\r\n\t
",isbn:"978-1-83968-930-7",printIsbn:"978-1-83968-929-1",pdfIsbn:"978-1-83968-931-4",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"f159c09dab49a9bc6239b42660d8e8ec",bookSignature:"Dr. Yongxia Zhou",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10310.jpg",keywords:"Brain Science, Brain-Computer Interface, Imaging of Neural Networks, Brain Networks, Brain Function, Molecular Imaging, Brain and Mind, Functional Imaging, Multimodal Imaging, Neuroplasticity Enhancement, Learning, Memory",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 28th 2020",dateEndSecondStepPublish:"October 26th 2020",dateEndThirdStepPublish:"December 25th 2020",dateEndFourthStepPublish:"March 15th 2021",dateEndFifthStepPublish:"May 14th 2021",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Yongxia Zhou had completed her Ph.D. from the University of Southern California in Biomedical imaging (2004) and had been trained and worked as a neuroimaging scientist in several prestigious institutes including Columbia University, New York University, University of Pennsylvania. Her research interest is focused on neuroimaging and neuroscience applications.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",biography:"Yongxia Zhou obtained a PhD from the University of Southern California in Biomedical Imaging in 2004. Her main research interest is in radiology and neuroscience applications. She had been trained and worked as a medical imaging scientist at several prestigious institutes including Columbia University, University of Pennsylvania, and the National Institutes of Health (NIH). Her research focuses on multimodal neuroimaging integration including MRI/PET and EEG/MEG instrumentation that makes the best use of multiple modalities to help interpret underlying disease mechanisms. She has authored six monograph books, and edited several books for well-known publishers including IntechOpen and Nova Science. She has published more than 100 papers and presentations in many reputed international journals and conferences, and served as reviewer and editor for several well-known associations.",institutionString:"University of Southern California",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"247041",firstName:"Dolores",lastName:"Kuzelj",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/247041/images/7108_n.jpg",email:"dolores@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"9347",title:"Neuroimaging",subtitle:"Neurobiology, Multimodal and Network Applications",isOpenForSubmission:!1,hash:"a3479e76c6ac538aac76409c9efb7e41",slug:"neuroimaging-neurobiology-multimodal-and-network-applications",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9347.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8125",title:"Medical Imaging",subtitle:"Principles and Applications",isOpenForSubmission:!1,hash:"e0fa3875d6f66d5ccd8cd3f1444c3fb9",slug:"medical-imaging-principles-and-applications",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/8125.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7862",title:"Traumatic Brain Injury",subtitle:"Neurobiology, Diagnosis and Treatment",isOpenForSubmission:!1,hash:"247618f9fcfd8e9054e1202968e3387b",slug:"traumatic-brain-injury-neurobiology-diagnosis-and-treatment",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/7862.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"René Mauricio",surname:"Barría",slug:"rene-mauricio-barria",fullName:"René Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"58716",title:"Long-Term Potentiation-Associated Gene Expression: Involvement of the Tumour Protein p53",doi:"10.5772/intechopen.73219",slug:"long-term-potentiation-associated-gene-expression-involvement-of-the-tumour-protein-p53",body:'Long-term alterations in the strength of synaptic transmission are a key physiological mechanism of learning and memory. To explain the formation of conditioned reflexes, Donald Hebb proposed that simultaneous or quasi-simultaneous discharge of two neuronal populations leads to the establishment of a functional connection between them [1]. The first attempts to find “Hebbian synapses” were undertaken by Jan Bureš [2, 3]. In his experimental model, sound or tactile sensory conditioned stimulus (CS), which slightly changed a frequency of neuronal discharges, was reinforced by a depolarizing current delivered through a recording microelectrode (unconditioned stimulus, US), which caused a strong neuronal discharge. In some neurons, responses to CS essentially increased after appropriate combination of CS and US. Interestingly, most significant effects were observed in the hippocampus [4], which is critical for acquisition and retrieval of some forms of memory [5, 6]. However, the persistence of plastic changes in this and other similar experimental models (tens of minutes) was relatively low in comparison with memory traces (reviewed in [7]).
The discovery of LTP in the hippocampus was a next essential step in the research of cellular and molecular mechanisms of synaptic plasticity [8]. LTP is the most studied form of plasticity associated with alterations in synaptic strength. A fairly common model of LTP is the increase in responses of postsynaptic neurons to stimulation of presynaptic fibers after high frequency stimulation (HFS)—tetanization or theta-stimulation—of the afferents. LTP is widely accepted as a neuronal mechanism of learning [9, 10, 11]. LTP that is dependent on glutamate receptors of NMDA type (NMDAR) is the most widespread in CNS and the most studied. LTP of perforant fiber-granular cell synapses in the dentate gyrus (DG) and LTP of Schaffer collateral (SC)-pyramidal cells in the area CA1 of the hippocampus are classic examples of this kind of LTP.
There are two main phases of LTP: the early phase lasting usually less than 1 hour and the late phase lasting several hours or longer (months). The early phase of LTP is based on post-translational modifications of pre-existing synaptic proteins and the late phase of LTP requires de novo protein synthesis and gene expression [12, 13, 14]. According to varying estimates, within 4–8 h after induction, LTP is maintained due to the translation of pre-existing mRNAs, while transcription is necessary for later stages [15, 16, 17]. However, the disturbance of CREB-dependent gene expression due to inhibition of CREB coactivator TORC1 leads to a decline in LTP maintenance, which became evident as early as 75 min after induction of LTP [18]. Such contradictions might reflect varying demand for gene expression in different experimental conditions or difficulties in accounting for the side effects of intracellular signalling network disturbance. As a rule, the later inhibitors of translation or transcription are applied after the induction of LTP, the less they influence the maintenance of the late phase of LTP [19]. Transcription and translation within a time window ≤2 h after the induction of LTP are most critical for the persistence of LTP [20].
Identification of genes regulated by neuronal activity (ARGs) and clarification of the mechanisms of this regulation is an intensively developing research area. The families of transcription factors (TFs) thus far found to be critically involved in synaptic plasticity and memory formation include CREB, C/EBP, AP-1, Egr, and Rel/NFκB [21, 22]. Important advances in this field have been achieved by using microarrays and high-throughput sequencing. Hundreds of ARGs have been identified with complex expression dynamics after various kinds of stimulation: seizures, chemical stimulations, behavioural tasks, and HFS [20, 22, 23, 24]. Among transcriptomic studies of LTP in the hippocampus, works with induction of LTP in DG in vivo prevail. Exceptions include HFS-induced LTP in DG mini-slices [25] and chemically induced LTP in CA3/CA1 mini-slices [20] in mice.
Remarkably, the ARG lists from different authors showed little overlap [22]. One of the multiple reasons of this is a highly dynamic temporal regulation of the neuronal activity-regulated gene expression. For example, the level of Fos mRNA increased 30 min after tetanization, then returned to the initial level after 60 min, and again increased 120 min after LTP induction in the CA1 field of rat hippocampal slices [26]. Only 8 genes were overlapping from 226 and 190 genes differentially expressed 20 min and 5 h, correspondingly, after LTP induction in DG in vivo [24, 27]. Rapid dynamics of transcriptional profiles was demonstrated also in the hippocampus after learning [28] and in mice hippocampal mini-slices after induction of LTP [20, 25]. Therefore, the duration of LTP-inducing stimulation is of special significance for reproducibility of gene expression data, particularly when early stages of the transcriptional response are examined. Meanwhile, the duration of LTP-inducing stimulation in different works varies from 1.5 min [25] to 45 min [23]. Moreover, analysed time points are quite diverse in different experiments.
Temperature is also a factor influencing gene expression dynamics in brain slices. For example, differential expression of Egr1 was not detected in the CA1 region of hippocampal slices after induction of LTP at room temperature [29], while at a temperature of ≥30°C, LTP induction led to the increase in the level of Egr1 mRNA in the area CA1 [20, 26, 30, 31].
In addition, the comparison of datasets generated in different studies is complicated by the limited access to original data. Only partial lists of ARGs, which passed arbitrarily designed significance filters, were often presented by authors. Nevertheless, differential expression of some genes is reproduced quite frequently. This is particularly true for early genes, association of which with LTP was already demonstrated in earlier works on this issue, such as Fos, Jun, Egr1, Arc, Homer1, and Bdnf [32, 33], which are well known.
One of the most serious problems is a great diversity of the brain cell types, which is reflected in the diversity of their transcriptomes [34, 35]. For example, granular cells of the DG and pyramidal cells of the СА1-CA4 regions of the hippocampus differ in their transcriptomes [36], which can exhibit distinct dynamics after LTP induction [29]. Dorsal and ventral subregions of the rodent area CA1 also differ in their transcriptomes [37]. LTP induction alters gene expression not only in neurons but also in glial cells [20, 38, 39]. The role of glia in a structural, metabolic, and trophic support of neurons is well known. Undoubtedly, neuron life support is crucial for all brain functions including learning. For example, learning in rats is associated with an increase in extracellular lactate concentration in the brain, and disruption of lactate export out of astrocytes or import into neurons disturbs long-term memory and LTP in hippocampus [40]. In addition, glial cells directly participate in synaptic transmission [41, 42]. Astrocytes respond to neurotransmitters by an increase in intracellular calcium concentration followed by secretion of gliotransmitters modulating synaptic transmission and plasticity. Therefore, adequate research of LTP-associated gene expression must include an analysis of the cellular localization of observed phenomena, which is quite laborious. The task is somewhat easier, when ARGs are cell-specific.
One of such relatively cell-specific genes is S100B. In the adult brain, S100B protein is synthesized mainly in astrocytes. It is constitutively secreted and its secretion can be regulated by a number of factors [43] including neuronal activity [44]. In physiological (nanomolar) concentrations, it possesses neurotrophic activities [43] and modulates neuronal activity [44] and synaptic plasticity [45]. S100B-knockout mice have enhanced LTP in the area CA1 of the hippocampus, enhanced spatial memory in the Morris water maze test, and enhanced fear memory in the contextual fear conditioning [45].
However, S100B-knockout animals are more prone to seizures during kindling, than wild-type controls [46], which can be, in part, a consequence of enhanced LTP, since there are parallels between kindling and LTP [47]. Disturbed calcium homeostasis in glial cells of mutant mice [48] is also a possible reason of their susceptibility to seizures, since calcium waves in astrocytes play an important role in epileptogenesis [49]. Thus, normal S100B expression is necessary for proper functioning of neuroglial networks. However, at high (micromolar) doses, S100B is toxic [43]. S100B is used as a marker of brain damage, since it can cross the blood-brain barrier and several brain pathologies are associated with elevated levels of S100B in the serum [50]. The S100B allele with increased gene expression is a putative risk variant for bipolar disorder [51]. Therefore, chronically increased S100B expression, in combination with additional adverse factors, can be harmful. In this context, the fact that learning in rats can increase S100B level in the hippocampus and other brain regions [52, 53] is of special interest.
To study the mechanisms of the neuroplasticity-associated S100B expression upregulation, we have modelled this phenomenon using long-term post-tetanic potentiation in rat hippocampal slices [39, 54, 55, 56, 57, 58, 59, 60].
The increase in S100B mRNA level was detected in area CA1 of slices prepared from rat dorsal hippocampus as soon as 10 min after tetanization of Schaffer collaterals, and the maximal increase in S100B mRNA level occurred 20–30 min after tetanization [39, 59]. Low frequency stimulation, which does not induce LTP, does not alter S100B expression [54]. The level of S100B protein increased significantly 20 min after tetanization [59] and remained elevated up to 240 min after tetanization.
Transcription factor p53, well known as a key regulator of apoptosis, proved to be one of the TFs determining S100B mRNA dynamics after LTP induction. We analysed a 2 kb promoter region proximal to the first of the two alternative transcription starts of the rat S100B gene and identified putative p53-responsive elements (pREs) partially matching the canonical р53 binding sequence RRRCWWGYYY(n)0-13RRRCWWGYYY [61, 62]. One example is presented in Figure 1. This is the only pRE we recovered, which apparently resembles one of the pREs identified in a similar promoter region of the human gene S100B [63]. The mouse S100B promoter also contains a pRE, which is similar to the rat pRE (Figure 1). It is tempting to speculate that this conserved site is particularly important for S100B regulation in rodents and humans. We used chromatin immunoprecipitation to study р53 binding to three loci in S100B promoter with pREs within them (Figure 1). The p53 binding to all these sites in S100B promoter strongly correlated with S100B mRNA dynamics in a time window 10–40 min after SC tetanization [60]. Interestingly, the p53 binding to the conserved site was most expressed.
Putative p53 responsive elements in the promoters of rat, human, and mouse genes S100B. Top—Schematic representation of human and rat S100B promoters, which are aligned relative to conserved SOX9 responsive elements. “+1”— Transcription starts. Boxes indicate positions of pREs. Sites 1/3 were tested for p53 binding. Bottom—Sequences of pRE in the rat S100B site 2 and homologous pREs of human and mouse S100B promoters. Capitalized letters denote sequences partially matching to the consensus RRRCWWGYYY. Mismatches are underlined. Vertical lines indicate nucleotides conserved among rat and human or rat and mouse genes S100B.
The increase in p53 DNA-bound fraction was not associated with the increase in total p53 protein, which suggests p53 activation was due to post-translational modifications. The total p53 protein level even decreased in the area CA1 20 min after LTP induction, while p53 mRNA level did not change [60]. Therefore, the p53 protein degradation accelerated or/and p53 mRNA translation slowed in the early phase of LTP.
To confirm that LTP-associated p53 binding to S100B promoter is functional, we carried out experiments [57, 58] with the inhibitor of p53-dependent transcription, pifithrin-β and p53 activators, nutlin-3 and EX-527, which are inhibitors of p53 negative regulators ubiquitin ligase Mdm2 and deacetylase Sirt1, correspondingly. The two p53 activators increased the basal level of S100B mRNA. However, LTP induction in their presence led to further significant increase in S100B mRNA level. Moreover, p53 inhibitor pifithrin-β incompletely suppressed tetanization-induced S100B upregulation [57]. This suggests that some additional factors contributed to S100B transactivation in our experiments, besides p53.
Thus, LTP in the area CA1 of the hippocampus is associated with transient p53 activation, which is one of the reasons of increased S100B synthesis. The decrease in p53 protein level after SC tetanization indicates that p53 negative regulators are activated soon after LTP induction. As mentioned above, p53 negative regulators include ubiquitin ligase Mdm2 and deacetylase Sirt1. Mdm2 negatively modulates p53 transcription activity, protein stability, and mRNA translation [64, 65]. Ubiquitination of lysine residues of p53 promotes its export from the nuclei followed by its degradation in proteasomes [66]. Thus, acetylation of lysine residues is an important element of p53 activation promoting its stabilization and import into the nucleus, while deacetylation decreases this activity and facilitates ubiquitination of lysine residues. Deacetylases controlling p53 acetylation status include NAD-dependent deacetylases, Sirt1 and Sirt2 [67, 68], and nonselective inhibitor of sirtuins tenovin-1 inhibits Mdm2-dependent degradation of p53 [69].
For evaluation of the contribution of Mdm2 and Sirt1 in tetanization-induced p53 protein downregulation, we studied the effects of Mdm2 inhibitor nutlin-3 and Sirt1 selective inhibitor EX-527 on the level of p53 protein after LTP induction. Inhibition of Mdm2 or Sirt1 fully prevented tetanization-induced decrease in p53 protein level [56, 57]. Therefore, Sirt1/Mdm2 tandem plays a key role in the p53 protein level decrease after LTP induction in the area CA1 of the hippocampus.
To reveal mechanisms of S100B expression regulation in more detail, we studied the influence of inhibitors of several intracellular regulatory network elements on tetanization-induced S100B expression [55, 57, 58]. Figure 2 illustrates our current hypothesis concerning mechanisms of LTP-associated S100B upregulation. The obtained results indicate that NMDAR and Ca2+/calmodulin-dependent protein kinases (CaMKs) are essentially involved in neuronal activity-regulated S100B expression. However, contributions of separate CaMKs were not determined, since pan-CaMK inhibitor was used.
Putative mechanism of S100B regulation during LTP. Dots in synaptic cleft— glutamate. mGluR—metabotropic glutamate receptors; Akt, ASK1—protein kinases; and CaMKK—CaMK kinase. Involvement of the factors shown in bold was tested in experiments with appropriate inhibitors; hypothetical intermediates are shown in italics.
It is an open question, furthermore, where NMDARs participating in S100B regulation are located. The presence of functional NMDARs in adult rodent astrocytes has not been evidenced reliably. However, neuronal NMDAR activation could lead to an increase in extracellular potassium concentration (due to potassium efflux through postsynaptic NMDARs) followed by presynaptic terminal depolarization and enhanced glutamate release [70], which can increase intracellular calcium levels through activation of metabotropic glutamate receptors and induction of gene expression in astrocytes.
Mitogen-activated protein kinase (MAPK) p38 and 90 kDa ribosomal S6 kinases (RSKs) are also involved in S100B expression induction, while participation of MAPK/ERK and protein kinases C is unlikely [58]. MAPK/ERK plays an important role in LTP-associated gene regulation, and RSKs are believed to mediate its long-term effects [19, 71]. Nevertheless, the fact that inhibition of ERK cascade did not suppress tetanization-induced S100B transactivation [58] is not surprising. It seems that neurons and astrocytes differ in their mechanisms of Ca2+-dependent MAPK/ERK activation, since glutamate application did not activate MAPK/ERK in cultured astrocytes, in contrast to neurons [72].
Then, how are RSKs activated during LTP in astrocytes in this case? There are alternative ways of RSK regulation. For example, in dendritic cells, RSKs can be activated through MAPK p38–MK2 [73]. Protein kinase MK2 is also expressed in microglia, neurons, and astrocytes [74]. Therefore, theoretically, Ca2+-dependent S100B transactivation through the CaMK–ASK1–p38–MK2–RSK2–p53 pathway is possible (Figure 2).
Further, we questioned to what extent the short-term p53 activation in the early stage of LTP contributes to transcriptome dynamics. To estimate this contribution, we have studied the expression of several tens of genes that are directly or indirectly regulated by p53 30 min after induction of LTP [60]. The p53 activator nutlin-3 was used for the preliminary assessment of a putative participation of p53 in LTP-associated regulation of these genes. If p53 contribution to tetanization-induced expression of a gene is significant, nutlin-3 would be expected to occlude the effect of tetanization.
Based on this approach, we conclude that expression of several established p53 target genes is altered after LTP induction in a p53-independent way. They include Apaf1, Bbc3, Bid, Cdkn1a, Dnmt1, Egfr, Egr1, Mdm2, Mlh1, Pcna, and Tp73. However, some genes might be regulated by p53: Bax, Bcl2, Btg2, Ccnb1, Check2, Dapk1, Gadd45a, Prkca, and Pten. Sometimes, p53 contribution is shadowed by other factors, which act in the same (Btg2) or in the opposite (Ccnb1, Check2, Dapk1, and Prkca) direction as p53. It remains to be determined, whether p53 interacts with other factors within the same cells, or LTP-associated regulation of Btg2, Ccnb1, Check2, Dapk1, and Prkca in the hippocampus is cell-specific.
Some of these results are consistent with the data obtained previously by other researchers. For example, a neuronal activity-dependent decrease in the level of mRNA of the proapoptotic protein Bbc3 was observed in neuronal cultures [75, 76] and in mini-slices of areas CA3/CA1 of the hippocampus [20]. Moreover, Léveillé et al. [76] also concluded that this decrease did not depend on p53. Similarly, an increase in Btg2 mRNA level was often reproduced in LTP models [20, 25, 27, 77] and observed in neuronal cultures [75]. Since Btg2 is a target gene of the TF CREB, which plays a key role in neuroplasticity, the neuronal activity-driven increase in Btg2 expression is usually a priori associated with the CREB activity. However, our results demonstrate a complex regulation of Btg2 after LTP induction, and perhaps p53 takes part in it.
It should be noted, however, that our suggestion that p53 participates in LTP-associated regulation of Bax, Btg2, and some other genes mentioned above is preliminary and needs more direct evidence such as provided by chromatin immunoprecipitation.
De novo transcription plays an important role in long-term neuroplasticity underlying memory formation. Synaptic rearrangement is associated with substantial shifts in the brain transcriptome, analysis of which is necessary for the clarification of neuroplasticity mechanisms. The functional outcome of transcription in memory stabilization and storage was thoroughly discussed recently [21]. Here, we propose a hypothesis about a possible function of the p53-dependent transcription in LTP-associated processes.
Although p53 is known mostly as a key factor of apoptosis, its function is really much broader [78, 79] and sometimes prosurvival [80]. Intracellular regulatory cascades associated with LTP formation overlap with pathways regulating p53 activity, which indicates that, theoretically, p53 can be activated after LTP induction [58]. For example, active (phosphorylated) CREB directly interacts with p53, thus increasing its transcriptional activity [81].
During LTP formation in the area CA1 of the hippocampus, the increase in p53 transcriptional activity leads to S100B upregulation [59]. Taking into consideration that S100B suppresses LTP [45], we suggest that the increase in S100B expression is a part of the mechanism of synaptic scaling, a goal of which is to keep synaptic connection strengths within an optimal range necessary for proper functioning of a neuronal network. Heterodendritic metaplasticity [82] can be one of the manifestations of this mechanism. In the area CA1 of the hippocampus, priming stimulation delivered to inputs to the basal dendrites of pyramidal cells generates metaplastic inhibition of LTP and facilitates long-term depression (LTD) at inputs to the apical dendrites, hundreds of microns away and on the other side of the soma. Interestingly, astrocytes are involved in this form of metaplasticity. Thus, we proposed that an increase in S100B level associated with LTP [39] or learning [52, 53] prevents excessive enhancement of excitatory synaptic connections and reduces a risk of seizures.
In addition, LTP-associated upregulation (perhaps, also p53-dependent) of the proapoptotic protein of Bcl2 family Bax is of special interest in the context of neuroplasticity. This protein is involved in a mechanism of NMDAR-dependent LTD in the area CA1 of the hippocampus. Bax-mediated limited activation of caspases leads to the internalization of AMPA-type glutamate receptors, thus weakening synaptic strength [83]. Therefore, as in the case with S100B, Bax upregulation after LTP induction might reflect the formation of a negative feedback, which makes excitatory glutamatergic connections prone to LTD. This hypothesis suggests that the Bax level increases in neurons. As shown in Figure 3, Bax is really expressed mainly in pyramidal cells of the area CA1 and it is rarely detectable in S100B-producing cells in acute rat hippocampal slices.
S100B and Bax immunoreactivity in the area CA1 of a rat hippocampal slice 30 min after tetanization of Schaffer collaterals. The same area is presented in all frames. Top—S100B-positive cells; middle—Bax immunoreactivity, bottom—the above images are merged. The section thickness is 30 μm. A/SO, alveus/stratum oriens; SP, stratum pyramidale, SR, stratum radiatum.
Finally, at physiological doses, S100B possesses trophic and protective properties [43]. Btg2 is also capable of rendering neurons more resistant against excitotoxicity and promoting neuronal survival under stress [75]. Thus, LTP-associated alterations in the expression of p53 target genes are capable of mediating neuroprotective and trophic effects of neuronal activity.
Indeed, the answer to the question of how nuclear activity alters brain functioning will only be achieved by using a systems biology approach, in which the focus moves from single genes to gene network interactions [22]. Moreover, profound molecular changes following hippocampal slice preparation suggest the need for careful interpretation of gene expression regulation results when using the acute slice as a model to study physiological responses [38, 84]. In particular, it needs to be determined whether p53 is activated in the brain after LTP induction in vivo or in behavioural tasks such as learning. Further investigation of p53 and its target gene roles in neuroplasticity should be undertaken to improve existing knowledge of the regulation of gene expression in the brain and its role in plasticity and neuropathology.
This work was supported by the Russian Foundation for Basic Research (Grants nos. 09-04-00200-а, 12-04-00464-а, and 15-04-01753-a) and basic research project of the Russian Academy of Sciences (IV.35.1.5). The histological preparations were examined at the Shared Centre for Microscopic Analysis of Biological Objects of the Institute of Cytology and Genetics SB RAS. The authors are thankful to Dr. S.I. Baiborodin for technical support.
Although heavily exploited in recent decades, the domain of oxide nanostructures remains of interest to researchers throughout the world. This is because that the shapes and sizes of oxide nanomaterials greatly influence their properties, which is reflected in their use in the most diverse fields [1, 2]. Oxide nanostructures have applications in catalysis, energy storage, environmental decontamination, microelectronics, medical technology, ceramics, cosmetics, and so on [3, 4, 5].
Among the most studied branches of nanostructures are metal oxides, with representatives such as TiO2, ZnO, CuO, Fe3O4, WO3, Cr2O3, Co3O4 [6].
The structure, morphology, and properties of the oxide nanostructures depend significantly on the obtaining method. A large number of available synthesis methods underlies the continuous interest in obtaining oxide nanostructures that can be used successfully in specific areas [1, 7]. However, most of these methods are limited due to the use of toxic reagents, high processing temperatures, high vacuum, expensive equipment, or long reaction times [8, 9].
Although physical methods have the advantage of high reproducibility, chemical methods in the liquid phase are more often used to obtain oxide nanostructures due to their advantages, such as low production temperature, homogeneous mixing of precursors at the molecular scale, design and control of the physico-chemical properties of final products, depending on the precursors, and the experimental conditions used [10, 11].
Among the various chemical procedures, the sol–gel method gained increasing importance in the field of materials science because it is cheap, simple, allows the introduction of dopants in large quantities, ensures high purity, and homogeneity, allows control of size, shape, and size distribution of the obtained nanomaterials [12, 13, 14].
Lately, for the preparation of functional nanomaterials, more and more attention is being paid to the use of microwave as the energy source for carrying out a chemical reaction [1, 15]. The microwave (MW) assisted sol–gel method is reported to be a simple, cheap, faster, more energy-saving, and efficient process as compared to conventional heating methods [16, 17, 18]. The use of microwaves has received increased attention in the technological field because, among other things, it reduces the reaction time from days to minutes or hours, improves the properties of synthesized nanostructures, and allows obtaining oxide nanocrystalline films on various substrates [8, 19, 20].
The improved properties of the oxide nanostructures obtained by microwaves assisted sol–gel method could be correlated to the influence of the microwaves on the chemical reactions that take place during the sol–gel synthesis, leading to the formation of different molecular species. Results on the influence of the microwaves on the chemical reactions during the sol–gel synthesis will be discussed in the present chapter.
Among the chemical methods in the liquid phase, the sol–gel technique is a versatile and efficient method for pure or doped metal oxide films or powders, as well as for oxide compounds preparation [21, 22, 23, 24].
A comprehensive definition of sol–gel method assumes that the process represents the formation of an inorganic polymeric network by reactions in the solution at low temperatures. In the second step, by adequate thermal treatments, the conversion of the inorganic amorphous polymers takes place either into glasses or into crystalline materials [1, 22].
Based on the type of the precursors and the reaction medium used, two types of sol–gel processes were developed: on the bases of the alcoholic (organic) or aqueous medium.
According to Pierre [25] in both polymeric and aqueous sol–gel routes, the precursors undertake the succession of the following transformations in the presence of water:
In the case of the polymeric route, using alkoxides (non-ionized precursors), the reactions that occur are the following:
The aqueous sol–gel route has also two pathways: the colloidal route [26] and the aqueous route using different chelating agents [23, 26, 27].
In the case of the aqueous route, which starts from colloidal solutions in aqueous medium, the following reactions take place:
In the case of transition metals, it is more difficult to obtain gels, the metals having very high reactivity due to their higher electronegativity and their not satisfied coordination sphere.
To favor the gelling process, in case of the transition metals, chelating agents, as carboxylic acids or polyols, are used. A typical reaction is the following
It is important to underline that in all mentioned cases the reactions take place simultaneously, not consequently, and they are also reversible, fact that determines a complex composition of the sol–gel solutions.
Prior to gelation, the sol–gel solution can be used to obtain thin films by using simple techniques such as dip or spin coating [23, 28].
Besides the fact that it offers the possibility of obtaining both films and powders of metal oxides at nanometric dimensions, the sol–gel method has also some advantages over other preparation techniques. Such advantages are purity, homogeneity, the possibility to introducing dopants in large quantities, ease of manufacturing, low processing temperature, control over the stoichiometry, composition, viscosity [13, 27, 29] and, in the case of thin films, easy control of thickness, as well as the ability to cover large and different type of surfaces [30, 31].
Lately, ultrasonic [32, 33] or microwave irradiation [9, 17, 18, 34, 35, 36] in sol–gel oxide nanomaterials synthesis have become methods of interest because, in addition to being cheap and environmentally friendly heating methods, offer the advantage of using shorter synthesis time, and allow the control of crystallinity, size and morphology of the resulted nanoparticles [9, 35].
Microwave radiation is a source of energy of great interest for chemical synthesis because, among other benefits, it has been observed that the use of microwaves improves the properties of obtained nanomaterials. The first reporting on the use of microwaves in a chemical synthesis dates back to 1986 [37]. Although initially microwaves have been applied in organic synthesis, lately their use has become quite widespread in obtaining inorganic products like metal oxides nanomaterials and metallic nanomaterials [38].
Microwaves are electromagnetic radiations located between infrared radiation and radio waves with frequencies between 300 MHz (100 cm) and 300 GHz (0.1 cm). For the nanomaterials synthesis in which aqueous solutions are used, 2.45 GHz frequency is commonly applied for microwave heating of the solutions, because water absorption is maximum at this value.
Subjected to a microwave field, the substances behave differently: absorb, transmit, reflect received radiation, or any combination of these three interactions. Polar substances absorb microwaves radiation, non-polar substances are transparent environments for this type of radiation, and electrical conductors reflect microwaves radiation. Therefore, microwave heating process is used for heating the materials which can absorb the microwave energy and convert it into heat especially by dipolar polarization or conduction mechanism [1, 40]. The interactions of polar molecules and ions with the electromagnetic field have already been described by many researchers. Shortly, the collisions resulting from the rotation of the dipoles during polarization and the load carriers during conduction give energy to the atoms and molecules from the solution in the form of heat [38, 40].
While conventional heating methods are slow enough and the heat transfer from the surface to the inner material or solution, producing non-homogeneous heating, microwave heating is done quickly because microwaves can penetrate the materials to a depth that depends on the dielectric properties of the material, heating them homogeneously [38]. Consequently, microwave heating can have certain benefits over conventional heating, like faster reaction, higher reproducibility, enhancement of product quality. It is instantaneous, with no heat dissipation effects, and advantageous for selective dielectric heating, as a result of the dielectric constant difference between the solvent and reactant [39].
In sol–gel synthesis, due to rapid and direct heating of the sample with microwave radiation, the instantaneous decomposition of the precursors and the obtaining of a supersaturated solution occur. In this way, the conditions for obtaining monodispersed nanoparticles (rapid and short nucleation in a supersaturated solution) can be obtained experimentally. At the same time, the in-situ approach of conversion of energy results in a minimized thermal gradient due to the fast heating rate consequently is providing perfect conditions for the uniform growth of nanocrystals [31, 41].
More, in the case of sol–gel synthesis using organic solvents, characterized by slow kinetics, microwave heating is an optimal method of increasing the rate of reaction [41].
From the research carried out so far, it has been observed that, by combining the sol–gel method with the microwave heating, the properties of the obtained oxide nanostructures are improved [9, 34].
Because the presence of MW, the interaction of the electromagnetic field with each molecule in the solution differs during the hydrolysis-condensation process, we can expect the formation of different molecular species as compared to the classical sol–gel synthesis.
Up to now, there have been several reports regarding the synthesis of metal oxide nanomaterials by microwave-assisted sol–gel method. However, many of them have been performed using domestic microwave ovens, in which the reaction conditions cannot be accurately measured, making the experiments difficult to be reproduced.
According to the literature data, the MW irradiation in the sol–gel synthesis was used, most frequently, for precipitation of nanocrystalline metal oxides, for thermal treatment of amorphous oxide nanopowders as well as for drying and thermally treatment of the oxide films [36].
Less attention was given to study the reactions that take place in the sol–gel solutions during MW irradiation [42, 43, 44, 45].
A large number of oxides were prepared by sol–gel and microwave assisted sol–gel methods. Using MW irradiations of the solutions, preparation of several oxides were mentioned in the literature data, as MgO [46], RuO2 [47], ZnO [16], ZrO2 [48], WO3 [49], SiO2 [50], TiO2 [35, 51]. The power of the used microwaves ranged from 140 W [51] to 850 W [47].
Among them, considerable interest is given to pure and doped TiO2. The doping of TiO2 was realized with a high number of elements, such as Cr [13], Ag [52], Au, Pt [14, 53], Sn-Cu-Ni [54], Fe, Pt, Pd [51] and V [55]. Doping TiO2 with different elements the properties of the resulted nanostructures are improved, while using microwave assisted preparation, supplementary improvement was also observed.
Our studies regarding the influence of the microwaves on the reactions in the sol–gel solutions were published by Predoana et al. [42] in the case of TiO2 and V-doped TiO2 nanostructures.
The use of vanadium as a doping agent has a beneficial influence on the TiO2 properties: it can reduce the band gap energy, enhance the absorption of visible light and increase the specific surface area of the powder. The mentioned properties are reflected mainly in its photocatalytic activity, previously presented by Huang et al. [55].
In our studies, the reagents used in the synthesis were titanium(IV) ethoxide Ti(OC2H5)4 in the case of TiO2, as well as, titanium(IV) ethoxide Ti(OC2H5)4 and vanadylacetylacetonate VO(AcAc), for V-doped TiO2. In both cases, ethanol C2H5OH as a solvent, 2,4 pentanedione (AcAc), as a chelating agent, and nitric acid HNO3 as catalyst were used.
By the classical sol–gel method the reagents were mixed for 2 hours at room temperature. By the microwave-assisted sol–gel method, the same mixture was exposed for 5 min at 300 W and a frequency of 2.45 GHz.
The first important result of using the microwave-assisted sol–gel method is the significantly increasing of the stability of the prepared solutions against gelation, having a great advantage for multilayer film deposition. This effect was assigned to the formation of different molecular species.
The solutions were used for obtaining thin films and the resulted gels were investigated for their structural and morphological properties.
In our studies for TiO2samples synthesized by sol–gel and microwave-assisted sol–gel methods, the TG/DTG/DTA curves corresponding to the decomposition of the obtained gels are presented in Figure 1.
TG/DTG/DTA curves of the TiO2 samples obtained by SG and MW methods [42] (Reproduced with the permission of Springer Nature).
It could be noticed that the thermal decomposition of the gels is not essentially influenced by the method of preparation. Only a small increase of the thermal effect at 195o C is observed for the TiO2 sample obtained by MW assisted sol–gel method. The fact could be explained by the positive influence of microwaves on the formation of the molecular species that decompose at the mentioned temperature.
Based on the TG/DTG/DTA results, the samples prepared by both methods were thermally treated at 450°C for 1 h. By X-ray diffraction of the samples thermally treated at this temperature only anatase phase was detected (according to JCPDS card no. 21–1272), but a higher crystallinity is noticed in the case of sample obtained by MW-assisted procedure (Figure 2).
The XRD patterns of the TiO2 samples obtained by SG and MW-assisted SG methods thermally treated at 450°C.
In the case of the V-doped TiO2 the TG/DTG/DTA measurements in the air are presented in Figure 3 for the gel containing 2 mol% V. In this case, increased thermal stability and a more complex decomposition of the gels obtained by the microwave-assisted sol–gel method is observed.
TGA/DTG/DTA curves of the V-doped TiO2 samples obtained by SG and MW-assisted SG methods [42] (Reproduced with the permission of Springer Nature).
Confirmations of the TG/DTG/DTA results on the gels with 2 mol% V were obtained by Differential Scanning Calorimetry (DSC). The obtained DSC curves are presented in Figure 4.
DCS curves of the V-doped TiO2 obtained by SG and MW-assisted SG methods [43] (Reproduced with the permission from Springer Nature).
According to the DSC results, the thermal stability of the gel obtained from the solution prepared in the presence of microwaves, is significantly higher (with about 100°C), as compared with the gel with similar compositions, but obtained by the classical sol–gel method.
At the same time, the number and temperatures of the thermal effects are different in the two discussed cases underlying the different compositions of the gels obtained in the presence or the absence of the microwaves.
The TG/DTG/DTA/EGA measurements, presented in Figure 5, have confirmed, once more, the results discussed above, regarding the different thermal behavior of the gels obtained by the microwave-assisted sol–gel method.
TG/DTG/DTA/EGA curves of V-doped TiO2 obtained by (a) SG and (b) MW-assisted SG methods [42] (Reproduced with the permission of Springer Nature).
In the case of the microwave-assisted sol–gel method the same gasses are evolved, namely H2O and CO2, but a more complex thermal decomposition is observed, with different ratios among the two mentioned gases at the different temperatures. This result is assigned to the higher number of molecular species present in the gel, having different chemical composition and different thermal stability.
By X-ray diffraction of the V-doped TiO2 with 2 mol% V samples thermally treated at 450°C (Figure 6) only anatase phase was detected (according to JCPDS card no. 21–1272). As in the case of un-doped TiO2, a higher crystallinity is noticed in the case of samples obtained by MW assisted procedure.
The XRD patterns of the V-doped TiO2 samples obtained by SG and MW-assisted SG methods, thermally treated at 450°C.
Before gelation, the solutions prepared in the presence and in the absence of MWs were used for thin film deposition by dip-coating on glass substrates [43].
In our studies for the TiO2films obtained by the sol–gel method, the SEM micrographs show surface cavities that were not observed in the case of microwaves-assisted sol–gel films (Figure 7a and c).
SEM micrographs showing the film cross-section for samples (a) (TiO2)SG; (b) (TiO2)MW; (c) (V-dopedTiO2)SG; (d) (V-dopedTiO2)MW [43].
The sol–gel TiO2based films present also a similar variation of the morphology according to the method of preparation. A more dense and homogeneous aspect is observed in the film obtained in the presence of microwaves (Figure 7b and d).
Thickness values are around 200 nm both for TiO2 and V-doped TiO2 films, but slightly higher in the case of the films obtained from microwave-assisted sol–gel solutions.
The transmission spectra of obtained films are presented in Figure 8 show optical transmittance values mainly over 80% in the visible range.
Optical transmission of the TiO2 and V-doped TiO2 films obtained by (a) SG and (b) MW-assisted SG methods.
To explain the differences induced by the microwave-assisted sol–gel process on the properties of the resulted films, their influence on the starting solution, and the evolution of the sol–gel process, should be taken into consideration. Based on the results obtained up to now, it could be assumed that in the presence of microwaves, different and more stable molecular species are formed as compared to the classical sol–gel method and this a fact influences the properties of the resulted films.
It was also observed that the effect of microwaves on the properties of the resulted materials is higher in the case of V-doped TiO2 samples, fact that could be correlated to an enhancement of the reactions between Ti and V reagents during the sol–gel process in the presence of the microwaves.
As presented in the several references, WO3based nanomaterials are widely investigated in the field of electrochromic devices [56], gas sensing [57], and photocatalysis [58] in different morphologies and structures. Even though the sol–gel process has a long past and is an intensely researched method [59] the literature of sol–gel preparation of WO3 using microwave-assistance is scarce. The following articles are all from the 2010s so further researches are to be expected.
Different nanostructures were prepared by microwave assisted sol–gel method with sodium tungstate as a precursor material by Kharade et al. [60, 61, 62]. The research group synthesizes various nanoparticles and nanofilms for electrochromic purposes. In 2012 WO3 nanofilms were deposited on the FTO substrate, which was the first time used MW-assisted two-step process. In the first step, the preparation of the gel was conducted with microwave assistance, then in the second step, the deposition of the thin film occurred by a chemical growth set up. Scanning electron microscope (SEM) showed that the surface is coated with petal-like WO3 nanodisks with dimensions of 450–600 nm length, 350–400 nm width, and 20–35 nm thickness. The X-ray diffraction (XRD) analysis (Figure 9) points out that WO3 is in the hexagonal crystal form. Narrow and intense XRD peaks indicate that the material has good crystallinity and calculations determined that the crystal size is 71 nm, which is comparable to samples made by the regular sol–gel method [63]. X-ray photoelectron spectroscopy (XPS) revealed that the W:O ratio is non-stoichiometric(2.89). Electrochromic capabilities were determined with different electroanalytical methods [60]. Comparing this to a regular sol–gel method shows that the morphology of the surface, namely the platelet like nanodisks is nearly the same with a small difference in size (regular sol–gel platelets: 10–30 nm thick and few hundred nm lengths and width). However, to achieve the same crystallinity a 500°C annealing process is required for the regular sol–gel method, in contrast to the 150°C drying of the MW-assisted sol–gel method [64].
X-ray diffractogram of the WO3 thin film [60] (Copyright (2012), with permission from Elsevier).
The same hexagonal WO3 thin film was synthesized and its electrochromic properties were enhanced with different amounts of Ag nanoparticles [61]. The microwave-assisted sol–gel method was also used to produce WO3/MoO3 mixed oxide thin films. First, the WO3 layer were produced with the two-step method explained earlier, then MoO3 was deposited with vacuum evaporation [62].
Hilaire et al. [49] prepared WO3 nanoparticles using a nonaqueous microwave-assisted sol–gel method for photoanodes. The synthesized nanoparticles were analyzed with FT-IR, which showed that no organic contaminant remained on the surface of the particles, but a weight indicates that there are a 4.4% water and organic residue after 800°C heating. XRD studies confirm the monoclinic crystalline structure of the WO3 nanoparticles.
Transmission electron microscopy (TEM) showed that the platelets like WO3 nanoparticles size is 20–40 nm and thickness of 3 nm. Moreover, TEM measurements indicate that the WO3 platelets face having the crystalline orientation of [0 0 2]. The WO3 nanoparticles were used for the production of photoanodes, which was proven to be an efficient method for water splitting. The comparison of this result with another nonaqueous regular sol–gel method shows that the morphology of the particles differs, but this can be caused by the usage of a different solvent (dicarboxylic acid) and modifier (polyethylene glycol).
The regular method resulted in larger (58 nm) rod-like nanoparticles. The case of the WO3 particle’s crystallinity is similar to the thin layer’s: without after annealing process, the MW assisted method provides better crystallinity [65].
It was also established [66] that microwave heating is more convenient than resistive heating to fabricate WO3 nanoparticles with high specific surfaces and very small particle sizes also in the case of hydrothermal method of preparation. In our studies [67, 68] hexagonal structured WO3 nanoparticles and wires were prepared using MW assisted hydrothermal process. SEM images are presented in the Figure 10.
SEM images of the (a,b) hexagonal WO3 nanowire coated with TiO2 and (c, d) monoclinic WO3 nanoparticle coated with TiO2 [67] (Reprinted with permission from [67] copyright from RSC Advances).
The Au decorated h-WO3 nanowires were prepared for photocatalysis. The pre-decorated WO3 nanowires showed crystallinity and were composed of W and O only. The morphology also differs from nanodisks, the hydrothermally produced WO3 took the form of nanorods with 10 μm length and 10 nm diameter.
Nevertheless, the Au decorated nanowires showed great photocatalytic activities. Nanowires and nanoparticles coated with TiO2 using ALD were also synthesized, but the characteristics of the non-coated samples were done. Hexagonal and monoclinic nanoparticles were prepared using controlled annealing of the samples.
Similarly, further annealing is needed to reach a comparable crystallinity, but for the monoclinic structure it’s obligatory. The size of the crystals was 50–70 nm and 60–90 nm for hexagonal, and for the irregular shaped monoclinic WO3 nanoparticles respectively. The hexagonal WO3 nanowires were analogous to the earlier nanowire, several μm long and 5–10 nm diameter. The TiO2 coated nanostructures proved to be efficient photocatalysts [67, 68].
Let us deal with the results regarding the synthesis by microwave-assisted sol–gel methods of the precursor powders for SrCu2O2 preparation.
The interest for the SrCu2O2 compound are connected to its possible applications as thermoelectric or full oxide electronic devices, solar cells, liquid-crystal displays, touchscreen, and so on [45].
Among the CuO-based p-type TCOs, Cu-Sr-O has received attention due to its wide direct band gap, and its potential use in transparent optoelectronic devices; such as light-emitting diodes, laser diodes, solar cells, display technology, and other technologies [69]. In most of the published reports, Cu based p-type TCO thin films are deposited by high vacuum processes which are costly. Some of the processes include pulsed laser deposition (PLD), reactive evaporation, magnetron sputtering, thermal co-evaporation and radio frequency [70, 71, 72, 73, 74, 75, 76]. To date, few studies have reported on the preparation of a Cu-based p-type TCO by a non-vacuum solution chemical route.
Roy et al. [77] used sol–gel and annealing methods to prepare Cu2SrO2 thin films. They used different oxygen pressure, annealing time, and temperature combinations to attempt to obtain phase pure Cu2SrO2 thin films. Copper (II) methoxide and triethanolamine were mixed in the ration 1:1. Pure Sr-metal was dissolved separately in distilled anhydrous isopropanol under argon. The Cu-solution was then mixed drop-wise into the Sr-solution while stirring. The mixture was stirred continuously for 2 hrs at room temperature. The sol was spin-coated on clean substrates with 3000 rpm for 30 s. The coated films were heated at 225°C for 2 min in the air for partial pyrolysis. This coating/heating cycle was repeated ten times to obtain films of the desired thickness of 500 nm. After deposition, the film was annealed further under controlled oxygen pressure. Different annealing procedures were used to avoid the presence of excess Cu2O phase.
XRD analysis (Figure 11b) showed the films had a mixed-phase of excess Cu2O and Cu2SrO2 after final reduced-oxygen pressure annealing. Films annealed at lower oxygen pressure (1.3 × 10−2 and 1.3× 10−3 Pa) had similar phase composition and in all the three films Cu2O formed as a secondary phase with Cu2SrO2. For the film annealed at the highest oxygen pressure (1.3 × 10−1 Pa), CuSrO2 was observed as the amount of Cu2SrO2 decreased and the intensity of the Cu2O peaks did not change.
(a) TEM image, (b) XRD spectra (c) SEM image of the films after final annealing at 750°C under 1.3 × 10−2 Pa oxygen pressure [77] (Reproduced by the permission of Elsevier).
Both SEM and TEM images (Figure 11a and c) show that two phases are present. The light-gray particles (differing sizes) in the SEM and large particles in TEM images are the Cu2SrO2 phases. The dark gray phase in the SEM image is a mixture of small Cu2SrO2 and Cu2O particles, as confirmed by the TEM images. The SEM and TEM images reveal that the Cu2O and Cu2SrO2 phases are intermingled with each other.
Ginley et al. [78] used sol–gel and annealing to prepare pure phased Cu2SrO2 films. Stoichiometric amounts of aqueous solutions copper formate and strontium acetate were mixed in methanol and stirred. Triethanolamine was added, the mixture stirred and evaporated at 80°C to form sol which was diluted by isopropyl alcohol and spin-coated on MgO (100) substrates for 20 s, at 3000 revs per min. The resulting films were annealed at 200°C temperature for 2 min and then pyrolyzed at 500°C for 2 min. The spin-coating and pyrolysis cycles were repeated 8–10 times. After the cycles, the films were first annealed at 750°C for 30 min in air and then at 775°C under 2.7 × 10−6 Torr oxygen. The films were characterized by XRD (Figure 12) and FTIR and showed to be phase pure.
XRD patterns of Cu2SrO2 films as a function of processing time [78].
Predoana et al., are the first to report the synthesis of Sr-Cu-O gels by microwave (MW) assisted sol–gel methods [45]. Pure strontium acetyl acetonate (Sr(C5H7O2)2 and copper (II) acetyl acetonate (Cu(C5H7O2)2) were used as precursors for strontium and copper, respectively. The 0.25 M aqueous solutions of Sr.(C5H7O2)2 and Cu(C5H7O2)2 solution in absolute ethanol were mixed with triethanolamine, in the ratio 1:1. In the case of the sol–gel method, the starting solution was homogenized under vigorous stirring for 2 h at 80 C. For MW assisted sol–gel method, the same starting solution was homogenized by stirring and exposing to microwaves having power ~ 300 W and 2.45 GHz frequency for 5 minutes. The sol–gel and the microwave-assisted sol–gel prepared Sr-Cu-O were characterized by SEM, FTIR, XRD, and their thermal properties investigated by TG/DTA-MS in air, inert and reducing atmospheres.
In the experimental conditions presented above pieces of gels of different size, and blueish-green color were obtained for both preparation methods. The results obtained by TG/DTA-MS analysis (Figure13a and b) of the obtained gels demonstrated the influence of MW on the sol–gel synthesis. MW treated samples had one more mass loss step when heated in air attributed to complex compositions of the resulted gels that contain a higher number of molecular species with higher thermal stability. The results were confirmed with the FTIR spectra (Figure 13c and d) showing more vibration bands for the samples prepared by the MW sol-gel method, assigned according to [79, 80, 81].
Thermal decomposition in air (a) sol–gel synthesized sample, (b) MW assisted sol–gel synthesized sample, (c) FTIR spectra of sol–gel synthesized sample, (d) FTIR spectra of MW assisted sol–gel synthesized sample [45] (Reproduced by the permission of Elsevier).
Based on the XRD patterns of the residues (Figure 14), the final product is composed of a mixture of phases that depend on the synthesis route and the annealing conditions.
(a) XRD patterns of sol–gel synthesized samples (b) MW-assisted sol–gel samples annealed at 900°C in air, N2 and 5%H2/95%Ar [45].
For samples annealed in air, Sr–Cu–O phase was also present for the sol–gel synthesized sample, while the MW sample had CuO as the main component. In different atmosphere (N2 and H2/Ar) several compounds (Sr2CuO3, SrO and CuO) are present in varying amounts. Only traces of SrCO3 can be detected. In all annealing atmospheres, in the case of the samples synthesized by MW-assisted sol–gel method, powders with a lower degree of crystallization is formed. This result could be attributed to the formation of a higher number of molecular species with higher thermal stability.
The powders prepared in the mentioned conditions are intended to be investigated as precursors for SrCu2O2 compound preparation.
The presented results are important revealing the effect of MW on the reactions that take place during the sol–gel synthesis but should be considered preliminary. Direct methods of the solutions investigations, as High-Pressure Liquid Cromatogaphy (HPLC), are underway in order to bring more information on the sol–gel chemistry in the presence and the absence of microwaves.
The interest of using microwaves in obtaining oxide nanostructures by reactions in solutions is rather high, leading to obtaining powders or films with enhanced properties.
According to the literature data, the MW irradiation in the sol–gel synthesis was used, most frequently, for precipitation of nanocrystalline metal oxides, for thermal treatment to crystallize the amorphous oxide nanopowders as well as for drying and thermally treatment of the oxide films.
However, the influence of the microwaves on the chemical reactions that take place during the sol–gel synthesis is less investigated.
Results regarding the formation of pure or doped nanostructures, as well as oxide compound, by sol–gel method in the presence or absence of microwave are presented.
The main results of the studies have shown that in all cases in the presence of microwave formation different molecular species is observed with a positive influence on the properties of the resulted nanostructure.
The advantage of using the MW-assited sol–gel method is a more shorter time of synthesis and obtaining nanostructures with improved properties.
The obtained results are of interest, but could be considered preliminary and systematic studies on the chemical processes induced by the microwaves should be continued.
This work was performed in the frame of Mobility Project “Reduced semiconductor oxides for TCO, photocatalysis and gas sensing applications”, 2019– 2021, between IlieMurgulescu Institute of Physical Chemistry of the Romanian Academy, Bucharest, Romania and Research Center for Natural Sciences, Hungarian Academy of Science Research Group of the Hungarian Academy of Science at the Budapest, Hungary. An NRDI K 124212 and an NRDI TNN_16 123631 grants are acknowledged. The research within project No. VEKOP-2.3.2-16-2017-00013 was supported by the European Union and the State of Hungary, co-financed by the European Regional Development Fund. The research reported in this paper was supported by the BMENanotechnology and Materials Science TKP2020 IE grant of NKFIH Hungary (BME IE-NAT TKP2020)and Stipendium Hungaricum scholarship grant.
"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges".
\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.
",metaTitle:"About Open Access",metaDescription:"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges.\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.",metaKeywords:null,canonicalURL:"about-open-access",contentRaw:'[{"type":"htmlEditorComponent","content":"The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\\n\\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\\n\\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nOAI-PMH
\\n\\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\\n\\nLicense
\\n\\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\\n\\nPeer Review Policies
\\n\\nAll scientific works are Peer Reviewed prior to publishing. Read more
\\n\\nOA Publishing Fees
\\n\\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\n\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\n\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\n\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\n\nOAI-PMH
\n\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\n\nLicense
\n\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\n\nPeer Review Policies
\n\nAll scientific works are Peer Reviewed prior to publishing. Read more
\n\nOA Publishing Fees
\n\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\n\nDigital Archiving Policy
\n\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"160349",title:null,name:null,middleName:null,surname:null,slug:"",fullName:null,position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"25887",title:"Dr.",name:null,middleName:null,surname:"Abbasi",slug:"abbasi",fullName:"Abbasi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"161332",title:"Dr",name:null,middleName:null,surname:"Abu-El Hassan",slug:"abu-el-hassan",fullName:"Abu-El Hassan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"212347",title:"Dr.",name:null,middleName:null,surname:"Abubakar",slug:"abubakar",fullName:"Abubakar",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"93806",title:"Dr",name:null,middleName:null,surname:"Adani",slug:"adani",fullName:"Adani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"158756",title:"Dr",name:null,middleName:null,surname:"Adler",slug:"adler",fullName:"Adler",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"63002",title:"Dr.",name:null,middleName:null,surname:"Agius",slug:"agius",fullName:"Agius",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"34637",title:"Dr.",name:null,middleName:null,surname:"Ahmed",slug:"ahmed",fullName:"Ahmed",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"118228",title:"Dr",name:null,middleName:null,surname:"Ahmed",slug:"ahmed",fullName:"Ahmed",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"89784",title:"Dr",name:null,middleName:null,surname:"Ai",slug:"ai",fullName:"Ai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"158339",title:"Dr",name:null,middleName:null,surname:"Akahoshi",slug:"akahoshi",fullName:"Akahoshi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"158540",title:"Dr",name:null,middleName:null,surname:"Al-Jumaily",slug:"al-jumaily",fullName:"Al-Jumaily",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5682},{group:"region",caption:"Middle and South America",value:2,count:5165},{group:"region",caption:"Africa",value:3,count:1682},{group:"region",caption:"Asia",value:4,count:10206},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15610}],offset:12,limit:12,total:117097},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10539",title:"Ginseng in Medicine",subtitle:null,isOpenForSubmission:!0,hash:"5f388543a066b617d2c52bd4c027c272",slug:null,bookSignature:"Prof. Christophe Hano and Dr. Jen-Tsung Chen",coverURL:"https://cdn.intechopen.com/books/images_new/10539.jpg",editedByType:null,editors:[{id:"313856",title:"Prof.",name:"Christophe",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10482",title:"Human Teeth – Structure and Composition of Dental Hard Tissues and Developmental Dental Defects",subtitle:null,isOpenForSubmission:!0,hash:"82a91346a98d34805e30511d6504bd4c",slug:null,bookSignature:"Dr. Ana Gil De Bona and Dr. Hakan Karaaslan",coverURL:"https://cdn.intechopen.com/books/images_new/10482.jpg",editedByType:null,editors:[{id:"203919",title:"Dr.",name:"Ana",surname:"Gil De Bona",slug:"ana-gil-de-bona",fullName:"Ana Gil De Bona"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9608",title:"Myasthenia Gravis",subtitle:null,isOpenForSubmission:!0,hash:"db6c84e3aa58f3873e1298add7042c44",slug:null,bookSignature:"Dr. Nizar Souayah",coverURL:"https://cdn.intechopen.com/books/images_new/9608.jpg",editedByType:null,editors:[{id:"162634",title:"Dr.",name:"Nizar",surname:"Souayah",slug:"nizar-souayah",fullName:"Nizar Souayah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10300",title:"Breast Cancer",subtitle:null,isOpenForSubmission:!0,hash:"bcf3738b16b0a4de6066853ab38b801c",slug:null,bookSignature:"Dr. Mani T. Valarmathi",coverURL:"https://cdn.intechopen.com/books/images_new/10300.jpg",editedByType:null,editors:[{id:"69697",title:"Dr.",name:"Mani T.",surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10260",title:"E-Service",subtitle:null,isOpenForSubmission:!0,hash:"11dab65781b3c4347022c56477311f46",slug:null,bookSignature:"Dr. Kyeong Kang",coverURL:"https://cdn.intechopen.com/books/images_new/10260.jpg",editedByType:null,editors:[{id:"2114",title:"Dr.",name:"Kyeong",surname:"Kang",slug:"kyeong-kang",fullName:"Kyeong Kang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8485",title:"Weather Forecasting",subtitle:null,isOpenForSubmission:!0,hash:"eadbd6f9c26be844062ce5cd3b3eb573",slug:null,bookSignature:"Associate Prof. Muhammad Saifullah",coverURL:"https://cdn.intechopen.com/books/images_new/8485.jpg",editedByType:null,editors:[{id:"320968",title:"Associate Prof.",name:"Muhammad",surname:"Saifullah",slug:"muhammad-saifullah",fullName:"Muhammad Saifullah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9589",title:"Depigmentation as a Disease or Therapeutic Goal",subtitle:null,isOpenForSubmission:!0,hash:"3e1efdb1fc8c403c402da09b242496c6",slug:null,bookSignature:"Dr. Tae-Heung Kim",coverURL:"https://cdn.intechopen.com/books/images_new/9589.jpg",editedByType:null,editors:[{id:"121353",title:"Dr.",name:"Tae-Heung",surname:"Kim",slug:"tae-heung-kim",fullName:"Tae-Heung Kim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10585",title:"Interleukin",subtitle:null,isOpenForSubmission:!0,hash:"6d4ebb087fdb199287bc765704246b60",slug:null,bookSignature:"Ph.D. Payam Behzadi",coverURL:"https://cdn.intechopen.com/books/images_new/10585.jpg",editedByType:null,editors:[{id:"45803",title:"Ph.D.",name:"Payam",surname:"Behzadi",slug:"payam-behzadi",fullName:"Payam Behzadi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10542",title:"Molecular Epidemiology Study of Mycobacterium Tuberculosis Complex",subtitle:null,isOpenForSubmission:!0,hash:"29279e34f971687dc28de62534335ac4",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10542.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10552",title:"Montmorillonite",subtitle:null,isOpenForSubmission:!0,hash:"c4a279761f0bb046af95ecd32ab09e51",slug:null,bookSignature:"Prof. Faheem Uddin",coverURL:"https://cdn.intechopen.com/books/images_new/10552.jpg",editedByType:null,editors:[{id:"228107",title:"Prof.",name:"Faheem",surname:"Uddin",slug:"faheem-uddin",fullName:"Faheem Uddin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10281",title:"Nanopores",subtitle:null,isOpenForSubmission:!0,hash:"73c465d2d70f8deca04b05d7ecae26c4",slug:null,bookSignature:"Dr. Sadia Ameen, Dr. M. Shaheer Akhtar and Prof. Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/10281.jpg",editedByType:null,editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10304",title:"Giant-Cell Arteritis",subtitle:null,isOpenForSubmission:!0,hash:"b144271ebc5d331aab73de18a7f9f4f5",slug:null,bookSignature:"Dr. Imtiaz A. Chaudhry",coverURL:"https://cdn.intechopen.com/books/images_new/10304.jpg",editedByType:null,editors:[{id:"66603",title:"Dr.",name:"Imtiaz",surname:"Chaudhry",slug:"imtiaz-chaudhry",fullName:"Imtiaz Chaudhry"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:14},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:60},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:160},popularBooks:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5128},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Health",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-health",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1282",title:"Robot Vision",slug:"psychology-digital-image-processing-robot-vision",parent:{title:"Digital Image Processing",slug:"physical-sciences-engineering-and-technology-robotics-digital-image-processing"},numberOfBooks:1,numberOfAuthorsAndEditors:1,numberOfWosCitations:68,numberOfCrossrefCitations:40,numberOfDimensionsCitations:81,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"psychology-digital-image-processing-robot-vision",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"3595",title:"Vision Systems",subtitle:"Applications",isOpenForSubmission:!1,hash:null,slug:"vision_systems_applications",bookSignature:"Goro Obinata and Ashish Dutta",coverURL:"https://cdn.intechopen.com/books/images_new/3595.jpg",editedByType:"Edited by",editors:[{id:"131538",title:"Prof.",name:"Goro",middleName:null,surname:"Obinata",slug:"goro-obinata",fullName:"Goro Obinata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"358",doi:"10.5772/4994",title:"A Practical Toolbox for Calibrating Omnidirectional Cameras",slug:"a_practical_toolbox_for_calibrating_omnidirectional_cameras",totalDownloads:4098,totalCrossrefCites:13,totalDimensionsCites:20,book:{slug:"vision_systems_applications",title:"Vision Systems",fullTitle:"Vision Systems: Applications"},signatures:"Davide Scaramuzza and Roland Siegwart",authors:null},{id:"370",doi:"10.5772/5006",title:"Stereo Vision Based SLAM Issues and Solutions",slug:"stereo_vision_based_slam_issues_and_solutions",totalDownloads:4557,totalCrossrefCites:9,totalDimensionsCites:11,book:{slug:"vision_systems_applications",title:"Vision Systems",fullTitle:"Vision Systems: Applications"},signatures:"D.C. Herath, K.R.S. Kodagoda and G. Dissanayake",authors:null},{id:"367",doi:"10.5772/5003",title:"Algebraic Reconstruction and Post-Processing in Incomplete Data Computed Tomography: from X-rays to Laser Beams",slug:"algebraic_reconstruction_and_post-processing_in_incomplete_data_computed_tomography__from_x-rays_to_",totalDownloads:2954,totalCrossrefCites:1,totalDimensionsCites:9,book:{slug:"vision_systems_applications",title:"Vision Systems",fullTitle:"Vision Systems: Applications"},signatures:"Alexander B. Konovalov, Dmitry V. Mogilenskikh, Vitaly V. Vlasov and Andrey N. Kiselev",authors:null}],mostDownloadedChaptersLast30Days:[{id:"352",title:"3D Cameras: 3D Computer Vision of Wide Scope",slug:"3d_cameras__3d_computer_vision_of_wide_scope",totalDownloads:4167,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"vision_systems_applications",title:"Vision Systems",fullTitle:"Vision Systems: Applications"},signatures:"Stefan May, Kai Pervoelz and Hartmut Surmann",authors:null},{id:"358",title:"A Practical Toolbox for Calibrating Omnidirectional Cameras",slug:"a_practical_toolbox_for_calibrating_omnidirectional_cameras",totalDownloads:4098,totalCrossrefCites:13,totalDimensionsCites:20,book:{slug:"vision_systems_applications",title:"Vision Systems",fullTitle:"Vision Systems: Applications"},signatures:"Davide Scaramuzza and Roland Siegwart",authors:null},{id:"353",title:"A Visual Based Extended Monte Carlo Localization for Autonomous Mobile Robots",slug:"a_visual_based_extended_monte_carlo_localization_for_autonomous_mobile_robots",totalDownloads:2206,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"vision_systems_applications",title:"Vision Systems",fullTitle:"Vision Systems: Applications"},signatures:"Wen Shang and Dong Sun",authors:null},{id:"371",title:"Shortest Path Homography-Based Visual Control for Differential Drive Robots",slug:"shortest_path_homography-based_visual_control_for_differential_drive_robots",totalDownloads:2346,totalCrossrefCites:1,totalDimensionsCites:5,book:{slug:"vision_systems_applications",title:"Vision Systems",fullTitle:"Vision Systems: Applications"},signatures:"G. Lopez-Nicolas, C. Sagues and J.J. Guerrero",authors:null},{id:"364",title:"New Types of Keypoints for Detecting Known Objects in Visual Search Tasks",slug:"new_types_of_keypoints_for_detecting_known_objects_in_visual_search_tasks",totalDownloads:1762,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"vision_systems_applications",title:"Vision Systems",fullTitle:"Vision Systems: Applications"},signatures:"Andrzej Sluzek and Saiful Islam",authors:null},{id:"344",title:"Multi-Focal Visual Servoing Strategies",slug:"multi-focal_visual_servoing_strategies",totalDownloads:1934,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"vision_systems_applications",title:"Vision Systems",fullTitle:"Vision Systems: Applications"},signatures:"Kolja Kuehnlenz and Martin Buss",authors:null},{id:"351",title:"An Effective 3D Target Recognition Imitating Robust Methods of the Human Visual System",slug:"an_effective_3d_target_recognition_imitating_robust_methods_of_the_human_visual_system",totalDownloads:1850,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"vision_systems_applications",title:"Vision Systems",fullTitle:"Vision Systems: Applications"},signatures:"Sungho Kim and In So Kweon",authors:null},{id:"350",title:"Bearing-Only Vision SLAM with Distinguishable Image Features",slug:"bearing-only_vision_slam_with_distinguishable_image_features",totalDownloads:2246,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"vision_systems_applications",title:"Vision Systems",fullTitle:"Vision Systems: Applications"},signatures:"Patric Jensfelt, Danica Kragic and John Folkesson",authors:null},{id:"346",title:"Behavior-Based Perception for Soccer Robots",slug:"behavior-based_perception_for_soccer_robots",totalDownloads:1698,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"vision_systems_applications",title:"Vision Systems",fullTitle:"Vision Systems: Applications"},signatures:"Floris Mantz and Pieter Jonker",authors:null},{id:"349",title:"ViSyR: a Vision System for Real-Time Infrastructure Inspection",slug:"visyr__a_vision_system_for_real-time_infrastructure_inspection",totalDownloads:2223,totalCrossrefCites:2,totalDimensionsCites:5,book:{slug:"vision_systems_applications",title:"Vision Systems",fullTitle:"Vision Systems: Applications"},signatures:"Francescomaria Marino and Ettore Stella",authors:null}],onlineFirstChaptersFilter:{topicSlug:"psychology-digital-image-processing-robot-vision",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/the-hippocampus-plasticity-and-functions/long-term-potentiation-associated-gene-expression-involvement-of-the-tumour-protein-p53",hash:"",query:{},params:{book:"the-hippocampus-plasticity-and-functions",chapter:"long-term-potentiation-associated-gene-expression-involvement-of-the-tumour-protein-p53"},fullPath:"/books/the-hippocampus-plasticity-and-functions/long-term-potentiation-associated-gene-expression-involvement-of-the-tumour-protein-p53",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()