Open access peer-reviewed chapter - ONLINE FIRST

Phase-Stretch Adaptive Gradient-Field Extractor (PAGE)

By Madhuri Suthar and Bahram Jalali

Submitted: May 17th 2019Reviewed: November 4th 2019Published: February 11th 2020

DOI: 10.5772/intechopen.90361

Downloaded: 19

Abstract

Emulated by an algorithm, certain physical phenomena have useful properties for image transformation. For example, image denoising can be achieved by propagating the image through the heat diffusion equation. Different stages of the temporal evolution represent a multiscale embedding of the image. Stimulated by the photonic time stretch, a realtime data acquisition technology, the Phase Stretch Transform (PST) emulates 2D propagation through a medium with group velocity dispersion, followed by coherent (phase) detection. The algorithm performs exceptionally well as an edge and texture extractor, in particular in visually impaired images. Here, we introduce a decomposition method that draws inspiration from the birefringent diffractive propagation. This decomposition method, which we term as Phase-stretch Adaptive Gradient-field Extractor (PAGE) embeds the original image into a set of feature maps that selects semantic information at different scale, orientation, and spatial frequency. We demonstrate applications of this algorithm in edge detection and extraction of semantic information from medical images, electron microscopy images of semiconductor circuits, optical characters and finger print images. The code for this algorithm is available here (https://github.com/JalaliLabUCLA).

Keywords

  • computational imaging
  • physics-inspired algorithms
  • phase stretch transform
  • feature engineering
  • Gabor filter
  • digital image processing

1. Introduction

Physical phenomena described by partial differential equations (PDE) have inspired a new field in computational imaging and computer vision [1]. Such physics-inspired algorithms based on PDEs have been successful for image smoothening and restoration. Image restoration can be viewed as obtaining the solution to evolution equations by minimizing an energy function. The most popular PDE technique for image smoothening treats the original image as the initial state of a diffusion process and extracts filtered versions from its evolution at different times. This embeds the original image into a family of simpler images at a hierarchical scale. Such a scale-space representation is useful for extracting semantically important information [2]. Physics based algorithms not only outperform their conventional counterparts, but also have enabled new applications. Usage of these algorithms range from feature detection in digital images [3, 4, 5], to 3D modeling of objects from 2D images [6, 7], to optical character recognition [8] as well as for restoring audio quality [9].

Phase Stretch Transform (PST) is a physics inspired algorithm that emulates 2D propagation through a medium with group velocity dispersion, followed by coherent (phase) detection [10, 11]. The algorithm performs exceptionally well as edge and texture extractor, in particular in visually impaired images [12]. This transform has an inherent equalization ability that supports wide dynamic range of operation for feature detection [12, 13, 14]. It also exhibits superior properties over conventional derivative operators, particularly in terms of feature enhancement in noisy low contrast images. These properties have been exploited to develop image processing tools for clinical needs such as a decision support system for radiologists to diagnose pneumothorax [15, 16], for resolution enhancement in brain MRI images [17], single molecule imaging [18], and image segmentation [19].

PST emulates the physics of photonic time stretch [20], a real time measurement technology that has enabled observation as well as detection of ultrafast, non-repetitive events like optical rogue waves [21], optical fiber soliton explosions [22] and birth of mode locking in laser [23]. Further, by combining photonic time stretch technology with machine learning algorithms, a world record accuracy has been achieved for classification of cancer cells in blood stream [24, 25].

The photonic time stretch employs group-velocity dispersion (GVD) in an optical fiber to slow down an analog signal in time by propagating a modulated optical pulse through the time stretch system which is governed by the following equation:

Eozt=12π+E˜i0ωejβ2zω22ejωtE1

where, β2= GVD parameter, z is propagation distance, Eoztis the reshaped output pulse at distance z and time t. The response of dispersive element in the time-stretch system can be approximated a phase propagator K˜ω=ejβ2zω22which leads to the definition of PST for a discrete 2D signal as following:

PSTEixyIFFT2FFT2EixyK˜uvE2

In the above equations, Eixyis the input image, FFT2is 2D Fast Fourier Transform, IFFT2is 2D Inverse Fast Fourier Transform, xand yare the spatial variables and, uand vare spatial frequency variables. The function K˜uvis called the warped phase kernel implemented in frequency domain for image processing.

PST utilizes the GVD dispersion to convert a real image to a complex quantity such that the spatial phase after the IFFT2operation is a function of frequency. Upon thresholding, the high frequency edges survive. The phase kernel for the PST is designed by converting the 2D Cartesian frequencies uand vto polar coordinates which results in a symmetric Cartesian phase kernel. However, as digital images are fundamentally two-dimensional, there is an inherent loss of information in the features detected by PST. This motivates us to develop a more comprehensive approach that captures angular as well as spatial frequency information in a semantic fashion.

In this chapter, we introduce Phase-stretch Adaptive Gradient-field Extractor (PAGE), a new physics inspired feature engineering algorithm that computes a feature set comprising of edges at different spatial frequencies, at different orientations, and at different scales. These filters emulate the physics of birefringent (orientation-dependent) diffractive propagation through a physical medium with a specific diffractive property. In such a medium, the dielectric constant of the medium and hence, its refractive index is a function of spatial frequency and the polarization in the transverse plane. To understand this analogy, we consider an optical pulse with two linearly orthogonal polarizations, E˜xand E˜y, propagating through a dispersive diffractive medium such that

E˜izt=E˜x+E˜yE3

As the propagation constant β=n.2πλis a function of refractive index (spatially varying), the two orthogonal polarizations E˜xand E˜ywill have different propagation constants and hence, a phase difference at the output given by the following equation:

Δϕ=ϕxϕy=Δβl=ωmcnxnyLE4

By controlling the value of nxand ny, as well the dependence of refractive index on frequency nxωand nyω, we are able to detect a semantic hyper-dimensional feature set from a 2D image. We demonstrate with several visual examples in the later part of this chapter that the above filter banks can be applied for image processing and computer vision applications such as for detection of fabrication artifacts in semiconductor chips, development of clinical decision support systems, recognition of optical characters or finger prints. In particular, we show that PAGE features outperform the conventional derivative operators as well as directional Gabor filter banks.

Further, we address the dual problem of spatial resolution and dynamic range limitations in an imaging system. In an ideal imaging system, the numerical aperture and the wavelength of an optical set up are the only factors that determine the spatial resolution offered by the modality. But under non-ideal conditions, the number of photons collected from a specimen control its dynamic range (the ratio between the largest and the smallest value of a variable quantity) which in turn also limits the spatial resolution. This leads to the fundamental dual-problem of spatial resolution and dynamic range limitations in an imaging modality [26].

Certain approaches to improve the resolution of the imaging system include use of wide-field fluorescence microscopy [27, 28] which offers better resolution than confocal fluorescence microscopy [29], multiple fluorophores [30, 31]. Also, various image processing techniques such as multi-scale analysis using wavelets [32, 33] have been proposed for improving the resolution while retaining important visual information post the image acquisition. We show later in the chapter that we are able to alleviate this dual-problem by incorporating, in our algorithm, a local adaptive contrast enhancement operator, also known as Tone Mapping Operator (TMO) which leads to excellent dynamic range.

Other steps of the proposed decomposition method are discussed at length in the next section. The organization of the chapter is as follows. In Section 2, we describe the details of the proposed decomposition method. Experimental results and conclusions are presented in Sections 3 and 4, respectively.

2. Mathematical framework

Different steps of our proposed decomposition method Phase-stretch Gradient-field Extractor (PAGE) for feature engineering are shown in Figure 1. The first step is to apply an adaptive tone mapping operator (TMO) to enhance the local contrast. Next, we reduce the noise by applying a smoothening kernel in frequency domain (this operation can also be done in spatial domain). We then apply a spectral phase kernel that emulates the birefringence and frequency channelized diffractive propagation. The final step of PAGE is to apply thresholding and morphological operations on the generated feature vectors in spatial domain to produce the final output. The PAGE output embeds the original image into a set of feature maps that select semantic information at different scale, orientation, and spatial frequency. We show in Figure 2 how PAGE embeds semantic information at different orientations for an X-ray image of a flower.

Figure 1.

Different steps of the phase-stretch gradient-field extractor (PAGE) algorithm. The pipeline starts with application of tone mapping in the spatial domain. This is followed by a smoothening and a spectral phase operation in the frequency domain. The spectral phase operation is the main component of the PAGE algorithm. The generated hyper-dimensional feature vector is thresholded and post-processed by morphological operations. PAGE embeds the original image into a set of feature maps that select semantic information at different scale, orientation, and spatial frequency.

Figure 2.

The phase-stretch gradient-field extractor (PAGE) feature map of an X-ray image. The original image is shown on the left (A). PAGE embeds the original image into a feature map that selects semantic information at different orientations as shown in (B). The orientation of the edges is encoded into various color values here.

The sequence of steps of our physics-inspired feature extraction method, PAGE, can be represented by the following equations. We first define the birefringent stretch operator Sas follows:

Eoxy=SEixy=IFFT2K˜uvθL˜uvFFT2TMOEixyE5

where Eoxyis a complex quantity defined as,

Eoxy=EoxyexyE6

In the above equations, Eixyis the input image, xand yare the spatial variables, FFT2is the two-dimensional Fast Fourier Transform, IFFT2is the two-dimensional Inverse Fast Fourier Transform, TMOis a spatially adaptive Tone Mapping Operator and uand vare frequency variables. The function K˜uvθis called the PAGE kernel and the function L˜uvis a smoothening kernel, both implemented in frequency domain. For all our simulations here, we consider L˜uvto be low pass Gaussian filter whose cut off frequency is determined by the sigma of the Gaussian filter (σLPF).

The PAGE operator Pcan then be defined as the phase of the output of the stretch operation Sapplied on the input image Eixy:

PEixy=SEixyE7

where is the angle operator.

In the next subsections, we discuss each of the above mentioned kernels in detail and demonstrate the operation of each step using simulation results.

2.1 Tone mapping operator (TMO)

A tone mapping operator (TMO) is applied to enhance the local contrast in the input image Eixy. This technique is a standard method in the field of image processing to solve the problem of limited contrast in an imaging system while still preserving important details and thereby, helps in improving the dynamic range of an imaging system via post processing. By applying a tone mapping operator to the input image, an enhanced contrast can be achieved. While various TMO operators have been developed for adaptive contrast enhancement, here, we implement the TMO step by applying a Contrast Limited Adaptive Histogram Equalization (CLAHE) operator to the input image.

We operate on the input image using a TMOfirst, followed by smoothening operator (low pass filter) and not vice versa. The reason to follow this sequence of operation is as follows. Noise present in an image is mostly represented by the high frequency components in the spectrum. These high frequency components can be present at both low-light-level or at high-light-level in the spatial domain. Because of the use of a tone mapping operator, the low-light-level features get over emphasized [34, 35]. This also leads to amplification of the image noise particularly in low-light scenarios. By applying a smoothening filter after the TMO operation, we aim to remove these noise artifacts from the contrast enhancement step. Alternatively, where any noise is left after the application of a smoothening kernel on the input image, it could be amplified by the TMO operation in the next step. Therefore, one may need to alternate between the smoothening step and TMO before obtaining a final satisfactory result [36].

2.2 Phase-stretch adaptive gradient-field extractor (PAGE) kernel

Phase-stretch adaptive gradient-field extractor (PAGE) filter banks are defined by the PAGE kernel K˜uvθand are designed to compute semantic information from an image at different orientations and frequencies. The PAGE kernel K˜uvθ, consists of a phase filter which is a function of frequency variable uand v, and a steerable angle variable θwhich controls the directionality of the response. We first define the translated frequency variable uand v

u=ucosθ+vsinθE8
v=usinθ)+vcosθE9

such that the frequency vector rotates along the origin with θ

u+jvu+jvE10

We then define the PAGE kernel K˜uvθas a function of frequency variable uand vand steerable angle θas follows:

K˜uvθ=K˜uv=expjϕ1uϕ2vE11

where

ϕ1u=Su1σu2πexpuμu2/2σu2E12
ϕ2v=Sv1vσv2πexplnvμv2/2σv2E13

There are two important things that should be noted here. First, we consider the modulus of our translated frequency variable uand vso that our kernel is symmetric for proper phase operation as discussed in [12]. Second, for all our simulation examples here, when we consider a bank of PAGE filters, we first normalize ϕ1uand ϕ2vin the range (0,1) for all values of θand then, multiply the filter banks with Suand Sv, respectively, in order to make sure that the amplitude of each filter in the bank is same.

These filter banks can detect features at a particular frequency and/or in a particular direction. Therefore, by selecting a desired direction and/or frequency, a hyper-dimensional feature map can be constructed. We list all parameters in Table 1 that control different functionalities of our proposed decomposition method PAGE.

NotationVariable
uand vSpatial frequency
θSteerable angle
uand vTranslated spatial frequency
ϕ1Normal filter
ϕ2Log normal filter
SuStrength of ϕ1filter
SvStrength of ϕ2filter
μuMean of normal distribution for ϕ1filter
μvMean of log-normal distribution for ϕ2filter
σuSigma of normal distribution for ϕ1filter
σvSigma of log-normal distribution for ϕ2filter
σLPFSigma of Gaussian distribution for L˜uvsmoothening kernel
ThresholdMinMaxBi-level feature thresholding for morphological operations

Table 1.

Different parameters of our physics-inspired feature decomposition method PAGE.

The values of these parameters for Figure 2 simulation result are: Su=3.4, Sv=1.2, μu=0, μv=0.4, σu=0.05, σv=0.7, σLPF=0.1 and ThresholdMinMax=1,0.0019. The number of filters considered for a 1° resolution is equals to 180.

Figure 3AP show the generated phase profiles for ϕ1uϕ2vthat select semantic information at different orientation and frequency as described in Eqs. (10)(13) using PAGE kernels. These phase kernels are applied to the input image spectrum. Using the steerable angle, the directionality of edge response can be controlled in the output phase of the transformed image. The detected output response for each directional filter is thresholded using a bi-level method. This is done to preserve negative high amplitude values as well as positive high amplitude values.

Figure 3.

Phase-stretch gradient-field extractor (PAGE) filter banks (A)–(P) phase filter banks as defined in Eqs. (8)–(13) for various frequencies and directions. The frequency variables u and v are normalized from −ωu to +ωu and −ωv to +ωv, respectively. The center μv′ of the phase kernel Sv′ is gradually increased for control over the frequency distribution. The values for steerable angle θ considered here are 0, π/4,π/2, 3π/4.

2.2.1 Directionality

In order to detect features in a particular direction spread over the all the frequency components in the spectrum, we construct the PAGE filter banks by using Eqs. (9)(13) for K˜uvθ, ϕ1uand ϕ1vrespectively. By controlling the value of sigma σuof normal distribution for ϕ1ufilter, we avoid any overlapping of directional filters as seen in Figure 4.

Figure 4.

Phase-stretch gradient field extractor (PAGE) directional filter banks (A)–(D) the directional filter banks of PAGE computed using the definition in Eqs. (9)–(13) for steerable angle θ = 0, π/4, π/2 and 3π/4, respectively. By monitoring the value of sigma σu′ of the normal filter ϕ1u′, the angular spread of kernel K˜uvθ can be controlled to avoid any overlapping of directional filters.

We first evaluate the performance of these kernel by qualitatively comparing the feature detection of PAGE with PST. The image under analysis is a gray-scale image of a rose. For a better visual understanding of our method, we first compute orthogonal directional responses as shown in Figure 5. We then show results of edge detection using PST and PAGE in Figure 6. The values for the parameters strength Su=2.8, Sv=0.5, μu=0, μv=0.4, σu=0.05, σv=0.7, σLPF=0.1and ThresholdMinMax=1,0.0019. The number of filters considered for a 1° resolution is equals to 180. Morphological operations used for the result shown in Figure 6C include edge thinning and isolated pixel removing for each directional response. As evident in Figure 6, edges are accurately extracted with our technique. Different colors in the computed edge response indicate the edge directionality.

Figure 5.

Phase-stretch gradient-field extractor (PAGE) directional filter banks response the original image is shown in (A). We design two directional PAGE filters here to detect vertical (θ=π/2) and horizontal (θ=0) edges as shown in (B) and (C) respectively.

Figure 6.

Comparison of feature detection using phase stretch transform (PST) and phase-stretch gradient-field extractor (PAGE) the original image is shown in (A). The output edge image obtained using PST without the support of directional response is shown in (B). The edge map obtained using PAGE filter banks that support edge detection at all frequencies is shown in (C). Different color values are used to show the orientation of the edges.

2.2.2 Frequency selectivity

The PAGE filter banks can also be designed to detect edges at a particular frequency by controlling the spread of log normal distribution. To demonstrate this functionality, we show the features detected at low and high frequency using the rose image as an example in the Figure 7. As seen in the figure, the features detected at low frequency are smoother and at high frequency are sharper.

Figure 7.

Feature detection using phase-stretch gradient field extractor (PAGE) at low and high frequency: Features detected at low frequency are much smoother whereas for high frequency, the features are sharper. This demonstrates the frequency selectivity for feature detection using PAGE.

3. Discussion

3.1 Comparison to Gabor feature extractors

We demonstrate the effectiveness of our decomposition method by comparing the directional edge response obtained by applying Gabor filter banks to an optical character image. We design 24 Gabor directional filters and augment the response from each of the filters to generate the image in Figure 8B. As seen in Figure 8C, with PAGE we have a better spatial localization of the edge response. By spatial localization, we mean that inherently PAGE has a sharper edge response, as seen in the figure. This is because, unlike the Gabor filters whose bandwidth is determined by the sigma parameter of the filter, in PAGE, the bandwidth of the response is determined by the input image dimension. Therefore, there is better localization of edge with PAGE. The parameters values are strength Su=2.8, Sv=0.5, μu=0, μv=0.4, σu=0.05, σv=0.7, σLPF=0.1and ThresholdMinMax=1,0.0019. The number of filters considered for a 1° resolution is equals to 180.

Figure 8.

Comparison to Gabor feature extractors: Features detected using Gabor do not have inherent spatial feature localization. With PAGE, the features are more sharper as the bandwidth of the response is determined by the input image dimension.

3.2 Comparison to derivative feature extractors

To demonstrate the superiority of our decomposition method, we compare the edge response obtained by applying derivative based operators to a test image shown in Figure 9A. The response to a derivative based operator is computed by using the edge function of Matlab software (canny) and is shown in Figure 9B. As seen in Figure 9C, PAGE outperforms derivative based operators by producing the orientation information and low contrast details. The parameters values are strength Su=2.7, Sv=0.5, μu=0, μv=0.4, σu=0.05, σv=0.7, σLPF=0.1and ThresholdMinMax=1,0.0019. The number of filters considered for a 1° resolution is equals to 180.

Figure 9.

Comparison to derivative feature extractors: Features detected with derivative based edge operators calculate the directionality based on the horizontal and vertical gradients and do not provide information about the spatial frequency of the edges. PAGE provides both the orientation as well as the spatial frequency selectivity in the output response.

3.3 Simulation results

We apply our decomposition method to different types of images to show that the directional edge response obtained by PAGE can be used for various computer vision applications. For example, in Figure 10, we show application of PAGE to a Single Electron Microscope (SEM) image of an integrated circuit chip. As seen, the PAGE feature response is able to capture the edges corresponding to the chip layout (even the low contrast details). Based on the viewing angle (camera position), the layout edges should appropriately be rendered in the image as well as in the edge map. This can be used to identify any chip artifacts during the fabrication process. The parameters values for generating the feature map shown in Figure 10 are strength Su=3.1, Sv=0.9, μu=0, μv=0.4, σu=0.05, σv=0.7, σLPF=0.1and ThresholdMinMax=1,0.0042. The number of filters considered for a 1° resolution is equals to 180.

Figure 10.

Fabrication artifact detection using phase-stretch gradient-field extractor (PAGE) on a single Electron microscope (SEM) image of integrated circuit chip. The original image is shown in (A). The output edge image obtained using PAGE filter banks that support edge detection at all frequencies is shown in (B). Different color values are used to show the orientation of the edges that correspond to the chip layout and can be used to detect fabrication artifacts.

We also apply PAGE to detect directional edge response to an image of a finger print as shown in Figure 11. Not only does PAGE detects a directional edge response, but also has an inherent equalization property to detect low contrast edges. The parameters values are strength Su=1.5, Sv=0.4, μu=0, μv=0.4, σu=0.05, σv=0.7, σLPF=0.08and ThresholdMinMax=1,0.0019. The number of filters considered for a 1° resolution is equals to 180.

Figure 11.

Fingerprint feature map using phase-stretch gradient-field extractor (PAGE). The original image is shown in (A). The output edge image obtained using PAGE filter banks that support edge detection at all frequencies is shown in (B). As the edges of the fingerprint rotate, the response value changes (shown here with different color value).

Next, we show application of our decomposition method PAGE to extract edges of vessels from a retinal image in Figure 12. The distribution of vessels based on the orientation of the edges can be used as an important feature to detect any abnormalities in the eye structure. As seen, the PAGE feature response is able to capture both the low contrast details as well as information about the directionality of the vessel edges which is coded in form of the color value in RGB space. The parameters values are strength Su=2.2, Sv=1.1, μu=0, μv=0.4, σu=0.05, σv=0.7, σLPF=0.1and ThresholdMinMax=1,0.0019. The number of filters considered for a 1° resolution is equals to 180.

Figure 12.

Vessel detection using phase-stretch gradient-field extractor (PAGE) on an image of a retina. The original image is shown in (A). The output edge image obtained using PAGE filter banks that support edge detection at all frequencies is shown in (B). Different color values are used to show the orientation of the edges. The low contrast vessels are not only detected using PAGE but also information on how the direction of the blood flow changes across the eye based on the vessel distribution is extracted.

4. Conclusions

In this chapter, a presentation is made on a new feature engineering method that takes inspiration from the physical phenomenon of birefringence in an optical system. The introduced method called Phase-stretch Adaptive Gradient-field Extractor (PAGE) controls the diffractive properties of the simulated medium as a function of spatial location and channelized frequency. This method when applied to 2D digital images extracts semantic information from the input image at different orientation, scale and frequency and embeds this information into a hyper-dimensional feature map. The computed response is compared to other directional filters such as Gabor to demonstrate superior performance of PAGE. Applications of the algorithm for edge detection and extraction of semantic information from medical images, electron microscopy images of semiconductor circuits, optical character and finger print images is also shown.

Acknowledgments

The authors would like to thank Dr. Ata Mahjoubfar for his helpful comments on this work during his post-doctoral studies in Jalali Lab at UCLA. This work was partially supported by the National Institutes of Health (NIH) Grant No. 5R21 GM107924-03 and the Office of Naval Research (ONR) Multi-disciplinary University Research Initiatives (MURI) program on Optical Computing.

Conflict of interest

The authors declare no conflict of interest.

How to cite and reference

Link to this chapter Copy to clipboard

Cite this chapter Copy to clipboard

Madhuri Suthar and Bahram Jalali (February 11th 2020). Phase-Stretch Adaptive Gradient-Field Extractor (PAGE) [Online First], IntechOpen, DOI: 10.5772/intechopen.90361. Available from:

chapter statistics

19total chapter downloads

More statistics for editors and authors

Login to your personal dashboard for more detailed statistics on your publications.

Access personal reporting

We are IntechOpen, the world's leading publisher of Open Access books. Built by scientists, for scientists. Our readership spans scientists, professors, researchers, librarians, and students, as well as business professionals. We share our knowledge and peer-reveiwed research papers with libraries, scientific and engineering societies, and also work with corporate R&D departments and government entities.

More About Us