Introduction of natural prototypes and the corresponding biomimetic and bioinspired membranes [65].
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"3306",leadTitle:null,fullTitle:"Physical and Chemical Properties of Carbon Nanotubes",title:"Physical and Chemical Properties of Carbon Nanotubes",subtitle:null,reviewType:"peer-reviewed",abstract:"Carbon nanotubes are rolled up graphene sheets with a quasi-one-dimensional structure of nanometer-scale diameter. In these last twenty years, carbon nanotubes have attracted much attention from physicists, chemists, material scientists, and electronic device engineers because of their excellent structural, electronic, optical, chemical and mechanical properties. Carbon nanotube research, especially that aiming at industrial applications, is becoming more important. This book covers recent research topics regarding the physical, structural, chemical and electric properties on carbon nanotubes. All chapters were written by researchers who are active on the front lines. The chapters in this book will be helpful to many students, engineers and researchers working in the field of carbon nanotubes.",isbn:null,printIsbn:"978-953-51-1002-6",pdfIsbn:"978-953-51-5725-0",doi:"10.5772/46029",price:139,priceEur:155,priceUsd:179,slug:"physical-and-chemical-properties-of-carbon-nanotubes",numberOfPages:416,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"a86348db4c2dff8c7e6300bacdcebdab",bookSignature:"Satoru Suzuki",publishedDate:"February 27th 2013",coverURL:"https://cdn.intechopen.com/books/images_new/3306.jpg",numberOfDownloads:49877,numberOfWosCitations:61,numberOfCrossrefCitations:69,numberOfCrossrefCitationsByBook:6,numberOfDimensionsCitations:62,numberOfDimensionsCitationsByBook:8,hasAltmetrics:1,numberOfTotalCitations:192,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 1st 2012",dateEndSecondStepPublish:"March 22nd 2012",dateEndThirdStepPublish:"June 18th 2012",dateEndFourthStepPublish:"August 1st 2012",dateEndFifthStepPublish:"December 8th 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"30519",title:"Dr.",name:"Satoru",middleName:null,surname:"Suzuki",slug:"satoru-suzuki",fullName:"Satoru Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/30519/images/system/30519.jpg",biography:"Dr. Satoru Suzuki earned an MS degree from Tohoku University, Sendai, Japan in 1992, and joined the Research and Development Center, NTT Corporation. Since 1998, he has worked for Basic Research Laboratories, NTT. He obtained a PhD degree in Science from Tohoku University in 1999. Dr. Suzuki has mainly studied the electronic structures of electrode materials for rechargeable lithium ion batteries, the electronic structures of pristine and doped carbon nanotubes, and low-energy irradiation damage specific to single-walled carbon nanotubes. He is currently also studying the synthesis and electric device applications of large-area graphene and hexagonal boron nitride.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"2",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1169",title:"Condensed Matter Physics",slug:"nanotechnology-and-nanomaterials-material-science-condensed-matter-physics"}],chapters:[{id:"40468",title:"Carbon Nanotubes in a Fluidic Medium: Critical Analysis",doi:"10.5772/51965",slug:"carbon-nanotubes-in-a-fluidic-medium-critical-analysis",totalDownloads:3070,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Maria Alexandra Fonseca, Sylvio Freitas, Bruno Lamas, Bruno Abreu, Hugo Calisto, Nelson Martins and Mónica Oliveira",downloadPdfUrl:"/chapter/pdf-download/40468",previewPdfUrl:"/chapter/pdf-preview/40468",authors:[{id:"38393",title:"Dr.",name:"Alexandra",surname:"Fonseca",slug:"alexandra-fonseca",fullName:"Alexandra Fonseca"},{id:"38394",title:"Prof.",name:"Monica",surname:"Oliveira",slug:"monica-oliveira",fullName:"Monica Oliveira"},{id:"153558",title:"MSc.",name:"Bruno",surname:"Lamas",slug:"bruno-lamas",fullName:"Bruno Lamas"},{id:"153559",title:"MSc.",name:"Bruno",surname:"Silva",slug:"bruno-silva",fullName:"Bruno Silva"},{id:"153560",title:"Prof.",name:"Nelson",surname:"Martins",slug:"nelson-martins",fullName:"Nelson Martins"},{id:"164422",title:"MSc.",name:"Hugo",surname:"Calisto",slug:"hugo-calisto",fullName:"Hugo Calisto"},{id:"164423",title:"M.Sc.",name:"Sylvio",surname:"De Freitas",slug:"sylvio-de-freitas",fullName:"Sylvio De Freitas"}],corrections:null},{id:"38953",title:"Characterization of Laser-Induced Defects and Modification in Carbon Nanotubes by Raman Spectroscopy",doi:"10.5772/52091",slug:"characterization-of-laser-induced-defects-and-modification-in-carbon-nanotubes-by-raman-spectroscopy",totalDownloads:2792,totalCrossrefCites:4,totalDimensionsCites:12,hasAltmetrics:1,abstract:null,signatures:"Masaru Tachibana",downloadPdfUrl:"/chapter/pdf-download/38953",previewPdfUrl:"/chapter/pdf-preview/38953",authors:[{id:"152874",title:"Prof.",name:"Masaru",surname:"Tachibana",slug:"masaru-tachibana",fullName:"Masaru Tachibana"}],corrections:null},{id:"38879",title:"Vibroelectronic Properties of Functionalized Single-Walled Carbon Nanotubes and Double-Walled Boron Nitride Nanotubes",doi:"10.5772/51486",slug:"vibroelectronic-properties-of-functionalized-single-walled-carbon-nanotubes-and-double-walled-boron-",totalDownloads:2695,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Metin Aydin and Daniel L. Akins",downloadPdfUrl:"/chapter/pdf-download/38879",previewPdfUrl:"/chapter/pdf-preview/38879",authors:[{id:"27070",title:"Prof.",name:"Metin",surname:"Aydin",slug:"metin-aydin",fullName:"Metin Aydin"}],corrections:null},{id:"41264",title:"Recent Progress of Plasma CVD for Structure Controlled Growth of Single-Walled Carbon Nanotubes",doi:"10.5772/51966",slug:"recent-progress-of-plasma-cvd-for-structure-controlled-growth-of-single-walled-carbon-nanotubes",totalDownloads:2030,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Toshiaki Kato and Rikizo Hatakeyama",downloadPdfUrl:"/chapter/pdf-download/41264",previewPdfUrl:"/chapter/pdf-preview/41264",authors:[{id:"152815",title:"Dr.",name:"Toshiaki",surname:"Kato",slug:"toshiaki-kato",fullName:"Toshiaki Kato"}],corrections:null},{id:"43340",title:"Synthesis, Atomic Structures and Properties of Boron Nitride Nanotubes",doi:"10.5772/51968",slug:"synthesis-atomic-structures-and-properties-of-boron-nitride-nanotubes",totalDownloads:5158,totalCrossrefCites:3,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Takeo Oku",downloadPdfUrl:"/chapter/pdf-download/43340",previewPdfUrl:"/chapter/pdf-preview/43340",authors:[{id:"31132",title:"Prof.",name:"Takeo",surname:"Oku",slug:"takeo-oku",fullName:"Takeo Oku"}],corrections:null},{id:"39156",title:"Carbon Nanotubes Under Simple Tension and Torsion – Molecular/Structural Mechanics and the Finite Element Method",doi:"10.5772/51070",slug:"carbon-nanotubes-under-simple-tension-and-torsion-molecular-structural-mechanics-and-the-finite-elem",totalDownloads:2445,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Najib A. Kasti",downloadPdfUrl:"/chapter/pdf-download/39156",previewPdfUrl:"/chapter/pdf-preview/39156",authors:[{id:"152877",title:"Dr",name:"Najib",surname:"Kasti",slug:"najib-kasti",fullName:"Najib Kasti"}],corrections:null},{id:"39068",title:"Characterization of Carbon Nanotubes",doi:"10.5772/51540",slug:"characterization-of-carbon-nanotubes",totalDownloads:4083,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Rolant Eba Medjo",downloadPdfUrl:"/chapter/pdf-download/39068",previewPdfUrl:"/chapter/pdf-preview/39068",authors:[{id:"50269",title:"Ph.D.",name:"Eba Medjo",surname:"Rolant",slug:"eba-medjo-rolant",fullName:"Eba Medjo Rolant"}],corrections:null},{id:"38699",title:"Small Molecules and Peptides Inside Carbon Nanotubes: Impact of Nanoscale Confinement",doi:"10.5772/51453",slug:"small-molecules-and-peptides-inside-carbon-nanotubes-impact-of-nanoscale-confinement",totalDownloads:2648,totalCrossrefCites:2,totalDimensionsCites:5,hasAltmetrics:0,abstract:null,signatures:"Peng Xiu, Zhen Xia and Ruhong Zhou",downloadPdfUrl:"/chapter/pdf-download/38699",previewPdfUrl:"/chapter/pdf-preview/38699",authors:[{id:"27748",title:"Prof.",name:"Ruhong",surname:"Zhou",slug:"ruhong-zhou",fullName:"Ruhong Zhou"}],corrections:null},{id:"37865",title:"Preparation, Characterization and Applicability of Covalently Functionalized MWNT",doi:"10.5772/50883",slug:"preparation-characterization-and-applicability-of-covalently-functionalized-mwnt",totalDownloads:3372,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Eun-Soo Park",downloadPdfUrl:"/chapter/pdf-download/37865",previewPdfUrl:"/chapter/pdf-preview/37865",authors:[{id:"38981",title:"Dr.",name:"Eun-Soo",surname:"Park",slug:"eun-soo-park",fullName:"Eun-Soo Park"}],corrections:null},{id:"41263",title:"Dispersion and Property Manipulation of Carbon Nanotubes by Self-Assemibles of Amphiphilic Molecules",doi:"10.5772/51967",slug:"dispersion-and-property-manipulation-of-carbon-nanotubes-by-self-assemibles-of-amphiphilic-molecules",totalDownloads:3506,totalCrossrefCites:6,totalDimensionsCites:14,hasAltmetrics:0,abstract:null,signatures:"Xia Xin , Guiying Xu and Hongguang Li",downloadPdfUrl:"/chapter/pdf-download/41263",previewPdfUrl:"/chapter/pdf-preview/41263",authors:[{id:"153202",title:"Dr.",name:"Xia",surname:"Xin",slug:"xia-xin",fullName:"Xia Xin"},{id:"153695",title:"Prof.",name:"Guiying",surname:"Xu",slug:"guiying-xu",fullName:"Guiying Xu"},{id:"162861",title:"Prof.",name:"Hongguang",surname:"Li",slug:"hongguang-li",fullName:"Hongguang Li"}],corrections:null},{id:"38734",title:"Aqueous Solution Surface Chemistry of Carbon Nanotubes",doi:"10.5772/51869",slug:"aqueous-solution-surface-chemistry-of-carbon-nanotubes",totalDownloads:3353,totalCrossrefCites:1,totalDimensionsCites:9,hasAltmetrics:0,abstract:null,signatures:"Anup K. Deb and Charles C. Chusuei",downloadPdfUrl:"/chapter/pdf-download/38734",previewPdfUrl:"/chapter/pdf-preview/38734",authors:[{id:"152413",title:"Prof.",name:"Charles",surname:"Chusuei",slug:"charles-chusuei",fullName:"Charles Chusuei"},{id:"165200",title:"MSc.",name:"Anup",surname:"Deb",slug:"anup-deb",fullName:"Anup Deb"}],corrections:null},{id:"37759",title:"Mild and Nondestructive Chemical Modification of Carbon Nanotubes (CNTs): Direct Friedel-Crafts Acylation Reaction",doi:"10.5772/50805",slug:"mild-and-nondestructive-chemical-modification-of-carbon-nanotubes-cnts-direct-friedel-crafts-acylati",totalDownloads:3510,totalCrossrefCites:2,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Dong Wook Chang, In-Yup Jeon, Hyun-Jung Choi and Jong-Beom Baek",downloadPdfUrl:"/chapter/pdf-download/37759",previewPdfUrl:"/chapter/pdf-preview/37759",authors:[{id:"31369",title:"Prof.",name:"Jong-Beom",surname:"Baek",slug:"jong-beom-baek",fullName:"Jong-Beom Baek"},{id:"41448",title:"Mr.",name:"In-Yup",surname:"Jeon,",slug:"in-yup-jeon",fullName:"In-Yup Jeon,"},{id:"152523",title:"Prof.",name:"Dong Wook",surname:"Chang",slug:"dong-wook-chang",fullName:"Dong Wook Chang"},{id:"163180",title:"Ms.",name:"Hyun-Jung",surname:"Choi",slug:"hyun-jung-choi",fullName:"Hyun-Jung Choi"}],corrections:null},{id:"43323",title:"Control of Single-Hole Transition in Carbon Nanotube Transistor with Quantum Dot in Gate Insulator at Room Temperature",doi:"10.5772/51884",slug:"control-of-single-hole-transition-in-carbon-nanotube-transistor-with-quantum-dot-in-gate-insulator-a",totalDownloads:2236,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Takafumi Kamimura, Yutaka Hayashi and Kazuhiko Matsumoto",downloadPdfUrl:"/chapter/pdf-download/43323",previewPdfUrl:"/chapter/pdf-preview/43323",authors:[{id:"6827",title:"Dr.",name:"Takafumi",surname:"Kamimura",slug:"takafumi-kamimura",fullName:"Takafumi Kamimura"}],corrections:null},{id:"43322",title:"Study of Carbon Nanotube Based Devices Using Scanning Probe Microscope",doi:"10.5772/52067",slug:"study-of-carbon-nanotube-based-devices-using-scanning-probe-microscope",totalDownloads:2789,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Hock Guan Ong and Junling Wang",downloadPdfUrl:"/chapter/pdf-download/43322",previewPdfUrl:"/chapter/pdf-preview/43322",authors:[{id:"152826",title:"Prof.",name:"Junling",surname:"Wang",slug:"junling-wang",fullName:"Junling Wang"},{id:"153705",title:"Dr.",name:"Hock Guan",surname:"Ong",slug:"hock-guan-ong",fullName:"Hock Guan Ong"}],corrections:null},{id:"43139",title:"Carbon Nanotubes as Suitable Interface for Improving Neural Recordings",doi:"10.5772/52174",slug:"carbon-nanotubes-as-suitable-interface-for-improving-neural-recordings",totalDownloads:2574,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Gemma Gabriel, Xavi Illa, Anton Guimera, Beatriz Rebollo, Javier Hernández-Ferrer, Iñigo Martin-Fernandez, Ma Teresa Martínez, Philippe Godignon, Maria V. Sanchez-Vives and Rosa Villa",downloadPdfUrl:"/chapter/pdf-download/43139",previewPdfUrl:"/chapter/pdf-preview/43139",authors:[{id:"129877",title:"Dr.",name:"Iñigo",surname:"Martin-Fernandez",slug:"inigo-martin-fernandez",fullName:"Iñigo Martin-Fernandez"},{id:"152784",title:"Dr.",name:"Gemma",surname:"Gabriel",slug:"gemma-gabriel",fullName:"Gemma Gabriel"},{id:"153646",title:"Dr.",name:"Rosa",surname:"Villa",slug:"rosa-villa",fullName:"Rosa Villa"},{id:"153647",title:"Dr.",name:"Philippe",surname:"Godignon",slug:"philippe-godignon",fullName:"Philippe Godignon"},{id:"153648",title:"Prof.",name:"Mª Teresa",surname:"Martínez",slug:"ma-teresa-martinez",fullName:"Mª Teresa Martínez"},{id:"153649",title:"Mr.",name:"Javier",surname:"Hernández-Ferrer",slug:"javier-hernandez-ferrer",fullName:"Javier Hernández-Ferrer"},{id:"153650",title:"Prof.",name:"Mavi",surname:"Sánchez-Vives",slug:"mavi-sanchez-vives",fullName:"Mavi Sánchez-Vives"},{id:"165024",title:"Dr.",name:"Xavi",surname:"Illa",slug:"xavi-illa",fullName:"Xavi Illa"},{id:"165025",title:"Mr.",name:"Anton",surname:"Guimera",slug:"anton-guimera",fullName:"Anton Guimera"},{id:"165026",title:"Mrs.",name:"Beatriz",surname:"Rebollo",slug:"beatriz-rebollo",fullName:"Beatriz Rebollo"}],corrections:null},{id:"38696",title:"Phonon Scattering and Electron Transport in Single Wall Carbon Nanotube",doi:"10.5772/51451",slug:"phonon-scattering-and-electron-transport-in-single-wall-carbon-nanotube",totalDownloads:3616,totalCrossrefCites:43,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Bo Xu, Jiang Yin and Zhiguo Liu",downloadPdfUrl:"/chapter/pdf-download/38696",previewPdfUrl:"/chapter/pdf-preview/38696",authors:[{id:"152965",title:"Dr.",name:"Bo",surname:"Xu",slug:"bo-xu",fullName:"Bo Xu"},{id:"153160",title:"Prof.",name:"Jiang",surname:"Yin",slug:"jiang-yin",fullName:"Jiang Yin"},{id:"163464",title:"Prof.",name:"Zhiguo",surname:"Liu",slug:"zhiguo-liu",fullName:"Zhiguo Liu"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:[{id:"65",label:"highly cited contributor"}]},relatedBooks:[{type:"book",id:"3077",title:"Syntheses and Applications of Carbon Nanotubes and Their Composites",subtitle:null,isOpenForSubmission:!1,hash:"38dd4fb088a27b2552bf3d371e8c2872",slug:"syntheses-and-applications-of-carbon-nanotubes-and-their-composites",bookSignature:"Satoru Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/3077.jpg",editedByType:"Edited by",editors:[{id:"30519",title:"Dr.",name:"Satoru",surname:"Suzuki",slug:"satoru-suzuki",fullName:"Satoru Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"397",title:"Nanofibers",subtitle:"Production, Properties and Functional Applications",isOpenForSubmission:!1,hash:"934fe33b73b2ecba961c67d5a90021ec",slug:"nanofibers-production-properties-and-functional-applications",bookSignature:"Tong Lin",coverURL:"https://cdn.intechopen.com/books/images_new/397.jpg",editedByType:"Edited by",editors:[{id:"49937",title:"Dr.",name:"Tong",surname:"Lin",slug:"tong-lin",fullName:"Tong Lin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1045",title:"Nanocomposites and Polymers with Analytical Methods",subtitle:null,isOpenForSubmission:!1,hash:"65d477e855685ea85913e5aba0c5217e",slug:"nanocomposites-and-polymers-with-analytical-methods",bookSignature:"John Cuppoletti",coverURL:"https://cdn.intechopen.com/books/images_new/1045.jpg",editedByType:"Edited by",editors:[{id:"49991",title:"Dr.",name:"John",surname:"Cuppoletti",slug:"john-cuppoletti",fullName:"John Cuppoletti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3200",title:"Nanofibers",subtitle:null,isOpenForSubmission:!1,hash:"97487143b896780afaf08cfd67cd1eec",slug:"nanofibers",bookSignature:"Ashok Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/3200.jpg",editedByType:"Edited by",editors:[{id:"7718",title:"Professor",name:"Ashok",surname:"Kumar",slug:"ashok-kumar",fullName:"Ashok Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"191",title:"Advances in Nanocomposite Technology",subtitle:null,isOpenForSubmission:!1,hash:"4dc3407e602cdd348af663727baebe3d",slug:"advances-in-nanocomposite-technology",bookSignature:"Abbass Hashim",coverURL:"https://cdn.intechopen.com/books/images_new/191.jpg",editedByType:"Edited by",editors:[{id:"6700",title:"Dr.",name:"Abbass A.",surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3156",title:"Nanowires",subtitle:"Science and Technology",isOpenForSubmission:!1,hash:"1916d90306aa50f0cae870c88e7550fa",slug:"nanowires-science-and-technology",bookSignature:"Nicoleta Lupu",coverURL:"https://cdn.intechopen.com/books/images_new/3156.jpg",editedByType:"Edited by",editors:[{id:"6995",title:"Dr.",name:"Nicoleta",surname:"Lupu",slug:"nicoleta-lupu",fullName:"Nicoleta Lupu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3558",title:"Advances in Graphene Science",subtitle:null,isOpenForSubmission:!1,hash:"f3a2158260a79c0fc8a4298864aa7dcd",slug:"advances-in-graphene-science",bookSignature:"Mahmood Aliofkhazraei",coverURL:"https://cdn.intechopen.com/books/images_new/3558.jpg",editedByType:"Edited by",editors:[{id:"155413",title:"Dr.",name:"Mahmood",surname:"Aliofkhazraei",slug:"mahmood-aliofkhazraei",fullName:"Mahmood Aliofkhazraei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"861",title:"Nanomaterials",subtitle:null,isOpenForSubmission:!1,hash:"f32b97a9aa541939cb212373d471d477",slug:"nanomaterials",bookSignature:"Mohammed Muzibur Rahman",coverURL:"https://cdn.intechopen.com/books/images_new/861.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"514",title:"Nanowires",subtitle:"Implementations and Applications",isOpenForSubmission:!1,hash:"a72c02407edeef3d1a2ff8ddc07cad87",slug:"nanowires-implementations-and-applications",bookSignature:"Abbass Hashim",coverURL:"https://cdn.intechopen.com/books/images_new/514.jpg",editedByType:"Edited by",editors:[{id:"6700",title:"Dr.",name:"Abbass A.",surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"74026",slug:"corrigendum-to-calf-sex-influence-in-bovine-milk-production",title:"Corrigendum to: Calf-Sex Influence in Bovine Milk Production",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/74026.pdf",downloadPdfUrl:"/chapter/pdf-download/74026",previewPdfUrl:"/chapter/pdf-preview/74026",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/74026",risUrl:"/chapter/ris/74026",chapter:{id:"73504",slug:"calf-sex-influence-in-bovine-milk-production",signatures:"Miguel Quaresma and R. Payan-Carreira",dateSubmitted:"April 21st 2020",dateReviewed:"September 10th 2020",datePrePublished:"October 8th 2020",datePublished:"January 20th 2021",book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",fullName:"Rita Payan-Carreira",slug:"rita-payan-carreira",email:"rtpayan@gmail.com",position:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},{id:"309250",title:"Dr.",name:"Miguel",middleName:null,surname:"Quaresma",fullName:"Miguel Quaresma",slug:"miguel-quaresma",email:"miguelq@utad.pt",position:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}}]}},chapter:{id:"73504",slug:"calf-sex-influence-in-bovine-milk-production",signatures:"Miguel Quaresma and R. Payan-Carreira",dateSubmitted:"April 21st 2020",dateReviewed:"September 10th 2020",datePrePublished:"October 8th 2020",datePublished:"January 20th 2021",book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",fullName:"Rita Payan-Carreira",slug:"rita-payan-carreira",email:"rtpayan@gmail.com",position:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},{id:"309250",title:"Dr.",name:"Miguel",middleName:null,surname:"Quaresma",fullName:"Miguel Quaresma",slug:"miguel-quaresma",email:"miguelq@utad.pt",position:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}}]},book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11578",leadTitle:null,title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tThe use of antibiotics in food animals is largely in practice for decades. Poultry, as well as animal producers, use sub-therapeutic levels of antimicrobials in feed to get maximum production. Furthermore, in serval countries, non-judicial use of antimicrobials while using for therapeutic purposes is also been observed. However, research has evidence that the use of antibiotics in food animals has many deleterious effects on the animals, the environment, and human beings. One of the prime examples of antimicrobials' side-effects is the development of antimicrobial resistance that results in a reduction of treatment options in human and animal medicine. Nowadays, scientists are looking for viable alternatives to antibiotics including prebiotics, probiotics, and synbiotics. Probiotics are live microorganisms that are helpful for digestion and health. They are also capable to reduce harmful bacteria in the gut when supplemented in the diet. Many available studies show that probiotic supplementation in poultry, fish, livestock, and pet animals led to improved production, health, immunity, and meat quality.
",isbn:"978-1-80356-588-0",printIsbn:"978-1-80356-587-3",pdfIsbn:"978-1-80356-589-7",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"3731c009f474c6ed4293f348ca7b27ac",bookSignature:"Dr. Asghar Ali Kamboh",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",keywords:"Beneficial Microorganisms, Probiotic Role in Health and Immunity, Supplementation of Probiotics in Poultry, Dietary Supplementation of Yeast in Farm Animals, Gut Health, Probiotic and Mucosal Immunity, Probiotics and Intestinal Architecture, Probiotics and Nutrient Absorption, Ban of Antibiotics in Food Animals, Regulatory Issues of Antibiotic Use in Farm Animals, Alternatives to Antibiotic in Animal Production, Consequences of Antimicrobials Use in Animals",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 15th 2022",dateEndSecondStepPublish:"June 3rd 2022",dateEndThirdStepPublish:"August 2nd 2022",dateEndFourthStepPublish:"October 21st 2022",dateEndFifthStepPublish:"December 20th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"a month",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"A well-known researcher in the area of Veterinary Sciences with a key interest in Veterinary Microbiology and immunology. Dr. Asghar Ali Kamboh completed his Ph.D. in Veterinary Science from Nanjing Agricultural University, China. He has published more than 100 research and review articles in national and international peer-reviewed journals. He is an editor/editorial board member of many scholarly journals in the area of animal health and production.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"225390",title:"Dr.",name:"Asghar Ali",middleName:null,surname:"Kamboh",slug:"asghar-ali-kamboh",fullName:"Asghar Ali Kamboh",profilePictureURL:"https://mts.intechopen.com/storage/users/225390/images/system/225390.jpeg",biography:"Dr. Asghar Ali Kamboh was born in Mehrabpur, Sindh, Pakistan. He completed his studies in Veterinary Medicine and Masters in Veterinary Microbiology in 2003 and 2007 respectively, with distinguished grades. In 2009, he was awarded an overseas scholarship by the Government of Pakistan and proceeded to China for doctoral studies. Currently, he is working as an Associate Professor in the Department of Veterinary Microbiology, Sindh Agriculture University, Tandojam. He has edited two books and published more than 100 research and review articles in national and international peer-reviewed journals. He has supervised/co-supervised more than 35 M.Phil students. He is also the author of many books and book chapters. In addition, he is an editor/editorial board member of many scholarly journals in the area of animal health and production.",institutionString:"Sindh Agriculture University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Sindh Agriculture University",institutionURL:null,country:{name:"Pakistan"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"25",title:"Veterinary Medicine and Science",slug:"veterinary-medicine-and-science"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"453623",firstName:"Silvia",lastName:"Sabo",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/453623/images/20396_n.jpg",email:"silvia@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"8470",title:"Poultry",subtitle:"An Advanced Learning",isOpenForSubmission:!1,hash:"88f09746e2b424573c8dc0bd927e9dbb",slug:"poultry-an-advanced-learning",bookSignature:"Asghar Ali Kamboh",coverURL:"https://cdn.intechopen.com/books/images_new/8470.jpg",editedByType:"Edited by",editors:[{id:"225390",title:"Dr.",name:"Asghar Ali",surname:"Kamboh",slug:"asghar-ali-kamboh",fullName:"Asghar Ali Kamboh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,isOpenForSubmission:!1,hash:"75cdacb570e0e6d15a5f6e69640d87c9",slug:"veterinary-anatomy-and-physiology",bookSignature:"Catrin Sian Rutland and Valentina Kubale",coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",editedByType:"Edited by",editors:[{id:"202192",title:"Dr.",name:"Catrin",surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"57550",title:"Fabrication of Biomimetic and Bioinspired Membranes",doi:"10.5772/intechopen.71718",slug:"fabrication-of-biomimetic-and-bioinspired-membranes",body:'Figure 1 illustrates the state-of-the-art examples that has shown great diversity of biomimetic and bioinspired membranes based on imitation of compositions (zwitterion and glycosyl), structures (biological channel), formations (biomineralization, bioadhesion, and self-assembly), and functions (self-cleaning) of the natural prototypes.
Overview of biomimetic and bioinspired membranes prepared by the imitation of natural prototypes.
Among the natural prototypes, cell membranes are the most important due to their excellent abilities in mass transfer, energy transformation, and signal transduction. Cell membranes separate the cell interior from the outside environment and play a crucial role in almost all cellular phenomena. Each cell consists of ∼63,000 μm2 membrane area and a human body with 1014 cells that total to 107 m2 of membrane area [1]. Cell membranes have a high degree of sophistication, miniaturization, and multi-functionalization. The present understanding of the cell membrane functions and complex membrane structures is primarily dependent on the fluid lipid bilayer and the proteins embedded within it (Figure 2). As such, cell membranes are created using amphipathic lipids (phospholipids, cholesterols, glycolipids, and cholesterol esters), carbohydrates (oligosaccharides and polysaccharide), and membrane proteins (lipid anchored proteins, peripheral proteins, and integral proteins).
The fluid mosaic model with different lipid species shown in different colors. Source: Ref. [
The lipid bilayer is a universal component of all cell membranes. Its role is critical because its structural components provide the barrier that marks the boundaries of a cell. The structure is called a “lipid bilayer” because it is composed of
Framed by the amphipathic nature of phospholipid molecules, the development of cell membranes occurs as a self-assembly type process. The phospholipids’ nonpolar groups are included into planar bilayers with the aid of the hydrophobic effect. For instance, in a planar lipid bilayer, the nonpolar groups are mostly submerged into the bilayer’s hydrophobic interior, while the polar head regions are positioned with respect to the external aqueous phase. Generally, the lipid bilayer is very fluidic and features assemblies of amphiphilic proteins (or lipoproteins) and lipids within the lipid’s matrix. Furthermore, the interactions between the membrane lipids and exogenous proteins and peptides can incite a number of key biological processes at the level of the cell membrane [3]. As the primary phospholipid on the exterior surface, zwitterionic phosphatidylcholine shows superior nonfouling and nonthrombogenic qualities [3, 4]. This effective array of cell membranes offers excellent as well as rare instances of antifouling membranes’ rational design.
Membrane proteins are proteins that interact with, or are part of, biological membranes. They include integral membrane proteins that are permanently anchored or part of the membrane and peripheral membrane proteins that are only temporarily attached to the lipid bilayer or to other integral proteins.
Cell membranes exhibit outstanding selectivity that allows certain substances permeating through them. Water as well as various smaller size molecules may move in and out of cells through active transport, facilitated diffusion, and direct diffusion. Small types of molecules, such as oxygen, water, ethanol, urea, and carbon dioxide, may easily move through cell membranes using simple diffusion mechanisms because of their higher solubility properties in the lipid bilayers’ oily interior phase. These types of molecules move straight through the lipid bilayer or through the pores produced by essential membrane proteins. Alternatively, substances such as small organic molecules or ions move through cell membranes with the help of facilitated diffusion or active transport featuring protein-mediated carriers.
The facilitated or active diffusion is a diffusion using a carrier or channel proteins in the cell membrane that assists in the movement of molecules across a concentration gradient. All these processes play a crucial role in regulating the movement of solutes and water. The major intrinsic protein (MIP) is an important type of integral membrane proteins. MIPs are primarily divided as either aquaporins (AQPs) that can be only permeable to water or aquaglyceroporins (GLPs) that assist the diffusion of solutes like urea and glycerol [5]. As part of this, water channels have become the focus of a more rigorous research due to their effective transport mechanism. Specifically, there are several distinct water channel varieties. The AQP1 water channels permit water to travel bidirectionally and easily using osmosis across cell membranes; however, this is not the case with other small inorganic and organic molecules as well as ions [6]. The overall rate of water transport through AQP1 (3 × 109 water molecules per sub-unit per second) is substantially higher than that of the channels [7]. The dynamic and crystallographic structures of AQP1 allow for a rapid water transport process. Experimental runs show that the AQP1 selectivity filter is relatively hydrophobic and covered with hydrophilic nodes, a series of six completely spanning α-helices and a junction of two shorter helices from the channel [8]. Figure 3a indicates the way in which partial charges from the helix dipoles constrain the positioning of the water molecules moving through the restricted area of the pore. The interactions between Asn 192 and Asn 76 amino acids hold this junction together and create a hydrophilic water gate that allows for the AQP1 selectivity. In this case, the water molecule’s oxygen atoms construct hydrogen bonds with the amide groups (Figure 3b), while the assembling of the water’s molecular orbital produces well-tuned water dipole rotation (Figure 3c). Furthermore, the overall diameter of the narrowest point present is around 0.28 nm, and this likewise poses a steric obstacle for other molecules. The hydrophilic nodes, narrow size of the constriction region, and hydrophobic channel wall in combination contribute to the quick and accurate water molecule transport process [6].
Schematic diagram of the water molecules transports in AQP1. (a) How partial charges from the helix dipoles restrict the orientation of the water molecules passing through the constriction of the pore. (b and c) The interactions and the hydrogen bonding of a water molecule with Asn 76 and/or Asn 192. Source: Ref. [
The ion channels are a succession of pore-forming proteins that help control the voltage gradient throughout the membranes of living cells. Gating and selective ion conduction are two of the essential features attributed to ion channels. The selective ion conduction controls the performance of the channel, and how well it can choose specific ionic species among the available species in the cellular environment and then catalyze them using a prompt flow through [10]. Alternatively, the gating process controls the ion channel activity by being turned on and off. For instance, potassium (K+) channels feature a selective filter close to the pore’s extracellular side as well as a gate close to the intracellular side (Figure 4) [11, 12]. Whenever K+ ion arrives into the selective filter, it is completely dehydrated. Such an unusual selectivity in K+ channels is caused by the main chain atoms that have a stack of modified polar oxygen cages, which in turn allow for a series of closely spaced sites of appropriate dimensions to carefully arrange the process of K+ ion dehydration. The hydrogen bonding and extensive van der Waals interactions ensure that the protein packing around the selective filter expands outward radially so as to keep the pore open at its appropriate diameter. Four helix dipoles and their electrostatic influence guarantee the cation selectivity by creating a negative electrostatic, or cation attractive, potentially close to the entry into the narrow selectivity filter [11]. The amino acid sequence preservation offers a frequent structural basis for the gating of K+ channels, and the gating stimulus itself is caused by the membrane electric field and ligand binding [12]. These delicate K+ channel structures guarantee that K+ ion is capable of diffusing from one site to the next within a relatively short distance. Moreover, it also restricts the accommodation of other ions or the rapid conduction within the high-selectivity dynamic. In nature, ion transport likewise happens with the aid of ion pumps. In terms of structure, the ion pumps are the large protein complexes that have their central channel portion spanning into the cell membrane [13]. Ion pumps are active transporters that are responsible for fulfilling a range of functions, unlike the ion channels that solely encourage the downhill movement of ions. The pumps effectively transport ions against their electrochemical gradient by coupling the “uphill” transport process with an energy source. An example of such a source can be found in the form of adenosine triphosphate (ATP) hydrolysis or the “downhill” movement of a substrate molecule or another ion [14]. A cell membrane and its functionality are one of the most effective designs available in nature. Cell design has inspired the creation of artificial as well as synthetic membranes with tailored structures, designed components, targeted performance, and specialized functions that offer a variety of applications in many fields. Applications like the complex lipid components and structures, multisubunit assemblies in cell membranes, and membrane proteins provide innovative solutions using new chemically and physically controlled mechanisms for artificial membrane designs requiring particular hierarchical structures and components. Uniquely advantageous cell membrane characteristics like self-healing, controllable permeability, and antifouling may offer promising directions in the use and exploration of artificial membranes [14].
Cross-section of K+ channels. (a) Wide open intracellular vestibule and pore helix dipoles; (b) high resolution structure for a closed channel. Source: Ref. [
The concept of biomineralization shows how organisms can make hard materials in green and mild conditions. In particular, biomineralization stands for the mineral-formation process in organisms during which the inorganic elements collect on specific organics from the external surroundings and then form minerals under the modulating and inducing organics. The key feature of biomineralization is that biomolecules, such as polysaccharide protein and peptide, secreted by cells dictate the creation of minerals with a defined size, orientation, structure, and shape. This occurs because of the ordered collections of biomolecules and the interactions between inorganic and organic phases [15]. Living organisms are well known for utilizing minerals’ material properties, when developing organic-inorganic hybrid materials for a range of applications [16]. In fact, in nature, biomineralization phenomena exist in each of the five major organism groups. So far, around 70 different types of biominerals have been classified, for example, calcium carbonate in the invertebrate skeletons, calcium phosphate in the bones and teeth of the vertebrate, iron oxide and iron sulfide in the magnetotactic bacteria, and the silica in diatoms [17]. Of these, the silicon-based and calcium-based minerals exist in the largest quantities, especially since calcium-based mineral accounts for about half of the biominerals [18]. If they are created under diverse circumstances, materials featuring identical chemical compositions may offer different morphologies. For example, calcium carbonate created in the leaves of plants is identified as amorphous, and the same calcium carbonate is calcite in the mollusk’s shell [18]. Figure 5 provides a rough overview of the roles that the organic and inorganic constituents have during the biomineral formation process. In most cases, insoluble organic matrix and inorganic mineral reactants are the key factors, since the latter provides the necessary inorganic elements, and the former offers the substrate and functions as a template and an inducer of the mineral deposition. Furthermore, the crystallographic control can be regulated through the inclusion of organic additives and/or inorganic impurities. Although it is difficult to assess the intricate mechanisms leading to the formation of each biomineral, there are certain common strategies for manipulating mineralization. These strategies include spatial control, morphological control, structural control, constructional control, and chemical control [18]. Materials created using biomineralization in most cases have a substantially more complex structure and hierarchical organization than artificially synthesized materials. This ensures that they have improved physicochemical properties necessary for the molecular level control of organisms over the microstructure and nanobiominerals [20, 21]. For example, the ordered brick-and-mortar organization of CaCO3 tablets and proteins in seashell nacre combines the strength of CaCO3 together with the elasticity of proteins, thus ensuring that the seashell nacre exhibits strength, toughness, and hardness that exceed most manmade ceramics [22]. Furthermore, the physiological environment of the living organisms guarantees that the biominerals may be effectively synthesized in conditions that are environmentally friendly and mild, with almost neutral pH, aqueous environment, atmospheric pressure, and room temperature [23]. As a process, biomineralization joins superior properties, environmentally friendly conditions, and unique morphology, all of which are appealing features, when it comes to material synthesis. As a consequence, the idea of simulating biomineralization processes has remained an effective and promising methodology for synthesis and design of sophisticated organic-inorganic hybrid and inorganic materials using low energy and green approaches [24].
A simplistic view of the roles the inorganic and organic constituents played in biomineral formation process. Source: Ref. [
The area of bioadhesion stands for the ways in which natural materials adhere to a range of solid surfaces in a strong and quick manner. When it comes to natural phenomena, there are numerous examples of rare and exciting bioadhesion phenomena. This is particularly applicable to marine organisms such as sandcastle worms, limpets, starfish, tube worms, giant clams, sea cucumbers, barnacles, kelp, and mussels. For example, marine mussels are capable of secreting adhesive proteins all along the ample threads fanning out from the sides of the shells and then terminating each thread from the external coating of the thread and the adhesive plaques [25]. Adhesive proteins can stick to solid surfaces and then harden during short periods of time in order to create a solidified layer in water. This process of solidification ensures that mussels may be firmly attached to almost any type of substrates, like rocks, ship hulls, and even wave prompt habitats [26, 27]. Figure 6b shows the attachment of mussels to glass using an adhesive system based on plaques and threads and called “beard” or “byssus.” Another relevant example is the sandcastle worm (
(a) A community of mussels affixed to rocks. (b) Mussels adhering to glass. The picture shows their byssus adhesive system consisting of threads and plaques. (c) An [Fe(DOPA)3] complex. Source: Ref. [
As Figure 7 indicates that whenever a part of the worm’s tube is removed and if the building blocks like glass beads are available in abundance, the worm will carefully go through the gluing process in order to repair its tube section. Adhesive systems listed earlier have several key similarities, when it comes to composition. Research studies show that the mussels’ adhesive capabilities may be caused by the proteins located close to the plaque-substrate interface, like Mytilu edulisfoot protein 3 (Mefp-3) and Mefp-5, both of which contain sufficient 3,4-dihydroxy-l-phenylalanine (DOPA), with 21 and 27 mole%, respectively [26, 30, 31]. DOPA has a critical role in adhesive proteins, since it participates in the reactions that bring about the bulk adhesive proteins’ hardening. DOPA also helps to form durable noncovalent and covalent connections with substrates because of the chemically multifunctional characteristics of catechol groups in relation to DOPA [26]. Furthermore, metal ions in nonmineral forms are necessary for a range of bioadhesive processes. The iron-DOPA complexes are created in the byssus of the mussel (Figure 6c) and feature at least two important functions [25]. The first function allows to simultaneously enhance extensibility and solidity of the threads using the reversible formation of iron-DOPA bonds. The second, key function permits inducing the oxidation and the following DOPA reactions, which in turn helps to achieve the creation of the adhesive plaques and outer coating of threads. When comparing them to various synthetic adhesives, bioadhesives offer substantially more gains, such as durability, superior strength, quicker formation process, nontoxicity, milder formation conditions, and universality [25, 30]. In addition, all the bioadhesion processes occurring in living organisms happen in the presence of water, while underwater adhesion has been a constant roadblock for the majority of man-made types of adhesives. As a result, bioadhesion phenomena and the mechanisms they use have drawn a lot of attention in the last decade. Some researchers have tried to synthesize or screen models analogous to bioadhesives by simulating their properties and constitutions, since substantial difficulties arise in relation to the costs and processes of obtaining purified natural bioadhesives. For example, dopamine (DA) has been commonly used as an adhesive because of its similar properties and structure resembling DOPA [32, 33]. The growing research area of bioadhesion mechanisms has been exploring new innovative directions, including biomimetic adhesion strategies that can have extensive applications in the development and design of composite membranes with robust interfaces and uses [34].
Sandcastle glue. (a) A tube rebuilt on top of the natural tube with 0.5 mm glass beads in the laboratory. (b) Close up of the rebuilt tube. Source: Ref. [
The phenomenon of self-assembly conveys the way in which organisms can create a wide range of complex structures featuring a high level of intricacy and precision. The definition of self-assembly is that it is a process of spontaneous organization of molecules in specific thermodynamic equilibrium conditions and into well-defined structural arrangements. In nature, there are a number of ingenious designs for structurally compatible and chemically complementary constituents capable of molecular self-assembly. Examples of these include deoxyribonucleic acid/ribonucleic acid DNA/RNA, polysaccharides, and peptide/proteins. The degree of ubiquity of the self-assembly phenomenon which occurs in nature, at either macroscopic or microscopic scales, reflects the capacity to spontaneously combine different individual entities into well-defined structures and cohesive organizations using nonspecific as well as specific intra/intermolecular relations [35, 36]. The cell membrane and its structure is one such characteristic example of molecular self-assembly occurring in nature. The lipid bilayer configuration has the capacity to show complex morphological changes using the phospholipids assembly. For instance, primitive cells can sustain the basic cellular functions such as division and growth with the help of lipid assembly [37]. The lipid bilayer likewise has a key role in the organization and assembly of amphiphilic transmembrane proteins, since they are guided by hydrophobic, or hydrophilic, interactions. Natural proteins and peptides may self-assemble into ordered molecules due to their evolutionarily fine-tuned functions and unique structures. A widely known instance of this occurs in the spider silk, which is famous for remarkable flexibility and strength [38]. Spiders are capable of manufacturing different types of spider silks using amphiphilic silk proteins, or spidroins, that have repetitive hydrophobic and hydrophilic amino acid stretches bordered by carboxy terminal and conserving nonrepetitive (NR) amino-terminal regions [39–41]. In this case, the assembling of charged N-terminal domain may be controlled with the aid of pH, since the pH gradient of spider silk glands can help to regulate the silk formation process. Next, the C-terminal domain, which is indifferent to pH changes, can regulate silk formation process by ordering the assembly of repetitive segments into actual fibers [39, 40]. The larger hydrophilic NR terminal regions make these silk protein molecules surfactant-like and make sure that they have the capacity to form micelles or hexagonal columns. This is followed by larger globular structures that are elongated due to the changes in their shear forces and extensional flow, thus creating the precursors to the subsequently produced spider silk fibers (Figure 8) [42]. As a common characteristic of extracellular organic matrix macromolecules, self-assembly depends on specific intermolecular interactions. In fact, the formation process of natural inorganic-organic composites begins with the careful assembly of extracellular matrix, then followed by selective transportation of inorganic ions to the organized compartments, subsequent mineral nucleation, and, finally, to the mineral growth defined by the confined cellular compartments [43–45]. As a consequence, the process of self-assembly in protein scaffolds has a vital role when it comes to the composite seashells’ rich diversity [46]. Self-assembly has been proposed as an intelligent and bioinspired strategy for producing membranes with controlled architecture and composition and highlighted for incorporating a variety of building blocks into artificial/synthetic membranes.
High oligomeric assemblies from silk proteins. Source: Ref. [
The phenomenon of self-cleaning reflects how the surfaces of an organism can show a low-adhesion potential for a wide range of foulants occurring during the fluid flow. The qualities of biological surfaces, ranging from interplay between chemistries to surface morphologies, have a key role when it comes in defining specific wettability of biological materials. For example, superhydrophobic nonwetting quality is an essential property of standard self-cleaning biological surfaces. In the case of plants, this self-cleaning phenomenon is generally referred to as the “Lotus effect”. Drops of water accumulated on the lotus leaves bead up when experiencing a high contact angle and then roll off, collecting dirt along the way in a mechanism of self-cleaning [47]. Plant surface nanostructures and microstructures play an intrinsic role in self-cleaning processes. Certain plant surfaces become hyper self-cleaning and hydrophobic because of the hydrophobic epicuticular waxes and hierarchical roughness. As one of the typical biological objects, the lotus leaf is well known for the combinatory use of hydrophobic epicuticular wax and the micro/nanoscale hierarchical architectures on its surface [48, 49]. In this case, the first structure is made out of microlevel mound-like protrusions featuring papillose epidermal cells, while the second structure is made out of nanoscale branch-like growths happening in the epidermal cells (Figure 9a and b) [50, 52]. This hierarchical roughness produced by randomly oriented hydrophobic wax tubules and convex cell papillae is essential for the preservation of the lotus leaf’s self-cleaning characteristics (Figure 9c) [51, 53]. Particles contaminating the lotus leaves are picked up by the water droplets and then removed as the droplets slide off [54]. Plant surfaces tend to appear as rather diversified types of surface structures, as indicated in Figure 10. Distinct structures in two scales are helpful for lowering surface energy, forming the self-cleaning surfaces, and trapping air [57]. Furthermore, the physical adhesion forces that exist between the structured surfaces and contaminating particles can be significantly reduced. Within the realm of nature, self-cleaning processes and mechanisms are not limited only to plant surfaces. A wide range of self-cleaning surfaces have likewise been identified in water strider legs, insect eyes, insect wings, shark skin, gecko feet, spider silks, bird feathers, fish scales, and other types of surfaces [49, 58].
(a) Large-area SEM image of the lotus leaf’s surface. Every epidermal cell creates a papilla and has a dense layer of epicuticular waxes superimposed on it. (b) Enlarged overview of a single papilla from panel [
SEM images of the surface of (a) hierarchically structured papillae arranged in quasi-one-dimensional order parallel to the leaf edge [
In the case of the Morpho butterfly wings, multiscale as well as ordered photonic structures improve self-cleaning and superhydrophobicity characteristics (Figure 11) [59, 60]. This directional easy-cleaning quality of the Morpho butterfly wings can be explained by its unique direction-dependent alignment of flexible nanotips on top of the lamella-stacked nanostripes and microscales overlapped on top of the wings [61]. Another example is found in gecko’s feet, as they can engage in the process of self-cleaning, while the walking occurs with sticky toes. This exciting self-cleaning quality can be caused by the nanostructure, or single seta with a branched structure terminating in hundreds of spatula tips, and microstructure, that is setae on overlapping lamellar pads in uniform arrays. It seems that nonadhered lamellar surfaces can be quite nonwettable, and the particles contacting unloaded surface would be easily washed away when water becomes present. Furthermore, gecko feet that have been contaminated with microspheres may likewise retrieve their capacity to cling after a few steps on a dry surface, such as the one offered by clean glass. The process of self-cleaning is a consequence of the energetic disequilibrium that occurs between the adhesive forces that attract a dirt particle to the substrate, and those that attract the same particle to one or more spatula [62, 63].
Hierarchical microstructures and nanostructures on the surface of the Morpho butterfly wings. (a) Secondary electron image of overlapping scales possesses an overall rectangular shape with pointed tips. (b) Secondary electron image of the porous architecture of the scale with parallel microscale ridges aligning along the scale length and nanoscale ribs lying on each ridge. Source: Ref. [
In addition to the superior hydrophobic surfaces that occur in the air, nature likewise produces low adhesive surfaces in water environments. Examples of these adhesive surfaces that act as an inspiration for developing underwater self-cleaning surfaces are the surfaces of fish made up of tough scales and hydrophilic flexible mucus. The sector-like carp scales are created by orienting micropapillae with nanostructures of 30–40 μm in width and 100–300 μm in length and assembled in a radial direction (Figure 12) [63]. Whenever such fish scales come in contact with something like oil droplets in water, their fine-scale hierarchical structures can secure water molecules and then create an oil/water/solid interface. Further illustration of the underwater self-cleaning surface can be found in shark skin, which is protected by rather small separate tooth-like dermal denticles ribbed with longitudinal grooves. When these grooved scales are aligned parallel to the local water’s flow direction, they can significantly reduce the creation of vortices over the smooth skin surface, thus enchasing water movement and flow efficiency [65]. To sum up, both, the microstructures and nanostructures, and the chemical properties of biological surfaces are capable of deterring contaminant matter from the surface and may offer an innovative direction for the construction of bioinspired and biomimetic self-cleaning membrane surfaces.
Surface structures of fish scales: (a) Optical image of the fish scales. (b) SEM image of fish scales. Source: Ref. [
Nature has always found a way to evolve common materials with functions that stand out as desirable. In fact, nature’s sophisticated methods of selection have inspired advanced research directions in membrane materials and production. Biological structures, functions, formations, and compositions tend to take their forms on multiple scales ranging from molecular to microscale, macroscale, and nanoscale and in a manner that is strategically hierarchical and makes up a range of key functional elements. This exciting bioinspired and biomimetic trait has been especially appealing when it comes to designing and producing new synthetic membranes with superior structures, formations, functions, and compositions. The concise overviews of the six types of bioinspired and biomimetic membranes and their corresponding natural prototypes are covered in this review and are outlined in Table 1.
Classifications | Natural prototypes | Biomimetic and bioinspired membranes |
---|---|---|
Based on composition | Antifouling membranes with functionalized surfaces resembling the composition of cell membrane through surface zwitterionization and glycosylation | |
Based on structure | Nanoporous membranes with ordered transport channels for ions and small molecules through incorporating biological channel proteins and/or artificial nanochannels | |
Based on formation | Organic-inorganic hybrid membranes with inorganic nanoparticles formed within polymeric matrix through the Composite membranes with high interfacial strength between different layers or different moieties through incorporating biomimetic adhesion strategy to form multiple interactions on interfaces Nanoporous membranes with ordered channels through self-assembly of block copolymers; nanoporous membranes with hydrophilic surface through self-assembly and spontaneous segregation of amphiphilic copolymer (surface segregation) | |
Based on function | Self-cleaning membranes with superhydrophobic or superhydrophilic/oleophobicity surfaces through incorporating low surface energy moieties or high hydration energy moieties |
Introduction of natural prototypes and the corresponding biomimetic and bioinspired membranes [65].
Zwitterions are based on compounds that have an equal number of negatively and positively charged groups and, as a result, show an apparent neutral state. Research shows that there are biological zwitterionic phospholipids on the external lipid layer of the cell membrane. They are there to enhance biocompatibility with the surrounding tissues and stop the adhesion of exterior matters in biological fluids [4]. When it comes to bioinspired and biomimetic membranes, a variety of zwitterionic compounds have been used for the process of membrane surface zwitterionization. Because of the enhanced zwitterionic head group’s fouling resistant qualities in cell membranes, the aim of surface zwitterionization is to stop foulants from attaching themselves to the membrane’s surface. Research has shown that a number of typical zwitterionic moieties have been effectively introduced onto the surface of the membrane. A robust hydration of the zwitterionic moieties can create a sturdy hydration layer on the membrane’s surfaces with the aid of electrostatic interactions that provide membranes with good fouling resistant abilities and superior hydrophilicity [66]. The process of grafting zwitterionic moieties onto the surface of the membrane allows for an effectual method of realizing surface zwitterionization using covalent bonding. This method has received a lot of attention because of its potential applications. Different types of chemical reactions were engaged so as to fixate the zwitterionic moieties onto membrane’s surface after it was formed. Graft polymerization offers an appealing route for membrane surface modification processes because of the monomer species’ diverse range. The high-energy radiation-initiated graft polymerization process has gained considerable attention as one of the conventional methods for grafting functional polymer brushes from membrane surfaces and with the aid of which radiation-grafted zwitterionic brushes can be obtained using straightforward control. With the aid of the UV-irradiated technique and plasma pre-treatment, surface zwitterionization applied using graft polymerization of the zwitterionic monomer on the hydrophobic surface of poly(vinylidene fluoride) (PVDF) microfiltration (MF) membrane, polypropylene MF or nonwoven fabric membrane [67–70], polytetrafluoroethylene (PTFE) MF membrane, and polyethersulfone (PES) ultrafiltration (UF) membranes and polysulfone (PSf) UF membranes [71–74]. It should be noted that the high-energy types of excitation could likewise create unwanted branched, or cross-linked brush structure, as well as photo degradation of the substrate membrane [75]. Alternatively, chemically initiated graft polymerization is moderate and does not need special equipment. Zwitterionic SBMA and CBMA monomers were grafted using the surface of PVDF membranes and physisorbed free radical grafting methods that rely on azo-bis-isobutyrylnitrile (AIBN) as the initiator [76, 77]. In addition, the process of grafting the zwitterionic MPC and MPDSAH monomers from hydroxyl-containing membrane surface was similarly conducted with the aid of ceric ammonium nitrate, which was applied as a redox initiator in an aqueous medium [78, 79]. Numerous challenges still exist for the uniform zwitterionic brushes and high-grafting densities because of the steric effect of the monomers that have been already grafted. In the last decade, surface-initiated controlled radical polymerization, such as the surface-initiated reversible addition-fragmentation chain transfer polymerization (SI-RAFT) and surface-initiated atom-transfer radical polymerization (SI-ATRP), has been frequently used to create well-defined zwitterionic brushes on the membranes’ surfaces. The process of surface zwitterionization based on surface-initiated controlled radical polymerization was applied extensively, and a mixture of various anionic and cationic pairs (N+(CH3)2/SO3−, N+(CH3)2/COO−, N+(CH3)2/PO4−) has been created so as to ensure the overall charge neutrality and high-membrane hydrophilicity [80]. In recent projects, the application of click chemistry, or the generation of products that follows nature’s examples, for specific surface modification processes has offered a new route for membrane surface zwitterionization. This innovative direction features good control, high yield, and mild reaction dynamic. The surface attachment of long-chain and short-chain zwitterionic moieties has been obtained with the help of azide-alkyne cycloaddition reactions and surface-initiated thiolene coupling chemistry [81, 82]. The physical adsorbing and blending of zwitterionic copolymers with membrane-forming polymers are easier approaches to surface zwitterionization. Although zwitterionic brushes possess the high water affinity qualities, a number of amphiphilic zwitterionic copolymers were first synthesized and then implemented so as to augment the overall stability of zwitterionic brushes with the mediation of hydrophobic interaction occurring between the membrane’s matrix and hydrophobic chains. While the membrane preparation process by in situ blending was occurring, the amphiphilic zwitterionic copolymers may stimulate surface separation of zwitterionic brushes onto the membrane’s surface with hydrophobic chains fastened in the membrane’s matrix [83]. Throughout the membrane’s process of modification, the amphiphilic zwitterionic copolymers may be adsorbed on the membrane’s surfaces and with hydrophobic chains fastened to them [84]. Once the expansion of surface modification methods has begun, new exciting chemical reactions and techniques are being used for the construction of composite zwitterionic membrane surfaces. These techniques include oxidative polymerization of zwitterionic amino acid 3,4-dihydroxy-l-phenylalanine (DOPA) and initiated chemical vapor deposition of zwitterionic polymers, chemical crosslinking of zwitterionic colloid particles, and interfacial polymerization of zwitterionic amide monomer [85]. The process of membrane surface zwitterionization may likewise result from membranes that include pyridine or N,N-dimethylamino-2-ethylmethacrylate (DMAEMA) moieties, featuring tertiary amine reactive sites [86].
A sufficiently hydrated glycocalyx (glycoprotein-polysaccharide) is located on the outside of the cell membrane and helps to manage specific interactions, like cell-cell recognition, as well as stop unwelcome nonspecific protein adhesion through a mixture of hydrogen bond indicated hydration and steric repulsion effects. When it comes to bioinspired and biomimetic membranes, certain glycolmonomers or glycopolymers are implemented as biomimetic materials for the process of membrane surface glycosylation. Due to the fouling resistant quality of glycocalyx on the membrane’s surfaces and the glycoside cluster effect, the aims of surface glycosylation are the identification of proteins or the deterrence of nonspecific interactions between proteins and membrane surfaces through the production of extended hydroxyl group rich chains enclosed by molecules of water.
While in-depth research has been conducted on glycosylation and membrane surface zwitterionization, the majority of the tests were limited to the lab scale. First of all, the scale-up of complex polymer modification and synthesis strategies is problematized by reaction conditions’ precision control, including the control of temperature, residence-time, velocity, and catalyst distribution in the reactor. Second, zwitterionic moieties are frequently too costly to implement in larger quantities. In addition, glucosyl moieties may be susceptible to microbial degradation during the repeated and long-term application. Finally, the comprehensive knowledge of the membrane’s structural evolution under varying condition has not been fully investigated. However, glycosylation and membrane surface zwitterionization offer the most encouraging directions in environmental, engineering, and biotechnical applications of innovative membrane technologies [87].
There is a substantial number of channels formed by proteins, as well as protein assemblies, within the cell’s membrane and that effectively contribute to the transmembrane transport of water, nutrients, and ions [6, 87]. The rapid and relatively controllable transport of water, ions, and other nutrients through biological channels ensures the success of their essential movements within the organisms [6, 9, 88, 89]. Currently, the process of simulating the biological channels’ structure of in cell membranes with the aim of producing artificial membranes, offering high performance and a range of useful functions, has been of enormous technological and scientific interest.
The direct way of producing biomimetic channels is to simulate the structure and composite of the cell membrane. This entails integrating biological channel proteins into the bilayer lipid membranes (BLM), as it is a basic model of the phosphor lipid bilayer for cell membrane [88, 89]. However, the key problem with BLM is the low stability potential. To solve this drawback, the supported BLM on different porous substrates can be implemented [88, 89]. Some of the most popular substrates used include gold, as well as silicon, glass, other metallic thin layers, polymers, and Si3N4 [90]. When compared to the organic substrates, the inorganic porous substrates offer a higher number of advantages with regard to the chemical, mechanical, thermal stability, and lifetime properties [91–94]. Moreover, the block copolymers’ self-assembly provides another method for creating a bilayer that can function as an alternative to BLM. This is mostly due to its controllability, greater stability, and the capacity to stop the direct contact of protein to solid substrate, since this can inactivate and immobilize proteins [95]. These biomimetic membranes can be produced using a variety of approaches such as Langmuir-Blodgett/Langmuir-Schaefer monolayer transfer methods, spin-coating, and vesicle rupture. Within these methods, the vesicles rupture approach is one of the easiest to apply and most frequently implement [95]. Figure 13 outlines the schematic process of producing biomimetic membrane using vesicles rupture method. In the first step, the vesicle incorporated channel proteins are produced using the film rehydration approach (Figure 13a). Next, the solution of vesicles is made and then released directly onto the substrates (Figure 13b and c). Finally, the vesicles proceed to rupture with the aid of covalent interaction or interfacial adsorption, as a result forming the planar bilayer membranes (Figure 13d) [92, 94]. To facilitate the suitable interactions with solid substrates, polymers forming the bilayers need to be used in a way that does not alter their self-assembly functionality and structure [92]. The substrates likewise must be functionalized if they are to remain chemically active. Various triblock copolymers end-functionalized with methacrylate, disulfide, and acrylate groups were created so as to react with silanization-modified substrate, gold-coated substrate, and amine using covalent interaction [92]. Gold is frequently selected as the surface modifier for substrates, since it is not cytotoxic, stable, and very active, the latter allowing it to react with polymers and offer new reaction sites for membrane further modifications. Figure 13b shows polycarbonate tracked-etched membranes covered with a gold layer so as to attain the subsequent chemisorption of cysteamine monolayer and the later conversion to acrylate. The improved overall stability of biomimetic membranes may be achieved using the process of forming covalent interactions between the acrylate groups on the substrate and the methacrylate groups on triblock copolymer.
Schematic diagram of pore-spanning membrane design and synthesis. Source: Ref. [
Recently, layer-by-layer (LbL) self-assembly and interfacial polymerization were used to develop strong and defect-free AQP-containing membranes that lend themselves to easier scaled up [96, 97]. First, the AQP-containing proteoliposomes were created and then embedded into the membrane’s matrix. This helped to create a compatible and stable environment for AQP. These research studies generated valuable new methods for fabrication of biological channel proteins-containing membranes offering improved efficiency. The primary change from the earlier experimental studies is that in this case, AQPs functioned as the dispersed phase within the membrane rather than infiltrate the entire membrane.
Artificially created nanopores/nanochannels featuring functional groups may behave as equivalents of biological channel proteins, due to their great flexibility in terms of shape and size, high stability, chemically and mechanically robust properties, and the various tunable surface qualities [98]. Membranes that possess artificially created nanopores/nanochannels can be produced using bottom-up and top-down routes. What these routes entail is the creation of engineered solid-state nanopores/nanochannels on nonporous substrates using micro-machining and then producing nanopores/nanochannels with the aid of self-organization of molecules and atoms, respective of the directions [98]. Specifically, the top-down route is primarily based on electron beam, ion-track-etching, laser, and electrochemical etching technologies, using which the nanopores/nanochannels of varying sizes and shapes on organic and inorganic substrates can be produced [99]. The nanopores/nanochannels developed made with bottom-up route incorporate hexagonally packed cylindrical block copolymer, carbon nanotube (CNT) by chemical vapor deposition (CVD), organic nanotubes by self-assembly, anodic aluminum oxide (AAO) and titania nanotube (TNT) by anodic oxidation, and other using respective methods [100]. If compared with the top-down route, the bottom-up route can help develop membranes with higher pore/channel density potential, a highly beneficial characteristic for molecular separations, as well as other research areas that require a greater channel array area [88, 89]. For example, the AAO porous template may feature a pore/channel density of 1015 m−2, while the TNT membrane has a density of 5–10 × 1013 m−2 pore/channel, a rate that is greater than the natural cells’ ion-channel density of nearly 1012 m−2 [88, 89]. The nanopore/nanochannel entails the channel or pore with a diameter value in the range of 1–100 nm, a number that is bigger than the sizes of most molecules and ions. As a result, the process of entrance or inner surface functionalization is required in order to lower the operational nanopore/nanochannel size or act as the “gate” ion channels located in cell membranes, effectually helping to achieve selective permeation ultimate. Furthermore, for the use of nanoporous membranes in bio-recognition and energy conversion, the process of inner modification is frequently needed to recognize and immobilize bio-molecules. A common method used for this is the immobilization of functional molecules on the nanopores/nanochannels’ interior surface with the help of diversified chemical covalent reactions [101]. For example, gold nanopores/nanochannels can be modified with molecules carrying S-S or SH groups so as to create S-Au bonds, while the oxide surface can be altered using a range of silane derivatives [102]. Alternative approaches to the modification of nanopores/nanochannels are plasma modification, electro-static self-assembly, and the deposition of metals using ion sputtering deposition, electron beam evaporator, or electroless deposition [103]. Figure 14 outlines an instance of inner surface–modified nanochannel with pH-responsive and employing the chemical covalent type of reaction. In this case, the cylindrical nanochannels with a 15 nm diameter on poly (ethylene terephthalate) (PET) membrane were first produced with ion-tracked technology. Next, the nanochannels were modified with 4,4′ azobis (4-cyanopentanoic acid), as a surface-confined polymerization initiator, and a 4-vinyl pyridine as the monomer for forming pH-responsive polymer brushes [98]. These types of brushes can alter their form from the charged hydrophilic state, collapsed, swollen, and neutral hydrophobic state, when an environmental pH alternates between 2 and 10.
(a) Simplified description of the brush-modified cylindrical nanochannel. (b) pH-dependent pyridine-pyridinium equilibrium occurring in the brush environment. (c) Illustration indicating the conformational changes happening in the brush layer upon variations in the environmental pH. Source: Ref. [
Synergistic coassembly of block copolymers (BCPs) and nanotube subunits (cyclic peptide, 8CP) was used to produce thin membranes that include subnanometer organic [104]. First, polymers were tethered onto 8CP so as to augment solubility and help mediate interactions between one part of BCP and 8CP, as shown in Figure 15. Once blended with BCPs, the 8CP-polymer conjugates were restricted in the BCP cylindrical microdomains, which have an affinity with polymers, and then formed into nanotubes in the nanoscopic domains once heated by the hydrogen bonding occurring between amino acid residues located on neighboring peptides. Finally, the membranes with sub-nanometer channels, that are oriented in a normal way toward the surface, were successfully created. The shape and size of the nanotubes be tailored through the process of changing the nanotube subunits’ molecular structure beyond the restrictions imposed by block copolymer self-assembly. As a result, selective and swift molecular transport can be obtained. Within the artificial nanopore/nanochannel types, the CNT stands out since it functions as an alternative to water channels and biological ion channels due its propensity for narrow diameter, inherent smoothness of the inner surface, and hydrophobicity [105]. Molecular dynamics (MD) simulations have been used to research the transport mechanisms of water and ions in CNT, as well as the possible uses of CNT in membrane processes and applications [106]. Research suggests that water molecules indicate single-file transport in CNT because of the creation of a robust hydrogen bond chain, similar to the water transport detected in AQP [107]. As a consequence, the CNT’s water transport rate is analogous to the one occurring in AQP. To gain higher selectivity values, CNTs are frequently modified at the entrance using organic groups that can help achieve a lower diameter and a more selective ion interaction [108]. While the hands-on applications of CNT-containing membranes, implementing nanochannels in CNT, is rather limited, the possibilities it promises has attracted attention and incited new research directions. Because of its enhanced controllability, high channel density, and superior mechanical robustness, the biomimetic membranes featuring artificial nanopores/nanochannels can be highly relevant to processes that require advanced size-selective separations.
Schematic illustration of the process generating subnanometerporous films using direct coassembly. Source: Ref. [
When it comes to this type of biomimetic membranes, the biological channels can guarantee the advantages of intelligence and an atomically precise structure that resembles living cells. Alternatively, the artificial nanopores/nanochannels offer qualities like durability, size, shape control, and robustness. The ion channel protein Gramicidin-A, in the track-etched nanopores with a diameter of 15 nm, was filled on the polycarbonate thin film, while the ion diffusion coefficient of Na+, K+, Ca2+, and Mg2+ ions was measured in order to calculate the nanoporous membrane’s selectivity and permeability values [87]. The Gramicidin-A’s adsorption into the nanopores was preferred by the surface hydrophilic treatment featuring ethanol and contributed to a greater affinity of Gramicidin-A toward hydrophobic pores rather than toward the hydrophilic surface. It should be noted that although the effective ion diffusion coefficients were amplified after Gramicidin-A inclusion, the increase in values was not as substantial as was expected. This can be due to the fact that the nanopores were not completely filled up with Gramicidin-A, and as a result, the ions likewise diffused within the “free” electrolyte inside the nanopores. Thus, additional experimental research is necessary so as to achieve cases where the entire nanopores are filled out.
The overall performance of a biomimetic nanoporous membrane primarily relies on the membrane’s channel density, and membrane integrity [91]. Extensive research initiatives have been established with the specific purpose of developing bioinspired and biomimetic membranes that include biological channel proteins. There are still multiple challenges that problematize practical applications of bioinspired and biomimetic membranes: (1) The first challenge is that the membrane channel density is difficult to control [91], determine, and limit, since it needs to make the self-assembly structure unaffected [93]; (2) the second problem is that the channel protein activity needs to be maintained and that limits the preparation process environment [94]; (3) third, it is challenging to make a defect-free bi-layer in large-scale type of production [94]; (4) the fourth challenge is that the costs of production become excessively high because of how complicated the process of extracting proteins can be. Nanoporous membranes featuring artificial nanopores/nanochannels can offer an exiting range of separation applications due to their superior stability; however, they also have to confront a number of common challenges. When it comes to membranes using top-down routes, the process of the homogeneous modification of interior surfaces through the nanoscale channels, as well as the large-scale modification, is hard to perform successfully on consistent basis. Furthermore, their applications are limited by their lower channel density and the need to use costly equipment. Of all the membranes employing bottom-up routes, the CNT-containing membranes have gained the most attention due to their theoretically superior water permeability. However, the fabrication of large-scale membranes with low selectivity and aligned CNTs is extremely difficult, and this limits their advancement from the theoretical research stages into practical application testing.
Production of bioinspired and biomimetic membranes based on biomineralization is a method that stimulates the creation of inorganic nanoparticles in the polymeric matrix using mineralization reaction that resembles biomineralization that occurs under somewhat milder circumstances. During the last several decades, organic-inorganic hybrid membranes have gained a lot of interest and became widely applicable, since they offer the benefits of stability and rigidity of inorganic moiety, together with the improved adaptability and efficient membrane-forming property in polymeric moiety [109]. At the same time, organic-inorganic hybrid membranes allowed for new properties due to their hybrid structures. The most direct way of producing a hybrid membrane is the process of physical blending of inorganic nanoparticle and polymer. This process is relatively easy to undertake and regulate. One of the drawbacks is the creation of nonselective voids due to collection of inorganic nanoparticles and their lack of proper compatibility with polymeric matrices [110]. The in-situ sol-gel process is an alternative method of producing these types of membranes and may be capable of overcoming this limitation. During the in-situ sol-gel process, the polycondensation and hydrolysis of the inorganic precursors happen under the catalysis of an acid or a base that creates inorganic nanoparticles in a polymeric casting solution [111]. If compared with the physical blending, inorganic nanoparticles can disperse more homogeneously and offer improved compatibility with the polymeric matrix. The sol-gel method likewise has a number of inherent problems, such severe conditions like strong acidic or alkaline environment, and a relatively low controllability [112]. Biomineralization process mixes organic materials with inorganic as it produces materials with hierarchically sophisticated structures and improved physicochemical qualities at normal pressure and temperature values and an almost neutral pH value in an aqueous environment featuring straightforward chemical compositions [15, 113]. These types of materials are much better than many of the artificially synthesized materials because of the critical control that can be exercised over their size, shape, structure, and assembly of constituent parts [15]. The process of biomineralization in nature offers a uniquely rich source of inspiration, when it comes to the design and production of hybrid membranes.
The process of biomimetic mineralization mimics the biomineralization method during the material-synthesizing using organic inducer to incite the creation of inorganic nanoparticles from inorganic precursor and as a result producing materials with distinct properties and microstructures [20]. In this case, the inorganic precursor can take the form of metal alkoxide or metal salt. The organic inducer can take the shape of macromolecules, or smaller sized molecules, and have the necessary functional groups and would help activate the inorganic precursor reaction. The macromolecules can be in the form of the amino group for silica and titania or phosphate, sulfate, and carboxylate groups for calcium phosphate and calcium carbonate [114]. For example, the inducers frequently implemented for the creation of silica are macromolecules, such as protein and small molecules comprised of amines and amino acids [115]. The in situ biomimetic mineralization process is an appealing method for the production of hybrid membranes. It prevents the inhomogeneous filler distribution and filler agglomeration that has happened during the physical blending approach, which suffers from harsh conditions like alkaline or strong acidic environment or poor controllability that can occur during in-situ sol-gel method [112]. In order to produce hybrid membranes using the in-situ biomimetic mineralization, two methods have been created. The first method requires the addition of organic inducer and inorganic precursor into the solution that includes membrane-forming polymer. This allows the mineralization process to transpire at the same time as the membrane formation. The second method requires the immersion of the membrane with inducers into precursor-containing solution. For both these approaches, the inorganic precursors interact with organic inducers through metal-organic chelation or electrostatic attraction. As a consequence, the inorganic precursors become enriched in the microdomains near organic inducers, and this in turn creates the necessary conditions and locations for the mineralization reaction to occur and then homogeneously generate inorganic nanoparticles. Recent research has applied both approaches, and varying types of membrane-forming polymers, inorganic precursors, and organic inducers produce diversified hybrid membranes [112].
The process of mixing raw materials is a relatively easy method for producing hybrid membranes using in-situ biomimetic mineralization. In this case, the gelatin-silica hybrid membranes were created by dissolving sodium silicate and gelatin in water, followed by the solidification of the casting solution [112]. As part of this solution, the positively charged amino groups on gelatin molecules absorbed silicic acid oligomers created by sodium silicate through electrostatic attractions that augmented the local oligomer concentration and quickened the polycondensation progression. As a consequence, silica nanoparticles featuring a diameter smaller than 100 nm were created homogeneously in the gelatin matrix. Chitosan (CS) was used as an inducer and was meant to regulate the production of CdS nanoparticles, since it offers superior metal ion adsorption potential [116]. Once the CdCl2 solution was combined with chitosan, the CS-Cd2+ complexes were produced using the adsorption and chelation of the hydroxyl and amino groups on chitosan with Cd2+ ions [116]. Once the adsorption and chelation balance were obtained, the fresh sulfocarbamide solution was gradually dropped. After that, the S2− ions were discharged from the sulfocarbamide and then prompted a reaction with the Cd2+ ions in CS/Cd2+ complexes so as to generate chitosan/nano-CdS (CS/n-CdS). During this process of membrane production, chitosan or gelatin showcased a minimum of four key roles, that is, creating an especially thin membrane scaffold, inciting in-situ production of inorganic nanoparticles, restricting the growth of inorganic nanoparticles to the polymeric network, and lowering the particles’ accumulation. There are two frequently applied methods for biomimetic mineralization in the case of membrane-forming polymers that do not have mineralization-inducing groups. Specifically, these methods entail adding other organic inducers into the casting solution or grafting functional groups onto the polymers. Although the former approach may appear easier, the organic inducer has to be selected correctly. A problem could occur if the inducer’s catalytic activity was too elevated, implying that the inorganic nanoparticles are forming too rapidly, and the nanoparticles will grow and collect in a shorter time period, thus precipitating before the actual membrane casting. Furthermore, the inducers added must be compatible with the membrane-forming polymers within the required range of compositions. During the process of creating silica-containing hybrid membranes, amino group as well as analogous cationic groups can be crucial. In this case, the quaternized modification was applied to poly(vinyl alcohol) (PVA) and poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) [117]. The polymers’ quaternary ammonium groups incited the production of silica using a variety of silica sources, while the network created by polymers and silica during the reaction caused the hybrid membranes to be more compact. Moreover, the addition of other organic inducers to the membrane casting solution allowed to form a silica-containing hybrid membrane [118]. While it is a commonly applied membrane-forming polymer, the PVA cannot incite silica formation. Alternatively, gelatin is a popular silification inducer that can be compatible with PVA at low content values. As a consequence, gelatin was selected as the inducer and then added into the PVA solution with the 9/1 (PVA/gelatin) mass ratio. In the next stage, membrane casting solution was created by mixing the PVA-gelatin solution with the precursor silicate solution. Finally, the silica nanoparticles were produced homogeneously within the network of PVA chains.
The process of functionalizing polymers with proper negatively charged groups offers a method for inciting as well as controlling the development of CaCO3 nanoparticles. For instance, hyperbranched polyglycidol (hb-PG) functionalized using a variety of groups, such as phosphate monoester, sulfate, and carboxylate groups, was implemented during the preparation of CaCO3 hybrid membranes with the spray technique. The application of this method indicated that the functional group type had a substantial effect on the structure and morphology of CaCO3. Figure 16 shows how phosphate-ester-functionalized hb-PG, sulfate, and carboxylate helped to form calcite composite, vaterite composite, and vaterite-calcite composite, respectively.
The molecular structure of hb-PG and SEM micrographs of CaCO3 hybrid membranes formed in the presence of differently functionalized hb-PGs. Source: Ref. [
Biomimetic mineralization is a water-demanding process because of the implicit need for water during the reactions and water solubility of inducers. As a result, hybrid membranes cannot be developed with the methods mentioned above for water-insoluble polymers, since they require organic solvents in order to dissolve polymers. As a solution for this requirement, the process of water in oil W/O reverse microemulsion was developed. This process is based on the addition of surfactant and the tracing of water inorganic casting solution [119]. In this instance, the water-soluble inducer contacts the oil-soluble inorganic precursor at the interface of two phases and then encourages the hydrolysis-condensation reaction. Once this occurs, the silica nanoparticles are produced in this narrowed space, as outlined in Figure 17, and the creation of hydrophobic/oleophilic polymer-silica hybrid membrane is completed. The development of W/O microemulsion was a critical step toward a successful biomimetic mineralization process in hydrophobic/oleophilic polymer solution. In this process, the water in microemulsion has the capacity to dissolve inducers. Water likewise is essential for the hydrolysis reaction of silica precursors, and the water/oil interface guarantees the presence of reaction sites where the mineralization process can occur.
The formation mechanism of silica mediated by macromolecule inducer in reverse microemulsion. Source: Ref. [
The process if immersing the membrane with inducers into a precursor-containing solution offers a post-treatment method for developing hybrid membranes using the in-situ biomimetic mineralization. These types of inducers may exist either on the surface or within the membrane’s matrix and cause a variety of inorganic nanoparticles’ distributions. Recent research suggests that smaller sized molecular inducers, such as amino acids, are seldom applied because of their weaker interactions with membranes and smaller size, since that makes them susceptible to leaking in aqueous solutions [120]. Whenever the inducers are adsorbed solely on the membrane’s surface, they can have contact with inorganic precursors once the membrane is immersed into the solution and as a result lead to the creation of inorganic layer on the surface [120]. Microcapsule type membranes were produced with the aid of this approach. In this instance, the sacrificial templates were distributed in protamine aqueous solution for the duration of several minutes, after which they were suspended in titanium-source or silica-source solutions and once the residual protamine was washed away [120]. During this process, the titania or inorganic silica layer was created on the external surface. Whenever the inducers occur within the membrane’s matrix and when the membrane-forming polymers have the mineralization-inducing ones, functional groups are mixed and then situated within the membrane, and the inorganic nanoparticles can develop in the membrane’s matrix, once it is immersed in the precursor-containing solution [121]. Notably, the process of mineralization happens only if the precursors are diffused into the membrane’s matrix and then interact with the inducers, since this ensures that both reaction and diffusion occur simultaneously. The distribution of inorganic nanoparticles is directly connected to the membrane matrix’s structure, as well as the rate at which mineralization reaction happens. In most instances, the amount of inorganic components within the membrane slowly lowers as one moves away from the external surface and toward the interior. In a research report, CS membrane was immersed into a simulated body fluid (SBF) for the duration of 3 weeks so as to try and produce hydroxyapatite (HA) [122]. During this experiment, the cationic groups in the CS membrane helped the adsorption of (PO4)3− and the subsequent nucleation. The inducer protamine was secured within the confined spaces created by cross-linked PVA molecular chains. During the immersion of the PVA-protamine membrane into the precursor-containing solution, the inorganic precursor first diffused into the membrane’s matrix and then generated silica nanoparticles through the templating and catalysis of protamine (Figure 18). The silica nanoparticles’ sizes could be easily regulated through the controlled alteration of the precursor solution’s concentration and pH values. The production of silica nanoparticles may be manipulated by adjusting the membrane matrix structure and altering the annealing temperature so as to control the bulk polymer network and cross-linking of PVA (Figure 19). To sum up, biomimetic mineralization method offers an innovative as well as applicable approach for the development of hybrid membranes with homogeneous dispersion, advantageous interfacial interactions under mild conditions, and nanoscale filler sizing. As more research emerges on the mineralization mechanism of biominerals, the process of biomimetic mineralization will gain more ground when it comes to production of diversified hybrid membranes.
The formation process of silica nanoparticles within PVA matrix. Source: Ref. [
Transmission electron microscopy (TEM) images of silica in the nanohybrid skin layer after it is annealed at (a) 293 K, (b) 333 K, and (c) 373 K. Source: Ref. [
In addition to the separation performance, stability is a key parameter when it comes to the practical aspects of producing a functioning membrane. For those composite type membranes that are made of two distinct layers, the varying surface properties of the two layers can cause adverse interface compatibility as well as weakened interfacial interaction between the layers. Whenever the swelling amounts of the two layers are different, a significant stress will appear at the interface. This stress can force the two layers to peel off relatively easily, if the stress surpasses the interfacial interaction. Improving interfacial interaction and interface compatibility between the two layers is an effective and straightforward method for obtaining high stability in composite membranes [123]. When it comes to the surface-functionalized membranes, preserving functional groups during long-time operations is a crucial prerequisite. For membranes with weak interactions between molecular chains and flexible molecular chains, the membrane structure can decline if it is in contact with solvent, water, or other plasticizers during use, since this interaction can significantly decrease selectivity. Enhancing the membrane’s cohesive energy will help improve the membrane’s stability and maintain its structure. Bioadhesives have served as an inspiration because of their controllable adhesive/cohesive capacity, greater strength, and broader applicability. In fact, biomimetic adhesion strategies that use bioadhesives, or their analogs like biomimetic adhesives, have been implemented so as to better deal with the challenges listed above.
The addition of bioadhesives as an intermediate layer during the composite membrane production is a relatively easy and efficient way to improve the interfacial interaction between the two layers [124]. Furthermore, bioadhesives that have been derived from natural sources, including dextrin, shellac, and gelatin, are complying with the basic requirement listed as part of the environmental protection. The bioadhesive carbopol (CP) was used for the first time as an intermediate layer for connecting the polyacrylonitrile (PAN) support layer and the CS separation layer. Specifically, CP is a mucoadhesive polymer that features many of the carboxylic groups (COOH) that partially dissociate when in water and offer high viscosity and flexible structure at low concentration values. The schematic depiction of the interface interaction for CS/CP/PAN composite membrane is shown in Figure 20. In addition to the carboxy group (COOH) of CP, the hydroxyl group (OH), the amino group (NH2) of CS, and the van der Waals force, the cyano group (CN) of PAN may generate a multiplicity electrostatic interactions or hydrogen bonds. Once the CP layer is incorporated, the peak peeling strength value was found to be four times greater than that of the CS/PAN membrane. Furthermore, the absolute values of interfacial energy for CP/PAN and CS/CP interfaces were greater than those present in CS/PAN interface based on molecular dynamic MD simulation. The SEM images available in Figure 21 showcase that the composite membrane features a three-layered structure made up of the support layer, intermediate layer, and separation layer. The fact that there is an intermediate layer has a number of effects on the composite membranes’ overall properties and structure. In particular, the additional layer can augment the mass transfer resistance for permeating molecules. The interactions occurring between the intermediate layer and the other layers can affect the stability and structure of interfaces. Moreover, the intermediate layer can function as a defensive coating when it generates a more compatible surface and in turn allows for the casting of polymer solution with low concentration, thus helping to produce a much thinner separation layer.
Schematic representation of the interfacial interaction in CS/CP/PAN composite membrane. Source: Ref. [
SEM images of cross-section: (a) GCCS(30)/CP(0.5)/PAN membrane, (b) GCCS(30)/CP(0.05)/PAN membrane. Source: Ref. [
Cases discussed above focus on bioadhesives that functioned only as the binding agent between the support layer and the separation layer. An argument can be made that if a bioadhesive can generate a thin membrane with selective separation functions, that act as a separation layer while bound tightly to the support layer, then a composite membrane with high structural stability, desirable separation performance, and simple fabrication procedure can be developed [125]. In this case, the bioadhesive that acts as the separation layer needs to possess dual functions of separation and adhesion. These dual functions have varying demands for its chemical and physical properties. The bioadhesive must have a number of specific characteristics so as to provide durable binding to the support layer. These properties can be summed up as follows: (1) numerous polar groups, like OH and COOH; (2) electro negativity; (3) larger molecular weight; (4) flexible chain; and (5)relatively moderate surface tension [126]. Bioadhesive likewise needs to offer advantageous free volume distribution, selective adsorption for one of the permeating molecules, and suitable molecular chain rigidity that can help obtain higher selectivity and permeability. A bioadhesive hyaluronic acid, or a type of acidic polysaccharide, was used for the separation layer of the composite membrane and intended for dehydration of organic solvents because of its excellent chain flexibility, higher molecular weight, elevated negative charge density, favorable membrane-forming properties, and strong affinity to water. MD simulations as well as experimental inquiries were conducted with the aim to corroborate the strong interfacial interaction and promising interface compatibility of this as-prepared composite membrane.
In addition to the bioadhesives obtained from organisms, biomimetic adhesives featuring comparable functional groups and structure can be used as possible alternatives, if the matching bioadhesives are very costly and difficult to extract. As noted earlier, the cement secreted by the sandcastle worm and the adhesive proteins found in mussel byssus contain DOPA that plays an essential role in the bioadhesion process [26]. Dopamine, as an analog of DOPA, has almost identical properties and structural arrangement. Dopamine and DOPA are able to conduct self-polymerization and oxidation under mild conditions in an aqueous environment so as to generate an exceptionally thin coating with favorable biocompatibility, robust interface binding force with diverse substrates, and higher hydrophilicity potential, similar to the operational characteristics of adhesive proteins found in marine organisms [26]. Such an adhesive capacity and enhanced structural stability of the as-prepared coating may be obtained using a range of chemical and physical interactions, for instance, metal chelation, hydrogen-bonding, covalent interaction, and
SEM image of the cross-section area of the PDA/PSf composite membranes: (a) single coating (inset: the uncoated PS membrane), (b) double coating. Source: Ref. [
The poly(DOPA)/PDA derivatives with DOPA/dopamine grafted with other molecules embody an innovative surface modification method that can improve stability, diversity, and operation. The anchoring abilities of mussel adhesive proteins and cell membrane’s fouling resistance were integrated through the fabrication of doubly biomimetic copolymer as antifouling coating, which contains both catechol groups and phosphorylcholine (PC) side groups. Figure 23 showcases that the doubly biomimetic copolymer may be successfully adsorbed onto a range of substrates using the robust anchoring force created by catechol groups, and the PC groups are oriented toward the external side and are creating the antifouling surface resembling cell membrane. As a result, the antifouling surfaces can be generated on different devices and materials with the help of dip-coating in the doubly biomimetic polymer solution. In addition to the enhanced adhesive capacity, Poly(DOPA)/PDA’s other advantage is its high reactivity, as it offers reaction sites that help perform additional modifications for the membrane’s surface.
Schematic illustration of the structure and fouling resistance of the doubly coating of biomimetic copolymers. Source: Ref. [
Moreover, polyethylene (PE) porous membranes were modified with PDA coating and then immobilized with heparin and bovine serum albumin (BSA), respectively, using covalent bonds in aqueous environment with the aim of gaining improved biocompatibility and higher hydrophilicity. The schematic of the PDA deposition on the PE porous membranes and the subsequent heparin immobilization are shown in Figure 24. High numbers of o-benzoquinonyl groups, occurring on the PDA layer’s surface after the oxidation and self-polymerization of dopamine, had reacted with the amino/imino groups on heparin, once the membrane was immersed into a heparin solution. As a consequence, the deposition of poly (DOPA)/PDA and their derivatives offers an approach with added versatility and long-time durability that can modify the membrane’s surface and help to integrate diverse functions, the latter being particularly valuable for membranes suffering from chemical inertness.
The schematic of the PDA deposition on PE porous membranes and subsequent heparin immobilization. Source: Ref. [
To help increase cohesive energy, as well as membrane’s structural stability, dopamine was added into the membrane’s matrix as a potential modifier. The polymerization and oxidation of dopamine can happen prior to, during, and after the process of membrane production [132]. A variety of oxidizing agents, such as iron ions, sodium periodate, and oxygen, have been applied in order to encourage the reaction. Multiple interactions between the membrane’s matrix and PDA can help make the membrane significantly more stable. Moreover, the adhesive and cohesive balance of PDA, together with the produced membrane structure, may be efficiently regulated through the process of fluctuating the oxidation condition, for example, the ratio of dopamine to oxidizing agent if the production of PDA was during or after membrane’s creation, as illustrated in Figure 25.
Schematic illustration of the possible nanoscale structures of hybrid membranes with different Fe3+/DA. (a) DA monomers bearing abundant phenyl groups indicate high adhesion ability but weak cohesive ability. (b) Low Fe3+/DA leads to aggregated Fe3+-DA complexes with enhanced cohesive interaction and adequate adhesion ability. (c) High Fe3+/DA leads to robust Fe3+-DA nano aggregates with few available phenyl groups and poor adhesion ability. Source: Ref. [
Self-assembly can offer an efficient method for duplication of natural manufacturing processes from bioinspired and biomimetic pathways, as both of these share a key characteristic in the form of spontaneous organization, namely biomacropolymer and phospholipids self-assembly. These comparable structures and interaction mechanisms suggest that the self-assembly process offers a distinct nanoscale approach for regulating the membrane’s chemistries and structures. The following section provides an outline of various self-assembly processes that are presently used in the production of ordering nanoporous membranes, as well as modification of polymer membranes.
The synthetic block copolymers containing two or more thermodynamically conflicting blocks may experience microphase separation into aggregates of multiple morphologies with extremely ordered structures. Microdomain morphologies of diblock copolymers, including cylinders or spheres, are composed of a one phase in a matrix of another, in addition to lamellar and gyroids (Figure 26) [134]. Membranes exhibiting improved selectivity and higher flux can be produced using self-assembled block copolymers. Several dense type membranes based on self-assembly of block copolymer were produced with the aim of offering useful applications in pervaporation, fuel cells, and CO2 membrane separation processes. However, the majority of researchers are turning to the development of nanoporous membranes offering properties such as narrow pore size distributions, tunable chemical and mechanical characteristics, higher porosity, and enhanced ordered and oriented nanopores. For instance, if the composition of block copolymers and the molecular weight happen within specific restrictions, then the spontaneous self-assembly progression can help facilitate ordered cylinders that are aligned perpendicularly with respect to the surfaces and successfully converted into properly ordered nanoporous membranes.
Diagram of the microdomain morphologies of diblock copolymers. Source: Ref. [
Innovative research work has been conducted with the aim of producing nanoporous membranes based on the self-assembly of PS block copolymers with poly (ethylene oxide) (PEO) or hydrophilic poly (methyl methacrylate) (PMMA) blocks. These two approaches were established specifically in order to achieve nanoporous membranes. The first approach relies on the elimination of minor PMMA component that can lead to the creation of cylindrical microdomains oriented in a normal manner with respect to the membrane’s surface [135]. The method’s representative extremely ordered nanoporous thin films developed using self-assembled PEO-b-PMMA-b-PS were created through initial solvent annealing that is followed by ultraviolet (UV) irradiation that degrades the PMMA block [136]. The terminal PEO block and the central PMMA block degradability ensure the long-range order within the overall system. Nanoporous type membranes, featuring narrow pore size distribution, have the capacity to provide improved selectivity values as well as enhanced filtration flux potential. The second approach is based on the removal of homopolymer from the block copolymer/homopolymer blends where the homopolymer is more constricted to the cylindrical microdomains’ center [136]. Moreover, a double-layered nanoporous membrane was created using a combination of PS-b-PMMA together with cylindrical microdomains of homopolymer PMMA. In this case, the film was first constructed on top of the sacrificial silicon oxide layer, after which it was released into the HF solution and then relocated onto the PS membrane’s surface. Finally, it was treated by selectively eliminating the PMMA homopolymer from the cylindrical PMMA microdomains using acetic acid (Figure 27). As a result of this experimental run, an 80-nm thick membrane was produced with cylindrical 15-nm diameter pores for virus filtration applications.
Schematic depiction of the procedure for the production of asymmetric nanoporous membranes through the removal of homopolymer from block copolymer/homopolymer blend films. Source: Ref. [
Polylactide (PLA) is an innovative type of degradable blocks, as well as a multipurpose moiety for developing efficiently ordered nanoporous block copolymer membranes. An approach for making monodisperse nanoporous membranes was designed based on the block polymer PS-b-PLA self-assembly [138]. In this instance, a cautious regulation of the copolymer film’s solvent evaporation rate can facilitate a perpendicular orientation. Furthermore, the exposure of the composite membrane to a dilute aqueous base can selectively etch the PLA block, thus fabricating a porous structure. The nanoporous membranes were likewise created based on cylinder-forming triblock copolymer polystyrene-b-poly (dimethylacrylamide)-b-polylactide (PS-b-PDMA-b-PLA) and PS-b-PI-b-PLA and the etching of the PLA block. An effective new method was shown to generate strong bicontinuous nanoporous block copolymer self-assembled membranes using the process of ring-opening metathesis polymerization of norbornene-functional PS-b-PLA and dicyclopentadiene (DCPD) additive (polymerization induced phase separation), which was then followed by the selective elimination of PLA block [139, 140]. The application of this method has resulted in the cross-linked nanoporous membranes featuring narrow pore size distributions. Furthermore, PS-based block copolymer composites (PS-b-PLA and PS-b-PEO) were implemented for the production of ordered nanoporous membranes featuring hydrophilic pore surfaces. The pegylated pore type surfaces were created through the process of degradative elimination of the PLA block from the self-assembled PLA/PEO microdomains. The bicontinuous gyroid morphology together with the hexagonally packed cylindrical morphology was implemented based on the specific annealing circumstances [141]. The PE-based block copolymer composites can likewise be applied during the process of nanoporous membranes’ production with hydrophilic pore surfaces and using crystallization-induced self-assembly followed by the PLA removal. Block copolymer composites of PLA-b-PE-b-PLA and poly (2-(2-methoxyethoxy) ethyl methacrylate)-b-polyethylene-poly(2-(2-methoxyethoxy) ethyl methacrylate) (PMe(OE)xMA-b-PE-b-PMe(OE)xMA) were responsible for producing a disorderly bicontinuous structure with semicrystalline PE domains and a mixed PLA/PMe(OE)xMA domains. An adequately selective PLA etching from the PLA/PMe(OE)xMA domains using mild base treatment can effectively manufacture a nanoporous PE with pore walls covered with PMe(OE)xMA polymer chains (Figure 28) [141].
Preparation strategy of the nanoporous PE membrane with pore wall lined with PMe(OE)xMA by the PLA selective etching from the reactive block copolymer blends. Source: Ref. [
The uniquely self-assembled block copolymer featuring a cleavable covalent linking unit in the middle of the block copolymer has the capacity to successfully remove small component domains without the application of tough chemicals. An innovative method for producing nanoporous PS films was established with the help of a selectively photocleavable PS-b-PEO block copolymer (ONB-(PS-b-PEO)), where a photochemically sensitive orthonitrobenzyl (ONB) group was fitted in as a type of photocleavable linking unit [143]. In this case, the cylindrical PEO domains can be taken out following the UV light irradiation and the selective solvent rinse. This approach was likewise used to create nanoporous thin films based on PS-b-PEO block copolymer carrying a photo-cleavable o-nitrobenzyl ester junction. Furthermore, the nanoporous films from the connected poly(styrene-ss-ethylene oxide) (PS-ss-PEO) were shown through the redox cleavable disulfide bond [144]. Once the annealing in a benzene/water vapor environment had occurred, the PS-ss-PEO films had reoriented the PEO cylindrical microdomains in a manner normal with respect to the film’s surface. Next, the PEO block could be effortlessly cleaved through the immersion of PS-ss-PEO thin films into a d,l-dithiothreitol-containing ethanol solution, thus forming nanoporous thin films (Figure 29). The films accumulated, due to the PS-b-PEO acquiring cleavable triphenylmethyl ether juncture between PEO and PS, can likewise generate nanopores through the process of selective PEO removal and using trifluoroacetic acid etching [146].
Structure of the PS-ss-PEO block polymer connected by a disulfide bond and schematic representation of the nanoporous thin film preparation. Source: Ref. [
An approach developed with the help of block copolymer supramolecular assemblies together with hydrogen bond donors and acceptors was implemented for the production of ordered nanoporous membranes using the process of removal of minor component enriched nanodomains. Another method relied on hydrogen bonding between 3-pentadecyl phenol(PDP) and 4-vinylpyridine monomer units in order to form a comb-like molecular architecture and effectively alter the gyroid/cylinder morphology of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP). The two-dimensional films fabricated using such supramolecular assemblies can produce nanoporous membranes through the removal of amphiphilic PDP domains, which occurs when washed with a selective type solvent (Figure 30) [147]. Moreover, PS-b-P4VP/PDP comb-like block copolymer systems was applied so as to acquire a lamellae-within-cylinders films with periodic and well-defined nanoporous structures. In order to obtain thin films with perpendicularly oriented hexagonally ordered cylinders of P4VP, the 2-(4′-hydroxy benzeneazo) benzoic acid (HABA) was implemented as hydrogen bond donors. Made out of cylindrical nanodomains and generated by P4VP-HABA associates surrounded by PS, the supramolecular assemblies were likewise produced using the PS-b-P4VP/HABA system [148]. As part of this process, the HABA molecules made hydrogen bonds with the P4VP units and then uniformly spread within the domain of P4VP (HABA). The HABA could be taken out with relative ease from the P4VP (HABA) domain, once it is rinsed in a selective solvent, which renders a systematic array of nanochannels. Furthermore, substances that can engage with the poly (vinylpyrrolidone) (PVP) block like dodecyl benzene sulfonic acid (DBSA), poly (methyl methacrylate)-dibenzo-18-crown-6-poly(methyl methacrylate) (PMCMA), PMMA, 1,5-dihydroxynaphthalene (DHN), 1-pyrenebutyric acid (PBA), and phenolic resin were similarly applied so as to produce ordered nanoporous films using the self-assembly of block copolymer supramolecules grounded in physical interactions [149].
The schematics illustrate supramolecular self-assembly of PS-b-P4VP triblock copolymers. Source: Ref. [
Figure 31 outlines the two-step method established for the development of the nanoporous structure based on metallo-supramolecular block copolymers with amphiphilic blocks and connected together using metal-ligand complexes. This method’s initial stage involves the self-assembly of block copolymer, which then yields cylindrical microdomains oriented in a normal manner with respect to the substrate. The next stage in the process requires opening metal-ligand complex with the aid of redox chemistry that releases minor PEO block and generates nanopores. The metallo-supramolecular block copolymers show superior characteristics in so far as the supramolecular bond’s potential reversibility bestows “smart materials” with controllable properties [151].
Schematic representation of the preparation of functionalized nanoporous thin films from metallo-supramolecular block copolymers. Source: Ref. [
The overall difficulty of up-scaling, time-consuming preparation steps, and a lack of adequate long-range order are all serious challenges for the process of block copolymer-based membrane development. A new approach was designed for the fabrication of isoporous membranes with nanometer-sized pores based on the idea of joining the self-assembly of block copolymer PS-b-P4VP with the nonsolvent-induced phase separation (NIPS), as shown in Figure 32 [153]. This solvent evaporation caused a concentration gradient within the block copolymer solution, specifically between the interface turned toward the air section and the interface turned toward the bottom. The microphase separation took place and then moved along the gradient within the greater concentration region of the surface, as a consequence directing the progressive growth of the cylindrical domains into the swollen layer area. As part of the process of phase separation, the nonsolvent water initially moved into the swollen P4VP blocks’ cylindrical domains and then was switched with solvent. The solvent coming from the swollen PS matrix was primarily dispersed into the channels, since the interface area available for the solvent/nonsolvent exchange within the channels was significantly greater than the area available at the top surface. Research literature overviews likewise outline innovative methods for producing isoporous asymmetric membranes designer using solvent selectivity, supramolecular assembly of PS-b-P4VP block copolymer micelles, and complexation-directed supramolecular chemistry [154]. The supra molecular assembling methods of block copolymer micelles offered a flexible, nondestructive, and relatively low effort way for forming mesoporous block copolymer films featuring well-defined pore size values. The PI-b-PS-b-P4VP triblock copolymer-derived mesoporous films were produced with a joint application of controlled solvent evaporation, which directed the self-assembly of the terpolymer micelles to structurally shape the mesoporous selective layer, and of NIPS, which shaped the basic macroporous support structure. Once developed, the mesoporous films showed distinctive stimuli responsive permeation behavior.
Schematic diagram of the asymmetric film formation process combining NIPS with the self-assembly of block copolymer PS-b-P4VP. Source: Ref. [
A confined swelling-induced pore production approach has recently appeared as the latest method for the development of porous materials through the exposure of self-assembled block copolymers to solvents with highly selective minor phase. Some of the synergic benefits of this approach are its higher pore regularity, lack of weight loss, pore forming process reversibility, relative simplicity, and absence of chemical reactions. [152].
A new methodology of collective osmotic shock was formulated with respect to the swelling-induced expansion of the minor phase and the self-assembled block copolymer micelles [155]. At the core of this approach, a spherical block copolymer, or PS-b-PMMA, was applied so as to form materials receptive to the influences of collective osmotic shock (Figure 33a). In this dynamic, the PS-b-PMMA film was created using multiple layers of close-packed PMMA spherical cores that were carefully spaced out and enclosed within a PS matrix. The exposure to UV light that followed cross-linked the PS phase and dismantled the PMMA into smaller oligomers. Next, the film was submerged into acetic acid, which is a solvent for PMMA oligomers, and a substantially greater osmotic pressure was created within the PS matrix due to the solvation of degraded PMMA oligomers. This collective osmotic shock caused breakages among the spheres and formed a path for the complete release of PMMA oligomers. Synchronized and explosive fracture within the structured materials prompted the formation of nanoperforated multilayer constructions (Figure 33b) that can be applied in ultrafiltration as well as other diversified membrane processes [156].
(a) Schematic of the osmotic shock process acting on layers of spheres and leading to the perforated multi layers. (b) Fracture cross-section of PS-b-PMMA multilayer structures (scale bar, 200 nm). Source: Ref. [
This section’s overview of the ordered porous membranes’ production using self-assembly of block copolymers is quickly recapped in Table 2. This summary is a convenient reference guide for the production of ordered porous type membranes.
Membranes | Assemblies and assembly approaches | Pore generation | References |
---|---|---|---|
PS-b-PI; coating PS-b-PI onto silicon substrates, followed by solvent evaporation | Degrading PI by O3 and methanol rinsing | [157] | |
PS-b-PMMA; coating PS-b-PMMA onto PS-r-PMMA neutral layer, followed by vacuum high temperature annealing and rapid quenching | Degrading PMMA by UV exposure and acetic acid rinsing | [137, 158, 159] | |
PEO-b-PMMA-b-PS; coating PEO-b-PMMA-b-PS onto silicon substrates, followed by solvent annealing; PEO block-permitting long-range ordering | Degrading PMMA by UV exposure and acetic acid rinsing | [136, 160] | |
(PS-r-BCB)-b-PMMA; coating (PS-r-BCB)-b-PMMA onto P(S-r-BCB-r-MMA) neutral layer, followed by thermal annealing and cross-linking at elevated temperatures | Degrading PMMA by UV exposure and acetic acid rinsing | [161] | |
PS-b-PMMA; coating PS-b-PMMA onto glass substrates along with fast solvent evaporation | Degrading PMMA by UV exposure and acetic acid rinsing | [135, 162] | |
PS-b-PMMA/PEO; coating PS-b-PMMA/PEO onto silicon substrates, followed by solvent annealing | Removing PMMA/PEO domains by UV exposure and acetic acid rinsing | [163] | |
PS-b-PEO/PAA; coating PS-b-PEO/PAA onto porous supports along with fast solvent evaporation | Removing PAA by soaking in water | [164] | |
PS-b-PMMA/PMMA; coating PS-b-PMMA/PMMA onto PS-r-PMMA neutral layer, followed by vacuum high-temperature annealing and rapid quenching | Degrading PMMA by acetic acid rinsing | [165, 166] | |
PS-b-PLA; coating PS-b-PLA porous support, followed by controlled solvent evaporation | Removing PLA by dilute aqueous base rinsing | [138] | |
PS-b-PI-b-PLA; coating PS-b-PI-b-PLA onto hexamethyldisilazane neutral layer or porous supports, followed by vacuum high-temperature annealing | Removing PLA by dilute aqueous base rinsing | [167] | |
PS-b-PDMA-b-PLA; molding PS-b-PDMA-b-PLA, followed by vacuum high-temperature annealing | Removing PLA by dilute aqueous base rinsing | [168] | |
NPS-b-PLA/DCPD; cross-linking NPS-b-PLA/DCPD using the Grubbs catalyst, followed by controlled solvent evaporation | Removing PLA by dilute aqueous base rinsing | [139, 140] | |
PS-b-PEO/PS-b-PLA; controlled solvent evaporation followed by vacuum high-temperature annealing | Removing PLA by dilute base or concentrated HI solution rinsing | [141, 169] | |
PLA-b-PE-b-PLA; melt molding, followed by cooling induced PE crystallization | Removing PLA by dilute aqueous base rinsing | [170] | |
PMe(OE)XMA-b-PE-b-PMe(OE)XMA/PLA-b-PE-b-PLA; melt molding, followed by cooling induced PE crystallization | Removing PLA by dilute aqueous base rinsing | [142] | |
PS-b-PE; melt molding, followed by cooling induced PE crystallization | Removing PS by fuming nitric acid | [171] | |
PB-b-PDMS; coating PB-b-PDMS onto glass substrates along with controlled solvent evaporation | Removing PDMS by tetra-n-butylammonium fluoride solution | [172] | |
(ONB-(PS-b-PEO); coating (ONB-(PS-b-PEO) onto silicon substrates, followed by solvent annealing | Removing PEO by UV cleavage of ONB and methanol rinsing | [143] | |
PS-ss-PEO with disulfide juncture; coating PS-ss-PEO onto silicon substrates, followed by solvent annealing | Removing PEO by DDT cleavage of disulfide juncture and ethanol rinsing | [145] | |
PS-b-PEO with triphenylmethyl ether juncture; coating PS-b-PEO onto silicon substrates, followed by solvent annealing | Removing PEO by trifluoroacetic acid cleavage of triphenylmethyl ether juncture and methanol rinsing | [146] | |
PS-b-PEO with o-nitrobenzyl juncture; coating PS-b-PEO onto silicon substrates, followed by solvent annealing | Removing PEO by UV cleavage of o-nitrobenzyl ester and methanol rinsing | [144] | |
PtBOS-b-PS-b-P4VP/PDP; coating PtBOS-b-PS-b-P4VP/PDP onto glass substrates, followed by solvent annealing | Removing PDP by ethanol rinsing | [147] | |
PS-b-P4VP/PDP; molding along with vacuum high-temperature annealing and rapid quenching | Removing PDP by ethanol rinsing | [148] | |
PS-b-P4VP/HABA; coating PS-b-P4VP/HABA onto silicon substrates, followed by solvent annealing | Removing HABA by methanol rinsing | [173] | |
PS-b-P4VP/HABA; casting PS-b-P4VP/HABA on porous support followed by nonsolvent induced phase inversion | Removing HABA by ethanol rinsing | [86] | |
PS-b-P4VP/PBA; coating PS-b-P4VP/PBA onto silicon substrates, followed by solvent annealing | Removing PBA by ethanol rinsing | [174] | |
PS-b-P4VP/DBSA/PDP; coating PS-b-P4VP/DBSA/PDP PBA onto silicon substrates, followed by controlled solvent evaporation | P4VP/DBSA domains collapsing upon annealing | [149] | |
PS-b-P4VP/PMCMA; coating PS-b-P4VP/PMCMA onto silicon substrates, followed by controlled solvent evaporation | P4VP/PMCMA domains collapsing upon annealing | [175] | |
PS-b-P4VP/DHN; coating PS-b-P4VP/DHN onto silicon substrates, followed by controlled solvent evaporation | Removing DHN by methanol rinsing | [176] | |
PS-b-P4VP/phenolic resin; coating PS-b-P4VP/phenolic resin onto silicon substrates, followed by controlled solvent evaporation | Removing PS-b-P4VP by pyrolysis | [177] | |
PS-[Ru2+]-PEO; coating PS-[Ru2+]-PEO onto silicon substrates, followed by solvent annealing | Removing PEO by oxidizing the Ru(II) into Ru(III) | [150, 178] | |
PS-[Ni2+]-PEO; coating PS-[Ni2+]-PEO onto silicon substrates, followed by solvent annealing | Removing PEO by methanol rinsing | [179] | |
PS-b-P4VP; casting PS-b-P4VP onto glass substrates, followed by initial solvent evaporation and nonsolvent-induced phase inversion | Solvent/nonsolvent exchange | [153] | |
PS-b-PEO; casting PS-b-PEO onto glass substrates, followed by initial solvent evaporation and nonsolvent-induced phase inversion | Solvent/nonsolvent exchange | [180] | |
PS-b-PS-b-P4VP; casting PS-b-PS-b-P4VP onto glass substrates, followed by initial solvent evaporation and nonsolvent-induced phase inversion | Solvent/nonsolvent exchange | [181–183] | |
PS-b-P2VP; coating PS-b-P2VP onto silicon substrates, followed by controlled solvent evaporation | Shrinkage of P2VP chains after ethanol swelling | [184, 185] | |
PS-b-PMMA; coating PS-b-PMMA onto silicon substrates, followed by high-temperature annealing | Degrading PMMA by UV exposure and acetic acid initiated collective osmotic shock | [155] |
Membrane fabrication using the block copolymer self-assembly.
As an example of an in-situ method for modifying the membrane’s surface, the surface separation of amphiphilic copolymers as part of the membrane surface development has shown distinct benefits, including the formation of effective brush layers on pore as well as membrane surfaces [186]. This self-assembly and surface segregation approach may be defined as a series of specific steps. First, the amphiphilic copolymers are mixed into the membrane’s casting solution. During the following phase inversion process, the hydrophilic sections of the copolymers close to the interface are separated from the membrane’s surface in a spontaneous manner, until the chemical potentials of the brush and bulk layers are balanced. Meanwhile, the hydrophobic sections are securely trapped within the membrane’s matrix with the help of hydrophobic interaction [187]. Until recently, the majority of porous membranes were created using surface segregation of amphiphilic copolymers together with the commercially applied membrane production method called the wet phase inversion. In particular, PEO-based comb polymer and methyl methacrylate (MMA) were applied as the surface-segregating additives that would enhance PVDF (polyvinylidene fluoride) membrane’s surface hydrophilicity potential. The PEO side chains can connect to the membrane’s surfaces because of their affinity to water. PEO side chains likewise display a long-lasting surface hydrophilicity property. PEO brushes, taken away from the surface during cleaning or operation, may be largely restored through additional segregation of the residual amphiphilic additives during the subsequent heat treatment or when others are driven by the developing gradient in the additives’ chemical potential. In order to create porous membranes that follow the phase inversion method, amphiphilic copolymers were likewise applied as additives and include hyper-branched star polymers, comb-like copolymers, and block copolymers. Blended membranes had undergone testing in water at 60°C so as to assess the retentive stability of various amphiphilic polymers on the membrane’s surface [188]. The testing showed a minor variation in water contact angles in blend membranes when they were continuously leached in hot water for the duration of 30 days, thus reflecting advanced membrane surface strength. Furthermore, a Pluronic block copolymer, poly (ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-b-PPO-b-PEO), was applied as a surface-segregating additive for the creation of improved fouling resistant PES type membranes. The hydrophobic PPO segments in Pluronic block copolymers became securely fastened in the PES matrix and resulted in the covering of Pluronic block copolymers on PES. Alternatively, the hydrophilic PEO segments slowly drifted to the membrane’s surface and lead to a membrane surface featuring improved stability and enhanced hydrophilicity (Figure 34) [190]. Moreover, high-performance PES/Pluronic membranes that show stable hydrophilic character and elevated flux values were developed using vapor-induced phase separation combined together with the nonsolvent-induced phase separation approach.
Illustration of dual roles of Pluronic F127 in the membrane formation process. (a) The self-assembly polymers lead to three forms of Pluronic F127 existing in a homogeneous casting solution. (b) Immersing the film in a water bath leads to phase separation and formation of ordered structure and pores within the membrane. Source: Ref. [
The design strategies for zwitterionic membrane surfaces were developed with the help of alternative amphiphilic zwitterionic ligands used as surface-segregating additives and included sulfobetaine copolymer, phosphorylcholine copolymer, and soybean phosphatidyl-choline [191]. As part of the phase-inversion procedure during membrane production, the surface segregation of zwitterionic segments was conducted spontaneously. This generated zwitterionic brushes on the membrane as well as pore’s surface and lowered interfacial free energy value. Moreover, a forced surface segregation approach was applied to in-situ engineering process of a porous amphiphilic membrane’s surface, with hydrophilic fouling resilient domains and lower surface free energy fouling release self-cleaning domains [192]. Lower surface energy segments, like silicone-segments or fluorine-containing segments, are not capable of spontaneous separation from the polymer-water interface, due to the unfavorable thermodynamics during NIPS process conducted through the free surface segregation [193]. As part of the NIPS procedure, hydrophilic segments were anticipated to separate at the membrane’s surface coordinated by the amphiphilic copolymers’ self-assembly. Alternatively, the covalently binding nonpolar hydrophobic sections were pulled onto the membrane’s surfaces by hydrophilic segments using forced surface segregation (Figure 35). Due to the innate self-healing capacity of surface segregation methods, the long-term surface stability of the low surface energy sections located on the membrane surfaces was likewise anticipated.
Forced surface segregation process during the membrane formation process.
The prototypes inspired by nature considerably enhance the range of artificial material syntheses and their applications. The process of first extracting central principles at the core of natural material production and then imitating these processes is a rewarding method for replicating comparable physical and chemical structures. However, the complexity and precision involved in the formation of materials is difficult to imitate or grasp in its entirety. Some of the shortcomings and challenges faced by membrane-fabrication approaches based on simulations of natural prototypes are provided in Table 3.
Membrane fabrication methods | Challenges and shortcomings |
---|---|
Biomimetic mineralization | Controlled regulation of nanoparticle morphology and surface composition within polymer matrix In-depth analysis of mineralization reaction thermodynamics and kinetics with different inorganic precursors and organic inducers |
Biomimetic adhesion | Unambiguous elucidation of formation mechanism and structure of PDA with convincing experimental evidences Long-term stability of PDA coating under extreme working environments |
BCP self-assembly | Facile synthesis of well-defined block copolymers for rationally controlling the phase separation process Precise control of defect-free self-assembly process and pore size/morphology |
Surface segregation | Synergistic control of the thermodynamics, kinetics, for selective surface segregation Manipulating multiple interactions for hierarchical structure creation |
Challenges and shortcomings of membrane fabrication methods that imitate the formations found in natural prototypes.
The classification of self-cleaning surfaces is divided into hydrophobic and hydrophilic, as underwater oleophobic, type of surfaces. When it comes to the hydrophobic or oleophobic self-cleaning type surfaces, the interactions between the hydrophobic epicuticular waxes and multiscale geometrical surface structures are directly inspired by the surface characteristics of lotus leaves or other epidermis and plant leaves with similar properties. In fact, this correlation to the lotus leaves ensures that the hydrophobic self-cleaning type surfaces have an elevated water contact angle or a smaller sliding angle, which indicates low adhesion and superior hydrophobic or functionality. Alternatively, for the underwater oleophobic or hydrophilic self-cleaning surfaces, the correlation of elevated hydration energy moieties and physical heterogeneity, incited by the hydrated skin surfaces in marine organisms, suggests a greater underwater oil contact angle that helps to avert oil fouling [194]. Because of the distinct characteristics found in these self-cleaning surfaces, including nonwetting and anticontamination, they may be applicable in a range of situations. Collectively, these new found properties signal a new era in self-cleaning membrane production and application.
Lower surface energies and surface microscale and nanoscale geometrical structures are two of the primary dynamics when it comes to the efficacy of hydrophobic or oleophobic self-cleaning type membranes [195]. The methodologies applied when developing self-cleaning membrane surfaces may be grounded in two specific tactics. The first one requires building a rough surface using low surface energy materials, whereas the other is based on altering the rough surface with materials with lower surface energy values. The process of design and production of the bioinspired superhydrophobic membranes using electrospinning has become a popular research direction. In particular, electrospinning is an adaptable approach for making rough surfaces using low surface energy materials, that depend on this roughness, as hierarchically textured surfaces with microstructures or nanostructures, and added during the process of spinning. Roughness’ length scale is credited to the smaller fiber diameters and hydrophobicity and is essential for the superhydrophobicity properties of fibrous membranes. Multiple methods have been noted for combining materials of lower surface energy together with higher surface roughness, including poly (3-phenyl-3,4-dihydro-2H-1,3-benzoxazine) blended with PAN, and electrospinning poly (styrene-b-dimethylsiloxane) block copolymers blended with homopolymer polystyrene (PS-b-PDMS/PS) [196]. A method based on in-situ was used to produce superhydrophobic fiber mats with the aid of electrospinning polystyrene that contains fluoroalkyl end-capped polymer additives [197]. Unrestricted surface segregation of these additives with respect to the polymer-air interface can generate fibers that have superhydrophobic properties, are fluorine-rich, and show lower surface energy values. Although it is inspired by biological superhydrophobic surfaces offering hierarchical surface roughness characteristics on at least two different length scales, there is a need for a much finer scale structure so as to create a second level of roughness. A number of artificial superhydrophobic microporous and nanoporous fibrous membranes have been produced using an approach that builds a second level hierarchical surface based on nanohybrid systems. Nanomaterials, like Al2O3 nanoparticles, TiO2 nanoparticles, SiO2 nanoparticles, and graphene nanoflakes, collect within the polymeric fibers and as a result alter the surface chemistry and morphology, eventually allowing for superhydrophobicity with improved self-cleaning characteristics [198]. For example, an artificial composite fibrous membrane was created with the help of polyaniline (PANI) doped with azobenzenesulfonic acid blended with PS and using electrospinning (Figure 36). In this instance, a network of nanofibers with multiple sub-microspheres was spanning over the entire substrate connected with nanoknots, as well as nanoscale protuberances sheltering every sub-microsphere. The hierarchical roughness of microparticles and nanofibers has the capacity to improve the temperature-responsive wettability by switching between superhydrophobicity and superhydrophilicity activated by temperature.
(a) SEM image of an electrospun PANI/PS composite fibrous membrane with lotus leaf–like structure. (b) Magnified view of a single sub-microsphere from (a). Source: Ref. [
Chemical vapor deposition process is a single-step solvent-free deposition method for surface modifications that may help add lower surface energy properties to nanoscale rough surfaces that can then generate improved hydrophobic self-cleaning membrane surfaces. Superoleophobic as well as super-hydrophobic self-cleaning nanocellulose aerogel type membranes were created with the aid of cellulose nanofibers that have been treated with fluorosilanes through CVD. The superoleophobic and superhydrophobic characteristics were due to the fluorinated fibrillar networks and aggregates with structures occurring at varying length scales. A noticeable improvement in fibrous membranes’ hydrophobicity was observed, when CVD was combined with electrospinning [200]. Both, first level of roughness related to the fibers and second level of roughness related to the beads, were present in the poly caprolactone (PCL) fibrous membranes. The substantially lower surface energy in the coating layer produced using CVD allowed for a constant superhydrophobicity with a contact angle of 175°. This double-roughened highly hydrophobic fibrous type membrane was developed through the process of improving micrometer-scale electrospun fibers with nanometer-scale particles or pores [201]. The combination of chemical composition, roughened texture, and re-entrant surface curvature was likewise examined so as to design an oleophobic self-cleaning fabric membrane. Specifically, this membrane relies on the exceedingly low surface energy polyhedral oligomeric silsesquioxane (POSS) molecules, featuring a rigid silsesquioxane cage enclosed by per fluoro-alkyl groups (fluoro POSS) [201]. A number of experimental oleophobic membranes were created using a straightforward dip-coating and thermal annealing technique that applied a combination of fluoro POSS and PMMA, cross-linked poly (ethylene glycol) diacrylate (x-PEGDA), cross-linked PDMS, or poly (ethyl methacrylate) (PEMA) onto the textured substrates, like stainless steel wire meshes, that have re-entrant curvature on the rougher length scale [202]. For instance, a variety of fabric morphologies with multiple scales of roughness, high porosity, and “beads on a string” type morphology can be adjusted by changing the concentration of the fluoro POSS and PMMA blends [202]. Those surfaces that offer multiple scales of roughness allowed fiber membranes to obtain superhydrophobicity and oleophobicity at higher POSS concentration values and hydrophilicity oleophobicity at smaller POSS concentration values. There are, however, other methods available for the design and fabrication of self-cleaning membranes. For example, textile membranes covered with thiol-ligand nanocrystals, based on the interaction between the VIII and IB nanocrystals and n-octadecyl, can gain super-oleophilic and superhydrophobic qualities [203]. Furthermore, PVDF membranes, made out of linked spherical microparticles that have been uniformly dispersed on the surface, can be produced using an inert solvent-induced phase inversion that showcases superoleophilic as well as superhydrophobic potential [204]. Alternatively, the nanoparticle-polymer suspension coating was applied during the production of a self-cleaning stainless steel mesh membrane [204]. The synergistic effects of the micro/nanoscale hierarchical constructions produced with the help of SiO2 nanoparticles and the hydrophilic-oleophobic groups of poly(diallyldimethylammonium chloride) (PDDA)-sodium per fluoro octanoate (PFO) allowed the spray-coated mesh membrane to successfully gain superoleophobic and superhydrophilic characteristics. A research study on this subject recently showed how amphiphilic self-cleaning membrane surfaces, that offer low surface energy characteristics and mixed domains of mosaic hydrophilic, were produced using surface grafting perfluoroalkyl molecules that instigated surface segregation in lower surface energy amphiphilic copolymers [205]. Constructed with fluorine-based polymers, the lower surface energy microdomains located on the membrane’s surface were supposed to decrease the intermolecular interactions occurring between the membrane’s surface and oil. The hydrophilic domains were intended to restrict water molecules and create a hydration layer that would become an oil, water, or solid interface for oleophobicity.
Research has shown that superhydrophilic surfaces submerged into water can likewise encourage self-cleaning behavior and oleophobicity. The elevated hydration conditions of hydrophilic moieties located on the membrane’s surface have the capacity to restrict a relatively large ratio of water molecules by using hydrogen bond or electrostatic interaction, both of which essentially prevent the oil’s entry onto the membrane’s surface. These approaches to producing underwater hydrophilic or oleophobic self-cleaning type membranes place emphasis on incorporation of high hydration energy moieties onto the membrane’s surfaces. On the other hand, the underwater self-cleaning superoleophobic membranes offer unusual microscale and nanoscale hierarchical structural organizations. Research collaborations have reported underwater superoleophobic membranes made out of polyacrylamide hydrogel-coated mesh membranes with microscale porous metal substrates and coarse nanostructured hydrogel coatings [206]. A thermal-responsive block copolymer PMMA-b-PNIPAAm was casted onto a steel mesh so as to create a membrane that can have two switchable states of wettability depending of temperature values (Figure 37a) [207]. A PMMA-b-PNIPAAm had undertaken a self-assembly process into a lamellar structure featuring PNIPAAm domains between the hard walls of PMMA on a nanometer scale. In this case, the alternating conformational modification of the PNIPAAm chain establishes the surface roughness at a value near lower critical solution temperature, while the collaboration between PMMA and PNIPAAm domains grants the film reversible switching between wettability conditions of hydrophobicity/oleophilicity and hydrophilicity/oleophobicity (Figure 37b). Moreover, underwater superoleophobic chitosan-coated meshes based on cross-linked chitosan network were successfully produced, and the overall stability potential of chitosan-coated meshes may be enhanced through the modification of the CS coating and its reduction, PVA addition, and full cross-linking [208].
(a) Temperature-controlled water/oil wetting behavior on a block copolymer-coated mesh. (b) A schematic showing reversible conformational change of the PNIPAAm chain and the resultant surface roughness at different temperatures leading to two states of wettability [lower critical solution temperature (LCST)]. Source: Ref. [
Latest experimental research developments have reported the creation of underwater superoleophobic membranes based on PMAPS-g-PVDF and PAA-g-PVDF [207]. These ultralow oil-adhesion and superoleophobic properties of the PMAPS-g-PVDF membrane were caused by the enhanced surface energy and the hydrated conduct of the grafted zwitterionic PMAPS chains whenever in water. A prolonged conformation of hydrated PMAPS chains could incite the creation of a tightly bound hydration layer as well as encourage oil droplets to roll off from the membrane’s surface [209]. The PAA-g-PVDF membranes’ underwater superoleophobic wetting properties were impacted by the hydrophilic nature of PAA chains and the hierarchical micro/nanoscale structure. The micro/nanoscale spherical particles located on the membrane’s surface were produced using the PAA-g-PVDF micelle aggregates and during the application of the salt-induced phase-inversion method. Specifically, this occurred during the coagulation step, when the quick solvent exchange encouraged the NaCl’s crystallization out from the water and the nascent small crystal seeds became accumulation points for aggregates around the PAA-g-PVDF micelles. Thus, this experimental approach was able to illustrate that an increase in roughness can improve antiwetting performance of underwater oils on the membrane’s surfaces [210].
Researchers that focus on the membrane surfaces’ wetting performance have developed key sets of guidelines for the design of self-cleaning membranes. Admittedly, multiple challenges still have to be addressed in this area. When it comes to hydrophobic, or oleophobic, self-cleaning type membranes, the fluorinated moieties were used in the majority of cases in order to decrease surface energy values. The synthesis and application of fluorinated moieties could increase the likelihood of the ecosystem being contaminated by fluorine, which in turn can have a damaging effect on the living organic bodies and materials. As a result, environmentally conscious methods that can address self-cleaning are currently necessary. For the hydrophilic, or underwater oleophobic, self-cleaning type membrane, one of the critical concerns is the strength of the surface hydrophilic quality. Another aspect that has not been adequately investigated is the structural development of hydrophilic layer that experiences intense conditions like higher salinity, alkalinity/acidity, and temperature values. The future of membrane design must shift its focus toward combining strategies that take into consideration multiple interactions and that can significantly improve membrane hydrophilic stability and its applications.
According to the American Society of Testing and Materials (ASTM), additive manufacturing (AM) is defined as “the process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing methodologies.” Often this term is substituted by 3D Printing (3D Printing is typically associated with people printing at home or in the community; additive manufacturing is typically associated with production technologies and supply chains, but they both produce parts by the addition of layers). AM technologies can be classified into seven categories, namely, binder jetting, material jetting, direct energy deposition, sheet laminations, material extrusion, powder bed fusion, and vat photopolymerization. Each category includes several processes that share the same principle used for layer modeling and different materials that can be processed (Table 1).
Process | Technologies | Materials |
---|---|---|
Binder jetting | Ink-jetting 3D printing | Metal Polymer Ceramic |
Material jetting | Polyjet Ink-jetting | Photopolymer Wax |
Direct energy deposition | Direct Metal Deposition Electron Beam Direct Melting | Metal |
Sheet laminations | Laminated Object Manufacture Ultrasonic Consolidation | Metal Polymer Ceramic Paper |
Material extrusion | Fused Deposition Modeling | Polymer |
Powder bed fusion | Selective Laser Sintering Selective Laser Melting Electron Beam Melting | Metal Polymer Ceramic |
Vat-photopolymerization | Stereolithography Digital Light Processing | Photopolymer Ceramic |
Seven categories of AM technologies [1].
AM has been first applied for rapid prototyping of visualization models and tooling. Recently, the improvement in the process’s accuracy and material properties of the manufactured objects have expanded the field of applications. Indeed, AM is currently used to manufacture personalized prostheses, replacement organs, and implants in the medical sector and produce complex lightweight components for the aerospace, automotive, and sports industries. Recently, AM has been applied by RF industries for the development of next generations of microwave and millimeter-wave components for sensors, imaging systems, and satellite communication (SATCOM) [1].
A generic AM process starts with a model generated using a three-dimensional Computer-Aided Design (3D CAD) system. Then the model is converted into the STL file format that approximates the 3D model with a mesh of triangles. Then, this file is transferred to the AM machine to set the process parameters. Such settings are defined according to the geometry of the model (e.g., position and orientation of the components, design of support structures) and to the building process (e.g., energy source, material constraints, and layer thickness). At the end of the printing process, the part is removed from the building platform and prepared for the post-processing operations, for example, cleaning, sandblasting or shot-peening, thermal treatments, and plating [2].
The main advantage of AM process is manufacturing lightweight components with complex internal surfaces in a single part. Moreover, by eliminating tools, the design flexibility is increased. On the other hand, the main concerns are the manufacturing accuracy and the surface roughness that are worse than standard manufacturing processes and strongly depend on the material and process parameters.
In the microwave area, Selective Laser Melting (SLM)1, Stereolithography (SLA), and Fused Deposition Modeling (FDM™) are the most investigated technologies. The application of AM processes in manufacturing microwave and millimeter-wave components strictly depends on the accuracy, cost, and performance requirements. From this point of view, basic knowledge of the characteristics of a single process is necessary. This overview is reported in Sections 2–4. Section 5 is, instead, devoted to giving a survey of the principal results (in terms of realized components) actually achieved in the specialized literature. In this summary, all the important aspects for microwave engineering are reported, i.e., operative band, measured results versus the expected ones, and an explanation of this difference. This section is split into subsections for reader convenience according to the component category.
SLM is an AM process that allows the manufacturing of all metal parts. This technology can easily realize complex geometries with interior features and channels. Regarding Figure 1, the manufacturing process starts with a thin layer of metal powder spread by a recoater along with the building platform. Then, a high-energy laser beam selectively fuses the deposited powder layer. The laser follows the contour defined in the STL file. Once a layer is completed, the building platform is lowered, the new powder is spread, and the laser melts this new layer. The process is repeated until the parts are completely manufactured. Due to the high temperatures necessary for melting, the process takes place in a protected atmosphere, normally argon, to prevent oxidation of the parts [1]. At the end of the process, the excess powder is removed; the parts still attached to the building platform undergo a stress-relieving job in an oven. This thermal treatment is necessary to reduce deformations of the parts caused by the high thermal stresses arising during the manufacturing process. Finally, the components are detached from the building platform and eventually subjected to surface finish treatment as polishing and shot peening [3].
Selective laser melting process.
Metal powder properties are important in the final quality and cost of the part built via SLM. The main properties influencing the process can be subdivided into three categories, which are as follows: [4]:
geometrical (size and shape);
metallurgical (microstructure, composition);
mechanical/physical (flowability, absorption of light).
As far as the first point is concerned, fine particles enable high-density parts with good surface quality, while the spherical shape improves flowability and, hence, mechanical properties [5]. Irregular powder particles can lead to poor surface finish, low density, and increased defects [6].
Extremely important steps in the SLM process are the orientation of the part in the building platform and the design of the supporting structures. Supports have mainly three purposes, which are as follows:
to fix the part to the building platform;
to conduct excess heat away;
to prevent deformation or collapse of the part.
Typical drawbacks are as follows:
an increment of the building and the post-processing time;
their removal is not, in general, an easy task, and the risk of damage is quite high.
A possible solution to reduce the number of supports consists of choosing an optimal building orientation. It is worth noticing that the staircase effect has to be also well-considered for specific applications. The generation of the staircase effect is described in Figure 2. The STL file format is a triangular approximation of the nominal CAD. If the layer thickness is too high or the inclination angle is too small, the staircase effect becomes more remarkable. On the other hand, overhanging surfaces is another important aspect to consider. These surfaces are areas not supported by solidified material during the building process. The heat-conduction rate of powder-supported zones is lower than the solid-supported zones, while the absorbed energy is higher. The melt pool created by the laser becomes too large and sinks into the powder. Therefore, deformation occurs if these surfaces are not supported. Supporting structures are usually built with a low density during the manufacturing of the part, and they must be manually removed at the end of the manufacturing process. A clever solution is represented by self-supporting angles (Figure 3). Based on experimental results, downward sloping faces with angles α > 45° are self-supporting. At the same time, staircase effects can be reduced by increasing sloping angles. Moreover, in this way, the value of surface roughness decreases. On the contrary, angles lower than 30° should quickly be avoided since the staircase effect increases [7].
Generation of the staircase effect.
Self-supporting angles.
Materials commonly used in the SLM process are aluminum alloys, titanium alloys, stainless steel, Ni-based alloys, and cobalt-chromium alloys [1]. From an RF point of view, the most interesting ones are the aluminum ones as the AlSi10Mg alloy. This material exhibits high electrical conductivity, low-specific weight, high corrosion resistance, and good mechanical properties. The typical achievable accuracy guaranteed for this aluminum alloy is in the order of ±0.1 mm [3]. However, better manufacturing accuracy has been observed in literature for components designed with an AM-oriented approach.
Stereolithography (SLA) was developed in 1984 by Charles Hull and was the first available commercial AM process. SLA is a vat photopolymerization process based on the solidification of a liquid resin using a UV laser. Since the process takes place in a liquid, support structures are necessary during the building phase. These are made by the same material of the parts and are specified in the machine parameter settings [1].
Concerning Figure 4, the manufacturing process starts with the building platform lowered from the top of the vat by a layer thickness. Then, a recoater blade smooths the surface of the vat, and a UV laser cures the material. Then, the platform is lowered by a layer thickness, and the process is repeated until the part is completed. At the end of the process, the platform is lifted, the part is drained and removed from the platform [8]. Then, it is placed in a UV oven to complete the curing. During the solidification process, usually, the photopolymer shrinks. This shrinkage induces compression stresses on the previous layers that may cause curling and distortion. These effects can be reduced by adopting clever scan strategies, such as Star Weave or ACES [1].
Stereolithography process.
Acrylates resins were the first photopolymers developed. These resins had high reactivity but produced inaccurate parts due to a significant shrinkage (5–20%) and a tendency to warp and curl. They are low viscosity resins used for visual or anatomic models, with a low accuracy but high-speed manufacturing. On the contrary, epoxy resins present high viscosity and are used for functional parts. They have slow photo speed but allow more accurate, harder, and stronger parts than the acrylate ones.
Furthermore, they exhibit low levels of shrinkage (1–2%), reducing the risk of warp and curl. Most of the commercially available resins are epoxides with acrylate content to combine the advantages of both materials [2]. Moreover, it is possible to suspend ceramic particles in a resin to obtain a ceramic–polymer composite material and improve mechanical and thermal properties.
SLA allows the manufacturing of parts with good accuracy ranges from 25 to 50 μm and smooth surfaces; the typical average surface roughness Ra is lower than 10 μm. However, the metal plating of the internal channels can be critical in terms of adhesion, uniformity of the metal coating, and long-term stability [9], limiting the applicability of SLA in the manufacturing of some RF applications (e.g., waveguide components for space).
FDM, also known as Fused Filament Fabrication (FFF), is a material extrusion process in which material is heated and then dispensed through a nozzle layer by layer. The process was invented and patented by Scott Trump in 1989, who then founded Stratasys Inc. The basic process is based on a robot arm that moves two nozzles where a filament of polymeric material is fused and then deposited layer by layer on a platform (Figure 5). The filament is supplied by an unrolled spool and pressed into the extrusion head. The material is then heated utilizing electrical resistance [1]. Heat is conducted to the liquefier chamber to obtain a liquid state. The material inside the chamber should be maintained in a molten state, with particular care on the temperature since some polymers degrade at high temperatures and could burn [2]. The filament is softened, the molten material gets off through a nozzle of reduced diameter and deposits on the building platform [1].
FDM process.
The nozzle diameter determines both the shape and size of the extruded filament and the minimum feature size that can be printed—the larger the nozzle diameter, the faster the process, but with lower precision. Material extrusion is controlled by the pressure difference between the chamber and the atmosphere. If the pressure is maintained constantly, the material flows at a constant rate with a constant cross section. The same happens if the nozzle speed is kept constant. Any change in the direction of the extrusion head must result in a change in the corresponding material flow rate. Otherwise, a different amount of material will be deposited in that region. Once the material is extruded, gravity and surface tension can cause a change in the shape, while the cooling and drying effects can change the size of the material deposited. This effect can be reduced by minimizing the differential temperature between the chamber and the atmosphere. Bonding with the previous layer and the adjacent region can be ensured by residual heat energy or solvents and wetting agents in the extruded filament [2].
FDM machines can be equipped with one to three nozzles. In this case, two nozzles deposit two different building materials, while the third one is filled with a soluble material for supporting structures. The former case is employed for a low-cost solution for large industrial machines. In this way, the support material is not removed manually but is dissolved in a chemical bath after the fabrication process.
Many thermoplastic materials are available for FDM and FFF processes; the most commonly used for RF applications are listed below [1].
Acrylonitrile Butadiene Styrene (ABS) is a generic thermoplastic material used in injection molding processes. The main properties are hardness, strength, and heat resistance. Companies developed different kinds of ABS, each with specific properties, and many colors are available for FDM printers. ABS exhibits good adhesion so that it can be used with high printing speed.
PolyActic Acid (PLA) is a common biodegradable plastic obtained from corn or sugar cane. It is used for shopping bags and packaging, but it can also be used for biocompatible medical implants. PLA is one of the materials most used for low-cost printers because of its environmental sustainability. However, it is not ideal for high-temperature environments or outdoor applications. Like ABS, different colors and different types of PLA are available. ABS exhibits good adhesion so that it can be used with high printing speed
Polycarbonate (PC) is a polymer with good temperature resistance and high impact resistance. However, PC is very hygroscopic and absorbs moisture from the air. Moreover, it must be used with a heated bed to avoid warping problems. PC is available in black or transparent colors.
Polyamide (PA) is commonly known as Nylon. PA is the most common nylon material used in FDM printers because it has good strength, a low-friction coefficient, and can take up vibrations or impacts. However, it tends to warp more than ABS and PLA. For this reason, the use of a heated building volume is recommended.
ULTEM is a thermoplastic material developed by Saudic and commercialized by Stratasys. It has high heat and chemical resistance, good strength, flexibility, and impact resistance. It is used for aerospace and medical parts.
PEEK is an organic thermoplastic material developed by Victrex. It has high heat and chemical resistance and good strength. It is a biocompatible material used for manufacturing medical, aerospace, and automotive parts.
FDM allows the manufacturing of multi-material parts. The use of a soluble support material offers good design flexibility. The main concern with this technology is that the nozzle dimensions limit the accuracy. The typical resolution of the process is about 100–200 μm. As in the case of SLA, a metal plating of the internal channels is mandatory for waveguide RF application.
The manufacturing of RF components by AM process is particularly challenging for different reasons. The internal channels of the parts have to be designed considering the typical AM post-processing operations, for example, powder removal in SLM or metal plating in SLA and FDM. Moreover, due to the typical accuracy of the AM processes, an electromagnetic robust design approach is mandatory in the case of high RF-performance components.
The simplest strategy consists of splitting the component into two or more parts. This way is usually employed in the case of SLA and FDM to ease electroless metal plating processes. Sometimes this is also used in SLM products, particularly for complex internal structures. The main drawback is misaligning the different parts with consequent leakage effect and, subsequently, higher losses. Moreover, the intrinsic features of AM processes are not employed, making their employment, therefore, less effective and convenient.
The designed part should be realized monolithically to take full advantage of the AM process. To achieve this goal, the electromagnetic design has to be adapted to the process in a so-called “
The following subsections summarize the most common 3D-printed RF components, namely—waveguides, filters, horn antennas, dual-polarization components (OMTs and septum polarizers). Finally, the last subsection describes some examples of the integration of different RF functionalities into a single component.
Waveguide lines are the simplest candidates for evaluating the best achievable accuracy of the AM technologies for microwave components. An important parameter is the realized metal loss per wavelength/cm. Different factors influence these values:
the material conductivity;
the surface roughness;
the dimensional accuracy;
Deep research has been done considering different AM technologies and a frequency range that spans from Ku- to E- band (10–170 GHz). A summary of these works with relevant results is reported in Table 2. As observed, SLM and SLA are the most commonly exploited technologies since they ensure good accuracy and low roughness compared to other AM processes.
Ref. | Frequency (GHz) | Waveguide | Technology | Material | Loss (dB/cm) |
---|---|---|---|---|---|
[10] | 18–26 | WR42 | FDM | Silver plated | 0.11 |
[14] | 18–26 | WR42 | SLM | AlSi10Mg | 0.02 |
[15] | 26–38 | Circular | SLM | AlSi10Mg | 0.01 |
[11] | 75–110 | WR10 | SLM | GRCOP-84 Inconnel 625 AlSi10Mg | 0.141 0.369 0.103 |
[12] | 75–110 | WR10 | SLA | Copper plasted | 0.055 |
[12] | 75–110 | WR10 | SLA (DLP) | Copper plated | 0.063 |
[13] | 75–110 | WR10 | SLA | Copper plated | 0.06 |
[12] | 120–170 | WR6 | SLA (DLP) | Copper plated | 0.26 |
Losses of AM waveguides.
Going more into detail, an interesting example of a waveguide manufactured by FDM is reported in ref. [10]. Firstly, a WR42 waveguide has been printed using ABS. Then, the same printer was customized to deposit a low-cost conductive silver ink. The manufactured waveguide exhibits a measured loss of 0.11 dB/cm for the entire K-band.
As far as the SLA is concerned, mainly the W- and D-band (75–170 GHz) have been considered. In Refs. [11, 12, 13], the copper plating has been applied, showing a W-band loss mean value of 0.06 dB/cm. An interesting comparison between commercial and SLA waveguides is reported in [12], showing that SLA components present a measured loss that is almost double of the commercial ones: 0.06 dB/cm versus 0.03 dB/cm and 0.26 dB/cm and 0.15 dB/cm in W- and D-band, respectively.
As far as the SLM is concerned, the main test refers to the frequency range from 18 to 110 GHz. Aluminum is the material most used. However, few examples have been carried out by using copper and nickel alloys [11]. An interesting comparison is presented in Ref. [11], where the authors compare the losses of a commercial WR42 waveguide with SLM (in aluminum) and a CNC machined realization. As it could be expected, the lowest attenuation occurs in the commercial waveguide (0.004 dB/cm), while the SLM and CNC parts exhibit a loss of about 0.02 dB/cm and 0.03 dB/cm, respectively. Still considering SLM, in Ref. [15], a study on the circular waveguide, operating in Ka-band, is carried out. The measured aluminum prototypes exhibit a loss of 0.01 dB/cm. The co-polar and cross-polar transmission coefficients have been measured to understand the SLM’s feasibility for dual-polarization systems, thanks to the double symmetry shape. The measurements show a spurious cross-polarization term of −25 dB/−40 dB.
A comparison, in W-band, between parts SLM realized with different alloys (aluminum, copper, and nickel alloys) is reported in Ref. [11], showing the better behavior of the aluminum prototype.
Filters are one of the most demanding elements from a manufacturing point of view. The high-standing waves developing inside the components lead to high sensitivity to mechanical tolerances and high susceptibility to multifactor discharge and passive intermodulation products (PIM). For this reason, they are an important benchmark for the AM manufacturing of passive waveguide components [3].
A detailed review of 3D-printed microwave filters has been recently reported [16]. The frequency range considered in literature is mainly 7–22 GHz, although a few examples at higher frequency bands (up to 110 GHz) have also been discussed. Metal, plastic, and ceramic materials have been employed in published works.
FDM has been used in Ref. [17] to manufacture two X-band filters with PLA filament. Each component has been manufactured in two halves with an E-plane cut. The parts are coated with a copper spray to create a conductive surface for the galvanization process with further copper. Despite the accuracy of the printing and painting process, good results have been obtained for both filters. In Ref. [18], a two-pole X-band filter in the WR90 waveguide insert has been manufactured using PC filament. The printed insert has been coated with a nickel spray and then electroplated with copper.
As far as the SLA process is concerned, in Ref. [19], a four-pole quasi-elliptic filter, working at 810 MHz ± 16 MHz, is presented. The filter is composed of two mushroom-shaped resonators. The filter has been realized in two blocks, metalized with silver painting and then electroplated with copper. The same manufacturing approach has been reported in Ref. [20] for a two-pole filter.
Considering SLM realizations, an example of a W-band filter is presented in Ref. [21]. The filter is based on five rectangular resonators coupled using inductive irises. Two stainless steel prototypes have been manufactured, one coated with 5 μm of copper showing different measured electrical conductivity: 1.25 × 107 S/m and 5.96 × 107 S/m, respectively. As far as, the scattering parameters are concerned, the stainless steel filter shows a center frequency shift down by 1.66 GHz and a minimum return loss of 24.41 dB in the passband, while the copper-plated presents a frequency shift of 0.9 GHz with a return loss is 26.56 dB.
Some examples of monolithic realization and comparison between materials and processes are reported in Refs. [9, 22]. In Ref. [9], a comparison for Ku/K filter prototypes realized both in SLM (in aluminum, titanium, and maraging steel alloys) and SLA (copper plated) is shown. The study proves that an AM-oriented architecture provides excellent results in both roughness and mechanical accuracy; at the same time, the metallization of the SLA component is extremely complicated in the inner surfaces of the filter. A similar comparison is reported in Ref. [22], where two prototypes, operating in X-band, have been manufactured—one by SLM with an aluminum-copper alloy, the other by SLA, and then copper electroplated. The most interesting contribution of this paper was the excellent performance, even for the SLA filter.
Ceramic materials have also been used for the 3D printing of waveguide filters with two different approaches. The first method consists of manufacturing ceramic components, subsequently, metal plating. For example, in Ref. [23], a ceramic-filled resin has manufactured hemispherical resonator waveguide filters. Four Ka-band filters have been manufactured, metal plated, and measured with good RF results. The electroless plating process consists of a deposition of palladium, nickel, and copper, followed by a passivation layer of silver. In the second approach, the materials’ dielectric properties are exploited to reduce the overall envelope.
For instance, Ref. [24] manufactured a dielectric perturber for a third-order filter with a bandpass shifting from 10 to 12 GHz. The filter was manufactured using copper with a standard manufacturing process, while the perturber was manufactured by SLA using zirconia (εr = 32, tan δ =0.002). In Ref. [25], the authors used alumina (εr = 9.1, tan δ =0.0001) to manufacture the dielectric resonators in a sixth-order quasi-elliptic bandpass filter. The housing has been 3D printing in two blocks using plastic material and then metal plated. An important aspect of this work is that no supports or glue are needed. The dielectric resonators are placed in the middle of their cavities to maximize their Q-factor.
Waveguide horns are commonly used in high-performance antenna feed chains in SATCOM applications. This class of antennas, indeed, can provide excellent performances in terms of gain, bandwidth, return loss, and cross-polarization [26]. Therefore, much effort has been made to study the 3D printing of waveguide horns. Most of the works are from X-band to K-band (7–27 GHz), although some examples can be found up to 300 GHz [27].
As far as the SLA process is concerned, three works are particularly interesting. In the first one [28], a 2–12 GHz double-ridge horn antenna is presented. The internal surface has been coated with a layer of silver ink with a conductivity of 4 × 105 S/m.
In Ref. [29], a comparison between SLA and standard process (lathe in aluminum) has been considered to realize a spline horn operating in the Ku-band. Both prototypes exhibit good agreement between the simulated and measured value of the co-polar pattern, while worse performances in terms of losses and cross-polarization level can be noticed in the AM one. The latter is mainly related to the higher surface roughness, which has been estimated equal to 1.79 μm. In Ref. [30], a metal-plated 240 GHz choke horn antenna has been reported. The antenna has been designed to obtain 12 dBi gain from 200 to 280 GHz. The measured radiation pattern is in good agreement with the simulation.
Considering the SLM process, six works are particularly significant [26, 27, 31, 32, 33, 34]. The first four refer to the manufacturing of classical architecture to understand the applicability of the SLM technique. The last two show some interesting work in the exploration of AM features.
In Ref. [26], the manufacturing of three smooth-wall horns, working in Ku-, Ku/K-band, and Q/V-band, is presented. The smooth-wall design allows the alignment of the building direction with the propagation axis, ensuring a good cross-sectional symmetry and low cross-polarization level. The horns have been manufactured using aluminum alloy. All the antennas exhibit good agreements between measured and simulated values. In particular, return-loss higher than 33 dB, cross-polarization lower than −28 dB, and peak gain of 25 dBi have been obtained. Moreover, a 3D scan of the outer section of the horns reveals an accuracy between 0.06–0.08 mm.
In Ref. [27], the manufacturing of 300 GHz corrugated horn antennas. Four prototypes have been manufactured using a tin-bronze alloy with an electrical conductivity of 7 MS/m. The dimensions of the prototypes differ by 5% with respect to the theoretical model. Nevertheless, the measurement results have observed good symmetry between E-plane and H-plane. However, the antenna efficiency is relatively low due to the conductivity of the material used in manufacturing. To improve the RF performances, all the prototypes have been plated with 3 μm of gold (conductivity of 44 MS/m).
In Ref. [31], an X/Ku-band (8–18 GHz) chocked horn SLM manufactured in the aluminum alloy is presented. To investigate process manufacturing accuracy and repeatability, 15 prototypes have been manufactured, showing an overall accuracy of 0.1–0.3 mm and a roughness Ra of 3.5 μm. The feeding gap and the radiating aperture have been milled after the manufacturing process, with an accuracy of ±0.02 mm.
In Ref. [32], a Ku-band spline horns SLM manufactured in aluminum and titanium alloys are presented. The manufactured components’ roughness is about 16 μm for both the materials, but it reduces to 3.4 μm for the Al one after the post-processing. The radiation pattern of the two prototypes is in good correlation with the simulation, but the titanium horn exhibits a worse cross-polarization level due to a slight ellipticity of the aperture. In the same paper, the manufacturing of a cluster of four spline horns is presented, showing a mass reduction of 30% with respect to classical manufacturing.
In Ref. [33], a perforated X-band (8-12GHz) horn antenna has been presented to lighten the component. The holes’ dimensions are lower than 1/15th of the wavelength at 12 GHz. Not considering the SMA connector, the antenna weight is just 8 g. The good agreement between simulated and measured RF results demonstrates an efficient method to reduce weight without affecting performance. A similar idea has been applied in Ref. [34] for a steel pyramidal horn antenna.
FDM process has been used to manufacture waveguide horns up to 15 GHz. In Ref. [35], the authors presented the first additively manufactured dielectric-loaded profiled conical horn antenna in the frequency range from 9 to 15 GHz. The component has been manufactured using polylactic acid (PLA) with relative permittivity
Orthomode transducers (OMT) and septum polarizers are classical components used in dual-polarization antenna feed-chain systems. Separate the two linear polarization of the incoming signal routing them to two different rectangular waveguides [37]. Septum polarizers are employed to route the two circular polarizations in the common waveguide (typically circular or square) to the TE10 modes in two different rectangular waveguides and vice versa. The most important parameters are insertion loss, isolation between the rectangular ports, and cross-polarization in transmission [38].
Starting with SLM realizations, a C-band septum polarizer operating in the frequency band 3.6–4.4 GHz is shown in Ref. [39]. The component has been manufactured of Scalmalloy® with a measured dimensional error of 0.6 mm. The return loss is better than 25 dB and the isolation greater than 23 dB, while the deviation between measured and simulated axial ratio is about 1 dB mainly caused by a not perfectly circular common section. Moving up in frequency, in Ref. [40], two single sidearm OMTs are presented. The components are designed in the frequency band 10–15 GHz. The two OMTs have been compared with a realization by conventional manufacturing techniques. In this work, the OMT geometry realized was not figured out for AM process.
Nevertheless, both components exhibit RF performances in good accordance with the traditionally machined components. An example of an OMT realization of an AM-oriented geometry is reported in Ref. [41], where the RF measured performances well match the simulated one. Isolation over 50 dB and return loss better than 20 dB have been achieved in the operative frequency range. Considering the Ka-band, an asymmetric side-coupling OMT has been presented in Ref. [37]. The OMT geometry has been conceived to be AM-oriented by using a multi-slope junction. The manufactured prototype exhibits good accordance with measured and simulated RF results. In particular, the insertion loss is lower than 0.25 dB, and the return loss is better than 27 dB. Then, in Ref. [42], the OMT design has been integrated with a twist in the coupled arm. The measured results are in good agreement with the simulation. In particular, the return loss for both polarizations is better than 27 dB, and the insertion loss is lower than 0.15 dB and 0.2 dB for the inline and coupled channels, respectively, which corresponds to an equivalent resistivity of 16 μΩcm. The prototype has been controlled by a computer tomography scanner showing a mechanical accuracy in the range 0.02–0.04 mm.
By considering the SLA process, in Ref. [43], a V-Band (50–75 GHz) OMT manufactured is presented. The OMT has been metal plated with a process developed by SWISSto12. This consists of copper plating and passivation using a thin layer of gold or silver. The novelty of this OMT is the multi-step conical post on the turnstile junction. This permits easy printing by SLA.
Septum polarizers have also been realized. In Ref. [38], a Ka-band prototype realized in SLM is presented. Two 45° bends have been integrated to accommodate standard WR28 flanges. The device has been designed to align the propagation axis with the building direction to guarantee the best cross-sectional symmetry. Thanks to this choice, the measured cross-polarization level is better than 30 dB and the isolation better than 28 dB.
In Ref. [44], a broadband septum polarizer has been manufactured in SLA and copper plated. The paper shows a novel design with a triangular common port design that allows a higher bandwidth than circular or square waveguide polarizers. The polarizer has been firstly designed in W-band and manufactured with a standard machining process. Then, the design was scaled in K-band and manufactured with an SLA printer. The prototype has been coated with conductive ink and then subjected to galvanic copper plating. Both the components exhibit isolation greater than 17 dB and a return loss better than 14 dB over 37.8% of bandwidth. Moreover, the insertion loss is lower than 0.4 dB for the 3D-printed prototype.
As reported in Ref. [40], one of the main advantages of the AM technologies is the free shape feature that can lead to an additional degree of freedom in the design of RF components, for instance, the integration of different functionalities (electromagnetic, mechanical, and thermal) in a monolithic component [45].
The previous survey has shown the evolution of the employment of AM process in the realization of guided microwave components, improving the quality of the realized parts, but this potentiality of AM is still not fully explored. A survey of some interesting and successful examples of this initial work is reported.
In Ref. [46], a mono-block Ku-band front-end, a combination of two integrated sub-assembly, a diplexer, and a 2 × 2 horn antenna array, has been presented. The components have been manufactured using the SLA technology and metalized with copper and tin with an electrolytic process. Measurement results agree with the simulated performances with a frequency shift of 150 MHz that can be related to the thickness of the metal deposition, not considered during the design.
In Ref. [38], a Ka-band feed horn integrated with a septum polarizer, manufactured with the SLM process using aluminum alloy. The septum polarizer, presented in the previous section, has been integrated with a smooth-wall horn. The measured values of return loss, cross-polarization, and isolation are comparable with the results of the septum polarizer alone, namely a return loss better than 25 dB, an isolation between the rectangular waveguide higher than 27 dB, and a cross-polarization better than 28 dB. The measurement results are comparable with those obtained with a standard manufacturing process in a split block layout.
In Ref. [47], an interesting study of an integrated feed system working in the frequency band in X-band (from 7.2 to 8.2 GHz) is presented. The device is composed of a circular horn antenna and an OMT. The authors compare the 3D printing of the feed system as a mono-block with the manufacturing in two symmetric pieces. Both the components have been printed using SLA and copper plated with a three-step metallization process. Although the two-pieces prototype has the advantages of an easier manufacturing process and the thickest metal coating, the monolithic component exhibits better RF performances.
A similar component has been developed and presented in Ref. [48]. The integrated Ku-band feed chain consists of a spline horn and an OMT and has been manufactured using the SLM process. The RF performances are compared with those obtained with standard machining processes. An X-band feed chain has been presented in the same paper. The developed component consists of a spline horn and a compact E-plane waveguide coupler. The feed chain is three times lighter than a comparable, conventional manufactured component. Perfect agreement with the simulated performance has also been obtained with these components.
In Ref. [49], an entire Ku-band feed cluster manufactured by SLM technology, suitable for SFB scenarios, is presented. The feed cluster operates in Tx- and Rx- frequency bands. The component consists of 18 feed chains composed of a horn, a transition, a single sidearm OMT and waveguide routing to provide interfaces for the measurement. The scattering parameters have been measured for both the frequency bands showing a return loss better than 19.5 dB and the isolation below −50 dB. The feed cluster exhibits excellent agreement between simulated and measured values of the pattern at 11.30 and 14–25 GHz.
In Ref. [50], a high gain K-band feed chain has been manufactured by SLM using aluminum alloy. The measurement results show return loss and port-to-port isolation better than 23 dB. The axial ratio is between 0.1 and 0.5 dB, while the cross-polar discrimination (XPD) is better than 30 dB. The measurements show good manufacturing accuracy with good rotational symmetry.
In Ref. [51], a passive front end for satellite communication, manufactured by SLM technology using aluminum alloy, is discussed. The component comprises four conical horns, four rectangular-to-circular waveguide tapers, two-stage 1 × 4 power dividers, and a WR-42 waveguide interface. The scattering parameters have been measured in the frequency band 19–21 GHz. Discrepancies between simulated and measured RF performances have been observed. They are mainly due to the dimensional tolerance and surface roughness of the fabrication process.
In Ref. [52], a leaky-wave antenna integrated with an OMT operating in K-band is presented. The antenna consists of a triple-ridge square waveguide perforated on its top wall with crossed slots. The component has been printed by SLA with the propagation axis aligned with the building direction to enhance the good symmetry of the antenna. Then, copper plating was applied. The measurements prove the high precision of the process. In particular, the 3D-printed prototype exhibits a return loss better than 16 dB, port isolation better than 40 dB, and a cross-polarization level below −35 dB.
A K/Ka-band dual-circular polarization antenna feed chain has been reported in Ref. [53]. The device has been designed with an AM-oriented approach. A prototype has been manufactured by SLM with aluminum alloy. The chain is composed of a dual-band orthomode junction (OMJ) which symmetrically extracts the K-band signal while the Ka-band one propagates inline to a series of circular steps connected to a Ka-band septum polarizer. Each of the four arms, where the K-band signal propagates, is integrated with a low-pass filter to isolate the channels from the Ka-band signals. Subsequently, these four arms are recombined in a turnstile junction connected to a K-band septum polarizer. The measured performances of the prototype show very satisfactory performance with values typically required for SATCOM application (i.e., isolation between the bands better than 50 dB, return loss, and isolation between the two polarizations of the same bands than 20 dB).
Finally, a complex RF component is presented in Ref. [54], where a Ku/K-band filter is integrated with an H-plane bend and 90o twist. The conceived geometry makes AM process the only feasible manufacturing technique. The design shows a 70% weight/volume reduction compared to a solution obtained assembling three different parts realized by standard machining. The idea has been stressed by considering the realization of three prototypes with different bend radii to make the device as smaller as possible. Good agreement between measured and simulated RF performance has been achieved even for the prototypes with a bend radius of 30 mm. The three components exhibit a rejection better than 60 dB and an insertion loss better than 0.2 dB. The return loss is better than 25 dB for the prototype with a bend radius of 40 mm, while it is better than 20 dB for the other prototypes.
After a brief introduction on the main AM processes, this chapter has summarized the huge work realized by the microwave community on the applicability of AM process on the manufacturing of RF components. For reader convenience, Table 3 reports the obtained results in terms of accuracy in the relevant frequency range. The most used technology is SLM since it allows the manufacturing of all metal parts. SLA exhibits the best manufacturing accuracy and the largest bandwidth. FDM is used for cheaper components in a low-frequency range, due to the worst manufacturing accuracy. The study/research on AM for microwave components manufacturing is still ongoing, many thematic special sessions are organized within the main conferences in the microwave area. Large margins of improvement are expected in the near future from the manufacturing and design points of view in particular from the integration of different functions in the same realized part.
Technology | Accuracy (μm) | Main frequency range (GHz) |
---|---|---|
SLM | <100 | 10–50 |
SLA | <50 | 10–90 |
FDM | 100–200 | 2–20 |
Accuracy and exploited frequency range of the three AM processes reported in this chapter: SLM, SLA, FDM.
The authors declare no conflict of interest.
These Terms and Conditions outline the rules and regulations pertaining to the use of IntechOpen’s website www.intechopen.com and all the subdomains owned by IntechOpen located at 5 Princes Gate Court, London, SW7 2QJ, United Kingdom.
',metaTitle:"Terms and Conditions",metaDescription:"These terms and conditions outline the rules and regulations for the use of IntechOpen Website at https://intechopen.com and all its subdomains owned by Intech Limited located at 7th floor, 10 Lower Thames Street, London, EC3R 6AF, UK.",metaKeywords:null,canonicalURL:"/page/terms-and-conditions",contentRaw:'[{"type":"htmlEditorComponent","content":"By accessing the website at www.intechopen.com you are agreeing to be bound by these Terms of Service, all applicable laws and regulations, and agree that you are responsible for compliance with any applicable local laws. Use and/or access to this site is based on full agreement and compliance of these Terms. All materials contained on this website are protected by applicable copyright and trademark laws.
\\n\\nThe following terminology applies to these Terms and Conditions, Privacy Statement, Disclaimer Notice, and any or all Agreements:
\\n\\n“Client”, “Customer”, “You” and “Your” refers to you, the person accessing this website and accepting the Company’s Terms and Conditions;
\\n\\n“The Company”, “Ourselves”, “We”, “Our” and “Us”, refers to our Company, IntechOpen;
\\n\\n“Party”, “Parties”, or “Us”, refers to both the Client and ourselves, or either the Client or ourselves.
\\n\\nAll Terms refer to the offer, acceptance, and consideration of payment necessary to provide assistance to the Client in the most appropriate manner, whether by formal meetings of a fixed duration, or by any other agreed means, for the express purpose of meeting the Client’s needs in respect of provision of the Company’s stated services/products, and in accordance with, and subject to, the prevailing laws of the United Kingdom.
\\n\\nAny use of the above terminology, or other words in the singular, plural, capitalization and/or he/she or they, are taken as interchangeable.
\\n\\nUnless otherwise stated, IntechOpen and/or its licensors own the intellectual property rights for all materials on www.intechopen.com. All intellectual property rights are reserved. You may view, download, share, link and print pages from www.intechopen.com for your own personal use, subject to the restrictions set out in these Terms and Conditions.
\\n\\nWe employ the use of cookies. By using the IntechOpen website you consent to the use of cookies in accordance with IntechOpen’s Privacy Policy. Most modern day interactive websites use cookies to enable the retrieval of user details for each visit. On our site, cookies are predominantly used to enable functionality and ease of use for those visiting the site.
\\n\\nIn no circumstances shall IntechOpen or its suppliers be liable for any damages (including, without limitation, damages for loss of data or profit, or due to business interruption) arising out of the use, or inability to use, the materials on IntechOpen's websites, even if IntechOpen or an IntechOpen authorized representative has been notified orally or in writing of the possibility of such damage. Some jurisdictions do not allow limitations on implied warranties, or limitations of liability for consequential or incidental damages; consequently, these limitations may not apply to you.
\\n\\nIntechopen.com website content and services are provided on an "AS IS" and an "AS AVAILABLE" basis. Material appearing on www.intechopen.com could include minor technical, typographical, or photographic errors. IntechOpen may make changes to any material contained on its website at any time without notice.
\\n\\nIntechOpen has no formal affiliation to any external sites that link to www.intechopen.com, unless otherwise specifically stated. As such, it is not responsible for content that appears on any such sites. The inclusion of any link to IntechOpen does not imply endorsement by IntechOpen. Use of any such linked website is done solely at the user's own discretion.
\\n\\nWe reserve the right of ownership over our entire website www.intechopen.com, and all contents. By using our services, you agree to remove all links to our website immediately upon request. We also reserve the right to amend these Terms and Conditions and our linking policy at any time. By continuing to link to our website, you agree to be bound to, and abide by, these linking Terms and Conditions.
\\n\\nIf you find any link on our website, or any linked website, objectionable for any reason, please Contact Us. We will consider all requests to remove links but will have no obligation to do so.
\\n\\nWithout prior approval and express written permission, you may not create frames around our web pages or use other techniques that alter in any way the visual presentation or appearance of our website.
\\n\\nIntechOpen may revise its Terms of Service for its website at any time without notice. By using this website, you are agreeing to be bound by the current version of all Terms at the time of use.
\\n\\nThese Terms and Conditions are governed by and construed in accordance with the laws of the United Kingdom and you irrevocably submit to the exclusive jurisdiction of the courts in London, United Kingdom.
\\n\\nCroatian version of Terms and Conditions available here
\\n"}]'},components:[{type:"htmlEditorComponent",content:'By accessing the website at www.intechopen.com you are agreeing to be bound by these Terms of Service, all applicable laws and regulations, and agree that you are responsible for compliance with any applicable local laws. Use and/or access to this site is based on full agreement and compliance of these Terms. All materials contained on this website are protected by applicable copyright and trademark laws.
\n\nThe following terminology applies to these Terms and Conditions, Privacy Statement, Disclaimer Notice, and any or all Agreements:
\n\n“Client”, “Customer”, “You” and “Your” refers to you, the person accessing this website and accepting the Company’s Terms and Conditions;
\n\n“The Company”, “Ourselves”, “We”, “Our” and “Us”, refers to our Company, IntechOpen;
\n\n“Party”, “Parties”, or “Us”, refers to both the Client and ourselves, or either the Client or ourselves.
\n\nAll Terms refer to the offer, acceptance, and consideration of payment necessary to provide assistance to the Client in the most appropriate manner, whether by formal meetings of a fixed duration, or by any other agreed means, for the express purpose of meeting the Client’s needs in respect of provision of the Company’s stated services/products, and in accordance with, and subject to, the prevailing laws of the United Kingdom.
\n\nAny use of the above terminology, or other words in the singular, plural, capitalization and/or he/she or they, are taken as interchangeable.
\n\nUnless otherwise stated, IntechOpen and/or its licensors own the intellectual property rights for all materials on www.intechopen.com. All intellectual property rights are reserved. You may view, download, share, link and print pages from www.intechopen.com for your own personal use, subject to the restrictions set out in these Terms and Conditions.
\n\nWe employ the use of cookies. By using the IntechOpen website you consent to the use of cookies in accordance with IntechOpen’s Privacy Policy. Most modern day interactive websites use cookies to enable the retrieval of user details for each visit. On our site, cookies are predominantly used to enable functionality and ease of use for those visiting the site.
\n\nIn no circumstances shall IntechOpen or its suppliers be liable for any damages (including, without limitation, damages for loss of data or profit, or due to business interruption) arising out of the use, or inability to use, the materials on IntechOpen's websites, even if IntechOpen or an IntechOpen authorized representative has been notified orally or in writing of the possibility of such damage. Some jurisdictions do not allow limitations on implied warranties, or limitations of liability for consequential or incidental damages; consequently, these limitations may not apply to you.
\n\nIntechopen.com website content and services are provided on an "AS IS" and an "AS AVAILABLE" basis. Material appearing on www.intechopen.com could include minor technical, typographical, or photographic errors. IntechOpen may make changes to any material contained on its website at any time without notice.
\n\nIntechOpen has no formal affiliation to any external sites that link to www.intechopen.com, unless otherwise specifically stated. As such, it is not responsible for content that appears on any such sites. The inclusion of any link to IntechOpen does not imply endorsement by IntechOpen. Use of any such linked website is done solely at the user's own discretion.
\n\nWe reserve the right of ownership over our entire website www.intechopen.com, and all contents. By using our services, you agree to remove all links to our website immediately upon request. We also reserve the right to amend these Terms and Conditions and our linking policy at any time. By continuing to link to our website, you agree to be bound to, and abide by, these linking Terms and Conditions.
\n\nIf you find any link on our website, or any linked website, objectionable for any reason, please Contact Us. We will consider all requests to remove links but will have no obligation to do so.
\n\nWithout prior approval and express written permission, you may not create frames around our web pages or use other techniques that alter in any way the visual presentation or appearance of our website.
\n\nIntechOpen may revise its Terms of Service for its website at any time without notice. By using this website, you are agreeing to be bound by the current version of all Terms at the time of use.
\n\nThese Terms and Conditions are governed by and construed in accordance with the laws of the United Kingdom and you irrevocably submit to the exclusive jurisdiction of the courts in London, United Kingdom.
\n\nCroatian version of Terms and Conditions available here
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2459},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"14"},books:[{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11467",title:"Bismuth-Based Nanostructured Materials",subtitle:null,isOpenForSubmission:!0,hash:"951c872d9d90e13cfe7d97c0af91845e",slug:null,bookSignature:"Dr. William Wilson Anku",coverURL:"https://cdn.intechopen.com/books/images_new/11467.jpg",editedByType:null,editors:[{id:"196465",title:"Dr.",name:"William Wilson",surname:"Anku",slug:"william-wilson-anku",fullName:"William Wilson Anku"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11483",title:"Magnetic Materials - Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"9df995499c9e30ad3bc64368cde49ef4",slug:null,bookSignature:"Prof. Dipti Ranjan Sahu",coverURL:"https://cdn.intechopen.com/books/images_new/11483.jpg",editedByType:null,editors:[{id:"251855",title:"Prof.",name:"Dipti Ranjan",surname:"Sahu",slug:"dipti-ranjan-sahu",fullName:"Dipti Ranjan Sahu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11485",title:"Wetting and Wettability - Fundamental and Applied Aspects",subtitle:null,isOpenForSubmission:!0,hash:"54b954378e0840f2317b2e94e6c467d6",slug:null,bookSignature:"Dr. Volodymyr Shatokha",coverURL:"https://cdn.intechopen.com/books/images_new/11485.jpg",editedByType:null,editors:[{id:"111000",title:"Dr.",name:"Volodymyr",surname:"Shatokha",slug:"volodymyr-shatokha",fullName:"Volodymyr Shatokha"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11758",title:"Glass-Ceramics - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"e03ff7760e0aaea457f259ab63153846",slug:null,bookSignature:" Uday M. Basheer",coverURL:"https://cdn.intechopen.com/books/images_new/11758.jpg",editedByType:null,editors:[{id:"182041",title:null,name:"Uday",surname:"Basheer",slug:"uday-basheer",fullName:"Uday Basheer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11759",title:"Copper - From the Mineral to the Final Application",subtitle:null,isOpenForSubmission:!0,hash:"afea7aef1cb09fc3a1a5d619152d02a6",slug:null,bookSignature:"Dr. Daniel Fernández González and Dr. Luis Felipe Verdeja González",coverURL:"https://cdn.intechopen.com/books/images_new/11759.jpg",editedByType:null,editors:[{id:"211395",title:"Dr.",name:"Daniel",surname:"Fernández González",slug:"daniel-fernandez-gonzalez",fullName:"Daniel Fernández González"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11760",title:"Applications and Use of Diamond",subtitle:null,isOpenForSubmission:!0,hash:"2edcf9a24450d8655e756e1080defe32",slug:null,bookSignature:"Mr. Evgeniy Lipatov",coverURL:"https://cdn.intechopen.com/books/images_new/11760.jpg",editedByType:null,editors:[{id:"21254",title:"Mr.",name:"Evgeniy",surname:"Lipatov",slug:"evgeniy-lipatov",fullName:"Evgeniy Lipatov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11761",title:"New Advances in Powder Technology",subtitle:null,isOpenForSubmission:!0,hash:"bd8063ae11e4fdd8626f5a095012c628",slug:null,bookSignature:"Dr. Shashanka Rajendrachari and Dr. Baris Avar",coverURL:"https://cdn.intechopen.com/books/images_new/11761.jpg",editedByType:null,editors:[{id:"246025",title:"Dr.",name:"Shashanka",surname:"Rajendrachari",slug:"shashanka-rajendrachari",fullName:"Shashanka Rajendrachari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11762",title:"Characteristics and Applications of Boron",subtitle:null,isOpenForSubmission:!0,hash:"611776f7f3cc9951a8956d2e3d535a8e",slug:null,bookSignature:"Associate Prof. Chatchawal Wongchoosuk",coverURL:"https://cdn.intechopen.com/books/images_new/11762.jpg",editedByType:null,editors:[{id:"34521",title:"Associate Prof.",name:"Chatchawal",surname:"Wongchoosuk",slug:"chatchawal-wongchoosuk",fullName:"Chatchawal Wongchoosuk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11764",title:"Electrodeposition - Modern Methods and Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"dd7b08197c3dcfef54b5e636795a67f7",slug:null,bookSignature:"Prof. Keith J. Stine",coverURL:"https://cdn.intechopen.com/books/images_new/11764.jpg",editedByType:null,editors:[{id:"192643",title:"Prof.",name:"Keith J.",surname:"Stine",slug:"keith-j.-stine",fullName:"Keith J. Stine"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11765",title:"Pyrometallurgy - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"b0ed96047d5aadd003e16ab2884bb2f6",slug:null,bookSignature:"Dr. Swamini Chopra",coverURL:"https://cdn.intechopen.com/books/images_new/11765.jpg",editedByType:null,editors:[{id:"325912",title:"Dr.",name:"Swamini",surname:"Chopra",slug:"swamini-chopra",fullName:"Swamini Chopra"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11766",title:"Cast Iron - Production, Properties, Characterization, and Casting Defects Analysis",subtitle:null,isOpenForSubmission:!0,hash:"821766a37d38da743321864be6b2334a",slug:null,bookSignature:"Prof. Thoguluva Raghavan Vijayaram",coverURL:"https://cdn.intechopen.com/books/images_new/11766.jpg",editedByType:null,editors:[{id:"139338",title:"Prof.",name:"Thoguluva",surname:"Vijayaram",slug:"thoguluva-vijayaram",fullName:"Thoguluva Vijayaram"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:34},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"998",title:"Oral Implantology",slug:"oral-implantology",parent:{id:"174",title:"Dentistry",slug:"dentistry"},numberOfBooks:5,numberOfSeries:0,numberOfAuthorsAndEditors:179,numberOfWosCitations:307,numberOfCrossrefCitations:147,numberOfDimensionsCitations:385,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"998",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7056",title:"An Update of Dental Implantology and Biomaterial",subtitle:null,isOpenForSubmission:!1,hash:"fab27916553ca6427ec1be823a6d81f2",slug:"an-update-of-dental-implantology-and-biomaterial",bookSignature:"Mazen Ahmad Almasri",coverURL:"https://cdn.intechopen.com/books/images_new/7056.jpg",editedByType:"Edited by",editors:[{id:"150413",title:"Dr.",name:"Mazen Ahmad",middleName:null,surname:"Almasri",slug:"mazen-ahmad-almasri",fullName:"Mazen Ahmad Almasri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5185",title:"Dental Implantology and Biomaterial",subtitle:null,isOpenForSubmission:!1,hash:"9b6bdd65b23207e491dd8a3c1edc41dc",slug:"dental-implantology-and-biomaterial",bookSignature:"Mazen Ahmad Jawad Amin Almasri",coverURL:"https://cdn.intechopen.com/books/images_new/5185.jpg",editedByType:"Edited by",editors:[{id:"150413",title:"Dr.",name:"Mazen Ahmad",middleName:null,surname:"Almasri",slug:"mazen-ahmad-almasri",fullName:"Mazen Ahmad Almasri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4548",title:"Current Concepts in Dental Implantology",subtitle:null,isOpenForSubmission:!1,hash:"f375fecfc0c281e814ac8bcec7faf6f1",slug:"current-concepts-in-dental-implantology",bookSignature:"Ilser Turkyilmaz",coverURL:"https://cdn.intechopen.com/books/images_new/4548.jpg",editedByType:"Edited by",editors:[{id:"171984",title:"Associate Prof.",name:"Ilser",middleName:null,surname:"Turkyilmaz",slug:"ilser-turkyilmaz",fullName:"Ilser Turkyilmaz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"451",title:"Implant Dentistry",subtitle:"The Most Promising Discipline of Dentistry",isOpenForSubmission:!1,hash:"af264376cc47bfd447ff2a0c2cf1bdc7",slug:"implant-dentistry-the-most-promising-discipline-of-dentistry",bookSignature:"Ilser Turkyilmaz",coverURL:"https://cdn.intechopen.com/books/images_new/451.jpg",editedByType:"Edited by",editors:[{id:"26024",title:"Prof.",name:"Ilser",middleName:null,surname:"Turkyilmaz",slug:"ilser-turkyilmaz",fullName:"Ilser Turkyilmaz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"179",title:"Implant Dentistry",subtitle:"A Rapidly Evolving Practice",isOpenForSubmission:!1,hash:"a02b0b58e53fa2f96f1ca450e8ec3ad3",slug:"implant-dentistry-a-rapidly-evolving-practice",bookSignature:"Ilser Turkyilmaz",coverURL:"https://cdn.intechopen.com/books/images_new/179.jpg",editedByType:"Edited by",editors:[{id:"26024",title:"Prof.",name:"Ilser",middleName:null,surname:"Turkyilmaz",slug:"ilser-turkyilmaz",fullName:"Ilser Turkyilmaz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:5,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"18416",doi:"10.5772/16475",title:"Dental Implant Surface Enhancement and Osseointegration",slug:"dental-implant-surface-enhancement-and-osseointegration",totalDownloads:18676,totalCrossrefCites:38,totalDimensionsCites:99,abstract:null,book:{id:"179",slug:"implant-dentistry-a-rapidly-evolving-practice",title:"Implant Dentistry",fullTitle:"Implant Dentistry - A Rapidly Evolving Practice"},signatures:"S.Anil, P.S. Anand, H. Alghamdi and J.A. Jansen",authors:[{id:"25232",title:"Prof.",name:"Sukumaran",middleName:null,surname:"Anil",slug:"sukumaran-anil",fullName:"Sukumaran Anil"},{id:"28373",title:"Prof.",name:"John",middleName:null,surname:"Jansen",slug:"john-jansen",fullName:"John Jansen"},{id:"77058",title:"Dr.",name:"Seham",middleName:null,surname:"Alyafei",slug:"seham-alyafei",fullName:"Seham Alyafei"},{id:"82073",title:"Dr.",name:"Subhash",middleName:null,surname:"Narayanan",slug:"subhash-narayanan",fullName:"Subhash Narayanan"}]},{id:"18415",doi:"10.5772/16936",title:"Osseointegration and Bioscience of Implant Surfaces - Current Concepts at Bone-Implant Interface",slug:"osseointegration-and-bioscience-of-implant-surfaces-current-concepts-at-bone-implant-interface",totalDownloads:12502,totalCrossrefCites:16,totalDimensionsCites:42,abstract:null,book:{id:"179",slug:"implant-dentistry-a-rapidly-evolving-practice",title:"Implant Dentistry",fullTitle:"Implant Dentistry - A Rapidly Evolving Practice"},signatures:"Mustafa Ramazanoglu and Yoshiki Oshida",authors:[{id:"26726",title:"Prof.",name:"Yoshiki",middleName:null,surname:"Oshida",slug:"yoshiki-oshida",fullName:"Yoshiki Oshida"},{id:"29841",title:"Prof.",name:"Mustafa",middleName:null,surname:"Ramazanoglu",slug:"mustafa-ramazanoglu",fullName:"Mustafa Ramazanoglu"}]},{id:"18426",doi:"10.5772/18746",title:"Factors Affecting the Success of Dental Implants",slug:"factors-affecting-the-success-of-dental-implants",totalDownloads:17474,totalCrossrefCites:9,totalDimensionsCites:35,abstract:null,book:{id:"179",slug:"implant-dentistry-a-rapidly-evolving-practice",title:"Implant Dentistry",fullTitle:"Implant Dentistry - A Rapidly Evolving Practice"},signatures:"Carlos Nelson Elias",authors:[{id:"32438",title:"Prof.",name:"Carlos",middleName:null,surname:"Elias",slug:"carlos-elias",fullName:"Carlos Elias"}]},{id:"18414",doi:"10.5772/17512",title:"Dental Implant Surfaces – Physicochemical Properties, Biological Performance, and Trends",slug:"dental-implant-surfaces-physicochemical-properties-biological-performance-and-trends",totalDownloads:13080,totalCrossrefCites:5,totalDimensionsCites:30,abstract:null,book:{id:"179",slug:"implant-dentistry-a-rapidly-evolving-practice",title:"Implant Dentistry",fullTitle:"Implant Dentistry - A Rapidly Evolving Practice"},signatures:"Ahmed M. Ballo, Omar Omar, Wei Xia and Anders Palmquist",authors:[{id:"19042",title:"Dr.",name:"Wei",middleName:null,surname:"Xia",slug:"wei-xia",fullName:"Wei Xia"},{id:"28549",title:"Dr.",name:"Ahmed",middleName:"M.",surname:"Ballo",slug:"ahmed-ballo",fullName:"Ahmed Ballo"},{id:"81291",title:"Dr.",name:"Omar",middleName:null,surname:"Omar",slug:"omar-omar",fullName:"Omar Omar"},{id:"81292",title:"Dr.",name:"Anders",middleName:null,surname:"Palmquist",slug:"anders-palmquist",fullName:"Anders Palmquist"}]},{id:"18417",doi:"10.5772/18309",title:"Implant Stability - Measuring Devices and Randomized Clinical Trial for ISQ Value Change Pattern Measured from Two Different Directions by Magnetic RFA",slug:"implant-stability-measuring-devices-and-randomized-clinical-trial-for-isq-value-change-pattern-measu",totalDownloads:13176,totalCrossrefCites:8,totalDimensionsCites:19,abstract:null,book:{id:"179",slug:"implant-dentistry-a-rapidly-evolving-practice",title:"Implant Dentistry",fullTitle:"Implant Dentistry - A Rapidly Evolving Practice"},signatures:"Jong-Chul Park, Jung-Woo Lee, Soung-Min Kim and Jong-Ho Lee",authors:[{id:"31057",title:"Prof.",name:"Jong-Ho",middleName:null,surname:"Lee",slug:"jong-ho-lee",fullName:"Jong-Ho Lee"},{id:"48351",title:"Prof.",name:"Jong-Chul",middleName:null,surname:"Park",slug:"jong-chul-park",fullName:"Jong-Chul Park"},{id:"83313",title:"Dr.",name:"JungWoo",middleName:null,surname:"Lee",slug:"jungwoo-lee",fullName:"JungWoo Lee"}]}],mostDownloadedChaptersLast30Days:[{id:"18432",title:"Clinical Complications of Dental Implants",slug:"clinical-complications-of-dental-implants",totalDownloads:56478,totalCrossrefCites:2,totalDimensionsCites:5,abstract:null,book:{id:"179",slug:"implant-dentistry-a-rapidly-evolving-practice",title:"Implant Dentistry",fullTitle:"Implant Dentistry - A Rapidly Evolving Practice"},signatures:"Su-Gwan Kim",authors:[{id:"27797",title:"Prof.",name:"Su-Gwan",middleName:null,surname:"Kim",slug:"su-gwan-kim",fullName:"Su-Gwan Kim"}]},{id:"47927",title:"Miniscrew Applications in Orthodontics",slug:"miniscrew-applications-in-orthodontics",totalDownloads:4697,totalCrossrefCites:0,totalDimensionsCites:2,abstract:null,book:{id:"4548",slug:"current-concepts-in-dental-implantology",title:"Current Concepts in Dental Implantology",fullTitle:"Current Concepts in Dental Implantology"},signatures:"Fatma Deniz Uzuner and Belma Işık Aslan",authors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan"},{id:"172009",title:"Dr.",name:"Fatma Deniz",middleName:null,surname:"Uzuner",slug:"fatma-deniz-uzuner",fullName:"Fatma Deniz Uzuner"}]},{id:"50308",title:"Antibiotics in Implant Dentistry",slug:"antibiotics-in-implant-dentistry",totalDownloads:2369,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Antibiotics have been recommended either as an extended treatment for several days or as a single antibiotic prophylaxis dose since the development of dental implant osseointegration technique in the 1970s. It is also performed as part of surgical protocol during the peri-operative phase in the treatment of peri-implantitis. To date, there is a lack of scientific evidence regarding the additive effect of antibiotics in the treatment of dental implant. This has thus left the clinician with inconclusive recommendations, leading to increase antibiotic prescription. With this increase, the development of antibiotic resistance is becoming a threat to modern healthcare that requires revisiting of current indications and implementation of rational treatment strategies. Therefore, more studies are needed to assess the benefit of antibiotic prescription and whether it is safe to refrain from its use.",book:{id:"5185",slug:"dental-implantology-and-biomaterial",title:"Dental Implantology and Biomaterial",fullTitle:"Dental Implantology and Biomaterial"},signatures:"Dalia Khalil, Bodil Lund and Margareta Hultin",authors:[{id:"179031",title:"Dr.",name:"Dalia",middleName:null,surname:"Khalil",slug:"dalia-khalil",fullName:"Dalia Khalil"},{id:"185113",title:"Dr.",name:"Bodil",middleName:null,surname:"Lund",slug:"bodil-lund",fullName:"Bodil Lund"},{id:"185114",title:"Dr.",name:"Margareta",middleName:null,surname:"Hultin",slug:"margareta-hultin",fullName:"Margareta Hultin"}]},{id:"47915",title:"Rationale for Dental Implants",slug:"rationale-for-dental-implants",totalDownloads:3076,totalCrossrefCites:0,totalDimensionsCites:2,abstract:null,book:{id:"4548",slug:"current-concepts-in-dental-implantology",title:"Current Concepts in Dental Implantology",fullTitle:"Current Concepts in Dental Implantology"},signatures:"Ilser Turkyilmaz and Gokce Soganci",authors:[{id:"171984",title:"Associate Prof.",name:"Ilser",middleName:null,surname:"Turkyilmaz",slug:"ilser-turkyilmaz",fullName:"Ilser Turkyilmaz"}]},{id:"18430",title:"An Important Dilemma in Treatment Planning: Implant or Endodontic Therapy?",slug:"an-important-dilemma-in-treatment-planning-implant-or-endodontic-therapy-",totalDownloads:6264,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"179",slug:"implant-dentistry-a-rapidly-evolving-practice",title:"Implant Dentistry",fullTitle:"Implant Dentistry - A Rapidly Evolving Practice"},signatures:"Funda Kont Cobankara and Sema Belli",authors:[{id:"28846",title:"Dr.",name:"Funda",middleName:null,surname:"Kont Çobankara",slug:"funda-kont-cobankara",fullName:"Funda Kont Çobankara"},{id:"75862",title:"Prof.",name:"Sema",middleName:null,surname:"Belli",slug:"sema-belli",fullName:"Sema Belli"}]}],onlineFirstChaptersFilter:{topicId:"998",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81595",title:"Prosthetic Concepts in Dental Implantology",slug:"prosthetic-concepts-in-dental-implantology",totalDownloads:25,totalDimensionsCites:0,doi:"10.5772/intechopen.104725",abstract:"This chapter will address evidence-based prosthetic concepts in dental implantology as well as clinical evidence with focus on appropriate logic and technical skills. Those prosthetic factors are as just important as surgical factors, and long-term success can only be achieved if both of those factors are considered, respected, and strictly followed from planning to prosthetic phase of treatment. This chapter will deal with materials selection for prosthetic part, shape, size, and design of supracrestal parts of abutments and their influence on soft tissue and bone stability around dental implants. Furthermore, one of most important decisions is about choosing the proper way of retention: screw- vs. cement-retained restorations, and it will be discussed in detail. Additionally, emergence profile and its function in soft tissues adaptation and adhesion to different prosthetic materials also have important role in long-term success of dental implant restorations.",book:{id:"10808",title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg"},signatures:"Ivica Pelivan"},{id:"80500",title:"Novel Dental Implants with Herbal Composites: A Review",slug:"novel-dental-implants-with-herbal-composites-a-review",totalDownloads:49,totalDimensionsCites:0,doi:"10.5772/intechopen.101489",abstract:"Missing a permanent tooth is a miserable condition faced by a common man. A tooth decay, periodontitis, mechanical trauma, or any systemic complications lead to such a complication. These bone defects when left untreated lead to severe resorption of the alveolar bone. A proper dental filling with an appropriate bone substitute material could prevent such resorption and paves a way for subsequent implant placement. Dental implants are considered as the prime option by dentists to replace a single tooth or prevent bone resorption. A variety of bone substitutes are available differ in origin, consistency, particle size, porosity, and resorption characteristics. Herbal composites in dentistry fabricated using biphospho-calcium phosphate, casein, chitosan, and certain herbal extracts of Cassia occidentalis, Terminalia arjuna bark, Myristica fragans also were reported to possess a higher ossification property, osteogenic property and were able to repair bone defects. C. occidentalis was reported to stimulate mineralization of the bone and osteoblastic differentiation through the activation of the PI3K-Akt/MAPKs pathway in MC3T3-E1 cells of mice. This implant proved better osteoconductivity and bioactivity compared to pure HAP and other BCP ratios. Terminalia Arjuna was also worked in the incorporation in the graft to enhance the osteogenic property of the implant and gave good results. Another implant bone graft was synthesized containing BCP, biocompatible casein, and the extracts of Myristica fragans and subjected to in vitro investigations and the results revealed the deposition of apatite on the graft after immersing in SBF and also the ALP activity was high when treated with MG-63 cells, NIH-3 T3, and Saos 2 cell lines. This study indicates that the inclusion of plant extract enhances the osteogenic property of the graft. Thus, these novel dental implants incorporated with herbal composites evaluated by researchers revealed an enhanced bone healing, accelerates osseointegration, inhibits osteopenia, and inhibits inflammation. This application of herbal composite inclusion in dentistry and its applications has a greater potential to improve the success rate of dental implants and allows the implications of biotechnology in implant dentistry.",book:{id:"10808",title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg"},signatures:"Gopathy Sridevi and Seshadri Srividya"},{id:"78320",title:"Implant-Retained Maxillary and Mandibular Overdentures - A Solution for Completely Edentulous Patients",slug:"implant-retained-maxillary-and-mandibular-overdentures-a-solution-for-completely-edentulous-patients",totalDownloads:66,totalDimensionsCites:0,doi:"10.5772/intechopen.99575",abstract:"The main goal of modern removable prosthodontics is to restore the normal appearance, function, esthetics and speech in each completely edentulous patient. However, if all teeth are missing in a patient, it becomes very complicated to achieve it using traditional protocols. Therefore, implants were introduced into removable prosthodontics to ensure better retention and stability of the conventional dentures. In case of a large amount of bone missing in the jaw it is necessary to ensure the functioning of the dentures constructing various additional stabilizing and retentive prosthodontic solutions on the osseointegrated implants. Numerous types of attachment systems have been used recently for relating implant-retained overdentures to underlying implants: basically splinting (various bar shape designs) and non-splinting attachments (various ball type attachment, magnet attachment, telescopic coping systems). Indications for their use depend on the surgical and prosthodontic factors such as the number and position of the implants, the amount of free intermaxillary space and the type and size of the overdentures. Different indications, types of the overdentures and the attachment systems will be discussed in this chapter.",book:{id:"10808",title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg"},signatures:"Dubravka Knezović Zlatarić, Robert Ćelić and Hrvoje Pezo"},{id:"79724",title:"Implant Stability Quotient (ISQ): A Reliable Guide for Implant Treatment",slug:"implant-stability-quotient-isq-a-reliable-guide-for-implant-treatment",totalDownloads:60,totalDimensionsCites:0,doi:"10.5772/intechopen.101359",abstract:"Implant stability is a prerequisite for successful dental implants and osseointegration. To determine the status of implant stability, continuous monitoring in an objective and qualitative manner is important. To measure implant stability two different stages are there: Primary and secondary. Primary implant stability at placement is a mechanical phenomenon that is related to the local bone quality and quantity, the type of implant and placement technique used. Primary stability is checked from mechanical engagement with cortical bone. Secondary stability is developed from regeneration and remodeling of the bone and tissue around the implant after insertion and affected by the primary stability, bone formation and remodeling. Implant stability is essential for the time of functional loading. Classical benchmark methods to measure implant stability were radiographs or microscopic analysis, removal torque, push-through and pull-through but due to lack of feasibility, time consumption and ethical reasons other methods have been propounded over period of time like measurement of implant torque, model analysis and most important ISQ which has the ability to monitor osseointegration and the life expectancy of an implant. ISQ is a valuable diagnostic and clinical tool that has far-reaching consequences on implant dentistry and this article throws light on advanced and reliable methods of assessing ISQ.",book:{id:"10808",title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg"},signatures:"Gaurav Gupta"},{id:"79817",title:"Peri-Implant Soft Tissue Augmentation",slug:"peri-implant-soft-tissue-augmentation",totalDownloads:128,totalDimensionsCites:0,doi:"10.5772/intechopen.101336",abstract:"The peri-implant soft tissue (PIS) augmentation procedure has become an integral part of implant-prosthetic rehabilitation. Minimal width of keratinized mucosa (KM) of 2 mm is deemed necessary to facilitate oral hygiene maintenance around the implant and provide hard and soft peri-implant tissue stability. PIS thickness of at least 2 mm is recommended to achieve the esthetic appearance and prevent recessions around implant prosthetic rehabilitation. The autogenous soft tissue grafts can be divided into two groups based on their histological composition—free gingival graft (FGG) and connective tissue graft (CTG). FGG graft is used mainly to increase the width of keratinized mucosa while CTG augment the thickness of PIS. Both grafts are harvested from the same anatomical region—the palate. Alternatively, they can be harvested from the maxillary tuberosity. Soft tissue grafts can be also harvested as pedicle grafts, in case when the soft tissue graft remains attached to the donor site by one side preserving the blood supply from the donor region. Clinically this will result in less shrinkage of the graft postoperatively, improving the outcome of the augmentation procedure. To bypass the drawback connected with FGG or CTG harvesting, substitutional soft tissue grafts have been developed.",book:{id:"10808",title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg"},signatures:"Marko Blašković and Dorotea Blašković"},{id:"79611",title:"Growth Factors and Dental Implantology",slug:"growth-factors-and-dental-implantology",totalDownloads:103,totalDimensionsCites:0,doi:"10.5772/intechopen.101082",abstract:"Normal healing procedure of bone involves various sequential events to develop bone and bridge the bone -to- bone gap. When this healing occurs with a metal (titanium) fixture on one side, it is called as osseointegration. After extensive studies on this topic, it is found that this procedure occurs in presence of various biologic constituents that are spontaneously released at the site. Thus, to accelerate normal healing after implant placement and make results more predictable, it has been proposed to use these autologous factors in the osteotomy site. Since it is the beginning of a new revolution in dental implantology, right now it is essential to analyze all possible combinations of host conditions, bone quality and quantity and bio factors being used. This can definitely be a boon for the patients with compromised systemic or local conditions.",book:{id:"10808",title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg"},signatures:"Deeksha Gupta"}],onlineFirstChaptersTotal:17},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",isOpenForSubmission:!0,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",isOpenForSubmission:!0,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",isOpenForSubmission:!0,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:23,paginationItems:[{id:"82392",title:"Nanomaterials as Novel Biomarkers for Cancer Nanotheranostics: State of the Art",doi:"10.5772/intechopen.105700",signatures:"Hao Yu, Zhihai Han, Cunrong Chen and Leisheng Zhang",slug:"nanomaterials-as-novel-biomarkers-for-cancer-nanotheranostics-state-of-the-art",totalDownloads:21,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"82184",title:"Biological Sensing Using Infrared SPR Devices Based on ZnO",doi:"10.5772/intechopen.104562",signatures:"Hiroaki Matsui",slug:"biological-sensing-using-infrared-spr-devices-based-on-zno",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hiroaki",surname:"Matsui"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82122",title:"Recent Advances in Biosensing in Tissue Engineering and Regenerative Medicine",doi:"10.5772/intechopen.104922",signatures:"Alma T. Banigo, Chigozie A. Nnadiekwe and Emmanuel M. Beasi",slug:"recent-advances-in-biosensing-in-tissue-engineering-and-regenerative-medicine",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82080",title:"The Clinical Usefulness of Prostate Cancer Biomarkers: Current and Future Directions",doi:"10.5772/intechopen.103172",signatures:"Donovan McGrowder, Lennox Anderson-Jackson, Lowell Dilworth, Shada Mohansingh, Melisa Anderson Cross, Sophia Bryan, Fabian Miller, Cameil Wilson-Clarke, Chukwuemeka Nwokocha, Ruby Alexander-Lindo and Shelly McFarlane",slug:"the-clinical-usefulness-of-prostate-cancer-biomarkers-current-and-future-directions",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11601",title:"Econometrics - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11601.jpg",hash:"bc8ab49e2cf436c217a49ca8c12a22eb",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 13th 2022",isOpenForSubmission:!0,editors:[{id:"452331",title:"Dr.",name:"Brian",surname:"Sloboda",slug:"brian-sloboda",fullName:"Brian Sloboda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12141",title:"Leadership - Advancing Great Leadership Practices and Good Leaders",coverURL:"https://cdn.intechopen.com/books/images_new/12141.jpg",hash:"85f77453916f1d80d80d88ee4fd2f2d1",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 1st 2022",isOpenForSubmission:!0,editors:[{id:"420133",title:"Dr.",name:"Joseph",surname:"Crawford",slug:"joseph-crawford",fullName:"Joseph Crawford"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12139",title:"Global Market and Trade",coverURL:"https://cdn.intechopen.com/books/images_new/12139.jpg",hash:"fa34af07c3a9657fa670404202f8cba5",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 21st 2022",isOpenForSubmission:!0,editors:[{id:"243649",title:"Dr.Ing.",name:"Ireneusz",surname:"Miciuła",slug:"ireneusz-miciula",fullName:"Ireneusz Miciuła"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82212",title:"Protein Prenylation and Their Applications",doi:"10.5772/intechopen.104700",signatures:"Khemchand R. Surana, Ritesh B. Pawar, Ritesh A. Khairnar and Sunil K. Mahajan",slug:"protein-prenylation-and-their-applications",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82096",title:"An Important Component of Tumor Progression: Fatty Acids",doi:"10.5772/intechopen.105087",signatures:"Jin Wang, Qifei Wang and Guangzhen Wu",slug:"an-important-component-of-tumor-progression-fatty-acids",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82029",title:"Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety",doi:"10.5772/intechopen.104908",signatures:"Vinayak Adimule, Pravin Kendrekar and Sheetal Batakurki",slug:"synthesis-characterization-and-antimicrobial-properties-of-novel-benzimidazole-amide-derivatives-bea",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:1,group:"subseries"},{caption:"Chemical Biology",value:15,count:5,group:"subseries"},{caption:"Metabolism",value:17,count:13,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:15,group:"subseries"}],publishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:4},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:9},{group:"subseries",caption:"Chemical Biology",value:15,count:13}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:8},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:301,paginationItems:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}},{id:"338856",title:"Mrs.",name:"Nur Alvira",middleName:null,surname:"Pascawati",slug:"nur-alvira-pascawati",fullName:"Nur Alvira Pascawati",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universitas Respati Yogyakarta",country:{name:"Indonesia"}}},{id:"441116",title:"Dr.",name:"Jovanka M.",middleName:null,surname:"Voyich",slug:"jovanka-m.-voyich",fullName:"Jovanka M. Voyich",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Montana State University",country:{name:"United States of America"}}},{id:"330412",title:"Dr.",name:"Muhammad",middleName:null,surname:"Farhab",slug:"muhammad-farhab",fullName:"Muhammad Farhab",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"349495",title:"Dr.",name:"Muhammad",middleName:null,surname:"Ijaz",slug:"muhammad-ijaz",fullName:"Muhammad Ijaz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Veterinary and Animal Sciences",country:{name:"Pakistan"}}}]}},subseries:{item:{id:"20",type:"subseries",title:"Animal Nutrition",keywords:"Sustainable Animal Diets, Carbon Footprint, Meta Analyses",scope:"An essential part of animal production is nutrition. Animals need to receive a properly balanced diet. One of the new challenges we are now faced with is sustainable animal diets (STAND) that involve the 3 P’s (People, Planet, and Profitability). We must develop animal feed that does not compete with human food, use antibiotics, and explore new growth promoters options, such as plant extracts or compounds that promote feed efficiency (e.g., monensin, oils, enzymes, probiotics). These new feed options must also be environmentally friendly, reducing the Carbon footprint, CH4, N, and P emissions to the environment, with an adequate formulation of nutrients.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/20.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11416,editor:{id:"175967",title:"Dr.",name:"Manuel",middleName:null,surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo",profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",biography:"Dr. Manuel González Ronquillo obtained his doctorate degree from the University of Zaragoza, Spain, in 2001. He is a research professor at the Faculty of Veterinary Medicine and Animal Husbandry, Autonomous University of the State of Mexico. He is also a level-2 researcher. He received a Fulbright-Garcia Robles fellowship for a postdoctoral stay at the US Dairy Forage Research Center, Madison, Wisconsin, USA in 2008–2009. He received grants from Alianza del Pacifico for a stay at the University of Magallanes, Chile, in 2014, and from Consejo Nacional de Ciencia y Tecnología (CONACyT) to work in the Food and Agriculture Organization’s Animal Production and Health Division (AGA), Rome, Italy, in 2014–2015. He has collaborated with researchers from different countries and published ninety-eight journal articles. He teaches various degree courses in zootechnics, sheep production, and agricultural sciences and natural resources.\n\nDr. Ronquillo’s research focuses on the evaluation of sustainable animal diets (StAnD), using native resources of the region, decreasing carbon footprint, and applying meta-analysis and mathematical models for a better understanding of animal production.",institutionString:null,institution:{name:"Universidad Autónoma del Estado de México",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,series:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517"},editorialBoard:[{id:"175762",title:"Dr.",name:"Alfredo J.",middleName:null,surname:"Escribano",slug:"alfredo-j.-escribano",fullName:"Alfredo J. Escribano",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGnzQAG/Profile_Picture_1633076636544",institutionString:"Consultant and Independent Researcher in Industry Sector, Spain",institution:null},{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}},{id:"216995",title:"Prof.",name:"Figen",middleName:null,surname:"Kırkpınar",slug:"figen-kirkpinar",fullName:"Figen Kırkpınar",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRMzxQAG/Profile_Picture_1625722918145",institutionString:null,institution:{name:"Ege University",institutionURL:null,country:{name:"Turkey"}}}]},onlineFirstChapters:{paginationCount:2,paginationItems:[{id:"82392",title:"Nanomaterials as Novel Biomarkers for Cancer Nanotheranostics: State of the Art",doi:"10.5772/intechopen.105700",signatures:"Hao Yu, Zhihai Han, Cunrong Chen and Leisheng Zhang",slug:"nanomaterials-as-novel-biomarkers-for-cancer-nanotheranostics-state-of-the-art",totalDownloads:21,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"81778",title:"Influence of Mechanical Properties of Biomaterials on the Reconstruction of Biomedical Parts via Additive Manufacturing Techniques: An Overview",doi:"10.5772/intechopen.104465",signatures:"Babatunde Olamide Omiyale, Akeem Abiodun Rasheed, Robinson Omoboyode Akinnusi and Temitope Olumide Olugbade",slug:"influence-of-mechanical-properties-of-biomaterials-on-the-reconstruction-of-biomedical-parts-via-add",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}}]},publishedBooks:{paginationCount:7,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Dr.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:null,institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"14",title:"Cell and Molecular Biology",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression"},{id:"15",title:"Chemical Biology",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors"},{id:"17",title:"Metabolism",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation"},{id:"18",title:"Proteomics",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/100149",hash:"",query:{},params:{id:"100149"},fullPath:"/profiles/100149",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()