Knowledge and skill outcomes achievable via SL-based design and PBSL.
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"},{slug:"intechopen-s-chapter-awarded-the-guenther-von-pannewitz-preis-2020-20200715",title:"IntechOpen's Chapter Awarded the Günther-von-Pannewitz-Preis 2020"},{slug:"suf-and-intechopen-announce-collaboration-20200331",title:"SUF and IntechOpen Announce Collaboration"}]},book:{item:{type:"book",id:"4545",leadTitle:null,fullTitle:"Seminars in Dysphagia",title:"Seminars in Dysphagia",subtitle:null,reviewType:"peer-reviewed",abstract:"Seminars in Dysphagia provides a comprehensive overview of contemporary issues in the field of dysphagia assessment, treatment and management in diverse subject populations. Expert views are shared by international clinical experts from different medical and allied health fields. \nThis book contains an introductory chapter on the anatomical structures and physiology processes that underpin dysphagia and discusses the effects of polypharmacy and ageing on deglutition. Contemporary practices of functional assessment of swallowing and the endoscopic assessment for both oropharyngeal and esophageal dysphagia are reviewed. Both the nutritional support and decision making in oral route are described and the impact of dysphagia on carers and family when managing dysphagia. Several chapters are dedicated to outlining the manifestation and consequences of dysphagia in specific populations, including persons with Parkinsons disease, dystonia, chronic obstructive pulmonary disease and mixed connective tissue disease.",isbn:null,printIsbn:"978-953-51-2151-0",pdfIsbn:"978-953-51-4217-1",doi:"10.5772/58665",price:119,priceEur:129,priceUsd:155,slug:"seminars-in-dysphagia",numberOfPages:248,isOpenForSubmission:!1,isInWos:1,hash:"34993dd62703a7b1051e147bdb3258c2",bookSignature:"Renee Speyer and Hans Bogaardt",publishedDate:"September 2nd 2015",coverURL:"https://cdn.intechopen.com/books/images_new/4545.jpg",numberOfDownloads:21246,numberOfWosCitations:10,numberOfCrossrefCitations:12,numberOfDimensionsCitations:21,hasAltmetrics:1,numberOfTotalCitations:43,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 27th 2014",dateEndSecondStepPublish:"June 24th 2014",dateEndThirdStepPublish:"September 21st 2014",dateEndFourthStepPublish:"December 20th 2014",dateEndFifthStepPublish:"January 19th 2015",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,8",editedByType:"Edited by",kuFlag:!1,editors:[{id:"171934",title:"Dr.",name:"Renee",middleName:null,surname:"Speyer",slug:"renee-speyer",fullName:"Renee Speyer",profilePictureURL:"https://mts.intechopen.com/storage/users/171934/images/4930_n.jpg",biography:"Dr Renée Speyer is currently employed as Associate Professor at James Cook University in Australia where she is the Head of Speech Pathology. After graduating as a speech pathologist in the Netherlands, she earned master degrees in Speech and Language Pathology, Epidemiology and Health Professions Education and completed a PhD in 2004. \nDr Speyer’s career included working as a speech pathologist in different health care settings and in academia. Over the last two decades Dr Speyer has developed an international research track record in the field of oropharyngeal dysphagia. She is currently undertaking research projects both nationally and internationally involving clinimetrics, instrument development, and developing evidenced based interventions in allied health for different disability population groups. She published over 50 internationally peer-reviewed research articles, mainly in the field of oropharyngeal dysphagia.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"200438",title:"Dr.",name:"Hans",middleName:null,surname:"Bogaardt",slug:"hans-bogaardt",fullName:"Hans Bogaardt",profilePictureURL:"https://mts.intechopen.com/storage/users/200438/images/4926_n.jpg",biography:"Hans Bogaardt is a Speech Pathologist and Clinical Epidemiologist, who is specialized in assessment and treatment of dysphagia. Currently Hans works as Lecturer in Speech Pathology at The University of Sydney, Australia. \nHans completed his undergraduate degree in Speech Pathology at the Leidse Hogeschool in Leiden, the Netherlands and worked for several years in Germany and the Netherlands in different hospitals and rehabilitation centers. In 2004 he obtained his master’s degree in Evidence Based Practise / Clinicial Epidemiology at the University of Amsterdam. In the following years Hans worked as a clinician and researcher at the Department of Otolaryngology of the Academic Medical Center in Amsterdam. In 2009 he finished his PhD with a thesis titled \\'Current Aspects of Assessment and Treatment of Dysphagia\\'.\nNext to his teaching, Hans is involved in several research projects looking into assessment and treatment of swallowing disorders in a range of different patient populations.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1096",title:"Laryngology",slug:"laryngology"}],chapters:[{id:"48889",title:"Anatomical and Physiopathological Aspects of Oral Cavity and Oropharynx Components Related to Oropharyngeal Dysphagia",doi:"10.5772/60766",slug:"anatomical-and-physiopathological-aspects-of-oral-cavity-and-oropharynx-components-related-to-oropha",totalDownloads:3055,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Ludmilla R. Souza, Marcos V. M. Oliveira, John R. Basile, Leandro N.\nSouza, Ana C. R. Souza, Desiree S. Haikal and Alfredo M. B. De-Paula",downloadPdfUrl:"/chapter/pdf-download/48889",previewPdfUrl:"/chapter/pdf-preview/48889",authors:[{id:"171970",title:"Dr.",name:"Alfredo",surname:"De Paula",slug:"alfredo-de-paula",fullName:"Alfredo De Paula"}],corrections:null},{id:"48934",title:"Impact of Polypharmacy on Deglutition in Patients with Coronary and Cardiac Diseases",doi:"10.5772/61085",slug:"impact-of-polypharmacy-on-deglutition-in-patients-with-coronary-and-cardiac-diseases",totalDownloads:1142,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Hadeer Akram Abdul Razzaq and Syed Azhar Syed Sulaiman",downloadPdfUrl:"/chapter/pdf-download/48934",previewPdfUrl:"/chapter/pdf-preview/48934",authors:[{id:"82689",title:"Dr.",name:"Hadeer",surname:"AbdulRazzaq",slug:"hadeer-abdulrazzaq",fullName:"Hadeer AbdulRazzaq"},{id:"173188",title:"Prof.",name:"Syed Azhar",surname:"Syed Sulaiman",slug:"syed-azhar-syed-sulaiman",fullName:"Syed Azhar Syed Sulaiman"}],corrections:null},{id:"48609",title:"Presbyphagia",doi:"10.5772/60780",slug:"presbyphagia",totalDownloads:1395,totalCrossrefCites:3,totalDimensionsCites:3,signatures:"Marian Dejaeger, Claudia Liesenborghs and Eddy Dejaeger",downloadPdfUrl:"/chapter/pdf-download/48609",previewPdfUrl:"/chapter/pdf-preview/48609",authors:[{id:"172690",title:"Prof.",name:"Eddy",surname:"Dejaeger",slug:"eddy-dejaeger",fullName:"Eddy Dejaeger"}],corrections:null},{id:"49005",title:"Endoscopic Criteria in Assessing Severity of Swallowing Disorders",doi:"10.5772/60836",slug:"endoscopic-criteria-in-assessing-severity-of-swallowing-disorders",totalDownloads:1584,totalCrossrefCites:3,totalDimensionsCites:5,signatures:"Farneti Daniele and Genovese Elisabetta",downloadPdfUrl:"/chapter/pdf-download/49005",previewPdfUrl:"/chapter/pdf-preview/49005",authors:[{id:"172879",title:"Dr.",name:"Daniele",surname:"Farneti",slug:"daniele-farneti",fullName:"Daniele Farneti"},{id:"175419",title:"Dr.",name:"Elisabetta",surname:"Genovese",slug:"elisabetta-genovese",fullName:"Elisabetta Genovese"}],corrections:null},{id:"48661",title:"Endoscopy for Diseases with Esophageal Dysphagia",doi:"10.5772/60909",slug:"endoscopy-for-diseases-with-esophageal-dysphagia",totalDownloads:1709,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Hiroshi Makino, Hiroshi Yoshida and Eiji Uchida",downloadPdfUrl:"/chapter/pdf-download/48661",previewPdfUrl:"/chapter/pdf-preview/48661",authors:[{id:"149561",title:"Dr.",name:"Hiroshi",surname:"Makino",slug:"hiroshi-makino",fullName:"Hiroshi Makino"}],corrections:null},{id:"48764",title:"Is the Electrical Threshold of Sensation on the Soft Palate Indicative of the Recovery Process of the Swallowing Reflex Based on Functional Assessment?",doi:"10.5772/60771",slug:"is-the-electrical-threshold-of-sensation-on-the-soft-palate-indicative-of-the-recovery-process-of-th",totalDownloads:1135,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Koichiro Ueda, Osamu Takahashi, Hisao Hiraba, Masaru Yamaoka,\nEnri Nakayama, Kimiko Abe, Mituyasu Sato, Hisako Ishiyama,\nAkinari Hayashi and Kotomi Sakai",downloadPdfUrl:"/chapter/pdf-download/48764",previewPdfUrl:"/chapter/pdf-preview/48764",authors:[{id:"172255",title:"Dr.",name:"Hisao",surname:"Hiraba",slug:"hisao-hiraba",fullName:"Hisao Hiraba"}],corrections:null},{id:"48986",title:"Nutritional Support in Dysphagia",doi:"10.5772/61243",slug:"nutritional-support-in-dysphagia",totalDownloads:1541,totalCrossrefCites:1,totalDimensionsCites:3,signatures:"Vishal G. Shelat and Garvi J. Pandya",downloadPdfUrl:"/chapter/pdf-download/48986",previewPdfUrl:"/chapter/pdf-preview/48986",authors:[{id:"172152",title:"Dr.",name:"Vishal G.",surname:"Shelat",slug:"vishal-g.-shelat",fullName:"Vishal G. Shelat"},{id:"172153",title:"Dr.",name:"Garvi",surname:"Pandya",slug:"garvi-pandya",fullName:"Garvi Pandya"}],corrections:null},{id:"48681",title:"Decision Making for Enteral Nutrition in Adult Patients with Dysphagia – A Guide for Health Care Professionals",doi:"10.5772/60987",slug:"decision-making-for-enteral-nutrition-in-adult-patients-with-dysphagia-a-guide-for-health-care-profe",totalDownloads:1555,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Nicoll Kenny and Shajila A. Singh",downloadPdfUrl:"/chapter/pdf-download/48681",previewPdfUrl:"/chapter/pdf-preview/48681",authors:[{id:"177115",title:"Ms.",name:"Nicoll",surname:"Kenny",slug:"nicoll-kenny",fullName:"Nicoll Kenny"}],corrections:null},{id:"48741",title:"Dysphagia and the Family",doi:"10.5772/60856",slug:"dysphagia-and-the-family",totalDownloads:1551,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Rebecca L. Nund, Nerina A. Scarinci, Bena Cartmill and Elizabeth C.\nWard",downloadPdfUrl:"/chapter/pdf-download/48741",previewPdfUrl:"/chapter/pdf-preview/48741",authors:[{id:"172198",title:"Prof.",name:"Elizabeth",surname:"Ward",slug:"elizabeth-ward",fullName:"Elizabeth Ward"},{id:"172221",title:"Dr.",name:"Rebecca",surname:"Nund",slug:"rebecca-nund",fullName:"Rebecca Nund"},{id:"172291",title:"Dr.",name:"Nerina",surname:"Scarinci",slug:"nerina-scarinci",fullName:"Nerina Scarinci"},{id:"172292",title:"Dr.",name:"Bena",surname:"Cartmill",slug:"bena-cartmill",fullName:"Bena Cartmill"}],corrections:null},{id:"48701",title:"Dysphagia in Parkinson’s Disease",doi:"10.5772/60983",slug:"dysphagia-in-parkinson-s-disease",totalDownloads:1697,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Rosane Sampaio Santos, Carlos Henrique Ferreira Camargo, Edna\nMárcia da Silva Abdulmassih and Hélio Afonso Ghizoni Teive",downloadPdfUrl:"/chapter/pdf-download/48701",previewPdfUrl:"/chapter/pdf-preview/48701",authors:[{id:"56865",title:"Ph.D.",name:"Carlos Henrique",surname:"Camargo",slug:"carlos-henrique-camargo",fullName:"Carlos Henrique Camargo"},{id:"82565",title:"Dr.",name:"Helio",surname:"Teive",slug:"helio-teive",fullName:"Helio Teive"},{id:"172676",title:"Prof.",name:"Edna Márcia",surname:"Abdulmassih",slug:"edna-marcia-abdulmassih",fullName:"Edna Márcia Abdulmassih"},{id:"172677",title:"Prof.",name:"Rosane Sampaio",surname:"Santos",slug:"rosane-sampaio-santos",fullName:"Rosane Sampaio Santos"}],corrections:null},{id:"48508",title:"Dysphagia in Dystonia",doi:"10.5772/60765",slug:"dysphagia-in-dystonia",totalDownloads:1490,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Carlos Henrique Ferreira Camargo, Edna Márcia da Silva\nAbdulmassih, Rosane Sampaio Santos and Hélio Afonso Ghizoni\nTeive",downloadPdfUrl:"/chapter/pdf-download/48508",previewPdfUrl:"/chapter/pdf-preview/48508",authors:[{id:"56865",title:"Ph.D.",name:"Carlos Henrique",surname:"Camargo",slug:"carlos-henrique-camargo",fullName:"Carlos Henrique Camargo"},{id:"82565",title:"Dr.",name:"Helio",surname:"Teive",slug:"helio-teive",fullName:"Helio Teive"},{id:"172676",title:"Prof.",name:"Edna Márcia",surname:"Abdulmassih",slug:"edna-marcia-abdulmassih",fullName:"Edna Márcia Abdulmassih"},{id:"172677",title:"Prof.",name:"Rosane Sampaio",surname:"Santos",slug:"rosane-sampaio-santos",fullName:"Rosane Sampaio Santos"}],corrections:null},{id:"48440",title:"Dysphagia in Chronic Obstructive Pulmonary Disease",doi:"10.5772/60742",slug:"dysphagia-in-chronic-obstructive-pulmonary-disease",totalDownloads:2238,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Livia Scelza, Catiuscia S.S. Greco, Agnaldo J. Lopes and Pedro Lopes\nde Melo",downloadPdfUrl:"/chapter/pdf-download/48440",previewPdfUrl:"/chapter/pdf-preview/48440",authors:[{id:"143938",title:"Prof.",name:"Pedro",surname:"Melo",slug:"pedro-melo",fullName:"Pedro Melo"},{id:"172549",title:"BSc.",name:"Catiuscia",surname:"Greco",slug:"catiuscia-greco",fullName:"Catiuscia Greco"},{id:"172550",title:"BSc.",name:"Livia",surname:"Scelza",slug:"livia-scelza",fullName:"Livia Scelza"},{id:"176646",title:"Prof.",name:"Agnaldo",surname:"Lopes",slug:"agnaldo-lopes",fullName:"Agnaldo Lopes"}],corrections:null},{id:"48323",title:"Histopathological Change of Esophagus Related to Dysphagia in Mixed Connective Tissue Disease",doi:"10.5772/60509",slug:"histopathological-change-of-esophagus-related-to-dysphagia-in-mixed-connective-tissue-disease",totalDownloads:1171,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"Akihisa Kamataki, Miwa Uzuki and Takashi Sawai",downloadPdfUrl:"/chapter/pdf-download/48323",previewPdfUrl:"/chapter/pdf-preview/48323",authors:[{id:"74025",title:"Dr.",name:"Akihisa",surname:"Kamataki",slug:"akihisa-kamataki",fullName:"Akihisa Kamataki"},{id:"172034",title:"Prof.",name:"Takashi",surname:"Sawai",slug:"takashi-sawai",fullName:"Takashi Sawai"},{id:"173261",title:"Dr.",name:"Miwa",surname:"Uzuki",slug:"miwa-uzuki",fullName:"Miwa Uzuki"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"73639",slug:"corrigendum-to-single-photon-emission-computed-tomography-spect-radiopharmaceuticals",title:"Corrigendum to: Single-Photon Emission Computed Tomography (SPECT) Radiopharmaceuticals",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/73639.pdf",downloadPdfUrl:"/chapter/pdf-download/73639",previewPdfUrl:"/chapter/pdf-preview/73639",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/73639",risUrl:"/chapter/ris/73639",chapter:{id:"73033",slug:"single-photon-emission-computed-tomography-spect-radiopharmaceuticals",signatures:"Syed Ali Raza Naqvi and Muhammad Babar Imran",dateSubmitted:"May 13th 2019",dateReviewed:"July 22nd 2020",datePrePublished:"August 21st 2020",datePublished:null,book:{id:"7769",title:"Medical Isotopes",subtitle:null,fullTitle:"Medical Isotopes",slug:"medical-isotopes",publishedDate:"January 7th 2021",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",fullName:"Syed Ali Raza Naqvi",slug:"syed-ali-raza-naqvi",email:"drarnaqvi@gmail.com",position:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"302793",title:"Dr.",name:"Muhammad Babar",middleName:null,surname:"Imran",fullName:"Muhammad Babar Imran",slug:"muhammad-babar-imran",email:"muhammadbabarimran@yahoo.com",position:null,institution:null}]}},chapter:{id:"73033",slug:"single-photon-emission-computed-tomography-spect-radiopharmaceuticals",signatures:"Syed Ali Raza Naqvi and Muhammad Babar Imran",dateSubmitted:"May 13th 2019",dateReviewed:"July 22nd 2020",datePrePublished:"August 21st 2020",datePublished:null,book:{id:"7769",title:"Medical Isotopes",subtitle:null,fullTitle:"Medical Isotopes",slug:"medical-isotopes",publishedDate:"January 7th 2021",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",fullName:"Syed Ali Raza Naqvi",slug:"syed-ali-raza-naqvi",email:"drarnaqvi@gmail.com",position:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"302793",title:"Dr.",name:"Muhammad Babar",middleName:null,surname:"Imran",fullName:"Muhammad Babar Imran",slug:"muhammad-babar-imran",email:"muhammadbabarimran@yahoo.com",position:null,institution:null}]},book:{id:"7769",title:"Medical Isotopes",subtitle:null,fullTitle:"Medical Isotopes",slug:"medical-isotopes",publishedDate:"January 7th 2021",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"7237",leadTitle:null,title:"Energy-Efficient Approaches in Industrial Applications",subtitle:null,reviewType:"peer-reviewed",abstract:"A large amount of energy is consumed in the industry to meet the power needed for production processes. In order to meet the heat and mechanical power needs required for many industrial processes, natural gas, petroleum fuel, and electricity are mostly used as energy sources. In addition to the efficient use of energy in order to reduce operating costs in industrial applications, alternatives such as efficient use of energy for conservation of resources and climate, energy recovery, renewable energy preferences, and energy production from wastes are becoming more common. With proper energy management, it is possible to increase energy efficiency independently of the size of the industry and the technologies used in the process. The development of new alternatives for energy efficiency and saving is crucial to meet the growing world energy needs and to compete effectively with fossil fuels and thus reduce greenhouse gases. This small book is a collection of research and reviewed chapters dealing with energy-efficient materials and strategies in different conditions.The Editors would like to record their sincere thanks to the authors for their contributions.",isbn:"978-1-78985-520-3",printIsbn:"978-1-78985-519-7",pdfIsbn:"978-1-83962-044-7",doi:"10.5772/intechopen.74268",price:100,priceEur:109,priceUsd:129,slug:"energy-efficient-approaches-in-industrial-applications",numberOfPages:86,isOpenForSubmission:!1,hash:"a7b403a3af7828987f078b91334839bb",bookSignature:"Murat Eyvaz, Abdülkerim Gok and Ebubekir Yüksel",publishedDate:"February 20th 2019",coverURL:"https://cdn.intechopen.com/books/images_new/7237.jpg",keywords:null,numberOfDownloads:2337,numberOfWosCitations:1,numberOfCrossrefCitations:2,numberOfDimensionsCitations:4,numberOfTotalCitations:7,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"January 29th 2018",dateEndSecondStepPublish:"September 6th 2018",dateEndThirdStepPublish:"November 5th 2018",dateEndFourthStepPublish:"January 24th 2019",dateEndFifthStepPublish:"March 25th 2019",remainingDaysToSecondStep:"2 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"170083",title:"Associate Prof.",name:"Murat",middleName:null,surname:"Eyvaz",slug:"murat-eyvaz",fullName:"Murat Eyvaz",profilePictureURL:"https://mts.intechopen.com/storage/users/170083/images/system/170083.jpeg",biography:"Dr. Eyvaz is an Associate Professor of the Environmental Engineering Department (ENVE) at Gebze Technical University (GTU). He received his bachelor’s degree in environmental engineering from Kocaeli University in Turkey in 2004. He completed his graduate work (M.Sc., 2006 and Ph.D., 2013) at Gebze Institute of Technology (former name of GTU) in Environmental Engineering under the supervision of Dr. Mehmet KOBYA, Prof. in ENVE-GTU (for M.Sc.), and of Dr. Ebubekir YÜKSEL, Prof. in ENVE-GTU and Dr. Ömer AKGİRAY, Professor and Chair of ENVE at Marmara University, (for Ph. D.). He completed his post-doctoral research in the National Research Center on Membrane Technologies (in Istanbul Technical University) under the mentorship of Dr. İsmail KOYUNCU, Professor and Manager of the center, between March 2014-March 2015.\n\nDr. Eyvaz has been in the Environmental Engineering Department of GTU as a Faculty Member (2017-present). His research interests are applications in water and wastewater treatment facilities, electrochemical treatment process, and filtration systems at the lab. and pilot scale, membrane processes (forward osmosis, reverse osmosis, membrane bioreactors), membrane manufacturing methods (polymeric membranes, nanofiber membranes, electrospinning), spectrophotometric analyses (UV, atomic absorption spectrophotometry), chromatographic analyses (gas chromatography, high-pressure liquid chromatography). He has published his findings in the premier journals of his field, Journal of Hazardous Materials, Separation and Purification Technology, Journal of Membrane Science, and Chemical Engineering Journal. He has produced more than 20 peer-reviewed publications (cited over 1000 times) with an h index of 12. He serves as an editor for over 45 various journals and a reviewer in 140 different various journals and conferences indexed in SCI, SCI-E, and other indexes.\n\nDr. Eyvaz and his co-authors’ peer-reviewed publications have continuously and increasingly been cited. By January 2021, the totals of citations to Dr. Eyvaz’s journal publications are 555, 599, and 1055 for Web of Science, Scopus, and Google Scholars databases, respectively, and his h-indexes are 10, 10, and 12, respectively.",institutionString:"Gebze Technical University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"6",institution:{name:"Gebze Technical University",institutionURL:null,country:{name:"Turkey"}}}],coeditorOne:{id:"266161",title:"Dr.",name:"Abdulkerim",middleName:null,surname:"Gok",slug:"abdulkerim-gok",fullName:"Abdulkerim Gok",profilePictureURL:"https://mts.intechopen.com/storage/users/266161/images/system/266161.jpeg",biography:"Dr. Abdulkerim Gok is a research associate in the department of Materials Science and Engineering at Gebze Technical University, Turkey. He completed his bachelor’s degree in Materials Science and Engineering at Anadolu University, Turkey in 2007. He received his M.Sc. degree in Chemical Engineering from Columbia University, New York, USA, in 2011 and his PhD. degree in Materials Science and Engineering from Case Western Reserve University, Cleveland, OH, USA, in 2016. His work focuses on developing predictive and mechanistic degradation pathway models of polymeric materials used in photovoltaic module materials under accelerated and real-world weathering exposures. His research interests include lifetime and degradation science of PV module and module materials, reproducible statistical methods, the effect of environmental stressors on PV module performance.",institutionString:"Gebze Technical University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Gebze Technical University",institutionURL:null,country:{name:"Turkey"}}},coeditorTwo:{id:"176701",title:"Prof.",name:"Ebubekir",middleName:null,surname:"Yüksel",slug:"ebubekir-yuksel",fullName:"Ebubekir Yüksel",profilePictureURL:"https://mts.intechopen.com/storage/users/176701/images/system/176701.png",biography:"Prof. Ebubekir Yüksel is a faculty member of the Environmental Engineering Department at the Gebze Technical University. He received his bachelor degree in Civil Engineering from İstanbul Technical University in 1992. He completed his graduate work (M.Sc., 1995 and Ph.D., 2001) at the İstanbul Technical University. His research interests are applications in water and wastewater treatment facilities, electrochemical treatment process and filtration systems at the lab. and pilot scale, watershed management, flood control, deep-sea discharges, membrane processes, spectrophotometric analyses, chromatographic analyses, and geographic information systems. He has co-authored numerous journal articles and conference papers and has taken part in many national projects. Prof. Yüksel has 1 issued patent on pump/turbine design and 4 patent applications on wastewater treatment systems.",institutionString:"Gebze Technical University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Gebze Technical University",institutionURL:null,country:{name:"Turkey"}}},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"783",title:"Environmental Sustainability",slug:"engineering-environmental-engineering-environmental-sustainability"}],chapters:[{id:"63517",title:"Thermal Insulation Coatings in Energy Saving",slug:"thermal-insulation-coatings-in-energy-saving",totalDownloads:868,totalCrossrefCites:0,authors:[{id:"242965",title:"Ms.",name:"Xiufang",surname:"Ye",slug:"xiufang-ye",fullName:"Xiufang Ye"},{id:"245794",title:"Prof.",name:"Dongchu",surname:"Chen",slug:"dongchu-chen",fullName:"Dongchu Chen"}]},{id:"64135",title:"Selection of the Best Optimal Operational Parameters to Reduce the Fuel Consumption Based on the Clustering Method of Artificial Neural Networks",slug:"selection-of-the-best-optimal-operational-parameters-to-reduce-the-fuel-consumption-based-on-the-clu",totalDownloads:396,totalCrossrefCites:0,authors:[{id:"222497",title:"Dr.",name:"Tien Anh",surname:"Tran",slug:"tien-anh-tran",fullName:"Tien Anh Tran"}]},{id:"64526",title:"Households’ Energy Efficiency Practices in a Bereft Power Supply Economy of Nigeria",slug:"households-energy-efficiency-practices-in-a-bereft-power-supply-economy-of-nigeria",totalDownloads:527,totalCrossrefCites:0,authors:[{id:"243427",title:"Associate Prof.",name:"Ibrahim Udale",surname:"Hussaini",slug:"ibrahim-udale-hussaini",fullName:"Ibrahim Udale Hussaini"}]},{id:"63333",title:"Frontiers of Adaptive Design, Synthetic Biology and Growing Skins for Ephemeral Hybrid Structures",slug:"frontiers-of-adaptive-design-synthetic-biology-and-growing-skins-for-ephemeral-hybrid-structures",totalDownloads:553,totalCrossrefCites:2,authors:[{id:"245657",title:"Ph.D.",name:"Sandra G. L.",surname:"Persiani",slug:"sandra-g.-l.-persiani",fullName:"Sandra G. L. Persiani"},{id:"246098",title:"Prof.",name:"Alessandra",surname:"Battisti",slug:"alessandra-battisti",fullName:"Alessandra Battisti"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"220812",firstName:"Lada",lastName:"Bozic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/220812/images/6021_n.jpg",email:"lada@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6732",title:"Desalination and Water Treatment",subtitle:null,isOpenForSubmission:!1,hash:"eee2f03e0328f289e68fde28738c333f",slug:"desalination-and-water-treatment",bookSignature:"Murat Eyvaz and Ebubekir Yüksel",coverURL:"https://cdn.intechopen.com/books/images_new/6732.jpg",editedByType:"Edited by",editors:[{id:"170083",title:"Associate Prof.",name:"Murat",surname:"Eyvaz",slug:"murat-eyvaz",fullName:"Murat Eyvaz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6665",title:"Advances In Hydrogen Generation Technologies",subtitle:null,isOpenForSubmission:!1,hash:"99ccb9f2118953ff45f33ec391868157",slug:"advances-in-hydrogen-generation-technologies",bookSignature:"Murat Eyvaz",coverURL:"https://cdn.intechopen.com/books/images_new/6665.jpg",editedByType:"Edited by",editors:[{id:"170083",title:"Associate Prof.",name:"Murat",surname:"Eyvaz",slug:"murat-eyvaz",fullName:"Murat Eyvaz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8178",title:"Water Chemistry",subtitle:null,isOpenForSubmission:!1,hash:"18595695f271583e06b7c2d33b670e56",slug:"water-chemistry",bookSignature:"Murat Eyvaz and Ebubekir Yüksel",coverURL:"https://cdn.intechopen.com/books/images_new/8178.jpg",editedByType:"Edited by",editors:[{id:"170083",title:"Associate Prof.",name:"Murat",surname:"Eyvaz",slug:"murat-eyvaz",fullName:"Murat Eyvaz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7693",title:"Green Chemistry Applications",subtitle:null,isOpenForSubmission:!1,hash:"9db61c9d52045d034f1ee6b769acccd5",slug:"green-chemistry-applications",bookSignature:"Murat Eyvaz and Ebubekir Yüksel",coverURL:"https://cdn.intechopen.com/books/images_new/7693.jpg",editedByType:"Edited by",editors:[{id:"170083",title:"Associate Prof.",name:"Murat",surname:"Eyvaz",slug:"murat-eyvaz",fullName:"Murat Eyvaz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8804",title:"Water and Wastewater Treatment",subtitle:null,isOpenForSubmission:!1,hash:"ccb46d6518786712b3184b2498fb0cab",slug:"water-and-wastewater-treatment",bookSignature:"Murat Eyvaz",coverURL:"https://cdn.intechopen.com/books/images_new/8804.jpg",editedByType:"Edited by",editors:[{id:"170083",title:"Associate Prof.",name:"Murat",surname:"Eyvaz",slug:"murat-eyvaz",fullName:"Murat Eyvaz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"896",title:"Sustainable Development",subtitle:"Energy, Engineering and Technologies - Manufacturing and Environment",isOpenForSubmission:!1,hash:"6918d8cf18ee74d746d53009e3c36249",slug:"sustainable-development-energy-engineering-and-technologies-manufacturing-and-environment",bookSignature:"Chaouki Ghenai",coverURL:"https://cdn.intechopen.com/books/images_new/896.jpg",editedByType:"Edited by",editors:[{id:"14569",title:"Prof.",name:"Chaouki",surname:"Ghenai",slug:"chaouki-ghenai",fullName:"Chaouki Ghenai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"65278",title:"Service-Learning and Civic Engagement as the Basis for Engineering Design Education",doi:"10.5772/intechopen.83699",slug:"service-learning-and-civic-engagement-as-the-basis-for-engineering-design-education",body:'
In the twenty-first century, “engineers are called to be change-makers, peace-makers, social entrepreneurs, and facilitators of sustainable human development” [1]. Preparing engineers to meet these challenges requires a rich educational experience. In particular, the way in which students are taught the design process is important. The products, processes, and infrastructure designed by engineers are critical to human quality of life, with an array of positive and negative impacts that should be carefully considered. More broadly, the designs of engineers are having global environmental effects. A rich design experience will reinforce to students the coupled socio-technical challenges they will face in practice, and prepare them to recognize and wrestle with the complex array of ethical issues that are inherent in all designs.
It is not sufficient that engineers have a great depth of technical knowledge, so-called I-Type education. Engineering education has been moving toward a T-shaped model that adds breadth skills that cross the boundaries of a single profession, such as teamwork, communication, and global understanding [2, 3]. Perhaps we need to move beyond T-shaped engineers to envision “cluster” type engineers [1], who will sit with a broad array of stakeholders (including members of the public and those in policy, social scientists, and natural scientists) to design appropriate and sustainable processes and products that better meet an array of environmental, social, and economic objectives.
It is our claim that service-learning can serve as an ideal basis for design education that strives to meet the aforementioned goals of educating global citizen engineers. In addition, the hard work invested by students and educators can yield tangible results that serve real people, as opposed to designs in AutoCAD or objects that are displayed at a design fair and then go to waste. Engaging with communities may also broaden the diversity of students interested in becoming engineers, both in terms of recruiting students into engineering majors in higher education as well as retaining students to graduate with engineering degrees and enter the engineering workforce [4].
This chapter begins by defining service-learning (SL) and community engagement and briefly describing their history in higher education and in engineering. Next, frameworks and theories of design that are particularly relevant to SL are presented, with a focus on human-centered design. This section is followed by a discussion of essential elements of SL-based design projects, as well as challenges and pitfalls of SL as a pedagogy for design education. The student knowledge, skills, attitudes, and identity that can result from SL-based design projects are presented next. Examples of SL-based design programs and courses are integrated throughout the chapter to illustrate concepts and best practices. This chapter is intended to provide the reader with an introduction to service-learning as a vehicle for design education, and to provide additional resources for readers who wish to delve into more detail with the theory and practice of this pedagogy.
Service-learning is defined as “a credit-bearing, educational experience in which students participate in an organized service activity that meets identified community needs and reflect on the service activity in such a way as to gain further understanding of course content, a broader appreciation of the discipline, and an enhanced sense of civic responsibility.” [5] Service-learning in higher education was pioneered by Ernest Boyer [6, 7] and other scholars in non-engineering professions [8, 9, 10] and was identified by George Kuh [11] as a high impact educational practice critical to the retention of early career college students. Service-learning, and more broadly civic engagement, which encompasses curricular and co-curricular efforts to ensure that the university is using its resources to partner with communities and other stakeholders to address complex societal issues, are a well-defined part of the higher education landscape in the USA. Campus Compact, the major professional society for civic engagement in higher education, has more than 1100 universities as members.
Models of service-learning were presented by Heffernan [12], and include (among others) a discipline or placement based model, in which students are situated within the community and perform community service to meet their learning objectives, as well as a problem-based or deliverable model, in which student create or co-create (with community) a product to fulfill course requirements. Service-learning in engineering has largely used the deliverable model, in which students deliver designs or designed and built artifacts.
Leah Jamieson pioneered service-learning in engineering through the Engineering Projects in Community Service (EPICS) program at Purdue University [13, 14]. This model features vertically integrated teams consisting of an approximately equal number of first-year, sophomore, junior, and senior engineering students who take a course repeating times for semester credit and who work together on addressing community issues using human-centered design. The teams are also multidisciplinary, including students studying an array of engineering and non-engineering disciplines. The community partnerships are often long-standing, with EPICS conducting a number of projects with partners over many years. Examples of projects conducted by EPICS in partnership with communities include hands-on exhibits for science museums, custom toys for children with disabilities, and software for elementary schools, non-profits, and public agencies. The EPICS model has expanded to include approximately 40 colleges of engineering nationally and internationally [15]. Edmund Tsang [16] is the editor of the engineering volume of the American Association of Higher Education’s Service-Learning in the Disciplines. Numerous early models of service-learning in engineering are shared in this volume.
Though there is much work on service-learning in engineering, engineers serving the common good through co-curricular (outside the classroom) methods also play a large role in learning through service (LTS) activities [17, 18]. Many pre-professional and practicing engineers have participated in engineers without borders (EWB), whose mission is “To be the beating heart of the engineering movement for sustainable global development, building and evolving engineering capacity throughout the world.” (
There has been a proliferation of curricular and co-curricular opportunities for civic engagement in engineering since the turn of the century. SL design projects have been integrated into introductory courses for first-year students, technical core courses, and senior capstone design. Readers are encouraged to consult the International Journal for Service Learning in Engineering: Humanitarian Engineering and Social Entrepreneurship (IJSLE), especially two special issues published in 2014 and 2015, Opportunities and Barriers to Integrating Service-Learning into Engineering Education [19] and University Engineering Programs that Impact Communities: Critical Analyses and Reflection [20]. Additionally, the Community Engagement Division of the American Society for Engineering Education was created in 2012 and has a resource page for general knowledge in this area (
The design process can be modeled in a number of ways, with specifics that vary somewhat depending on whether engineers are designing infrastructure at the community scale (e.g. a bridge, road, power system), physical products that are owned at a household or personal level (e.g. a car, computer), or processes (e.g. computer software). Some methodologies are more congruent than others with service-learning. The human-centered design process has often been used to frame service-learning (e.g. [21, 22]), and also aligns with numerous elements in the conceive-design-implement-operate (CDIO) process [23]. Human-centered design puts the people who are the users/community members at the heart of the process, engaging them throughout all phases. Optimally, service-learning embraces the notion of designing with communities. Figure 1 offers a visual representation of the human-centered design process. The hexagon in the center represents the team of people working together on a particular issue (inspired by [1]), which is embedded in the complex ecosystem of the technical, social, and environmental realms. The community members (C) are “at the table” working side-by-side with engineers (E) and other experts in policy (P) and natural and/or social scientists (S). There are opportunities to harness community expertise in all phases of the design process.
Conceptual model of the human-centered design process as a collaboration among engineers (E) and community members (C) with contributions by policy makers (P) and scientists (S), situated within larger environmental, social, and technical realms.
An individual or the community collectively should identify a problem or situation they believe engineers might be able to contribute to solving or improving. The community should be the driving force, with a vision of partnering with engineers. In other words, problem identification should not be externally imposed. An engineer might share data with the community that she/he believes indicates an issue, but should not presume that her/his external perceptions of a ‘problem’ are authentic to a specific individual or community. Otherwise, there is an implication that a particular community or individual is at a ‘deficit’, needing charity or help from an “expert” engineering student, versus being co-equal partners in working to improve a situation.
Once an issue has been identified by the community, the next step is to gain a thorough understanding of the issue. It is important to realize that a particular problem is situated within a larger framework of the planet and environment at large, the society and economy in which a community or individual resides, various cultural norms and legal constraints, and interactions among these complex systems. Engineers should have a strong understanding of the technical issues that are relevant to a problem, as well as community issues that they can gain perspective on through research. Critically, they also need to partner with others “on the ground” to fully understand other conditions relevant to the problem. In this stage, students should talk with and listen to their community partners. Ideally, this process includes contextual or transformational listening, which is a skill that must be thoughtfully developed [24, 25, 26]. The public and community should not be viewed as a monolith; there are sure to be an array of individuals and groups with different perspectives. Engaging an array of stakeholders early in the process can yield important benefits. The more students in their role as novice engineers can immerse themselves in the communities and with the people their engineering is designed to serve, the more likely they are to better understand and appreciate the needs of the ultimate users of the co-created design. This approach aligns with the ideas of empathic design [21, 27]. Students may also need to recruit partners or work with other disciplines to gain a thorough understanding of relevant constraints and criteria.
The next phase in the process focuses on divergent thinking, where individuals imagine an array of potential solutions. Engineers often bring examples of solutions that have worked in similar situations. But each situation is unique, and engineers should not force fit technology to a problem. The analogy is often that engineers have a set of tools, and just because they have a “hammer” does not mean that is the right tool for the job. Students should not position themselves in roles as experts, but as learners, collaborators, and facilitators, bringing their ideas and inviting ideas from others. Interactive discussions with a broad array of stakeholders are likely to yield a diverse array of creative ideas. This step is critical to the process, in order for the best solutions to be among the array of options being considered.
Next, there should be a thoughtful process of evaluating the range of ideas under the set of local constraints and criteria, to narrow in on a sub-set of potentially feasible, appropriate, and optimal solutions. This process should be conducted by the community members and engineering students working together in a participatory design process. The evaluation process should consider the larger context of the issue, including the social and environmental spheres. Engineers then create conceptual designs, which allow rough evaluation of metrics such as cost, environmental emissions, etc. Typically a number of the important criteria that determine an optimal solution are subjective. Thus, community members must be engaged in contributing to the design and evaluating these issues. The community should select the ‘optimal’ solution from among the sub-set of options that went through the conceptual design phase. This is a convergent phase of the design cycle, and may be challenging given that different stakeholders may have different perspectives on ‘optimal.’
Engineers then typically handle the majority of the detailed design phase, which largely resides in the technical realm. Engineering students may complete this work if carefully supervised by instructors with appropriate expertise; some projects will require that licensed Professional Engineers review the designs. More forward-thinking SL programs are engaging in co-design among community members, students, and engineers. Where appropriate, prototypes of products are created, which can then go through testing by the community. In the case of infrastructure, computer models are built and subjected to expected human and natural conditions (e.g. hurricane); results are shared with stakeholders. Design changes can be made in response to the testing feedback cycle. This iterative process can often be viewed as a microcosm of the full design process (e.g. a problem might be identified in the prototype, alternative fixes are proposed and evaluated, etc.). The teams of engineering students and faculty should be completely transparent with stakeholders, explaining what they are doing and why. This approach provides an opportunity for co-equal learning among all of the participants in the design process, and is inclusive of both community members and engineering students.
The implementation steps, such as manufacturing a designed product, are often thought of as ‘detached’ from users and communities. However, in service-learning projects there are often opportunities to engage communities in this phase. For example, community participation in constructing a school playground, building a Habitat for Humanity home, community participation in building a Bridges to Prosperity (B2P) bridge, and locals producing ceramic water filters for point-of-use household treatment of drinking water in a micro-enterprise [19, 20]. Community involvement in the implementation step can be particularly impactful and contributes to the community “taking ownership” of the constructed artifact that they co-designed and helped to construct. The same is true in the operation, maintenance, and monitoring phases of a project. Community understanding of the process and ultimately their sense of ownership is fostered by their intimate involvement in all phases. The greater the participation of the community in all phases of the project, the greater the overall sustainability of a project over the long term—and across the interconnected areas of societal, environmental, and economic issues.
Done well, service-learning enacted through a model of human-centered design requires frequent engagement with the community across all stages of the design process. The more engaged community members are in the entirety of the design process, the better the outcome will fulfill project goals. Community members may not be immediately available at the discretion of a student design team, and communication processes and timelines need to be respectful of these preferences and needs. The feedback cycle among members of a design team that stretches across disciplines requires thoughtful consideration at each step. Catalano [28] advocates for a contemplative paradigm, which he combined with service-learning in a senior capstone design course. The various elements in the human-centered design process imply that a majority of significant service-learning design projects will have timelines that stretch beyond the confines of a single academic term. This “feature of the landscape” requires creative thinking to integrate community-scale design problems into higher education, adapting traditional course structures (e.g. [29] ‘tyranny of the semester’). A thoughtful process to design the SL experience is encouraged. The Learning Though Service Program Model Blueprint is a tool that can facilitate this process, considering the perspectives of a wide range of stakeholders (e.g. students, community members, instructors, the university, intermediaries such as non-governmental organizations, practitioners) with respect to value propositions, relationships, and resources [30].
A sub-set of engineering service-learning design focuses on poverty alleviation, in programs such as Humanitarian Engineering and Engineering for Developing Communities. Nelson [31] described four different mental models that are commonly used to frame design processes associated with poverty alleviation: income first, needs first, rights first (including human-centered design), and local first. A well-being framework brings these four mental models together. The framework supports the importance of deeply engaging with communities and recognizing their unique expertise in their local context. Because poverty is framed as “the systematic failure to achieve wellbeing objectives”, the framework lends itself to a series of metrics that can form the basis of design objectives, constraints, and criteria; for example, “material sufficiency, bodily health, social connectedness, security, and freedom to make choices around action” (p. 2). A service-learning design program at Ohio Northern University is a case example of the well-being framework [31].
Entering into service-learning design projects, instructors may want to consider servant-leadership as a framework for their teaching and as a model for students to consider when they engage with communities [32]. Design instructors will have a role as a “guide on the side”, with a mindset of mentoring or serving both their students and the community partner, and being mentored and served by these constituents. A case study of this approach was a service-learning project in a senior thermodynamics course at the Milwaukee School of Engineering [32]. The LSU Community Playground Project, which is affiliated with a first-year engineering design course, required the service-learning instructor to develop a servant leadership approach to be successful; the evolution from becoming a “traditional” engineering educator to a servant leader engineering educator is described in [33]. Stoecker [34] takes this concept further, suggesting that engaged faculty frame their work as community organizing.
There are several essential elements of successful service-learning-based projects. The authors strongly suggest that faculty who wish to use this pedagogy work with their university’s office of civic engagement and/or service-learning to help identify community partners and to assist with planning and executing their projects within a reciprocal framework. Other groups, such as non-governmental organizations (NGOs), may be key stakeholders, particularly in international service-learning projects.
In terms of reciprocal partnerships, an asset based model of collaboration is ideal because it acknowledges the resources and assets that the university and community “bring to the table,” as well as identifies the needs that each constituent seeks to meet through partnership. For example, universities might have assets with respect to discipline-specific knowledge and monetary resources, while communities might have assets with respect to community-specific knowledge and capacity resources. Partnerships are more successful when constituents combine their strengths to address a community issue together rather than a charity model in which one constituent helps the other. Another way to frame this asset based philosophy is that each constituent will both learn something from and teach something to the other.
The 2006 Community Partner Summit [35], p. 13 and Portland State University’s 2008 Partnership Forum [36], p. 3 identified the following essential components for successful community-university partnerships:
Quality processes (open, honest, respectful; relationship-focused, characterized by integrity; trust-building; acknowledgement of history, commitment to learning and sharing credit)
Meaningful outcomes (specific and significant to all partners)
Transformation (at individual, institutional, organizational, and societal levels)
These essential components are achieved by practicing the following processes ([36], pp. 3–4):
Asset (resources, strengths, and interests) identification and recognition for all partners
Dialog within partners and between partners
Creation of common language
Relationship-building strategies
Describing and understanding each other’s culture
Learning together
Collaborative problem posing and solving
Collaborative agenda setting
Identification and recognition of each partner’s needs, issues and challenges
Self-assessment and reflection within each partner group and between partners
Constant negotiation and modification
Supporting infrastructure in each partner’s organization
Another important component of a successful service-learning partnership is reflection, or metacognition. Professionals constantly reflect on what they are doing, why they are doing it, and next steps; students need to develop this skill that professionals may forget that they practice, because this practice is so embedded in their daily work. There are many models of reflection ranging from the simplest (what, so what, now what) to those that are more complex [37, 38]. Lima and Oakes [39] have a list of reflection questions in Chapter 2 of their textbook on service-learning in engineering. Reflection can be used to catalyze and assess student learning.
A thoughtful assessment plan should be developed, to help ensure that the outcomes desired for both communities and students are achieved. This plan should include formative assessment to enable during-course adjustments, as well as summative assessment to provide ‘lessons learned’ for the future. Assessment methods for student outcomes are well documented (see examples in [40]). Community outcomes have been rigorously studied in fewer instances, and are an area where additional scholarship is needed.
Even when adhering to all essential components and processes for successful partnerships, there can still be challenges and pitfalls. For example, as mentioned previously, it can be difficult to manage partnerships within the time constraints of a semester: most community issues involve people working on them throughout the year, not in 15-week blocks. This constraint may require some thought in terms of deploying a design and maintaining it once it is built. Repeating courses with the same community partner is one way to address this issue; others have created infrastructure to complete and maintain projects [39, 41]. Such considerations ensure that a design effectively serves the community, instead of being dumped on the community. Student resistance to participating in service-learning classes is also possible [32]; explicitly and repeatedly connecting the service activities to the learning objectives in class allays most student concerns. Finally, communication can be an issue, particularly where media is concerned. University media tend to focus on the students and faculty involved in a service-learning project and typically portray the community-university relationships as the university helping the community [42]. An explicit conversation among constituents about uniform talking points for media, and if at all possible, media interaction with all constituents present, is recommended. See [42], for more details.
Across all disciplines, service-learning has been shown to be an impactful pedagogy. A recent meta-analysis of SL across 62 studies (all included a control group, elementary through postsecondary level students with 68% college undergraduates) determined that SL resulted in “significant gains in five outcome areas”: academic achievement (grades or test performance; highest mean effect size, ES, 0.43), social skills (leadership, cultural competence, social problem solving; ES 0.30), attitudes toward self (self-esteem, self-efficacy, personal abilities, feelings of control; ES 0.28), attitudes toward school and learning (academic engagement, enjoyment of course; ES 0.28), and civic engagement (civic responsibility, altruism; 0.27) [43]. It is unclear whether or not any of the studies included in the meta-analysis included engineering students, but the results are nevertheless compelling.
Within engineering, previous research has identified a number of knowledge, skills, attitudes, and identity (KSAI) outcomes that could result from engineering student engagement in project-based service-learning (PBSL); [40] presented a literature review from numerous published sources. While that study extended beyond SL in design settings, SL-based design should have the capacity to yield the same array of outcomes. SL-based engineering design education can achieve all of the core technical outcomes one would expect from engineering design in general (aligned with the academic achievement outcome in the meta study), while also realizing a number of additional outcomes. The potential outcomes of SL-based design education that map to the technical and professional knowledge and skills expected of engineers internationally and by U.S. accreditation are summarized in Table 1 [44, 45].
Knowledge and skill outcomes achievable via SL-based design and PBSL.
A greater complexity and range of design constraints are typical in SL-based projects compared to other design experiences. Service-learning executed through human-centered design may be superior to standard design pedagogy in developing communication skills with diverse audiences and teamwork/leadership skills in interdisciplinary settings. In addition, PBSL in engineering has been shown to yield enhanced creative design; cultural competency and leadership (social skills); self-confidence; attitudes toward community service; and engineering identity. The compiled data in [40] indicated outcomes for which the projects with a SL context yielded enhanced outcomes in comparison to non-SL projects.
SL-based design embeds an array of ethical issues, both microethics and macroethics, and may be particularly impactful in building students’ ethical reasoning skills. In a faculty survey on ethics and societal impacts instruction, 212 respondents who described their capstone design course as including ethics and/or societal impact topics indicated that these topics were taught via service-learning [46]. Zoltowski and her collaborators [47] have been developing instruments and methods to measure ethical gains as a result of SL-based design experiences (e.g. [48]).
In addition to knowledge and skills, attitudes are important to the professional success of engineers and are explicitly recognized in CDIO [23] and the American Society of Civil Engineers (ASCE) Civil Engineering Body of Knowledge for the 21st Century (CEBOK). The third edition of the CEBOK [49] explicitly includes affective domain goals and rubrics associated with seven outcomes. Attitudes supportive of professional practice that may be specifically developed via a SL design experience, such as “value effective and persuasive communication to technical and non-technical audiences” which requires “empathy… with diverse clients and stakeholders” ([49], pp. 2–42–43). The professional attitudes listed in the CEBOK3 (pp. 2–53) and developed specifically via SL may include creativity, flexibility, consideration of others, empathy, honesty, integrity, respect, sensitivity, thoughtfulness and tolerance. Humility [50] and empathy [51] have been proposed as important mindsets in working with communities.
Of additional interest is the extent to which SL-based design is effective at developing students’ creativity and innovation skills. This has not yet been rigorously studied using established instruments (such as the Creative Engineering Design Assessment Purdue Creativity Test or Purdue Creativity Test [52]); rather, the data reflects student self-assessments in surveys or anecdotal statements by instructors. One of the more rigorous assessments was associated with a first-year mechanical engineering design course [53]. A sub-set of the design projects were SL-based and included leadership training. Students engaged in SL projects had a statistically significant gain in the self-assessed extent to which they possessed creativity/ingenuity on the post- versus pre-assessment using a five-point scale; gains were not statistically significant among students working on non-SL design projects. In a senior product design course with service-based projects, students rated their creativity at a higher level on the post-survey than the pre-survey (average ~6.55 increased to ~6.95 on nine-point scale; p < 0.05); this compared to a gain of about one-point in their self-rated product design skills [54]. Fully anecdotal statements regarding growth in students’ creativity and/or innovation skills in association with service-based design projects were made in a number of other papers [55, 56, 57, 58, 59, 60, 61].
Another set of proposed outcomes from SL-based design is that it may help attract students to engineering majors and/or retain students in engineering, particularly women and underrepresented minorities. Many students are drawn to engineering due to a desire to make a difference, help others, and improve society. SL projects offer tangible examples of these outcomes, inspiring students and providing rewarding experiences. Three large service-learning programs in engineering have data related to the impacts of their program in recruiting/retaining female students: the Service Learning Integrated Throughout a College of Engineering (SLICE) program at the University of Massachusetts Lowell [62], EPICS at Purdue University [63], and the Humanitarian Engineering and Social Entrepreneurship (HESE) program at Pennsylvania State University [64]. Other SL programs have reported on the large percentage of women among the participants, such as the Humanitarian Engineering Center at Ohio State University [65] and engineers without borders [66, 67] provided data from a variety of developing community programs. The real-world tangible nature of SL design projects is a significant motivator, in addition to making a positive difference.
Service-learning has co-equal goals of benefits to community partners and student learning. Assessment is needed to demonstrate whether SL design projects have met these goals. SL projects may have impacts at the individual, organizational, community, or system scales [68]. Jiusto and Vaz [68] present a model that considers these impacts to both communities and academics, which can inspire instructors considering the use of SL as a design pedagogy to think beyond immediate impacts. This broader systems-level perspective can include potential project outcomes such as improvements in the health and well-being of community partners, while recognizing how these outcomes might contribute to enhancing community sustainability or social cohesion. Identifying impacts of interest in partnership with all stakeholders is the first step in developing a plan to assess these impacts.
In practice, SL has often focused its assessment efforts on student learning and less on evaluating the impacts on community partners and communities; this imbalance is evident both for SL in the context of engineering design and SL more broadly [69, 70, 71]. Reynolds [72] provides a critical review of literature on community perspectives on service-learning, and conducted research on the perspectives of the international partner community in Nicaragua on their partnership with the College of Engineering at Villanova University. Although this was a research project, assessment lessons can be learned. Observations, interviews with community organization representatives, interviews with community residents, and document reviews were conducted. Community partners confirmed the tangible results of improved access to clean water and healthcare which saved lives, but also described trust, a sense of pride, and connections/awareness as important outcomes. The community also had less positive perceptions that included feeling like their community was a laboratory for students. The community also had goals toward student learning, including shifting students’ perspectives from helping to learning and having a responsibility to others.
These findings represent the particular ways in which SL projects were conducted in this instance and their specific community partners, and should not be generalized. However, these important insights provide an example of the types of outcomes that assessment can illuminate. Others have also used interviews [73, 74] and surveys [14, 74, 75] to assess community partner satisfaction and other perspectives on SL engagement. Readers are encouraged to consult participatory action research models [76] to learn more about the process of planning, executing, and evaluating projects together; communication, transparency, and shared power in decision-making are hallmarks of these approaches.
Design projects and their products should be monitored over time to evaluate sustainability and long-term impacts. This process is easier for projects in local communities and more challenging for international projects, but is critical in all cases. SL projects could model practices and processes used in international development work for monitoring and evaluation (M&E), which typically include mixed-methods [77]. The community and/or students can be involved in monitoring the designed systems, and can work together to resolve any issues that are identified. On-going collaboration with groups charged with monitoring and evaluation is also a strategy. For example, with the LSU Community Playground Project [33, 41], once community-designed playgrounds are built at public schools, a company that subcontracts with the school system to provide grounds and maintenance services to the schools takes over the maintenance of the playgrounds. On-going communication among the playground project, the school system, and the company ensures that playgrounds are re-designed, built, and maintained based on need.
Done well, service-learning based engineering design can yield a rich array of benefits for engineering students and communities. However, faculty must carefully plan their course and partnership in order to achieve the full potential of SL-based design. Engineering faculty and students should enter into the design process from a mindset of humility and listening, being respectful, and embracing the expertise of the community. This positioning is often different from the techno-centric, “expert” perspective that pervades engineering. To instill this human-centered or empathic design perspective in students, their first formal education on the engineering design process should promote these views. This approach can perhaps grow into participatory design in the senior year. One challenge is the fact that many engineering faculty members have not previously experienced such approaches, either during their education and training, or in practice. Fortunately, the literature provides rich examples for faculty to draw from to implement this methodology in their own courses. We believe that best practices in service-learning in engineering design make our students better engineers and enables our profession to fulfill its highest purposes.
The authors gratefully acknowledge our community partners and academic collaborators over the years, from whom we have learned and grown professionally and personally.
This work was partly supported by the USDA National Institute of Food and Agriculture (LAES project #94261). Publication of this chapter was funded by the University of Colorado Boulder Libraries Open Access Fund.
The authors declare that they have no conflict of interest related to this work.
Prior to the availability of rolled steel and reinforced concrete, wood was the primary structural material in North America and other timber-rich regions of the world [1]. However, the raw material resources keep changing in more recent times, e.g. log diameters become smaller and trees come from faster growing plantation species. As a result, traditional solid timber products have been supplemented by Engineered Wood Products (EWP) like glue-laminated timber (GLT or glulam), laminated veneer lumber (LVL), and oriented strand board (OSB). This has permitted economic construction of residential and nonresidential buildings, bridges, and industrial structures. Presently, using of traditional wood products and EWP is recognized as a “green” option, and is encouraged by governments as part of sustainable development and climate change mitigation strategies [2].
\nFrom a technical perspective, modern EWP commonly provide better and more predictable physical and mechanical properties than traditional wood products, such as more uniform structure, greater dimensional stability, greater strength, and stiffness. Initially, much development of EWP was focused on creating substitute products capable of replacing small dimension sawn lumber and boards as primary elements in light-frame building superstructures; but in recent decades, much attention has been switched to creation of mass timber products (MTP). The term MTP describes a family of EWP of large section size that offers the construction industry a viable alternative to use structural steel and reinforced concrete [3]. This includes thick-panel products, such as cross-laminated timber (CLT) and structural composite lumber (SCL), as well as adhesively or mechanically laminated linear elements like GLT, nail-laminated timber (NLT), and dowel-laminated timber (DLT).
\nSCL refers to products manufactured by layering dried and graded wood veneers or strands bonded together by moisture-resistant adhesive into panel-like products of a width of up to 2.44 m, a thickness of 38 mm, or more. In principle, SCL is only limited in width and length by transportation considerations. SCL basically includes LVL, laminated strand lumber (LSL) and oriented strand lumber (OSL), which is usually sawn into lumber-like products. However, parallel stand lumber (PSL) is also deemed as a SCL product, which is commonly used as columns connected to other MTP. Use of terms in the literature can be colloquial, with timber-concrete composite (TCC) and other hybrid elements sometimes grouped into the meaning of MTP. Overall, MTP offers architects and builders many opportunities to express their concepts creatively, while satisfying various technical performance requirements applicable to engineered structures of many types [4]. This chapter places emphasis on the types of lumber-based MTP illustrated in Figure 1.
\nLumber-based MTP (Source: Images obtained from StructureCraft).
Figure 2 illustrates three types of wood construction methods, namely light-frame, post-and-beam, and mass timber. Light-frame construction consists of studs, joists, and other framing at spacings of 600 mm or less [6], Figure 2—top. Dimension lumber is used for framing members and plywood or OSB for sheathing materials. Light-frame construction is an economical choice for the construction of low- and mid-rise buildings, which makes use of dimension lumber in a range of grades and dimensions [7]. Light-frame wood structures can be also used for shopping centers, plazas, service and maintenance buildings, and institutional and municipal facilities. Prefabrication of components such as wall and roof panels, even complete homes or office units are efficient extensions of this framing technique [7]. However, the structural system of a light-frame building is not well-defined, resulting in much redundancy. Design of a light-frame building often only includes architects unless the building is large.
\nWood building construction methods. Top: Light-frame construction (Source: Photo obtained from Okoye et al. [5]). Center: Post-and-beam construction (Source: Photo obtained from Post & Beam Homes). Bottom: Mass timber construction (Source: Photo obtained from UBC Public Affairs).
Post-and-beam construction is a skeletal framework of posts, beams, and decking supported on a foundation, in which the posts and beams are well spaced apart, more than 600 mm, but commonly 1200 mm or more [6], Figure 2—center. Traditionally, posts and beams were made of large solid timbers, which were connected with mortise and tenon joints locked into place with hardwood pegs, with diagonal braces for stabilization of a structure [7]. Nowadays, many types of EWPs (such as GLT and LVL) and connectors (such as metal brackets, shear plates, and split rings with bolts) are very often used. The post-and-beam construction is commonly used to construct custom-designed homes, commercial buildings, recreation centers, and industrial structures, for reasons of ease of fabrication and consequent economy [7]. Unlike the light-frame construction, the structural system of a post-and-beam building is well-defined and engineered, generating very limited or no redundancy. Design of a post-and-beam building is usually formal, involving both architects and engineers, especially if the building is relatively large. Hybrid post-and-beam and light-frame construction features the exposed heavy timber components, but allows insulation to be placed in the wall space, with finishes applied to both the inner and outer faces of the studs [7].
\nMass timber construction complements traditional light-frame and post-and-beam construction methods due to emergence of various types of MTPs, Figure 2—bottom. It creates single or multiple material hybrid superstructures for building and other structures. Since beams are not always required, new technology and terminology, such as post-and-panel construction, have emerged. This demonstrates that MTPs have been developed into material options, where the only limits on their uses are limitations of the inventiveness of minds of architects and engineers within the scope of what applicable building/construction regulations permit [4]. What codes and standards permit architects and engineers to do is not yet uniform; but in the broad sense, construction codes and standards in various countries have transitioned, or are transitioning, away from prescriptive provisions to performance-based provisions in a manner that enables greater use of EWP, including MTP. Most important in this respect is the revision of fire performance provisions related to buildings [4, 6]. Mass timber systems are widely reported to be cost-competitive, carbon-efficient, sustainable and reliable, which stem from the scientific data generated from full-scale fire, seismic, durability, acoustic, and vibration tests being conducted internationally by researchers and engineers [3, 4]. It is now reasonable to claim that the use of EWP and MTP has the same level of supporting technical understanding as that underpinning any other major class of construction material. Latter sections of this chapter demonstrate the use of MTP as parts of high-performance buildings meeting needs of society and occupants.
\nLumber is a manufactured product derived from logs, including boards (elements with limited thickness), dimension lumber (elements with relatively small section dimensions), and timbers (elements with relatively large section dimensions). In North America, most lumber is softwood dimension lumber having thicknesses ranging from 38 to 89 mm, widths from 38 to 184 mm, and lengths of up to about 5 m [6]. Dimension lumber is widely used in light-frame construction, which is categorized into four groups in the Canadian practice: structural light framing, structural joists and planks, light framing, and studs. Dimension lumber is usually graded by visual inspection in terms of appearance characteristics, such as knots and slope of grain. For example, the grades of dimension lumber used for structural light framing construction are Select Structural (SS), No. 1, No. 2, and No. 3. It should be noted that there is not a strength difference between No. 1 and No. 2 Canadian dimension lumber albeit there exists an appearance difference [6]. Therefore, the product mix of No. 2 and Better is commonly used where the appearance of No. 1 grade lumber is not required. Alternatively, dimension lumber can be mechanically evaluated and sorted into grades using so-called machine stress-rated (MSR) lumber or machine-evaluated lumber (MEL) [6]. The MSR machine is widely used in wood industry to nondestructively test each piece of dimension lumber to determine its stiffness so that it can be assigned a permitted design stress based on the established relationship between the stiffness and bending strength. In North America, grades of MSR lumber are assigned “f-E” values, such as 1950f-1.7E. The “f” value designates the predicted strength in pounds per square inch (psi), and the “E” value designates the average stiffness measured in millions of pounds per square inch (106 psi) [6].
\nBoards are lumber products having thicknesses of 32 mm or less, making them usable as decking and sheathing. When the smallest cross-sectional dimension of a lumber product reaches or exceeds 140 mm it is termed timber, which is graded based on visual inspection methods [6]. Uses of dimension lumber and timbers widely range with differences in whether the former or latter is suitable depending on the type of structural system, and performance requirements applicable to a structural system. In general, dimension lumber is used in systems where multiple parallelly arranged elements act together to resist effects of particular structural design loads. Timbers, on the other hand, can be used in situations where multiple elements or a single element is designed to resist effects of particular structural design loads. Another important difference is that dimension lumber elements must always be protected from effects of design fire situations; whereas, depending on specifics of a situation, timbers may not require such protection.
\nFinger-joints are commonly used to join short pieces of lumber together to make longer pieces. Meshing wedges known as “fingers” are made as either side of a joint, as illustrated in Figure 3, and bonded using structural adhesive. The joint profile governs the strength of a joint, and is defined by the finger length, tip thickness, tip gap, and finger pitch, slope, and depth. For example, a 29-mm-long finger joint is commonly used (Figure 3—left). However, reducing finger length to 13 mm with some modifications to the joint profile (Figure 3—right) not only helps to reduce material waste, but also keeps the same or slightly higher strength joints [8]. Also, it is noted that cutting out strength reducing features like large knots then finger joining lumber is a highly effective way of upgrading properties of dimension lumber, increasing value, and enabling higher value uses like creation of high-performance MTP [6]. Another advantage of finger joining lumber is that it increases dimensional stability under changing environmental conditions prior to or after installation of lumber in structures. Adhesives used in finger-joints are usually phenol-resorcinol formaldehyde for lumber products intended for general applications or incorporated in GLT elements, or polyvinyl acetate for lumber products used as studs [6].
\nTwo finger joint profiles (left: 29-mm long; right: 13-mm long) used for joining short pieces of lumber.
GLT (also widely known as glulam) is a structural product composed of multiple pieces of finger-joined dimension lumber, or other types of EWP, adhesively face-to-face bonded to create a desired form. GLT was first used in Europe in the early 1890s. A 1901 patent from Switzerland signaled the true beginning of GLT construction [9]. A significant development in the GLT industry was the introduction of fully water-resistant phenol-resorcinol adhesives in 1942, which allowed GLT to be used in exposed exterior environments without concern of glueline degradation [9]. The manufacturing of GLT is deemed as a one-dimension additive process. The grain of all laminations runs parallel with the lengths of straight members, Figure 4. The dimension lumber laminations are not visually graded on the same rules as regular lumber, but follow the grading rules stipulated in Canadian Standard O122 “Structural Glued-Laminated Timber” [7]. Each lamination is visually inspected based on both faces of the piece, and then assigned one of four grades: B-F, B, D, or C [7], in which B-F indicates the highest grade and C the lowest grade. Laminations of higher grades are used in the top and bottom portions of a GLT beam, Figure 5, where bending stress is greatest. Specified laminations are also nondestructively graded by machine before assembly to meet both visual and stiffness requirements for particular grades of GLT. Sometimes layers of other materials, such as glass fibers, are incorporated among lumber laminations to add strength or stiffness or to locally reinforce GLT [10]. Moisture content of laminations ranges from 7 to 15% during fabrication. Durable cold-setting waterproof-structural adhesives are used, such as phenol formaldehyde and phenol-resorcinol formaldehyde [7]. Because finger-joined lumber is employed, dimensions of GLT members are in principle only limited by manufacturing and transportation capabilities of a manufacturer. Those capabilities are highly variable, with the most advanced involving fully automated manufacturing processes based on advanced integrated design and manufacturing methods. The automated processes can include robot handling of materials and elements from the arrival of logs at a manufacturing plant to installation of elements at a construction site. A typical GLT member ranges in depth from 114 to 2128 mm or more, in width from 80 to 365 mm, and in length of up to 40 m [7]. GLT is commonly used as beams and columns (Figure 4—left and middle), but can be also used as flexural members (Figure 4—right). In latter situation, the narrow faces of the laminations are normal to the direction of the load. The Canadian Standard O86 “Engineering Design in Wood” refers to this condition as “vertically glue-laminated” [11]. Usually, GLT is used in dry service conditions or is protected in some way if used under outdoor conditions.
\nGLT beam (left), column (middle), and panel (right).
GLT members with laminations suiting resistance of bending forces: Upper—Member with a balanced layup intended to maximize material use when the member is loaded in tension on both top and bottom faces (EX grade under Canadian system), and Lower—Member with an unbalanced layup intended to maximize material use when the member is loaded in tension on the bottom face (E grade under Canadian system).
Design stiffness and strength properties of GLT of a given grade are calculated based on engineering properties of the laminations using equivalent linear elastic mechanics theories. A wide range of GLT grades are available with some involving deliberate placements of laminations of different grades to achieve the design properties of GLT elements suited to their particular applications [11]. In general, there are two grade categories for GLT, stress grade and appearance grade [7]. The former defines specified strengths of a GLT member, and the latter the quality of finish on the exposed surfaces of the member. For example, some grades suit uses of GLT elements as beams, columns or tension members, Figures 6, 7, 8. Taking the Canadian Standard O86 “Engineering Design in Wood” as an example, that design standard specifies the grades of GLT bending elements as 20f-E, 20f-EX, 24f-E, and 24f-EX [11], Figure 5. Within those designations, numbers 20 and 24 are indicative of the associated specified design strength in bending. E indicates that associated grade properties apply to elements without an inflection in their deformed shapes, with the proviso faces intended to be stressed in tension are correctly oriented. EX indicates that associated grade properties apply to elements with inflections in their deformed shapes. Similar approaches are adopted by other international standards which define rules for engineering design of timber structures.
\nConference room built with GLT beams and columns at the University of New Brunswick, Fredericton, Canada.
A forest of intertwined GLT trees in the Carlo Fidani Peel Regional Cancer Centre, Mississauga, Canada (Source: Photos obtained from CWC [12]).
160-m-long timber bridge with GLT deck structure in Mistissini, Canada. (Source: Photos obtained from Lefebvre and Richard [13]).
NLT is manufactured with dimension lumber laminations, stacked on edges, and fastened with nails, to create large-flat structural components, Figure 9. Spikes and screws are sometimes used as well. Since the beginning of the nineteenth century, NLT systems were utilized as floor elements in structures known as “mill construction” that originated from cotton mills and sawmills found in the North Eastern United States [7]. The prevalence of the industrial building systems led the National Lumber Manufacturers Association to publish a guide “Heavy Timber Mill Construction Buildings” in 1916 [7]. In addition, NLT has been used to create deck and diaphragm elements of bridges and buildings for centuries [6]. Like GLT, the manufacturing of NLT is a one-dimension additive process. In North America, individual laminations have a thickness of 38 mm or more and a depth of 64 mm or more, similar to plank decking [7]. The moisture content of laminations is usually 12–16% at time of manufacturing of NLT [14]. The visual or MSR grade of softwood laminations are widely used, such as SS and No. 2 and Better or 1650f-1.5E [7, 14]. Single laminations are commonly employed if the length of prefabricated panels is less than 6 m [14]. The spliced laminations of specific pattern [11, 14] or finger joined lumber laminations [14] are used if longer panels are required. The Canadian Standard O86 “Engineering Design in Wood” [11], for example, specifies connection requirements for fabricating NLT, requiring that nails be long enough to pass through two adjacent laminations and at least halfway through the third, Figure 9. For example, 102-mm-long nails should be used to fasten 38-mm-thick laminations, and 152-mm-long nails for 64-mm-thick laminations. Such requirements are based on practical experience and ensure integrity of NLT in various end use situations. NLT shall be spiked together with a staggered single row of nails at intervals of not more than 450 mm [7]. The prefabricated NLT panels typically come in lengths of 3–8 m; however, the panel size is limited by transportation restriction [7]. The drawbacks of using NLT are its slow fabrication process and after-fabrication machining problem due to existence of nails.
\nNLT with linear (left) and staggered (right) nailing patterns.
In North America, many timber decks of rural bridges constructed from 1920s through the mid-1960s were made of NLT [15]. Mostly, the NLT was oriented so the lumber laminations were transverse to the bridge span and supported by bridge girders, but for short bridges lumber laminations were sometimes orientated parallel to the span [15], Figure 10. Another common traditional use of NLT is in floors of industrial and commercial buildings. The reasons for choosing NLT are as follows: it is well suited to onsite fabrication; it is capable because of the nails of absorbing energy damping vibrations caused by transient or sustained dynamic force (e.g., bridge wheel loads and reciprocating industrial equipment); and it has good fire performance. Disadvantages of NLT include that it is not particularly mechanically efficient if NLT elements are required to have high rigidity when loaded in-plane or as flexural elements, also there have been durability issues associated in particular with bridge applications. The disadvantages stem from the flexibility of nailed interconnections between laminations, and proneness to gaps to form at those interconnections (e.g., due to moisture movements in the laminations).
\nTransverse (left) and longitudinal (right) oriented NLT bridge decks.
Recently, use of NLT has undergone resurgence as part of the modern mass timber movement in buildings [3, 4], Figure 11. This, in some cases, supports adoption of complicated architectural forms, Figure 12, supported by creation of hybrid NLT products which combine lumber laminations with layers of sheathing materials such as plywood and OSB to reinforce the system [14, 17]. Sheathing adequately nailed to NLT can create a diaphragm of the capability to resist lateral forces, and can also help keep the system dry if exposed to moisture [7]. In any such case, it is required to consider the system as an individually designed engineering project.
\nSeven-story T3 Minneapolis building made of NLT floors and GLT beams and columns in USA (Source: Photos obtained from StructureCraft [16]).
Qingdao Pearl Visitor Centre of exposed NLT roof in China (Source: Photo obtained from StructureCraft [16]).
Dowel-laminated timber (DLT) is another member of MTP family. DLT is similar to NLT regarding laminations, but different in fasteners. Instead of nails, DLT uses hardwood dowels to join laminations, Figure 13. The manufacturing of DLT is another example of one-dimension additive process. DLT was developed in the early 1990s in Switzerland [7]. DLT is manufactured with softwood lumber of a thickness of 38 mm and a depth of 89, 140, or 184 mm, stacked on edges just like NLT, and fastened face-to-face with wooden dowels. Unlike NLT, finger-joined lumber is typically used in manufacturing of DLT. The moisture content of laminations is 19% or less at time of manufacturing [7]. The visual or MSR grade of laminations is, if spruce-pine-fir lumber is used for example, SS and No. 2 and Better or 2100f-1.8E [18]. The wooden dowels, which are usually made of high-density hardwood species (such as oak), have typically a diameter of 19 mm and a moisture content of approximately 6–8% [7]. The predrilled holes of a diameter being about the same as dowels are required prior to driving dowels into laminations [18]. The dowels can then be hydraulically pressed in a linear or staggered way with spacing of 300 mm [7], the latter of which could offer additional stiffness DLT panels, Figure 13. Dowels are commonly penetrated through 7–10 laminations, resulting in a more efficient process of manufacturing DLT than NLT. As the moisture content of both materials used in DLT equilibrate after fabrication, the dowels swell and the lumber shrinks, which forms a strong friction-fit joint between the lumber and the dowels, resulting in a panel that does not require glue or nails [7]. DLT has been gaining interest in both Europe and North America since it is almost made of 100% wood, except those of finger-joined laminations that contains very limited amount adhesive. DLT is ease of being manufactured using computer numerical controlled (CNC) machinery, such as lathes, routers, and mills. The prefabricated DLT panels typically have a length up to 18 m, a width up to 4.3 m in any increment, and a thickness ranging from 76 to 349 mm [18]; however, the panel size is usually limited by transportation restrictions.
\nDLT with linear (left) and staggered (right) fastening patterns.
DLT panels can readily be milled and routed for preintegrated electrical and other service conduits, which offers a unique feature to DLT, i.e., the flexible design, Figure 14. This also allows designers to improve the acoustic performance and visual appeals of a building by making kerfs and curves. For example, acoustical strips can be integrated into the bottom surface of a DLT panel, helping designers reduce sound while keeping the wood exposed and also allowing for a variety of surface finishes [18]. DLT can be also recognized as a type of MTP that can be used in exterior exposure, allowing itself to be used for decks, balconies, and canopies.
\nTwo sample profiles of DLT (Source: Pictures obtained from StructureCraft [18]).
DLT performs similarly, in terms of structural performance, to GLT and NLT, because its grains run in one direction. DLT allows a significant flexibility in architectural design, which is well suited for floor and roof applications, but can be used as wall panels as well [18], Figure 15. Two-way spans can be achieved with the use of reinforcement such as adding multiple layers of plywood atop the DLT panels [18]. In addition, DLT panels can be used as structural bearing or shear walls, and elevator and stair shafts. The design requirements for DLT may be considered the same as those used for NLT, if the hardwood dowels can adequately connect the laminations [7]. In reality, there is almost nothing that can be referenced in the codes worldwide, except that a few manufacturers provide published design values for their own DLT products [4]. Thus, use of DLT would require approval by the building authority on a case-by-case basis.
\nSeven-story T3 Atlanta building comprising DLT floor and roof panels in USA (Source: Photos obtained from StructureCraft [18]).
Cross-laminated timber (CLT) is a new-generation engineered large-size structural panel product, which consists of layers of dimension/MSR lumber (typically three, five, or seven) oriented at right angles to one another and then bonded using adhesives, Figure 16—upper. CLT was originally invented in the 1970s in Europe [6] and introduced as an innovative wood product in the early 1990s in Austria and Germany [19]. In the mid-1990s, Austria undertook an industry-academia joint research effort that resulted in the development of modern CLT [19]. In the last 2 decades, the use of CLT has gained interest to both construction and wood industries in North America, featured with the publication of two editions of CLT Handbook [20, 21] and erection of 18-stories CLT building “Brock Commons Tallwood House” in 2017 in Canada. Unlike GLT, NLT, and DLT, the manufacturing of CLT is a kind of three-dimension additive process. The species of wood used depends on the location of a manufacturing plant. For example, black spruce is widely used in Eastern Canada. The commonly used lumber products in manufacturing of CLT are dimension lumber of a grade of No. 1/No. 2 or MSR lumber of a grade of 1200f-1.2E or better in its major strength direction, and dimension lumber of a minimum grade of No. 3 in its minor strength direction [7]. In the major strength direction, the minimum net width of a lamination shall be 1.75 times its thickness, and in the minor strength direction, the net width of a lamination shall not be less than 3.5 times its thickness if the laminations are not edge-glued [7]. The moisture content of lumber at fabrication of CLT is about 12% [7]. The cold-set structural adhesives are preferred to increase the productivity of manufacturing CLT panels, which include emulsion polymer isocyanate (EPI), polyurethane (PUR), and phenol-resorcinol formaldehyde (PRF) [7]. In Canada, the adhesives used in manufacturing process of CLT must comply with the Canadian Standard O112.10 “Evaluation of Adhesives for Structural Wood Products (Limited Moisture Exposure)” and ASTM D7247 “Standard Test Method for Evaluating the Shear Strength of Adhesive Bonds in Laminated Wood Products at Elevated Temperatures” [7]. The finger- or scarf-joined lumber is used to face-to-face and/or edge-by-edge laminating as two-dimension components. Use of edge-gluing or not slightly differs in the manufacturing of CLT between North America and Europe. In North America, edge-gluing of lumber is not a common practice due to the added manufacturing costs. The gaps between lumber could provide some tolerances for wood movement due to the change in moisture in service. However, the European practice appears to widely apply edge-gluing with an aim to offer good stiffness and strength of a CLT panel. Anyhow, as a trade-off between cost and improved panel performance, edge-gluing of selected layers as needed could be adopted [6]. CNC routers are often employed to precisely cut CLT panels to size and openings for windows, doors, connections, ducts, and service channels. A CLT product can be produced in large sizes of a width ranging from 1.2 to 3 m, a length from 5 to 19.5 m, and a thickness from 100 to 500 mm [7]. CLT can be also manufactured in custom dimensions, with panel sizes varying by a manufacturer.
\nCLT products (Upper: a generic CLT made of lumber only; lower: a hybrid CLT made of dimension lumber in the major strength direction and structural composite lumber in the minor strength direction).
Despite the availability of commercial machines to manufacture construction size CLT using dimension lumber, there are challenges with the existing systems, such as the need to apply pressure to all four sides of a panel to ensure adequate edge-glue bond quality, as well as the out-of-plane pressing. From a product performance perspective, CLT is known to be prone to the so-called rolling shear failure and excessive deflection when subjected to out-of-plane loading. This is particularly critical where the lumber layers are not edge-glued. These performance issues could be addressed by replacing one or more of the layers in a CLT panel with SCL, such as LSL and OSL. Such an innovative hybrid CLT can offer many advantages over the generic one that is made of 100% dimension lumber, Figure 16—lower. The hybrid CLT products could reduce the production cost because of the reduced efforts to layup of individual lumber pieces and the possible elimination of the need to press the panel on all four sides simultaneously, improve the rolling shear strength and stiffness properties of generic CLT since SCL has relatively high shear strength and rigidity, and improve the fire resistance of CLT due to the elimination of gaps present in generic CLT made with non-edge-glued dimension lumber. The research on three- and five-layer hybrid CLT, recently conducted in the Wood Science and Technology Centre, the University of New Brunswick, Canada, showed that the bending stiffness, moment capacity, and shear capacity of hybrid CLT were increased to a large degree in comparison to generic one [22, 23, 24].
\nCross laminating technology provides CLT panels with improved stable dimensions, and relatively high in-plane and out-of-plane stiffness and strength properties in both directions, giving these panels a two-way action capability [6]. It is well-suited to floors, walls, and roofs, and may be left exposed on the interior for esthetics. The light weight of CLT directly helps reduce the size and cost of foundation. As a prefabricated building component, CLT offers shorter onsite construction time than traditional platform frame construction or steel and concrete construction, minimizes waste and noise during construction, and provides a very competitive cost in comparison to concrete and steel [19]. CLT has also been used to fabricate bridge decks, heavy equipment mats, and platforms for oil rigs, and to construct mid-rise and tall wood buildings of over seven stories, and large industrial structures [4]. In addition, CLT exhibits good seismic and fire performance. The 2015 International Building Code (IBC) and 2015 International Residential Code recognize CLT products manufactured according to the ANSI/APA PRG-320 “Standard for Performance Rated Cross-Laminated Timber.” Under the 2015 IBC, CLT at the required size is specifically stated for prescribed use in Type IV buildings, i.e., heavy timber buildings, which hold well under fire conditions due to formation of char layer. However, CLT can be used in all types of combustible construction, i.e., wherever combustible framing or heavy timber materials are allowed [4].
\nCLT is sometimes deemed as a standalone building material and construction system. A kind of post-and-panel construction has emerged, accompanied with many innovative connections. The tallest wood building as of the year of 2018, Brock Commons Tallwood House (Figure 17), stands in Vancouver, Canada. This building includes 17 stories of CLT floors supported on GLT columns atop a concrete base with two 18-stroy concrete cores. This 53-m-high building is used as student residence providing 404 bed units. Its unique designed column-to-column metal connector makes a column-panel-column connection, minimizing the accumulation of deformations (i.e., the transverse wood movement) generated from each CLT floor. It was reported that 80% of the work for this tall building was prefabricated and 70% alone was gaining code approval [25].
\nBrock Commons Tallwood House, Vancouver, Canada (Source: Photo obtained from UBC Public Affairs).
Environmental awareness coupled with sustainable design and construction practices are increasingly becoming a requirement for many building projects throughout North America and around the world [7]. Sustainable design aspires to use less energy and material resources in conjunction with lowering the environmental impacts on a building from its cradle to grave [7]. The reasons for using wood in construction are attributed to its environmentally friendly attributes, ease of assembly, reduced noise and waste during construction, natural beauty, and cost-effectiveness. Increasing use of renewable and sustainable building materials in construction, such as wood, is a worldwide move. Wood-based materials, such as MTP, consume less energy and emit fewer greenhouse gasses (GHG) and pollutants over their life cycle than traditional energy-intensive construction materials such as steel and concrete [2]. To spur innovation and certify the performance of wood as a construction material, many countries have made a great effort to support the research and development of wood products such as MTP. In Canada, for example, the 2015 Edition of its National Building Code of Canada (NBC) allows to construct wood frame buildings up to six stories. The Canadian have been working hard to the code revisions with an aim at the 2020 Edition of the NBC to permit tall wood buildings up to 12 stories [2]. Their long-term objective is to establish the performance-based codes for the 2025 Edition of the NBC and beyond, which will eliminate the distinction between building materials. This will give architects and developers freedom of choice in their materials. Ramage et al. illustrated the selection of structural systems for multi-story buildings in terms of the number of stories and their use of wood [26], Figure 18. For buildings up to about six stories, CLT uses substantially more wood to achieve the same function as a light-wood frame building. For buildings over six stories, the use of CLT together with light-wood frame may use less wood than CLT alone. As for buildings taller than 10 stories, the mass timber construction method is employed by using GLT megaframe to support CLT walls, floors, and roofs [26].
\nUse of structural lumber and mass timber products for various structural systems (Adapted from Ramage et al. [26]).
The life cycle of a product is defined in the standard ISO 14040 as “consecutive and interlinked stages of a product system, from raw material acquisition or generation from natural resources to final disposal” [27]. This has led to the use of the life cycle assessment (LCA), which is defined as “the compilation and evaluation of the inputs and outputs and the potential environmental impacts of a product system throughout its life cycle” [27]. LCA is a performance-based approach to assessing impacts that building products or systems have on the environment over their lifetime [7], including all activities from raw material extraction/harvesting, materials processing/products manufacturing, transportation, distribution, installation, use, repair and maintenance, and final disposal or recycling [7]. LCA is deemed as the best available tool to compare sustainability of building materials, which includes four main phases, i.e., goal and scope definition, inventory analysis, impact assessment, and interpretation. LCA studies on wood buildings are rooted in the assumption of the same life span for wood as other structural materials. Ramage et al. summarized, after conducting a comprehensive review on use of wood in construction, that the buildings are really demolished due to degradation of their main structure, whatever the structural materials [26]. However, some wood components in a building may have a design life shorter than that of the building as a whole, or may require maintenance during the life of the building. There are many factors impacting the lifespan of wood components, including fire and natural degradation. In comparison to other building materials such as steel and concrete, wood is combustible. However, large cross-section wood components, such as those made of GLT and CLT, may perform well in case of catching a fire due to the formation of char layer that can act to insulate the material inside. The burnt wood can still keep large, enough strength to support the integrity of a building. As for small cross-section of wood components, they must be encapsulated in noncombustible material such as gypsum boards or concrete. Steel connectors are widely used in modern wood buildings, thus heat can be quickly conducted through the connectors, degrading the strength and stiffness of the wood connections and materials around them [26]. Caution must be used at time of using steel connectors in construction of wood buildings.
\nIn a summary, mass timber building systems make it feasible to use wood in construction of mid-rise and tall buildings, industrial structures, and bridges. However, mass timber products and building systems behave in a fundamentally different way in fire than steel or concrete buildings in structural and spatial layout. More research is required to increase use of wood in construction.
\nThis piece of work was financially supported by the New Brunswick Innovation Research Chair Program, New Brunswick Innovation Foundation, Canada. The author’s sincere gratitude goes to Dr. Ian Smith, Emeritus Professor of the University of New Brunswick (UNB), for his kindly reviewing part of the manuscript. The author’s thanks also go to Mr. Luji Xiong, Graduate Research Assistant at UNB, for drawing sketches.
\nI confirm there are no conflicts of interest.
\nIntechOpen will act in accordance with its published Refund Policy if requests for refunds are made.
",metaTitle:"Refund Policy",metaDescription:"IntechOpen will act in accordance with its Refund Policy if requests for refunds are made.",metaKeywords:null,canonicalURL:"/page/refund-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"Refunds are possible in the following cases:
\\n\\n1. A double payment, in which case a full refund will be made.
\\n\\n2. A justified withdrawal of work by the Author, which had already been accepted during or after production but prior to publication. In this situation, a 50% refund will be made. (IntechOpen reserves the right to determine, at its discretion, whether withdrawal is justified and, consequently, whether a refund should be issued).
\\n\\n3. In those rare instances where IntechOpen declines to publish a book that had been previously accepted, full refunds will be made to the same account or credit card from which the Author made the original payment.
\\n\\nPlease note that refunded amounts will not always be exactly the same as original payment amounts due to bank transaction fees and expenses. Any such costs will be split evenly between IntechOpen and the Author.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Refunds are possible in the following cases:
\n\n1. A double payment, in which case a full refund will be made.
\n\n2. A justified withdrawal of work by the Author, which had already been accepted during or after production but prior to publication. In this situation, a 50% refund will be made. (IntechOpen reserves the right to determine, at its discretion, whether withdrawal is justified and, consequently, whether a refund should be issued).
\n\n3. In those rare instances where IntechOpen declines to publish a book that had been previously accepted, full refunds will be made to the same account or credit card from which the Author made the original payment.
\n\nPlease note that refunded amounts will not always be exactly the same as original payment amounts due to bank transaction fees and expenses. Any such costs will be split evenly between IntechOpen and the Author.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5681},{group:"region",caption:"Middle and South America",value:2,count:5160},{group:"region",caption:"Africa",value:3,count:1683},{group:"region",caption:"Asia",value:4,count:10200},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15608}],offset:12,limit:12,total:117096},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish'"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:11},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:16},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:6},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:67},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:2},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7796",title:"Human 4.0",subtitle:"From Biology to Cybernetic",isOpenForSubmission:!1,hash:"5ac5c052d3a593d5c4f4df66d005e5af",slug:"human-4-0-from-biology-to-cybernetic",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7796.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9711",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,isOpenForSubmission:!1,hash:"12cf675f1e433135dd5bf5df7cec124f",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10178",title:"Environmental Emissions",subtitle:null,isOpenForSubmission:!1,hash:"febf21ec717bfe20ae25a9dab9b5d438",slug:"environmental-emissions",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/10178.jpg",editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9534",title:"Banking and Finance",subtitle:null,isOpenForSubmission:!1,hash:"af14229738af402c3b595d7e124dce82",slug:"banking-and-finance",bookSignature:"Razali Haron, Maizaitulaidawati Md Husin and Michael Murg",coverURL:"https://cdn.intechopen.com/books/images_new/9534.jpg",editors:[{id:"206517",title:"Prof.",name:"Razali",middleName:null,surname:"Haron",slug:"razali-haron",fullName:"Razali Haron"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5124},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7796",title:"Human 4.0",subtitle:"From Biology to Cybernetic",isOpenForSubmission:!1,hash:"5ac5c052d3a593d5c4f4df66d005e5af",slug:"human-4-0-from-biology-to-cybernetic",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7796.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9711",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,isOpenForSubmission:!1,hash:"12cf675f1e433135dd5bf5df7cec124f",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10178",title:"Environmental Emissions",subtitle:null,isOpenForSubmission:!1,hash:"febf21ec717bfe20ae25a9dab9b5d438",slug:"environmental-emissions",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/10178.jpg",editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"269",title:"Human Mobility",slug:"human-mobility",parent:{title:"Social Sciences",slug:"social-sciences"},numberOfBooks:1,numberOfAuthorsAndEditors:23,numberOfWosCitations:4,numberOfCrossrefCitations:18,numberOfDimensionsCitations:27,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"human-mobility",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6102",title:"Mobilities, Tourism and Travel Behavior",subtitle:"Contexts and Boundaries",isOpenForSubmission:!1,hash:"f46c2870a20d93d5c5b913e7370dabd6",slug:"mobilities-tourism-and-travel-behavior-contexts-and-boundaries",bookSignature:"Leszek Butowski",coverURL:"https://cdn.intechopen.com/books/images_new/6102.jpg",editedByType:"Edited by",editors:[{id:"114047",title:"Ph.D.",name:"Leszek",middleName:null,surname:"Butowski",slug:"leszek-butowski",fullName:"Leszek Butowski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"56647",doi:"10.5772/intechopen.70370",title:"Muslim Travel Behavior in Halal Tourism",slug:"muslim-travel-behavior-in-halal-tourism",totalDownloads:2768,totalCrossrefCites:7,totalDimensionsCites:9,book:{slug:"mobilities-tourism-and-travel-behavior-contexts-and-boundaries",title:"Mobilities, Tourism and Travel Behavior",fullTitle:"Mobilities, Tourism and Travel Behavior - Contexts and Boundaries"},signatures:"Mohamed Battour",authors:[{id:"206480",title:"Prof.",name:"Mohamed",middleName:null,surname:"Battour",slug:"mohamed-battour",fullName:"Mohamed Battour"}]},{id:"58056",doi:"10.5772/intechopen.71459",title:"Cruise Tourism and Sustainability in the Mediterranean. Destination Venice",slug:"cruise-tourism-and-sustainability-in-the-mediterranean-destination-venice",totalDownloads:1206,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"mobilities-tourism-and-travel-behavior-contexts-and-boundaries",title:"Mobilities, Tourism and Travel Behavior",fullTitle:"Mobilities, Tourism and Travel Behavior - Contexts and Boundaries"},signatures:"Vincenzo Asero and Stefania Skonieczny",authors:[{id:"207224",title:"Dr.",name:"Vincenzo",middleName:null,surname:"Asero",slug:"vincenzo-asero",fullName:"Vincenzo Asero"},{id:"208063",title:"Dr.",name:"Stefania",middleName:null,surname:"Skonieczny",slug:"stefania-skonieczny",fullName:"Stefania Skonieczny"}]},{id:"58259",doi:"10.5772/intechopen.71597",title:"Air Transport Economic Footprint in Remote Tourist Regions",slug:"air-transport-economic-footprint-in-remote-tourist-regions",totalDownloads:796,totalCrossrefCites:4,totalDimensionsCites:5,book:{slug:"mobilities-tourism-and-travel-behavior-contexts-and-boundaries",title:"Mobilities, Tourism and Travel Behavior",fullTitle:"Mobilities, Tourism and Travel Behavior - Contexts and Boundaries"},signatures:"Dimitrios Dimitriou",authors:[{id:"207943",title:"Prof.",name:"Dimitrios",middleName:null,surname:"Dimitriou",slug:"dimitrios-dimitriou",fullName:"Dimitrios Dimitriou"}]}],mostDownloadedChaptersLast30Days:[{id:"56647",title:"Muslim Travel Behavior in Halal Tourism",slug:"muslim-travel-behavior-in-halal-tourism",totalDownloads:2769,totalCrossrefCites:7,totalDimensionsCites:9,book:{slug:"mobilities-tourism-and-travel-behavior-contexts-and-boundaries",title:"Mobilities, Tourism and Travel Behavior",fullTitle:"Mobilities, Tourism and Travel Behavior - Contexts and Boundaries"},signatures:"Mohamed Battour",authors:[{id:"206480",title:"Prof.",name:"Mohamed",middleName:null,surname:"Battour",slug:"mohamed-battour",fullName:"Mohamed Battour"}]},{id:"58056",title:"Cruise Tourism and Sustainability in the Mediterranean. Destination Venice",slug:"cruise-tourism-and-sustainability-in-the-mediterranean-destination-venice",totalDownloads:1206,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"mobilities-tourism-and-travel-behavior-contexts-and-boundaries",title:"Mobilities, Tourism and Travel Behavior",fullTitle:"Mobilities, Tourism and Travel Behavior - Contexts and Boundaries"},signatures:"Vincenzo Asero and Stefania Skonieczny",authors:[{id:"207224",title:"Dr.",name:"Vincenzo",middleName:null,surname:"Asero",slug:"vincenzo-asero",fullName:"Vincenzo Asero"},{id:"208063",title:"Dr.",name:"Stefania",middleName:null,surname:"Skonieczny",slug:"stefania-skonieczny",fullName:"Stefania Skonieczny"}]},{id:"56679",title:"Determinants of Satisfaction with the Tourist Destination",slug:"determinants-of-satisfaction-with-the-tourist-destination",totalDownloads:1399,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"mobilities-tourism-and-travel-behavior-contexts-and-boundaries",title:"Mobilities, Tourism and Travel Behavior",fullTitle:"Mobilities, Tourism and Travel Behavior - Contexts and Boundaries"},signatures:"Enrique Marinao",authors:[{id:"207589",title:"Dr.",name:"Enrique",middleName:null,surname:"Marinao",slug:"enrique-marinao",fullName:"Enrique Marinao"}]},{id:"58176",title:"Long-Haul Travel Motivation by International Tourist to Penang",slug:"long-haul-travel-motivation-by-international-tourist-to-penang",totalDownloads:1095,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mobilities-tourism-and-travel-behavior-contexts-and-boundaries",title:"Mobilities, Tourism and Travel Behavior",fullTitle:"Mobilities, Tourism and Travel Behavior - Contexts and Boundaries"},signatures:"Norkamaliah Shahrin and Azizan Marzuki",authors:[{id:"111261",title:"Associate Prof.",name:"Azizan",middleName:null,surname:"Marzuki",slug:"azizan-marzuki",fullName:"Azizan Marzuki"}]},{id:"56695",title:"Analysis of Online Conversations for Giving Sense to Sustainable Tourism in the Adriatic-Ionian Region",slug:"analysis-of-online-conversations-for-giving-sense-to-sustainable-tourism-in-the-adriatic-ionian-regi",totalDownloads:694,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mobilities-tourism-and-travel-behavior-contexts-and-boundaries",title:"Mobilities, Tourism and Travel Behavior",fullTitle:"Mobilities, Tourism and Travel Behavior - Contexts and Boundaries"},signatures:"Gian Luigi Corinto and Fabio Curzi",authors:[{id:"207340",title:"Dr.",name:"Gian Luigi",middleName:null,surname:"Corinto",slug:"gian-luigi-corinto",fullName:"Gian Luigi Corinto"},{id:"207365",title:"Prof.",name:"Fabio",middleName:null,surname:"Curzi",slug:"fabio-curzi",fullName:"Fabio Curzi"}]},{id:"56583",title:"The International Decision-Making and Travel Behavior of Graduates Participating in Working Holiday",slug:"the-international-decision-making-and-travel-behavior-of-graduates-participating-in-working-holiday",totalDownloads:785,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mobilities-tourism-and-travel-behavior-contexts-and-boundaries",title:"Mobilities, Tourism and Travel Behavior",fullTitle:"Mobilities, Tourism and Travel Behavior - Contexts and Boundaries"},signatures:"Chin-cheng Ni, Chien-yu Tsao and Ying-hsiang Wang",authors:[{id:"207813",title:"Prof.",name:"Chin-Cheng",middleName:null,surname:"Ni",slug:"chin-cheng-ni",fullName:"Chin-Cheng Ni"},{id:"207814",title:"Dr.",name:"Chien-Yu",middleName:null,surname:"Tsao",slug:"chien-yu-tsao",fullName:"Chien-Yu Tsao"},{id:"207820",title:"MSc.",name:"Ying-Hsiang",middleName:null,surname:"Wang",slug:"ying-hsiang-wang",fullName:"Ying-Hsiang Wang"}]},{id:"57364",title:"Music Event as a Tourist Product: Specifics, Issues, Challenges",slug:"music-event-as-a-tourist-product-specifics-issues-challenges",totalDownloads:801,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"mobilities-tourism-and-travel-behavior-contexts-and-boundaries",title:"Mobilities, Tourism and Travel Behavior",fullTitle:"Mobilities, Tourism and Travel Behavior - Contexts and Boundaries"},signatures:"Aleksandra Krajnović and Ivana Paula Gortan-Carlin",authors:[{id:"213765",title:"Dr.",name:"Aleksandra",middleName:null,surname:"Krajnovic",slug:"aleksandra-krajnovic",fullName:"Aleksandra Krajnovic"},{id:"214029",title:"Dr.",name:"Ivana",middleName:null,surname:"Gortan-Carlin",slug:"ivana-gortan-carlin",fullName:"Ivana Gortan-Carlin"}]},{id:"56858",title:"A Comprehensive Review of the Quality Approach in Tourism",slug:"a-comprehensive-review-of-the-quality-approach-in-tourism",totalDownloads:1273,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"mobilities-tourism-and-travel-behavior-contexts-and-boundaries",title:"Mobilities, Tourism and Travel Behavior",fullTitle:"Mobilities, Tourism and Travel Behavior - Contexts and Boundaries"},signatures:"Diana Foris, Maria Popescu and Tiberiu Foris",authors:[{id:"206947",title:"Dr.",name:"Diana",middleName:null,surname:"Foris",slug:"diana-foris",fullName:"Diana Foris"},{id:"207967",title:"Prof.",name:"Maria",middleName:null,surname:"Popescu",slug:"maria-popescu",fullName:"Maria Popescu"},{id:"207968",title:"Prof.",name:"Tiberiu",middleName:null,surname:"Foris",slug:"tiberiu-foris",fullName:"Tiberiu Foris"}]},{id:"58085",title:"Energy-Efficient Architecture and Sustainable Urban Tourism: Context, Challenges and Solution",slug:"energy-efficient-architecture-and-sustainable-urban-tourism-context-challenges-and-solution",totalDownloads:703,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mobilities-tourism-and-travel-behavior-contexts-and-boundaries",title:"Mobilities, Tourism and Travel Behavior",fullTitle:"Mobilities, Tourism and Travel Behavior - Contexts and Boundaries"},signatures:"Ksenija (Née Jovović) Štahan",authors:[{id:"207037",title:"Dr.",name:"Ksenija",middleName:null,surname:"Stahan",slug:"ksenija-stahan",fullName:"Ksenija Stahan"}]},{id:"56690",title:"Spatial Development Follows Digitization",slug:"spatial-development-follows-digitization",totalDownloads:575,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mobilities-tourism-and-travel-behavior-contexts-and-boundaries",title:"Mobilities, Tourism and Travel Behavior",fullTitle:"Mobilities, Tourism and Travel Behavior - Contexts and Boundaries"},signatures:"Lars Rettig and Morten Friedrichsen",authors:[{id:"206419",title:"M.A.",name:"Lars",middleName:null,surname:"Rettig",slug:"lars-rettig",fullName:"Lars Rettig"},{id:"215226",title:"Dr.",name:"Morten",middleName:null,surname:"Friedrichsen",slug:"morten-friedrichsen",fullName:"Morten Friedrichsen"}]}],onlineFirstChaptersFilter:{topicSlug:"human-mobility",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/new-innovations-in-engineering-education-and-naval-engineering/service-learning-and-civic-engagement-as-the-basis-for-engineering-design-education",hash:"",query:{},params:{book:"new-innovations-in-engineering-education-and-naval-engineering",chapter:"service-learning-and-civic-engagement-as-the-basis-for-engineering-design-education"},fullPath:"/books/new-innovations-in-engineering-education-and-naval-engineering/service-learning-and-civic-engagement-as-the-basis-for-engineering-design-education",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()