Open access peer-reviewed chapter

The Hippocampus as a Neural Link between Negative Affect and Vulnerability for Psychostimulant Relapse

Written By

Jeffrey L. Barr, Brenna Bray and Gina L. Forster

Submitted: 26 April 2017 Reviewed: 06 September 2017 Published: 20 December 2017

DOI: 10.5772/intechopen.70854

From the Edited Volume

The Hippocampus - Plasticity and Functions

Edited by Ales Stuchlik

Chapter metrics overview

1,889 Chapter Downloads

View Full Metrics

Abstract

Psychostimulant dependence (including cocaine, amphetamine, and methamphetamine) is a chronic relapsing disorder with significant personal, health, and financial burdens. Attempts at abstinence produce a severe and protracted withdrawal syndrome characterized by stress hypersensitivity that can facilitate drug craving, anxiety, and dysphoria. These negative withdrawal symptoms can induce relapse, maintaining the addiction cycle. The hippocampus mediates cognitive, emotional, and endocrine responses to stressors. The ventral hippocampus is in a pivotal position to regulate the mesoaccumbal dopamine reward system, and interacts with serotonergic and glucocorticoid systems that mediate anxiety and stress responsiveness. Psychostimulant actions on the hippocampus induce long-term changes to these systems and impact the process of adult neurogenesis in the hippocampus, which may facilitate drug dependence by altering drug-cue learning and emotional regulation. Multiple studies indicate that psychostimulant-induced hippocampal neuroadaptations heighten hippocampal-mesoaccumbal activity to amplify drug- and drug-cue responses while persistent dysregulation of hippocampal emotional systems potentiate negative affect. Understanding how psychostimulants modulate the hippocampus to alter hippocampal-mesoaccumbal activity—and how hippocampal neurogenesis influences drug-related memories and reward—is important for identifying novel treatment strategies that can ameliorate negative affect and relapse vulnerability in psychostimulant addiction.

Keywords

  • psychostimulant
  • hippocampus
  • stress
  • withdrawal
  • serotonin
  • corticosterone
  • neurogenesis

1. Introduction

1.1. The problem of stimulant abuse

Abuse of psychostimulants such as cocaine and amphetamines affects millions of people worldwide, as psychostimulants are the second most widely abused class of illicit drug globally behind marijuana [1, 2, 3, 4, 5]. In general, drug addiction and subsequent relapse vulnerability are thought to occur through counter-adaptive neurochemical changes within brain circuits that normally conserve an emotional homeostasis [6, 7, 8]. Dysregulation of the homeostatic system—through genetics, environment (stress), history of drug taking, or current emotive states—produces susceptibility to become dependent and to relapse during long-term abstinence [9, 10]. Psychostimulants produce a severe and protracted withdrawal syndrome which includes symptoms of stress hypersensitivity, intense drug craving, anxiety, and dysphoria [11, 12, 13, 14, 15, 16]. These symptoms are reproduced in animal models [17, 18, 19, 20, 21], and can induce craving and relapse in humans [13, 22, 23], thus maintaining the addiction cycle [24, 25, 26, 27]. The underlying mechanisms that enable stress-sensitive and dysphoric states in withdrawal to induce relapse are thought to involve alterations to the mesolimbic dopamine reward system and anti-reward/stress systems [9, 26, 28] that include the hippocampus [28, 29, 30]. Currently, no medications have proven effective for treating psychostimulant withdrawal [13, 16, 31]. Thus, understanding the neurobiology underlying the aversive states during psychostimulant withdrawal is an essential component of relapse prevention [32].

1.2. The hippocampus, stress and addiction

The hippocampus, a brain region associated with spatial learning and memory, has been established as a critical region for reward- and stress-associated responses and drug-seeking behaviors [30, 33, 34, 35, 36, 37]. Exposure to conditioned contextual cues and aversive or stressful stimuli are powerful triggers of drug cravings [38, 39, 40, 41] and are associated with activation of limbic brain regions, including the hippocampus, in both human and rodent models [42, 43, 44, 45, 46]. Dorsal and ventral subdivisions of the rodent hippocampus have been proposed based on anatomical connectivity and behavioral output [47, 48, 49, 50, 51]. The rodent dorsal hippocampus, analogous to the human posterior hippocampus, receives exteroceptive information from the entorhinal cortex and has a major role in rapid spatial learning (Figure 1) [52]. The ventral hippocampus, analogous to the human anterior hippocampus, receives interoceptive information through reciprocal connections to limbic regions that modulate motivational and affective states; the other limbic brain regions involved include the nucleus accumbens, amygdala, medial prefrontal cortex, and hypothalamus (Figure 1) [50, 51, 52, 53, 54]. Notably, both regions of the hippocampus are involved in memory formation [55]; dorsal neurons form contextual representations of specific single events while ventral neurons form representations of multiple events (related by a distinct context) over time [56].

Figure 1.

Schematic of afferent/efferent connections and functions of the dorsal and ventral hippocampus related to reward and stress processes. Abbreviations: Cx, cortex; HPA, hypothalamic-pituitary-adrenal; PFC, prefrontal cortex; PVN, paraventricular nucleus of the hypothalamus; VTA, ventral tegmental area.

The subiculum, the major output structure of the hippocampus, provides projections to the nucleus accumbens, which also receives input from ventral tegmental area (VTA) dopamine terminals [34, 57, 58, 59]. The nucleus accumbens integrates affective and motivational information to produce goal-directed behavioral output [60, 61, 62]. Thus, the hippocampus is poised to play an important role in mediating the effects of drugs of abuse (e.g., psychostimulants) through its interactions with the mesoaccumbal dopamine system. Importantly, the dorsal and ventral hippocampus may differentially regulate accumbal activity [60, 63], since the ventral subiculum projects to the medial shell of the nucleus accumbens while the dorsal subiculum projects to the more lateral accumbens and core (Figure 1) [51, 54, 64]. The dorsal and ventral hippocampus also influences accumbal activity indirectly, via multi-synaptic projections to the VTA (Figure 1) [65, 66, 67]. Consequently, glutamatergic output from the hippocampus facilitates dopaminergic activity in the mesolimbic dopamine pathway [34, 57, 68, 69]. In the nucleus accumbens shell, this communication is vital for forming place-reward associations [70, 71, 72] and mediating reward salience [63]. Thus, context-related processing within the hippocampus may drive reward-related processes mediated by the nucleus accumbens.

The hippocampus also regulates anxiety and avoidance behaviors. Anxiety is an innate response coordinated to protect an animal from potential harm, which is linked to maximizing chances of reward in approach-avoidance conflict situations. The hippocampus has been proposed to underlie anxiety behaviors by detecting novelty or uncertainty [73, 74] and then increasing attention and behavioral inhibition [75, 76]. However, maladaptive changes to the circuits underlying this response can constrain normal functioning and lead to a disruptive pathological state.

The ventral hippocampus in particular plays a predominant role in mediating anxiety/avoidance behaviors. For example, glutamatergic activation of the ventral hippocampus is important for expressing anxiety-like behaviors [77, 78] and lesioning the ventral—but not dorsal—hippocampus reduces innate avoidance behavior in unconditioned anxiety tests, and reduces conditioned responding to anxiogenic cues [79, 80, 81, 82, 83, 84]. Moreover, a recent study in humans found that the anterior (ventral) hippocampus is necessary for passive avoidance behavior [85], and studies in rats and humans have shown that increased activity between the ventral/anterior hippocampus and the medial prefrontal cortex is necessary for expressing anxiety in anxiogenic environments [86, 87, 88, 89]. Also, activating basolateral amygdala (BLA) inputs to the ventral hippocampus increases—while inhibition decreases—anxiety-like behaviors [90]. Together, these findings suggest that activation of the ventral hippocampus by glutamatergic input from the BLA and its subsequent communication with regions like the prefrontal cortex is essential for the appropriate expression of anxiety/avoidance behaviors.

Related to its involvement in emotional regulation, the ventral hippocampus also exerts influence on the hypothalamic-pituitary-adrenal (HPA) axis and coordinates stress responses (Figure 1) [36, 91, 92]. The HPA axis organizes neuroendocrine responses to physical and psychogenic stressors through release of the glucocorticoid hormone cortisol (humans) or corticosterone (rodents) [92]. The hippocampus is the primary target for glucocorticoids in the brain [93] and the ventral subiculum is thought to be the primary limbic region that utilizes glucocorticoid feedback to inhibit HPA axis activity [91, 94, 95, 96]. This feedback inhibition is mediated through corticosteroid activation of corticosterone’s mineralocorticoid (MR) and glucocorticoid (GR) receptors that are both cytosolic (genomic) and membrane-bound (non-genomic) [96, 97, 98, 99].

Cytosolic MRs (cMRs), with restricted expression (highest in the hippocampus), have 10-fold higher affinity for corticosterone than GRs, and are ~90% occupied under basal conditions [100, 101, 102, 103]. They are attributed with regulating HPA inhibition at basal corticosterone levels, and thus determine HPA “set point” [96, 104, 105, 106, 107, 108]. cMRs also sustain cellular stability, which maintains stress sensitivity thresholds and preserves limbic network communication [97, 103, 107, 109, 110]. Cytosolic GRs (cGRs) are ubiquitously expressed, with high expression in the hippocampus [95], and regulate delayed feedback inhibition of HPA activity after diurnal corticosterone peaks and acute stress [92, 96, 104, 105]. cGRs are also attributed with normalizing neuronal excitability in response to stress and normalizing network activity, which dampens initial stress responses, and promotes adaptive stress coping [107, 109, 110].

Corticosterone stress responses that occur too quickly to attribute to genomic effects are credited to activation of non-genomic membrane-bound receptors (mMRs/mGRs) in the hippocampus (and other regions). These membrane receptors have ≥10-fold lower affinity for corticosterone than their cytosolic counterparts [97, 103, 108] and thus act as hippocampal “cortico-sensors” [99, 111]. mMRs rapidly and reversibly enhance excitatory glutamatergic transmission in the hippocampus [97, 99, 107]; they contribute to rapid inhibition of HPA activity and activate rapid and reversible behavioral stress responses important for appraisal and coping [99, 110]. mGRs have lower corticosterone affinity than mMRs and augment inhibitory GABAergic interneuronal transmission [112] to suppress excitability; they also promote spinogenesis [97, 113]. Alterations in these receptors’ expression, function, and ratios relative to one another—especially within the hippocampus—can diminish stress responsiveness and coping ability, which is associated with multiple disease states, including depression and psychostimulant withdrawal [113, 114].

Glucocorticoid stress responses in the hippocampus also vary based on hippocampal region (dorsal vs. ventral): acute foot shock rapidly increases corticosterone levels in the dorsal hippocampus, followed by a more delayed elevation in the ventral hippocampus [115]. Also, acute swim stress decreases long-term potentiation (LTP) in the dorsal hippocampus, but increases LTP in the ventral hippocampus [116]. This differential response may temporarily suppress the dorsal hippocampus’ cognitive cortical communication and facilitate ventral hippocampal transmission of emotional information [117].

1.3. Goals of this review

Overall, the ventral hippocampus is in a pivotal position to play a key role in addictive processes via its role in modulating activity of reward and stress pathways such as the mesoaccumbal dopamine system and HPA axis respectively. This review will provide evidence for psychostimulant-induced changes in the hippocampus leading to negative affect that promotes psychological withdrawal symptoms and maintains the cycle of psychostimulant dependence. Specifically, this review will evaluate and integrate various studies concerning alterations of hippocampal activity and structural plasticity due to chronic drug exposure that contribute to the pathophysiology of drug abuse through maladaptive reward responses and/or the promotion of dysphoric states. In doing so, potential mechanisms underlying psychostimulant withdrawal symptoms and relapse to drug-seeking will be revealed and future directions identified.

Advertisement

2. Psychostimulants and hippocampal-mesoaccumbens circuitry

The mesoaccumbal dopaminergic system (VTA to nucleus accumbens) is involved in reinforcement learning and motivated behavior. Dopamine release in the nucleus accumbens shell is associated with reward salience [63] and drug/reward context conditioning [118], and is enhanced by drug use [42, 118], drug-predictive contexts [118, 119], and during novel environment exploration [120]. In line with its role as a novelty detector, the ventral hippocampus controls the novelty-induced dopamine response in the nucleus accumbens [73]. Novelty-induced activation of the ventral hippocampal-nucleus accumbens pathway is thought to be important for long-term memory formation [121]. In support of this, place-reward associations depend on communication between the ventral hippocampus and the nucleus accumbens shell [68, 69]. Likewise, neuronal activity between the nucleus accumbens, hippocampus, and prefrontal cortex during goal-directed behavior learning is believed to contribute to reward-context memory consolidation and strengthening [122, 123, 124, 125]. Finally, co-activation of the anterior (ventral) hippocampus and VTA dopamine neurons is linked to long-term reward-related memory enhancement [126, 127]. Thus, reward enhances memory formation, and this effect is closely linked to reward-context engagement of the hippocampal-mesoaccumbal pathway.

The dopamine system has long been associated with stress/aversion as well as reward-related behaviors [128, 129]. For example, stress increases dopamine levels in the nucleus accumbens shell (but not core) [130]. Preliminary studies in rats suggest that mimicking the hippocampal glucocorticoid stress response [131, 132, 133, 134] by infusing corticosterone into the ventral subiculum stimulates dopamine efflux in the nucleus accumbens shell [29], thus indicating a role for the ventral hippocampus in enabling stress to enhance accumbal dopamine output. Stressors also increase VTA dopamine activity, and this increase is dependent upon ventral hippocampal activity [135]. The ventral hippocampus-VTA dopamine pathway is also potentiated in mice with increased social avoidance after chronic social defeat stress, and is necessary for this behavioral outcome [136]. Thus, it is suggested that the ventral hippocampus uses prior experience to bias the responsive state of accumbal dopamine [135]. In line with this suggestion, mice with increased avoidance behavior following chronic stress also display increased VTA dopamine neuron burst firing [137, 138]. Therefore, a behaviorally salient stimulus (aversive or rewarding) within a given context would heightened activation of the ventral hippocampus-accumbens pathway.

The ventral hippocampal-nucleus accumbens pathway also influences psychostimulant responses. Rats with greater dopaminergic responses to novelty will self-administer psychostimulants more readily [139, 140] and rats with repeated cocaine exposure display enhanced accumbal dopamine responses to glutamatergic stimulation of the ventral hippocampus [141]. This is likely reflective of the finding that repeated cocaine exposure and withdrawal selectively potentiates ventral hippocampal input to the nucleus accumbens shell [142, 143]. Furthermore, rats that exhibit behavioral sensitization to amphetamine display enhanced VTA neuronal firing and accumbal dopamine output, and these behavioral and neurophysiological effects are dependent on ventral hippocampal input [144, 145]. Hippocampal activity is also associated with psychostimulant-induced conditioned place preference (CPP) acquisition and expression [146, 147]. For example, lesions or inactivation of the hippocampus inhibit CPP acquisition and context-induced drug-seeking behavior [148, 149, 150, 151, 152]. Specifically, interactions between ventral hippocampal glutamatergic projections to neurons expressing postsynaptic D1 dopamine receptors in the nucleus accumbens shell contribute to drug-context memory formation and subsequent drug-seeking reinstatement [37, 153, 154]. Thus, ventral hippocampal facilitation of accumbal dopamine may generate drug-seeking behavior. Further, ventral hippocampal inhibition reduces cocaine- cue- or context-induced reinstatement of drug-seeking behavior [37, 148, 149, 155, 156] and its activity primes context-dependent relapse to drug-seeking for cocaine or d-amphetamine [37, 154, 157]. Overall, it appears that ventral hippocampal enhancement of accumbal dopamine activity likely promotes storage and retrieval of drug-reward information that underlies drug-seeking behaviors (Figure 2).

Figure 2.

Overview of the effects of psychostimulant use on the ventral hippocampus that lead to increased sensitivity to psychostimulants, cues, stress and withdrawal symptoms. As discussed in the text, repeated psychostimulant exposure may either increase or decrease neurogenesis in the hippocampus under differing conditions, with either outcome contributing to the symptoms of dependence. Abbreviations: 5-HT, serotonin; GR, glucocorticoid receptor; OCT3, organic cation transporter 3.

The mechanisms by which psychostimulants enhance ventral-hippocampal-regulated dopamine activity are not fully understood. Stress and repeated cocaine exposure independently increase LTP in the ventral hippocampus [116, 158]. Interestingly, acute stress-induced hippocampal plasticity is mediated by MRs and GRs in the ventral hippocampus; whereas cocaine-induced hippocampal plasticity seems to instead involve D2 dopamine receptors [116, 158, 159]. Related, repeated cocaine increases trafficking of glutamate receptors toward the membrane in the rat hippocampus [160], suggesting that psychostimulant-induced changes in hippocampal glutamate receptor availability contribute to increased hippocampal excitability and enhanced elevation of accumbal dopamine [141]. Repeated amphetamine exposure also results in a reduced GR to MR ratio in the ventral hippocampus [114], which could further alter hippocampal excitability [97, 108] and hippocampal-accumbens activity. Further, repeated psychostimulant exposure alters neurotransmitter and endogenous neuropeptide levels in the hippocampus. For example, intrahippocampal oxytocin is decreased following chronic cocaine, whereas exogenous administration inhibits psychostimulant-induced behaviors [161]. Oxytocin alters hippocampal excitability by increasing the firing rate of inhibitory interneurons, likely influencing hippocampal terminal regions including the mesoaccumbal dopaminergic system [162]. Together, these findings suggest that psychostimulants can alter synaptic plasticity in the ventral hippocampus, facilitating hippocampal-accumbal pathways to amplify responses to drug reward- or stressor-associated cues (Figure 2).

Advertisement

3. Psychostimulants and hippocampal affect regulation: spotlight on serotonin and glucocorticoids

A critical modulator of hippocampal activity is serotonin (5-HT). The serotonergic median raphe nucleus innervates the entire dorsal-ventral axis of the hippocampus while the ventral hippocampus receives additional projections from the dorsal raphe nucleus (Figure 1) [161, 162]. Thus, the ventral hippocampus receives a higher density of serotoninergic innervations than the dorsal hippocampus [163]. The expression of 5-HT receptors is also differentiated along the dorsal-ventral axis of the hippocampus [164], which supports distinct 5-HT contributions to regionally distinct hippocampal functions.

Various stressors increase extracellular 5-HT levels in the hippocampus [165, 166, 167, 168, 169, 170, 171, 172], and this is thought to be mediated by GR activation [114, 172, 173]. In rats, total brain 5-HT depletion increases stress sensitivity and abolishes stress adaptation [174], while specific 5-HT depletion in the ventral hippocampus increases anxiety-like behavior [175]. This supports the role of the ventral hippocampus as regulating anxiety behavior, and comports findings that suggest 5-HT acts as an inhibitory modulator in the hippocampus by activating inhibitory 5-HT1A receptors [176, 177, 178, 179, 180, 181, 182]. For example, 5-HT1A receptor activation in the hippocampal dentate gyrus inhibits LTP and impairs fear-related memory acquisition and consolidation [183, 184, 185]. Also, post-stress injection of a selective 5-HT reuptake inhibitor or activation of 5-HT1A receptors in the hippocampus prevents stress-induced behavioral deficits [186, 187, 188]. Overall, increased 5-HT in the hippocampus seems to be important for repeated stress habituation, while reduced ventral hippocampal 5-HT heightens anxiety [172, 175, 189, 190].

A reciprocal and regulatory interaction exists between the serotonergic and glucocorticoid systems [191, 192, 193]. Systemic corticosterone enhances—and blocking corticosterone synthesis or GRs reduces—hippocampal 5-HT turnover and release [114, 194, 195]. These and other findings suggest that hippocampal GR activation in response to stress enhances hippocampal 5-HT transmission [114, 174], which may hold implications for behavioral and emotive stress responses such as anxiety [172, 175]. For example, many antidepressants that decrease anxiety states increase GR expression and 5-HT transmission [196]. In relation to psychostimulant use, chronic amphetamine pretreatment reduces GR protein expression in the ventral hippocampus and abolishes the 5-HT response to physiologically relevant hippocampal corticosterone levels after 24 hours of withdrawal [114], when heightened anxiety states emerge [197]. Overall, blunted stress-induced 5-HT signaling in the ventral hippocampus may contribute to negative affect during psychostimulant withdrawal.

Interestingly, rats with high anxiety behavior and diminished stress-induced 5-HT release also have increased levels of 5-HT transporter (SERT) in the raphe and hippocampus, suggesting enhanced 5-HT clearance from the synaptic cleft also contributes to a reduced serotonergic stress response [189]. Acute amphetamine administration can increase SERT activity at the membrane [198]; however, repeated administration of amphetamine or its derivatives consistently fails to alter SERT expression or function in the hippocampus [199, 200, 201, 202, 203, 204]. Therefore, while psychostimulants interact acutely with SERT, chronic psychostimulant exposure does not appear to alter SERT expression or function in the hippocampus to alter 5-HT activity during withdrawal.

The organic cation transporter 3 (OCT3) is a low affinity, high capacity transporter that contributes to 5-HT clearance, and a high density of OCT3 is present in the hippocampus [205, 206, 207, 208, 209, 210]. OCT3 is directly linked to anxiety behavior, as OCT3 knockout mice display an anxiolytic phenotype [211] and OCT3 inhibition has antidepressant-like effects in rats [210]. Similarly, SERT knockout mice consistently display heightened OCT3 activity in the hippocampus [212, 213] and increased anxiety-like behavior [214, 215], as well as increased OCT3 mRNA in the hippocampus (but not other brain regions) [213]. This suggests that OCT3 may have a region-specific role for 5-HT reuptake in the hippocampus [209, 211, 213, 216]. Accordingly, amphetamine inhibits OCT3 monoamines transport [208, 217] (although see [218]) and withdrawal from methamphetamine is associated with decreased OCT3 mRNA in whole brain homogenates [212]. However, OCT3 expression and function are increased in the ventral hippocampus of rats at 24 hours of withdrawal from chronic amphetamine, resulting in increased 5-HT clearance in this region [203, 204]. Thus, psychostimulant exposure may enhance OCT3-mediated serotonin uptake in the hippocampus to produce the heighten anxiety states observed in these animals.

In addition, chronic cocaine administration increases 5HT1B autoreceptors [219], which regulate serotonin release and anxiety-like behavior in the ventral hippocampus [220, 221]. Thus, psychostimulant-induced increases of 5HT1B- and OCT3 expression in the ventral hippocampus may reduce ventral hippocampal 5-HT levels and enhance anxiety/avoidance behavior during withdrawal (Figure 2) [175, 197, 222, 223, 224, 225]. Furthermore, reductions in evoked 5-HT release in the ventral hippocampus have been linked to augmented reinforcing properties of cocaine and ecstasy (MDMA) [226, 227]. Overall, psychostimulant exposure can induce multiple detrimental effects on serotonin signaling during withdrawal that can alter hippocampal activity, disrupt hippocampal communication with reward processing regions (nucleus accumbens), and may culminate in maladaptive behaviors (Figure 2).

The hippocampal glucocorticoid stress system may play a key role in anhedonia and dysphoria that drive relapse during psychostimulant withdrawal. In support of this suggestion, major depressive disorder—with core features of anhedonia and dysphoria—is associated with reduced hippocampal GR to MR ratio (GR/MR) [228] and reduced GR expression and function [229, 230, 231]. Knocking out central GR expression (except in the hypothalamus) produces a reliable depression-like phenotype in rodents, which is restored with tricyclic antidepressant treatment [232]. Antidepressants also increase hippocampal GR/MR ratio, expression, and function [233, 234, 235, 236], and short-term treatment with the GR antagonist mifepristone improves depressive symptoms in hypercortisolemic patients [237, 238].

Repeated psychostimulant exposure—which produces dysphoric states in withdrawal [13, 16, 239, 240]—also results in reduced GR expression—and a reduced GR/MR ratio—in the ventral hippocampus (in rats) [114]. The reduced GR/MR ratio may result in MRs having a more pronounced effect in the ventral hippocampus [114], which may function to preserve HPA regulation and homeostasis, since MRs are thought to preserve basal HPA tone [103, 104]. In support of this possibility, neither plasma nor hippocampal corticosterone levels are altered under basal conditions after repeated amphetamine exposure [114]. However, reduced GR/MR ratio is associated with depression [228], and may thus contribute to the dysphoric states that cause relapse during psychostimulant withdrawal. Further, the reduced GR/MR ratio may alter hippocampal excitability and result in dysregulated serotonin- and dopamine responses to stress (Section 2 and [114]).

Interestingly, protracted amphetamine withdrawal (2 weeks) results in an enhanced corticosterone stress response in the ventral hippocampus, without altering basal hippocampal or plasma corticosterone levels, or stress-induced plasma corticosterone levels [134]. This enhanced hippocampal corticosterone stress response—paired with the possible persistence of lower GR/MR ratio in the ventral hippocampus [114]—may affect hippocampal regulation of accumbal dopamine output and drug salience (Section 2 and [29]). For example, preliminary findings suggest that a stress-relevant concentration of corticosterone infused into the ventral hippocampus rapidly enhances accumbal shell dopamine output (Section 2 and [29]), which may enable stress to enhance reward value [63] and promote goal-oriented behavior [60]. In amphetamine withdrawal, infusing corticosterone into the ventral hippocampus may reduce accumbal dopamine output [29]. Thus, corticosterone in the ventral hippocampus may enable stress to reduce reward value during psychostimulant withdrawal, thereby contributing to anhedonia and dysphoria that can prompt relapse [13, 16]. Overall, these recent findings support a role for hippocampal corticosterone in mediating reward responses to stress, and suggest that dysregulated corticosterone signaling in the ventral hippocampus may contribute to stress-induced relapse during psychostimulant withdrawal.

Acute stress exposure has also been found to produce an immediate 3-fold increase of free corticosterone levels in the dorsal hippocampus [241]. GR/MR ratio is also altered in the dorsal hippocampus during psychostimulant withdrawal [114, 241]. In Ref. [241] an increase in GR/MR mRNA ratio was observed in the dorsal dentate and CA1 in response to withdrawal from extended access to daily cocaine self-administration, accompanied by increased GR mRNA in the dentate and CA3, and increased MR mRNA in the dentate. In contrast, others have shown that repeated amphetamine administration selectively down-regulates GR mRNA in the dorsal hippocampus (when sampled as a whole) [242, 243, 244, 245]. Furthermore, in Ref. [114] a reduction in dorsal hippocampal GR/MR protein ratio was observed in response to repeated amphetamine exposure during acute (24 h) withdrawal, even though neither GR nor MR protein expression were significantly reduced [114]. The lack of change in GR protein expression was also observed after cocaine self-administration [246]. These differences suggest a possible dissociation between mRNA and protein expression, and may also suggest that psychostimulant exposure has differential effects on GR/MR regulation, dependent upon the exposure model, duration of drug abstinence, and hippocampal sub-region assessed.

Overall, the effects of psychostimulant exposure in the dorsal hippocampus seem to alter GR/MR protein ratio as well as GR and MR mRNA levels. The reduced GR/MR ratio in the dorsal hippocampus could reduce corticosterone-induced serotonin activity in that region [195], similar to the reduction observed in the ventral hippocampus [114]. This has not yet been tested; however, if present, reduced corticosterone-induced serotonin activity in the dorsal hippocampus could impair serotonin-mediated processing of stress-related memories [186] and thus disrupt stress adaptation. The resultant reduced stress coping ability could contribute to stress-induced relapse during psychostimulant withdrawal, as has been reported in humans [13]. Furthermore, the dorsal hippocampus sends excitatory projections to the nucleus accumbens core [51], where dopamine release is associated with coordinating motor programs necessary for drug-seeking [63]. However, dorsal hippocampal stimulation reduces extracellular dopamine in the accumbens core [247] where differential dopaminergic responses are observed in response to appetitive stimuli (increased dopamine) and aversive stimuli (decreased dopamine), while the dopaminergic response in the shell is enhanced regardless of stimulus type [248, 249]. Thus, future research should further dissect the differential roles of the dorsal and ventral hippocampus in contributing to psychostimulant abuse and withdrawal pathology through interactions with the mesolimbic dopamine system and stress responsivity.

Advertisement

4. Psychostimulant regulation of hippocampal structural plasticity: drug-context and negative affect

Psychostimulants dramatically alter structural plasticity; inducing long-term changes to dendrite and dendritic spine morphology [250], and potently altering adult neurogenesis, the process by which new neurons are generated in adulthood. Adult neurogenesis enables experience to alter neuronal circuitry (structural plasticity) in the hippocampus and other regions [251, 252, 253, 254]. Adult neurogenesis in the dentate gyrus sub-region of the hippocampus, an essential region for drug-reward-memory formation [152], plays a role in hippocampal-dependent learning and memory [253, 255, 256], as well as hippocampal regulation of stress responses [257, 258] and anxiety-like behaviors [259].

Learning processes increase long-term survival of new neurons [260, 261] and contextual learning and remembering (novel object recognition) depend upon neuron survival for the ability to rearrange circuits (structural plasticity) [262, 263, 264, 265]. Interestingly, removing new neurons after contextual fear- or water maze- training degrades memory [266]; however, increasing neurogenesis after training promotes forgetting of hippocampal-dependent recent memory, but not remote- or hippocampus-independent memory [267, 268]. Thus, augmented hippocampal neurogenesis can weaken existing memories and facilitate encoding of new experiences, whereas diminished neurogenesis can stabilize existing memories and impede new memory encoding. Similarly, adult neurogenesis promotes cognitive flexibility and inhibitory control, behaviors regulated by the ventral hippocampus, suggesting ventral hippocampal neurogenesis significantly contributes to these behaviors [269, 270, 271, 272].

Importantly, dorsal-ventral differences are distinguished in hippocampal neurogenesis processes. Several studies indicate predominant neurogenesis in the dorsal- compared to the ventral- dentate gyrus [224, 273, 274, 275, 276, 277]. However, new neurons mature more slowly in the ventral dentate than in the dorsal, suggesting a prolonged period in which immature neurons could be influenced by activity and incorporated or removed from local circuitry [278, 279]. Therefore, a larger pool of potential new neurons in the dorsal dentate gyrus might contribute to rapid spatial memory formation, whereas slower maturation in the ventral dentate gyrus may support the regulation of affective states. In support of this notion, an enriched environment preferentially increases neurogenesis in the dorsal dentate, whereas antidepressant treatment increases neurogenesis and chronic stress decreases neurogenesis to a greater degree in the ventral dentate gyrus [280, 281, 282, 283, 284].

The specific role of dentate gyrus neurogenesis in regulating anxiety and negative affect remains unclear [285]. Several studies correlate reduced neurogenesis with increased anxiety-like behaviors [259, 286, 287, 288]. For example, antidepressants that reduce anxiety states stimulate neurogenesis in the rodent and human hippocampus [289, 290, 291, 292]; however, suppressing neurogenesis alone does not seem to be sufficient to induce anxiety-like behaviors [293, 294, 295, 296]. Events that induce negative affect—such as chronic stress—also suppress adult hippocampal neurogenesis [297] and increasing adult neurogenesis reduces anxiety and depression-like behaviors in mice treated chronically with corticosterone [298], supporting a role for neurogenesis in mediating hippocampal responses to stress. Stress-induced suppression of cell proliferation in the hippocampus may occur through GRs, which are expressed on proliferating cells [299]. Further, impaired neurogenesis is associated with weakened HPA axis feedback inhibition and increased glucocorticoid levels after acute stress [257, 258]. This suggests that neurogenesis may maintain hippocampal regulation of HPA activity. Thus, impaired neurogenesis may intensify subsequent glucocorticoid effects on hippocampal function, in part through altered serotonergic neurotransmission (see Section 3). This may induce long-term stress sensitivity and negative affect.

Psychostimulants directly regulate the process of adult hippocampal neurogenesis. In rats, chronic but not acute cocaine exposure reduces proliferation rates in the dentate gyrus, but does not alter newborn cell survival rates [300, 301, 302]. However, in mice, cocaine seems to increase proliferation [303], and its effects on neuron survival appear to depend on existing vulnerability and drug dosage [304, 305]. Amphetamines have less of an impact on proliferation rates (relative to cocaine), but a greater tendency to reduce the long-term survival of newborn cells [224, 306, 307]. However, methamphetamine exposure reduces both proliferation and survival of new neurons [308, 309]. While most research has focused on the negative regulation of neurogenesis by drugs of abuse, multiple positive effects on neurogenesis have also been observed, particularly during withdrawal. These include increased markers of immature neurons during withdrawal [302, 303, 310, 311] and increased survival of hippocampal progenitors [312, 313]. It appears that drug-seeking behaviors persist independent of recovery from initial drug-induced decreases in new neuron proliferation [302]. However, altered hippocampal neurogenesis impacts drug-taking behaviors. When hippocampal neurogenesis is impaired prior to cocaine self-administration training, rats take greater amounts of cocaine and display higher breakpoints (vs controls), suggesting an intensification of drug reward [314]. Natural reward (sucrose administration) is not altered by this process [314], although transgenic mice with impaired neurogenesis exhibit no sucrose preference, which is an indication of anhedonia [258]. Further, impairing neurogenesis prior to cocaine self-administration training does not alter relapse to drug-seeking [314], yet impairing neurogenesis after self-administration training—or before CPP—increases context-induced drug-seeking behavior and impedes extinction [314, 315]. This suggests that impaired neurogenesis enhances potency of drug-associated environmental cues in a time-dependent fashion, and enhancing neurogenesis may promote forgetting of recent hippocampal-dependent drug-reward memory [267]. Increased neurogenesis elicited by voluntary wheel-running or environmental enrichment before conditioning also delays extinction of cocaine CPP, whereas running that occurs after conditioning accelerates cocaine CPP extinction [316, 317] (although see [318]). Together, these studies suggest that hippocampal neurogenesis may play a role in drug-reward-context memory formation and relapse to drug-seeking.

Psychostimulants may alter neurogenesis processes at least partially through their interactions with the hippocampal dopamine system. Dopamine is known to selectively modulate neurogenesis and immature neuron activity [319], and the ventral hippocampus receives a higher density of dopaminergic inputs than the dorsal hippocampus [320], which may contribute to the dorsa-ventral differences observed in hippocampal neurogenesis processes (described above). Interestingly, dopamine receptor activation promotes adult hippocampal neurogenesis [321, 322], but dopamine can also decrease the capacity of young neurons to express LTP by persistently attenuating young neuron inputs [319]. Psychostimulant-induced alterations to hippocampal dopamine output could then selectively modulate the activity of immature neurons and dictate their subsequent integration into hippocampal circuitry. In support of this suggestion, cocaine enhances LTP magnitude selectively in the ventral hippocampus (where dopamine innervation is highest) in a dopamine-receptor-dependent fashion [158]. Likewise, cocaine-induced CPP stimulates context-dependent activation of adult-born neurons to a greater extend in the ventral dentate gyrus [323]. Altogether, these findings suggest that psychostimulants may exert dynamic effects on hippocampal neurogenesis, promoting functional integration or reducing proliferation or survival, depending upon hippocampal region and age of the newly-generated cells at the time of drug experience (Figure 2) [324]. This preferential activation could promote formation and incubation of drug-context associations. Additionally, altered neurogenesis—perhaps through changes in immature neurons—could indirectly influence hippocampal networks involved in mediating anxiety states—including those induced by drug use and withdrawal—depending upon individual susceptibility, experience, and withdrawal state (Figure 2). Overall, more studies are necessary to determine the long-term impact of psychostimulants and withdrawal on new neuron integration along the dorsal-ventral extent of the hippocampus. Specifically, it will be important to uncover the subsequent impact of psychostimulant-induced neurogenesis on drug memory reinstatement, and further identify the underlying mechanisms at play, to develop new therapeutic strategies.

Advertisement

5. Conclusions

Together, the literature reviewed indicates that the hippocampus contributes to drug-reward processes, drug-related memory formation, and drug-induced anxiety and dysphoria. Neuroadaptations following repeated drug administration lead to heightened hippocampal-mesoaccumbal activity, thus amplifying responses to psychostimulants and associated cues. At the same time, a persistent dysregulation of the hippocampal component of the brain’s emotional system produces a bias toward negative affect-like responses (Figure 2). Moreover, long-term alterations of neurogenesis within the hippocampus may contribute to relapse vulnerability through enhanced drug sensitivity, enhanced drug memory, or anxiogenic stimuli. However, further study is necessary to determine how psychostimulants modulate the hippocampus to heighten hippocampal-mesoaccumbal activity, and particularly how hippocampal neurogenesis functions to influence drug-reward and drug-related memories. Future studies should also explore the functional implications of the impact of drugs of abuse and withdrawal on the hippocampus regarding its dorsal-ventral axis. A better understanding of regional differences may help clarify the roles of neurogenesis in changes induced by psychostimulants on different types of hippocampus-dependent behavior. Taking into consideration the activity of these hippocampal systems under drug naïve conditions, chronic psychostimulant-induced alterations to the hippocampus produce ineffective maladaptive behavioral responses to stress and environmental challenges. Restoration of these abnormalities within the hippocampus, either in neuronal activity, neurochemical levels, or neurogenesis could provide an effective therapeutic option to ameliorate negative affect and relapse vulnerability in psychostimulant addiction.

Advertisement

Acknowledgments

This work was supported by NIH grants R01 DA019921 (to GLF) and R03 DA040747 (to JLB).

References

  1. 1. Berman S, O’Neill J, Fears S, Bartzokis G, London ED. Abuse of amphetamines and structural abnormalities in the brain. Annals of the New York Academy of Sciences. 2008;1141:195-220. DOI: 10.1196/annals.1441.031
  2. 2. National Survey on Drug Use and Health. Results from the 2013 National Survey on Drug Use and Health: Summary of National Findings. Office of Applied Studies Report, Substance Abuse and Mental Health Services Administration, Department of Health and Human Services
  3. 3. Sun HQ, Chen HM, Yang FD, Lu L, Kosten TR. Epidemiological trends and the advances of treatments of amphetamine-type stimulants (ATS) in China. The American Journal on Addictions. 2014;23(3):313-317. DOI: 10.1111/j.152-0391.2014.12116.x
  4. 4. Sevarino KA, Oliveto A, Kosten TR. Neurobiological adaptations to psychostimulants and opiates as a basis of treatment development. Annals of the New York Academy of Sciences. 2000;909:51-87. DOI: 10.1111/j.1749-6632.2000.tb06676.x
  5. 5. United Nations Office on Drugs and Crime. World Drug Report 2016 [Internet]. 2016. Available from: www.unodc.org [Accessed: Jan 18, 2017]
  6. 6. Koob GF, Le Moal M. Drug abuse: Hedonic homeostatic dysregulation. Science. 1997;278:52-58. DOI: 10.1126/science.278.5335.52
  7. 7. Koob GF, Le Moal M. Addiction and the brain antireward system. Annual Review of Psychology. 2008;59:29-53. DOI: 10.1146/annurev.psych.59.103006.093548
  8. 8. Gardner EL. Addiction and brain reward and antireward pathways. Advances in Psychosomatic Medicine. 2011;30:22-60. DOI: 10.1159/000324065
  9. 9. Koob GF, Le Moal M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology. 2001;24:97-129. DOI: 10.1016/S0893-133X(00)00195-0
  10. 10. Koob GF, Le Moal M. Plasticity of reward neurocircuitry and the ‘dark side’ of drug addiction. Nature Neuroscience. 2005;8:1442-1444. DOI: 10.1038/nn1105-1442
  11. 11. Gawin FH. Cocaine addiction: Psychology and neurophysiology. Science. 1991;251:1580-1586. DOI: 10.1126/science.2011738
  12. 12. Gawin FH, Kleber HD. Abstinence symptomatology and psychiatric diagnosis in cocaine abusers. Clinical observations. Archives of General Psychiatry. 1986;43:107-113. DOI: 10.1001/archpsyc.1986.01800020013003
  13. 13. Gossop M. Review: Limited evidence to support pharmacological therapy for amphetamine withdrawal. Evidence-Based Mental Health. 2009;12:122. DOI: 10.1136/ebmh.12.4.122
  14. 14. Resnick RB, Resnick EB. Cocaine abuse and its treatment. The Psychiatric Clinics of North America. 1984;7:713-728
  15. 15. Romanelli F, Smith KM. Clinical effects and management of methamphetamine abuse. Pharmacotherapy. 2006;26:1148-1156. DOI: 10.1592/phco.26.8.1148
  16. 16. Shoptaw SJ, Kao U, Heinzerling K, Ling W. Treatment for amphetamine withdrawal. Cochrane Database of Systematic Reviews. 2009;2:CD003021. DOI: 10.1002/14651858.CD003021.pub2
  17. 17. Barr AM, Markou A. Psychostimulant withdrawal as an inducing condition in animal models of depression. Neuroscience and Biobehavioral Reviews. 2005;29(4-5):675-706. DOI: 10.1016/j.neubiorev.2005.03.012
  18. 18. Cryan JF, Hoyer D, Markou A. Withdrawal from chronic amphetamine induces depressive-like behavioral effects in rodents. Biological Psychiatry. 2003;54(1):49-58. DOI: 10.1016/S0006-3223(02)01730-4
  19. 19. Emmett-Oglesby MW, Mathis DA, Moon RT, Lal H. Animal models of drug withdrawal symptoms. Psychopharmacology. 1990;101(3):292-309. DOI: 10.1007/BF02244046
  20. 20. Markou A, Koob GF. Postcocaine anhedonia. An animal model of cocaine withdrawal. Neuropsychopharmacology. 1991;4(1):17-26
  21. 21. Paterson NE, Markou A. Animal models and treatments for addiction and depression co-morbidity. Neurotoxicity Research. 2007;11(1):1-32. DOI: 10.1007/BF03033479
  22. 22. Kishi T, Matsuda Y, Iwata N, Correll CU. Antipsychotics for cocaine or psychostimulant dependence: Systematic review and meta-analysis of randomized, placebo-controlled trials. The Journal of Clinical Psychiatry. 2013;74(12):e1169-e1180. DOI: 10.4088/JCP.13r08525
  23. 23. Pérez-Mañá C, Castells X, Torrens M, Capellà D, Farre M. Efficacy of psychostimulant drugs for amphetamine abuse or dependence. Cochrane Database of Systematic Reviews. 2013;9:CD009695. DOI: 10.1002/14651858.CD009695.pub2
  24. 24. Cleck JN, Blendy JA. Making a bad thing worse: Adverse effects of stress on drug addiction. The Journal of Clinical Investigation. 2008;118(2):454-461. DOI: 10.1172/JCI33946
  25. 25. Koob GF. The dark side of emotion: The addiction perspective. European Journal of Pharmacology. 2015;753:73-87. DOI: 10.1016/j.ejphar.2014.11.044
  26. 26. Koob GF, Buck CL, Cohen A, Edwards S, Park PE, Schlosburg JE, Schmeichel B, Vendruscolo LF, Wade CL, Whitfield TW Jr, George O. Addiction as a stress surfeit disorder. Neuropharmacology. 2014;Pt B:370-382. DOI: 10.1016/j.neuropharm.2013.05.024
  27. 27. Wand G. The influence of stress on the transition from drug use to addiction. Alcohol Research & Health. 2008;31(2):119-136
  28. 28. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35(1):217-238. DOI: 10.1038/npp.2009.110
  29. 29. Bray B, Weber MA, Forster G. Corticosterone in the ventral hippocampus differentially affects accumbal dopamine release in drug-naïve and amphetamine-withdrawn rats. In: Proceedings of the Society for Neuroscience Annual Meeting, 2017; November 12-16, 2016; U.S.A. San Diego, CA: Society for Neuroscience, 2016. Program No. 258. Online Available from: www.abstractsonline.com/pp8/#!/4071/presentation/19860
  30. 30. White NM. Addictive drugs as reinforcers: Multiple partial actions on memory systems. Addiction. 1996;91(7):921-949; discussion 951-965. DOI: 10.1046/j.1360-0443.1996.9179212.x
  31. 31. Reed K, Day E, Keen J, Strang J. Pharmacological treatments for drug misuse and dependence. Expert Opinion on Pharmacotherapy. 2015;16(3):325-333. DOI: 10.1517/14656566.2015.983472
  32. 32. Sinha R. The clinical neurobiology of drug craving. Current Opinion in Neurobiology. 2013;23(4):649-654. DOI: 10.1016/j.conb.2013.05.001
  33. 33. Belujon P, Grace AA. Hippocampus, amygdala, and stress: Interacting systems that affect susceptibility to addiction. Annals of the New York Academy of Sciences. 2011;1216:114-121. DOI: 10.1111/j.1749-6632.2010.05896.x
  34. 34. Blaha CD, Yang CR, Floresco SB, Barr AM, Phillips AG. Stimulation of the ventral subiculum of the hippocampus evokes glutamate receptor-mediated changes in dopamine efflux in the rat nucleus accumbens. The European Journal of Neuroscience. 1997;9(5):902-911. DOI: 10.1111/j.1460-9568.1997.tb01441.x
  35. 35. Grace AA. Dopamine system dysregulation by the ventral subiculum as the common pathophysiological basis for schizophrenia psychosis, psychostimulant abuse, and stress. Neurotoxicity Research. 2010;18(3):367-376. DOI: 10.1111/j.1460-9568.1997.tb01441.x
  36. 36. Herman JP, Mueller NK. Role of the ventral subiculum in stress integration. Behavioural Brain Research. 2006;174(2):215-224. DOI: 10.1016/j.bbr.2006.05.035
  37. 37. Taepavarapruk P, Butts KA, Phillips AG. Dopamine and glutamate interaction mediates reinstatement of drug-seeking behavior by stimulation of the ventral subiculum. The International Journal of Neuropsychopharmacology. 2014;18(1):1461-1457. DOI: 10.1093/ijnp/pyu008
  38. 38. Fox HC, Hong KI, Siedlarz K, Sinha R. Enhanced sensitivity to stress and drug/alcohol craving in abstinent cocaine-dependent individuals compared to social drinkers. Neuropsychopharmacology. 2008;33(4):796-805. DOI: 10.1038/sj.npp.1301470
  39. 39. Sinha R, Talih M, Malison R, Cooney N, Anderson GM, Kreek MJ. Hypothalamic-pituitary-adrenal axis and sympatho-adreno-medullary responses during stress-induced and drug cue-induced cocaine craving states. Psychopharmacology. 2003;170(1):62-72. DOI: 10.1007/s00213-003-1525-8
  40. 40. Sinha R, Garcia M, Paliwal P, Kreek MJ, Rounsaville BJ. Stress-induced cocaine craving and hypothalamic-pituitary-adrenal responses are predictive of cocaine relapse outcomes. Archives of General Psychiatry. 2006;63(3):324-331. DOI: 10.1001/archpsyc.63.3.324
  41. 41. Volkow ND, Tomasi D, Wang GJ, Fowler JS, Telang F, Goldstein RZ, Alia-Klein N, Wong C. Reduced metabolism in brain “control networks” following cocaine-cues exposure in female cocaine abusers. PLoS One. 2001;6(2):e16573. DOI: 10.1371/journal.pone.0016573
  42. 42. Di Chiara G, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proceedings of the National Academy of Sciences of the United States of America. 1988;85:5274-5278. DOI: 10.1073/pnas.85.14.5274
  43. 43. Neisewander JL, Baker DA, Fuchs RA, Tran-Nguyen LT, Palmer A, Marshall JF. Fos protein expression and cocaine-seeking behavior in rats after exposure to a cocaine self-administration environment. The Journal of Neuroscience. 2000;20:798-805
  44. 44. Kilts CD, Schweitzer JB, Quinn CK, Gross RE, Faber TL, Muhammad F, Ely TD, Hoffman JM, Drexler KP. Neural activity related to drug craving in cocaine addiction. Archives of General Psychiatry. 2001;58:334-341. DOI: 10.1001/archpsyc.58.4.334
  45. 45. Volkow ND, Wang GJ, Telang F, Fowler JS, Logan J, Childress AR, Jayne M, Ma Y, Wong C. Cocaine cues and dopamine in dorsal striatum: Mechanism of craving in cocaine addiction. The Journal of Neuroscience. 2006;26:6583-6588. DOI: 10.1523/JNEUROSCI.1544-06.2006
  46. 46. Epstein DH, Willner-Reid J, Vahabzadeh M, Mezghanni M, Lin JL, Preston KL. Real-time electronic diary reports of cue exposure and mood in the hours before cocaine and heroin craving and use. Archives of General Psychiatry. 2009;66:88-94. DOI: 10.1001/archgenpsychiatry.2008.509
  47. 47. Moser MB, Moser EI. Functional differentiation in the hippocampus. Hippocampus. 1998;8:608-619. DOI: 10.1002/(SICI)1098-1063(1998)8:6<608::AID-HIPO3>3.0.CO;2-7
  48. 48. Kjelstrup KG, Tuvnes FA, Steffenach HA, Murison R, Moser EI, Moser MB. Reduced fear expression after lesions of the ventral hippocampus. Proceedings of the National Academy of Sciences of the United States of America. 2002;99:10825-10830. DOI: 10.1073/pnas.152112399
  49. 49. Bannerman DM, Rawlins JN, McHugh SB, Deacon RM, Yee BK, Bast T, Zhang WN, Pothuizen HH, Feldon J. Regional dissociations within the hippocampus – Memory and anxiety. Neuroscience and Biobehavioral Reviews. 2004;28:273-283. DOI: 10.1016/j.neubiorev.2004.03.004
  50. 50. Fanselow MS, Dong HW. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron. 2010;65:7-19. DOI: 10.1016/j.neuron.2009.11.031
  51. 51. Strange BA, Witter MP, Lein ES, Moser EI. Functional organization of the hippocampal longitudinal axis. Nature Reviews. Neuroscience. 2014;15(10):655-669. DOI: 10.1038/nrn3785
  52. 52. Bast T. Toward an integrative perspective on hippocampal function: From the rapid encoding of experience to adaptive behavior. Reviews in the Neurosciences. 2007;18(3-4):253-281. DOI: 10.1515/REVNEURO.2007.18.3-4.253
  53. 53. Kelley AE, Domesick VB. The distribution of the projection from the hippocampal formation to the nucleus accumbens in the rat: An anterograde- and retrograde-horseradish peroxidase study. Neuroscience. 1982;7:2321-2335. DOI: 10.1016/0306-4522(82)90198-1
  54. 54. Groenewegen HJ, Vermeulen-Van der Zee E, te Kortschot A, Witter MP. Organization of the projections from the subiculum to the ventral striatum in the rat. A study using anterograde transport of Phaseolus vulgaris leucoagglutinin. Neuroscience. 1987;23(1):103-120. DOI: 10.1016/0306-4522(87)90275-2
  55. 55. Loureiro M, Lecourtier L, Engeln M, Lopez J, Cosquer B, Geiger K, Kelche C, Cassel JC, Pereira de Vasconcelos A. The ventral hippocampus is necessary for expressing a spatial memory. Brain Structure & Function. 2012;217(1):93-106. DOI: 10.1007/s00429-011-0332-y
  56. 56. Komorowski RW, Garcia CG, Wilson A, Hattori S, Howard MW, Eichenbaum H. Ventral hippocampal neurons are shaped by experience to represent behaviorally relevant contexts. The Journal of Neuroscience. 2013;33(18):8079-8087. DOI: 10.1523/JNEUROSCI.5458-12.2013
  57. 57. Floresco SB, Blaha CD, Yang CR, Phillips AG. Modulation of hippocampal and amygdalar-evoked activity of nucleus accumbens neurons by dopamine: Cellular mechanisms of input selection. The Journal of Neuroscience. 2001;21(8):2851-2860
  58. 58. O’Mara S. The subiculum: What it does, what it might do, and what neuroanatomy has yet to tell us. Journal of Anatomy. 2005;207(3):271-282. DOI: 10.1111/j.1469-7580.2005.00446.x
  59. 59. Salgado S, Kaplitt MG. The nucleus accumbens: A comprehensive review. Stereotactic and Functional Neurosurgery. 2015;93(2):75-93. DOI: 10.1159/000368279
  60. 60. Floresco SB. The nucleus accumbens: An interface between cognition, emotion, and action. Annual Review of Psychology. 2014;66:25-52. DOI: 10.1146/annurev-psych-010213-115159
  61. 61. Mogenson GJ, Jones DL, Yim CY. From motivation to action: Functional interface between the limbic system and the motor system. Progress in Neurobiology. 1980;14:69-97. DOI: 10.1016/0301-0082(80)90018-0
  62. 62. Goto Y, Grace AA. Limbic and cortical information processing in the nucleus accumbens. Trends in Neurosciences. 2008;31:552-558. DOI: 10.1016/j.tins.2008.08.002
  63. 63. Pecina S, Berridge KC. Dopamine or opioid stimulation of nucleus accumbens similarly amplify cue-triggered ‘wanting’ for reward: Entire core and medial shell mapped as substrates for PIT enhancement. The European Journal of Neuroscience. 2013;37(9):1529-1540. DOI: 10.1111/ejn.12174
  64. 64. Sesack SR, Pickel VM. In the rat medial nucleus accumbens, hippocampal and catecholaminergic terminals converge on spiny neurons and are in apposition to each other. Brain Research. 1990;527:266-279. DOI: 10.1016/0006-8993(90)91146-8
  65. 65. Floresco SB, Todd CL, Grace AA. Glutamatergic afferents from the hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons. The Journal of Neuroscience. 2001;21(13):4915-4922
  66. 66. Luo AH, Tahsili-Fahadan P, Wise RA, Lupica CR, Aston-Jones G. Linking context with reward: A functional circuit from hippocampal CA3 to ventral tegmental area. Science. 2011;333:353-357. DOI: 10.1126/science.1204622
  67. 67. Kahn I, Shohamy D. Intrinsic connectivity between the hippocampus, nucleus accumbens, and ventral tegmental area in humans. Hippocampus. 2013;23(3):187-192. DOI: 10.1002/hipo.22077
  68. 68. Legault M, Wise RA. Injections of N-methyl-D-aspartate into the ventral hippocampus increase extracellular dopamine in the ventral tegmental area and nucleus accumbens. Synapse. 1999;31:241-249. DOI: 10.1002/(SICI)1098-2396(19990315)31:4<241::AID-SYN1>3.0.CO;2-#
  69. 69. O’Donnell P, Grace AA. Synaptic interactions among excitatory afferents to nucleus accumbens neurons: Hippocampal gating of prefrontal cortical input. The Journal of Neuroscience. 1995;15:3622-3639
  70. 70. Floresco SB, Seamans JK, Phillips AG. Selective roles for hippocampal, prefrontal cortical, and ventral striatal circuits in radial-arm maze tasks with or without a delay. The Journal of Neuroscience. 1997;17:1880-1890
  71. 71. Ito R, Robbins TW, Pennartz CM, Everitt BJ. Functional interaction between the hippocampus and nucleus accumbens shell is necessary for the acquisition of appetitive spatial context conditioning. The Journal of Neuroscience. 2008;28:6950-6959. DOI: 10.1523/JNEUROSCI.1615-08.2008
  72. 72. Pennartz CM, Ito R, Verschure PF, Battaglia FP, Robbins TW. The hippocampal-striatal axis in learning, prediction and goal-directed behavior. Trends in Neurosciences. 2011;34(10):548-559. DOI: 10.1016/j.tins.2011.08.001
  73. 73. Legault M, Wise RA. Novelty-evoked elevations of nucleus accumbens dopamine: Dependence on impulse flow from the ventral subiculum and glutamatergic neurotransmission in the ventral tegmental area. The European Journal of Neuroscience. 2001;13:819-828. DOI: 10.1046/j.0953-816x.2000.01448.x
  74. 74. Murty VP, Ballard IC, Macduffie KE, Krebs RM, Adcock RA. Hippocampal networks habituate as novelty accumulates. Learning & Memory. 2013;20(4):229-235. DOI: 10.1101/lm.029728.112
  75. 75. Vinogradova OS. Hippocampus as comparator: Role of the two input and two output systems of the hippocampus in selection and registration of information. Hippocampus. 2001;11(5):578-598. DOI: 10.1002/hipo.1073
  76. 76. McNaughton N, Gray JA. Anxiolytic action on the behavioural inhibition system implies multiple types of arousal contribute to anxiety. Journal of Affective Disorders. 2000;61(3):161-176. DOI: 10.1016/S0165-0327(00)00344-X
  77. 77. Barkus C, McHugh SB, Sprengel R, Seeburg PH, Rawlins JN, Bannerman DM. Hippocampal NMDA receptors and anxiety: At the interface between cognition and emotion. European Journal of Pharmacology. 2010;626:49-56. DOI: 10.1016/j.ejphar.2009.10.014
  78. 78. Nascimento Häckl LP, Carobrez AP. Distinct ventral and dorsal hippocampus AP5 anxiolytic effects revealed in the elevated plus-maze task in rats. Neurobiology of Learning and Memory. 2007;88:177-185. DOI: 10.1016/j.nlm.2007.04.007
  79. 79. Bannerman DM, Grubb M, Deacon RM, Yee BK, Feldon J, Rawlins JN. Ventral hippocampal lesions affect anxiety but not spatial learning. Behavioural Brain Research. 2003;139:197-213. DOI: 10.1016/S0166-4328(02)00268-1
  80. 80. McHugh SB, Deacon RM, Rawlins JN, Bannerman DM. Amygdala and ventral hippocampus contribute differentially to mechanisms of fear and anxiety. Behavioral Neuroscience. 2004;118:63-78. DOI: 10.1037/0735-7044.118.1.63
  81. 81. Maren S. Neurotoxic or electrolytic lesions of the ventral subiculum produce deficits in the acquisition and expression of Pavlovian fear conditioning in rats. Behavioral Neuroscience. 1999;113:283-290. DOI: 10.1037/0735-7044.113.2.283
  82. 82. Richmond MA, Yee BK, Pouzet B, Veenman L, Rawlins JN, Feldon J, Bannerman DM. Dissociating context and space within the hippocampus: Effects of complete, dorsal, and ventral excitotoxic hippocampal lesions on conditioned freezing and spatial learning. Behavioral Neuroscience. 1999;113:1189-1203. DOI: 10.1037/0735-7044.113.6.1189
  83. 83. Weeden CS, Roberts JM, Kamm AM, Kesner RP. The role of the ventral dentate gyrus in anxiety-based behaviors. Neurobiology of Learning and Memory. 2015;118:143-149. DOI: 10.1016/j.nlm.2014.12.002
  84. 84. Engin E, Smith KS, Gao Y, Nagy D, Foster RA, Tsvetkov E, Keist R, Crestani F, Fritschy JM, Bolshakov VY, Hajos M, Heldt SA, Rudolph U. Modulation of anxiety and fear via distinct intrahippocampal circuits. eLife. 2016;5:e14120. DOI: 10.7554/eLife.14120
  85. 85. Bach DR, Guitart-Masip M, Packard PA, Miró J, Falip M, Fuentemilla L, Dolan RJ. Human hippocampus arbitrates approach-avoidance conflict. Current Biology. 2014;24(5):541-547. DOI: 10.1016/j.cub.2014.01.046
  86. 86. Adhikari A, Topiwala MA, Gordon JA. Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron. 2010;65:257-269. DOI: 10.1016/j.neuron.2009.12.002
  87. 87. Cornwell BR, Arkin N, Overstreet C, Carver FW, Grillon C. Distinct contributions of human hippocampal theta to spatial cognition and anxiety. Hippocampus. 2012;22:1848-1859. DOI: 10.1002/hipo.22019
  88. 88. Satpute AB, Mumford JA, Naliboff BD, Poldrack RA. Human anterior and posterior hippocampus respond distinctly to state and trait anxiety. Emotion. 2012;12:58-68. DOI: 10.1037/a0026517
  89. 89. Padilla-Coreano N, Bolkan SS, Pierce GM, Blackman DR, Hardin WD, Garcia-Garcia AL, Spellman TJ, Gordon JA. Direct ventral hippocampal-prefrontal input is required for anxiety-related neural activity and behavior. Neuron. 2016;89(4):857-866. DOI: 10.1016/j.neuron.2016.01.011
  90. 90. Felix-Ortiz AC, Beyeler A, Seo C, Leppla CA, Wildes CP, Tye KM. BLA to vHPC inputs modulate anxiety-related behaviors. Neuron. 2013;79(4):658-664. DOI: 10.1016/j.neuron.2013.06.016
  91. 91. Herman JP, Cullinan WE, Morano MI, Akil H, Watson SJ. Contribution of the ventral subiculum to inhibitory regulation of the hypothalamo-pituitary-adrenocortical axis. Journal of Neuroendocrinology. 1995;7(6):475-482. DOI: 10.1111/j.1365-2826.1995.tb00784.x
  92. 92. Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nature Reviews. Neuroscience. 2009;10(6):397-409. DOI: 10.1038/nrn2647
  93. 93. McEwen BS, Weiss JM, Schwartz LS. Selective retention of corticosterone by limbic structures in rat brain. Nature. 1968;220(5170):911-912. DOI: 10.1038/220911a0
  94. 94. Gerlach JL, McEwen BS. Rat brain binds adrenal steroid hormone: Radioautography of hippocampus with corticosterone. Science. 1972;175(4026):1133-1136. DOI: 10.1126/science.175.4026.1133
  95. 95. Jacobson L, Sapolsky R. The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocrine Reviews. 1991;12(2):118-134. DOI: 10.1210/edrv-12-2-118
  96. 96. van Haarst AD, Oitzl MS, de Kloet ER. Facilitation of feedback inhibition through blockade of glucocorticoid receptors in the hippocampus. Neurochemical Research. 1997;22(11):1323-1328. DOI: 10.1023/A:1022010904600
  97. 97. Groeneweg FL, Karst H, de Kloet ER, Joels M. Rapid non-genomic effects of corticosteroids and their role in the central stress response. The Journal of Endocrinology. 2011;209(2):153-167. DOI: 10.1530/JOE-10-0472
  98. 98. Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Ostrander MM, Choi DC, Cullinan WE. Central mechanisms of stress integration: Hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Frontiers in Neuroendocrinology. 2003;24(3):151-180. DOI: 10.1016/j.yfrne.2003.07.001
  99. 99. Karst H, Berger S, Turiault M, Tronche F, Schutz G, Joels M. Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(52):19204-19207. DOI: 10.1073/pnas.0507572102
  100. 100. Reul JM, de Kloet ER. Anatomical resolution of two types of corticosterone receptor sites in rat brain with in vitro autoradiography and computerized image analysis. Journal of Steroid Biochemistry. 1986;24(1):269-272. DOI: 10.1016/0022-4731(86)90063-4
  101. 101. Chao HM, Choo PH, McEwen BS. Glucocorticoid and mineralocorticoid receptor mRNA expression in rat brain. Neuroendocrinology. 1989;50(4):365-371. DOI: 10.1159/000125250
  102. 102. Herman JP, Patel PD, Akil H, Watson SJ. Localization and regulation of glucocorticoid and mineralocorticoid receptor messenger RNAs in the hippocampal formation of the rat. Molecular Endocrinology. 1989;3(11):1886-1894. DOI: 10.1210/mend-3-11-1886
  103. 103. Joels M, de Kloet ER. 30 Years of the mineralocorticoid receptore: The brain mineralocorticoid receptor: A saga in three episodes. The Journal of Endocrinology. 2017;234(1):T49-t66. DOI: 10.1530/JOE-16-0660
  104. 104. De Kloet ER, Reul JM. Feedback action and tonic influence of corticosteroids on brain function: A concept arising from the heterogeneity of brain receptor systems. Psychoneuroendocrinology. 1987;12(2):83-105. DOI: 10.1016/0306-4530(87)90040-0
  105. 105. Ratka A, Sutanto W, Bloemers M, de Kloet ER. On the role of brain mineralocorticoid (type I) and glucocorticoid (type II) receptors in neuroendocrine regulation. Neuroendocrinology. 1989;50(2):117-123. DOI: 10.1159/000125210
  106. 106. Bradbury MJ, Akana SF, Dallman MF. Roles of type I and II corticosteroid receptors in regulation of basal activity in the hypothalamo-pituitary-adrenal axis during the diurnal trough and the peak: Evidence for a nonadditive effect of combined receptor occupation. Endocrinology. 1994;134(3):1286-1296. DOI: 10.1210/endo.134.3.8119168
  107. 107. de Kloet ER, Fitzsimons CP, Datson NA, Meijer OC, Vreugdenhil E. Glucocorticoid signaling and stress-related limbic susceptibility pathway: About receptors, transcription machinery and microRNA. Brain Research. 2009;1293:129-141. DOI: 10.1016/j.brainres.2009.03.039
  108. 108. Groeneweg FL, Karst H, de Kloet ER, Joels M. Mineralocorticoid and glucocorticoid receptors at the neuronal membrane, regulators of nongenomic corticosteroid signalling. Molecular and Cellular Endocrinology 2012;350(2):299-309. DOI: 10.1016/j.mce.2011.06.020
  109. 109. de Kloet ER, Karst H, Joels M. Corticosteroid hormones in the central stress response: Quick-and-slow. Frontiers in Neuroendocrinology. 2008;29(2):268-272. DOI: 10.1016/j.yfrne.2007.10.002
  110. 110. de Kloet ER, Joels M, Holsboer F. Stress and the brain: From adaptation to disease. Nature Reviews. Neuroscience. 2005;6(6):463-475. DOI: 10.1038/nrn1683
  111. 111. Olijslagers JE, de Kloet ER, Elgersma Y, van Woerden GM, Joels M, Karst H. Rapid changes in hippocampal CA1 pyramidal cell function via pre- as well as postsynaptic membrane mineralocorticoid receptors. The European Journal of Neuroscience. 2008;27(10):2542-2550. DOI: 10.1111/j.1460-9568.2008.06220.x
  112. 112. Hu W, Zhang M, Czeh B, Flugge G, Zhang W. Stress impairs GABAergic network function in the hippocampus by activating nongenomic glucocorticoid receptors and affecting the integrity of the parvalbumin-expressing neuronal network. Neuropsychopharmacology. 2010;35(8):1693-1707. DOI: 10.1038/npp.2010.31
  113. 113. Komatsuzaki Y, Murakami G, Tsurugizawa T, Mukai H, Tanabe N, Mitsuhashi K, Kawata M, Kimoto T, Ooishi Y, Kawato S. Rapid spinogenesis of pyramidal neurons induced by activation of glucocorticoid receptors in adult male rat hippocampus. Biochemical and Biophysical Research Communications. 2005;335(4):1002-1007. DOI: 10.1016/j.bbrc.2005.07.173
  114. 114. Barr JL, Forster GL. Serotonergic neurotransmission in the ventral hippocampus is enhanced by corticosterone and altered by chronic amphetamine treatment. Neuroscience. 2011;182:105-114. DOI: 10.1016/j.neuroscience.2011.03.020
  115. 115. Dorey R, Piérard C, Chauveau F, David V, Béracochéa D. Stress-induced memory retrieval impairments: Different time-course involvement of corticosterone and glucocorticoid receptors in dorsal and ventral hippocampus. Neuropsychopharmacology. 2012;37(13):2870-2880. DOI: 10.1038/npp.2012.170
  116. 116. Maggio N, Segal M. Striking variations in corticosteroid modulation of long-term potentiation along the septotemporal axis of the hippocampus. The Journal of Neuroscience. 2007;27(21):5757-5765. DOI: 10.1523/JNEUROSCI.0155-07.2007
  117. 117. Segal M, Richter-Levin G, Maggio N. Stress-induced dynamic routing of hippocampal connectivity: A hypothesis. Hippocampus. 2010;20(12):1332-1338. DOI: 10.1002/hipo.20751
  118. 118. Di Chiara G, Bassareo V, Fenu S, De Luca MA, Spina L, Cadoni C, Acquas E, Carboni E, Valentini V, Lecca D. Dopamine and drug addiction: The nucleus accumbens shell connection. Neuropharmacology. 2004;47(Suppl 1):227-241. DOI: 10.1016/j.neuropharm.2004.06.032
  119. 119. Wheeler RA, Aragona BJ, Fuhrmann KA, Jones JL, Day JJ, Cacciapaglia F, Wightman RM, Carelli RM. Cocaine cues drive opposing context-dependent shifts in reward processing and emotional state. Biological Psychiatry. 2011;69:1067-1074. DOI: 10.1016/j.biopsych.2011.02.014
  120. 120. Rebec GV, Christensen JR, Guerra C, Bardo MT. Regional and temporal differences in real-time dopamine efflux in the nucleus accumbens during free-choice novelty. Brain Research. 1997;776(1-2):61-67. DOI: 10.1016/S0006-8993(97)01004-4
  121. 121. Lisman JE, Grace AA. The hippocampal-VTA loop: Controlling the entry of information into long-term memory. Neuron. 2005;46:703-713. DOI: 10.1016/j.neuron.2005.05.002
  122. 122. Martin PD, Ono T. Effects of reward anticipation, reward presentation, and spatial parameters on the firing of single neurons recorded in the subiculum and nucleus accumbens of freely moving rats. Behavioural Brain Research. 2000;116:23-38. DOI: 10.1016/S0166-4328(00)00249-7
  123. 123. Martin PD. Locomotion towards a goal alters the synchronous firing of neurons recorded simultaneously in the subiculum and nucleus accumbens of rats. Behavioural Brain Research. 2001;124:19-28. DOI: 10.1016/S0166-4328(01)00209-1
  124. 124. Lansink CS, Goltstein PM, Lankelma JV, McNaughton BL, Pennartz CM. Hippocampus leads ventral striatum in replay of place-reward information. PLoS Biology. 2009;7:e1000173. DOI: 10.1371/journal.pbio.1000173
  125. 125. DeCoteau WE, Thorn C, Gibson DJ, Courtemanche R, Mitra P, Kubota Y, Graybiel AM. Learning-related coordination of striatal and hippocampal theta rhythms during acquisition of a procedural maze task. Proceedings of the National Academy of Sciences of the United States of America. 2007;104:5644-5649. DOI: 10.1073/pnas.0700818104
  126. 126. Loh E, Kumaran D, Koster R, Berron D, Dolan R, Duzel E. Context-specific activation of hippocampus and SN/VTA by reward is related to enhanced long-term memory for embedded objects. Neurobiology of Learning and Memory. 2016;134 Pt A:65-77. DOI: 10.1016/j.nlm.2015.11.018
  127. 127. Gruber MJ, Ritchey M, Wang SF, Doss MK, Ranganath C. Post-learning hippocampal dynamics promote preferential retention of rewarding events. Neuron. 2016;89(5):1110-1120. DOI: 10.1016/j.neuron.2016.01.017
  128. 128. Imperato A, Cabib S, Puglisi-Allegra S. Repeated stressful experiences differently affect the time-dependent responses of the mesolimbic dopamine system to the stressor. Brain Research. 1993;601(1-2):333-336. DOI: 10.1016/0006-8993(93)91732-8
  129. 129. Piazza PV, Le Moal M. The role of stress in drug self-administration. Trends in Pharmacological Sciences. 1998;19(2):67-74. DOI: 10.1016/S0165-6147(97)01115-2
  130. 130. Kalivas PW, Duffy P. Selective activation of dopamine transmission in the shell of the nucleus accumbens by stress. Brain Research. 1995;675(1-2):325-328. DOI: 10.1016/0006-8993(95)00013-G
  131. 131. Saulskaya N, Marsden CA. Extracellular glutamate in the nucleus accumbens during a conditioned emotional response in the rat. Brain Research. 1995;698(1-2):114-120. DOI: 10.1016/0006-8993(95)00848-K
  132. 132. Droste SK, de Groote L, Atkinson HC, Lightman SL, Reul JM, Linthorst AC. Corticosterone levels in the brain show a distinct ultradian rhythm but a delayed response to forced swim stress. Endocrinology. 2008;149(7):3244-3253. DOI: 10.1210/en.2008-0103
  133. 133. Droste SK, Collins A, Lightman SL, Linthorst AC, Reul JM. Distinct, time-dependent effects of voluntary exercise on circadian and ultradian rhythms and stress responses of free corticosterone in the rat hippocampus. Endocrinology. 2009;150(9):4170-4179. DOI: 10.1210/en.2009-0402
  134. 134. Bray B, Scholl JL, Tu W, Watt MJ, Renner KJ, Forster GL. Amphetamine withdrawal differentially affects hippocampal and peripheral corticosterone levels in response to stress. Brain Research. 2016;1644:278-287. DOI: 10.1016/j.brainres.2016.05.030
  135. 135. Valenti O, Lodge DJ, Grace AA. Aversive stimuli alter ventral tegmental area dopamine neuron activity via a common action in the ventral hippocampus. The Journal of Neuroscience. 2011;31(11):4280-4289. DOI: 10.1523/JNEUROSCI.5310-10.2011
  136. 136. Bagot RC, Parise EM, Peña CJ, Zhang HX, Maze I, Chaudhury D, Persaud B, Cachope R, Bolaños-Guzmán CA, Cheer JF, Deisseroth K, Han MH, Nestler EJ. Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression. Nature Communications. 2015;6:7062. DOI: 10.1038/ncomms8062
  137. 137. Cao JL, Covington 3rd HE, Friedman AK, Wilkinson MB, Walsh JJ, Cooper DC, Nestler EJ, Han MH. Mesolimbic dopamine neurons in the brain reward circuit mediate susceptibility to social defeat and antidepressant action. The Journal of Neuroscience 2010;30(49):16453-16458. DOI: 10.1523/JNEUROSCI.3177-10.2010
  138. 138. Chaudhury D, Walsh JJ, Friedman AK, Juarez B, SM K, Koo JW, Ferguson D, Tsai HC, Pomeranz L, Christoffel DJ, Nectow AR, Ekstrand M, Domingos A, Mazei-Robison MS, Mouzon E, Lobo MK, Neve RL, Friedman JM, Russo SJ, Deisseroth K, Nestler EJ, Han MH. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature. 2013;493(7433):532-536. DOI: 10.1038/nature11713
  139. 139. Mantsch JR, Ho A, Schlussman SD, Kreek MJ. Predictable individual differences in the initiation of cocaine self-administration by rats under extended-access conditions are dose-dependent. Psychopharmacology. 2001;157:31-39. DOI: 10.1007/s002130100744
  140. 140. Marinelli M, White FJ. Enhanced vulnerability to cocaine self-administration is associated with elevated impulse activity of midbrain dopamine neurons. The Journal of Neuroscience. 2000;20:8876-8885
  141. 141. Barr JL, Forster GL, Unterwald EM. Repeated cocaine enhances ventral hippocampal-stimulated dopamine efflux in the nucleus accumbens and alters ventral hippocampal NMDA receptor subunit expression. Journal of Neurochemistry. 2014;130(4):583-590. DOI: 10.1111/jnc.12764
  142. 142. Goto Y, Grace AA. Dopamine-dependent interactions between limbic and prefrontal cortical plasticity in the nucleus accumbens: Disruption by cocaine sensitization. Neuron. 2005;47:255-266. DOI: 10.1016/j.neuron.2005.06.017
  143. 143. Britt JP, Benaliouad F, McDevitt RA, Stuber GD, Wise RA, Bonci A. Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron. 2012;76(4):790-803. DOI: 10.1016/j.neuron.2012.09.040
  144. 144. Lodge DJ, Grace AA. Amphetamine activation of hippocampal drive of mesolimbic dopamine neurons: A mechanism of behavioral sensitization. The Journal of Neuroscience. 2008;28:7876-7882. DOI: 10.1523/JNEUROSCI.1582-08.2008
  145. 145. Taepavarapruk P, Floresco SB, Phillips AG. Hyperlocomotion and increased dopamine efflux in the rat nucleus accumbens evoked by electrical stimulation of the ventral subiculum: Role of ionotropic glutamate and dopamine D1 receptors. Psychopharmacology. 2000;151(2-3):242-251. DOI: 10.1007/s002130000376
  146. 146. Tan SE. Roles of hippocampal NMDA receptors and nucleus accumbens D1 receptors in the amphetamine-produced conditioned place preference in rats. Brain Research Bulletin. 2008;77:412-419. DOI: 10.1016/j.brainresbull.2008.09.007
  147. 147. Takano Y, Tanaka T, Takano H, Hironaka N. Hippocampal theta rhythm and drug-related reward-seeking behavior: An analysis of cocaine-induced conditioned place preference in rats. Brain Research. 2010;1342:94-103. DOI: 10.1016/j.brainres.2010.04.050
  148. 148. Atkins AL, Mashhoon Y, Kantak KM. Hippocampal regulation of contextual cue-induced reinstatement of cocaine-seeking behavior. Pharmacology, Biochemistry, and Behavior. 2008;90:481-491. DOI: 10.1016/j.pbb.2008.04.007
  149. 149. Lasseter HC, Xie X, Ramirez DR, Fuchs RA. Sub-region specific contribution of the ventral hippocampus to drug context-induced reinstatement of cocaine-seeking behavior in rats. Neuroscience. 2010;171:830-839. DOI: 10.1016/j.neuroscience.2010.09.032
  150. 150. Meyers RA, Zavala AR, Neisewander JL. Dorsal, but not ventral, hippocampal lesions disrupt cocaine place conditioning. NeuroReport. 2003;14:2127-2131. DOI: 10.1097/01.wnr.0000095709.83808.81
  151. 151. Meyers RA, Zavala AR, Speer CM, Neisewander JL. Dorsal hippocampus inhibition disrupts acquisition and expression, but not consolidation, of cocaine conditioned place preference. Behavioral Neuroscience. 2006;120:401-412. DOI: 10.1037/0735-7044.120.2.401
  152. 152. Hernández-Rabaza V, Hontecillas-Prieto L, Velázquez-Sánchez C, Ferragud A, Pérez-Villaba A, Arcusa A, Barcia JA, Trejo JL, Canales JJ. The hippocampal dentate gyrus is essential for generating contextual memories of fear and drug-induced reward. Neurobiology of Learning and Memory. 2008;90:553-559. DOI: 10.1016/j.nlm.2008.06.008
  153. 153. Pascoli V, Terrier J, Espallergues J, Valjent E, O’Connor EC, Lüscher C. Contrasting forms of cocaine-evoked plasticity control components of relapse. Nature. 2014;509(7501):459-464. DOI: 10.1038/nature13257
  154. 154. Sikora M, Tokarski K, Bobula B, Zajdel J, Jastrzębska K, Cieślak PE, Zygmunt M, Sowa J, Smutek M, Kamińska K, Gołembiowska K, Engblom D, Hess G, Przewlocki R, Rodriguez PJ. NMDA receptors on dopaminoceptive neurons are essential for drug-induced conditioned place preference. eNeuro. 2016;3(3). pii: ENEURO.0084-15.2016). DOI: 10.1523/ENEURO.0084-15.2016
  155. 155. Sun W, Rebec GV. Lidocaine inactivation of ventral subiculum attenuates cocaine-seeking behavior in rats. The Journal of Neuroscience. 2003;23:10258-10264
  156. 156. Vorel SR, Liu X, Hayes RJ, Spector JA, Gardner EL. Relapse to cocaine-seeking after hippocampal theta burst stimulation. Science. 2001;292:1175-1178. DOI: 10.1126/science.1058043
  157. 157. Taepavarapruk P, Phillips AG. Neurochemical correlates of relapse to d-amphetamine self-administration by rats induced by stimulation of the ventral subiculum. Psychopharmacology. 2003;168(1-2):99-108. DOI: 10.1007/s00213-002-1337-2
  158. 158. Keralapurath MM, Clark JK, Hammond S, Wagner JJ. Cocaine- or stress-induced metaplasticity of LTP in the dorsal and ventral hippocampus. Hippocampus. 2014;24(5):577-590. DOI: 10.1002/hipo.22250
  159. 159. Avital A, Segal M, Richter-Levin G. Contrasting roles of corticosteroid receptors in hippocampal plasticity. The Journal of Neuroscience. 2006;26(36):9130-9134. DOI: 10.1523/JNEUROSCI.1628-06.2006
  160. 160. Caffino L, Frankowska M, Giannotti G, Miszkiel J, Sadakierska-Chudy A, Racagni G, Filip M, Fumagalli F. Cocaine-induced glutamate receptor trafficking is abrogated by extinction training in the rat hippocampus. Pharmacological Reports. 2014;66(2):198-204. DOI: 10.1016/j.pharep.2013.09.002
  161. 161. Sarnyai Z, Kovács GL. Role of oxytocin in the neuroadaptation to drugs of abuse. Psychoneuroendocrinology. 1994;19(1):85-117
  162. 162. Sarnyai Z, Kovács GL. Oxytocin in learning and addiction: From early discoveries to the present. Pharmacology, Biochemistry, and Behavior. 2014;119:3-9. DOI: 10.1016/j.pbb.2013.11.019
  163. 163. Azmitia EC, Segal M. An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. The Journal of Comparative Neurology. 1978;179:641-667. DOI: 10.1002/cne.901790311
  164. 164. McQuade R, Sharp T. Functional mapping of dorsal and median raphe 5-hydroxytryptamine pathways in forebrain of the rat using microdialysis. Journal of Neurochemistry. 1997;69:791-796. DOI: 10.1046/j.1471-4159.1997.69020791.x
  165. 165. Gage FH, Thompson RG. Differential distribution of norepinephrine and serotonin along the dorsal-ventral axis of the hippocampal formation. Brain Research Bulletin. 1980;5:771-773. DOI: 10.1016/0361-9230(80)90220-8
  166. 166. Tanaka KF, Samuels BA, Hen R. Serotonin receptor expression along the dorsal-ventral axis of mouse hippocampus. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 2012;367:2395-2401. DOI: 10.1098/rstb.2012.0038
  167. 167. Linthorst AC, Peñalva RG, Flachskamm C, Holsboer F, Reul JM. Forced swim stress activates rat hippocampal serotonergic neurotransmission involving a corticotropin-releasing hormone receptor-dependent mechanism. The European Journal of Neuroscience. 2002;16:2441-2452. DOI: 10.1046/j.1460-9568.2002.02400.x
  168. 168. Keeney A, Jessop DS, Harbuz MS, Marsden CA, Hogg S, Blackburn-Munro RE. Differential effects of acute and chronic social defeat stress on hypothalamic-pituitary-adrenal axis function and hippocampal serotonin release in mice. Journal of Neuroendocrinology. 2006;18:330-338. DOI: 10.1111/j.1365-2826.2006.01422.x
  169. 169. Rex A, Voigt JP, Fink H. Anxiety but not arousal increases 5-hydroxytryptamine release in the rat ventral hippocampus in vivo. The European Journal of Neuroscience. 2005;22:1185-1189. DOI: 10.1111/j.1460-9568.2005.04251.x
  170. 170. Wright IK, Upton N, Marsden CA. Effect of established and putative anxiolytics on extracellular 5-HT and 5-HIAA in the ventral hippocampus of rats during behaviour on the elevated X-maze. Psychopharmacology. 1992;109:338-346. DOI: 10.1007/BF02245882
  171. 171. Amat J, Matus-Amat P, Watkins LR, Maier SF. Escapable and inescapable stress differentially and selectively alter extracellular levels of 5-HT in the ventral hippocampus and dorsal periaqueductal gray of the rat. Brain Research. 1998;797:12-22. DOI: 10.1016/S0006-8993(98)00368-0
  172. 172. Li H, Scholl JL, Tu W, Hassell JE, Watt MJ, Forster GL, Renner KJ. Serotonergic responses to stress are enhanced in the central amygdala and inhibited in the ventral hippocampus during amphetamine withdrawal. The European Journal of Neuroscience. 2014;40(11):3684-3692. DOI: 10.1111/ejn.12735
  173. 173. Meijer OC, Kortekaas R, Oitzl MS, de Kloet ER. Acute rise in corticosterone facilitates 5-HT(1A) receptor-mediated behavioural responses. European Journal of Pharmacology. 1998;351(1):7-14. DOI: 10.1016/S0014-2999(98)00289-1
  174. 174. Zhou J, Li L, Tang S, Cao X, Li Z, Li W, Li C, Zhang X. Effects of serotonin depletion on the hippocampal GR/MR and BDNF expression during the stress adaptation. Behavioural Brain Research. 2008;195:129-138. DOI: 10.1016/j.bbr.2008.06.009
  175. 175. Tu W, Cook A, Scholl JL, Mears M, Watt MJ, Renner KJ, Forster GL. Serotonin in the ventral hippocampus modulates anxiety-like behavior during amphetamine withdrawal. Neuroscience. 2014;281:35-43. DOI: 10.1016/j.neuroscience.2014.09.019
  176. 176. Segal M. Physiological and pharmacological evidence for a serotonergic projection to the hippocampus. Brain Research. 1975;94:115-131. DOI: 10.1016/0006-8993(75)90881-1
  177. 177. Maeda T, Kaneko S, Satoh M. Inhibitory influence via 5-HT3 receptors on the induction of LTP in mossy fiber-CA3 system of guinea-pig hippocampal slices. Neuroscience Research. 1994;18(4):277-282. DOI: 10.1016/0168-0102(94)90163-5
  178. 178. Freund TF, Gulyás AI. Inhibitory control of GABAergic interneurons in the hippocampus. Canadian Journal of Physiology and Pharmacology. 1997;75:479-487. DOI: 10.1139/cjpp-75-5-479
  179. 179. Mlinar B, Corradetti R. Endogenous 5-HT, released by MDMA through serotonin transporter- and secretory vesicle-dependent mechanisms, reduces hippocampal excitatory synaptic transmission by preferential activation of 5-HT1B receptors located on CA1 pyramidal neurons. The European Journal of Neuroscience. 2003;18:1559-1571. DOI: 10.1046/j.1460-9568.2003.02884.x
  180. 180. Halasy K, Miettinen R, Szabat E, Freund TF. GABAergic interneurons are the major postsynaptic targets of median raphe afferents in the rat dentate gyrus. The European Journal of Neuroscience. 1992;4:144-153. DOI: 10.1111/j.1460-9568.1992.tb00861.x
  181. 181. McMahon LL, Kauer JA. Hippocampal interneurons are excited via serotonin-gated ion channels. Journal of Neurophysiology. 1997;78:2493-2502
  182. 182. Piguet P, Galvan M. Transient and long-lasting actions of 5-HT on rat dentate gyrus neurones in vitro. The Journal of Physiology. 1994;481(Pt 3):629-639. DOI: 10.1113/jphysiol.1994.sp020469
  183. 183. Sakai N, Tanaka C. Inhibitory modulation of long-term potentiation via the 5-HT1A receptor in slices of the rat hippocampal dentate gyrus. Brain Research. 1993;613:326-330. DOI: 10.1016/0006-8993(93)90921-9
  184. 184. Carli M, Tatarczynska E, Cervo L, Samanin R. Stimulation of hippocampal 5-HT1A receptors causes amnesia and anxiolytic-like but not antidepressant-like effects in the rat. European Journal of Pharmacology. 1993;234(2-3):215-221. DOI: 10.1016/0014-2999(93)90956-I
  185. 185. Stiedl O, Misane I, Spiess J, Ogren SO. Involvement of the 5-HT1A receptors in classical fear conditioning in C57BL/6J mice. The Journal of Neuroscience. 2000;20:8515-8527
  186. 186. Guimarães FS, Del Bel EA, Padovan CM, Netto SM, de Almeida RT. Hippocampal 5-HT receptors and consolidation of stressful memories. Behavioural Brain Research. 1993;58:133-139. DOI: 10.1016/0166-4328(93)90098-B
  187. 187. Joca SR, Padovan CM, Guimarães FS. Activation of post-synaptic 5-HT(1A) receptors in the dorsal hippocampus prevents learned helplessness development. Brain Research. 2003;978:177-184. DOI: 10.1016/S0006-8993(03)02943-3
  188. 188. Haleem DJ, Samad N, Perveen T, Haider S, Haleem MA. Role of serotonin-1A receptors in restraint-induced behavioral deficits and adaptation to repeated restraint stress in rats. The International Journal of Neuroscience. 2007;117:243-257. DOI: 10.1080/00207450500534084
  189. 189. Keck ME, Sartori SB, Welt T, Müller MB, Ohl F, Holsboer F, Landgraf R, Singewald N. Differences in serotonergic neurotransmission between rats displaying high or low anxiety/depression-like behaviour: Effects of chronic paroxetine treatment. Journal of Neurochemistry. 2005;92:1170-1179. DOI: 10.1111/j.1471-4159.2004.02953.x
  190. 190. Storey JD, Robertson DA, Beattie JE, Reid IC, Mitchell SN, Balfour DJ. Behavioural and neurochemical responses evoked by repeated exposure to an elevated open platform. Behavioural Brain Research. 2006;166:220-229. DOI: 10.1016/j.bbr.2005.08.002
  191. 191. Meijer OC, de Kloet ER. Corticosterone and serotonergic neurotransmission in the hippocampus: Functional implications of central corticosteroid receptor diversity. Critical Reviews in Neurobiology. 1998;12:1-20. DOI: 10.1615/CritRevNeurobiol.v12.i1-2.10
  192. 192. Semont A, Fache M, Ouafik L, Hery M, Faudon M, Hery F. Effect of serotonin inhibition on glucocorticoid and mineralocorticoid expression in various brain structures. Neuroendocrinology. 1999;69:121-128 DOI: 54410
  193. 193. Lanfumey L, Mongeau R, Cohen-Salmon C, Hamon M. Corticosteroid-serotonin interactions in the neurobiological mechanisms of stress-related disorders. Neuroscience and Biobehavioral Reviews. 2008;32:1174-1184. DOI: 10.1016/j.neubiorev.2008.04.006
  194. 194. Telegdy G, Vermes I. Effect of adrenocortical hormones on activity of the serotoninergic system in limbic structures in rats. Neuroendocrinology. 1975;18:16-26. DOI: 10.1159/000122379
  195. 195. Korte-Bouws GA, Korte SM, De Kloet ER, Bohus B. Blockade of corticosterone synthesis reduces serotonin turnover in the dorsal hippocampus of the rat as measured by microdialysis. Journal of Neuroendocrinology. 1996;8:877-881. DOI: 10.1046/j.1365-2826.1996.05389.x
  196. 196. De Kloet ER, Vreugdenhil E, Oitzl MS, Joëls M. Brain corticosteroid receptor balance in health and disease. Endocrine Reviews. 1998;19:269-301. DOI: 10.1210/edrv.19.3.0331
  197. 197. Vuong SM, Oliver HA, Scholl JL, Oliver KM, Forster GL. Increased anxiety-like behavior of rats during amphetamine withdrawal is reversed by CRF2 receptor antagonism. Behavioural Brain Research. 2010;208:278-281. DOI: 10.1016/j.bbr.2009.11.036
  198. 198. Ramamoorthy S, Blakely RD. Phosphorylation and sequestration of serotonin transporters differentially modulated by psychostimulants. Science. 1999;285:763-766. DOI: 10.1126/science.285.5428.763
  199. 199. Wang X, Baumann MH, Xu H, Rothman RB. 3, 4-methylenedioxymethamphetamine (MDMA) administration to rats decreases brain tissue serotonin but not serotonin transporter protein and glial fibrillary acidic protein. Synapse. 2004;53(4):240-248. DOI: 10.1002/syn.20058
  200. 200. Wang X, Baumann MH, Xu H, Morales M, Rothman RB. (+/−)-3, 4-Methylenedioxymethamphetamine administration to rats does not decrease levels of the serotonin transporter protein or alter its distribution between endosomes and the plasma membrane. The Journal of Pharmacology and Experimental Therapeutics. 2005;314:1002-1012. DOI: 10.1124/jpet.105.088476
  201. 201. Rothman RB, Jayanthi S, Wang X, Dersch CM, Cadet JL, Prisinzano T, Rice KC, Baumann MH. High-dose fenfluramine administration decreases serotonin transporter binding, but not serotonin transporter protein levels, in rat forebrain. Synapse. 2003;50(3):233-239. DOI: 10.1002/syn.10266
  202. 202. Rothman RB, Jayanthi S, Cadet JL, Wang X, Dersch CM, Baumann MH. Substituted amphetamines that produce long-term serotonin depletion in rat brain (“neurotoxicity”) do not decrease serotonin transporter protein expression. Annals of the New York Academy of Sciences. 2004;1025:151-161. DOI: 10.1196/annals.1316.020
  203. 203. Barr JL, Scholl JL, Solanki RR, Watt MJ, Lowry CA, Renner KJ, Forster GL. Influence of chronic amphetamine treatment and acute withdrawal on serotonin synthesis and clearance mechanisms in the rat ventral hippocampus. The European Journal of Neuroscience. 2013;37(3):479-490. DOI: 10.1111/ejn.12050
  204. 204. Solanki RR, Scholl JL, Watt MJ, Renner KJ, Forster GL. Amphetamine withdrawal differentially increases the expression of organic cation transporter 3 and serotonin transporter in limbic brain regions. Journal of Experimental Neuroscience. 2016;10:93-100. DOI: 10.4137/JEN.S40231
  205. 205. Daws LC, Toney GM, Gerhardt GA, Frazer A. vivo chronoamperometric measures of extracellular serotonin clearance in rat dorsal hippocampus: Contribution of serotonin and norepinephrine transporters. The Journal of Pharmacology and Experimental Therapeutics. 1998;286:967-976
  206. 206. Daws LC. Unfaithful neurotransmitter transporters: Focus on serotonin uptake and implications for antidepressant efficacy. Pharmacology & Therapeutics. 2009;121:89-99. DOI: 10.1016/j.pharmthera.2008.10.004
  207. 207. Feng N, Telefont M, Kelly KJ, Orchinik M, Forster GL, Renner KJ, Lowry CA. Local perfusion of corticosterone in the rat medial hypothalamus potentiates D-fenfluramine-induced elevations of extracellular 5-HT concentrations. Hormones and Behavior. 2009;56:149-157. DOI: 10.1016/j.yhbeh.2009.03.023
  208. 208. Amphoux A, Vialou V, Drescher E, Brüss M, Mannoury La Cour C, Rochat C, Millan MJ, Giros B, Bönisch H, Gautron S. Differential pharmacological in vitro properties of organic cation transporters and regional distribution in rat brain. Neuropharmacology. 2006;50:941-952. DOI: 10.1016/j.neuropharm.2006.01.005
  209. 209. Gasser PJ, Orchinik M, Raju I, Lowry CA. Distribution of organic cation transporter 3, a corticosterone-sensitive monoamine transporter, in the rat brain. The Journal of Comparative Neurology. 2009;512:529-555. DOI: 10.1002/cne.21921
  210. 210. Baganz NL, Horton RE, Calderon AS, Owens WA, Munn JL, Watts LT, Koldzic-Zivanovic N, Jeske NA, Koek W, Toney GM, Daws LC. Organic cation transporter 3: Keeping the brake on extracellular serotonin in serotonin-transporter-deficient mice. Proceedings of the National Academy of Sciences of the United States of America. 2008;105:18976-18981. DOI: 10.1073/pnas.0800466105
  211. 211. Wultsch T, Grimberg G, Schmitt A, Painsipp E, Wetzstein H, Breitenkamp AF, Gründemann D, Schömig E, Lesch KP, Gerlach M, Reif A. Decreased anxiety in mice lacking the organic cation transporter 3. Journal of Neural Transmission. 2009;116:689-697. DOI: 10.1007/s00702-009-0205-1
  212. 212. Kitaichi K, Fukuda M, Nakayama H, Aoyama N, Ito Y, Fujimoto Y, Takagi K, Hasegawa T. Behavioral changes following antisense oligonucleotide-induced reduction of organic cation transporter-3 in mice. Neuroscience Letters. 2005;382:195-200. DOI: 10.1016/j.neulet.2005.03.014
  213. 213. Schmitt A, Mössner R, Gossmann A, Fischer IG, Gorboulev V, Murphy DL, Koepsell H, Lesch KP. Organic cation transporter capable of transporting serotonin is up-regulated in serotonin transporter-deficient mice. Journal of Neuroscience Research. 2003;71:701-709. DOI: 10.1002/jnr.10521
  214. 214. Holmes A, Lit Q, Murphy DL, Gold E, Crawley JN. Abnormal anxiety-related behavior in serotonin transporter null mutant mice: The influence of genetic background. Genes, Brain, and Behavior. 2003;2:365-380. DOI: 10.1046/j.1601-1848.2003.00050.x
  215. 215. Kalueff AV, Fox MA, Gallagher PS, Murphy DL. Hypolocomotion, anxiety and serotonin syndrome-like behavior contribute to the complex phenotype of serotonin transporter knockout mice. Genes, Brain, and Behavior. 2007;6:389-400. DOI: 10.1111/j.1601-183X.2006.00270.x
  216. 216. Daws LC, Montañez S, Munn JL, Owens WA, Baganz NL, Boyce-Rustay JM, Millstein RA, Wiedholz LM, Murphy DL, Holmes A. Ethanol inhibits clearance of brain serotonin by a serotonin transporter-independent mechanism. The Journal of Neuroscience. 2006;26:6431-6438. DOI: 10.1523/JNEUROSCI.4050-05.2006
  217. 217. Wu X, Kekuda R, Huang W, Fei YJ, Leibach FH, Chen J, Conway SJ, Ganapathy V. Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. The Journal of Biological Chemistry. 1998;273:32776-32786. DOI: 10.1074/jbc.273.49.32776
  218. 218. Zhu HJ, Appel DI, Gründemann D, Markowitz JS. Interaction of organic cation transporter 3 (SLC22A3) and amphetamine. Journal of Neurochemistry. 2010;114:142-149. DOI: 10.1111/j.1471-4159.2010.06738.x
  219. 219. Przegaliński E, Czepiel K, Nowak E, Dlaboga D, Filip M. Withdrawal from chronic cocaine up-regulates 5-HT1B receptors in the rat brain. Neuroscience Letters. 2003;351(3):169-172. DOI: 10.1016/S0304-3940(03)00979-0
  220. 220. Trillat AC, Malagié I, Scearce K, Pons D, Anmella MC, Jacquot C, Hen R, Gardier AM. Regulation of serotonin release in the frontal cortex and ventral hippocampus of homozygous mice lacking 5-HT1B receptors: In vivo microdialysis studies. Journal of Neurochemistry. 1997;69(5):2019-2025. DOI: 10.1046/j.1471-4159.1997.69052019.x
  221. 221. Nautiyal KM, Tritschler L, Ahmari SE, David DJ, Gardier AM, Hen R. A lack of serotonin 1B autoreceptors results in decreased anxiety and depression-related behaviors. Neuropsychopharmacology. 2016;41(12):2941-2950. DOI: 10.1038/npp.2016.109
  222. 222. Harris GC, Aston-Jones G. Beta-adrenergic antagonists attenuate withdrawal anxiety in cocaine- and morphine-dependent rats. Psychopharmacology. 1993;113(1):131-136. DOI: 10.1007/BF02244345
  223. 223. Sarnyai Z, Bíró E, Gardi J, Vecsernyés M, Julesz J, Telegdy G. Brain corticotropin-releasing factor mediates ‘anxiety-like’ behavior induced by cocaine withdrawal in rats. Brain Research. 1995;675(1-2):89-97. DOI: 10.1016/0006-8993(95)00043-P
  224. 224. Barr JL, Renner KJ, Forster GL. Withdrawal from chronic amphetamine produces persistent anxiety-like behavior but temporally-limited reductions in monoamines and neurogenesis in the adult rat dentate gyrus. Neuropharmacology. 2010;59:395-405. DOI: 10.1016/j.neuropharm.2010.05.011
  225. 225. Reinbold ED, Scholl JL, Oliver KM, Watt MJ, Forster GL. Central CRF2 receptor antagonism reduces anxiety states during amphetamine withdrawal. Neuroscience Research. 2014;89:37-43. DOI: 10.1016/j.neures.2014.08.010
  226. 226. Oakly AC, Brox BW, Schenk S, Ellenbroek BA. A genetic deletion of the serotonin transporter greatly enhances the reinforcing properties of MDMA in rats. Molecular Psychiatry. 2014;19(5):534-535. DOI: 10.1038/mp.2013.75
  227. 227. Verheij MM, Karel P, Cools AR, Homberg JR. Reduced cocaine-induced serotonin, but not dopamine and noradrenaline, release in rats with a genetic deletion of serotonin transporters. European Neuropsychopharmacology. 2014;24(11):1850-1854. DOI: 10.1016/j.euroneuro.2014.09.004
  228. 228. Holsboer F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology. 2000;23(5):477-501. DOI: 10.1016/S0893-133X(00)00159-7
  229. 229. Meaney MJ, Diorio J, Francis D, Widdowson J, LaPlante P, Caldji C, Sharma S, Seckl JR, Plotsky PM. Early environmental regulation of forebrain glucocorticoid receptor gene expression: Implications for adrenocortical responses to stress. Developmental Neuroscience. 1996;18(1-2):49-72. DOI: 10.1159/000111396
  230. 230. Modell S, Yassouridis A, Huber J, Holsboer F. Corticosteroid receptor function is decreased in depressed patients. Neuroendocrinology. 1997;65(3):216-222. DOI: 10.1016/S0165-0327(02)00010-1
  231. 231. Pariante CM, Miller AH. Glucocorticoid receptors in major depression: Relevance to pathophysiology and treatment. Biological Psychiatry. 2001;49(5):391-404. DOI: 10.1016/S0006-3223(00)01088-X
  232. 232. Boyle MP, Brewer JA, Funatsu M, Wozniak DF, Tsien JZ, Izumi Y, Muglia LJ. Acquired deficit of forebrain glucocorticoid receptor produces depression-like changes in adrenal axis regulation and behavior. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(2):473-478. DOI: 10.1073/pnas.0406458102
  233. 233. Brady LS, Whitfield HJ Jr, Fox RJ, Gold PW, Herkenham M. Long-term antidepressant administration alters corticotropin-releasing hormone, tyrosine hydroxylase, and mineralocorticoid receptor gene expression in rat brain. Therapeutic implications. The Journal of Clinical Investigation 1991;87(3), 831-837. DOI: 10.1172/JCI115086
  234. 234. B1 B, Jaworska-Feil L, Kajta M, Lasoń W. Antidepressant drugs inhibit glucocorticoid receptor-mediated gene transcription – A possible mechanism. British Journal of Pharmacology. 2000;130(6):1385-1393. DOI: 10.1038/sj.bjp.0703445
  235. 235. Reul JM, Labeur MS, Grigoriadis DE, De Souza EB, Holsboer F. Hypothalamic-pituitary-adrenocortical axis changes in the rat after long-term treatment with the reversible monoamine oxidase-A inhibitor moclobemide. Neuroendocrinology. 1994;60(5):509-519. DOI: 10.1159/000126788
  236. 236. Reul JM, Stec I, Söder M, Holsboer F. Chronic treatment of rats with the antidepressant amitriptyline attenuates the activity of the hypothalamic-pituitary-adrenocortical system. Endocrinology. 1993;133(1):312-320. DOI: 10.1210/endo.133.1.8391426
  237. 237. Belanoff JK, Rothschild AJ, Cassidy F, DeBattista C, Baulieu EE, Schold C, Schatzberg AF. An open label trial of C-1073 (mifepristone) for psychotic major depression. Biological Psychiatry. 2002;52(5):386-392. DOI: 10.1016/S0006-3223(02)01432-4
  238. 238. Schatzberg AF, Rothschild AJ, Langlais PJ, Bird ED, Cole JO. A corticosteroid/dopamine hypothesis for psychotic depression and related states. Journal of Psychiatric Research. 1985;19(1):57-64. DOI: 10.1016/0022-3956(85)90068-8
  239. 239. NS1 M, Summers GL, Gold MS. Cocaine dependence: Alcohol and other drug dependence and withdrawal characteristics. Journal of Addictive Diseases. 1993;12(1):25-35. DOI: 10.1300/J069v12n01_03
  240. 240. Kitanaka J, Kitanaka N, Takemura M. Neurochemical consequences of dysphoric state during amphetamine withdrawal in animal models: A review. Neurochemical Research. 2008;33(1):204-219. DOI: 10.1007/s11064-007-9409-7
  241. 241. MJ G-F, Flagel SB, Mahmood ST, Watson SJ, Akil H. Cocaine withdrawal causes delayed dysregulation of stress genes in the hippocampus. PLoS One. 2012;7(7):e42092. DOI: 10.1371/journal.pone.0042092
  242. 242. Budziszewska B, Jaworska-Feil L, Lasoń W. Repeated amphetamine administration down-regulates glucocorticoid, but not mineralocorticoid, receptors in the rat hippocampus. Polish Journal of Pharmacology. 1995;47(5):401-406. DOI: 10.1055/s-0029-1211463
  243. 243. Budziszewska B, Leśkiewicz M, Jaworska-Feil L, Lasoń W. Repeated cocaine administration down-regulates glucocorticoid receptors in the rat brain cortex and hippocampus. Polish Journal of Pharmacology. 1996;48(6):575-581
  244. 244. Yau JL, Kelly PA, Sharkey J, Seckl JR. Chronic 3,4-methylenedioxymethamphetamine administration decreases glucocorticoid and mineralocorticoid receptor, but increases 5-hydroxytryptamine1C receptor gene expression in the rat hippocampus. Neuroscience. 1994;61(1):31-40. DOI: 10.1016/0306-4522(94)90057-4
  245. 245. Shilling PD, Kelsoe JR, Segal DS. Hippocampal glucocorticoid receptor mRNA is up-regulated by acute and down-regulated by chronic amphetamine treatment. Brain Research. Molecular Brain Research. 1996;38:156-160. DOI: 10.1016/0169-328X(96)00009-5
  246. 246. Mantsch JR, Cullinan WE, Tang LC, Baker DA, Katz ES, Hoks MA, Ziegler DR. Daily cocaine self-administration under long-access conditions augments restraint-induced increases in plasma corticosterone and impairs glucocorticoid receptor-mediated negative feedback in rats. Brain Research. 2007;1167:101-111. DOI: 10.1016/j.brainres.2007.05.080
  247. 247. Peleg-Raibstein D, Feldon J. Effects of dorsal and ventral hippocampal NMDA stimulation on nucleus accumbens core and shell dopamine release. Neuropharmacology. 2006;51(5):947-957. DOI: 10.1016/j.neuropharm.2006.06.002
  248. 248. Besson C, Louilot A. Asymmetrical involvement of mesolimbic dopaminergic neurons in affective perception. Neuroscience. 1995;68(4):963-968. DOI: 10.1016/0306-4522(95)00255-H
  249. 249. Jeanblanc J, Hoeltzel A, Louilot A. Dissociation in the involvement of dopaminergic neurons innervating the core and shell subregions of the nucleus accumbens in latent inhibition and affective perception. Neuroscience. 2002;111(2):315-323. DOI: 10.1016/S0306-4522(02)00019-2
  250. 250. Robinson TE, Kolb B. Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology. 2004;47(Suppl 1):33-46. DOI: 10.1016/j.neuropharm.2004.06.025
  251. 251. Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. The Journal of Comparative Neurology. 1965;124:319-335. DOI: 10.1002/cne.901240303
  252. 252. Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH. Neurogenesis in the adult human hippocampus. Nature Medicine. 1998;4(11):1313-1317. DOI: 10.1038/3305
  253. 253. Gould E, Beylin A, Tanapat P, Reeves A, Shors TJ. Learning enhances adult neurogenesis in the hippocampal formation. Nature Neuroscience. 1999;2(3):260-265. DOI: 10.1038/6365
  254. 254. Kempermann G, Gage FH. Neurogenesis in the adult hippocampus. Novartis Foundation Symposium. 2000;231:220-235
  255. 255. Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E. Neurogenesis in the adult is involved in the formation of trace memories. Nature. 2001;410:372-376. DOI: 10.1038/35066584
  256. 256. Dupret D, Fabre A, Döbrössy MD, Panatier A, Rodríguez JJ, Lamarque S, Lemaire V, Oliet SH, Piazza PV, Abrous DN. Spatial learning depends on both the addition and removal of new hippocampal neurons. PLoS Biology. 2007;5:e214. DOI: 10.1371/journal.pbio.0050214
  257. 257. Schloesser RJ, Manji HK, Martinowich K. Suppression of adult neurogenesis leads to an increased hypothalamo-pituitary-adrenal axis response. NeuroReport. 2009;20:553-557. DOI: 10.1097/WNR.0b013e3283293e59
  258. 258. Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature. 2011;476:458-461. DOI: 10.1038/nature10287
  259. 259. Revest JM, Dupret D, Koehl M, Funk-Reiter C, Grosjean N, Piazza PV, Abrous DN. Adult hippocampal neurogenesis is involved in anxiety-related behaviors. Molecular Psychiatry. 2009;14:959-967. DOI: 10.1038/mp.2009.15
  260. 260. Anderson ML, Sisti HM, Curlik DM, Shors TJ. Associative learning increases adult neurogenesis during a critical period. The European Journal of Neuroscience. 2011;33:175-181. DOI: 10.1111/j.1460-9568.2010.07486.x
  261. 261. Curlik DM, Shors TJ. Learning increases the survival of newborn neurons provided that learning is difficult to achieve and successful. Journal of Cognitive Neuroscience. 2011;23:2159-2170. DOI: 10.1162/jocn.2010.21597
  262. 262. Snyder JS, Hong NS, McDonald RJ, Wojtowicz JM. A role for adult neurogenesis in spatial long-term memory. Neuroscience. 2005;130:843-852. DOI: 10.1016/j.neuroscience.2004.10.009
  263. 263. Winocur G, Wojtowicz JM, Sekeres M, Snyder JS, Wang S. Inhibition of neurogenesis interferes with hippocampus-dependent memory function. Hippocampus. 2006;16:296-304. DOI: 10.1002/hipo.20163
  264. 264. Hernández-Rabaza V, Llorens-Martín M, Velázquez-Sánchez C, Ferragud A, Arcusa A, Gumus HG, Gómez-Pinedo U, Pérez-Villalba A, Roselló J, Trejo JL, Barcia JA, Canales JJ. Inhibition of adult hippocampal neurogenesis disrupts contextual learning but spares spatial working memory, long-term conditional rule retention and spatial reversal. Neuroscience. 2009;159:59-68. DOI: 10.1016/j.neuroscience.2008.11.054
  265. 265. Jessberger S, Clark RE, Broadbent NJ, Clemenson GD, Consiglio A, Lie DC, Squire LR, Gage FH. Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats. Learning & Memory. 2009;16:147-154. DOI: 10.1101/lm.1172609
  266. 266. Arruda-Carvalho M, Sakaguchi M, Akers KG, Josselyn SA, Frankland PW. Posttraining ablation of adult-generated neurons degrades previously acquired memories. The Journal of Neuroscience. 2011;31:15113-15127. DOI: 10.1523/JNEUROSCI.3432-11.2011
  267. 267. Akers KG, Martinez-Canabal A, Restivo L, Yiu AP, De Cristofaro A, Hsiang HL, Wheeler AL, Guskjolen A, Niibori Y, Shoji H, Ohira K, Richards BA, Miyakawa T, Josselyn SA, Frankland PW. Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science. 2014;344(6184):598-602. DOI: 10.1126/science.1248903
  268. 268. Ishikawa R, Fukushima H, Frankland PW, Kida S, et al. eLife. 2016;26:5. pii: e17464. DOI: 10.7554/eLife.17464
  269. 269. Burghardt NS, Park EH, Hen R, Fenton AA. Adult-born hippocampal neurons promote cognitive flexibility in mice. Hippocampus. 2012;22:1795-1808. DOI: 10.1002/hipo.22013
  270. 270. Vukovic J, Borlikova GG, Ruitenberg MJ, Robinson GJ, Sullivan RK, Walker TL, Bartlett PF. Immature doublecortin-positive hippocampal neurons are important for learning but not for remembering. The Journal of Neuroscience. 2013;33(15):6603-6613. DOI: 10.1523/JNEUROSCI.3064-12.2013
  271. 271. Brooks JM, Pershing ML, Thomsen MS, Mikkelsen JD, Sarter M, Bruno JP. Transient inactivation of the neonatal ventral hippocampus impairs attentional set-shifting behavior: Reversal with an α7 nicotinic agonist. Neuropsychopharmacology. 2012;37(11):2476-2486. DOI: 10.1038/npp.2012.106
  272. 272. Abela AR, Dougherty SD, Fagen ED, Hill CJ, Chudasama Y. Inhibitory control deficits in rats with ventral hippocampal lesions. Cerebral Cortex. 2013;23(6):1396-1409. DOI: 10.1093/cercor/bhs121
  273. 273. Dawirs RR, Hildebrandt K, Teuchert-Noodt G. Adult treatment with haloperidol increases dentate granule cell proliferation in the gerbil hippocampus. Journal of Neural Transmission. 1998;105:317-327. DOI: 10.1007/s007020050061
  274. 274. Ferland RJ, Gross RA, Applegate CD. Differences in hippocampal mitotic activity within the dorsal and ventral hippocampus following flurothyl seizures in mice. Neuroscience Letters. 2002;332:131-135. DOI: 10.1016/S0304-3940(02)00808-X
  275. 275. Tashiro A, Makino H, Gage FH. Experience-specific functional modification of the dentate gyrus through adult neurogenesis: A critical period during an immature stage. The Journal of Neuroscience. 2007;27:3252-3259. DOI: 10.1523/JNEUROSCI.4941-06.2007
  276. 276. Snyder JS, Radik R, Wojtowicz JM, Cameron HA. Anatomical gradients of adult neurogenesis and activity: Young neurons in the ventral dentate gyrus are activated by water maze training. Hippocampus. 2009;19:360-370. DOI: 10.1002/hipo.20525
  277. 277. Jinno S. Topographic differences in adult neurogenesis in the mouse hippocampus: A stereology-based study using endogenous markers. Hippocampus. 2011;21:467-480. DOI: 10.1002/hipo.20762
  278. 278. Piatti VC, Davies-Sala MG, Espósito MS, Mongiat LA, Trinchero MF, Schinder AF. The timing for neuronal maturation in the adult hippocampus is modulated by local network activity. The Journal of Neuroscience. 2011;31:7715-7728. DOI: 10.1523/JNEUROSCI.1380-11.2011
  279. 279. Snyder JS, Ferrante SC, Cameron HA. Late maturation of adult-born neurons in the temporal dentate gyrus. PLoS One. 2012;7:e48757. DOI: 10.1371/journal.pone.0048757
  280. 280. Jayatissa MN, Bisgaard C, Tingström A, Papp M, Wiborg O. Hippocampal cytogenesis correlates to escitalopram-mediated recovery in a chronic mild stress rat model of depression. Neuropsychopharmacology. 2006;31:2395-2404. DOI: 10.1038/sj.npp.1301041
  281. 281. Hawley DF, Leasure JL. Region-specific response of the hippocampus to chronic unpredictable stress. Hippocampus. 2012;22:1338-1349. DOI: 10.1002/hipo.20970
  282. 282. Hawley DF, Morch K, Christie BR, Leasure JL. Differential response of hippocampal subregions to stress and learning. PLoS One. 2012;7:e53126. DOI: 10.1371/journal.pone.0053126
  283. 283. Tanti A, Rainer Q, Minier F, Surget A, Belzung C. Differential environmental regulation of neurogenesis along the septo-temporal axis of the hippocampus. Neuropharmacology. 2012;63:374-384. DOI: 10.1016/j.neuropharm.2012.04.022
  284. 284. Banasr M, Soumier A, Hery M, Mocaër E, Daszuta A. Agomelatine, a new antidepressant, induces regional changes in hippocampal neurogenesis. Biological Psychiatry. 2006;59:1087-1096. DOI: 10.1016/j.biopsych.2005.11.025
  285. 285. Petrik D, Lagace DC, Eisch AJ. The neurogenesis hypothesis of affective and anxiety disorders: Are we mistaking the scaffolding for the building? Neuropharmacology. 2012;62:21-34. DOI: 10.1016/j.neuropharm.2011.09.003
  286. 286. Earnheart JC, Schweizer C, Crestani F, Iwasato T, Itohara S, Mohler H, Lüscher B. GABAergic control of adult hippocampal neurogenesis in relation to behavior indicative of trait anxiety and depression states. The Journal of Neuroscience. 2007;27:3845-3854. DOI: 10.1523/JNEUROSCI.3609-06.2007
  287. 287. Bergami M, Rimondini R, Santi S, Blum R, Götz M, Canossa M. Deletion of TrkB in adult progenitors alters newborn neuron integration into hippocampal circuits and increases anxiety-like behavior. Proceedings of the National Academy of Sciences of the United States of America. 2008;105:15570-15575. DOI: 10.1073/pnas.0803702105
  288. 288. Crupi R, Cambiaghi M, Spatz L, Hen R, Thorn M, Friedman E, Vita G, Battaglia F. Reduced adult neurogenesis and altered emotional behaviors in autoimmune-prone B-cell activating factor transgenic mice. Biological Psychiatry. 2010;67:558-566. DOI: 10.1016/j.biopsych.2009.12.008
  289. 289. Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. The Journal of Neuroscience. 2000;20:9104-9110
  290. 290. Encinas JM, Vaahtokari A, Enikolopov G. Fluoxetine targets early progenitor cells in the adult brain. Proceedings of the National Academy of Sciences of the United States of America. 2006;103:8233-8238. DOI: 10.1073/pnas.0601992103
  291. 291. Perera TD, Coplan JD, Lisanby SH, Lipira CM, Arif M, Carpio C, Spitzer G, Santarelli L, Scharf B, Hen R, Rosoklija G, Sackeim HA, Dwork AJ. Antidepressant-induced neurogenesis in the hippocampus of adult nonhuman primates. The Journal of Neuroscience. 2007;27:4894-4901. DOI: 10.1523/JNEUROSCI.0237-07.2007
  292. 292. Boldrini M, Underwood MD, Hen R, Rosoklija GB, Dwork AJ, John Mann J, Arango V. Antidepressants increase neural progenitor cells in the human hippocampus. Neuropsychopharmacology. 2009;34:2376-2389. DOI: 10.1038/npp.2009.75
  293. 293. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science. 2003;301:805-809. DOI: 10.1126/science.1083328
  294. 294. Vollmayr B, Simonis C, Weber S, Gass P, Henn F. Reduced cell proliferation in the dentate gyrus is not correlated with the development of learned helplessness. Biological Psychiatry. 2003;54(10):1035-1040. DOI: 10.1016/S0006-3223(03)00527-4
  295. 295. Saxe MD, Battaglia F, Wang JW, Malleret G, David DJ, Monckton JE, Garcia AD, Sofroniew MV, Kandel ER, Santarelli L, Hen R, Drew MR. Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America. 2006;103:17501-17506. DOI: 10.1073/pnas.0607207103
  296. 296. David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I, Drew M, Craig DA, Guiard BP, Guilloux JP, Artymyshyn RP, Gardier AM, Gerald C, Antonijevic IA, Leonardo ED, Hen R. Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron. 2009;62:479-493. DOI: 10.1016/j.neuron.2009.04.017
  297. 297. Gould E, Tanapat P. Stress and hippocampal neurogenesis. Biological Psychiatry. 1999;46(11):1472-1479. DOI: 10.1016/S0006-3223(99)00247-4
  298. 298. Hill AS, Sahay A, Hen R. Increasing adult hippocampal neurogenesis is sufficient to reduce anxiety and depression-like behaviors. Neuropsychopharmacology. 2015;40(10):2368-2378. DOI: 10.1038/npp.2015.85
  299. 299. Saaltink DJ, Vreugdenhil E. Stress, glucocorticoid receptors, and adult neurogenesis: A balance between excitation and inhibition? Cellular and Molecular Life Sciences. 2014;71(13):2499-2515. DOI: 10.1007/s00018-014-1568-5
  300. 300. Yamaguchi M, Suzuki T, Seki T, Namba T, Juan R, Arai H, Hori T, Asada T. Repetitive cocaine administration decreases neurogenesis in adult rat hippocampus. Annals of the New York Academy of Sciences. 2004;1025:351-362. DOI: 10.1196/annals.1316.043
  301. 301. Domínguez-Escribà L, Hernández-Rabaza V, Soriano-Navarro M, Barcia JA, Romero FJ, García-Verdugo JM, Canales JJ. Chronic cocaine exposure impairs progenitor proliferation but spares survival and maturation of neural precursors in adult rat dentate gyrus. The European Journal of Neuroscience. 2006;24:586-594. DOI: 10.1111/j.1460-9568.2006.04924.x
  302. 302. Noonan MA, Choi KH, Self DW, Eisch AJ. Withdrawal from cocaine self-administration normalizes deficits in proliferation and enhances maturity of adult-generated hippocampal neurons. The Journal of Neuroscience. 2008;28:2516-2526. DOI: 10.1523/JNEUROSCI.4661-07.2008
  303. 303. Lloyd SA, Balest ZR, Corotto FS, Smeyne RJ. Cocaine selectively increases proliferation in the adult murine hippocampus. Neuroscience Letters. 2010;485:112-116. DOI: 10.1016/j.neulet.2010.08.080
  304. 304. Sudai E, Croitoru O, Shaldubina A, Abraham L, Gispan I, Flaumenhaft Y, Roth-Deri I, Kinor N, Aharoni S, Ben-Tzion M, Yadid G. High cocaine dosage decreases neurogenesis in the hippocampus and impairs working memory. Addiction Biology. 2011;16:251-260. DOI: 10.1111/j.1369-1600.2010.00241.x
  305. 305. García-Fuster MJ, Perez JA, Clinton SM, Watson SJ, Akil H. Impact of cocaine on adult hippocampal neurogenesis in an animal model of differential propensity to drug abuse. The European Journal of Neuroscience. 2010;31:79-89. DOI: 10.1111/j.1460-9568.2009.07045.x
  306. 306. Hernández-Rabaza V, Domínguez-Escribà L, Barcia JA, Rosel JF, Romero FJ, García-Verdugo JM, Canales JJ. Binge administration of 3,4-methylenedioxymethamphetamine (“ecstasy”) impairs the survival of neural precursors in adult rat dentate gyrus. Neuropharmacology. 2006;51:967-973. DOI: 10.1016/j.neuropharm.2006.06.019
  307. 307. Lagace DC, Yee JK, Bolaños CA, Eisch AJ. Juvenile administration of methylphenidate attenuates adult hippocampal neurogenesis. Biological Psychiatry. 2006;60:1121-1130. DOI: 10.1016/j.biopsych.2006.04.009
  308. 308. Teuchert-Noodt G, Dawirs RR, Hildebrandt K. Adult treatment with methamphetamine transiently decreases dentate granule cell proliferation in the gerbil hippocampus. Journal of Neural Transmission. 2000;107:133-143. DOI: 10.1007/s007020050012
  309. 309. Mandyam CD, Wee S, Crawford EF, Eisch AJ, Richardson HN, Koob GF. Varied access to intravenous methamphetamine self-administration differentially alters adult hippocampal neurogenesis. Biological Psychiatry. 2008;64:958-965. DOI: 10.1016/j.biopsych.2008.04.010
  310. 310. Maćkowiak M, Grzegorzewska M, Budziszewska B, Chocyk A, Hess G, Wedzony K. Cocaine decreases the expression of PSA-NCAM protein and attenuates long-term potentiation via glucocorticoid receptors in the rat dentate gyrus. The European Journal of Neuroscience. 2008;27:2928-2937. DOI: 10.1111/j.1460-9568.2008.06255.x
  311. 311. Hicks MP, Wischerath KC, Lacrosse AL, Olive MF. Increases in doublecortin immunoreactivity in the dentate gyrus following extinction of heroin-seeking behavior. Neural Plasticity. 2012;2012:283829. DOI: 10.1155/2012/283829
  312. 312. Recinto P, Samant AR, Chavez G, Kim A, Yuan CJ, Soleiman M, Grant Y, Edwards S, Wee S, Koob GF, George O, Mandyam CD. Levels of neural progenitors in the hippocampus predict memory impairment and relapse to drug seeking as a function of excessive methamphetamine self-administration. Neuropsychopharmacology. 2012;37:1275-1287. DOI: 10.1038/npp.2011.315
  313. 313. Deschaux O, Vendruscolo LF, Schlosburg JE, Diaz-Aguilar L, Yuan CJ, Sobieraj JC, George O, Koob GF, Mandyam CD. Hippocampal neurogenesis protects against cocaine-primed relapse. Addiction Biology. 2014;19(4):562-574. DOI: 10.1111/adb.12019
  314. 314. Noonan MA, Bulin SE, Fuller DC, Eisch AJ. Reduction of adult hippocampal neurogenesis confers vulnerability in an animal model of cocaine addiction. The Journal of Neuroscience. 2010;30:304-315. DOI: 10.1523/JNEUROSCI.4256-09.2010
  315. 315. Castilla-Ortega E, Blanco E, Serrano A, Ladrón de Guevara-Miranda D, Pedraz M, Estivill-Torrús G, Pavón FJ, Rodríguez de Fonseca F, Santín LJ. Pharmacological reduction of adult hippocampal neurogenesis modifies functional brain circuits in mice exposed to a cocaine conditioned place preference paradigm. Addiction Biology. 2016;21(3):575-588. DOI: 10.1111/adb.12248
  316. 316. Mustroph ML, Stobaugh DJ, Miller DS, DeYoung EK, Rhodes JS. Wheel running can accelerate or delay extinction of conditioned place preference for cocaine in male C57BL/6J mice, depending on timing of wheel access. The European Journal of Neuroscience. 2011;34:1161-1169. DOI: 10.1111/j.1460-9568.2011.07828.x
  317. 317. Mustroph ML, Pinardo H, Merritt JR, Rhodes JS. Parameters for abolishing conditioned place preference for cocaine from running and environmental enrichment in male C57BL/6J mice. Behavioural Brain Research. 2016;312:366-373. DOI: 10.1016/j.bbr.2016.06.049
  318. 318. Mustroph ML, Merritt JR, Holloway AL, Pinardo H, Miller DS, Kilby CN, Bucko P, Wyer A, Rhodes JS. Increased adult hippocampal neurogenesis is not necessary for wheel running to abolish conditioned place preference for cocaine in mice. The European Journal of Neuroscience. 2015;41(2):216-226. DOI: 10.1111/ejn.12782
  319. 319. Mu Y, Zhao C, Gage FH. Dopaminergic modulation of cortical inputs during maturation of adult-born dentate granule cells. The Journal of Neuroscience. 2011;31:4113-4123. DOI: 10.1523/JNEUROSCI.4913-10.2011
  320. 320. Gasbarri A, Sulli A, Innocenzi R, Pacitti C, Brioni JD. Spatial memory impairment induced by lesion of the mesohippocampal dopaminergic system in the rat. Neuroscience. 1996;74(4):1037-1044. DOI: 10.1016/0306-4522(96)00202-3
  321. 321. Winner B, Desplats P, Hagl C, Klucken J, Aigner R, Ploetz S, Laemke J, Karl A, Aigner L, Masliah E, Buerger E, Winkler J. Dopamine receptor activation promotes adult neurogenesis in an acute Parkinson model. Experimental Neurology. 2009;219(2):543-552. DOI: 10.1016/j.expneurol.2009.07.013
  322. 322. Salvi R, Steigleder T, Schlachetzki JC, Waldmann E, Schwab S, Winner B, Winkler J, Kohl Z. Distinct effects of chronic dopaminergic stimulation on hippocampal neurogenesis and striatal doublecortin expression in adult mice. Frontiers in Neuroscience. 2016;10:77. DOI: 10.3389/fnins.2016.00077
  323. 323. Barr JL, Unterwald EM. Activity-regulated gene expression in immature neurons in the dentate gyrus following re-exposure to a cocaine-paired environment. Hippocampus. 2015;25(3):354-362. DOI: 10.1002/hipo.22377
  324. 324. Epp JR, Haack AK, Galea LA. Activation and survival of immature neurons in the dentate gyrus with spatial memory is dependent on time of exposure to spatial learning and age of cells at examination. Neurobiology of Learning and Memory. 2011;95:316-325. DOI: 10.1016/j.nlm.2011.01.001

Written By

Jeffrey L. Barr, Brenna Bray and Gina L. Forster

Submitted: 26 April 2017 Reviewed: 06 September 2017 Published: 20 December 2017