Summary of major muscular dystrophies.
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 179 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 252 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\n'}],latestNews:[{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"}]},book:{item:{type:"book",id:"5277",leadTitle:null,fullTitle:"Challenges in Parkinson's Disease",title:"Challenges in Parkinson's Disease",subtitle:null,reviewType:"peer-reviewed",abstract:"Parkinson's disease is a common neurological disease and affects 2% population of more than 65 years of age and 5% more than 85 years of age. Pathomechanism of this disease is still not fully understood. This book is a sum up of knowledge on the genetic factors and neuronal death mechanisms induced by excitotoxic and inflammatory agents. The authors summarize the pathophysiology observed both in patients with Parkinson's disease and in experimental models. The book also contains the latest views on drug therapy used in the treatment of parkinsonism and other therapeutic approaches for Parkinson's disease. The book ''Challenges in Parkinson's Disease'' was made as a compendium on contemporary challenges in Parkinson's disease.",isbn:"978-953-51-2464-1",printIsbn:"978-953-51-2463-4",pdfIsbn:"978-953-51-7291-8",doi:"10.5772/61880",price:139,priceEur:155,priceUsd:179,slug:"challenges-in-parkinson-s-disease",numberOfPages:400,isOpenForSubmission:!1,isInWos:1,hash:"ec247c295eeed9e8c8ab48a63b0b94c1",bookSignature:"Jolanta Dorszewska and Wojciech Kozubski",publishedDate:"August 24th 2016",coverURL:"https://cdn.intechopen.com/books/images_new/5277.jpg",numberOfDownloads:25988,numberOfWosCitations:17,numberOfCrossrefCitations:13,numberOfDimensionsCitations:23,hasAltmetrics:0,numberOfTotalCitations:53,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 9th 2015",dateEndSecondStepPublish:"November 30th 2015",dateEndThirdStepPublish:"March 5th 2016",dateEndFourthStepPublish:"June 3rd 2016",dateEndFifthStepPublish:"July 3rd 2016",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"31962",title:"Dr.",name:"Jolanta",middleName:null,surname:"Dorszewska",slug:"jolanta-dorszewska",fullName:"Jolanta Dorszewska",profilePictureURL:"https://mts.intechopen.com/storage/users/31962/images/4731_n.jpg",biography:"Editor, Professor Jolanta Dorszewska is Chief of Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences (PUMS), Poznan, Poland. Prof. Dorszewska graduated from PUMS, (M.Sc., Pharmacy, 1987), Ph.D. degree obtained at PUMS, (1996), D.Sc. in Medical Sciences at PUMS, (2004) and Full Prof., (2016). Between the years 1999 and 2000 she worked as a Research Scientist at the Institute for Basic Research in Developmental Disabilities, New York, USA.\nProf. Dorszewska is an author and co-author of about 100 papers (e.g. Oncotarget, Curr. Alzheimer Res., Seizure) mainly concerning the pathophysiology of Parkinson’s and Alzheimer’s diseases as well as epilepsy and migraine. She is also a co-author and co-editor of books on genetic and biochemical factors in neurological diseases. \nProf. Dorszewska was also a Guest Editor of two Theme Issue in Current Genomics (2014, 2013), and a member of Editorial Board in Advances in Alzheimer’s Disease and Austin Alzheimer’s and Parkinson’s Disease (USA). Prof. Dorszewska is a member of the Commission of Neurochemistry of Neurological Sciences, Polish Academy of Science and Polish Association of Neuropathologists, as well as International Association of Neuropathologists.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"10",totalChapterViews:"0",totalEditedBooks:"3",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"83372",title:"Prof.",name:"Wojciech",middleName:null,surname:"Kozubski",slug:"wojciech-kozubski",fullName:"Wojciech Kozubski",profilePictureURL:"https://mts.intechopen.com/storage/users/83372/images/system/83372.jpg",biography:"Prof. Wojciech Kozubski, MD, PhD is the Head of the Department of Neurology, University of Medical Sciences in Poznan, Poland.\nHe graduated from Medical School in Lodz in 1980. In 1983 he received his PhD and in 2002, his professorship.\nFrom 1987 to 1991, he was awarded a scholarship from the Academic Unit of Neuroscience, University of London, Department of Neurology, University of Tel-Aviv and the Department of Neurology, University of Trondheim.\nHe is an author and co-author of over 300 papers concerning the migraine and related headaches, stroke, and dementia. He is the editor of the handbook of clinical neurology for neurologists, the handbook for medical students, monographs on brain tumours, affective diseases of nervous system and therapy in neurology. \nFrom 2011 to 2014, he was the President of the Polish Neurological Society.",institutionString:"Poznań University of Medical Sciences",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Poznan University of Medical Sciences",institutionURL:null,country:{name:"Poland"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1056",title:"Neurology",slug:"neurology"}],chapters:[{id:"51328",title:"Introductory Chapter - Genetic and Biochemical Factors in Parkinson’s Disease",doi:"10.5772/64216",slug:"introductory-chapter-genetic-and-biochemical-factors-in-parkinson-s-disease",totalDownloads:1003,totalCrossrefCites:1,totalDimensionsCites:3,signatures:"Jolanta Dorszewska and Wojciech Kozubski",downloadPdfUrl:"/chapter/pdf-download/51328",previewPdfUrl:"/chapter/pdf-preview/51328",authors:[{id:"31962",title:"Dr.",name:"Jolanta",surname:"Dorszewska",slug:"jolanta-dorszewska",fullName:"Jolanta Dorszewska"},{id:"83372",title:"Prof.",name:"Wojciech",surname:"Kozubski",slug:"wojciech-kozubski",fullName:"Wojciech Kozubski"}],corrections:null},{id:"50469",title:"Genetics of Parkinson’s Disease: The Role of Copy Number Variations",doi:"10.5772/62881",slug:"genetics-of-parkinson-s-disease-the-role-of-copy-number-variations",totalDownloads:1153,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Valentina La Cognata, Velia D’Agata, Francesca Cavalcanti and\nSebastiano Cavallaro",downloadPdfUrl:"/chapter/pdf-download/50469",previewPdfUrl:"/chapter/pdf-preview/50469",authors:[{id:"180809",title:"Dr.",name:"Sebastiano",surname:"Cavallaro",slug:"sebastiano-cavallaro",fullName:"Sebastiano Cavallaro"},{id:"183182",title:"MSc.",name:"Valentina",surname:"La Cognata",slug:"valentina-la-cognata",fullName:"Valentina La Cognata"},{id:"183184",title:"Dr.",name:"Francesca",surname:"Cavalcanti",slug:"francesca-cavalcanti",fullName:"Francesca Cavalcanti"},{id:"186093",title:"Prof.",name:"Velia",surname:"D'Agata",slug:"velia-d'agata",fullName:"Velia D'Agata"}],corrections:null},{id:"50586",title:"Mechanisms for Neuronal Cell Death in Parkinson’s Disease: Pathological Cross Talks Between Epigenetics and Various Signalling Pathways",doi:"10.5772/63103",slug:"mechanisms-for-neuronal-cell-death-in-parkinson-s-disease-pathological-cross-talks-between-epigeneti",totalDownloads:1138,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"S Meenalochani, ST Dheen and SSW Tay",downloadPdfUrl:"/chapter/pdf-download/50586",previewPdfUrl:"/chapter/pdf-preview/50586",authors:[{id:"183242",title:"Associate Prof.",name:"Samuel Sw",surname:"Tay",slug:"samuel-sw-tay",fullName:"Samuel Sw Tay"},{id:"184878",title:"Dr.",name:"Meenalochani",surname:"Sivasubramanian",slug:"meenalochani-sivasubramanian",fullName:"Meenalochani Sivasubramanian"},{id:"184879",title:"Prof.",name:"Thameem",surname:"Dheen",slug:"thameem-dheen",fullName:"Thameem Dheen"}],corrections:null},{id:"51327",title:"Inflammation: Role in Parkinson's Disease and Target for Therapy",doi:"10.5772/63164",slug:"inflammation-role-in-parkinson-s-disease-and-target-for-therapy",totalDownloads:1104,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Patrick Flood, Naik Arbabzada and Monika Sharma",downloadPdfUrl:"/chapter/pdf-download/51327",previewPdfUrl:"/chapter/pdf-preview/51327",authors:[{id:"181605",title:"Prof.",name:"Patrick",surname:"Flood",slug:"patrick-flood",fullName:"Patrick Flood"},{id:"183202",title:"MSc.",name:"Monika",surname:"Sharma",slug:"monika-sharma",fullName:"Monika Sharma"},{id:"183203",title:"BSc.",name:"Naik",surname:"Arbabzada",slug:"naik-arbabzada",fullName:"Naik Arbabzada"}],corrections:null},{id:"50694",title:"Chronic Inflammation Connects the Development of Parkinson’s Disease and Cancer",doi:"10.5772/63215",slug:"chronic-inflammation-connects-the-development-of-parkinson-s-disease-and-cancer",totalDownloads:1125,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Zhiming Li and Chi-Meng Tzeng",downloadPdfUrl:"/chapter/pdf-download/50694",previewPdfUrl:"/chapter/pdf-preview/50694",authors:[{id:"181894",title:"Prof.",name:"Chi-Meng",surname:"Tzeng",slug:"chi-meng-tzeng",fullName:"Chi-Meng Tzeng"},{id:"185049",title:"Dr.",name:"Zhiming",surname:"Li",slug:"zhiming-li",fullName:"Zhiming Li"}],corrections:null},{id:"50932",title:"Is Chronic Systemic Inflammation a Determinant Factor in Developing Parkinson’s Disease?",doi:"10.5772/62955",slug:"is-chronic-systemic-inflammation-a-determinant-factor-in-developing-parkinson-s-disease-",totalDownloads:1125,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Perla Ugalde-Muñiz, Jesús Pérez-H and Anahí Chavarría",downloadPdfUrl:"/chapter/pdf-download/50932",previewPdfUrl:"/chapter/pdf-preview/50932",authors:[{id:"181865",title:"Dr.",name:"Anahí",surname:"Chavarría",slug:"anahi-chavarria",fullName:"Anahí Chavarría"},{id:"186120",title:"MSc.",name:"Perla",surname:"Ugalde-MUñiz",slug:"perla-ugalde-muniz",fullName:"Perla Ugalde-MUñiz"},{id:"186121",title:"Dr.",name:"Jesús",surname:"Pérez-H",slug:"jesus-perez-h",fullName:"Jesús Pérez-H"}],corrections:null},{id:"50533",title:"Disorders of Sleep and Motor Control During the Impaired Cholinergic Innervation in Rat – Relevance to Parkinson’s Disease",doi:"10.5772/62949",slug:"disorders-of-sleep-and-motor-control-during-the-impaired-cholinergic-innervation-in-rat-relevance-to",totalDownloads:854,totalCrossrefCites:2,totalDimensionsCites:5,signatures:"Jasna Saponjic, Jelena Petrovic, Jelena Ciric and Katarina Lazic",downloadPdfUrl:"/chapter/pdf-download/50533",previewPdfUrl:"/chapter/pdf-preview/50533",authors:[{id:"182938",title:"Prof.",name:"Jasna",surname:"Saponjic",slug:"jasna-saponjic",fullName:"Jasna Saponjic"},{id:"183348",title:"Ph.D.",name:"Jelena",surname:"Petrovic",slug:"jelena-petrovic",fullName:"Jelena Petrovic"},{id:"183349",title:"Ms.",name:"Katarina",surname:"Lazic",slug:"katarina-lazic",fullName:"Katarina Lazic"},{id:"183350",title:"M.Sc.",name:"Jelena",surname:"Ciric",slug:"jelena-ciric",fullName:"Jelena Ciric"}],corrections:null},{id:"50470",title:"Cognitive Impairment in Parkinson’s Disease: Historical Review, Past, and Present",doi:"10.5772/62888",slug:"cognitive-impairment-in-parkinson-s-disease-historical-review-past-and-present",totalDownloads:851,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Ivan Galtier, Antonieta Nieto and Jose Barroso",downloadPdfUrl:"/chapter/pdf-download/50470",previewPdfUrl:"/chapter/pdf-preview/50470",authors:[{id:"182255",title:"Dr.",name:"Iván",surname:"Galtier",slug:"ivan-galtier",fullName:"Iván Galtier"},{id:"183145",title:"Dr.",name:"Antonieta",surname:"Nieto",slug:"antonieta-nieto",fullName:"Antonieta Nieto"},{id:"183146",title:"Dr.",name:"José",surname:"Barroso",slug:"jose-barroso",fullName:"José Barroso"}],corrections:null},{id:"50693",title:"Brain Network Metabolic Changes in Patients with Parkinsonian Tremors",doi:"10.5772/63159",slug:"brain-network-metabolic-changes-in-patients-with-parkinsonian-tremors",totalDownloads:999,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Hideo Mure, David Eidelberg and Satoshi Goto",downloadPdfUrl:"/chapter/pdf-download/50693",previewPdfUrl:"/chapter/pdf-preview/50693",authors:[{id:"181695",title:"Prof.",name:"Satoshi",surname:"Goto",slug:"satoshi-goto",fullName:"Satoshi Goto"},{id:"183340",title:"Dr.",name:"David",surname:"Eidelberg",slug:"david-eidelberg",fullName:"David Eidelberg"},{id:"183341",title:"Dr.",name:"Hideo",surname:"Mure",slug:"hideo-mure",fullName:"Hideo Mure"}],corrections:null},{id:"51004",title:"Animal Models of Parkinson’s Disease",doi:"10.5772/63328",slug:"animal-models-of-parkinson-s-disease",totalDownloads:3650,totalCrossrefCites:4,totalDimensionsCites:5,signatures:"Javier Blesa, Ines Trigo‐Damas, Ana Quiroga‐Varela and Natalia\nLopez‐Gonzalez del Rey",downloadPdfUrl:"/chapter/pdf-download/51004",previewPdfUrl:"/chapter/pdf-preview/51004",authors:[{id:"182798",title:"Dr.",name:"Javier",surname:"Blesa",slug:"javier-blesa",fullName:"Javier Blesa"},{id:"186767",title:"Dr.",name:"Ines",surname:"Trigo-Damas",slug:"ines-trigo-damas",fullName:"Ines Trigo-Damas"},{id:"186768",title:"Dr.",name:"Ana",surname:"Quiroga-Varela",slug:"ana-quiroga-varela",fullName:"Ana Quiroga-Varela"},{id:"186769",title:"MSc.",name:"Natalia",surname:"Lopez-Gonzalez Del Rey",slug:"natalia-lopez-gonzalez-del-rey",fullName:"Natalia Lopez-Gonzalez Del Rey"},{id:"186770",title:"Dr.",name:"Jose A.",surname:"Obeso",slug:"jose-a.-obeso",fullName:"Jose A. Obeso"}],corrections:null},{id:"50961",title:"Understanding Pathophysiology of Sporadic Parkinson's Disease in Drosophila Model: Potential Opportunities and Notable Limitations",doi:"10.5772/63767",slug:"understanding-pathophysiology-of-sporadic-parkinson-s-disease-in-drosophila-model-potential-opportun",totalDownloads:1087,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Priyanka Modi, Ayajuddin Mohamad, Limamanen Phom, Zevelou\nKoza, Abhik Das, Rahul Chaurasia, Saikat Samadder, Bovito Achumi, Muralidhara, Rajesh Singh Pukhrambam and Sarat Chandra\nYenisetti",downloadPdfUrl:"/chapter/pdf-download/50961",previewPdfUrl:"/chapter/pdf-preview/50961",authors:[{id:"181774",title:"Prof.",name:"Sarat Chandra",surname:"Yenisetti",slug:"sarat-chandra-yenisetti",fullName:"Sarat Chandra Yenisetti"},{id:"192493",title:"Dr.",name:"Priyanka",surname:"Modi",slug:"priyanka-modi",fullName:"Priyanka Modi"},{id:"192494",title:"Mr.",name:"Ayajuddin",surname:"Mohamad",slug:"ayajuddin-mohamad",fullName:"Ayajuddin Mohamad"},{id:"192496",title:"Dr.",name:"Limamanen",surname:"Phom",slug:"limamanen-phom",fullName:"Limamanen Phom"},{id:"192499",title:"Dr.",name:"Zevelou",surname:"Koza",slug:"zevelou-koza",fullName:"Zevelou Koza"},{id:"192500",title:"Dr.",name:"Abhik",surname:"Das",slug:"abhik-das",fullName:"Abhik Das"},{id:"192501",title:"Dr.",name:"Rahul",surname:"Chaurasia",slug:"rahul-chaurasia",fullName:"Rahul Chaurasia"},{id:"192502",title:"Dr.",name:"Saikat",surname:"Samadder",slug:"saikat-samadder",fullName:"Saikat Samadder"},{id:"192503",title:"Dr.",name:"Bovito",surname:"Achumi",slug:"bovito-achumi",fullName:"Bovito Achumi"},{id:"192508",title:"Dr.",name:"Rajesh Singh",surname:"Pukhrambam",slug:"rajesh-singh-pukhrambam",fullName:"Rajesh Singh Pukhrambam"},{id:"192509",title:"Dr.",name:null,surname:"Muralidhara",slug:"muralidhara",fullName:"Muralidhara"}],corrections:null},{id:"50238",title:"Pharmacotherapeutic Challenges in Parkinson’s Disease Inpatients",doi:"10.5772/62561",slug:"pharmacotherapeutic-challenges-in-parkinson-s-disease-inpatients",totalDownloads:1207,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Unax Lertxundi, Rafael Hernández, Saioa Domingo-Echaburu, Javier\nPeral-Aguirregoitia and Juan Medrano",downloadPdfUrl:"/chapter/pdf-download/50238",previewPdfUrl:"/chapter/pdf-preview/50238",authors:[{id:"183172",title:"Mr.",name:"Unax",surname:"Lertxundi",slug:"unax-lertxundi",fullName:"Unax Lertxundi"},{id:"185354",title:"Dr.",name:"Rafael",surname:"Hernández",slug:"rafael-hernandez",fullName:"Rafael Hernández"},{id:"185355",title:"Mrs.",name:"Saioa",surname:"Domingo-Echaburu",slug:"saioa-domingo-echaburu",fullName:"Saioa Domingo-Echaburu"},{id:"185356",title:"Mr.",name:"Javier",surname:"Peral-Aguirregoitia",slug:"javier-peral-aguirregoitia",fullName:"Javier Peral-Aguirregoitia"},{id:"185357",title:"Dr.",name:"Juan",surname:"Medrano",slug:"juan-medrano",fullName:"Juan Medrano"}],corrections:null},{id:"50853",title:"Clinical and Experimental Cell Therapy in Parkinson’s Disease",doi:"10.5772/63764",slug:"clinical-and-experimental-cell-therapy-in-parkinson-s-disease",totalDownloads:856,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Keun-A Chang and Seonghan Kim",downloadPdfUrl:"/chapter/pdf-download/50853",previewPdfUrl:"/chapter/pdf-preview/50853",authors:[{id:"183327",title:"Prof.",name:"Keun-A",surname:"Chang",slug:"keun-a-chang",fullName:"Keun-A Chang"},{id:"189275",title:"Prof.",name:"Seonghan",surname:"Kim",slug:"seonghan-kim",fullName:"Seonghan Kim"}],corrections:null},{id:"50893",title:"Cell-Based Therapies for Parkinson’s Disease: Preclinical and Clinical Perspectives",doi:"10.5772/63747",slug:"cell-based-therapies-for-parkinson-s-disease-preclinical-and-clinical-perspectives",totalDownloads:920,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Andrea R. Di Sebastiano, Michael D. Staudt, Simon M. Benoit, Hu\nXu, Matthew O. Hebb and Susanne Schmid",downloadPdfUrl:"/chapter/pdf-download/50893",previewPdfUrl:"/chapter/pdf-preview/50893",authors:[{id:"183532",title:"Dr.",name:"Susanne",surname:"Schmid",slug:"susanne-schmid",fullName:"Susanne Schmid"},{id:"186621",title:"Dr.",name:"Andrea R.",surname:"DiSebastiano",slug:"andrea-r.-disebastiano",fullName:"Andrea R. DiSebastiano"},{id:"186623",title:"Dr.",name:"Michael",surname:"Staudt",slug:"michael-staudt",fullName:"Michael Staudt"},{id:"186624",title:"Dr.",name:"Matthew O.",surname:"Hebb",slug:"matthew-o.-hebb",fullName:"Matthew O. Hebb"},{id:"186625",title:"Dr.",name:"Hu",surname:"Xu",slug:"hu-xu",fullName:"Hu Xu"},{id:"186626",title:"Mr.",name:"Simon",surname:"Benoit",slug:"simon-benoit",fullName:"Simon Benoit"}],corrections:null},{id:"51310",title:"Stem Cell Therapy for Parkinson's Disease",doi:"10.5772/63340",slug:"stem-cell-therapy-for-parkinson-s-disease",totalDownloads:1126,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Fabin Han",downloadPdfUrl:"/chapter/pdf-download/51310",previewPdfUrl:"/chapter/pdf-preview/51310",authors:[{id:"181160",title:"Prof.",name:"Fabin",surname:"Han",slug:"fabin-han",fullName:"Fabin Han"}],corrections:null},{id:"50429",title:"Surgical Therapy of Parkinson's Disease",doi:"10.5772/62884",slug:"surgical-therapy-of-parkinson-s-disease",totalDownloads:979,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Massimo Piacentino, Giacomo Beggio and Lorenzo Volpin",downloadPdfUrl:"/chapter/pdf-download/50429",previewPdfUrl:"/chapter/pdf-preview/50429",authors:[{id:"181681",title:"Dr.",name:"Massimo",surname:"Piacentino",slug:"massimo-piacentino",fullName:"Massimo Piacentino"},{id:"186117",title:"Dr.",name:"Giacomo",surname:"Beggio",slug:"giacomo-beggio",fullName:"Giacomo Beggio"},{id:"186118",title:"Dr.",name:"Lorenzo",surname:"Volpin",slug:"lorenzo-volpin",fullName:"Lorenzo Volpin"}],corrections:null},{id:"50468",title:"Neuro-Ophthalmologic Evaluation as a Biomarker for Diagnosis and Progression in Parkinson Disease",doi:"10.5772/62877",slug:"neuro-ophthalmologic-evaluation-as-a-biomarker-for-diagnosis-and-progression-in-parkinson-disease",totalDownloads:1125,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"María Satue, Vicente Polo, Sofía Otin, Jose M. Larrosa, Javier Obis and Elena Garcia-Martin",downloadPdfUrl:"/chapter/pdf-download/50468",previewPdfUrl:"/chapter/pdf-preview/50468",authors:[{id:"182192",title:"Dr.",name:"Maria",surname:"Satue",slug:"maria-satue",fullName:"Maria Satue"},{id:"182717",title:"Dr.",name:"Vicente",surname:"Polo",slug:"vicente-polo",fullName:"Vicente Polo"},{id:"182718",title:"Dr.",name:"Sofia",surname:"Otin",slug:"sofia-otin",fullName:"Sofia Otin"},{id:"182719",title:"Dr.",name:"Jose M.",surname:"Larrosa",slug:"jose-m.-larrosa",fullName:"Jose M. Larrosa"},{id:"182720",title:"Prof.",name:"Luis E.",surname:"Pablo",slug:"luis-e.-pablo",fullName:"Luis E. Pablo"},{id:"182721",title:"Dr.",name:"Elena",surname:"Garcia-Martin",slug:"elena-garcia-martin",fullName:"Elena Garcia-Martin"},{id:"186145",title:"Dr.",name:"Javier",surname:"Obis",slug:"javier-obis",fullName:"Javier Obis"}],corrections:null},{id:"51287",title:"Possible Treatments of Atypical Parkinsonism",doi:"10.5772/63948",slug:"possible-treatments-of-atypical-parkinsonism",totalDownloads:1168,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Moretti Davide Vito",downloadPdfUrl:"/chapter/pdf-download/51287",previewPdfUrl:"/chapter/pdf-preview/51287",authors:[{id:"147154",title:"Dr.",name:"Davide",surname:"Moretti",slug:"davide-moretti",fullName:"Davide Moretti"}],corrections:null},{id:"51054",title:"The Role of Nurses in Parkinson's Disease",doi:"10.5772/63162",slug:"the-role-of-nurses-in-parkinson-s-disease",totalDownloads:4532,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Michelle Hyczy de Siqueira Tosin and Beatriz Guitton Renaud\nBaptista de Oliveira",downloadPdfUrl:"/chapter/pdf-download/51054",previewPdfUrl:"/chapter/pdf-preview/51054",authors:[{id:"181642",title:"Dr.",name:"Michelle",surname:"Tosin",slug:"michelle-tosin",fullName:"Michelle Tosin"},{id:"182956",title:"Prof.",name:"Beatriz",surname:"Oliveira",slug:"beatriz-oliveira",fullName:"Beatriz Oliveira"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"5806",title:"Senescence",subtitle:"Physiology or Pathology",isOpenForSubmission:!1,hash:"a8b68766b3057a8d6b4d30695e00f576",slug:"senescence-physiology-or-pathology",bookSignature:"Jolanta Dorszewska and Wojciech Kozubski",coverURL:"https://cdn.intechopen.com/books/images_new/5806.jpg",editedByType:"Edited by",editors:[{id:"31962",title:"Dr.",name:"Jolanta",surname:"Dorszewska",slug:"jolanta-dorszewska",fullName:"Jolanta Dorszewska"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6614",title:"Alzheimer's Disease",subtitle:"The 21st Century Challenge",isOpenForSubmission:!1,hash:"91df6c15517737c8fb91543f870d484d",slug:"alzheimer-s-disease-the-21st-century-challenge",bookSignature:"Jolanta Dorszewska and Wojciech Kozubski",coverURL:"https://cdn.intechopen.com/books/images_new/6614.jpg",editedByType:"Edited by",editors:[{id:"31962",title:"Dr.",name:"Jolanta",surname:"Dorszewska",slug:"jolanta-dorszewska",fullName:"Jolanta Dorszewska"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1191",title:"Neuromuscular Disorders",subtitle:null,isOpenForSubmission:!1,hash:"6f634511340dcd5fe321e13e83a62531",slug:"neuromuscular-disorders",bookSignature:"Ashraf Zaher",coverURL:"https://cdn.intechopen.com/books/images_new/1191.jpg",editedByType:"Edited by",editors:[{id:"66392",title:"Prof.",name:"Ashraf",surname:"Zaher",slug:"ashraf-zaher",fullName:"Ashraf Zaher"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"745",title:"Neurodegenerative Diseases",subtitle:"Processes, Prevention, Protection and Monitoring",isOpenForSubmission:!1,hash:"3d5795dad33257368f0b7848c22d5dd4",slug:"neurodegenerative-diseases-processes-prevention-protection-and-monitoring",bookSignature:"Raymond Chuen-Chung Chang",coverURL:"https://cdn.intechopen.com/books/images_new/745.jpg",editedByType:"Edited by",editors:[{id:"33396",title:"Dr.",name:"Raymond Chuen-Chung",surname:"Chang",slug:"raymond-chuen-chung-chang",fullName:"Raymond Chuen-Chung Chang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3278",title:"Neurodegenerative Diseases",subtitle:null,isOpenForSubmission:!1,hash:"aa717c2801cf98db641d48414cef8ced",slug:"neurodegenerative-diseases",bookSignature:"Uday Kishore",coverURL:"https://cdn.intechopen.com/books/images_new/3278.jpg",editedByType:"Edited by",editors:[{id:"155691",title:"Dr.",name:"Uday",surname:"Kishore",slug:"uday-kishore",fullName:"Uday Kishore"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3296",title:"Understanding Alzheimer's Disease",subtitle:null,isOpenForSubmission:!1,hash:"b040d696d429a2a6dc90cd236f160778",slug:"understanding-alzheimer-s-disease",bookSignature:"Inga Zerr",coverURL:"https://cdn.intechopen.com/books/images_new/3296.jpg",editedByType:"Edited by",editors:[{id:"26013",title:"Prof.",name:"Inga",surname:"Zerr",slug:"inga-zerr",fullName:"Inga Zerr"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"434",title:"Alzheimer's Disease Pathogenesis",subtitle:"Core Concepts, Shifting Paradigms and Therapeutic Targets",isOpenForSubmission:!1,hash:"49f4c7dbf69e8a9eaf780e37f4aae1ab",slug:"alzheimer-s-disease-pathogenesis-core-concepts-shifting-paradigms-and-therapeutic-targets",bookSignature:"Suzanne De La Monte",coverURL:"https://cdn.intechopen.com/books/images_new/434.jpg",editedByType:"Edited by",editors:[{id:"29111",title:"Dr.",name:"Suzanne",surname:"De La Monte",slug:"suzanne-de-la-monte",fullName:"Suzanne De La Monte"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3437",title:"Mood Disorders",subtitle:null,isOpenForSubmission:!1,hash:"62c54b70da87ce48e712c07601105311",slug:"mood-disorders",bookSignature:"Nese Kocabasoglu",coverURL:"https://cdn.intechopen.com/books/images_new/3437.jpg",editedByType:"Edited by",editors:[{id:"91417",title:"Prof.",name:"Nese",surname:"Kocabasoglu",slug:"nese-kocabasoglu",fullName:"Nese Kocabasoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1062",title:"Dystonia",subtitle:"The Many Facets",isOpenForSubmission:!1,hash:"81069e5ab5b7c4bb52cf7bd16d0c4cb2",slug:"dystonia-the-many-facets",bookSignature:"Raymond L. Rosales",coverURL:"https://cdn.intechopen.com/books/images_new/1062.jpg",editedByType:"Edited by",editors:[{id:"70147",title:"Prof.",name:"Raymond",surname:"Rosales",slug:"raymond-rosales",fullName:"Raymond Rosales"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1360",title:"Mechanisms in Parkinson's Disease",subtitle:"Models and Treatments",isOpenForSubmission:!1,hash:"823c4dc5acbf952ba3723cae01f7f67a",slug:"mechanisms-in-parkinson-s-disease-models-and-treatments",bookSignature:"Juliana Dushanova",coverURL:"https://cdn.intechopen.com/books/images_new/1360.jpg",editedByType:"Edited by",editors:[{id:"36845",title:"Dr.",name:"Juliana",surname:"Dushanova",slug:"juliana-dushanova",fullName:"Juliana Dushanova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"67322",slug:"corrigendum-to-sexual-dysfunction-in-patients-with-systemic-sclerosis",title:"Corrigendum to: Sexual Dysfunction in Patients with Systemic Sclerosis",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/67322.pdf",downloadPdfUrl:"/chapter/pdf-download/67322",previewPdfUrl:"/chapter/pdf-preview/67322",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/67322",risUrl:"/chapter/ris/67322",chapter:{id:"66966",slug:"sexual-dysfunction-in-patients-with-systemic-sclerosis",signatures:"Barbora Heřmánková",dateSubmitted:"July 16th 2018",dateReviewed:"April 5th 2019",datePrePublished:"May 3rd 2019",datePublished:null,book:{id:"8269",title:"New Insights into Systemic Sclerosis",subtitle:null,fullTitle:"New Insights into Systemic Sclerosis",slug:"new-insights-into-systemic-sclerosis",publishedDate:"September 18th 2019",bookSignature:"Michal Tomcik",coverURL:"https://cdn.intechopen.com/books/images_new/8269.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193284",title:"Dr.",name:"Michal",middleName:null,surname:"Tomcik",slug:"michal-tomcik",fullName:"Michal Tomcik"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null}},chapter:{id:"66966",slug:"sexual-dysfunction-in-patients-with-systemic-sclerosis",signatures:"Barbora Heřmánková",dateSubmitted:"July 16th 2018",dateReviewed:"April 5th 2019",datePrePublished:"May 3rd 2019",datePublished:null,book:{id:"8269",title:"New Insights into Systemic Sclerosis",subtitle:null,fullTitle:"New Insights into Systemic Sclerosis",slug:"new-insights-into-systemic-sclerosis",publishedDate:"September 18th 2019",bookSignature:"Michal Tomcik",coverURL:"https://cdn.intechopen.com/books/images_new/8269.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193284",title:"Dr.",name:"Michal",middleName:null,surname:"Tomcik",slug:"michal-tomcik",fullName:"Michal Tomcik"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null},book:{id:"8269",title:"New Insights into Systemic Sclerosis",subtitle:null,fullTitle:"New Insights into Systemic Sclerosis",slug:"new-insights-into-systemic-sclerosis",publishedDate:"September 18th 2019",bookSignature:"Michal Tomcik",coverURL:"https://cdn.intechopen.com/books/images_new/8269.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193284",title:"Dr.",name:"Michal",middleName:null,surname:"Tomcik",slug:"michal-tomcik",fullName:"Michal Tomcik"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"9072",leadTitle:null,title:"Human Tooth Development",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tThe normal tooth development and eruption process can be altered by many factors and result in different alteration of morphology, eruption position and timing. Developmental defects of teeth are a present condition for many patients and every dental practitioner has to deal with it even if they are limited only to diagnostic and treatment plan establishment. Identifying the potential etiology of morphological defects, its consequences and indications for treatment is of foremost importance for a correct and ethical clinical approach. Subsequent interventions might be solely surgical when considering retained teeth, surgical-orthodontic when applied to impacted teeth that are surgically exposed and subsequently recovered through orthodontic mechanics, or reconstructive, including prosthetic and conservative therapy. Numerous techniques for surgical, orthodontic, prosthetic and conservative interventions have been proposed in order to treat ectopic, impacted and other developmental alteration of teeth over the years. Nowadays, as dentistry is entering the era of patient-need centered medical care, treatments tempt to be less invasive, more patient-friendly and minimally time-consuming. Integrating these important aspects into therapy and applying the most appropriate techniques and skills lead to efficient and satisfying results. This book has been assembled with the idea of providing an extensive overview of various types of tooth developmental alterations and aspects such as etiology, diagnostics, treatment planning, and surgical, orthodontic and reconstructive treatment strategies. Based on solid evidence-based information and supported by extensive clinical experience and numerous patient cases, hopefully, this book will serve as a comprehensive guide for dental practitioners.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"4580ba4e5122bb1615b1e00598c65a2e",bookSignature:"Prof. Felice Roberto Grassi and Ph.D. Zamira Kalemaj",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9072.jpg",keywords:"Deciduous Teeth Alteration, CBCT, Impacted Molars, Flap Technique, Impacted Canines, Lateral Radiograph, Palatal Canines, Vestibular Canines, Surgical Approach, tooth development, tooth eruption, pathological eruption",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 20th 2019",dateEndSecondStepPublish:"September 20th 2019",dateEndThirdStepPublish:"November 19th 2019",dateEndFourthStepPublish:"February 7th 2020",dateEndFifthStepPublish:"April 7th 2020",remainingDaysToSecondStep:"a year",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"98334",title:"Prof.",name:"Felice Roberto",middleName:null,surname:"Grassi",slug:"felice-roberto-grassi",fullName:"Felice Roberto Grassi",profilePictureURL:"https://mts.intechopen.com/storage/users/98334/images/system/98334.jpeg",biography:null,institutionString:"University of Bari Aldo Moro",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Bari Aldo Moro",institutionURL:null,country:{name:"Italy"}}}],coeditorOne:{id:"199723",title:"Ph.D.",name:"Zamira",middleName:null,surname:"Kalemaj",slug:"zamira-kalemaj",fullName:"Zamira Kalemaj",profilePictureURL:"https://mts.intechopen.com/storage/users/199723/images/system/199723.jpeg",biography:null,institutionString:"University of Bari Aldo Moro",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Bari Aldo Moro",institutionURL:null,country:{name:"Italy"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"247041",firstName:"Dolores",lastName:"Kuzelj",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/247041/images/7108_n.jpg",email:"dolores@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"50164",title:"Emerging Gene Correction Strategies for Muscular Dystrophies: Scientific Progress and Regulatory Impact",doi:"10.5772/62282",slug:"emerging-gene-correction-strategies-for-muscular-dystrophies-scientific-progress-and-regulatory-impa",body:'\nMuscular dystrophy refers to a range of conditions of progressive muscle weakening generally due to genetic defects in proteins that are critical for muscle functioning. The most common form of the disease, and one of the more common of any seriously debilitating genetic disorders, is Duchenne muscular dystrophy (DMD), which is caused by the mutation of the dystrophin gene on the X chromosome and found in approximately 1 in 3600 of male births. The dystrophin gene product is a large protein with repeated elements and is involved in connecting the muscle fibres to the extracellular matrix [1]. Other proteins, mutations of which may cause forms of muscular dystrophy, include poly(A) binding protein nuclear 1 (PABPN1), myotonic dystrophy (DM) protein kinase (DMPK), or the product of the Emery-Dreifuss muscular dystrophy gene.
\nThis chapter focuses on opportunities to develop treatments for these conditions with therapies that target the genetic defect that is the cause of the disease. The promise shown by new technologies for gene therapeutics makes this a particularly propitious time to consider the impact that such scientific progress may have on this clinically important set of conditions.
\nNotable among the new technological advances of relevance are the development of methods of specifically changing the sequence of the human genome, either by introducing a new gene sequence, which may repair the function of a defective gene, or by correcting the defect in the endogenous gene. Although the means to deliver genes to human cells still rely on the use of viral vectors, the methodology for the effective manufacture of these complex biologicals has developed. The approvals by the European Union (EU) of Glybera® and Imlygic® show that viral products can be manufactured to the quality standards acceptable for commercial products, with acceptable profiles of safety and efficacy. Another transformative technology is the derivation from stem cell precursors of different differentiated cell types with the potential to repair damaged or otherwise defective tissue. Putting these technologies together results in a possibility to create and manufacture to GMP standard, well-characterised patient-specific (or at least patient-compatible), genetically modified cells, a combination that may be anticipated in the near future to enable the viable therapeutic treatment of many previously intractable genetic diseases.
\nThis chapter looks at the current status and future prospects of how the latest gene-based technologies are being applied to the alleviation, or even cure, of inherited muscular dystrophies. Furthermore, we consider the challenge of translating these treatment modalities into medicines that can be approved for commercial use by the regulatory authorities, notably within the EU. To do this, developers must go beyond the scientific mechanisms of efficacy to establish how the products will be manufactured to consistent quality standards and to demonstrate that they are clinically safe.
\nMuscular dystrophies comprise a heterogeneous cluster of inherited muscle degenerative disorders, each caused by a distinct gene mutation. More than 30 genes have been identified, each causing a different type of muscle pathology with different patterns of muscle weakness and disease progression (Table 1). This includes but is not limited to Duchenne, Becker, congenital, myotonic, Emery-Dreifuss, facioscapulohumeral, oculopharyngeal, and limb-girdle muscular dystrophies. Each of these varies in terms of pattern of inheritance, age of disease onset, biochemical markers (such as creatinine kinase’s upper limits), types of muscles affected, and complications at other organ sites, including cardiac and pulmonary problems. These give rise to varied symptoms, including muscle weakness and wasting (a common feature of a number of muscular dystrophies), joint stiffness, and scoliosis in addition to respiratory complications (such as chest infections and shortness of breath). Other symptoms include ankle swelling often linked with cardiomyopathy, fainting, eyelid drooping, and dysphagia. Ophthalmological symptoms, such as myopia in facioscapulohumeral muscular dystrophy and severe congenital muscular dystrophy (CMD) variants, cataracts in DM, and eyelid drooping in oculopharyngeal muscular dystrophy (OPMD), have also been reported. Hearing loss and skin lesions are also common in facioscapulohumeral muscular dystrophy and Ullrich CMD, respectively. Overall, these cause profound impairments in physical activity and quality of life [2, 3].
\nDisease type | \nAffected protein | \nGeneti cs | \nAge of onset (years) | \nMain pathological features | \nCurrent treatment | \n
---|---|---|---|---|---|
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) | \n|||||
DMD | \nDystrophin | \nXp21.2 (X-R) | \n<5 | \nProgressive muscle weakness (proximal to distal); cardiomyopathy; respiratory impairment. | \nNo cure available to date. Symptomatic treatment to control the onset of symptoms and maximise the quality of life (corticosteroid therapy, physiotherapy, orthopaedic assistance, respiratory support). | \n
BMD | \nDystrophin | \nXp21.2 (X-R) | \n5–40 | \nMilder disease phenotype compared to DMD; variable progression; cardiomyopathy. | \nNo cure available to date. Symptomatic treatment to control symptoms and improve the quality of life. | \n
Limb girdle muscular dystrophy (LGMD) | \n|||||
LGMD type 1B | \nLamin A/C | \n1q21.2 (AD) | \n10–30 | \nVariable symptoms. | \nNo cure available to date. | \n
LGMD type 1C | \nCaveolin-3 | \n3p25 (AD) | \nProgressive muscle weakness and atrophy; cardiomyopathy and respiratory impairment observed in sarcoglycanopathies (LGMD types 2C, 2D, 2E, and 2F), dystroglycanopathies (LGMD types 2I, 2K, 2M, and 2N), and LGMD type 2L. | \nSymptomatic care to control cardiac and respiratory symptoms with medications and/or devices; physical activity and orthopaedic assistance. | \n|
LGMD type 2A | \nCalpain-3 | \n15q15.1 (AR) | \n|||
LGMD type 2B | \nDysferlin | \n2p13 (AR) | \n|||
LGMD type 2L | \nAnoctamin 5 | \n11p14.3 (AR) | \n\n|||
\nSarcoglycanopathies\n | \n|||||
LGMD type 2C | \nγ-Sarcoglycan | \n13q12 (AR) | \n10–30 | \nProgressive muscle weakness and atrophy; cardiomyopathy and respiratory impairment observed in sarcoglycanopathies (LGMD types 2C, 2D, 2E, and 2F), dystroglycanopathies (LGMD types 2I, 2K, 2M, and 2N), and LGMD type 2L. | \nSymptomatic care to control cardiac and respiratory symptoms with medications and/or devices; physical activity and orthopaedic assistance. | \n
LGMD type 2D | \nα-Sarcoglycan | \n17q12-q21.33 (AR) | \n|||
LGMD type 2E | \nβ-Sarcoglycan | \n4q12 (AR) | \n|||
LGMD type 2F | \nδ-Sarcoglycan | \n5q33 (AR) | \n|||
\nDystroglycanopathies\n | \n|||||
LGMD type 2I | \nFukutin-related protein | \n19q13.3 (AR) | \n10–30 | \n||
LGMD type 2K | \nProtein-1-O-mannosyl-transferase 1 | \n9q34 (AR) | \n|||
LGMD type 2M | \nFukutin | \n9q31 (AR) | \n|||
LGMD type 2N | \nProtein-O-mannosyl-transferase 2 | \n14q24 (AR) | \n|||
Congenital muscular dystrophy (CMD) | \n|||||
MDC1A | \nLaminin α2 chain of merosin | \n6q2 (AR) | \nCongenital onset | \nProgressive muscle weakness; severity of disease progression varies; respiratory impairment observed in CMD with merosin deficiency, WWS, MDC1C, Ullrich syndrome. | \nNo cure available to date. No specific treatment existent. Current pharmaceutical management includes a combination of orthopaedic supportive care, regular monitoring, and intervention to treat and control respiratory insufficiency. | \n
MDC1C | \nFukutin-related protein | \n19q13 (AR) | \n|||
MDC1D | \nLike-glycosyl transferase | \n22q12 (AR) | \n|||
FCMD | \nFukutin | \n9q31-q33 (AR) | \n|||
Fukutin-defective WWS | \nFukutin | \n9q31-q33 (AR) | \n|||
Protein-O-mannosyl-transferase 1 defective WWS | \nProtein-1-O-mannosyl-transferase 1 | \n9q34 (AR) | \n|||
Protein-O-mannosyl-transferase 2 defective WWS | \nProtein-O-mannosyl-transferase 2 | \n14q24 (AR) | \n|||
Protein-O-linked mannose β1,2-N-aminyltransferase 1 defective WWS | \nProtein-O-linked mannose β1,2-N-aminyltransferase 1 | \n1p34 (AR) | \n|||
Fukutin-related protein defective WWS | \nFukutin-related protein | \n19q13 (AR) | \n|||
Ullrich syndrome-collagen type VI subunit α1 defect | \nCollagen type VI, subunit α1 | \n21q22.3 (AR) | \n|||
Ullrich syndrome-collagen type VI subunit α2 defect | \nCollagen type VI, subunit α2 | \n21q22.3 (AR) | \n|||
Ullrich syndrome-collagen type VI subunit α3 defect | \nCollagen type VI, subunit α3 | \n2q37 (AR) | \n|||
Integrin α7-defective CMD | \nIntegrin α7 | \n12q13 (AR) | \n|||
Integrin α9-defective CMD | \nIntegrin α9 | \n3p21.3 (AR) | \n|||
Facioscapulohumeral muscular dystrophy | \nUnknown | \n4q35 (AD), 18 (AD) | \n7–30 | \nSlowly progressive disease with facial and shoulder muscle weaknesses; uncommon/mild cardiac impairment and infrequent respiratory problems. Hearing loss reported. | \nNo cure available to date. Symptomatic treatment and physiotherapy. | \n
Emery-Dreifuss | \nEmerin | \nXq28 (XLR, AD) | \n4–20 | \nSlow-progressive muscle weakness and wasting affecting upper arms, lower legs, shoulder, and hips; cardiac problems (arrhythmia, conduction block); infrequent respiratory problems. | \nNo cure available to date. Current management aims to prevent sudden cardiac death (use of pacemakers, cardiac transplantation) and correction of skeletal complications to maintain ambulation (Achilles tenotomy, surgery, orthopaedic support). | \n
OPMD | \nPABPN1 | \n14q11.2 (AD, AR) | \n30–60 | \nSlow-progressive muscle weakness affecting muscles of the eyes (ptosis), throat (dysphagia), and proximal limb. Aspiration pneumonia reported. No cardiac problems reported. | \nNo cure available to date. Symptomatic and supportive care management (nasogastric feeding, surgery). | \n
Myotonic dystrophy (DM) | \n|||||
DM1 | \nDMPK | \n19 (AD) | \nAny | \nSlowly progressing multisystemic disease leading to muscle wasting, cataracts, heart conduction defects, and myotonia. Endocrine changes reported. Respiratory problems infrequent. | \nNo cure available to date. Symptomatic treatment and physical activity. | \n
DM2 | \nZinc finger protein 9 | \n3 (AD) | \n8–50 | \n
Summary of major muscular dystrophies.
MDC1A = congenital muscular dystrophy with merosin deficiency; MDC1C = congenital muscular dystrophy and abnormal glycosylation of dystroglycan; FCMD = Fukuyama congenital muscular dystrophy; WWS = Walker-Warburg syndrome; X-R = X-linked recessive; AD = autosomal dominant; AR = autosomal recessive.
With an estimated incidence of 1 in 3600 to 6000 boys, DMD is one of the most common and severe forms of muscular dystrophies with an early-onset and progressive muscle weakness leading to the loss of ambulation by the second decade. This X-linked recessive condition is caused by mutations in the dystrophin gene (DMD, locus Xp21.2), which is expressed in skeletal, smooth, and cardiac muscles, and hence the pathological involvement of different organs beyond skeletal muscle weakness, including respiratory and cardiac systems. The DMD gene comprises 79 exons and encodes a 14-kb mRNA transcript. This gives rise to a large protein product (427 kDa), a crucial cytoskeletal protein that mediates major structural and signalling functions within muscles. Four functional units make up the dystrophin protein. These include the actin-binding domain at the N-terminus, the rod domain consisting of 24 spectrin-like domains with four interspersing hinges, the cysteine-rich domain that mediates binding to β-dystroglycan, and the C-terminal domain mediating binding to syntrophin and dystrobrevin. These binding units confer a principal structural role for dystrophin facilitating its assembly with other proteins to form the dystrophin-associated glycoprotein complex (DAGC) (Figure 1) [1, 4, 5].
\nThe role of dystrophin in muscle physiology and disease. (A) The Dystrophin-associated Glycoprotein Complex (DAGC) in skeletal muscle; (B) schematic illustration of exons that make up the DMD gene; (C) consequences of a frameshift mutation in the DMD gene illustrated by exon 50 deletion; and restoration of dystrophin expression with exon skipping therapeutics.
Deletions in one or more of the 79 exons that make up the DMD gene are common in DMD and account for approximately two thirds of the reported mutations. Other documented disruptions within the DMD gene include duplications (~10%), point mutations (~10%), and smaller rearrangements (15%) [6]. These lead to loss of dystrophin, which in turn destabilises the DAGC, resulting in the weakening of muscle fibre strength, increased susceptibility to stretch-induced damage, and raised intracellular calcium influx. These physiological disturbances account for the underlying histopathological features often observed in skeletal and cardiac muscles from affected patients, including muscle fibre necrosis, inflammation, and substitution with fibroadipose tissue [7, 8].
\nNo curative treatment is currently available for most muscular dystrophies, including DMD. Current approaches involve relieving symptoms, delaying disease progress, and preventing complications [2]. Although these interventions proved beneficial in the short term, none of them can provide a long-term treatment and a permanent correction of the underlying pathological features. From a molecular point of view and based on advances in the identification of genes behind the observed phenotypes, most of these muscle pathologies represent good candidates for treatment with gene-based therapies.
\nDMD has been the main focus and the proof-of-principle model for most gene therapy strategies targeting neuromuscular disorders, over the past years, with proof-of-concept validated in preclinical and clinical settings. The first clinical trial in the neuromuscular field, in fact, involved a gene replacement approach to deliver full-length dystrophin via a nonviral method of transfer [9]. The observed low expression levels, however, at local injections sites, highlighted the need for potent gene replacement transfer systems. Of these, adeno-associated viruses (AAVs) are seen as the best available option. The efficiency of functional dystrophin expression in patients with DMD, using AAV as a vector, was assessed in a phase I clinical trial [10]. The approach was shown to be safe with no concerning side effects, although overall efficiency was compromised by the development of dystrophin-specific T-cell-mediated immune responses. This finding was complemented by observations that preexisting T-cell-mediated immune responses to AAV were present, which, together with the dystrophin-specific T-cell responses, could have contributed to the low transgene expression levels detected following intramuscular injection. These early conclusions highlighted the need to circumvent immune destruction of therapeutic transgenes, by delivering unaffected homologs of dystrophin. Of these, a microutrophin-expressing recombinant AAV2/6 was shown to restore the dystrophin-glycoprotein complex and revert pathology in dystrophin (-/-)/utrophin (-/-) double-knockout mice model [11]. Delivering truncated versions of target proteins or their homologs, however, does not reconstitute a full gene replacement approach for DMD. Microdystrophin and minidystrophin transgenes often lack some crucial rod and hinge domains of full-length dystrophin, including neuronal nitric oxide synthase, syntrophin, and dystrobrevin, hence compromising maximal dystrophin functionality and membrane rigidity. This led to the engineering of triple AAV constructs using trans-splicing and hybrid methods, capable of delivering full-length dystrophin following coinfection of the tri-vectors in affected muscles in vivo [12, 13]. In trans-splicing, each vector acts as an independent construct holding sequential exonic sequences of human dystrophin’s coding sequence. Coinjection of the vectors cause the constructs to cojoin via their inverted terminal repeats and deliver a full-length therapeutic transgene. These results circumvent the limited packaging capacity of AAVs and offer clinical hopes for boys with severe forms of DMD, for which the reversion of phenotype to a milder disease form [Becker muscular dystrophy (BMD)] using microdystrophin or minidystrophin-expressing AVV is not sufficient.
\nAlthough these gene replacement therapies are still in the early clinical phase of research and development, exon skipping-based therapeutics for DMD is progressing faster. Antisense oligonucleotides (AONs) have long been an effective alternative to dystrophin gene replacement therapy. These work by binding to the dystrophin transcript at sites that interfere with normal RNA processing, so that exons containing the mutations are bypassed, giving rise to in-frame transcripts capable of producing shorter yet functional protein products (Figure 1C). This was based on observations that BMD-like patients have in-frame transcripts with shorter dystrophin yet still maintain ambulation [14]. Hence, manipulating the splicing pattern of mutant dystrophin in DMD patients with an AON-based approach has the potential to alter disease phenotype from a clinically severe form of DMD to a milder BMD phenotype. For instance, the reading frame of dystrophin could be restored by blocking specific enhancers or splicing regulatory elements responsible for controlling the gene’s exon recognitions. The approach was initially demonstrated in vivo in the mdx mouse model of DMD, bearing a single-point mutation in exon 23 that creates a stop codon with subsequent absence of dystrophin expression. Using a 2′-O-methyl (2′OMe) oligoribonucleotide complementary to the murine intron 22’s 3′ splice site, it was possible to restore sarcolemmal expression of dystrophin in transfected myotubes in vivo [15]. The proof-of-concept has also been demonstrated in relevant human cell culture models derived from DMD patients bearing an exon 45 deletion, one of the most frequently deleted exons in DMD. The efficient restoration of dystrophin’s coding frame was achieved by targeting splicing regulatory elements in exon 46 using a 2′OMe oligonucleotide [16]. Similarly, a successful correction was achieved through exon 51 skipping in a phase II clinical trial, where a successful restoration of both dystrophin and the DAGC was observed in patients with a deletion in exons 45 to 50 or exons 48 to 50 [8, 17], opening up great therapeutic hopes and paving the way towards late-stage clinical trials. A Biologics License Application (BLA) was submitted to the Food and Drug Administration (FDA) for approval of the antisense agent PRO051, 2′OMe (drisapersen) targeting exon 51 for DMD. However, this application was recently rejected, as a phase III study (NCT01803412) of long-term intake failed to meet its primary efficacy endpoint and also showed evidence of significant toxicity to a number of organs. Another similar antisense agent, eteplirsen, is currently under the FDA review for approval.
\nAlthough AON-based therapy for DMD has long been the prime attention of scientists and clinicians, this approach does not provide a long-term cure for DMD. Regular administrations of high doses are required to achieve a constant skipping and redirection of gene expression.
\nWith advances in human genome and increasing need to provide a simplified long-term curative approach for genetic muscle diseases, new sophisticated technologies based on gene editing have emerged. These aim to permanently correct disease phenotypes in affected individuals using site-directed endonucleases such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR). These corrections occur through the generation of double-stranded DNA breaks that will eventually induce intrinsic cellular DNA repair mechanisms mostly via nonhomologous end joining (NHEJ) [18, 19].
\nZFNs are currently the highly advanced gene editing system. Initially, these were rationally designed taking advantage of key biological properties of zinc finger transcription factors such as their DNA sequence recognition function. Each zinc finger component is composed of ~30 amino acids and is capable of recognising 3 bp of DNA. The overall structure is arranged in tandem repeats of zinc finger motifs, hence allowing the recognition of longer sequences of DNA. The nuclease activity of ZFNs is conferred through fusion to FokI endonuclease’s catalytic domain. This design ensures that enzymatic and subsequent DNA cleavage activities are only targeted to sites recognised by the binding domains of ZFNs. The latter consist of Cys2His2 zinc finger structures, in which a single zinc atom is surrounded by 30 amino acids and is capable of recognising 3 bp of DNA. More often, however, three to six zinc finger units are assembled, which allows the recognition of 9- to 18-bp DNA sequences. This is usually regarded as acceptable for a single locus targeting in a human genome. From a structure-activity relationship, however, full functionality is not achieved unless FokI is presented in a dimerised form so as two DNA cleavage domains are dimerised around the target DNA sequence [19, 20]. In an attempt to maximise the biosafety profile of ZFNs, several methods have been employed to increase specificity. These include limiting the spacer length between the recognition sites of chimeric ZFN subunits [20]. In fact, ZFNs with shorter interdomain linkers connecting the Cys2-His2 zinc finger and the nuclease domains were shown to have a restricted activity with a 6-amino acid linker exerting the most selective activity at a target DNA site with a 6-bp spacer [21]. Another approach has been to generate obligate heterodimer nuclease domains with decreased off-target effects [22–24]. This is associated with a relatively weaker interaction between the heterodimer cleavage domains, which would necessitate stronger interactions between each monomer and the target site to achieve a site-specific cleavage while minimising cleavage at weakly bound nontarget sites. This low-affinity high-avidity approach has been proposed as a plausible mechanistic approach behind the site-specific cleavage activity of the newly engineered obligate heterodimer FokI domains. An alternative to the obligate heterodimer method has been the expression of autonomous ZFN pairs, the combined expression of which was as effective as obligate heterodimer ZFN domains at inducing targeted chromosomal deletion in mammalian cells, with reduced toxic effects that are often thought to be linked with unwanted individual ZFN subunits’ cross-reaction [25]. The enhancement of FokI’s enzymatic activity has also been reported, whereby an in vivo evolution-based method was employed to further increase the cleavage activity of FokI. The incorporation of the enhanced domain in heterodimer ZFN structures resulted in a potent product with improved overall cleavage profile [26].
\nThe successful correction of different genetic mutations associated with various diseases, including sickle cell anaemia [27], haemophilia [28], α1-antitrypsin deficiency [29], X-linked severe combined immunodeficiency [30], and, more recently, HIV [31, 32], has led to its application in DMD, in which precise gene editing can be achieved by deleting targeted exons from the dystrophin gene. For instance, using extended Modular Assembly (eMA)/Context-Dependent Assembly (CoDA) methods, it was possible to generate several exon 51 targeted ZFNs. Two of which demonstrated a remarkable activity with mild off-target mutagenic effects in myoblast cells from DMD patients, harbouring a deletion of exons 48 to 50. When implanted into the hind limb of immunodeficient mice, the corrected myoblasts were capable of maintaining dystrophin expression in vivo, with a correct sarcolemmal localisation [33]. This proof-of-concept study has shown that the ZFN-based approach could potentially be adopted under a cell-based therapy approach for DMD, hence holding a promising faster translation into the clinic, considering that the approach is already in clinical trials for ex vivo cell modifications in HIV [32].
\nTALENs were originally isolated from Xanthomonas bacteria, plant pathogens capable of employing up to 40 effector proteins to circumvent eukaryotic cell defences during a host infection [34]. These are composed of repeated motifs of 33 to 35 amino acid residues, identical with the exception of the 12th and 13th residues, which are often known as the repeat-variable di-residues. The latter play a key role in TALEN’s DNA-binding specificity, whereby a different pair of amino acids would exhibit a specific binding to a corresponding nucleotide in the target sequence. For instance, the asparagine (Asn; N)-isoleucine (Ile; I) NI, the histidine (His; H)-aspartate (Asp; D) HD, the Asn-Asn NN or the Asn-lysine (Lys; K) NK, and the Asn-glycine (Gly; G) NG pairs preferentially bind to adenine, cytosine, guanine, and thymine, respectively. These constitute TALENs’ DNA-specific binding domains, which, like ZFNs, are conjugated to nonspecific FokI cleavage domains, hence directing them to the target site for gene editing and subsequent correction of the final protein product. A recognition sequence of 14 to 20 bp, together with an appropriately spaced FokI subunits separated by 12 to 19 bp, will ensure good genomic target recognition with maximal cleavage activity owing to efficient FokI dimerisation [35, 36].
\nAlthough not yet being as clinically advanced as ZFNs, the lower cost and ease of production of TALENs have generated an increasing interest in the technology. Recent work in DMD has shown the feasibility of the approach using optimised exon 51 targeted TALEN-encoding plasmids transfected into myoblast cells isolated from two different patients with deletions in exons 48 to 50. A satisfactory gene correction was observed with up to 12.7% and 6.8% of alleles confirmed to have indels in the two treated patient myoblast cell lines, respectively. This correction was further correlated with a good restoration of dystrophin expression at the expected predicted size of ~412 kDa compared to its expression in the wild-type isolated myoblasts [37]. Whole exome sequencing of the successfully corrected TALEN-treated cells revealed no insertions or deletions, except at the exon 51 target locus. Further analysis using the TALE-NT 2.0 Paired Target Site Prediction web server confirmed the nature of the observed single-nucleotide variants occurring. These were in fact related to expected genomic mutations that normally occur during cell clonal expansion, as none of these showed any similarity to the employed TALEN target site with spacers of 1 to 30 bases [37].
\nBesides the dystrophin gene as a main target in DMD, other genes have received comparable interest as targets for TALEN-based gene editing. Of these, myostatin (MSTN) has been the centre of attention as a member of the transforming growth factor-β family. This is mostly linked to its recognised role in muscle physiology, acting as a negative regulator of skeletal muscle mass. In fact, studies have shown that mutations in the MSTN gene cause an increase in skeletal muscle fibre numbers and sizes, which in turn lead to muscle hypertrophy without any alarming consequences [38–40]. These observations were recently translated into therapeutic interventions, whereby inhibiting the MSTN signalling pathway using pharmacological agents has shown real benefits in DMD but also in other muscle wasting pathologies such as sarcopenia and cancer cachexia [41–45]. A phase I study is currently under way to assess the safety of an anti-MSTN monoclonal antibody in advanced cancer patients with cachexia (NCT01524224). The same approach using a different pharmacological agent, BMS-986089 (Bristol-Myers Squibb), will soon be tested in a first clinical trial involving patients with DMD (NCT02515669). From a molecular therapeutic point view, MSTN gene editing provides a long-term control to switch off MSTN signalling in the wasted affected muscles. The approach was successfully demonstrated recently using a pair of TALEN-expressing plasmids targeting the human exon 2 locus, a highly conserved region within the coding sequence of the MSTN gene. Consistent with previous ZFN-related toxicity studies, the reported MSTN-TALEN targeted system was engineered using obligate heterodimers of the FokI domain to minimise off-target effects often seen with homodimer variants. Initial experiments in the HEK293 cell line revealed that the mutation induced by the TALEN approach was persistent with indels still detected 1 month after transfection using the T7E1 assay, a commonly used enzyme mismatch cleavage method for detecting mutations. A similar finding was reported in four different cell lines from different species including human, bovine, and murine cells. Further investigation in primary myoblast cultures derived from a dysferlin-deficient mouse model as well as from patients with dysferlinopathy confirmed an efficiency of 10.3% to 24.6% of gene editing after treatment [46]. Although most ZFN- and TALEN-based gene editing systems for muscle diseases to date have been engineered based on NHEJ mechanisms, proof-of-concept data are now emerging on TALEN-mediated homology-directed DNA repair (HDR). Targeted integration of dysferlin, a mutation of which is associated with limb-girdle muscular dystrophy (LGMD) type 2B and Miyoshi myopathy, has been shown following cotransfection of HEK293 with MSTN targeted TALEN-expressing plasmid and a donor plasmid expressing dysferlin tagged to an enhanced cyan fluorescent protein under a cytomegalovirus (CMV) promoter [46]. Although this approach is still at its early research and development stage, the results obtained in vitro remain promising and could offer the basis for future TALEN-corrected myoblast transplantation therapy for a number of severe muscular dystrophies.
\nRecent achievement in the field of gene editing has seen the emergence of CRISPR as a novel correction tool in biomedicine. CRISPRs were first described in prokaryotes as part of an RNA-guided adaptive immune system to protect against foreign intrusions such as viruses and plasmids. In response to these, bacteria and archaea are programmed to incorporate short sequences of foreign DNA at one end of a repeat element, which is often referred to as the CRISPR. The integrated inserts between the repeat elements of prokaryotic CRISPR-associated (Cas) loci hence confer a permanent future mechanism of defence against the past invaders [47]. Three types of CRISPR/Cas systems (I–III) have been described, with differing structural, functional, and mechanistic characteristics. Each system, however, shares a similar sequence arrangement of short repeated units of 30 to 40 nucleotides, separated by a unique “target” specific nonrepeated sequence (a spacer) of equal length [48, 49]. A leader sequence incorporating a promoter is often present, which initiates a unidirectional transcription of CRISPR sequences. Whereas types I and III systems are present in both bacteria and archaea, type II systems have been reported in bacteria only [50]. Type II systems that use a unique Cas protein referred to as Cas9 are of particular interest in medical application. The RNA-guided, nuclease-mediated genome editing of a type II CRISPR system is mediated by Cas9, a nuclease that is directed to the target DNA site by a single-guide RNA recognising a specific locus next to the protospacer adjacent motif. This subsequently creates a double-stranded break, which could be repaired by NHEJ or by a homology-directed mechanism of repair provided that an exogenous plasmid donor is codelivered [51].
\nIn muscular dystrophy, the CRISPR/Cas9-based technology could theoretically be employed to correct germ-line DNA prenatally in one-cell zygotes or as a postnatal treatment. The first approach was recently tested in vivo in mdx zygotes. By injecting a single-guide RNA-guided CRISPR/Cas9 together with an appropriate HDR template, Long et al. demonstrated for the first time the feasibility of the approach to correct a nonsense mutation in exon 23 of the DMD gene [52]. Although the CRISPR/Cas9-treated mdx zygotes produced mice with varying degrees of gene correction, those showing 41% of gene correction by HDR and 83% correction by NHEJ repair mechanisms demonstrated a complete disease-free phenotype with normalisation of dystrophin expression at the histological level [52]. Despite showing some promising results in DMD, a successful germ-line DNA gene editing strategy would (if ever ethically permissible) require a good knowledge of the nature of mutation affecting the maternal disease carrier to allow a site-specific targeted correction. This prior knowledge, however, could be problematic in X-linked DMD in which it is estimated that one third of all mutations in the DMD gene arise spontaneously [53] and hence would not qualify for a Cas9 gene editing-based treatment. This would restrict the approach to the correction of well-characterised known point mutations, which only make 15% of DMD mutations. One alternative approach to consider would be a postnatal DMD gene correction. This was recently demonstrated using multiplexed single-guided RNAs to direct the Cas9 nuclease to mutations at exons 45 to 55 of the dystrophin gene [54], an approach that has the potential to correct more than 60% of mutations in DMD patients owing to the large hotspot mutation deletion achieved. Despite a good restoration of dystrophin expression both in vitro and in vivo following transplantation of the CRISPR/Cas9-treated DMD patient myoblasts into immunodeficient mice, the overall deletion efficiency, however, was less than that obtained following exon 51 deletion [54]. This suggests that the size of the targeted sequence is crucial in dictating Cas9-associated gene editing capacity to mediate an efficient repair by NHEJ or HDR, where a size-dependent decrease in nuclease-mediated gene deletion was previously noted [55]. Although proof-of-concept has eloquently been shown in research settings, CRISPR/Cas9-based gene editing in DMD would only be envisioned in the clinic should appropriate gene delivery methods are employed. Gene transfer systems capable of directing the elements of the CRISPR/Cas9 cassette to the diseased muscles in vivo are needed to ensure a satisfactory DMD gene editing and a full therapeutic outcome. For instance, AAV has previously been shown to be a safe and an effective gene transfer system in some clinical trials for gene replacement therapy [56]. In this regard, the AAV8 and AAV9 serotypes would be useful delivery tools for CRISPR/Cas9-mediated gene editing for DMD, owing to their reported efficient gene transfer to skeletal muscles and the heart following systemic administration [57, 58], which therefore could potentially result in a robust gene correction at the key target tissues harbouring the mutation in DMD patients. Recent studies have demonstrated the efficiency of AAV as a good platform tool for CRISPR/Cas9-mediated gene editing transfer to dystrophic muscles in DMD disease models in vivo. The approach was recently tested following administration by three different systemic routes, including intraperitoneal, intramuscular, and retro-orbital injections in postnatal mdx mice, and proved to be successful with an increasing dystrophin expression reported from weeks 3 to 12 after virus injection. This correlated with an overall improvement in skeletal muscle function [59]. Mutated exon 23 targeted deletion was also demonstrated to restore disease phenotype in both neonatal and adult DMD models in vivo by systemic and local delivery of a CRISPR/Cas9-expressing AAV [60]. A similar viral-mediated transfer of a CRISPR/Cas9 system coupled with paired guide RNAs flanking the mutated exon 23 in DMD proved that AAV is a good gene editing transfer system for local and systemic restoration of dystrophin expression in muscle cells but also myogenic stem cells in diseased muscle in vivo [61].
\nProof-of-concept studies in DMD have opened new horizons in the application of gene editing in other muscular pathologies for which the correction of toxic genes is believed to address the underlying dynamic mutations often associated with triplet repeat expansion and some locus contractions disorders.
\nOPMD is an inherited autosomal dominant, slow-progressing, late-onset degenerative muscle disorder characterised by progressive eyelid drooping (ptosis), swallowing difficulties (dysphagia), and proximal limb weakness. Whereas the incidence in Europe is 1/100,000, the disease has been largely reported in the Bukhara Jew population in Israel (1/700) and the French Canadian population in Quebec (1/000) [62].
\nThe underlying genetic defect behind OPMD is an abnormal expansion of a (GCG)n trinucleotide repeat in exon 1 of the PABPN1 gene, which leads to an expanded polyalanine tract at the N-terminal of the PABPN1 protein (12–17 repeats are often detected in mutant PABPN1 compared with only 10 repeats in the wild-type protein) [62].
\nFrom a molecular therapeutic point of view, OPMD is a good candidate for gene editing-based treatment. Previous studies have shown the importance of abrogating intranuclear inclusions (INIs) of mutant PABPN1, the main pathological hallmark of the disease, with neutralising agents capable of binding aggregated mutant proteins. Of these, intrabodies were shown to be effective in reducing mutant PABPN1-associated INIs and restoring a normal pattern of gene expression in a Drosophila OPMD model [63]. Although these show antiaggregate properties by tackling the disease phenotype at the protein level, they do not address the underlying molecular pathology behind it, hence necessitating a repeated administration approach to keep the disease under control. In this regard, gene editing could offer a long-term permanent therapeutic advantage. Allele-specific correction of expPABPN1 can be achieved by CRISPR/Cas9-mediated editing targeting the expanded GCG moiety. Unlike recently tested short hairpin RNA (shRNA)-based knockdown of PABPN1 [64], this gene level of correction could result in a permanent production of functional PABPN1 protein that is capable of correcting the OPMD phenotype at both histological (reduction of pathological aggregates) and molecular (abrogation of mutant PABPN1) levels. The need for an adjunct gene replacement therapy as is often the case in knockdown approaches [62] could no longer be necessary. However, thorough characterisation and mechanistic studies would need to be conducted both in vitro and in vivo to confirm CRISPR/Cas9 editing specificity towards the expanded mutant PABPN1 with no obvious off-target effects on the wild-type PABPN1 gene or indeed other genes within the treated tissues.
\nDM is an autosomal dominant, slow-progressing inherited multisystem genetic disorder affecting the muscles (causing wasting), the eyes (leading to cataracts), and the heart (causing conduction defects). The disease is also characterised by metabolic disturbances (endocrine changes) and prolonged contraction of skeletal muscles (myotonia).
\nTwo types of DM have been defined to date. These include DM type 1 (DM1) and DM type 2 (DM2), with DM1 being the most severe and most common form of DM. Overall incidence has been estimated at 3 to 15 per 100,000 in Europe with a higher prevalence in Iceland (1:10,000) and a reported incidence of as high as 1:500 in Quebec [65]. The disease is caused by a CTG trinucleotide expansion in the 3′-untranslated region of the DMPK gene. CTG repeats exceeding 37 are considered abnormal with larger repeats (below 400 repeats) leading to a more severe disease [66, 67]. Like most debilitating muscular pathologies, no curative treatment currently exists for DM. The use of pharmacological agents [68, 69] and antisense RNA-based therapies [70–72] have shown improvements in disease phenotype, but overall benefits on the long-term remain, in some cases, limited and full therapeutic efficacy is yet to be demonstrated in the clinic. Although still in its early infancy, gene editing for DM treatment is an appealing alternative to most pharmacological and gene therapy approaches reported to date. Correction of mutant DMPK at the gene level offers the possibility for a permanent modulation of pathological phenotypes and long-term disease control. A recent study has shown the feasibility of editing intron 9 in the DMPK gene in DM1 neural stem cells derived from human DM1 induced pluripotent stem cells (iPSCs) using a TALEN-mediated homologous recombination-expressing cassette integrated upstream of the CTG repeats [73]. A significant reduction in nuclear RNA foci, together with restoration of normal microtubule-associated protein τ (MAPT) and muscleblind-like (MBNL) splicing patterns, were observed [73]. Although transition into clinical use may be long and difficult, this proof-of-concept ex vivo study offers a rationale for the genetic correction of DM1-dervied stem cells as a potential autologous cell therapy for DM1 patients in the future.
\nRegulatory pathway for advanced therapy medicinal products. MAA = Marketing Authorisation Application; BLA = Biologics License Application; EMA = European Medicines Agency; FDA = U.S. Food and Drug Administration; PIP = Paediatric Investigation Plan; ATMPs = Advanced Therapy Medicinal Products.
In October 29, 2015, the United Kingdom became the first country in the world to legally approve one type of a human germ-line gene modification based on mitochondrial replacement. This approach is thought to save at least 10 children each year from mitochondrial diseases by preventing maternal transfer of mutations in mitochondrial DNA to offspring (Department of Health, 2014). Human germ-line genetic engineering, however, is currently not permitted in the United Kingdom and in other European countries. Although a somatic gene editing-based approach would be less questionable from an ethical point of view, a number of safety concerns would need to be addressed from a regulatory perspective. In accordance with Article 2(1)(a) of Regulation (EC) No. 1394/2007 and as per the European Medicines Agency (EMA) classification, gene editing-based products, including cells modified ex vivo, will be regulated as advanced therapy medicinal products (ATMPs) for which a central authorisation procedure governed by the EMA would apply (Figure 2). This would eventually lead to a single marketing authorisation that is valid across the entire EU and the European Economic Area (EEA) countries. A number of guidelines on the requirements for product quality and preclinical and clinical studies have been issued by the EMA over the past years to facilitate the transition of promising experimental advanced therapies into the clinic.
\nThe risk of inducing modifications at off-target genes, leading to unwanted side effects, is a major safety concern. The degree of off-target events and their clinical implications are crucial questions that need to be carefully addressed as part of a regulatory new investigational drug development plan. The primary concern is that modifications could be carcinogenic. It must also be remembered that (unless the therapy is based on a cell type that is selected and clonally expanded after modification) the off-target effects will be heterogeneous from cell to cell, so the analysis must encompass a suitably large (and potentially diverse) population of cells exposed to the modifying agent to evaluate if any cells may be adversely transformed even at low frequency. There may also be risks associated with changes that have cytotoxic effects, and if such effects are frequent in the same cells that undergo correct gene editing, the consequences could include loss of efficacy.
\nIn this regard, rigorous quality assurance tests would need to be conducted to identify any insertions or deletions that could result from a gene editing NHEJ-based treatment. These include gene sequencing, mismatch cleavage assays based on CelI or T7 endonuclease I enzymes, and the tracking of indels by decomposition (TIDE) method. These tests could be used as quality assurance tools to determine the number and location of indels or substitution events occurring after gene editing treatment, more often based on in silico predictions. However, as previously noted with ZFNs, some mutations could occur near cryptic off-target sites that are not predictable in silico [74]. Care should also be taken when validating the assays employed for product characterisation purposes. This follows from previous observations whereby initial analysis by whole genome sequencing (WGS) in gene-corrected human iPSCs (hiPSCs) revealed a large number of indels, of which some were confirmed to be false positive [75]. This highlights some limitations of WGS and calls for a multitesting approach employing different analytical methodologies.
\nAlthough current assays would be valuable in identifying the location of suspected off-target mutations that could arise from NHEJ or HDR-based gene editing treatments, they do not, however, provide precise information on the ability of these mutations to cause carcinogenicity in the long term. Hence, additional functional studies are required to assess the significance of these off-target events at the molecular and cellular levels. For instance, an unwanted insertion in the middle of an essential gene sequence could have dramatic consequences. One should have enough knowledge on the biological and physiological functions of the affected gene to draw an informed decision on the overall safety of the proposed approach. Similarly, an off-target insertion into an enhancer or a repressor region would disturb genetic homeostasis resulting in an unwanted down-regulation or up-regulation of genes that come under the affected promoter. This could subsequently interrupt normal cellular activity with potential alteration of phenotype at histological and physiological levels. Although not all mutations could affect cellular proliferation, an unwanted “indel” mutation occurring within genes known to regulate cell replication or involved in programmed cell death raise an alarming concern from a safety point of view. This is due to potential risks arising from a compromised cellular viability leading to severe toxicity in healthy tissues or an uncontrolled replication that could eventually lead to tumour formation. These potentially serious consequences warrant careful considerations during early product development stages; hence, basic biological studies to further characterise the sites at which these mutations have occurred should be conducted as ad hoc validation studies to rule out any unwanted insertional mutagenesis and/or tumourigenic consequences following a gene editing-based treatment.
\nAlthough clinical safety experience with biological therapies based on gene editing is lacking, current product development and regulatory strategies should also draw from past and available human clinical trial data on retroviral and lentiviral vectors’ integration sites. A key safety parameter would be to satisfy the regulatory bodies that those detected off-target effects have been thoroughly characterised and occur at “low risk” sites unlikely to cause insertional oncogenesis following integration of foreign DNA. In fact, not all events at off-target genomic sites would result in serious side effects. For instance, those occurring at “extragenic” sites distant from essential gene regulatory sequences are less likely to cause harm than those affecting “intragenic” sites. Modifications to sites that do not fall within a gene transcription unit as well as those situated more than 50 kb away from the 5’ end of any gene and more than 300 kb from genes linked with cancer or microRNA sites are generally considered safer. Genomic sites not within ultraconserved regions and outside long noncoding RNAs would also represent low-risk sites in the event of off-target DNA integration [19, 76].
\nFurthermore, validation studies should not only focus on the affected off-target sites but also neighbouring sites by measuring the effect of these mutations on neighbouring gene expression. These studies should ideally be validated in vivo. The choice of appropriate animal models, however, remains a challenge and care should be taken when interpreting data [19, 76, 77].
\nAlthough basic biological studies are valuable in assessing the extent of genome modification as a whole and increasing our understanding of different alterations taking place including those that are unlikely to result in clinical toxicity, they do not fill all the regulatory requirements gaps. Functional toxicity studies would, therefore, need to be conducted in parallel early during the preclinical stage of product development. Two paramount questions would need to be carefully addressed to satisfy regulators’ concerns on serious toxicity issues that are specific to genome editing-based medicines. These include cytotoxicity and genotoxicity. Tumourigenicity is the most important safety consequence to consider, but germ-line effects are also not expected to be permissible. Cytotoxicity may be caused by (i) the vector itself (including expression of viral vector antigens and potential persistence of the vector in cells), (ii) gene editing machinery (and any persistence thereof, especially DNase), (iii) off-target gene editing, or (iv) on target gene editing (possible if the editing is either not accurately restoring the wild-type or is generating new antigenicity and/or genetic instability).
\nEloquent studies and approaches would have to be designed to address these issues. At preclinical stage, this could include viability assays based on GFP-positive (GFP+) cells, whereby the treated cells are cotransfected with the tested nuclease-expressing construct and a GFP-expressing plasmid. This would allow investigators to track and quantify any observed decline in the GFP+ cell population as a result of a nuclease-related toxicity. The approach would also be valuable in dose escalation studies when deciding on optimal dosage administration for subsequent first-in-human clinical studies. Monitoring of clonal changes has also been used as an informative way to assess genotoxicity in vitro in cells pretagged with unique short sequence identifiers to allow tracking of changes in starting clone dynamics over a period of time [78]. Similarly, other approaches have relied on fluorescently tagged cell cycle indicators in cell lines such as HeLa FUCCI cells as a complementary in vitro validation method to assess the genotoxicity effects of genome editing at the cell cycle level [79].
\nHowever, it is important to bear in mind that measuring cytotoxicity and genotoxicity using approaches based on reporter genes and tagging systems is restricted to preclinical assessments and cannot be employed at later stages of product development when assessing potential toxicity in human clinical trials. Hence, the need for clinical toxicity assays that are fit for purpose should not be neglected. Furthermore, correlation of these assays with clinical outcomes is yet to be demonstrated. For this reason, all functional toxicity studies conducted in vitro should use cellular models and gene transfer methods that are similar to those intended to be applied in clinical settings to fulfil some of the safety regulatory requirements.
\nPotential cytotoxic effects do arise not only from on-target and off-target effects but also from the employed gene transfer system itself. In this regard, the type of vector (viral or nonviral) and the gene (nuclease) transfer approach (direct in vivo delivery versus ex vivo) adopted will have to be implemented earlier during product development and considered as part of the constructed regulatory strategy for the nuclease-based medicine under consideration.
\nFor severe neuromuscular disorders in which there is a widespread distribution of affected muscles, AAV vectors and in particular serotypes 8 and 9 are seen as ideal systems for gene editing-based nuclease transfer to diseased muscle tissues owing to their relatively high tropism for skeletal muscle cells and the heart [57, 58] as well as their documented safety profile in the clinic following recent approval of Glybera® in Europe [80]. From a product development point of view, this can be achieved through an HDR-based gene editing construct packaged within a recombinant AAV. Although technically this is achievable with ZFNs due to a relatively small monomer insert size of ~ 1.2 kb, this might not be the case for Cas9 nucleases. With an insert size of ~4.1 kb, this could be an issue when it comes to packaging a bicistronic construct harbouring a donor DNA template [81], considering the limited packaging capacity of rAAVs. Taking into account the EMA’s guidelines on quality, nonclinical and clinical issues related to the development of recombinant adeno-associated viral vectors (EMEA/CHMP/GTWP/587488/2007 Rev. 1) [82], caution should be taken during the manufacturing stage of the vector to avoid the possibility of producing AAV particles whose packaged DNA is greater than that of wild type virus. Technically, this could be overcome by splitting the Cas9 gene between two vectors. However, this markedly increases the developmental and regulatory complexity, with each product warranting a full characterisation and a thorough assessment of approaches employed during manufacturing, quality control, and preclinical evaluation (including choice of animal models for testing, vector persistence and tropism, reactivation of virus infection, and germ-line transmission) in addition to clinical studies. The latter would have to be based on a data-driven dose selection for each vector used and show a comprehensive picture of virus biodistribution and shedding, immunogenicity profile, and germ-line transmission considering the permanent gene modification achieved with gene editing-based nucleases and the risks associated if the virus expressing these genes accidentally infect germ-line cells. A long-term follow-up is therefore highly recommended and should not be neglected as part of a complete regulatory plan for a gene editing-expressing AAV vector.
\nSimilarly, the use of genetically modified and nonmodified cells including myoblast cells and myogenic stem cells for the treatment of monogenic inherited neuromuscular diseases has been well validated in preclinical and clinical studies [83–86] and it is anticipated that these therapies would become normal treatment modalities in the clinic in the future.
\nAlthough gene edited-based cell therapies for HIV and leukaemia are seeing a rapid positive progress in clinical trials and are rapidly extending to other debilitating diseases, a smooth and safe progress of these life-changing advanced therapies in the market would require fulfilments of a number of criteria from a regulatory point of view. The ultimate goal is to ensure that these therapies would reach the severely affected individuals at minimal health and safety risks with regards to the treated patients themselves as well as third parties and the environment in large. According to the EMA’s guidelines, a multifactorial risk assessment approach needs to be considered taking into account the origin of cells involved, the type of vector employed during the genetic modification procedure, the manufacturing process, the noncellular components used as part of the formulated product, and the intended specific therapeutic use of the final product.
\nLentiviral vectors have long been the vector of choice for the ex vivo engineering of stem cells and muscle progenitor cells for the treatment of muscular dystrophies [87–89]. This adds an additional layer of regulatory requirements from quality, nonclinical and clinical perspectives. The manufacture of viral vectors to the GMP quality standards required for an approvable medicinal product is expensive and often inefficient, but developers are helped by the guidance issued in these areas by the EMA (for example, “Guideline on the quality, nonclinical and clinical aspects of gene therapy medicinal products (EMA/CAT/80183/2014)”) [90], as well as the monograph of the European Pharmacopoeia (Ph. Eur. 5.14). A thorough product characterisation is required as part of this process that would include different but complementary methods based on molecular, biological, and immunological assays with the aim of assuring the identity, purity, and potency of the produced genetically modified cells as a final product. Major considerations for viral vectors used in vivo are the biodistribution, potential for generation and/or shedding of infective virus, potential for germ-line modification, and the impact of interaction with the recipient’s immune status. Clinical use of viral vectors and genetically modified cells should also comply with applicable regulations for genetically modified organisms.
\nComplexities arise from the genetic manipulation (gene correction) as well as the differentiation status and capacity of the modified cells, which could result in a mosaic cell population. Furthermore, intrinsic variations between cells as a result of donor differences give rise to massive batch variations in the final product. From a regulatory perspective and in line with the EMA’s guidelines, nonclinical and clinical studies need to be conducted with cell medicinal products that are well characterised. The manufacturing process needs to be robust and quality control focused capable of maintaining consistency and reproducibility of the final cell-based product. For this, all starting materials need to be well defined and carefully documented. For treatment of muscle diseases, it is often reasonable to administer cell-based products that are in a differentiated state, which may pose less tumourigenic risks. However, one cannot exclude the existence of a subpopulation of cells in an undifferentiated proliferative state. For iPSCs, for example, it is empirical to conduct additional testing of cell transformation and tumour formation during the early manufacturing stage of the product as a precaution measure. This would often need to be combined with the selection of appropriate markers during critical manufacturing steps for assuring a defined stage of differentiation that is intended for therapeutic use.
\nFor any cell-based product that has undergone a substantial ex vivo manipulation, a robust process validation process is therefore paramount and should include a combination of genetic stability, tumourigenicity, and phenotypic profile assessments of both wanted and unwanted cell populations at all critical stages of manufacturing to ensure safety requirements are met. The mosaic nature of cell-based medicinal products often complicate their identity and purity-related characterisation. Most often, it is reasonable to accept that purity does not always equate homogeneity. Truly selective markers that could accurately map and distinguish different cell types and differentiation stages are yet to be identified, which often render product characterisation a challenging task for most developers. Nevertheless, one should not underestimate the importance of a thorough demonstration of product consistency as a minimum requirement for characterisation purposes.
\nThe ability to track any cell-based therapy following administration in patients is crucial for clinical monitoring purposes. However, limitations in current medical methodologies do not allow a full biodistribution profile to be drawn from human studies. Hence, the importance of thoroughly designed biodistribution studies in nonclinical models should take into account the multistep biodistribution characteristics of cell products, including migration, niche, engraftment, differentiation, and persistence, together with reliable in vivo tracking methods such as the use of marker genes or labelled cells. Current European regulatory requirements do not give exemptions when the risk profile of the cell-based product under investigation is subject to a safety concern or when its route of administration (such as intravenous delivery) warrants a special attention. For this, noninvasive methods based on clinically accepted tracers should be considered and their use should be justified when conducting biodistribution studies in human trials.
\nFor diseases caused by genetic defects, means to correct the defect are attractive routes to cure the disease at its source. Medical scientists working in the field of muscular dystrophies are therefore excited by the opportunities that recent developments in gene therapeutics bring to the field. Technologies do now exist for manipulating the human genome in ex vivo cultured cells with considerable specificity. However, there are further technical challenges to solve before such technologies translate into viable medical treatments for affected individuals. The medical need is evident from the severity and incidence of these conditions, which are frequently severely debilitating. It should also be noted that muscular dystrophies are not a single disease but cover a range of conditions caused by different mutations, and it is to be expected that, for specific gene-based therapeutics, a different medicinal product will generally be required according to the different mutation that has caused the disease.
\nThe increasing number of investigational medicinal products entering clinical trials involving patients with DMD and BMD has prompted the EMA to publish its guidelines on the clinical investigation of medicinal products for the treatment of DMD and BMD (EMA/CHMP/236981/2011, Corr. 1) [91], expected to come into effect in July 2016. This gives a general guidance to be taken into account during the clinical development and evaluation of currently investigated therapies for DMD and BMD [91].
\nAs described in this chapter, major recent advances for the enablement of gene-based treatments of muscular dystrophies include the following:
The technologies for the manipulation of the human genome have been refined to levels that achieve the high precision of gene editing that would be expected for a medicinal use. The CRISPR/Cas9-based technique has undoubtedly revolutionised the field that was pioneered through sequence-specific DNA recognition proteins based on zinc finger motifs or TALENS. It is clear that the technology now exists to make desired changes to a genome and therefore in theory to correct genetic defects. However, the remaining molecular challenges to address include (i) achieving sufficient efficiency of the modification for therapeutic benefit, (ii) controlling and/or characterising unwanted off-target genetic modifications to acceptable levels, and (iii) delivering the gene correction throughout the affected tissues of the body.
Much of the recent renaissance of optimism in the potential of gene therapy is driven by a new emphasis on ex vivo treatments, especially for autologous cells. Vectors, such as lentivirus, which generally yield rather low efficiency of genetic transduction in vivo, become therapeutically viable when used ex vivo on cell populations that can also be selected and expanded before readministration to the patient. Cell production technologies have also been adapted to a paradigm based on GMP-compliant enclosed system manufacture of multiple single-patient batches in place of large-scale multipatient batches. However, although this strategy is well suited to cell types such as circulating lymphocytes (for example, for CAR-T therapies), the applicability to differentiated muscle cells is much less clear. The solution may lie in the further development of treatments using stem cells that have potential to at least partially repopulate muscle tissues with corrected cells. Stem cell-based products do have their own safety concerns to be considered, although recent experience, notably the EU approval of the limbal stem cell-based product Holoclar®, indicates that these can be addressed.
Developers of gene-based therapies have also long been concerned that the standards required by medicine regulatory authorities would be very difficult to meet with these complex biological products, but the EMA has demonstrated that its standards are pragmatically science-based and achievable. At the time of writing, the gene therapy and oncolytic viral product Imlygic® has been recommended for approval to add to the previously approved Glybera®. Several autologous cell-based tissue engineered therapeutics have been approved, namely, ChondroCelect®, MACI®, and Holoclar®, and ex vivo genetically modified cell-based therapies are either under review or being readied for submission. It can therefore be concluded that there is no fundamental obstacle to approval of either in vivo or ex vivo gene therapies.
Rainfall is a key component of the global water cycle and is essential for a wide range of applications such as crop modeling, hydrometeorology, water resource management, flood and drought monitoring, and climatological applications [1, 2, 3]. Accurate and consistent rainfall estimates are also of remarkable importance for the drought-prone regions, such as the semiarid region of Northeast Brazil (NEB), which is at high risk of food insecurity due to the occurrence of prolonged droughts whose impacts affect adversely their water resources and crop production [4, 5, 6].
\nNowadays, the measurement of precipitation is based on rain gauge stations, meteorological radars, and satellite retrievals [7, 8]. Rainfall data from ground stations provide high accuracy [9], but they are limited in spatial coverage [10]. Meteorological radars suffer from reduced data quality owing to signal blockage or distortion [11]. Satellites can be used for sensing large regions with a high temporal and spatial resolution, though satellite retrieval approaches are prone to biases and systematic errors [12]. Consequently, satellite-based rainfall estimates must be validated against rain gauge data in order to assess their uncertainties before being used [13, 14].
\nIn NEB, despite the efforts of the state climate agencies (e.g., National Center for Monitoring and Early Warning of Natural Disasters, CEMADEN; National Institute of Meteorology, INMET; Meteorology and Hydrologic Resources Foundation of Ceara, FUNCEME; Superintendence for the Development of the Northeast, SUDENE; and National Water Agency, ANA), most of the rain gauge networks currently available are inadequate to produce reliable rainfall analysis, because of their scarce spatial coverage, high proportion of missing data, and short-length records [15]. To overcome these limitations, there is a wide variety of satellite-based rainfall products, such as the Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS).
\nCHIRPS is a quasi-global rainfall data set with relatively high spatial resolution (°0.05 × °0.05) and long-term temporal coverage (from 1981 to near real time), whose processing chain blends satellite and gauge rainfall estimates [16]. Since early 2014, CHIRPS rainfall estimations are disseminated with different temporal scales (monthly, 10-day, 5-day, and daily time steps) by the University of California at Santa Barbara (UCSB). It has been subjected to various assessments worldwide by comparing to gauge measurements. According to these studies, the CHIRPS rainfall data set performs relatively well at both a regional and global scale, mainly in terms of bias and the Pearson’s correlation coefficient when compared to other state-of-the-art satellite rainfall products [1, 8, 17, 18, 19, 20, 21].
\nUnlike other natural regions, very few studies have been carried out to validate CHIRPS rainfall estimates in NEB. Overall, CHIRPS achieves better results during the rainy season (i.e., March to May), but its ability for the rain detection is poor [22]. Moreover, CHIRPS displays a rainfall pattern similar to the rain gauge data in the south-southeast subregion of the NEB, even though some performance scores are lower than the ones derived from the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42V7 product, particularly from 2012 to 2014 [23]. Interestingly, CHIRPS provides performance better in terms of rain amount than the Multi-Source Weighted-Ensemble Precipitation (MSWEP), SM2RAIN-CCI (Climate Change Initiative), and Climate Prediction Center Morphing Technique (CMORPH) rainfall products over the Cerrado biome of NEB [24]. These findings are promising for operational applications in NEB (e.g., remote drought monitoring). Nevertheless, to our knowledge, a study investigating the performance of the CHIRPS rainfall data set by using new available ground-based observations is still absent.
\nThe purpose of this study is to evaluate the quality of the CHIRPS rainfall estimates in NEB by considering the newest in situ data from the INMET meteorological stations, which is used as a benchmark rainfall data set over a 39-year period (1981–2019).
\nThe study was carried out in NEB (∼8,515,759 km2), which is located between 5.2° N–33.7° S and 34.7°–48.7° W [25]. In this region, the annual precipitation decreases from the east and northeast coast (>1500 mm/year) to inland dry regions (<500 mm/year) [22], due to the impact of the orography [26] and the influence of different meteorological systems, such as the intertropical convergence zone (ITCZ), squall lines (SL), easterly wave disturbances (EWD), upper tropospheric cyclonic vortices (UTCV), frontal systems (FS), mesoscale convective complexes (MCC), and the South Atlantic convergence zone (SACZ) [27]. The rainy season occurs at different times of the year: April to June in the eastern coast of the NEB; November to January in the southern part of the NEB; and March to May in the semiarid northwestern part of the NEB [27]. This region includes two main river basins, namely, the basins of the São Francisco River (where the Sobradinho reservoir is located) and the Parnaíba River. It also contains the Amazonia, Cerrado, Atlantic Forest, and Caatinga biomes, which are strongly related to the spatial distribution of rainfall regimes [6, 15].
\nDaily rain gauge observations from rain gauge stations were provided by the INMET (
Geographical location of the study area showing (a) selected stations. The numbers indicate the World Meteorological Organization (WMO) serial of each station; (b) annual mean precipitation for selected stations from 1 January 1981 to 30 June 2019.
CHIRPS rainfall estimates were obtained from the UCSB-Climate Hazards Group (CHG) webpage (
The land cover, annual rainfall, elevation, and type of climate were used as auxiliary information. The land cover was derived from the Land Cover-Climate Change Initiative (LC-CCI) product [28] (available online at
The methodology applied in this study is summarized in Figure 2. The CHIRPS rainfall data set was chosen because of its low latency (about 3 weeks), high spatial resolution (0.05° × 0.05°), daily temporal resolution, and long-term temporal coverage (1981 to near real time), respectively, so it is potentially suitable for operational purposes in NEB. Firstly, the CHIRPS product was clipped using a shapefile of NEB as a mask. Then, CHIRPS rainfall estimates were extracted using the nearest neighbor (NN) method to generate a paired rainfall data from 1 January 1981 to 30 June 2019 (i.e., the common temporal coverage). The rationale behind the choice of the NN method instead of gridded ground-based rainfall data (e.g., via spatial interpolation) is related to the fact that the latter would involve large uncertainties given the lack of a high-density rain gauge network to reproduce adequately the rainfall gradients in NEB [22]. Secondly, an intercomparison of both rainfall data sets was carried out in order to explore the performance of the CHIRPS product at the monthly, seasonal, and annual time scales during the common temporal coverage. Consequently, several metrics on a pixel-to-station basis were computed. The Pearson’s correlation coefficient (R), unbiased root mean square error (ubRMSE), and percentage bias (PBIAS) were used as continuous scores. R measures the linear relationship strength between estimations and observations, while ubRMSE and B scores measure how the value of estimates differs from the observed values [20]. To examine the rain detection capability of the CHIRPS product, the probability of detection (POD), false alarm ratio (FAR), and threat score (TS) were used as categorical scores. POD and FAR indicate the fraction of the observed events that were correctly forecasted and the fraction of the predicted events did not occur, respectively. TS is the fraction between hits to all CHIRPS-based events. The categorical scores were derived from a contingency table using a rainfall threshold of 1 mm/day to discriminate between rain and no-rain event [29] (see Table 1). This rainfall threshold was chosen due to its previous use in semiarid regions [22, 23, 30]. Finally, in order to investigate the influence of the rainfall station spatial distribution on the performance scores, a cluster analysis based on the k-medoid algorithm was applied using the score values of all stations as cases. This unsupervised classification technique was implemented because it is not sensitive to outliers and reduces noise [31]. The equations, ranges, and optimal values of the performance scores are outlined in Table 2.
\nSimplified flowchart of the methodology used in this study.
\n | Gauge ≥ threshold | \nGauge < threshold | \n
---|---|---|
CHIRPS ≥ threshold | \nA | \nB | \n
CHIRPS < threshold | \nC | \nD | \n
Contingency table to estimate categorical scores. A, number of hits; B, number of false alarms; C, number of misses; D, number of correct negatives; threshold, rainfall threshold (1 mm/day).
Name | \nFormula | \nRange | \nPerfect score | \n
---|---|---|---|
Pearson’s correlation coefficient | \n\n\n | \n[−1, 1] | \n1 | \n
Root mean square error | \n\n\n | \n[0, ∞) | \n0 | \n
Percentage bias | \n\n\n | \n(−∞, ∞) | \n0 | \n
Unbiased root mean square error | \n\n\n | \n[0, ∞) | \n0 | \n
Probability of detection | \n\n\n | \n[0, 1] | \n1 | \n
False alarm ratio | \n\n\n | \n[0, 1] | \n0 | \n
Threat score | \n\n\n | \n[0, 1] | \n1 | \n
Formulas of continuous and categorical scores. G, gauge-based rainfall measurement (mm/day); S, CHIRPS-based rainfall estimate (mm/day); \n
For clarity, this section is split into three parts: (1) evaluation on annual and seasonal scales; (2) monthly variation of scores; and (3) clustering-based spatial performance.
\n\nFigure 3 shows the spatial distribution of the continuous scores obtained after the pixel-to-station comparison of the CHIRPS rainfall estimates against the gauge-based data set during the study period. The seasons were defined as summer (Dec-Jan-Feb), autumn (Mar-Apr-May), winter (Jun-Jul-Aug), and spring (Sep-Oct-Nov) because the NEB is located in the southern hemisphere. The R, ubRMSE, and PBIAS median values listed in each subpanel were obtained by averaging these values from all stations via median to minimize the effects of extreme values. The CHIRPS product showed relatively good agreement with observations in terms of R, ubRMSE, and PBIAS at annual time scale (R median: 0.49; ubRMSE median: 9.73 mm/day; PBIAS, −4.10%), particularly in the northwest NEB (R > 0.50, ubRMSE and PBIAS near zero). Interestingly, the R median value begins to decrease from above 0.46 in summer to 0.32 in winter, but it rebounds and increases to values above 0.39 in spring. The ubRMSE values showed a similar pattern, with the higher ubRMSE values in summer and autumn (ubRMSE > 10 mm/day) and lower values in winter and spring (ubRMSE < 6 mm/day). The comparison revealed also that CHIRPS tends to underestimate the amount of rainfall in the course of a year (PBIAS annual median: −4.10%), especially during the transition from summer to winter (PBIAS median from −0.20% to −15.00%).
\nSpatial distribution of R, ubRMSE, and PBIAS derived from the CHIRPS rainfall estimates against ground observations for (a–c) annual; (d–f) summer; (g–i) autumn; (j–l) winter; and (m–o) spring. The median value of each score is reported.
For the annual time scale, the POD, FAR, and TS mean values were 0.56, 0.44, and 0.37, respectively (Figure 4), indicating an acceptable rain detection ability in terms of POD, even though with a medium probability of false alarms in the central NEB. Similar to R and ubRMSE (Figure 2), the higher POD and TS values occurred in summer and autumn (POD median > 0.50; TS median > 0.30), while lower values were observed in winter and spring. As expected, the FAR exhibited an inverse response to POD throughout the year (i.e., FAR median > 0.55 in winter and spring with lower values in summer and autumn).
\nSpatial distribution of POD, FAR, and TS derived from the CHIRPS rainfall estimates against ground observations for (a–c) annual; (d–f) summer; (g–i) autumn; (j–l) winter; and (m–o) spring. The median value of each score is reported.
\nFigure 5 shows the median of the scores for all stations, months, and years. The median values of R, ubRMSE, and PBIAS ranged between −0.06 and 0.66, 1.48 mm/day and 19.54 mm/day, and −44.50% and 147.80%, respectively. The lowest R values were observed in August (R median: 0.16) and the highest R values in March (R median: 0.41). According to the PBIAS time series, CHIRPS tends to underestimate (overestimate) the amount of rainfall between May and August (September and April), which is consistent with the findings from Figure 3. A moderate linear relationship between the monthly averaged values of PBIAS and ubRMSE was also found (R = −0.35, p-value <0.05), suggesting that PBIAS tends to increase when ubRMSE decreases. Furthermore, R, ubRMSE, and PBIAS did not exhibit a long-term trend (not shown for brevity), even though they showed high values for the coefficient of variation (i.e., 51.86%, 41.82%, and 675.49%, respectively).
\nMonthly time series for (a) R (dimensionless); (b) POD (dimensionless); (c) ubRMSE (mm/day); (d) FAR (dimensionless); (e) PBIAS (%); and (f) TS (dimensionless) derived from the CHIRPS rainfall estimates against ground observations (black line) for all NEB during the period 1981–2019. The red line depicts a 12-month moving average.
The temporal variation of POD, FAR, and TR is shown in Figure 5. They varied from 0.00 to 0.86, from 0.00 to 1.00, and from 0.00 to 0.68, respectively. The highest POD and TR values were observed in February and March and the lowest in July and August. This means that CHIRPS shows better performance during the rainy season in terms of detection of rain events, which is in line with those inferences obtained from Figure 4. Moreover, the lowest FAR values were observed in July and August, indicating a minimum rate of false alarms during the driest months. Similar to the continuous scores, these scores did not exhibit a long-term trend but a high temporal variation (i.e., 64.69%, 42.13%, and 63.97% for POD, FAR, and TR, respectively).
\nThe previous statistical approaches provide a limited interpretation of the performance of CHIRPS, because they do not offer information about the degree of similarity among the selected stations in terms of their performance scores. Therefore, to identify the similar stations according to their scores, a medoid-based cluster analysis was applied. In order to adequately capture the spatiotemporal variability of the performance scores, an annual time scale was considered (i.e., Figures 3a–c and 4a–c). The spatial distribution of the clustered stations is shown in Figure 6 (N1, 18 stations; N2, 9 stations), while Figure 7 displays the performance scores grouped by cluster.
\nClustered stations according to their continuous and categorical scores at annual time scale. A 250-m digital elevation model derived from SRTM images is shown.
Boxplots for (a) R (dimensionless); (b) POD (dimensionless); (c) ubRMSE (mm/day); (d) FAR (dimensionless); (e) PBIAS (%); and (f) TS (dimensionless) at annual time scale grouped by cluster, where the thick line depicts the median, while the other horizontal lines of the box depict the maximum, upper quartile, lower quartile, and minimum. For clarity the outliers were omitted.
Visual inspection of Figure 7 reveals that the C1 stations showed the best performance in terms of R, ubRMSE, PBIAS, POD, and TS. The FAR values were similar in both clusters, indicating that CHIRPS tends to forecast false alarms in the entire NEB (i.e., CHIRPS estimates to occur a rainfall event, but did not occur), which is also evident in Figure 4. It is interesting to note that the C2 stations were mostly concentrated near the coast.
\nA more detailed comparison, considering the auxiliary data sets (see Section 2.3), showed that there were no significant differences between both clusters in terms of average annual precipitation and terrain elevation (test based on Wilcoxon’s t-statistic at the 5% level was used). This means that these local factors did not affect the performance scores. However, regardless of the land cover, most of the C1 stations are located in open flatlands (i.e., terrain slope < 7%) with tropical savanna climate (i.e., Aw), which seem to be favorable surface conditions for better performance of CHIRPS.
\nSeveral performance scores were used to evaluate the CHIRPS rainfall product against gauge observations in Northeast Brazil during the period from January 1981 to June 2019. This region is characterized by large interannual rainfall variations and severe droughts [6, 15]. In line with previous studies [22, 23, 24], the CHIRPS data set captured relatively well the spatiotemporal pattern of rainfall across NEB, showing acceptable accuracies (see Figures 3 and 4), thanks to the blending process to merge the CHIRP data set derived from IR brightness temperature and TRMM, with ground-based observations [16].
\nCHIRPS exhibited poorer performance at daily time scale in terms of R (R median: 0.49) than that obtained with monthly time scale (R median: 0.94, reported by Paredes et al. [22]), indicating that increasing temporal aggregation leads to better agreement between CHIRPS and ground-based observations in NEB. This was expected because errors at daily scale time showed closely symmetric characteristics (see Figure 5); therefore, they tend to cancel each other during the temporal aggregation [32]. By contrast, this procedure did not provide a significant improvement on the performance in terms of PBIAS (PBIAS median: −4.10% and −3.58% [22] for daily and monthly time scales, respectively), likely due to its high variability at daily time scale (about 700%).
\nThese first results are consistent with the previous findings in other regions with similar climatic features such as South Sudan [33], where CHIRPS became more accurate in terms of R and RMSE as the duration of the integration time increased from months to years. It is important to note, however, that this characteristic is not unique to CHIRPS. Most of the satellite-based rainfall products tend to improve their general performance as the aggregation period increases owing to the effect of cancelation of errors [34, 35].
\nOverall, CHIRPS showed the best (worst) performance with the (lowest) highest of R and POD and the (highest) lowest bias and FAR during the (driest) wettest months of the year (see Figures 3 and 4). This result is consistent with the findings of Paredes-Trejo et al. [24] and Nogueira et al. [23], who found that CHIRPS tends to overestimate low and underestimate high rainfall values in NEB. Likewise, it should be mentioned that the PBIAS and R values were highly sensitive to drought conditions, such as those observed from 2012 to 2015, where CHIRPS showed lower R values (about 0.20) and higher overestimation of the rainfall amount (see Figure 5a and e). The degradation of the performance under extreme droughts may be attributed to the evaporation processes of raindrops in the dry atmosphere before reaching the surface [20]. In this context, CHIRPS forecasts a rainfall event, but does not occur. According to the equations listed in Table 2, this phenomenon leads to higher PBIAS values and near-zero values for R, POD, and TS.
\nThe sub-cloud evaporation plays an important role in the overestimation of rainfall occurrence over different semiarid and arid regions in the world [19, 32, 36]. Therefore, it can help to explain the poor performance of CHIRPS over the driest region of NEB (i.e., the Sertão region), especially in autumn and winter (see Figures 3 and 4) and during drought years induced by climate anomalies from the tropical Pacific Ocean (i.e., El Niño-Southern Oscillation) [37]. When this occurs, the air in the lower atmosphere is drier and hotter than usual conditions over the Sertão region [4]. Then, an intensification of the sub-cloud evaporation processes might be expected.
\nOn a seasonal time scale, the reliability of the CHIRPS product was evident in reproducing the seasonal rainfall pattern with results comparable with the ones previously published by Melo et al. [30] for the TRMM 3B42V7 rainfall product, which is its parent rainfall product [16] (see Section 2.2). Similar to TRMM, it was found that CHIRPS exhibits poorer performance over those stations near the coast than the ones located in inland regions of NEB (see Figures 6 and 7), particularly in winter (see Figures 3 and 4). The reason behind this can be attributed to the prevalence of warm-top stratiform cloud systems along the coastal region [38, 39]. Under these conditions, CHIRPS may not detect rainfall because the cloud tops tend to have a value warmer than the IRP CCD threshold value (i.e., 235 K) [19], leading to a large underestimation in the daily precipitation and poor detection of rainfall events.
\nAs can be seen from Figure 6, the landscape at most of the stations is characterized by high topographic complexity, where warm-rain processes induced by orographic lifting are dominant [40, 41]. Similar to the warm-top stratiform cloud systems in the coastal areas mentioned above, CHIRPS has limitations in reproducing the orographic rainfall due to the adoption of a fixed IRP CCD threshold value (i.e., 235 K), leading to classify warm orographic clouds as nonprecipitating [19]. Even though orographic clouds are relatively warm, they can produce substantial amounts of rain [15].
\nInterestingly, although the number of stations used in the CHIRPS blending process as anchor stations showed a gradual temporal decrease in NEB during the period January 1981 until June 2019 (see
The synergetic use of ground-based rainfall observations and satellite-based rainfall estimates is of paramount importance in semiarid regions such as Northeast Brazil. CHIRPS is a state-of-the-art satellite rainfall data set characterized by its blending procedure using thermal infrared satellite observations, TRMM 3B42-based rainfall estimates, monthly precipitation climatology, and atmospheric model rainfall fields from NOAA CFS, with ground-based rainfall measurements [16]. This study set out with the aim of evaluating the performance of CHIRPS against ground-based observations in NEB. The analysis was performed on a pixel-to-station basis at daily time scale and during the period 1981–2019. The major novelty of this study with respect to previous studies [22, 23, 42] is the use of the newest in situ data from the INMET meteorological stations. The main conclusions reached are the following:
The CHIRPS rainfall data set exhibits better performance in inland regions with open flatlands than near the coast (see Figures 6 and 7).
The accuracy of CHIRPS is better in the wettest months (i.e., summer) than in the driest months (i.e., winter) (see Figures 3 and 4). In general, CHIRPS underestimates (overestimates) high (low) rainfall amounts.
CHIRPS appears to be sensitive to the precipitation from the warm-top stratiform cloud systems (e.g., near to the coast), the warm-rain processes induced by orographic lifting (e.g., the mountain areas of NEB), and the sub-cloud evaporation processes (e.g., the Sertão region). The first and second are mainly attributed to a fixed IRP CCD threshold (i.e., 235 K) used by CHIRPS (see Section 2.2), which may be too cold for regions where the warm-rain processes are dominant [34], while the third is a usual phenomenon in semiarid regions [19].
Based on the abovementioned conclusions, CHIRPS can serve as an alternative source of data for operational applications that require rainfall data, especially over the inland regions of NEB (see the C1 stations in Figure 6), during the wettest months of the year (see Figures 3 and 4), and at monthly or annual time scales taking advantage of the cancelation of errors of CHIRPS rainfall estimates as the duration of the integration increases [34]. However, future investigations are needed to adequately choose the operational applications of CHIRPS for each subregion of the NEB.
\nThis work was funded by the Coordination for the Improvement of Higher Education Personnel (CAPES) and the National Council for Scientific and Technological Development (CNPq) (Grant no. 88887.091737/2014-01: Edital Pró-Alertas no 24/2014 under project Análise e Previsão dos Fenômenos Hidrometeorológicos Intensos do Leste do Nordeste Brasileiro). We acknowledge to the National Institute of Meteorology (INMET) and the University of California Santa Barbara’s Climate Hazards Group (CHG) for providing data that made this study possible.
\nThe authors declare no conflict of interest.
IntechOpen's Authorship Policy is based on ICMJE criteria for authorship. An Author, one must:
',metaTitle:"Authorship Policy",metaDescription:"IN TECH's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, one must:",metaKeywords:null,canonicalURL:"/page/authorship-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\\n\\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\\n\\nCHANGES IN AUTHORSHIP
\\n\\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\\n\\nAFFILIATION
\\n\\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\\n\\nPolicy last updated: 2017-05-29
\\n"}]'},components:[{type:"htmlEditorComponent",content:"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\n\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\n\nCHANGES IN AUTHORSHIP
\n\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\n\nAFFILIATION
\n\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\n\nPolicy last updated: 2017-05-29
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5775},{group:"region",caption:"Middle and South America",value:2,count:5239},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10411},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15810}],offset:12,limit:12,total:118378},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"8"},books:[{type:"book",id:"10504",title:"Crystallization",subtitle:null,isOpenForSubmission:!0,hash:"3478d05926950f475f4ad2825d340963",slug:null,bookSignature:"Dr. Youssef Ben Smida and Dr. Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10504.jpg",editedByType:null,editors:[{id:"311698",title:"Dr.",name:"Youssef",surname:"Ben Smida",slug:"youssef-ben-smida",fullName:"Youssef Ben Smida"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10582",title:"Chemical Vapor Deposition",subtitle:null,isOpenForSubmission:!0,hash:"f9177ff0e61198735fb86a81303259d0",slug:null,bookSignature:"Dr. Sadia Ameen, Dr. M. Shaheer Akhtar and Prof. Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/10582.jpg",editedByType:null,editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Calorimetry",subtitle:null,isOpenForSubmission:!0,hash:"bb239599406f0b731bbfd62c1c8dbf3f",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10697",title:"Raman Spectroscopy",subtitle:null,isOpenForSubmission:!0,hash:"6e2bfc19cc9f0b441890f24485b0de80",slug:null,bookSignature:"Dr. Marianna V. Kharlamova",coverURL:"https://cdn.intechopen.com/books/images_new/10697.jpg",editedByType:null,editors:[{id:"285875",title:"Dr.",name:"Marianna V.",surname:"Kharlamova",slug:"marianna-v.-kharlamova",fullName:"Marianna V. Kharlamova"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10699",title:"Foams",subtitle:null,isOpenForSubmission:!0,hash:"9495e848f41431e0ffb3be12b4d80544",slug:null,bookSignature:"Dr. Marco Caniato",coverURL:"https://cdn.intechopen.com/books/images_new/10699.jpg",editedByType:null,editors:[{id:"312499",title:"Dr.",name:"Marco",surname:"Caniato",slug:"marco-caniato",fullName:"Marco Caniato"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10700",title:"Titanium Dioxide",subtitle:null,isOpenForSubmission:!0,hash:"d9448d83caa34d90fd58464268c869a0",slug:null,bookSignature:"Dr. Hafiz Muhammad Ali",coverURL:"https://cdn.intechopen.com/books/images_new/10700.jpg",editedByType:null,editors:[{id:"187624",title:"Dr.",name:"Hafiz Muhammad",surname:"Ali",slug:"hafiz-muhammad-ali",fullName:"Hafiz Muhammad Ali"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10701",title:"Alkenes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"f6dd394ef1ca2d6472220de6a79a0d9a",slug:null,bookSignature:"Dr. Reza Davarnejad",coverURL:"https://cdn.intechopen.com/books/images_new/10701.jpg",editedByType:null,editors:[{id:"88069",title:"Dr.",name:"Reza",surname:"Davarnejad",slug:"reza-davarnejad",fullName:"Reza Davarnejad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11000",title:"Advances in Mass Transfer",subtitle:null,isOpenForSubmission:!0,hash:"f9cdf245988fe529bcab93c3b1286ba4",slug:null,bookSignature:"Prof. Badie I. Morsi and Dr. Omar M. Basha",coverURL:"https://cdn.intechopen.com/books/images_new/11000.jpg",editedByType:null,editors:[{id:"174420",title:"Prof.",name:"Badie I.",surname:"Morsi",slug:"badie-i.-morsi",fullName:"Badie I. Morsi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11072",title:"Modern Sample Preparation Techniques",subtitle:null,isOpenForSubmission:!0,hash:"38fecf7570774c29c22a0cbca58ba570",slug:null,bookSignature:"Prof. Massoud Kaykhaii",coverURL:"https://cdn.intechopen.com/books/images_new/11072.jpg",editedByType:null,editors:[{id:"349151",title:"Prof.",name:"Massoud",surname:"Kaykhaii",slug:"massoud-kaykhaii",fullName:"Massoud Kaykhaii"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:18},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:20},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:25},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:9},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5249},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"994",title:"Traumatology",slug:"traumatology",parent:{title:"Critical Care Medicine",slug:"critical-care-medicine"},numberOfBooks:5,numberOfAuthorsAndEditors:132,numberOfWosCitations:55,numberOfCrossrefCitations:44,numberOfDimensionsCitations:101,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"traumatology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9066",title:"Wound Healing",subtitle:null,isOpenForSubmission:!1,hash:"a293ecd8c2655a402321dc30e0ffbf9a",slug:"wound-healing",bookSignature:"Muhammad Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/9066.jpg",editedByType:"Edited by",editors:[{id:"204257",title:"Dr.",name:"Muhammad",middleName:null,surname:"Ahmad",slug:"muhammad-ahmad",fullName:"Muhammad Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7046",title:"Wound Healing",subtitle:"Current Perspectives",isOpenForSubmission:!1,hash:"fa7b870ad29ce1dfcf6faeafdc060309",slug:"wound-healing-current-perspectives",bookSignature:"Kamil Hakan Dogan",coverURL:"https://cdn.intechopen.com/books/images_new/7046.jpg",editedByType:"Edited by",editors:[{id:"30612",title:"Prof.",name:"Kamil Hakan",middleName:null,surname:"Dogan",slug:"kamil-hakan-dogan",fullName:"Kamil Hakan Dogan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6662",title:"Trauma Surgery",subtitle:null,isOpenForSubmission:!1,hash:"9721b9ac98bf237058cafd0a0303bdbc",slug:"trauma-surgery",bookSignature:"Ozgur Karcioglu and Hakan Topacoglu",coverURL:"https://cdn.intechopen.com/books/images_new/6662.jpg",editedByType:"Edited by",editors:[{id:"221195",title:"Dr.",name:"Ozgur",middleName:null,surname:"Karcioglu",slug:"ozgur-karcioglu",fullName:"Ozgur Karcioglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6069",title:"Essentials of Spinal Cord Injury Medicine",subtitle:null,isOpenForSubmission:!1,hash:"f0a49e24ebfbb9ed7d02f7daab9b30f6",slug:"essentials-of-spinal-cord-injury-medicine",bookSignature:"Yannis Dionyssiotis",coverURL:"https://cdn.intechopen.com/books/images_new/6069.jpg",editedByType:"Edited by",editors:[{id:"76883",title:"PhD.",name:"Yannis",middleName:null,surname:"Dionyssiotis",slug:"yannis-dionyssiotis",fullName:"Yannis Dionyssiotis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5290",title:"Wound Healing",subtitle:"New insights into Ancient Challenges",isOpenForSubmission:!1,hash:"a6c479ab3fea0a9b7051d2a8478c91c3",slug:"wound-healing-new-insights-into-ancient-challenges",bookSignature:"Vlad Adrian Alexandrescu",coverURL:"https://cdn.intechopen.com/books/images_new/5290.jpg",editedByType:"Edited by",editors:[{id:"66358",title:"Ph.D.",name:"Vlad",middleName:"Adrian",surname:"Alexandrescu",slug:"vlad-alexandrescu",fullName:"Vlad Alexandrescu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:5,mostCitedChapters:[{id:"50983",doi:"10.5772/63961",title:"Antimicrobial Dressings for Improving Wound Healing",slug:"antimicrobial-dressings-for-improving-wound-healing",totalDownloads:3705,totalCrossrefCites:5,totalDimensionsCites:21,book:{slug:"wound-healing-new-insights-into-ancient-challenges",title:"Wound Healing",fullTitle:"Wound Healing - New insights into Ancient Challenges"},signatures:"Omar Sarheed, Asif Ahmed, Douha Shouqair and Joshua Boateng",authors:[{id:"183108",title:"Dr.",name:"Joshua",middleName:null,surname:"Boateng",slug:"joshua-boateng",fullName:"Joshua Boateng"},{id:"183399",title:"Dr.",name:"Omar",middleName:null,surname:"Sarheed",slug:"omar-sarheed",fullName:"Omar Sarheed"},{id:"188082",title:"Mr.",name:"Asif",middleName:null,surname:"Ahmed",slug:"asif-ahmed",fullName:"Asif Ahmed"},{id:"188083",title:"Ms.",name:"Douha",middleName:null,surname:"Shouqair",slug:"douha-shouqair",fullName:"Douha Shouqair"}]},{id:"51825",doi:"10.5772/64611",title:"Roles of Matrix Metalloproteinases in Cutaneous Wound Healing",slug:"roles-of-matrix-metalloproteinases-in-cutaneous-wound-healing",totalDownloads:2740,totalCrossrefCites:8,totalDimensionsCites:14,book:{slug:"wound-healing-new-insights-into-ancient-challenges",title:"Wound Healing",fullTitle:"Wound Healing - New insights into Ancient Challenges"},signatures:"Trung T. Nguyen, Shahriar Mobashery and Mayland Chang",authors:[{id:"183405",title:"Prof.",name:"Mayland",middleName:null,surname:"Chang",slug:"mayland-chang",fullName:"Mayland Chang"},{id:"191152",title:"Mr.",name:"Trung",middleName:null,surname:"Nguyen",slug:"trung-nguyen",fullName:"Trung Nguyen"},{id:"191153",title:"Prof.",name:"Shahriar",middleName:null,surname:"Mobashery",slug:"shahriar-mobashery",fullName:"Shahriar Mobashery"}]},{id:"63675",doi:"10.5772/intechopen.81208",title:"Wound Healing: Contributions from Plant Secondary Metabolite Antioxidants",slug:"wound-healing-contributions-from-plant-secondary-metabolite-antioxidants",totalDownloads:685,totalCrossrefCites:1,totalDimensionsCites:6,book:{slug:"wound-healing-current-perspectives",title:"Wound Healing",fullTitle:"Wound Healing - Current Perspectives"},signatures:"Victor Y.A. Barku",authors:[{id:"261027",title:"Prof.",name:"Victor Y. A.",middleName:null,surname:"Barku",slug:"victor-y.-a.-barku",fullName:"Victor Y. A. Barku"}]}],mostDownloadedChaptersLast30Days:[{id:"60520",title:"Maxillofacial Fractures: From Diagnosis to Treatment",slug:"maxillofacial-fractures-from-diagnosis-to-treatment",totalDownloads:1791,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"trauma-surgery",title:"Trauma Surgery",fullTitle:"Trauma Surgery"},signatures:"Mohammad Esmaeelinejad",authors:[{id:"172188",title:"Dr.",name:"Mohammad",middleName:null,surname:"Esmaeelinejad",slug:"mohammad-esmaeelinejad",fullName:"Mohammad Esmaeelinejad"}]},{id:"51825",title:"Roles of Matrix Metalloproteinases in Cutaneous Wound Healing",slug:"roles-of-matrix-metalloproteinases-in-cutaneous-wound-healing",totalDownloads:2743,totalCrossrefCites:8,totalDimensionsCites:15,book:{slug:"wound-healing-new-insights-into-ancient-challenges",title:"Wound Healing",fullTitle:"Wound Healing - New insights into Ancient Challenges"},signatures:"Trung T. Nguyen, Shahriar Mobashery and Mayland Chang",authors:[{id:"183405",title:"Prof.",name:"Mayland",middleName:null,surname:"Chang",slug:"mayland-chang",fullName:"Mayland Chang"},{id:"191152",title:"Mr.",name:"Trung",middleName:null,surname:"Nguyen",slug:"trung-nguyen",fullName:"Trung Nguyen"},{id:"191153",title:"Prof.",name:"Shahriar",middleName:null,surname:"Mobashery",slug:"shahriar-mobashery",fullName:"Shahriar Mobashery"}]},{id:"51223",title:"Medicinal Plants and Natural Products with Demonstrated Wound Healing Properties",slug:"medicinal-plants-and-natural-products-with-demonstrated-wound-healing-properties",totalDownloads:2807,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"wound-healing-new-insights-into-ancient-challenges",title:"Wound Healing",fullTitle:"Wound Healing - New insights into Ancient Challenges"},signatures:"Christian Agyare, Emelia Oppong Bekoe, Yaw Duah Boakye,\nSusanna Oteng Dapaah, Theresa Appiah and Samuel Oppong\nBekoe",authors:[{id:"182058",title:"Dr.",name:"Christian",middleName:null,surname:"Agyare",slug:"christian-agyare",fullName:"Christian Agyare"},{id:"186987",title:"Dr.",name:"Yaw Duah",middleName:null,surname:"Boakye",slug:"yaw-duah-boakye",fullName:"Yaw Duah Boakye"},{id:"186988",title:"Ms.",name:"Susanna Oteng",middleName:null,surname:"Dapaah",slug:"susanna-oteng-dapaah",fullName:"Susanna Oteng Dapaah"},{id:"186989",title:"MSc.",name:"Theresa",middleName:null,surname:"Appiah",slug:"theresa-appiah",fullName:"Theresa Appiah"},{id:"186990",title:"Dr.",name:"Samuel Oppong",middleName:null,surname:"Bekoe",slug:"samuel-oppong-bekoe",fullName:"Samuel Oppong Bekoe"},{id:"186992",title:"Dr.",name:"Emelia Oppong",middleName:null,surname:"Bekoe",slug:"emelia-oppong-bekoe",fullName:"Emelia Oppong Bekoe"}]},{id:"63086",title:"Medicinal Plants in Wound Healing",slug:"medicinal-plants-in-wound-healing",totalDownloads:1701,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"wound-healing-current-perspectives",title:"Wound Healing",fullTitle:"Wound Healing - Current Perspectives"},signatures:"Mohammad Reza Farahpour",authors:[{id:"253340",title:"Prof.",name:"Mohammadreza",middleName:null,surname:"Farahpour",slug:"mohammadreza-farahpour",fullName:"Mohammadreza Farahpour"}]},{id:"62998",title:"Biomarkers of Wound Healing",slug:"biomarkers-of-wound-healing",totalDownloads:890,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"wound-healing-current-perspectives",title:"Wound Healing",fullTitle:"Wound Healing - Current Perspectives"},signatures:"Christian Agyare, Newman Osafo and Yaw Duah Boakye",authors:[{id:"182058",title:"Dr.",name:"Christian",middleName:null,surname:"Agyare",slug:"christian-agyare",fullName:"Christian Agyare"},{id:"196452",title:"Dr.",name:"Newman",middleName:null,surname:"Osafo",slug:"newman-osafo",fullName:"Newman Osafo"},{id:"252789",title:"Dr.",name:"Yaw Duah",middleName:null,surname:"Boakye",slug:"yaw-duah-boakye",fullName:"Yaw Duah Boakye"}]},{id:"63082",title:"Abdominal Trauma",slug:"abdominal-trauma",totalDownloads:631,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"trauma-surgery",title:"Trauma Surgery",fullTitle:"Trauma Surgery"},signatures:"Göksu Afacan",authors:[{id:"236854",title:"M.D.",name:"Göksu",middleName:null,surname:"Afacan",slug:"goksu-afacan",fullName:"Göksu Afacan"}]},{id:"63308",title:"Autologous Platelet-Rich Plasma and Mesenchymal Stem Cells for the Treatment of Chronic Wounds",slug:"autologous-platelet-rich-plasma-and-mesenchymal-stem-cells-for-the-treatment-of-chronic-wounds",totalDownloads:1153,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"wound-healing-current-perspectives",title:"Wound Healing",fullTitle:"Wound Healing - Current Perspectives"},signatures:"Peter A. Everts",authors:[{id:"256306",title:"Ph.D.",name:"Peter A.",middleName:null,surname:"Everts",slug:"peter-a.-everts",fullName:"Peter A. Everts"}]},{id:"66286",title:"From Tissue Repair to Tissue Regeneration",slug:"from-tissue-repair-to-tissue-regeneration",totalDownloads:1052,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"wound-healing-current-perspectives",title:"Wound Healing",fullTitle:"Wound Healing - Current Perspectives"},signatures:"Aragona Salvatore Emanuele, Mereghetti Giada, Ferrari Alessio and\nGiorgio Ciprandi",authors:[{id:"247667",title:"Prof.",name:"Emanuele Salvatore",middleName:null,surname:"Aragona",slug:"emanuele-salvatore-aragona",fullName:"Emanuele Salvatore Aragona"}]},{id:"71904",title:"Modulation of Inflammatory Dynamics by Insulin to Promote Wound Recovery of Diabetic Ulcers",slug:"modulation-of-inflammatory-dynamics-by-insulin-to-promote-wound-recovery-of-diabetic-ulcers",totalDownloads:274,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"wound-healing",title:"Wound Healing",fullTitle:"Wound Healing"},signatures:"Pawandeep Kaur and Diptiman Choudhury",authors:null},{id:"51068",title:"A Potential Mechanism for Diabetic Wound Healing: Cutaneous Environmental Disorders",slug:"a-potential-mechanism-for-diabetic-wound-healing-cutaneous-environmental-disorders",totalDownloads:1432,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"wound-healing-new-insights-into-ancient-challenges",title:"Wound Healing",fullTitle:"Wound Healing - New insights into Ancient Challenges"},signatures:"Junna Ye, Ting Xie, Yiwen Niu, Liang Qiao, Ming Tian, Chun Qing\nand Shuliang Lu",authors:[{id:"182332",title:"Dr.",name:"Junna",middleName:null,surname:"Ye",slug:"junna-ye",fullName:"Junna Ye"}]}],onlineFirstChaptersFilter:{topicSlug:"traumatology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/modern-tools-for-genetic-engineering/emerging-gene-correction-strategies-for-muscular-dystrophies-scientific-progress-and-regulatory-impa",hash:"",query:{},params:{book:"modern-tools-for-genetic-engineering",chapter:"emerging-gene-correction-strategies-for-muscular-dystrophies-scientific-progress-and-regulatory-impa"},fullPath:"/books/modern-tools-for-genetic-engineering/emerging-gene-correction-strategies-for-muscular-dystrophies-scientific-progress-and-regulatory-impa",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()