root yield of 15 tonnes per ha removes only about 30 kg of nitrogen, 20 kg of potassium (K), and just 3.5 kg of phosphorus [20]. Even after many years of continuous cassava production on the same land, there is little risk of phosphorus depletion. Cassava may be cultivated on very acidic and low-fertility soils due to its tolerance for low pH and the large levels of exchangeable aluminum that come with it. While maize and rice yields are typically negatively impacted when the soil pH is below 5 and aluminum saturation is above 50%, cassava yields are typically unaffected until the soil pH is below 4.2 and aluminum saturation is beyond 80%. As a result, cassava may not require a lot of lime on acidic soils where other crops would struggle to do well.
Cassava responds positively to mineral fertilizer application. Traditional methods of managing soil fertility, such as intercropping and mulching increase cassava requirement for fertilizer. The harvest removes considerable amounts of nitrogen and potassium when root yields are high and wastes are not returned to the soil. Cassava would require annual per hectare treatments of 50–100 kg nitrogen, 65–80 kg potassium, and 10–20 kg phosphorus to maintain both yields and soil fertility. The predominant nutrient constraint was lack of K in 12 trials, lack of N in five trials, and lack of P in just two trials, according to the results of 19 long-term fertility studies conducted over 4–36 years of continuous cassava planting on the same plots. When suitable amounts of mineral fertilizer (100 kg N + 22 kg P + 83 kg K) were supplied annually and plant foliage was returned to the soil before each new planting, high root yields of up to 40 tonnes per ha were maintained in Thailand. Due to nutrient depletion, notably of potassium, per hectare yields fell drastically when no fertilizer was provided and plant tops were removed from the field, from 30 tonnes in the first year to roughly 7 tonnes after 6 years. Similar effects have been observed in Colombia, India, Indonesia, Malaysia, Thailand, and Vietnam on a variety of soils [12].
Production of cassava on the same piece of land for several years would require adjustment in N-P-K balance to account for the removal of each nutrient during the root harvest. This can be accomplished by utilizing fertilizers with a 2:1:3 ratio of N, P2O5, and K2O, or any compound fertilizer high in K and N but low in P. Local fertilizer recommendations based on crop experiment outcomes and or simple fertilizer trials conducted in farmers’ fields should be considered first. Compound fertilizers should be used either when the stakes are planted or, preferably, at or shortly after planting. N and K should be sprayed in two parts, one at or soon after planting and the other 2–3 months later, when cassava reaches its maximum growth rate. The majority of mineral fertilizers dissolve quickly in soil water. They should be planted in 20–30 cm long, 4–5 cm deep bands dug at a distance of around 6–10 cm from the cassava stake or plant. The fertilizers should be covered with soil after application to prevent N volatilization and nutrient losses due to runoff and erosion. The plant’s roots will develop in the direction of the fertilizer solution to take up the nutrients.
Mineral fertilizer can assist to reinforce yields. Nevertheless it cannot all alone sustain crop production for a long period of time on a depleted soil [21]. Farmers want to preserve and enhance soil best and fitness by the usage of different measures which include conservation tillage, alley cropping and manuring. Intercropping with grain legumes help fix atmospheric nitrogen to the soil. Although organic fixation cannot meet all of cassava’s nitrogen needs, it is however very important. Combining
By cultivating insect-resistant cultivar, maintaining and encouraging biological control agents as well as regulating crop nutrient levels to minimize insect reproduction, agricultural losses to insects are kept to an acceptable minimum. Diseases are controlled through the use of disease-free planting material, pathogen-suppressing crop rotations, and the removal of affected host plants. To reduce weed growth, timely hand weeding and the use of surface mulching are required for effective weed management. Low-risk selective pesticides can be employed for targeted control as necessary, in the right amount and at the right time. Because all pesticides have the potential to be dangerous to people and the environment, they must be locally registered and approved, with explicit instructions on how to handle and use them safely. Cassava, like all important crops is susceptible to pests and diseases that can result in significant yield losses. In Africa, their impact is very severe. Asia had few severe pest and disease concerns until recently, but that may be changing as the crop is produced more intensively over bigger regions and planted all year for industrial processing. When pest or disease management measures are required, a non-chemical control plan should be examined before deciding to use pesticides. Pesticides are frequently inefficient and rarely cost-effective because cassava is a long-season crop that is exposed to pests and diseases for a longer period of time. As a result, insecticides should only be used in short-term, localized applications in areas where the pest is first noticed, and only when the pest is still in its early stages (vulnerable stage) of development.
A variety of non-chemical methods can assist farmers in reducing pest and disease losses while also safeguarding the agro-ecosystem [19]. First, planting material should come from mother plants that are free of disease symptoms and insect attacks, as well as types that have tolerance or resistance to the most common cassava diseases and pests. Stem cuttings can be soaked in hot water as an extra precaution to eliminate any pests or disease-causing organisms that may be present. Also, cuttings may need to be soaked in a fungicide and pesticide solution in extreme circumstances. Farmers who do so, however, must have obtained pesticide training and should select herbicides based on the recommendations of local plant protection professionals. Mulching, planting hedges, and intercropping are examples of ecosystem-based techniques that can provide refuge for natural enemies of insect pests. Early in the cropping cycle, increasing soil organic matter enhances pest-regulating populations. Applying proper quantity of manure and or fertilizer help to improve crop resilience. Insecticides should be applied with caution as they possess the chemicals that are deadly to the natural enemies of pests and diseases. Insecticides kill those biological control agents and other predators that feed on cassava pests. When this is the case, pest population rises prompting farmers to use more pesticides, repeating and exacerbating the pest harm cycle. Whiteflies, mealybugs, and variegated grasshoppers can all be controlled with biopesticides like neem seed oil extract. Sticky traps and spraying plants with soapy water can also help to minimize the amount of whiteflies and mealybugs.
Although the majority of cassava diseases are found in Latin America and the Caribbean, where the plant originated, several are now prevalent in Sub-Saharan Africa and Asia as well. Some have evolved individually in Africa and Asia, and others have evolved together. Some have evolved in Africa and Asia separately and have yet to reach the Americas. One of the most common and dangerous cassava disease is bacterial blight. It is spread mostly by infected planting material or infected agricultural tools. Rain splash, as well as the movement of people, machines, or animals from infected to healthy fields, can transfer it from one plant to another. The bacterium affects the leaves initially, which become brown in big patches and eventually die, then the petioles and woody stems’ vascular tissues. The impact of bacterial blight on yields varies according to region, variety, weather patterns, planting period, and planting material quality. Bacterial blight can jeopardize food security by lowering the yield of cassava leaves, a key source of vegetable protein in Central Africa. Despite its catastrophic potential, bacterial blight can be efficiently controlled by excellent agricultural techniques, viz.:
Use disease-free planting material or plants grown from meristem culture, rooted buds, or shoots
Soak stakes in hot water for about 50 minutes before planting. Stakes may be immersed in a cupper solution for 10 minutes in exceptional circumstances, and on the recommendation of a professionals.
Planting should be done towards the end of wet season
Infected tools should be sterilized
Plants should properly be fertilized, particularly in terms of potassium.
Burning infected plants and agricultural leftovers
Intercropping cassava with other crops to minimize diseases spread
Cassava should be rotated with other crops or left fallow in order to avoid disease transmission in the soil. The most common way for viral infections to spread is through the use of infected planting material.
In Sub-Saharan Africa, cassava mosaic disease (CMD) is endemic. Misshapen leaves, chlorosis, mottling, and mosaic are all common signs. Stunting and general decline occur in plants, and the more severe the symptoms are, the lower the root output. Corky necrosis in roots caused by cassava brown streak disease (CBSD) renders them unsafe for ingestion. Farmers may not realize their crops are infected until they harvest the roots because the signs of CBSD are not visible on the cassava leaves or stems. Because there are no visible indications above ground, disease-infected planting material is more likely to be used. Strict adherence to quarantine measures during international cassava germplasm exchange, as well as cultural methods, particularly the use of resistant or tolerant cultivars and virus-free planting material are two critical suggestions for controlling both CMD and CBSD. CMD and CBSD-free planting material has been developed and distributed with great success. In January 2012, the United Republic of Tanzania released four high-yielding cassava varieties that are resistant to CMD and tolerant to CBSD. Researchers at different institutes across the globe have been working to develop series of CMD-resistant lines [22]. Root rots are abundant in Africa, Asia, and Latin America, and they occur primarily in poorly drained soils during periods of heavy rain. They are caused by a variety of fungal and bacterial infections and result in leaf loss, stem and shoot death, and root degeneration as the crop matures or during post-harvest storage. Post-harvest farm implements and plant leftovers are frequently contaminated with disease-causing fungus and serve as sources of spores that infect new plants. Other cultural methods that control root rots include:
Immerse stakes in hot water for roughly 50 minutes if no disease-free planting material is available;
Plant on light-textured, fairly deep soils with good internal drainage.
Reduce tillage and use surface mulches to improve drainage.
Cassava should be rotated with cereals or grasses, and unhealthy plants should be uprooted and burned.
Immersion of the stakes in a suspension of Trichoderma viride is very efficient biological control for root rot [21]. Two groups of preserved cassava roots were injected with four pathogenic fungus in Nigerian tests. A culture filtrate of T. viride was also given to one of the groups. The incidence of rot in the group without T. viride ranged from 20 to 44% after 3 weeks; in the group inoculated with the biocontrol agent, there was a drastic reduction in the range and number of the target fungi after 3 weeks, with the incidence of rot ranging from 0 to 3%. T. viride inoculation eliminated the need for frequent synthetic fungicide application [23].
Compared to several other crops, the initial growth of cassava is slow. As a result of this and the wide spacing between planted stakes, weed emergence and competition with the crop for available soil nutrients and sunlight is rife. In the first 4 months after planting, cassava can easily be overwhelmed by competition from weeds, and other leguminous plants. In East Africa, weeds are often a more serious production constraint than insect pests or diseases and may reduce yields by about 50% [24]. In Nigeria, farmers expend more resources controlling weed than other aspect of crop production. Once the cassava canopy has closed, it’ll shade out most weeds and keep the sector almost completely weed-free (Figure 5). Six to eight months after planting, when cassava starts to shed many leaves (especially during the dry season), weeds may reappear, but this generally does not seriously affect yields. Excessive late weed growth may make harvesting harder, but also can protect the soil from erosion if post-harvest rains are heavy.
Cassava canopy checks weeds.
While cultural controls might not perfectly control weed, they are effective in reducing weed competition, and thus the necessity for mechanical or chemical weeding [25]. Cultural control begins with selection of high-quality planting material from varieties with vigorous early growth and tolerance or resistance to diseases and pests. High planting density and therefore the correct type and rate of fertilizer can stimulate early crop growth and rapid canopy closure. Planting within the season under drip irrigation also can encourage the expansion of cassava but not that of weeds. The soil should be covered with a thick layer of mulching material such as rice straw or maize residues to stop weed. Also, intercropping cassava with fast-growing plants, like melons, squash, pumpkins, common beans, groundnuts, soybeans, mungbeans and cowpeas proved to be effective in controlling weeds. Since those are short-duration crops, they will be harvested after about 3 to 4 months, when the cassava canopy closes and weeds are shaded out. While intercrops may reduce cassava root yields, they markedly reduce weed growth, and offer an eco-friendly and fewer expensive alternative to spraying with herbicides. A study in Nigeria of legume cover crops during a mixed cassava/maize system reported significant improvements in cassava root yields when velvet beans were grown to suppress weeds [27]. Common among the smallholder cassava farmers is mechanical control measures–by hoeing, starting after emergence. Research in Colombia found that with hand-weeding at 15, 30, 60 and 120 days after planting, cassava root yields were 18 tonnes per ha compared with only 8 tonnes/ha were obtained when weeds were controlled with herbicides. When weeds were not controlled in the least, yields fell to only 1.4 tonnes.
Weeds are often controlled with herbicides. Although many herbicides are highly toxic and, being water soluble and protracted within the environment, are often washed away to contaminate ground and surface water. Farmers got to exercise care within the choice of the herbicide to be used and follow the recommendation of local plant protection specialists. Pre-emergence herbicides do not kill existing weeds. Instead, they prevent weed seeds within the soil from emerging or, at least, reduce their rate of growth. Pre-emergence herbicides are either incorporated into the soil before planting or applied on the soil surface with a knapsack sprayer immediately after planting. Pre-emergence herbicides that are selective for cassava are often applied over the vertically planted stakes without affecting cassava sprouting or yield. The application of pre-emergence herbicides can maintain a cassava field almost weed-free for 6–8 weeks after planting. Farmers may apply a mix of two herbicides; one that controls the grassy weeds and the other on the broad-leaf weeds. A lower dosage is suggested on light-textured soils, while a higher dosage could be needed in heavy soils, like clay-loamy. Special care must be taken when cassava is grown in association with other crops, because the pre-emergence herbicides normally used for cassava may harm the intercrop. At about 2 months after planting, weeds may have to be controlled again to scale back competition with cassava. This is often usually done by hoeing or using an animal or tractor-mounted cultivator, counting on the peak of the growing cassava plants and therefore the extent of cover closure. When most of the weeds are grassy species, it’s also possible to use a selective post-emergence herbicide, which kills grasses but does not affect the cassava plant. Post-emergence herbicides are often used about 4–5 months after planting, when some bottom leaves start to drop off. It is best done on a windless days and with a nozzle shield to stop spray from reaching the cassava stems or leaves.
Cassava is due for harvesting any time from 6 month. The crop does not have a specific time or season for its harvest; it can be harvested all-year-round. The fact that it can stay long and be preserved in the soil gives it the utmost advantage of being harvested piecemeal over a long period. The root is cooked and consumed as a local delicacy. Also, it could be processed to give a varieties of products (Figures 6–8) as a result of value addition. Cassava leaves can be fed upon as vegetable, and it is used as such in many homes where they are planted in West African countries. Moreover, cassava leaves and root serve as a good source of nutrients for livestock. The leaves are rich in vitamins.
Cassava coarse (grains) flour.
Cassava (smooth) flour.
Cassava (smooth) flour.
Cassava has a number of advantages, one of which is, it does not have a set harvesting season. They can be collected whenever needed during times of food scarcity, frequently one plant or even one root at a time. Harvesting for human consumption takes roughly 8–10 months; for industrial purposes, a longer growth time yields a higher root and starch output. Roots can be eaten directly by farm families, given to livestock, or sold for processing into a wide range of value-added products, from coarse flour (‘Garri’)to high-tech modified starch gels. The root of the plant is not the only portion that can be useful. The green section of the upper stem, which includes the leaves and petioles, is fed to cattle and buffaloes in several countries, while the leaf blades are fed to pigs and chickens. Fresh leaves are used to raise silkworms in China, Thailand, and Vietnam. Woody stems are crushed up and used as a substrate for growing mushrooms. Stumps are burned as fuelwood [12].
Cassava roots are typically collected by cutting the stems approximately 20 cm above ground and then dragging the entire root system out of the ground using the stump. If the soil is too hard or the roots are too deep, it may be necessary to remove the soil around the roots with a hoe, spade, or pick while avoiding injury to the roots. A harvesting blade mounted to a tractor is occasionally employed in heavy soils that can become quite hard in the dry season. The sword slashes through the soil material. The tractor’s forward momentum pulls the root clusters to the surface as the blade slices through the dirt right below the roots. The roots are then removed from the stump and transported in baskets or bags.
Large cassava fields are frequently harvested by middlemen who employ teams of labourers and deliver the roots to marketplaces or processing plants via trucks. Plant tops are harvested after the root harvest. Plant tops are generally left to dry on the ground after root harvesting and then integrated into the soil to help preserve its fertility. However, by trimming the green tops every 3 months during the plant’s growth cycle, farmers can considerably increase the total amount of cassava foliage available for feeding to animals. Within 2–3 months after each trimming, the remaining stems will sprout and produce a new crop of leaves. Cassava stakes should be planted at a closer spacing of about 60 × 60 cm for maximum foliage output. Young leaves harvested at regular intervals during the cassava growth cycle have a higher protein and lower fiber content than those gathered at the end of the cassava growth cycle, when plants are generally harvested between 11 and 12 months. Younger leaves are more pleasant and give better nutrition.
The ultimate root production decreased as the frequency of leaf cutting increased, from roughly 40 tonnes per ha when leaves were collected only once at the time of root harvest to less than 25 tonnes when leaves were removed 5 times [27]. This approach may or may not be cost-effective, depending on labour costs and the relative pricing of fresh roots and dry leaves. Harvesting the plant tops four or five times over a one-year growth cycle takes a substantial amount of nutrients, particularly nitrogen, from the field, and would be unsustainable unless large amounts of mineral fertilizer were applied to maintain soil fertility.
Content alerts
",metaTitle:"Content alerts",metaDescription:"Content alerts",metaKeywords:null,canonicalURL:"/page/content-alerts",contentRaw:'[{"type":"htmlEditorComponent","content":"Content alerts
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Content alerts
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13404},{group:"region",caption:"Middle and South America",value:2,count:11681},{group:"region",caption:"Africa",value:3,count:4213},{group:"region",caption:"Asia",value:4,count:22421},{group:"region",caption:"Australia and Oceania",value:5,count:2020},{group:"region",caption:"Europe",value:6,count:33697}],offset:12,limit:12,total:135705},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",subtitle:null,isOpenForSubmission:!0,hash:"727e7eb3d4ba529ec5eb4f150e078523",slug:null,bookSignature:"Dr. Ana M.M. Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",editedByType:null,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11369",title:"RNA Viruses Infection",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11433",title:"Human Migration in the Last Three Centuries",subtitle:null,isOpenForSubmission:!0,hash:"9836df9e82aa9f82e3852a60204909a8",slug:null,bookSignature:"Dr. Ingrid Muenstermann",coverURL:"https://cdn.intechopen.com/books/images_new/11433.jpg",editedByType:null,editors:[{id:"77112",title:"Dr.",name:"Ingrid",surname:"Muenstermann",slug:"ingrid-muenstermann",fullName:"Ingrid Muenstermann"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11438",title:"Fake News in the Era of Global Crises",subtitle:null,isOpenForSubmission:!0,hash:"5f61f975031e13ee705d8b5853f1aa58",slug:null,bookSignature:"Dr. David Eller",coverURL:"https://cdn.intechopen.com/books/images_new/11438.jpg",editedByType:null,editors:[{id:"476616",title:"Dr.",name:"Jack",surname:"Eller",slug:"jack-eller",fullName:"Jack Eller"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",subtitle:null,isOpenForSubmission:!0,hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",slug:null,bookSignature:"Dr. Marco Antonio Aceves Fernandez",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",editedByType:null,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11452",title:"Cryopreservation - Applications and Challenges",subtitle:null,isOpenForSubmission:!0,hash:"a6c3fd4384ff7deeab32fc82722c60e0",slug:null,bookSignature:"Dr. Marian Quain",coverURL:"https://cdn.intechopen.com/books/images_new/11452.jpg",editedByType:null,editors:[{id:"300385",title:"Dr.",name:"Marian",surname:"Quain",slug:"marian-quain",fullName:"Marian Quain"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11456",title:"Autonomous Mobile Mapping Robots",subtitle:null,isOpenForSubmission:!0,hash:"405e1f7c0ef62700f4d590722cf428be",slug:null,bookSignature:"Dr. Janusz Bȩdkowski",coverURL:"https://cdn.intechopen.com/books/images_new/11456.jpg",editedByType:null,editors:[{id:"63695",title:"Dr.",name:"Janusz",surname:"Bȩdkowski",slug:"janusz-bdkowski",fullName:"Janusz Bȩdkowski"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11459",title:"Soft Robotics - Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"06e947238d5d4ea1162509a5d66de887",slug:null,bookSignature:"Dr. Mahmut Reyhanoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11459.jpg",editedByType:null,editors:[{id:"15068",title:"Dr.",name:"Mahmut",surname:"Reyhanoglu",slug:"mahmut-reyhanoglu",fullName:"Mahmut Reyhanoglu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11464",title:"Carbon Nanotubes - Recent Advances, New Perspectives and Potential Applications",subtitle:null,isOpenForSubmission:!0,hash:"ce526ec78ed00c4f5f08ffb4548ff388",slug:null,bookSignature:"Prof. Mohammed Muzibur Rahman, Dr. Abdullah Mohammed Ahmed Asiri and Prof. Mohammad Asaduzzaman Chowdhury",coverURL:"https://cdn.intechopen.com/books/images_new/11464.jpg",editedByType:null,editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:22},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:6},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:15},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:37},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:15},{group:"topic",caption:"Mathematics",value:15,count:8},{group:"topic",caption:"Medicine",value:16,count:61},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:5},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:467},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4802},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8452",title:"Organizational Conflict",subtitle:"New Insights",isOpenForSubmission:!1,hash:"96bdaaba38a7850a7e7379aa5a505748",slug:"organizational-conflict-new-insights",bookSignature:"Josiane Fahed-Sreih",coverURL:"https://cdn.intechopen.com/books/images_new/8452.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"103784",title:"Dr.",name:"Josiane",middleName:null,surname:"Fahed-Sreih",slug:"josiane-fahed-sreih",fullName:"Josiane Fahed-Sreih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10778",title:"Model-Based Control Engineering",subtitle:"Recent Design and Implementations for Varied Applications",isOpenForSubmission:!1,hash:"e39a567d9b6d2a45d0a1d927362c9005",slug:"model-based-control-engineering-recent-design-and-implementations-for-varied-applications",bookSignature:"Umar Zakir Abdul Hamid and Ahmad `Athif Mohd Faudzi",coverURL:"https://cdn.intechopen.com/books/images_new/10778.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"268173",title:"Dr.",name:"Umar Zakir Abdul",middleName:null,surname:"Hamid",slug:"umar-zakir-abdul-hamid",fullName:"Umar Zakir Abdul Hamid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10780",title:"Current Trends in Orthodontics",subtitle:null,isOpenForSubmission:!1,hash:"badce0e23eb5176fd653b049d5295c0a",slug:"current-trends-in-orthodontics",bookSignature:"Farid Bourzgui",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10793",title:"Molecular Mechanisms in Cancer",subtitle:null,isOpenForSubmission:!1,hash:"3ed2817275edb3de6f5683602314706e",slug:"molecular-mechanisms-in-cancer",bookSignature:"Metin Budak and Rajamanickam Rajkumar",coverURL:"https://cdn.intechopen.com/books/images_new/10793.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"226275",title:"Ph.D.",name:"Metin",middleName:null,surname:"Budak",slug:"metin-budak",fullName:"Metin Budak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11308",title:"Selected Topics on Infant Feeding",subtitle:null,isOpenForSubmission:!1,hash:"213c3e403327a2919eca1dc5e82a0ec3",slug:"selected-topics-on-infant-feeding",bookSignature:"Isam Jaber AL-Zwaini and Haider Hadi AL-Musawi",coverURL:"https://cdn.intechopen.com/books/images_new/11308.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"30993",title:"Prof.",name:"Isam Jaber",middleName:null,surname:"Al-Zwaini",slug:"isam-jaber-al-zwaini",fullName:"Isam Jaber Al-Zwaini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11331",title:"Secondary Metabolites",subtitle:"Trends and Reviews",isOpenForSubmission:!1,hash:"7d6274f42d5441e537c5fa744bc84523",slug:"secondary-metabolites-trends-and-reviews",bookSignature:"Ramasamy Vijayakumar and Suresh Selvapuram Sudalaimuthu Raja",coverURL:"https://cdn.intechopen.com/books/images_new/11331.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"176044",title:"Dr.",name:"Ramasamy",middleName:null,surname:"Vijayakumar",slug:"ramasamy-vijayakumar",fullName:"Ramasamy Vijayakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10820",title:"Data Clustering",subtitle:null,isOpenForSubmission:!1,hash:"086d299ffd05aacd2311c3ca4ebf0d3a",slug:"data-clustering",bookSignature:"Niansheng Tang",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"221831",title:"Prof.",name:"Niansheng",middleName:null,surname:"Tang",slug:"niansheng-tang",fullName:"Niansheng Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10827",title:"Oral Health Care",subtitle:"An Important Issue of the Modern Society",isOpenForSubmission:!1,hash:"9a0ceb9ced4598aea3f3723f6dc4ea04",slug:"oral-health-care-an-important-issue-of-the-modern-society",bookSignature:"Lavinia Cosmina Ardelean and Laura Cristina Rusu",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"180569",title:"Dr.",name:"Lavinia",middleName:null,surname:"Ardelean",slug:"lavinia-ardelean",fullName:"Lavinia Ardelean"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11139",title:"Geochemistry and Mineral Resources",subtitle:null,isOpenForSubmission:!1,hash:"928cebbdce21d9b3f081267b24f12dfb",slug:"geochemistry-and-mineral-resources",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11139.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"228",title:"Optics and Lasers",slug:"optics-and-lasers",parent:{id:"20",title:"Physics",slug:"physics"},numberOfBooks:77,numberOfSeries:0,numberOfAuthorsAndEditors:2175,numberOfWosCitations:3299,numberOfCrossrefCitations:1446,numberOfDimensionsCitations:3253,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"228",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10672",title:"Nonlinear Optics",subtitle:"Nonlinear Nanophotonics and Novel Materials for Nonlinear Optics",isOpenForSubmission:!1,hash:"cfe87b713a8bee22c19361b86b03d506",slug:"nonlinear-optics-nonlinear-nanophotonics-and-novel-materials-for-nonlinear-optics",bookSignature:"Boris I. Lembrikov",coverURL:"https://cdn.intechopen.com/books/images_new/10672.jpg",editedByType:"Edited by",editors:[{id:"2359",title:"Dr.",name:"Boris I.",middleName:"I.",surname:"Lembrikov",slug:"boris-i.-lembrikov",fullName:"Boris I. Lembrikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9655",title:"Bioluminescence",subtitle:"Technology and Biology",isOpenForSubmission:!1,hash:"26b9e7dade717a5ffdc2dbcfaa1ea43d",slug:"bioluminescence-technology-and-biology",bookSignature:"Hirobumi Suzuki and Katsunori Ogoh",coverURL:"https://cdn.intechopen.com/books/images_new/9655.jpg",editedByType:"Edited by",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10767",title:"Fiber Optics",subtitle:"Technology and Applications",isOpenForSubmission:!1,hash:"f6624b8ef72a4a369383a4b719bba2a4",slug:"fiber-optics-technology-and-applications",bookSignature:"Guillermo Huerta-Cuellar",coverURL:"https://cdn.intechopen.com/books/images_new/10767.jpg",editedByType:"Edited by",editors:[{id:"237167",title:"Dr.",name:"Guillermo",middleName:null,surname:"Huerta-Cuellar",slug:"guillermo-huerta-cuellar",fullName:"Guillermo Huerta-Cuellar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10017",title:"Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"e20f25706d03f0c52ac852f7fa2375e7",slug:"optoelectronics",bookSignature:"Mike Haidar Shahine",coverURL:"https://cdn.intechopen.com/books/images_new/10017.jpg",editedByType:"Edited by",editors:[{id:"102474",title:"Dr.",name:"Mike Haidar",middleName:null,surname:"Shahine",slug:"mike-haidar-shahine",fullName:"Mike Haidar Shahine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10075",title:"Nonlinear Optics",subtitle:"From Solitons to Similaritons",isOpenForSubmission:!1,hash:"b034b2a060292c8511359aec0db1002c",slug:"nonlinear-optics-from-solitons-to-similaritons",bookSignature:"İlkay Bakırtaş and Nalan Antar",coverURL:"https://cdn.intechopen.com/books/images_new/10075.jpg",editedByType:"Edited by",editors:[{id:"186388",title:"Prof.",name:"İlkay",middleName:null,surname:"Bakırtaş",slug:"ilkay-bakirtas",fullName:"İlkay Bakırtaş"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9211",title:"Single Photon Manipulation",subtitle:null,isOpenForSubmission:!1,hash:"567ddcc14b68fa14e54df3bce2f51acc",slug:"single-photon-manipulation",bookSignature:"Keyu Xia",coverURL:"https://cdn.intechopen.com/books/images_new/9211.jpg",editedByType:"Edited by",editors:[{id:"210723",title:"Prof.",name:"Keyu",middleName:null,surname:"Xia",slug:"keyu-xia",fullName:"Keyu Xia"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7965",title:"Liquid Crystals and Display Technology",subtitle:null,isOpenForSubmission:!1,hash:"eb83772cea6200bdd685b8a1b93ee35d",slug:"liquid-crystals-and-display-technology",bookSignature:"Morteza Sasani Ghamsari and Irina Carlescu",coverURL:"https://cdn.intechopen.com/books/images_new/7965.jpg",editedByType:"Edited by",editors:[{id:"64949",title:"Prof.",name:"Morteza",middleName:null,surname:"Sasani Ghamsari",slug:"morteza-sasani-ghamsari",fullName:"Morteza Sasani Ghamsari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8527",title:"Luminescence",subtitle:"OLED Technology and Applications",isOpenForSubmission:!1,hash:"dbdf51e72104f9e570cc0f1ea6c02a9e",slug:"luminescence-oled-technology-and-applications",bookSignature:"Sergei Pyshkin",coverURL:"https://cdn.intechopen.com/books/images_new/8527.jpg",editedByType:"Edited by",editors:[{id:"43016",title:"Prof.",name:"Sergei",middleName:"L.",surname:"Pyshkin",slug:"sergei-pyshkin",fullName:"Sergei Pyshkin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8873",title:"Optical Coherence Tomography and Its Non-medical Applications",subtitle:null,isOpenForSubmission:!1,hash:"04048c4d925e4a7256014a26cf19c40c",slug:"optical-coherence-tomography-and-its-non-medical-applications",bookSignature:"Michael R. Wang",coverURL:"https://cdn.intechopen.com/books/images_new/8873.jpg",editedByType:"Edited by",editors:[{id:"6356",title:"Dr.",name:"Michael",middleName:null,surname:"Wang",slug:"michael-wang",fullName:"Michael Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9272",title:"Optical Fiber Applications",subtitle:null,isOpenForSubmission:!1,hash:"dd156cc0568d8a4204d9f13609d8ff9e",slug:"optical-fiber-applications",bookSignature:"Guillermo Huerta-Cuellar and Roghayeh Imani",coverURL:"https://cdn.intechopen.com/books/images_new/9272.jpg",editedByType:"Edited by",editors:[{id:"237167",title:"Dr.",name:"Guillermo",middleName:null,surname:"Huerta-Cuellar",slug:"guillermo-huerta-cuellar",fullName:"Guillermo Huerta-Cuellar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7515",title:"Photonic Crystals",subtitle:"A Glimpse of the Current Research Trends",isOpenForSubmission:!1,hash:"1dcab6021cb88bdb66e9588e2fc24d19",slug:"photonic-crystals-a-glimpse-of-the-current-research-trends",bookSignature:"Pankaj Kumar Choudhury",coverURL:"https://cdn.intechopen.com/books/images_new/7515.jpg",editedByType:"Edited by",editors:[{id:"205744",title:"Dr.",name:"Pankaj",middleName:null,surname:"Kumar Choudhury",slug:"pankaj-kumar-choudhury",fullName:"Pankaj Kumar Choudhury"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7682",title:"Holographic Materials and Applications",subtitle:null,isOpenForSubmission:!1,hash:"ca1b913a04397b7c3477135969230103",slug:"holographic-materials-and-applications",bookSignature:"Manoj Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/7682.jpg",editedByType:"Edited by",editors:[{id:"191886",title:"Dr.",name:"Manoj",middleName:null,surname:"Kumar",slug:"manoj-kumar",fullName:"Manoj Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:77,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"49652",doi:"10.5772/61720",title:"Sample Preparations for Scanning Electron Microscopy – Life Sciences",slug:"sample-preparations-for-scanning-electron-microscopy-life-sciences",totalDownloads:8761,totalCrossrefCites:37,totalDimensionsCites:84,abstract:"Sample preparations are essential in scanning electron microscopy. Flawed sample preparations can undermine the quality of results and lead to false conclusions. Thus, the aim of this chapter is to equip researchers, post graduate students and technicians with essential knowledge required to prepare samples for scanning electron microscopy (SEM) investigations in the life sciences.",book:{id:"5075",slug:"modern-electron-microscopy-in-physical-and-life-sciences",title:"Modern Electron Microscopy in Physical and Life Sciences",fullTitle:"Modern Electron Microscopy in Physical and Life Sciences"},signatures:"Mogana Das Murtey and Patchamuthu Ramasamy",authors:[{id:"176330",title:"Dr.",name:"Mogana",middleName:"Das",surname:"Murtey",slug:"mogana-murtey",fullName:"Mogana Murtey"},{id:"181159",title:"Mr.",name:"Patchamuthu",middleName:null,surname:"Ramasamy",slug:"patchamuthu-ramasamy",fullName:"Patchamuthu Ramasamy"}]},{id:"26791",doi:"10.5772/28067",title:"Optical Vortices in a Fiber: Mode Division Multiplexing and Multimode Self-Imaging",slug:"optical-vortices-in-a-fiber-mode-division-multiplexing-and-multimode-self-reproducing",totalDownloads:4552,totalCrossrefCites:30,totalDimensionsCites:49,abstract:null,book:{id:"2018",slug:"recent-progress-in-optical-fiber-research",title:"Recent Progress in Optical Fiber Research",fullTitle:"Recent Progress in Optical Fiber Research"},signatures:"S.N. Khonina, N.L. Kazanskiy and V.A. Soifer",authors:[{id:"72613",title:"Prof.",name:"Svetlana",middleName:null,surname:"Khonina",slug:"svetlana-khonina",fullName:"Svetlana Khonina"}]},{id:"30963",doi:"10.5772/34176",title:"Microstructural and Mineralogical Characterization of Clay Stabilized Using Calcium-Based Stabilizers",slug:"microstructural-and-mineralogical-characterization-of-clay-stabilized-using-calcium-based-stabilizer",totalDownloads:6804,totalCrossrefCites:29,totalDimensionsCites:48,abstract:null,book:{id:"1505",slug:"scanning-electron-microscopy",title:"Scanning Electron Microscopy",fullTitle:"Scanning Electron Microscopy"},signatures:"Pranshoo Solanki and Musharraf Zaman",authors:[{id:"20942",title:"Prof.",name:"Pranshoo",middleName:null,surname:"Solanki",slug:"pranshoo-solanki",fullName:"Pranshoo Solanki"},{id:"20945",title:"Prof.",name:"Musharraf",middleName:null,surname:"Zaman",slug:"musharraf-zaman",fullName:"Musharraf Zaman"}]},{id:"42033",doi:"10.5772/53897",title:"Photonic Crystals for Optical Sensing: A Review",slug:"photonic-crystals-for-optical-sensing-a-review",totalDownloads:6050,totalCrossrefCites:24,totalDimensionsCites:43,abstract:null,book:{id:"3486",slug:"advances-in-photonic-crystals",title:"Advances in Photonic Crystals",fullTitle:"Advances in Photonic Crystals"},signatures:"Benedetto Troia, Antonia Paolicelli, Francesco De Leonardis and Vittorio M. N. Passaro",authors:[{id:"83905",title:"Prof.",name:"Vittorio",middleName:"M. N.",surname:"Passaro",slug:"vittorio-passaro",fullName:"Vittorio Passaro"}]},{id:"38543",doi:"10.5772/48331",title:"Application of FTIR Spectroscopy in Environmental Studies",slug:"application-of-ftir-spectroscopy-in-environmental-studies",totalDownloads:27703,totalCrossrefCites:10,totalDimensionsCites:43,abstract:null,book:{id:"2397",slug:"advanced-aspects-of-spectroscopy",title:"Advanced Aspects of Spectroscopy",fullTitle:"Advanced Aspects of Spectroscopy"},signatures:"Claudia Maria Simonescu",authors:[{id:"142381",title:"Dr.",name:"Claudia Maria",middleName:null,surname:"Simonescu",slug:"claudia-maria-simonescu",fullName:"Claudia Maria Simonescu"}]}],mostDownloadedChaptersLast30Days:[{id:"52164",title:"An Overview on Quantum Cascade Lasers: Origins and Development",slug:"an-overview-on-quantum-cascade-lasers-origins-and-development",totalDownloads:3262,totalCrossrefCites:3,totalDimensionsCites:11,abstract:"This chapter presents an introductory review on quantum cascade lasers (QCLs). An overview is prefaced, including a brief description of their beginnings and operating basics. Materials used, as well as growth methods, are also described. The possibility of developing GaN-based QCLs is also shown. Summarizing, the applications of these structures cover a broad range, including spectroscopy, free-space communication, as well as applications to near-space radar and chemical/biological detection. Furthermore, a number of state-of-the-art applications are described in different fields, and finally a brief assessment of the possibilities of volume production and the overall state of the art in QCLs research are elaborated.",book:{id:"5389",slug:"quantum-cascade-lasers",title:"Quantum Cascade Lasers",fullTitle:"Quantum Cascade Lasers"},signatures:"Raúl Pecharromán-Gallego",authors:[{id:"188866",title:"Dr.",name:"Raúl",middleName:null,surname:"Pecharromán-Gallego",slug:"raul-pecharroman-gallego",fullName:"Raúl Pecharromán-Gallego"}]},{id:"49526",title:"Focused Ion Beams (FIB) — Novel Methodologies and Recent Applications for Multidisciplinary Sciences",slug:"focused-ion-beams-fib-novel-methodologies-and-recent-applications-for-multidisciplinary-sciences",totalDownloads:4330,totalCrossrefCites:5,totalDimensionsCites:11,abstract:"Considered as the newest field of electron microscopy, focused ion beam (FIB) technologies are used in many fields of science for site-specific analysis, imaging, milling, deposition, micromachining, and manipulation. Dual-beam platforms, combining a high-resolution scanning electron microscope (HR-SEM) and an FIB column, additionally equipped with precursor-based gas injection systems (GIS), micromanipulators, and chemical analysis tools (such as energy-dispersive spectra (EDS) or wavelength-dispersive spectra (WDS)), serve as multifunctional tools for direct lithography in terms of nano-machining and nano-prototyping, while advanced specimen preparation for transmission electron microscopy (TEM) can practically be carried out with ultrahigh precision. Especially, when hard materials and material systems with hard substrates are concerned, FIB is the only technique for site-specific micro- and nanostructuring. Moreover, FIB sectioning and sampling techniques are frequently used for revealing the structural and morphological distribution of material systems with three-dimensional (3D) network at micro-/nanoscale.This book chapter includes many examples on conventional and novel processes of FIB technologies, ranging from analysis of semiconductors to electron tomography-based imaging of hard materials such as nanoporous ceramics and composites. In addition, recent studies concerning the active use of dual-beam platforms are mentioned",book:{id:"5075",slug:"modern-electron-microscopy-in-physical-and-life-sciences",title:"Modern Electron Microscopy in Physical and Life Sciences",fullTitle:"Modern Electron Microscopy in Physical and Life Sciences"},signatures:"Meltem Sezen",authors:[{id:"176338",title:"Associate Prof.",name:"Meltem",middleName:null,surname:"Sezen",slug:"meltem-sezen",fullName:"Meltem Sezen"}]},{id:"50866",title:"Effects of Different Laser Pulse Regimes (Nanosecond, Picosecond and Femtosecond) on the Ablation of Materials for Production of Nanoparticles in Liquid Solution",slug:"effects-of-different-laser-pulse-regimes-nanosecond-picosecond-and-femtosecond-on-the-ablation-of-ma",totalDownloads:6121,totalCrossrefCites:11,totalDimensionsCites:36,abstract:"Ultra-short laser pulse interaction with materials has received much attention from researchers in micro- and nanomachining, especially for the generation of nanoparticles in liquid environments, because of the straightforward method and direct application for organic solvents. In addition, the colloidal nanoparticles produced by laser ablation have very high purity—they are free from surfactants and reaction products or by-products. In this chapter, nanosecond, picosecond and femtosecond laser pulse durations are compared in laser material processing. Due to the unique properties of the short and ultra-short laser pulse durations in material processing, they are more apparent in the production of precision material processing and generation of nanoparticles in liquid environments.",book:{id:"5236",slug:"high-energy-and-short-pulse-lasers",title:"High Energy and Short Pulse Lasers",fullTitle:"High Energy and Short Pulse Lasers"},signatures:"Abubaker Hassan Hamad",authors:[{id:"183494",title:"Dr.",name:"Abubaker",middleName:"Hassan",surname:"Hamad",slug:"abubaker-hamad",fullName:"Abubaker Hamad"}]},{id:"49537",title:"Electron Diffraction",slug:"electron-diffraction",totalDownloads:10164,totalCrossrefCites:12,totalDimensionsCites:32,abstract:"Electron microscopes are usually supplied with equipment for obtaining diffraction patterns and micrographs from the same area of a specimen and the best results are attained if the complete use is to be made of these combined facilities. Electron diffraction patterns are used to obtain quantitative data including phase identification, orientation relationship and crystal defects in materials, etc. At first, a general introduction including a geometrical and quantitative approach to electron diffraction from a crystalline specimen, the reciprocal lattice and electron diffraction in the electron microscope are presented. The scattering process by an individual atom as well as a crystal, the Bragg law, Laue conditions and structure factor are also discussed. Types of diffraction patterns such as ring pattern, spot pattern and Kikuchi pattern, and general and unique indexing diffraction patterns are explained. The procedure for indexing simple, complicated and imperfect patterns as well as Kikuchi lines and a combination of Kikuchi lines and spots is outlined. The known and unknown materials are identified by indexing patterns. Practical comparisons between various methods of analysing diffraction patterns are also described. The basic diffraction patterns and the fine structure in the patterns including specimen tilting experiments, orientation relationship determination, phase identification, twinning, second phases, crystallographic information, dislocation, preferred orientation and texture, extra spots and streaks are described in detail. Finally, electron diffraction patterns of new materials are investigated.",book:{id:"5075",slug:"modern-electron-microscopy-in-physical-and-life-sciences",title:"Modern Electron Microscopy in Physical and Life Sciences",fullTitle:"Modern Electron Microscopy in Physical and Life Sciences"},signatures:"Mohsen Asadi Asadabad and Mohammad Jafari Eskandari",authors:[{id:"176352",title:"Dr.",name:"Mohsen",middleName:null,surname:"Asadi Asadabad",slug:"mohsen-asadi-asadabad",fullName:"Mohsen Asadi Asadabad"},{id:"177600",title:"Dr.",name:"Mohammad",middleName:null,surname:"Jafari Eskandari",slug:"mohammad-jafari-eskandari",fullName:"Mohammad Jafari Eskandari"}]},{id:"38543",title:"Application of FTIR Spectroscopy in Environmental Studies",slug:"application-of-ftir-spectroscopy-in-environmental-studies",totalDownloads:27708,totalCrossrefCites:10,totalDimensionsCites:43,abstract:null,book:{id:"2397",slug:"advanced-aspects-of-spectroscopy",title:"Advanced Aspects of Spectroscopy",fullTitle:"Advanced Aspects of Spectroscopy"},signatures:"Claudia Maria Simonescu",authors:[{id:"142381",title:"Dr.",name:"Claudia Maria",middleName:null,surname:"Simonescu",slug:"claudia-maria-simonescu",fullName:"Claudia Maria Simonescu"}]}],onlineFirstChaptersFilter:{topicId:"228",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:11,numberOfPublishedChapters:91,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:333,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:11,numberOfPublishedChapters:144,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:125,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:23,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"August 17th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:33,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:6,paginationItems:[{id:"82526",title:"Deep Multiagent Reinforcement Learning Methods Addressing the Scalability Challenge",doi:"10.5772/intechopen.105627",signatures:"Theocharis Kravaris and George A. Vouros",slug:"deep-multiagent-reinforcement-learning-methods-addressing-the-scalability-challenge",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Multi-Agent Technologies and Machine Learning",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",subseries:{id:"27",title:"Multi-Agent Systems"}}},{id:"82196",title:"Multi-Features Assisted Age Invariant Face Recognition and Retrieval Using CNN with Scale Invariant Heat Kernel Signature",doi:"10.5772/intechopen.104944",signatures:"Kamarajugadda Kishore Kumar and Movva Pavani",slug:"multi-features-assisted-age-invariant-face-recognition-and-retrieval-using-cnn-with-scale-invariant-",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"82063",title:"Evaluating Similarities and Differences between Machine Learning and Traditional Statistical Modeling in Healthcare Analytics",doi:"10.5772/intechopen.105116",signatures:"Michele Bennett, Ewa J. Kleczyk, Karin Hayes and Rajesh Mehta",slug:"evaluating-similarities-and-differences-between-machine-learning-and-traditional-statistical-modelin",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:59,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},overviewPagePublishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:'"Politechnica" University Timişoara',institution:null}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:1,paginationItems:[{id:"11478",title:"Recent Advances in the Study of Dyslexia",coverURL:"https://cdn.intechopen.com/books/images_new/11478.jpg",hash:"26764a18c6b776698823e0e1c3022d2f",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 30th 2022",isOpenForSubmission:!0,editors:[{id:"294281",title:"Prof.",name:"Jonathan",surname:"Glazzard",slug:"jonathan-glazzard",fullName:"Jonathan Glazzard"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:21,paginationItems:[{id:"83000",title:"Purine and Pyrimidine Pathways as Antimalarial Targets",doi:"10.5772/intechopen.106468",signatures:"Yacoba V.T. Minnow and Vern L. Schramm",slug:"purine-and-pyrimidine-pathways-as-antimalarial-targets",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"83065",title:"Interventions and Practical Approaches to Reduce the Burden of Malaria on School-Aged Children",doi:"10.5772/intechopen.106469",signatures:"Andrew Macnab",slug:"interventions-and-practical-approaches-to-reduce-the-burden-of-malaria-on-school-aged-children",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Andrew",surname:"Macnab"}],book:{title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82804",title:"Psychiatric Problems in HIV Care",doi:"10.5772/intechopen.106077",signatures:"Seggane Musisi and Noeline Nakasujja",slug:"psychiatric-problems-in-hiv-care",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82827",title:"Epidemiology and Control of Schistosomiasis",doi:"10.5772/intechopen.105170",signatures:"Célestin Kyambikwa Bisangamo",slug:"epidemiology-and-control-of-schistosomiasis",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82817",title:"Perspective Chapter: Microfluidic Technologies for On-Site Detection and Quantification of Infectious Diseases - The Experience with SARS-CoV-2/COVID-19",doi:"10.5772/intechopen.105950",signatures:"Andres Escobar and Chang-qing Xu",slug:"perspective-chapter-microfluidic-technologies-for-on-site-detection-and-quantification-of-infectious",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82667",title:"Perspective Chapter: Analysis of SARS-CoV-2 Indirect Spreading Routes and Possible Countermeasures",doi:"10.5772/intechopen.105914",signatures:"Cesare Saccani, Marco Pellegrini and Alessandro Guzzini",slug:"perspective-chapter-analysis-of-sars-cov-2-indirect-spreading-routes-and-possible-countermeasures",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82559",title:"Perspective Chapter: Bioinformatics Study of the Evolution of SARS-CoV-2 Spike Protein",doi:"10.5772/intechopen.105915",signatures:"Črtomir Podlipnik, Radostina Alexandrova, Sebastian Pleško, Urban Bren and Marko Jukič",slug:"perspective-chapter-bioinformatics-study-of-the-evolution-of-sars-cov-2-spike-protein",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82521",title:"Challenges in Platelet Functions in HIV/AIDS Management",doi:"10.5772/intechopen.105731",signatures:"Gordon Ogweno",slug:"challenges-in-platelet-functions-in-hiv-aids-management",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82701",title:"Pathology of Streptococcal Infections",doi:"10.5772/intechopen.105814",signatures:"Yutaka Tsutsumi",slug:"pathology-of-streptococcal-infections",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Yutaka",surname:"Tsutsumi"}],book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82634",title:"Bacterial Sexually Transmitted Disease",doi:"10.5772/intechopen.105747",signatures:"Lebeza Alemu Tenaw",slug:"bacterial-sexually-transmitted-disease",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},subseriesFiltersForOFChapters:[{caption:"Fungal Infectious Diseases",value:4,count:1,group:"subseries"},{caption:"Parasitic Infectious Diseases",value:5,count:5,group:"subseries"},{caption:"Bacterial Infectious Diseases",value:3,count:5,group:"subseries"},{caption:"Viral Infectious Diseases",value:6,count:10,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Pollution",value:38,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:303,paginationItems:[{id:"280338",title:"Dr.",name:"Yutaka",middleName:null,surname:"Tsutsumi",slug:"yutaka-tsutsumi",fullName:"Yutaka Tsutsumi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/280338/images/7961_n.jpg",biography:null,institutionString:null,institution:{name:"Fujita Health University",country:{name:"Japan"}}},{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"117248",title:"Dr.",name:"Andrew",middleName:null,surname:"Macnab",slug:"andrew-macnab",fullName:"Andrew Macnab",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"322007",title:"Dr.",name:"Maria Elizbeth",middleName:null,surname:"Alvarez-Sánchez",slug:"maria-elizbeth-alvarez-sanchez",fullName:"Maria Elizbeth Alvarez-Sánchez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",country:{name:"Mexico"}}},{id:"337443",title:"Dr.",name:"Juan",middleName:null,surname:"A. Gonzalez-Sanchez",slug:"juan-a.-gonzalez-sanchez",fullName:"Juan A. Gonzalez-Sanchez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico System",country:{name:"United States of America"}}},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}}]}},subseries:{item:{id:"19",type:"subseries",title:"Animal Science",keywords:"Animal Science, Animal Biology, Wildlife Species, Domesticated Animals",scope:"The Animal Science topic welcomes research on captive and wildlife species, including domesticated animals. The research resented can consist of primary studies on various animal biology fields such as genetics, nutrition, behavior, welfare, and animal production, to name a few. Reviews on specialized areas of animal science are also welcome.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11415,editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null,series:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517"},editorialBoard:[{id:"258334",title:"Dr.",name:"Carlos Eduardo",middleName:null,surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves",profilePictureURL:"https://mts.intechopen.com/storage/users/258334/images/system/258334.jpg",institutionString:null,institution:{name:"Universidade Paulista",institutionURL:null,country:{name:"Brazil"}}},{id:"191123",title:"Dr.",name:"Juan José",middleName:null,surname:"Valdez-Alarcón",slug:"juan-jose-valdez-alarcon",fullName:"Juan José Valdez-Alarcón",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBfcQAG/Profile_Picture_1631354558068",institutionString:"Universidad Michoacana de San Nicolás de Hidalgo",institution:{name:"Universidad Michoacana de San Nicolás de Hidalgo",institutionURL:null,country:{name:"Mexico"}}},{id:"161556",title:"Dr.",name:"Maria Dos Anjos",middleName:null,surname:"Pires",slug:"maria-dos-anjos-pires",fullName:"Maria Dos Anjos Pires",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS8q2QAC/Profile_Picture_1633432838418",institutionString:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}},{id:"209839",title:"Dr.",name:"Marina",middleName:null,surname:"Spinu",slug:"marina-spinu",fullName:"Marina Spinu",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLXpQAO/Profile_Picture_1630044895475",institutionString:null,institution:{name:"University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca",institutionURL:null,country:{name:"Romania"}}},{id:"92185",title:"Dr.",name:"Sara",middleName:null,surname:"Savic",slug:"sara-savic",fullName:"Sara Savic",profilePictureURL:"https://mts.intechopen.com/storage/users/92185/images/system/92185.jfif",institutionString:'Scientific Veterinary Institute "Novi Sad"',institution:{name:'Scientific Veterinary Institute "Novi Sad"',institutionURL:null,country:{name:"Serbia"}}}]},onlineFirstChapters:{paginationCount:18,paginationItems:[{id:"83115",title:"Fungi and Oomycetes–Allies in Eliminating Environmental Pathogens",doi:"10.5772/intechopen.106498",signatures:"Iasmina Luca",slug:"fungi-and-oomycetes-allies-in-eliminating-environmental-pathogens",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82991",title:"Diseases of the Canine Prostate Gland",doi:"10.5772/intechopen.105835",signatures:"Sabine Schäfer-Somi",slug:"diseases-of-the-canine-prostate-gland",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82773",title:"Canine Transmissible Venereal Tumor: An Infectious Neoplasia in Dogs",doi:"10.5772/intechopen.106150",signatures:"Chanokchon Setthawongsin, Somporn Techangamsuwan and Anudep Rungsipipat",slug:"canine-transmissible-venereal-tumor-an-infectious-neoplasia-in-dogs",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82797",title:"Anatomical Guide to the Paranasal Sinuses of Domestic Animals",doi:"10.5772/intechopen.106157",signatures:"Mohamed A.M. Alsafy, Samir A.A. El-Gendy and Catrin Sian Rutland",slug:"anatomical-guide-to-the-paranasal-sinuses-of-domestic-animals",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82457",title:"Canine Hearing Management",doi:"10.5772/intechopen.105515",signatures:"Peter M. Skip Scheifele, Devan Marshall, Stephen Lee, Paul Reid, Thomas McCreery and David Byrne",slug:"canine-hearing-management",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",doi:"10.5772/intechopen.105085",signatures:"Megha Gupta",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82170",title:"Equine Stress: Neuroendocrine Physiology and Pathophysiology",doi:"10.5772/intechopen.105045",signatures:"Milomir Kovac, Tatiana Vladimirovna Ippolitova, Sergey Pozyabin, Ruslan Aliev, Viktoria Lobanova, Nevena Drakul and Catrin S. Rutland",slug:"equine-stress-neuroendocrine-physiology-and-pathophysiology",totalDownloads:33,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:34,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:43,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:165,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",doi:"10.5772/intechopen.100051",signatures:"Chan I-Ping and Hsueh Tung",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:196,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",doi:"10.5772/intechopen.99067",signatures:"Christophe Casteleyn and Jaco Bakker",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:413,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77999",title:"Bronchus-Associated Lymphoid Tissue (BALT) Histology and Its Role in Various Pathologies",doi:"10.5772/intechopen.99366",signatures:"Tuba Parlak Ak",slug:"bronchus-associated-lymphoid-tissue-balt-histology-and-its-role-in-various-pathologies",totalDownloads:231,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78242",title:"Genomic Instability and Cyto-Genotoxic Damage in Animal Species",doi:"10.5772/intechopen.99685",signatures:"María Evarista Arellano-García, Olivia Torres-Bugarín, Maritza Roxana García-García, Daniel García-Flores, Yanis Toledano-Magaña, Cinthya Sofia Sanabria-Mora, Sandra Castro-Gamboa and Juan Carlos García-Ramos",slug:"genomic-instability-and-cyto-genotoxic-damage-in-animal-species",totalDownloads:159,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78503",title:"Biomechanics of the Canine Elbow Joint",doi:"10.5772/intechopen.99569",signatures:"Thomas Rohwedder",slug:"biomechanics-of-the-canine-elbow-joint",totalDownloads:212,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78018",title:"Application of Noble Metals in the Advances in Animal Disease Diagnostics",doi:"10.5772/intechopen.99162",signatures:"Gabriel Alexis S.P. Tubalinal, Leonard Paulo G. Lucero, Jim Andreus V. Mangahas, Marvin A. Villanueva and Claro N. Mingala",slug:"application-of-noble-metals-in-the-advances-in-animal-disease-diagnostics",totalDownloads:118,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},publishedBooks:{paginationCount:5,paginationItems:[{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Sergey Tkachev",hash:"49cce3f548da548c718c865feb343509",volumeInSeries:9,fullTitle:"Rabies Virus at the Beginning of 21st Century",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",slug:"canine-genetics-health-and-medicine",publishedDate:"June 2nd 2021",editedByType:"Edited by",bookSignature:"Catrin Rutland",hash:"b91512e31ce34032e560362e6cbccc1c",volumeInSeries:7,fullTitle:"Canine Genetics, Health and Medicine",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9081",title:"Equine Science",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",slug:"equine-science",publishedDate:"September 23rd 2020",editedByType:"Edited by",bookSignature:"Catrin Rutland and Albert Rizvanov",hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",volumeInSeries:5,fullTitle:"Equine Science",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",institutionString:null,institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:11,numberOfPublishedChapters:91,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:333,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:11,numberOfPublishedChapters:144,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:124,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:23,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"3",title:"Bacterial Infectious Diseases",scope:"