InTech uses cookies to offer you the best online experience. By continuing to use our site, you agree to our Privacy Policy.

Agricultural and Biological Sciences » "Poultry Science", book edited by Milad Manafi, ISBN 978-953-51-2946-2, Print ISBN 978-953-51-2945-5, Published: February 15, 2017 under CC BY 3.0 license. © The Author(s).

Chapter 5

Biofilms of Salmonella and Campylobacter in the Poultry Industry

By Daise A. Rossi, Roberta T. Melo, Eliane P. Mendonça and Guilherme P. Monteiro
DOI: 10.5772/65254

  1. Pometto AL, Demirci A. Biofilms in the food environment. 2nd ed. New Jersey: John Wiley & Sons; 2015. 320 p. DOI: 10.1002/9781118864036

  2. Sutherland IW. The biofilm matrix—an immobilized but dynamic microbial environment. Trends in Microbiology. 2001;9:222–227. DOI:

  3. Azevedo NF, Cerca N. Biofilms in: health, environment, industry. 1st ed. Porto: Publindústria Technical Issues: 2012. 396 p.

  4. Carpentier B, Cerf O. Biofilms and their consequences, with particular reference to hygiene in the food industry. Journal of Applied Microbiology. 1993;75:499–511. DOI: 10.1111/j.1365-2672.1993.tb01587.x

  5. Jay JM. Food Microbiology. 6th ed. Porto Alegre: Artmed; 2005. 711 p.

  6. Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents. 2010;35:322–332. DOI:

  7. Giaouris E, Chorianopoulos N, Nychas GJE. Effect of temperature, pH, and water activity on biofilm formation by Salmonella enterica Enteritidis PT4 on stain less steel surfaces as indicated by the bead vortexing method and conduct ance measurements. Journal of Food Protection. 2012;68:2149–2154.

  8. Steenackers H, Hermans K, Vanderleyden J, Keersmaecker SCJ. Salmonella biofilms: An overview on occurrence, structure, regulation and eradication. Food Research International. 2012;45:502–531. DOI: 10.1016/j.foodres.2011.01.038

  9. Vivian RC. The evaluation of biofilm formation and sensitivity to peracetic acid of Salmonella spp. isolated from poultry abattoir [dissertation]. São Paulo, Universidade Estadual Paulista, 2014.

  10. Watnick P, Kolter R. Minireview: Biofilm, city of microbes. Journal of Bacteriology. 2000;182:2675–2679. DOI: 10.1128/JB.182.10.2675-2679.2000

  11. Lewis K. Riddle of biofilm resistance. Antimicrobial Agents and Chemotherapy. 2001;45:999–1007. DOI: 10.1128/AAC.45.4.999-1007.2001

  12. Jass J, Walker J. Biofilms and biofouling. In: Walker J, Surmanand S, Jass J, editors. Industrial biofouling: Detection, prevention and control. New Jersey: John Wiley & Sons; 2000. pp.1–12. ISBN: 978-0-471-98866-3

  13. CDC. Foodborne illness surveillance, response, and data systems. Atlanta: U.S. Department of Health and Human Services. 2014. Available in: [Accessed: 2016-06-01]

  14. Baugh S. The role of multidrug efflux pumps in biofilm formation of Salmonella enterica serovar Typhimurium. [thesis] Birmingham: University of Birmingham; 2013.

  15. Quinones B, Miller WG, Bates AH, Mandrell RE. Autoinducer-2 production in Campylobacter jejuni contributes to chicken colonization. Applied and Environmental Microbiology. 2009;75:281–285. DOI: 10.1128/AEM.01803-08

  16. Petrova OE, Sauer K. Sticky situations: Key components that control bacterial surface attachment. Journal of Bacteriology. 2012;194:2413–2425. DOI: 10.1128/JB.00003-12

  17. Skandamis PN, Nychas GJ. Quorum sensing in the context of food microbiology. Applied and Environmental Microbiology. 2012;78:5473–82. DOI: 10.1128/AEM.00468-12

  18. Srey S, Jahid IK, Ha S. Biofilm formation in food industries: A food safety concern. Food Control. 2013;31:572–585. DOI: 10.1016/j.foodcont.2012.12.001

  19. Malaeb L, Le-Clech P, Vrouwenvelder JS, Ayoub GM, Saikaly PE. Do biological-based strategies hold promise to biofouling control in MBRs? Water Research. 2013;47:5447–5463. DOI: 10.1016/j.watres.2013.06.033

  20. Matyar F, Gülnaz O, Guzeldag G, Mercimek HA, Akturk S, Arkut A, Sumengen M. Antibiotic and heavy metal resistance in Gram-negative bacteria isolated from the Seyhan Dam Lake and Seyhan River in Turkey. Annals of Microbiology. 2014;64:1033–1040. DOI: 10.1007/s13213-013-0740-8

  21. Moe KK, Mimura J, Ohnishi T, Wake T, Yamazaki W, Nakai M, Misawa N. The mode of biofilm formation on smooth surfaces by Campylobacter jejuni. Journal of Veterinary Medical Science. 2010;72:411–416. DOI: 10.1292/jvms.09-0339

  22. Haddock G, Mullin M, MacCallum A, Sherry A, Tetley L, Watson E, Dagleish M, Smith DGE, Everest P. Campylobacter jejuni 81-176 forms distinct microcolonies on in vitro-infected human small intestinal tissue prior to biofilm formation. Microbiology. 2010;156:3079–3084. DOI: 10.1099/mic.0.039867-0

  23. Vesterlund S, Paltta J, Karp M, Ouwehand AC. 2005. Measurement of bacterial adhesion in vitro evaluation of different methods. Journal of Microbiological Methods. 2005;60:225–233. DOI: 10.1016/j.mimet.2004.09.013

  24. Cappitelli F, Polo A, Villa F. Biofilm formation in food processing environments is still poorly understood and controlled. Food Engineering Reviews. 2014;6:29–42. DOI: 10.1007/s12393-014-9077-8

  25. Sulaeman S, Hernould M, Schaumann A, Coquet L, Bolla JM, De E, Tresse O. Enhanced adhesion of Campylobacter jejuni to abiotic surfaces is mediated by membrane proteins in oxygen-enriched conditions. Plos One. 2012;7:e46402. DOI: 10.1371/journal.pone.0046402

  26. Theoret JR, Cooper KK, Zekarias B, Roland KL, Law BF, Curtiss R, Joens LA. (2012) The Campylobacter jejuni dps homologue is important for in vitro biofilm formation and cecal colonization of poultry and may serve as a protective antigen for vaccination. Clinical and Vaccine Immunology. 2012;19:1426–1431. DOI: 10.1128/CVI.00151-12

  27. Monds RD, O'Toole GA. The developmental model of microbial biofilms: Ten years of a paradigm up for review. Trends in Microbiology. 2009;17:73–87. DOI: 10.1016/j.tim.2008.11.001

  28. Reuter M, Mallett A, Pearson BM, Van Vliet AHM. Biofilm formation by Campylobacter jejuni is increased under aerobic conditions. Applied and Environmental Microbiology. 2010;76:2122–2128. DOI: 10.1128/AEM.01878-09

  29. Gilbert P, Allison DG, Mcbain AJ. Biofilms in vitro and in vivo: Do singular mechanisms imply cross-resistance? Journal of Applied Microbiology. 2002;92:98S–110S. DOI: 10.1046/j.1365-2672.92.5s1.5.x

  30. Vidal DR, Ragot C, Thibault F. Bacterial biofilms and resistance to disinfectants. Annales Pharmaceutiques Françaises.1997;55:49–54.

  31. Hanning I, Jarquin R, Slavik M. Campylobacter jejuni as a secondary colonizer of poultry biofilms. Journal of Applied Microbiology. 2008;105:1199–1208. DOI: 10.1111/j.1365-2672.2008.03853

  32. Teh KH, Flint S, French N. Biofilm formation by Campylobacter jejuni in controlled mixed-microbial populations. International Journal of Food Microbiology. 2010;143:118–124. DOI: 10.1016/j.ijfoodmicro.2010.07.037

  33. Culotti A, Packman AI. Pseudomonas aeruginosa facilitates Campylobacter jejuni growth in biofilms under oxic flow conditions. FEMS Microbiology Ecology. 2015;91:fiv136. DOI: 10.1093/femsec/fiv136

  34. Hanning I. Capture, survival, colonization and virulence of Campylobacter jejuni in poultry biofilms [dissertation]. Arkansas: University of Arkansas; 2008

  35. Manning L, Chadd SA, Baines RN. Key health and welfare indicators for broilers production. World’s Poultry Science Journal. 2007;63:47–62. DOI: 10.1079/WPS2005126

  36. Pattison M. Practical intervention strategies for Campylobacter. Journal of Applied Microbiology. 2001;90:121–125. DOI: 10.1046/j.1365-2672.2001.01360.x

  37. Sparks NHC. The role of the water supply system in the infection and control of Campylobacter in chicken. World’s Poultry Science Journal. 2009;65:459–473. DOI: 10.1017/S0043933909000324

  38. Ogden ID, Macrae M, Johnston M, Strachan NJC, Cody AJ, Dingle KE, Newell DG. Use of multilocus sequence typing to investigate the association between the presence of Campylobacter spp. in broiler drinking water and Campylobacter colonization in broilers. Applied and Environmental Microbiology. 2007;73:5125–5129.

  39. FAO/WHO. 2009. Salmonella and Campylobacter in chicken meat. Geneva: Microbiological Risk Assessment Series No. 19. 69 pp. Available in: [Accessed: 2016-05-03]

  40. Jang KI, Kim MG, Ha SD, Lee KA, Chung DH, Kim CH, Kim KY. Morphology and adhesion of Campylobacter jejuni to chicken skin under varying conditions. Journal of Microbiology and Biotechnology. 2007;17:202–206.

  41. Habimana O, Møretrø T, Langsrud S, Vestby LK, Nesse LL, Heir E. Micro ecosystems from feed industry surfaces: A survival and biofilm study of Salmonella versus host resident flora strains. BMC Veterinary Research. 2010;2: 48.

  42. Vestby LK, Lönn-Stensrud J, Møretrø T, Langsrud S, AamdalScheie A, Benneche T, Nesse LL. A synthetic furanone potentiates the effect of disinfectants on Salmonella in biofilm. Journal of Applied Microbiology. 2010;108:771–778.

  43. Ewing CP, Andreishcheva E, Guerry P. Functional characterization of flagellin glycosylation in Campylobacter jejuni 81-176. Journal of Bacteriology. 2009;191:7086–7093. DOI: 10.1128/JB.00378-09

  44. Rathbun KM, Hall JE, Thompson SA. Cj0596 is a periplasmic peptidyl prolyl cis-trans isomerase involved in Campylobacter jejuni motility, invasion and colonization. BMC Microbiology. 2009;9:160. DOI: 10.1186/1471-2180-9-160

  45. Naito M, Frirdich E, Fields JA, Pryjma M, Li J, Cameron A, Gilbert M, Thompson SA, Gaynor EC. Effects of sequential Campylobacter jejuni 81-176 lipooligosaccharide core truncations on biofilm formation, stress survival, and pathogenesis. Journal of Bacteriology. 2010;192:2182–2192. DOI: 10.1128/JB.01222-09

  46. Rajashekara G, Drozd M, Gangaiah D, Jeon B, Liu Z, Zhang Q. Functional characterization of the twin-arginine translocation system in Campylobacter jejuni. Foodborne Pathogens Diseases. 2009;6:935–945. DOI: 10.1089/fpd.2009.0298

  47. Kalmokoff M, Lanthier P, Tremblay TL, Foss M, Lau PC, Sanders G, Austin J, Kelly J, Szymanski CM. Proteomic analysis of Campylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. Journal of Bacteriology. 2006;188:4312–4320. DOI: 10.1128/JB.01975-05

  48. Sampathkumar B, Napper S, Carrillo CD, Willson P, Taboada E, Nash JH, Potter AA, Babiuk LA, Allan BJ. Transcriptional and translational expression patterns associated with immobilized growth of Campylobacter jejuni. Microbiology. 2006;152:567–577. DOI: 10.1099/mic.0.28405-0

  49. Gibson DL, White AP, Rajotte CM, Kay WW. AgfC and AgfE facilitate extracellular thin aggregative fimbriae synthesis in Salmonella Enteritidis. Society for General Microbiology. 2007;153:1131–1140. DOI: 10.1099/mic.0.2006/000935-0

  50. Hamilton S, Bongaerts RJ, Mulholland F, Cochrane B, Porter J, Lucchini S, Lappin-Scott HM, Hinton JCD. The transcriptional programme of Salmonella enterica serovar Typhimurium reveals a key role for tryptophan metabolism in biofilms. BMC Genomics. 2009;10:599. DOI: 10.1186/1471-2164-10-599

  51. Barnhart MM, Chapman MR. Curli biogenesis and function. Annual Review of Microbiology. 2006;60:131–147. DOI: 10.1146/annurev.micro.60.080805.142106

  52. Gerstel U, Römling U. The csgD promoter, a control unit for biofilm formation in Salmonella Typhimurium. Research in Microbiology. 2003;154:659–667. DOI: 10.1016/j.resmic.2003.08.005

  53. Zogaj X, Nimtz M, Rohde M, Bokranz W, Romling U. The multicellular morphotypes of Salmonella Typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Molecular Microbiology. 2001;39:1452–1463. DOI: 10.1046/j.1365-2958.2001.02337.x

  54. Guiney DG. Regulation of bacterial virulence gene expression by the host environment. Journal of Clinical Investigation. 1997;99:565–569.

  55. Reeser RJ, Medler RT, Billington SJ, Jost BH, Joens LA. Characterization of Campylobacter jejuni biofilms under defined growth conditions. Applied and Environmental Microbiology. 2007;73:1908–1913. DOI: 10.1128/AEM.00740-06

  56. Svensson SL. Molecular mechanisms of Campylobacter jejuni survival: Characterization of the CprRS two-component regulatory system and biofilm formation. Doctorate Thesis, Lakehead University, Thunder Bay, Ontario; 2012. 152 pp.

  57. Ica T, Caner V, Istanbullu O, Nguyen HD, Ahmed B, Call DR, Beyenal H. Characterization of mono- and mixed-culture Campylobacter jejuni Biofilms. Applied and Environmental Microbiology. 2012;78:1033–1038. DOI: 10.1128/AEM.07364-11

  58. Donlan RM, Costerton JM. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Review. 2002;15:167–193. DOI: 10.1128/CMR.15.2.167-193.2002

  59. Gonzalez JE, Keshavan ND. Messing with bacterial quorum sensing. Microbiology and Molecular Biology Reviews. 2006;70:859–875. DOI: 10.1128/MMBR.00002-06

  60. Gölz G, Adler L, Huehn S, Alter T. LuxS distribution and AI-2 activity in Campylobacter spp. Journal of Applied Microbiology. 2012a;112:571–578. DOI: 10.1111/j.1365-2672.2011.05221

  61. Gölz G, Sharbati S, Backert S, Alter T. Quorum sensing dependent phenotypes and their molecular mechanisms in Campylobacterales. European Journal of Microbiology and Immunology. 2012b;2:50–60. DOI: 10.1556/EuJMI.2.2012.1.8

  62. Chmielewski RAN, Frank JF. A predictive model for heat inactivation of Listeria monocytogenes biofilm on rubber. LWT – Food Science and Technology. 2006;39:11–19. DOI: 10.1016/j.lwt.2004.10.006

  63. Dosti B, Guzel-Seydim Z, Greene AK. Effectiveness of ozone, heat andchlorine for destroying common food spoilage bacteria in synthetic media and biofilms. International Journal of Dairy Technology. 2005;58:19–24. DOI: 10.1111/j.1471-0307.2005.001 76.x

  64. Simões M, Simões LC, Machado I, Pereira MO, Vieira MJ. Control of flow-generated biofilms using surfactants – Evidence of resistance and recovery. Food and Bioproducts Processing. 2006;84:338–345. DOI: 10.1205/fbp06022

  65. Pereira A, Mendes J, Melo LF. Using nanovibrations to monitor biofouling. Biotechnology and Bioengineering. 2008;15:1407–1415. DOI: 10.1002/bit.21696

  66. Maukonen J, Matto J, Wirtanen G, Raaska L, Mattila-Sandholm T, Saarela M. Methodologies for the characterization of microbes in industrial environments: A review. Journal of Industrial Microbiology and Biotechnology. 2003;30:327–356. DOI: 10.1007/s10295-003-0056-y

  67. Forsythe SJ, Hayes PR. Food hygiene, microbiology and HACCP. 3rd ed. Nottingham: Aspen Publishers; 1998. 17 p. DOI: 10.1007/978-1-4615-2193-8

  68. Simoes LC, Simoes M, Vieira MJ. Influence of the diversity of bacterial isolates from drinking water on resistance of biofilms to disinfection. Applied Environmental Microbiology. 2010;76:6673–6679. DOI: 10.1128/AEM.00872-10

  69. Bremer PJ, Fillery S, McQuillan AJ. Laboratory scale clean-in-place (CIP) studies on the effectiveness of different caustic and acid wash steps on the removal of dairy biofilms. International Journal of Food Microbiology. 2006;106:254–262. DOI: 10.1016/j.ijfoodmicro.2005.07.004

  70. Machado SMO. Evaluation of the antimicrobial effect of benzalkonium chloride surfactant in controlling the formation of undesirable biofilms. [dissertation] Minho: Universidade do Minho, 2005.

  71. Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F. Resistance of bacterial biofilms to disinfectants: A review. Biofouling The Journal of Bioadhesion and Biofilm Research. 2011;27:1017–1032. DOI: 10.1080/08927014.2011.626899

  72. Cloete TE, Jacobs L. Surfactants and the attachment of Pseudomonas aeruginosa to 3CR12 stainless steel and glass. Water SA, 2001;27:21–26. ISSN: 0378-4738

  73. Davies DG, Marques CNH. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. Journal of Bacteriology. 2009;191:1393–1403. DOI: 10.1128/JB.01214-08

  74. Dusane DH, Nancharaiah YV, Zinjarde SS, Venugopalan VP. Rhamnolipid mediated disruption of marine Bacillus pumilus biofilms. Colloids and Surfaces B: Biointerfaces. 2010;81:242–248. DOI: 10.1016/j.colsurfb.2010.07.013

  75. Mireles JR, Toguchi A, Harshey RM. Salmonella enterica serovar Typhimurium swarming mutants with altered biofilm-forming abilities: Surfactin inhibits biofilm formation. Journal of Bacteriology. 2001;183:5848–5854. DOI: 10.1128/JB.183.20.5848-5854.2001

  76. Costa F, Carvalho IF, Montelaro RC, Gomes P, Martins MCL. Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomaterialia. 2011;7:1431–1440. DOI: 10.1016/j.actbio.2010.11.005

  77. Lu X, Samuelson DR, Rasco BA, Konkel ME. Elucidation of the antimicrobial effect of diallyl sulfide on Campylobacter jejuni biofilms. Journal of Antimicrobial Chemotherapy. 2012;67:1915–1926. DOI: 10.1093/jac/DKS138

  78. Oulahal-Lagsir O, Martial-Gros A, Bonneau M, Blum LJ. “Escherichia coli-milk” biofilm removal from stainless steel surfaces: Synergism between ultrasonic waves and enzymes. Biofouling. 2003;19:159–168. DOI: 10.1080/08927014.2003.10382978

  79. Kudva I T, Jelacic S, Tarr PI, Youderian P, Hovde CJ. Biocontrol of Escherichia coli O157 with O157-specific bacteriophages. Applied and Environmental Microbiology, 1999;65:3767–3773.

  80. Briandet R, Lacroix-Gueu P, RenaultM, Lecart S, Meylheuc T, Bidnenko E, Steenkeste K, Bellon-Fontaine MN, Fontaine-Aupart MP. Fluorescence correlation spectroscopy to study diffusion and reaction of bacteriophages inside biofilms. Applied and Environmental Microbiology. 2008;74:2135–2143. DOI: 10.1128/AEM.02304-07

  81. Donlan RM. Preventing biofilms of clinically relevant organisms using bacteriophage. Trends in Microbiology. 2009;17:66–72. DOI: 10.1016/j.tim.2008.11.002

  82. Sutherland IW, Hughes KA, Skillman LC, Tait K. The interaction of phage and biofilms. FEMS Microbiology Letters. 2004;232:1–6. DOI: 10.1016/S0378-1097(04)00041-2

  83. Chaignon P, Sadovskaya I, Ragunah CH, Ramasubbu N, Kaplan JB, Jabbouri S. Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition. Applied Microbiology and Biotechnology. 2007;75:125–132. DOI: 10.1007/s00253-006-0790-y

  84. Lewis K, Ausubel FM. Prospects for plant-derived antibacterials. Nature Biotechnoloy. 2006;24:1504–1507. DOI: 10.1038/nbt1206-1504

  85. Knowles JR, Roller S, Murray DB, Naidu AS. (2005). Antimicrobial action of carvacrol at different stages of dual-species biofilm development by Staphylococcus aureus and Salmonella enterica serovar Typhimurium. Applied and Environmental Microbiology. 2005;71:797–803. DOI: 10.1128/AEM.71.2.797-803.2005

  86. Nazer A, Kobilinsky A, Tholozan JL, Dubois-Brissonnet F. Combinations of food antimicrobials at low levels to inhibit the growth of Salmonella sv.Typhimurium: A synergistic effect? Food Microbiology. 2005;22:391–398. DOI: 10.1016/