1. Introduction
1.1. Lactic acid bacteria
Lactic acid bacteria (LAB) are a group of Gram-positive, non-sporulating, low-GC-content bacteria that comprise 11 bacterial genera, such as
Understanding the mechanisms involved in carbohydrate metabolism and its regulation in LAB is essential for improving the industrial properties of these microorganisms. There are several ways to improve the metabolic potential of LAB cells, of which metabolic engineering offers a very efficient and effective tool.
1.2. Genus Lactococcus
Lactococci are homofermentative, mesophilic LAB that basically inhabit two natural environments, milk and plants, of which plants seem to constitute the primary niche. Occasionally, there have been reports that
Since
Strains belonging to
During growth in milk, the primary function of
Due to its industrial importance
2. Lactose metabolism
Most microorganisms have adapted to growth in milk habitat due to acquisition of the ability to the use its most abundant sugar, lactose, as a carbon source. This disaccharide consists of a galactose moiety linked at its C1 via a
Uptake of lactose into a bacterial cell can be mediated by several pathways, such as the lactose-specific phosphotransferase system (
2.1. Lactose-specific phosphotransferase systems (lac -PTS)
Although LAB used as starter cultures may also convert pyruvate to a variety of end products, these pathways are not expressed during lactose fermentation, which is homolactic in most strains (Cocaign-Bousquet et al., 2002; Neves et al., 2005). Since the primary function of LAB in dairy fermentations is the conversion of lactose to lactic acid, the industrial strains are primarily selected on the basis of their ability for its rapid, homolactic fermentation (de Vos & Simons, 1988).
Starter lactococcal strains transport lactose exclusively by the most abundant in LAB uptake system for various sugars - the phosphoenolpyruvate-dependent phosphotransferase system (PEP-PTS). The
It is believed that plasmid-encoded ability for rapid lactose fermentation characteristic for dairy strains was recently acquired by wild-type plant strains, as a result of their adaptation to milk-environment (Kelly et al., 2010).
2.2. Lactose permease-β -galactosidase systems
Another strategy developed by LAB for lactose metabolism depends on its uptake via secondary transport systems. These systems transport lactose in an unphosphorylated form via specific permeases belonging to the LacS subfamily (TC No. 2.A.2.2.3) of the 2.A.2 glycoside-pentoside-hexuronide (GPH) family (Saier, 2000). Carriers of the LacS subgroup are chimeric in nature: at their carboxy terminal end they contain an approximately 160 amino acid hydrophilic extension homologous to the EIIA domains of PTS. Thus, lactose transport is controlled by HPr-dependent phosphorylation (Gunnewijk et al., 1999; Gunnewijk & Poolman, 2000a; Gunnewijk & Poolman, 2000b). Due to this additional domain these lactose permeases are larger than the other carriers from the GPH family, which are generally about 500 amino acids in length. Depending on the organism, LacS can mediate lactose transport coupled to proton symport or by antiport with galactose. Following its import, lactose is hydrolyzed by
The existence of genes encoding components of the lactose permease-
Some details concerning the role of the lactose permease-
Taken together, it seems that in
3. Metabolism of β –glucosides
In addition to dairy environment, plant surfaces and fermenting plant material are also important ecosystems occupied by
Besides lactose, the PTS systems can also transport various other carbohydrates, including sugars widely distributed in plants, namely
It is well known from sugar fermentation characteristics that
On the other hand, the EIIAB components, namely PtcA and PtcB, seem to be more versatile, being involved in the metabolism of numerous sugars (arbutin, cellobiose, glucose, lactose, salicin) in
After translocation by PTS through the bacterial membrane, the P-
Expression of
4. Alternative lactose utilization system and its interconnection with cellobiose assimilation
The existence in several lactococcal strains devoid of
Until recently (Aleksandrzak et al., 2000; Aleksandrzak-Piekarczyk et al., 2005, 2011; Kowalczyk et al., 2008), little information on the organization in
Further studies of Aleksandrzak-Piekarczyk et al. (2005, 2011) and Kowalczyk et al. (2008) provided details on interconnected metabolism of
When cellobiose is available, it activates the cellobiose-specific PTS transport system, comprising CelB, PtcB and PtcA proteins, and

Figure 1.
Schematic representation of the proposed mechanism of chromosomally-encoded lactose, cellobiose-inducible lactose and
Besides cellobiose, other
It is also proposed in this model that LacS is not engaged in lactose internalization and its function is limited to galactose transport.
5. Conclusions
Despite the fact that the metabolism of lactose and
Detailed knowledge of sugar metabolism and the regulators controlling gene expression in
Lastly, is shown as an example that by the use of a simple microbiological screen, it is possible and worthwhile to modify the metabolic potential of lactococcal strains initially unable to assimilate lactose. By inactivation of the ccpA gene or induction of particular genes by supplementation of the medium with cellobiose and thus activation of YebF, it is possible to turn on an alternative lactose assimilation pathway in L. lactis IL1403. In contrast to plasmid-located lac-operons, the cel-lac system is within the chromosome, resulting in a stable, highly adapted strain, potentially valuable for the dairy industry.
Acknowledgement
Some of the data presented were funded in part by the NCN grant UMO-2011/01/B/ NZ2/05377.
References
- 1.
Aleksandrzak T. Kowalczyk M. Kok J. Bardowski J. 2000 Regulation of carbon catabolism in Lactococcus lactis. In: Food biotechnology, Proceedings of an International Symposium organized by the Institute of Technical Biochemistry, Technical University of Lodz. Bielecki, S., Tramper, J., Polak, J. (eds),17 61 66 Elsevier Science BV.978-0-44450-519-4 Zakopane, Poland, May 1999 - 2.
Aleksandrzak-Piekarczyk T. Polak J. Jezierska B. Renault P. Bardowski J. 2011 Genetic characterization of the CcpA-dependent, cellobiose-specific PTS system comprising CelB, PtcB and PtcA that transports lactose in Lactococcus lactis IL1403. International Journal of Food Microbiology,145 1 186 194 1879-3460 - 3.
Aleksandrzak-Piekarczyk T. Kok J. Renault P. Bardowski J. 2005 Alternative lactose catabolic pathway in Lactococcus lactis IL1403. Applied and Environmental Microbiology,71 10 6060 6069 0099-2240 - 4.
Anderson D. G. Mc Kay L. L. 1977 Plasmids, loss of lactose metabolism, and appearance of partial and full lactose-fermenting revertants in Streptococcus cremoris B1. Journal of Bacteriology,129 1 367 377 0021-9193 - 5.
Aymerich S. Steinmetz M. 1992 Specificity determinants and structural features in the RNA target of the bacterial antiterminator proteins of the BglG/SacY family. Proceedings of the National Academy of Sciences of the United States of America,89 21 10410 10414 0027-8424 - 6.
Bardowski J. Ehrlich S. D. Chopin A. 1994 BglR protein, which belongs to the BglG family of transcriptional antiterminators, is involved in beta-glucoside utilization in Lactococcus lactis. Journal of Bacteriology,176 18 5681 5685 0000-0021 - 7.
Bardowski J. Ehrlich S. D. Chopin A. 1995 A protein, belonging to a family of RNA-binding transcriptional anti-terminators, controls beta-glucoside assimilation in Lactococcus lactis. Developments in Biological Standardization,85 555 559 0301-5149 - 8.
Barrière C. Veiga-da-Cunha M. Pons N. Guédon E. van Hijum S. A. Kok J. Kuipers O. P. DS Ehrlich Renault P. 2005 Fructose utilization in Lactococcus lactis as a model for low-GC gram-positive bacteria: its regulator, signal, and DNA-binding site. Journal of Bacteriology,187 11 3752 3761 0021-9193 - 9.
Bauer S. Tholen A. Overmann J. Brune A. 2000 Characterization of abundance and diversity of lactic acid bacteria in the hindgut of wood- and soil-feeding termites by molecular and culture-dependent techniques. Archives of Microbiology,173 2 126 137 0302-8933 - 10.
Bayjanov J. R. Wels M. Starrenburg M. van Hylckama Vlieg. J. E. Siezen R. J. Molenaar D. 2009 PanCGH: a genotype-calling algorithm for pangenome CGH data. Bioinformatics (oxford, England),25 3 309 314 1367-4811 - 11.
Bissett D. L. Anderson R. L. 1974 Lactose and D-galactose metabolism in group N streptococci: presence of enzymes for both the D-galactose 1-phosphate and D-tagatose 6-phosphate pathways. Journal of Bacteriology,117 1 318 320 0021-9193 - 12.
Bolotin A. Wincker P. Mauger S. Jaillon O. Malarme K. Weissenbach J. Ehrlich S. D. Sorokin A. 2001 The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Research,11 5 731 753 1088-9051 - 13.
Bouffard G. G. Rudd K. E. Adhya S. L. 1994 Dependence of lactose metabolism upon mutarotase encoded in the gal operon in Escherichia coli. Journal of Molecular Biology,244 3 269 278 0022-2836 - 14.
Campelo A. B. Gaspar P. Roces C. Rodríguez A. Kok J. Kuipers O. P. Neves A. R. Martínez B. 2011 The Lcn972 bacteriocin-encoding plasmid pBL1 impairs cellobiose metabolism in Lactococcus lactis. Applied and Environmental Microbiology,77 21 7576 7585 1098-5336 - 15.
Castro R. Neves A. R. Fonseca L. L. Pool W. A. Kok J. Kuipers O. P. Santos H. 2009 Characterization of the individual glucose uptake systems of Lactococcus lactis: mannose-PTS, cellobiose-PTS and the novel GlcU permease. Molecular Microbiology,71 3 795 806 1365-2958 - 16.
Chopin A. Chopin M. C. Moillo-Batt A. Langella P. 1984 Two plasmid-determined restriction and modification systems in Streptococcus lactis. Plasmid,11 3 260 263 0014-7619 X - 17.
Cocaign-Bousquet M. Even S. Lindley N. D. Loubière P. 2002 Anaerobic sugar catabolism in Lactococcus lactis: genetic regulation and enzyme control over pathway flux. Applied Microbiology and Biotechnology,60 1-2 24 32 0175-7598 - 18.
Cords B. R. Mc Kay L. L. 1974 Characterization of lactose-fermenting revertants from lactose-negative Streptococcus lactis C2 mutants. Journal of Bacteriology,119 3 830 839 0021-9193 - 19.
Crow V. L. Thomas T. D. 1984 Properties of a Streptococcus lactis strain that ferments lactose slowly. Journal of Bacteriology,157 1 28 34 0021-9193 - 20.
Daly C. 1983 The use of mesophilic cultures in the dairy industry. Antonie Van Leeuwenhoek,49 3 297 312 0003-6072 - 21.
David S. Stevens H. van Riel M. Simons G. de Vos W. M. 1992 Leuconostoc lactis beta-galactosidase is encoded by two overlapping genes. Journal of Bacteriology,174 13 4475 4481 0021-9193 - 22.
Davidson B. E. Kordias N. Dobos M. Hillier A. J. 1996 Genomic organization of lactic acid bacteria. Antonie Van Leeuwenhoek,70 2-4 161 183 0003-6072 - 23.
De Vos W. M. Simons G. 1988 Molecular cloning of lactose genes in dairy lactic streptococci: the phospho-beta-galactosidase and beta-galactosidase genes and their expression products. Biochimie,70 4 461 473 0300-9084 - 24.
de Vos W. M. EE Vaughan 1994 Genetics of lactose utilization in lactic acid bacteria. FEMS Microbiology Reviews,15 2-3 217 237 0168-6445 - 25.
de Vos W. M. 1996 Metabolic engineering of sugar catabolism in lactic acid bacteria. Antonie Van Leeuwenhoek,70 2-4 223 242 0003-6072 - 26.
Fernández E. Alegría A. Delgado S. Martín M. C. Mayo B. 2011 Comparative phenotypic and molecular genetic profiling of wild Lactococcus lactis subsp. lactis strains of the L. lactis subsp. lactis and L. lactis subsp. cremoris genotypes, isolated from starter-free cheeses made of raw milk. Applied and Environmental Microbiology,77 15 5324 5335 1098-5336 - 27.
Franz C. M. A. P. Cho-S G. Holzapfel W. H. Gálvez A. 2010 Safety of Lactic Acid Bacteria, In: Biotechnology of Lactic Acid Bacteria: Novel Applications, Mozzi, F., Raya, RR. & Vignolo, GM.,341 359 Wiley-Blackwell,978-0-81381-583-1 Oxford, UK - 28.
MJ Gasson 1983 Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. Journal of Bacteriology,154 1 1 9 0021-9193 - 29.
MJ Gasson 1990 In vivo genetic systems in lactic acid bacteria. FEMS Microbiology Reviews,7 1-2 43 60 0168-6445 - 30.
Gilliland S. E. 1989 Acidophilus milk products: a review of potential benefits to consumers. Journal of Dairy Science,72 10 2483 2494 0022-0302 - 31.
Godon J. J. Delorme C. Ehrlich S. D. Renault P. 1992 Divergence of Genomic Sequences between Lactococcus lactis subsp. lactis and Lactococcus lactis subsp. cremoris. Applied and Environmental Microbiology,58 12 4045 4047 0099-2240 - 32.
Górecki R. K. Koryszewska-Bagińska A. Gołębiewski M. Żylińska J. Grynberg M. Bardowski J. K. 2011 Adaptative potential of the Lactococcus lactis IL594 strain encoded in its 7 plasmids. Plos One,6 7 e22238 1932-6203 - 33.
Griffin H. G. Mac Cormick. CA MJ Gasson 1996 Cloning, DNA sequence, and regulation of expression of a gene encoding beta-galactosidase from Lactococcus lactis. DNA Sequence : the Journal of DNA Sequencing and Mapping,6 6 337 346 1042-5179 - 34.
Grossiord B. P. Luesink E. J. EE Vaughan Arnaud A. de Vos W. M. 2003 Characterization, expression, and mutation of the Lactococcus lactis galPMKTE genes, involved in galactose utilization via the Leloir pathway. Journal of Bacteriology,185 3 870 878 0021-9193 - 35.
Gunnewijk M. G. Poolman B. 2000a HPr(His approximately P)-mediated phosphorylation differently affects counterflow and proton motive force-driven uptake via the lactose transport protein of Streptococcus thermophilus. The Journal of Biological Chemistry,275 44 34080 34085 0021-9258 - 36.
Gunnewijk M. G. Poolman B. 2000b Phosphorylation state of HPr determines the level of expression and the extent of phosphorylation of the lactose transport protein of Streptococcus thermophilus. The Journal of Biological Chemistry,275 44 34073 34079 0021-9258 - 37.
Gunnewijk M. G. Postma P. W. Poolman B. 1999 Phosphorylation and functional properties of the IIA domain of the lactose transport protein of Streptococcus thermophilus. Journal of Bacteriology,181 2 632 641 0021-9193 - 38.
Itoi S. Abe T. Washio S. Ikuno E. Kanomata Y. Sugita H. 2008 Isolation of halotolerant Lactococcus lactis subsp. lactis from intestinal tract of coastal fish. International Journal of Food Microbiology,121 1 116 121 0000-0168 - 39.
Itoi S. Yuasa K. Washio S. Abe T. Ikuno E. Sugita H. 2009 Phenotypic variation in Lactococcus lactis subsp. lactis isolates derived from intestinal tracts of marine and freshwater fish. Journal of Applied Microbiology,107 3 867 874 1365-2672 - 40.
Kelly W. Ward L. 2002 Genotypic vs. phenotypic biodiversity in Lactococcus lactis. Microbiology (reading, England),148 No. Pt 11,3332 3333 1350-0872 - 41.
Kelly W. J. Davey G. P. Ward L. J. 1998 Characterization of lactococci isolated from minimally processed fresh fruit and vegetables. International Journal of Food Microbiology,45 2 85 92 0168-1605 - 42.
Kelly W. J. Ward L. J. Leahy S. C. 2010 Chromosomal diversity in Lactococcus lactis and the origin of dairy starter cultures. Genome Biology and Evolution,2 729 744 1759-6653 - 43.
Klijn N. Weerkamp A. H. de Vos W. M. 1995 Detection and characterization of lactose-utilizing Lactococcus spp. in natural ecosystems. Applied and Environmental Microbiology,61 2 788 792 0099-2240 - 44.
Kowalczyk M. Cocaign-Bousquet M. Loubiere P. Bardowski J. 2008 Identification and functional characterisation of cellobiose and lactose transport systems in Lactococcus lactis IL1403. Archives of Microbiology,189 3 187 196 0302-8933 - 45.
Kuipers O. P. de Ruyter P. G. Kleerebezem M. de Vos W. M. 1998 Quorum sensing-controlled gene expression in lactic acid bacteria. Journal of Biotechnology,64 1 15 21 - 46.
BA Latorre-Guzman Kado C. I. Kunkee R. 1977 Lactobacillus hordniae, a new species from the leafhopper (Hordnia circellata). International Journal of Systematic Bacteriology,27 4 362 370 1466-5026 - 47.
Le Bourgeois P. Lautier M. van den Berghe. L. MJ Gasson Ritzenthaler P. 1995 Physical and genetic map of the Lactococcus lactis subsp. cremoris MG1363 chromosome: comparison with that of Lactococcus lactis subsp. lactis IL 1403 reveals a large genome inversion. Journal of Bacteriology,177 10 2840 2850 0021-9193 - 48.
Linares D. M. Kok J. Poolman B. 2010 Genome sequences of Lactococcus lactis MG1363 (revised) and NZ9000 and comparative physiological studies. Journal of Bacteriology,192 21 5806 5812 1098-5530 - 49.
Lorca G. Reddy L. Nguyen A. Sun E. I. Tseng J. Yen-R M. Saier M. H. 2010 Lactic Acid Bacteria: Comparative Genomic Analyses of Transport Systems, In: Biotechnology of Lactic Acid Bacteria: Novel Applications, Mozzi, F., Raya, RR. & Vignolo, GM.,73 87 978-0-81381-583-1 Oxford, UK - 50.
Luesink E. J. van Herpen R. E. Grossiord B. P. Kuipers O. P. de Vos W. M. 1998 Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA. Molecular Microbiology,30 4 789 798 0095-0382 X - 51.
Mc Clelland M. Sanderson K. E. Spieth J. Clifton S. W. Latreille P. Courtney L. Porwollik S. Ali J. Dante M. Du F. Hou S. Layman D. Leonard S. Nguyen C. Scott K. Holmes A. Grewal N. Mulvaney E. Ryan E. Sun H. Florea L. Miller W. Stoneking T. Nhan M. Waterston R. Wilson R. K. 2001 Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature,413 6858 852 856 0028-0836 - 52.
Mc Kay L. L. 1983 Functional properties of plasmids in lactic streptococci. Antonie Van Leeuwenhoek,49 3 259 274 0003-6072 - 53.
Mollet B. Pilloud N. 1991 Galactose utilization in Lactobacillus helveticus: isolation and characterization of the galactokinase (galK) and galactose-1-phosphate uridyl transferase (galT) genes. Journal of Bacteriology,173 14 4464 4473 0021-9193 - 54.
Neves A. R. Pool W. A. Kok J. Kuipers O. P. Santos H. 2005 Overview on sugar metabolism and its control in Lactococcus lactis- the input from in vivo NMR. FEMS Microbiology Reviews,29 3 531 554 0168-6445 - 55.
Neves A. R. Pool W. A. Solopova A. Kok J. Santos H. Kuipers O. P. 2010 Towards enhanced galactose utilization by Lactococcus lactis. Applied and Environmental Microbiology,76 21 7048 7060 1098-5336 - 56.
Nomura M. Kimoto H. Someya Y. Suzuki I. 1999 Novel characteristic for distinguishing Lactococcus lactis subsp. lactis from subsp. cremoris. International Journal of Systematic Bacteriology,49 Pt 1,163 166 0020-7713 - 57.
Nomura M. Kobayashi M. Okamoto T. 2002 Rapid PCR-based method which can determine both phenotype and genotype of Lactococcus lactis subspecies. Applied and Environmental Microbiology,68 5 2209 2213 0099-2240 - 58.
Orla-Jensen S. 1919 The lactic acid bacteria,1 196 Host & Son, Copenhagen, Denmark - 59.
Pérez T. Balcázar J. L. Peix A. Valverde A. Velázquez E. de Blas I. Ruiz-Zarzuela I. 2011 Lactococcus lactis subsp. tructae subsp. nov. isolated from the intestinal mucus of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). International Journal of Systematic and Evolutionary Microbiology,61 No. Pt 8,1894 1898 0000-1466 - 60.
Pool W. A. Neves A. R. Kok J. Santos H. Kuipers O. P. 2006 Natural sweetening of food products by engineering Lactococcus lactis for glucose production. Metabolic Engineering,8 5 456 464 1096-7176 - 61.
Poolman B. 1993 Energy transduction in lactic acid bacteria. FEMS Microbiology Reviews,12 1-3 125 147 0168-6445 - 62.
Poolman B. Royer T. J. Mainzer S. E. Schmidt B. F. 1990 Carbohydrate utilization in Streptococcus thermophilus: characterization of the genes for aldose 1-epimerase (mutarotase) and UDPglucose 4-epimerase. Journal of Bacteriology,172 7 4037 4047 0021-9193 - 63.
Rademaker J. L. Herbet H. MJ Starrenburg Naser S. M. Gevers D. Kelly W. J. Hugenholtz J. Swings J. van Hylckama Vlieg. J. E. 2007 Diversity analysis of dairy and nondairy Lactococcus lactis isolates, using a novel multilocus sequence analysis scheme and (GTG)5-PCR fingerprinting. Applied and Environmental Microbiology,73 22 7128 7137 0099-2240 - 64.
Rutberg B. 1997 Antitermination of transcription of catabolic operons. Molecular Microbiology,23 3 413 421 0095-0382 X - 65.
Saier M. H. 2000 Families of transmembrane sugar transport proteins. Molecular Microbiology,35 4 699 710 0095-0382 X - 66.
Salama M. Sandine W. Giovannoni S. 1991 Development and application of oligonucleotide probes for identification of Lactococcus lactis subsp. cremoris. Applied and Environmental Microbiology,57 5 1313 1318 0099-2240 - 67.
Sandine W. E. 1988 New nomenclature of the non-rod-shaped lactic acid bacteria. Biochimie,70 4 519 521 0300-9084 - 68.
Schleifer K. H. Kraus J. Dvorak C. Kilpper-Bälz R. MD Collins Fischer W. 1985 Transfer of Streptococcus lactis and related streptococci to the genus Lactococcus gen. nov. Systematic and Applied Microbiology,6 2 183 195 0723-2020 - 69.
Schultz J. E. Breznak J. A. 1978 Heterotrophic bacteria present in hindguts of wood-eating termites [Reticulitermes flavipes (Kollar)]. Applied and Environmental Microbiology,35 5 930 936 0099-2240 - 70.
Siezen R. J. Bayjanov J. Renckens B. Wels M. van Hijum S. A. Molenaar D. van Hylckama Vlieg. J. E. 2010 Complete genome sequence of Lactococcus lactis subsp. lactis KF147, a plant-associated lactic acid bacterium. Journal of Bacteriology,192 10 2649 2650 1098-5530 - 71.
Siezen R. J. MJ Starrenburg Boekhorst J. Renckens B. Molenaar D. van Hylckama Vlieg. J. E. 2008 Genome-scale genotype-phenotype matching of two Lactococcus lactis isolates from plants identifies mechanisms of adaptation to the plant niche. Applied and Environmental Microbiology,74 2 424 436 1098-5336 - 72.
Simons G. Nijhuis M. de Vos W. M. 1993 Integration and gene replacement in the Lactococcus lactis lac operon: induction of a cryptic phospho-beta-glucosidase in LacG-deficient strains. Journal of Bacteriology,175 16 5168 5175 0021-9193 - 73.
Smit G. BA Smit Engels W. J. 2005 Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiology Reviews,29 3 591 610 0168-6445 - 74.
Solem C. Koebmann B. Jensen P. R. 2008 The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus. Biotechnology and Applied Biochemistry,50 No. Pt 1,35 40 1470-8744 - 75.
Sørensen K. I. Hove-Jensen B. 1996 Ribose catabolism of Escherichia coli: characterization of the rpiB gene encoding ribose phosphate isomerase B and of the rpiR gene, which is involved in regulation of rpiB expression. Journal of Bacteriology,178 4 1003 1011 0021-9193 - 76.
ME Stiles Holzapfel W. H. 1997 Lactic acid bacteria of foods and their current taxonomy. International Journal of Food Microbiology,36 1 1 29 0168-1605 - 77.
Tailliez P. Tremblay J. Ehrlich S. D. Chopin A. 1998 Molecular diversity and relationship within Lactococcus lactis, as revealed by randomly amplified polymorphic DNA (RAPD). Systematic and Applied Microbiology,21 4 530 538 0723-2020 - 78.
Tanigawa K. Kawabata H. Watanabe K. 2010 Identification and typing of Lactococcus lactis by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Applied and Environmental Microbiology,76 12 4055 4062 0000-1098 - 79.
Teeri T. T. 1997 Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends in Biotechnology,15 5 160 167 0000-0167 - 80.
Tobisch S. Glaser P. Krüger S. Hecker M. 1997 Identification and characterization of a new beta-glucoside utilization system in Bacillus subtilis. Journal of Bacteriology,179 2 496 506 0021-9193 - 81.
van Hylckama Vlieg. J. E. Rademaker J. L. Bachmann H. Molenaar D. Kelly W. J. Siezen R. J. 2006 Natural diversity and adaptive responses of Lactococcus lactis. Current Opinion in Biotechnology,17 2 183 190 0958-1669 - 82.
van Rooijen R. J. van Schalkwijk S. de Vos W. M. 1991 Molecular cloning, characterization, and nucleotide sequence of the tagatose 6-phosphate pathway gene cluster of the lactose operon of Lactococcus lactis. The Journal of Biological Chemistry,266 11 7176 7181 0021-9258 - 83.
EE Vaughan David S. de Vos W. M. 1996 The lactose transporter in Leuconostoc lactis is a new member of the LacS subfamily of galactoside-pentose-hexuronide translocators. Applied and Environmental Microbiology,62 5 1574 1582 0099-2240 - 84.
EE Vaughan Pridmore R. D. Mollet B. 1998 Transcriptional regulation and evolution of lactose genes in the galactose-lactose operon of Lactococcus lactis NCDO2054. Journal of Bacteriology,180 18 4893 4902 0021-9193 - 85.
EE Vaughan van den Bogaard. P. T. Catzeddu P. Kuipers O. P. de Vos W. M. 2001 Activation of silent gal genes in the lac-gal regulon of Streptococcus thermophilus. Journal of Bacteriology,183 4 1184 1194 0021-9193 - 86.
Wegmann U. O’Connell-Motherway M. Zomer A. Buist G. Shearman C. Canchaya C. Ventura M. Goesmann A. MJ Gasson Kuipers O. P. van Sinderen D. Kok J. 2007 Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363. Journal of Bacteriology,189 8 3256 3270 0021-9193 - 87.
MJ Weickert Adhya S. 1992 A family of bacterial regulators homologous to Gal and Lac repressors. The Journal of Biological Chemistry,267 22 15869 15874 0021-9258 - 88.
MJ Weickert Chambliss G. H. 1990 Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America,87 16 6238 6242 0027-8424 - 89.
Williams S. G. Greenwood J. A. Jones C. W. 1992 Molecular analysis of the lac operon encoding the binding-protein-dependent lactose transport system and beta-galactosidase in Agrobacterium radiobacter. Molecular Microbiology,6 13 1755 1768 0095-0382 X - 90.
Zomer A. L. Buist G. Larsen R. Kok J. Kuipers O. P. 2007 Time-resolved determination of the CcpA regulon of Lactococcus lactis subsp. cremoris MG1363. Journal of Bacteriology,189 4 1366 1381 0021-9193