Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\n
We wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\n
Throughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\n
We wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"6343",leadTitle:null,fullTitle:"Sport and Exercise Science",title:"Sport and Exercise Science",subtitle:null,reviewType:"peer-reviewed",abstract:"Professional and semiprofessional sports as well as excessive amateur exercise inevitably lead to some degree of musculoskeletal injury once in a sportsman's career. Some injuries are represented as chronic injuries, which can result in irreversible long-term tissue changes and deformities. The subject of this book is to represent the up-to-date knowledge about etiology, pathogenesis, diagnosis, management, and prevention of chronic injuries or sport-related long-term changes in locomotor system.",isbn:"978-953-51-3795-5",printIsbn:"978-953-51-3794-8",pdfIsbn:"978-953-51-4089-4",doi:"10.5772/intechopen.69756",price:119,priceEur:129,priceUsd:155,slug:"sport-and-exercise-science",numberOfPages:124,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"f02738ce8019136d4586b616f5670e9b",bookSignature:"Matjaz Merc",publishedDate:"February 7th 2018",coverURL:"https://cdn.intechopen.com/books/images_new/6343.jpg",numberOfDownloads:8583,numberOfWosCitations:7,numberOfCrossrefCitations:4,numberOfCrossrefCitationsByBook:1,numberOfDimensionsCitations:6,numberOfDimensionsCitationsByBook:1,hasAltmetrics:1,numberOfTotalCitations:17,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 18th 2017",dateEndSecondStepPublish:"June 8th 2017",dateEndThirdStepPublish:"September 4th 2017",dateEndFourthStepPublish:"December 3rd 2017",dateEndFifthStepPublish:"February 1st 2018",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"210233",title:"Dr.",name:"Matjaz",middleName:null,surname:"Merc",slug:"matjaz-merc",fullName:"Matjaz Merc",profilePictureURL:"https://mts.intechopen.com/storage/users/210233/images/5576_n.jpg",biography:"Matjaz Merc is an orthopaedic surgeon at the Department of orthopaedics in UMC Maribor, Slovenia working also as assistant on Faculty of medicine in Maribor. He graduated in 2008 on faculty of Medicine in Ljubljana, Slovenia and earned his Ph.D in 2015 on Faculty of Medicine in Maribor. He was a visiting fellow at the Department of orthopaedics at University clinic in Basel, Switzerland, Speising Spital, Vienna, Austria and KBC Šalata, Zagreb, Croatia where he got subspecialized. His clinical work is based on foot and ankle surgery, paediatric orthopaedics as well as sports medicine. His research interests are mainly based on application of rapid prototyping technology in orthopaedics. Since 2010 he cooperates with NK Maribor football club working as a doctor in medical team.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1119",title:"Exercise Physiology",slug:"exercise-physiology"}],chapters:[{id:"58218",title:"Biology of Stress and Physical Performance",doi:"10.5772/intechopen.72425",slug:"biology-of-stress-and-physical-performance",totalDownloads:1857,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Regular physical training leads to physical capacity and optimal sports performance, and although this relationship is usually linear, the athlete’s adaptation is conditioned by multiple factors: environmental, genetic and psychological. Studies have shown that between 70 and 85% of successful and unsuccessful athletes can be identified using psychological measures of personality and mood, a level higher than chance, but insufficient for the purpose of selecting athletes. The research indicates that the mood of the athletes exhibits a dose-response relationship with their adaptation to the training load; This finding has shown potential to reduce the incidence of overtraining syndrome in athletes who undergo rigorous physical training, through early detection using scales of perception of their mood and physiological measures such as the testosterone / cortisol index. Thus, the genetic and epigenetic modifications of the factors that regulate the hypothalamic-pituitary-adrenal axis and, therefore, the response to stress, have recently been associated with a detrimental effect on physical performance and early manifestations of the overtraining syndrome and the abandonment of training and competences.",signatures:"Jorge A. Sanhueza Silva, Carlos Bahamondes-Avila, Claudio\nHernández-Mosqueira and Luis A. Salazar Navarrete",downloadPdfUrl:"/chapter/pdf-download/58218",previewPdfUrl:"/chapter/pdf-preview/58218",authors:[{id:"211582",title:"Dr.",name:"Jorge",surname:"Sanhueza",slug:"jorge-sanhueza",fullName:"Jorge Sanhueza"},{id:"221070",title:"MSc.",name:"Carlos",surname:"Bahamondes",slug:"carlos-bahamondes",fullName:"Carlos Bahamondes"},{id:"221071",title:"Dr.",name:"Claudio",surname:"Hernandez Mosqueira",slug:"claudio-hernandez-mosqueira",fullName:"Claudio Hernandez Mosqueira"}],corrections:null},{id:"58562",title:"Biokinetics: A South African Health Profession Evolving from Physical Education and Sport",doi:"10.5772/intechopen.73126",slug:"biokinetics-a-south-african-health-profession-evolving-from-physical-education-and-sport",totalDownloads:1759,totalCrossrefCites:3,totalDimensionsCites:4,hasAltmetrics:1,abstract:"This chapter describes the South African profession of Biokinetics, which operates within the pathogenic and fortogenic health paradigms. Biokinetics is an exercise therapy profession that exclusively prescribes individulaised exercise and physical activity for rehabilitation and promotion of health and quality of life. Biokinetics differs from physiotherapy primarily due its management of injuries, illnesses and disabilities within the final-phase of rehabilitation. A brief history of the profession and its scope of profession and its alignment within the South African National Health statutory and professional bodies will be presented. The two pedagogic models adopted for the teaching and training of Biokinetics will also be discussed. Interprofessional collaborative partnerships within the medical-rehabilitation fraternity, sport, health and fitness industries and educational employment opportunities will be reviewed. Finally, the idea of internationalisation of the profession of Biokinetics to similar exercise therapy professions such as Clinical Exercise Physiology and Athletic Training will be presented.",signatures:"Terry Jeremy Ellapen, Gert Lukas Strydom, Mariette Swanepoel,\nHenriette Hammill and Yvonne Paul",downloadPdfUrl:"/chapter/pdf-download/58562",previewPdfUrl:"/chapter/pdf-preview/58562",authors:[{id:"127909",title:"Prof.",name:"Gert Lukas",surname:"Strydom",slug:"gert-lukas-strydom",fullName:"Gert Lukas Strydom"},{id:"226652",title:"Dr.",name:"Terry J.",surname:"Ellapen",slug:"terry-j.-ellapen",fullName:"Terry J. Ellapen"},{id:"233593",title:"Dr.",name:"Mariette",surname:"Swanepoel",slug:"mariette-swanepoel",fullName:"Mariette Swanepoel"},{id:"233594",title:"Dr.",name:"Henriette Valerie",surname:"Hammill",slug:"henriette-valerie-hammill",fullName:"Henriette Valerie Hammill"},{id:"233596",title:"Prof.",name:"Yvonne",surname:"Paul",slug:"yvonne-paul",fullName:"Yvonne Paul"}],corrections:null},{id:"58233",title:"Diagnosis of Motor Habits during Backward Fall with Usage of Rotating Training Simulator",doi:"10.5772/intechopen.71463",slug:"diagnosis-of-motor-habits-during-backward-fall-with-usage-of-rotating-training-simulator",totalDownloads:1240,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"There are jobs with high risk of a fall. It seems reasonable to create a device for diagnosis and improving safe fall skills for workers. The aim of the present study was a verification of usability of a rotating training simulator for assessing motor habits during a fall caused by an external force by conducting validation procedure. Material and Methods: the participants were chosen from a group of 128 students of physical education of the University of Zielona Góra. Predictive validity was determined by comparing results of immediate fall test (IFT) to forced fall test (FFT). Repeatability was determined by conduction test/retest conditions. Reliability was also determined by comparing grades given by two observers with those given by an expert. Results: the acquired results show that there were no significant differences between results of IFT and FFT tests conditions and also no significant differences between test/retest conditions separetly for IFT and FFT, alongside with moderate correlation of its results. Good and excellent reliability ICC values were obtained for observers and experts (from r = 0.853 to 1.00). Summary: the obtained results show that the rotating training simulator is a valid and reliable tool for diagnosing motor habits during a fall caused by an external force.",signatures:"Andrzej Mroczkowski and Dariusz Mosler",downloadPdfUrl:"/chapter/pdf-download/58233",previewPdfUrl:"/chapter/pdf-preview/58233",authors:[{id:"144247",title:"Dr.",name:"Andrzej",surname:"Mroczkowski",slug:"andrzej-mroczkowski",fullName:"Andrzej Mroczkowski"},{id:"221034",title:"Mr.",name:"Dariusz",surname:"Mosler",slug:"dariusz-mosler",fullName:"Dariusz Mosler"}],corrections:null},{id:"57800",title:"The Missing Science: Ethics in Practice",doi:"10.5772/intechopen.71883",slug:"the-missing-science-ethics-in-practice",totalDownloads:1257,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The Greeks argued that philosophy was the most important science even though it was a science that studied no things. Their science, philosophy, focused on the meaning of life and death, life after death, existence, knowledge, knowing the good and bad, as well as the application of right and wrong. We argue that what is right and what is wrong should underlie the development of the current book Sports and Exercise Science. The stated purposes of the book, “to present the up to date knowledge about etiology, pathogenesis, diagnosis, management and prevention of chronic injuries or sports related long term changes in locomotor system. Moreover, topics about influence of sports activities on growth and development in pediatric population and presentation of acute injuries that often develop to chronic…as well,” are topics that should be addressed through science in sports and exercise science—philosophy and ethics. Ethics should govern all science, including the growth and development of sports and exercise science. Injury often occurs because of poor coaching, poor training, or overtraining. The problem exists because of unethical practice of either coaches, parents, leaders, trainers, or a combination of all of them. This chapter focuses on ethical education for professionals, educators, practitioners, and coaches.",signatures:"Sharon Kay Stoll, Heather Van Mullem, Peter Van Mullem and\nJennifer M. Beller",downloadPdfUrl:"/chapter/pdf-download/57800",previewPdfUrl:"/chapter/pdf-preview/57800",authors:[{id:"189960",title:"Prof.",name:"Sharon Kay",surname:"Stoll",slug:"sharon-kay-stoll",fullName:"Sharon Kay Stoll"},{id:"205593",title:"Dr.",name:"Heather",surname:"VanMullem",slug:"heather-vanmullem",fullName:"Heather VanMullem"},{id:"213781",title:"Dr.",name:"Pete",surname:"Van Mullem",slug:"pete-van-mullem",fullName:"Pete Van Mullem"},{id:"213782",title:"Dr.",name:"Jennifer",surname:"Beller",slug:"jennifer-beller",fullName:"Jennifer Beller"}],corrections:null},{id:"58153",title:"Overuse Injuries in Professional Ballet",doi:"10.5772/intechopen.72428",slug:"overuse-injuries-in-professional-ballet",totalDownloads:1345,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Ballet is an athletic activity with a marked artistic component, that need a highest technical requirement and repetitive movements. In this way, Overuse injuries, as we have been able to demonstrate in our studies, will be the most frequent injuries in ballet. The technical requierements of ballet will influence both injury specificity for each discipline and for both sexes, usually with higher technical requirements among women and higher athletic requirements among men. The patellofemoral syndrome is the most frequent overuse injuries in ballet, related to decompensating mechanisms to increase a naturally weak in turnout or dehors. This injury and others as the snapping hip, are more common among women, with higher technical requirements than men, and in the more technically demanding disciplines such as classical ballet. Other important injuries in ballet are Achilles tendinopathy, the mechanical low back pain, or the Os trigonum Syndrome. It will be very important to know about, the biomechanic and pathomechanic of the Ballet specific technical gesture, the intrinsecal and environmental risk factors involved in ballet injuries, the injury-based differences among ballet disciplines and among age and professional seniority, as well as the most important preventive measures in ballet.",signatures:"Francisco J. Sobrino and Pedro Guillen",downloadPdfUrl:"/chapter/pdf-download/58153",previewPdfUrl:"/chapter/pdf-preview/58153",authors:[{id:"218702",title:"Ph.D.",name:"Francisco J.",surname:"Sobrino",slug:"francisco-j.-sobrino",fullName:"Francisco J. Sobrino"}],corrections:null},{id:"56931",title:"Sports Concussion: A Clinical Overview",doi:"10.5772/intechopen.70765",slug:"sports-concussion-a-clinical-overview",totalDownloads:1125,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Concussion is an injury risk associated with participation in collision sports. It has been identified as a research priority for many contacts and collision sports governing bodies worldwide. However, concussion remains under-researched in terms of clinical translation from both experimental models to clinical understanding, and from clinical studies to sports policy. Currently, the clinical management of concussion is largely guided by the presence or absence of symptoms with recovery indicated once all post-injury symptoms have resolved. Management of concussion includes physical and cognitive rest until acute symptoms resolve, with a graded program of exertion implemented prior to medical clearance and return-to-play. Considering the potential sequelae, the heterogeneity of symptoms, and the lack of an intervention known to prevent concussion, it is not any wonder that concussion is one of the most complex and perplexing injuries faced by medical professionals, and why making the return-to-play decision can be quite challenging. This chapter will provide an overview of the current clinical management guidelines and research literature pertaining to identification and diagnosis of injury, acute and post-acute management, and return-to-play decision-making. The traditional standard assessment process (e.g., symptom reporting, cognitive assessment, balance testing), new methods and advanced technology (e.g., ocular-motor testing, neuroimaging techniques), and biomarkers (e.g., blood plasma and serum, fluid) have led to greater insights into sports concussion and will also be briefly explored in this chapter.",signatures:"Andrew J. Gardner",downloadPdfUrl:"/chapter/pdf-download/56931",previewPdfUrl:"/chapter/pdf-preview/56931",authors:[{id:"211583",title:"Dr.",name:"Andrew",surname:"Gardner",slug:"andrew-gardner",fullName:"Andrew Gardner"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"3398",title:"Current Issues in Sports and Exercise Medicine",subtitle:null,isOpenForSubmission:!1,hash:"fe3b3863298192755e00422f9fc2c8df",slug:"current-issues-in-sports-and-exercise-medicine",bookSignature:"Michael Hamlin, Nick Draper and Yaso Kathiravel",coverURL:"https://cdn.intechopen.com/books/images_new/3398.jpg",editedByType:"Edited by",editors:[{id:"162377",title:"Prof.",name:"Michael",surname:"Hamlin",slug:"michael-hamlin",fullName:"Michael Hamlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3431",title:"Muscle Injuries in Sport Medicine",subtitle:null,isOpenForSubmission:!1,hash:"c234e7ea0b15db8dd5fa3d62698a6c64",slug:"muscle-injuries-in-sport-medicine",bookSignature:"Gian Nicola Bisciotti and Cristiano Eirale",coverURL:"https://cdn.intechopen.com/books/images_new/3431.jpg",editedByType:"Edited by",editors:[{id:"78940",title:"Dr.",name:"Gian Nicola",surname:"Bisciotti",slug:"gian-nicola-bisciotti",fullName:"Gian Nicola Bisciotti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde Dorthea Grindvik",surname:"Nielsen",slug:"hilde-dorthea-grindvik-nielsen",fullName:"Hilde Dorthea Grindvik Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7949",title:"Cardiorespiratory Fitness",subtitle:null,isOpenForSubmission:!1,hash:"fd6d8d7ee62bc8d443de2c5150c00535",slug:"cardiorespiratory-fitness",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7949.jpg",editedByType:"Edited by",editors:[{id:"161402",title:"Dr.",name:"Hasan",surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"71744",slug:"corrigendum-to-technical-advances-in-chloroplast-biotechnology",title:"Corrigendum to: Technical Advances in Chloroplast Biotechnology",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/71744.pdf",downloadPdfUrl:"/chapter/pdf-download/71744",previewPdfUrl:"/chapter/pdf-preview/71744",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/71744",risUrl:"/chapter/ris/71744",chapter:{id:"65358",slug:"technical-advances-in-chloroplast-biotechnology",signatures:"Muhammad Sarwar Khan, Ghulam Mustafa and Faiz Ahmad Joyia",dateSubmitted:"June 12th 2018",dateReviewed:"August 31st 2018",datePrePublished:"January 25th 2019",datePublished:"October 23rd 2019",book:{id:"6976",title:"Transgenic Crops",subtitle:"Emerging Trends and Future Perspectives",fullTitle:"Transgenic Crops - Emerging Trends and Future Perspectives",slug:"transgenic-crops-emerging-trends-and-future-perspectives",publishedDate:"October 23rd 2019",bookSignature:"Muhammad Sarwar Khan and Kauser Abdulla Malik",coverURL:"https://cdn.intechopen.com/books/images_new/6976.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"212511",title:"Prof.",name:"Muhammad Sarwar",middleName:null,surname:"Khan",slug:"muhammad-sarwar-khan",fullName:"Muhammad Sarwar Khan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"211046",title:"Dr.",name:"Ghulam",middleName:null,surname:"Mustafa",fullName:"Ghulam Mustafa",slug:"ghulam-mustafa",email:"drmustafa8@gmail.com",position:null,institution:{name:"University of Agriculture Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"212508",title:"Dr.",name:"Faiz",middleName:null,surname:"Ahmad",fullName:"Faiz Ahmad",slug:"faiz-ahmad",email:"faizahmad1980@gmail.com",position:null,institution:null},{id:"212511",title:"Prof.",name:"Muhammad Sarwar",middleName:null,surname:"Khan",fullName:"Muhammad Sarwar Khan",slug:"muhammad-sarwar-khan",email:"sarwarkhan_40@hotmail.com",position:null,institution:{name:"University of Agriculture Faisalabad",institutionURL:null,country:{name:"Pakistan"}}}]}},chapter:{id:"65358",slug:"technical-advances-in-chloroplast-biotechnology",signatures:"Muhammad Sarwar Khan, Ghulam Mustafa and Faiz Ahmad Joyia",dateSubmitted:"June 12th 2018",dateReviewed:"August 31st 2018",datePrePublished:"January 25th 2019",datePublished:"October 23rd 2019",book:{id:"6976",title:"Transgenic Crops",subtitle:"Emerging Trends and Future Perspectives",fullTitle:"Transgenic Crops - Emerging Trends and Future Perspectives",slug:"transgenic-crops-emerging-trends-and-future-perspectives",publishedDate:"October 23rd 2019",bookSignature:"Muhammad Sarwar Khan and Kauser Abdulla Malik",coverURL:"https://cdn.intechopen.com/books/images_new/6976.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"212511",title:"Prof.",name:"Muhammad Sarwar",middleName:null,surname:"Khan",slug:"muhammad-sarwar-khan",fullName:"Muhammad Sarwar Khan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"211046",title:"Dr.",name:"Ghulam",middleName:null,surname:"Mustafa",fullName:"Ghulam Mustafa",slug:"ghulam-mustafa",email:"drmustafa8@gmail.com",position:null,institution:{name:"University of Agriculture Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"212508",title:"Dr.",name:"Faiz",middleName:null,surname:"Ahmad",fullName:"Faiz Ahmad",slug:"faiz-ahmad",email:"faizahmad1980@gmail.com",position:null,institution:null},{id:"212511",title:"Prof.",name:"Muhammad Sarwar",middleName:null,surname:"Khan",fullName:"Muhammad Sarwar Khan",slug:"muhammad-sarwar-khan",email:"sarwarkhan_40@hotmail.com",position:null,institution:{name:"University of Agriculture Faisalabad",institutionURL:null,country:{name:"Pakistan"}}}]},book:{id:"6976",title:"Transgenic Crops",subtitle:"Emerging Trends and Future Perspectives",fullTitle:"Transgenic Crops - Emerging Trends and Future Perspectives",slug:"transgenic-crops-emerging-trends-and-future-perspectives",publishedDate:"October 23rd 2019",bookSignature:"Muhammad Sarwar Khan and Kauser Abdulla Malik",coverURL:"https://cdn.intechopen.com/books/images_new/6976.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"212511",title:"Prof.",name:"Muhammad Sarwar",middleName:null,surname:"Khan",slug:"muhammad-sarwar-khan",fullName:"Muhammad Sarwar Khan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12013",leadTitle:null,title:"Plasma Science - Recent Advances, New Perspectives and Applications",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tPlasma is the most widespread form of the fourth state of matter, comprising more than 99% of the universe. Plasma is used to disinfect clothing and sterilize surgical equipment due to its antibacterial properties. This book is proposed to provide an advanced understanding of plasma physics and its importance in science and engineering. The book aims to be useful for everyone interested in the current development of plasma theory. The book will contain invited chapters from the experts, who are working on plasma waves, terahertz waves, solitons, higher-order harmonic generation, and dusty plasmas. The microplasma technology can be applied to generate and detect THz sources. The laser-induced microplasma is used to produce terahertz radiation with a wide frequency spectrum. The electric propulsion system is also based on the discharge of plasma which is used to produce high exhaust velocity. This book will serve as a reference source for plasma physics researchers. The reader is expected to have had experience with basic electrodynamics, including Maxwell’s equations and the propagation of plane waves in space.
",isbn:"978-1-83768-024-5",printIsbn:"978-1-83768-023-8",pdfIsbn:"978-1-83768-025-2",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"0261ac62d10563bf93735982748e3a2e",bookSignature:"Dr. Sukhmander Singh",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12013.jpg",keywords:"Plasma, Density, Temperature, Plasma Oscillations and Waves, Hydromagnetic Waves, Plasma Dielectric Tensor, Plasma Instabilities, Hydromagnetic Equilibrium, Nonlinear Effects in Plasma, Plasma Diffusions, Plasma Sheath, Applications of Plasma Physics",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 10th 2022",dateEndSecondStepPublish:"July 12th 2022",dateEndThirdStepPublish:"September 10th 2022",dateEndFourthStepPublish:"November 29th 2022",dateEndFifthStepPublish:"January 28th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"9 days",secondStepPassed:!1,areRegistrationsClosed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Assistant professor in the Department of Physics at the Central University of Rajasthan, India, who has published numerous research papers and conference proceedings in journals of international repute and contributed many book chapters. Dr. Singh is currently working on plasma waves and instabilities in Hall thrusters.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"282807",title:"Dr.",name:"Sukhmander",middleName:null,surname:"Singh",slug:"sukhmander-singh",fullName:"Sukhmander Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/282807/images/system/282807.jpg",biography:"Dr. Sukhmander Singh is currently an assistant professor in the Department of Physics at Central University of Rajasthan, Ajmer, India. He obtained his MSc (Physics) from Jawaharlal Nehru University New Delhi and PhD (Plasma Physics) from IIT Delhi, New Delhi, India. Previously, he was assistant professor at Motilal Nehru College, University of Delhi. \nHe has published numerous research papers and conference proceedings in journals of international repute as well as contributed many book chapters. He is an active reviewer for many international journals. His areas of interest include theory and simulation of plasma waves and instabilities.",institutionString:"Central University of Rajasthan",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Central University of Rajasthan",institutionURL:null,country:{name:"India"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"20",title:"Physics",slug:"physics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"444316",firstName:"Blanka",lastName:"Gugic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/444316/images/20016_n.jpg",email:"blanka@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"8356",title:"Metastable, Spintronics Materials and Mechanics of Deformable Bodies",subtitle:"Recent Progress",isOpenForSubmission:!1,hash:"1550f1986ce9bcc0db87d407a8b47078",slug:"solid-state-physics-metastable-spintronics-materials-and-mechanics-of-deformable-bodies-recent-progress",bookSignature:"Subbarayan Sivasankaran, Pramoda Kumar Nayak and Ezgi Günay",coverURL:"https://cdn.intechopen.com/books/images_new/8356.jpg",editedByType:"Edited by",editors:[{id:"190989",title:"Dr.",name:"Subbarayan",surname:"Sivasankaran",slug:"subbarayan-sivasankaran",fullName:"Subbarayan Sivasankaran"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"50203",title:"DNA Elements Tetris: A Strategy for Gene Correction",doi:"10.5772/62382",slug:"dna-elements-tetris-a-strategy-for-gene-correction",body:'\n
\n
1. Introduction
\n
\n
1.1. Transposable elements (TEs) in the genome: a brief history from their discovery to their biotechnological use in gene transfer
\n
TEs, also described as “jumping genes,” were first discovered in maize by Barbara McClintock in the 1940s. TEs are discrete pieces of DNA that are able to move from one site to another within one genome. This new concept, which suggested that the genome was not a final design but was rather able to evolve, to rearrange, was first met with criticism. However, a large body of evidence has accumulated over the last 60 years not only on the categorization and classification of TEs [1] but also on the understanding of their mechanisms. The ability to accurately identify and classify these sequences is critical to understand their impact on host genomes. Pioneers such as Finnegan [2] classified TEs into two classes based on their mechanism of transposition (Figure 1). Class I elements transpose by reverse transcription using an RNA intermediate: they are named retrotransposons. Three kinds of enzyme, RNA polymerase, reverse transcriptase, and integrase, are used for transposition. Class II elements directly transpose from DNA to DNA: they are named DNA transposons and just one enzyme, the transposase, is needed.
\n
Figure 1.
Classes I and II transposable elements (TEs, in green). Class I transposon or RNA transposon: three enzymes are necessary to transpose (1: RNA polymerase, 2: reverse transcriptase and 3: integrase). This mechanism is called “copy-and-paste” and gives rise to two identical copies ; one in the donor site and one in the target site. Class II transposon or DNA transposon: only one enzyme, the transposase, catalyzes the excision and the integration processes. The mechanism is named “cut-and-paste” and translocates the TE element in the target site leaving a free TE donor site. Inverted terminal repeats (ITRs) are drawned in red.
\n
Piégu et al. [1] clearly detailed the necessity to update this classification. TEs are widely distributed in prokaryotic and eukaryotic genomes and represent a variable fraction accounting for 8% in chicken to 85% in maize. After an initial phase of sudden episodic bursts, the invasion step, TEs proliferate and accumulate mutations. Finally, transposition is tolerated by the genome at a reduced rate. Some TE insertions contribute with new genes, exons, or regulator regions. This has been called the exaptation [3] and domestication [4] processes. However, for a significant amount of time, TEs were primarily considered as “junk or selfish DNA” that played no significant role in genome evolution [5]. The modern-day view of TEs is that they can generate genomic instability and reconfigure gene expression networks in both germline and somatic cells. This comprehensive view came with significant advances in sequencing technologies and the development of bioinformatics tools. One of the most unexpected insights is that almost half of our DNA is derived from TEs and 75% of our genome is transcribed (ENCODE project [6]). Therefore, as an integral part of the genome, the dynamic presence of TEs will be a major force to naturally reshape genomes. Several researchers have found examples of concordant timing between bursts of transposition or massive extinction and speciation events. For example, Lynch et al. [7] noticed how transposons transformed the uterine regulatory landscape during the evolution of mammalian pregnancy and Britten [8] reviewed the importance of Alu inserts on brain growth. Thus, TEs are “spam” coming from the dark ages and nowadays a small proportion of retroelements (<0.05%) remains able to transpose in humans [9]. However, no evidence of DNA transposon families was found active in the human genome during the later phase of the primate Radiation, 37 million years ago [10]. The last active DNA transposons were from the hAT superfamily, the Tc1/mariner, and the piggyBac families. This suggests that three sources of transposase were silenced at the same evolutionary period. As previously discussed, although transposons have been silenced, it does not mean that they are dead sequences for the genome and they constitute new regulatory networks.
\n
Thus, DNA TEs present distinguishing features, making them attractive as gene transfer tools. Indeed, they are not infectious, as they are able to mobilize DNA in a single genome and are ubiquitous. From the natural architecture of DNA transposons, a secure and easy system has been designed (Figure 2).
\n
Figure 2.
From natural transposon to engineered pseudo-transposon. a) In the natural transposon, the transposase ORF (green rectangle) is delineated by the two ITRs (red arrows). b) In engineered pseudo-transposon, the transposase ORF is replaced by the cassette of the gene of interest. Transposase should therefore be delivered in parallel either in DNA, mRNA or protein form.
\n
Briefly, the transposon is naturally delineated by two inverted terminal repeats (ITRs) framing the unique transposase open reading frame (ORF). The transposase recognizes the ITRs and catalyzes the excision and integration processes (Figure 1). After engineering, the transposase ORF is replaced by the gene of interest cassette and the enzyme is brought independently (Figure 2). The transposase is then able to integrate any gene of interest, without cross-mobilization between transposon families, as the ITR sequences are highly specific for each transposase. From this global conception of the transposon tool, numerous technological aspects have been explored, finally resulting in an attractive gene integrative system to modify the human genome.
\n
\n
\n
\n
2. Transposon-based strategies
\n
Various transposon-based strategies are available to obtain efficient transgene integration while maintaining safety and cell integrity. First, it depends on the transposase used to govern the efficacy of the integration process. Second, it depends on the way the transposase and the transgene would be delivered. Some use only one plasmid carrying the transposase expression cassette and the transgene construct. Other strategies rely on using one helper molecule carrying the transposase under gene, mRNA, or protein form and one donor plasmid that brings the gene of interest delineated by two ITRs.
\n
\n
2.1. Different types of transposase
\n
For genome engineering, two strategies have been developed: find a transposase in any other species that works in humans or create a new one considering that nowadays no DNA transposons are found active in mammalian genomes. After the identification of efficient transposases for gene correction, their activities have been dissected and optimized.
\n
\n
2.1.1. The three musketeers
\n
For decades, three main transposases have been developed with the aim of gene correction: Sleeping Beauty (SB), piggyBac (PB) and Tol2. In 1997, the SB transposase was artificially reconstructed from partial ancestral copies of a transposase gene identified in salmonid Salmo sp. [11]. The Tol2 and piggyBac transposases have been found to be active in their natural host. The piggyBac transposase was isolated from the cabbage looper moth Trichoplusia ni, and the developed tool is active in human and mice cells [12]. Tol2 was isolated from the Japanese medaka fish Oryzias latipes [13]. It is active in vertebrate cells including zebrafish, chicken, mouse and human.
\n
Following their discovery, various optimizations were carried out to increase their transposition efficiency. The development of the SB100x transposase [14], characterized by a 100-fold greater efficacy than the natural SB, stands as an important step of transposase optimization. Comparatively, in 2011, a hyperactive piggyBac transposase was found with 17- and 9-fold increases in excision and integration, respectively [15], and a codon-optimized PB (mPB) was also developed [16]. Following this, the efficacy of this hyperactive PB (hyPb or 7PB) was compared to SB100x by luciferase in vivo expression. Mice injected with m7pB had 10 times greater luciferase expression than those injected with SB100x [17]. Currently, no optimization studies have been carried out On the Tol2 enzyme since it is higly sensitive to molecular engineering [1].
\n
\n
\n
2.1.2. Transposases confer specific properties to the system
\n
Naturally, each transposase governs the integration of the pseudo-transposon using their own target site. The integration site for the SB transposon is TA, whereas it is TTAA for the PB transposon and 8-bp target duplication for the Tol2 transposon. After integration, these target sites are duplicates on either side of the newly integrated pseudo-transposon. Besides this specific transposition signature, the SB, PB, and Tol2 transposases confer specific properties to the system, such as cargo size capacity, overproduction inhibition (OPI), and reversibility with or without footprint.
\n
\n
2.1.2.1. Cargo size capacity
\n
The distance between ITRs delineates the cassette transgene and defines the cargo size capacity. The more this distance is important, the less the transposase is efficient for excision and integration. However, the constant optimization of the enzymes improved considerably the efficacy of the system.
\n
For now, the SB transposase initially allowed the transposition of only 10-kb transposon [18]. Beyond this size, the transposition rate is abolished. In 2014, Turchiano et al. [19] suggested to change its configuration, permitting the use of SB transposon until 18 kb but with a reduced efficiency. To date, the PB transposon offers the higher cargo size capacity with a natural high activity with 14.3-kb transgenes [12]. The hyPB transposase allows transposition of transgenes up to 100 kb in mouse ES cells [20]. In contrast, Tol2 does not show decrease of transposition efficacy until 10-kb transposon [21], and its activity has been proven until 66 kb [22]. However, few studies have directly compared the transposition efficacy of the transposases in an identical system [23].
\n
Raising cargo size capacity opens new perspectives in gene correction. For example, in muscular dystrophy, disease is induced by the dystrophin mutation. Adding the full-length cDNA of the dystrophin, 11-kb length, has been proven complicated using viral gene transfer. Recently, the full-length dystrophin cDNA has been successfully integrated in mesangioblasts from a dystrophic dog model using the PB transposon tool [24].
\n
\n
\n
2.1.2.2. Overproduction inhibition
\n
As previously discussed, the transposase is brought independently to the pseudo-transposon, and the ratio between the enzyme and the pseudo-transposon turns out to be important to establish. On the one hand, transposases act by creating double-stranded breaks so the amount of transposase used must be the lowest possible to avoid genotoxicity. On the other hand, it is necessary to have enough transposase for having high transposition rate. Unexpectedly, increasing the amount of transposase does not result in more transposition activity. Indeed, even if at low level the transposition rate increases with the amount of transposase until a maximum value, it is abolished above. This phenomenon is called OPI and depends on the studied model and the type of transposase [25]. In other cases, the transposition rate is saturated, without decrease, and a plateau is observed. The OPI has been well documented for a long time concerning the SB transposase [26]. However, concerning the PB and Tol2 transposases, the OPI is not as clear. For example, the PB transposase showed an OPI phenomenon in HeLa cells [16], but a stabilization of the activity was demonstrated in HEK293 [27] or mouse ES cells [28]. Similarly, for its Tol2 transposase, OPI or stabilization has been observed [16,21]. The molecular mechanism of this phenomenon is not still clearly established. Numerous hypotheses have been subjected and reviewed in Ref. [25].
\n
\n
\n
2.1.2.3. Integration is reversible
\n
In some conditions, the desired integration needs to be reversed. The transposase could then been readded with the aim of excising the pseudo-transposon from its chromosomal location. The excision of SB pseudo-transposons drives a footprint signature creating a 5-bp insertion [29]. Tol2 transposase excisions have been less investigated, but they could leave a short insertion or deletion [30]. In contrast, PB transposases have the particularity to carry out this excision without leaving a footprint in the genomic sequence. This property has been extensively exploited in induced pluripotent stem cells (iPSC) generation [31–33]. For more security, it is possible to use an engineered PB transposase in which the integration efficacy is abolished while conserving its excision property [34].
\n
\n
\n
\n
\n
2.2. Design of the coupled pseudo-transposon/transposase architecture
\n
Besides the intrinsic particularities of the transposases, the cellular delivery system is crucial. In a first system, called “cis” configuration, only one plasmid carries both the transposase and the gene of interest. The second way, termed “trans” configuration, is based on the principle of separately bringing the gene of interest on one plasmid, “donor” plasmid, and the transposase under a “helper” plasmid or mRNA or protein form.
\n
\n
2.2.1. “Cis” versus “trans” configurations
\n
In the cis configuration, only one plasmid needs to be prepared. This confers easier manipulation and high efficacy, but three drawbacks need to be overcome. First, the pseudo-transposon/transposase ratio is fixed, conferring less flexibility to the system. Second, the plasmid backbone could be integrated as well as, third, the transposase gene. Even if the pseudo-transposon/transposase ratio is fixed, working on promoters has brought flexibility. Indeed, Mikkelsen et al. [35] compared the efficiency of their helper-independent SB vector depending on 11 different promoters used for driving the transposase gene and they observed the OPI phenomenon with the strongest promoter.
\n
In the “trans” configuration, two molecules are used, one carrying the gene of interest and one bringing the transposase either in DNA, RNA, or protein forms. The trans configuration offers naturally more flexibility than the cis one. On the one hand, this approach gives the advantage to modulate the molecular ratio between the transposase and the pseudo-transposon. On the other hand, this approach gives the possibility to introduce several independent pseudo-transposons [36] in their inducible systems. Only one constraint has been detailed: transposases are able to catalyze integration more efficiently with a circular donor plasmid than with a linear one [37].
\n
Table 1.
Different configurations to deliver transposase and pseudo-transposon and their consequences. Transposase molecules are in green whatever is the molecule type. Pseudo-transposon molecule is drawned in blue. GOI, gene of interest; p(A), polyadenylation signal; Prom, promoter; Tnpase, transposase; ITR, Inverted terminal repeats.
\n
\n
\n
2.2.2. Risks and solutions associated to each strategy
\n
\n
2.2.2.1. Risk of linearized backbone integration
\n
After excision of the gene of interest, the backbone thereby linearized is more prone to be integrated by a nontransposition process [38], whatever the cis or trans configuration used. This undesired integration exposes the problem of the presence of bacterial sequence such as resistance gene or bacterial replication origin. This has been correlated with the amount of transfected transposase [38] and with the size of the transgene [39]. To avoid this, Wilson’s team suggested to use a suicide gene in the plasmid backbone, [40] or to select cells expressing green fluorescent protein (GFP) present in the backbone donor plasmid [38]. Other authors suggested using DNA minicircles [41]. Interestingly, they also observed an increased efficacy with DNA minicircles compared to standard plasmid for the same transgene size in several cell lines. However, keeping only the pseudo-transposon as linearized donor plasmid showed no efficacy with SB transposase [42] and a low one with the PB transposase [37].
\n
\n
\n
2.2.2.2. Risk of transposase gene integration
\n
The presence of the transposase gene within the plasmid generates risk of its own integration and per se a risk of sustained transposase expression. The consequence could be saltatory remobilization of the integrated transgene [43]. To limit the effect of sustained transposase expression, a self-inactivated transposase gene has been obtained by including either the promoter [44,45] or the polyadenylation signal [46] between the ITRs (Table 1). Indeed, in primary human T cells, authors identified an active SB transposase ORF only in one clone out of 94, but a bulk analysis showed up to 0.047 transposase copy integrated per cell [50]. This still has not been evaluated for the PB and Tol2 transposases. Nevertheless, it is possible to completely abolish its integration by introducing transposase under mRNA or protein form (Table 1) [51]. mRNA or protein forms allow a one-shot transposition process, thanks to the time-restricted transposase expression.
\n
For example, mRNA transposase expression peaked at 18 h after transfection [58]. Galla et al. [52] demonstrated less cell mortality with the mRNA transposase than an integrative form. Bire et al. [51] showed that the mRNA transposase gave less double-stranded break formation and less copy transgene integration. Moreover, no integrations of the transposase mRNA have been highlighted [51]. These considerations have been confirmed in vivo [53], as detailed in the end of this chapter.
\n
Using the protein transposase offers also a short window of expression. Cai et al. [55] recently used the transposase protein associated with viral polyprotein. They observed a high number of transgene expressing cells, with a few number of integrated transgene copies per genome. Aiming to limit viral particle uses, recombinant transposase protein was fused with the cell penetrating peptide (CPP) [56] or transposase was delivered with a free CPP [57]. For now, no in vivo evaluations have been found in the bibliographic database.
\n
\n
\n
\n
\n
\n
3. Editing the genome: the final step after a long journey through the cell
\n
Genome editing includes all methods aimed to modify the genome by introducing new DNA sequences or by correcting existing genomic sequences. The journey begins with the ability to enter into the cell, evade the immune response, and, after crossing the nuclear barrier, integrate the gene of interest into the DNA genome.
\n
\n
3.1. Cross the cellular membrane and escape immune response
\n
As free DNA delivery did not show efficient results, both transposase and pseudo-transposon need to be driven into the cell using different gene delivery strategies, either using a carrier (viral particles or chemical agent) or using a physical method. According to the method selected, it is important to consider all parameters of cellular defense against the entry of the foreign DNA.
\n
\n
3.1.1. Viral hybrid systems
\n
The viral-transposon hybrid systems take advantage of the natural properties of viral proteins to enter into the cell. For example, as early as 2006, a hybrid HSV amplicon-SB transposase vector was used in a central nervous system development study [59]. Since that time, several studies have been developed on hybrid transposase systems (reviewed in Refs. [60,61]) that use adenovirus [62–64], adeno-associated virus [65], baculovirus [66], or nonintegrative lentivirus [67,68] particles.
\n
\n
\n
3.1.2. Chemical agents
\n
Chemical agents have been developed with the aim of condensating DNA and thereby avoiding any viral derived systems. However, it turns out to be more controversial than expected with respect to the immune escape [69]. Indeed, these nanovehicles enter into the cell essentially via the endosomal pathway [70,71] and therefore expose foreign DNA to the endosomal Toll-like receptors. Among all available chemical carriers, the polyethylenimine (PEI) polymers appear to be the most used in transposon systems. Indeed, the PEI improve endosomal escape through the “proton sponge” mechanism. For example, in 2009, Kang et al. [72] used the PB transposase-based system with the PEI as a transfection reagent for ovarian cancer treatment in a mouse model. Further examples have been realized both in vitro [73] and in vivo [36,74].
\n
\n
\n
3.1.3. Physical gene transfer
\n
Finally, plasmid DNA could be driven by physical methods. In this case, the plasmid traffic does not go through the endosome and thereby escapes Toll receptors. One such method, electroporation, turned out to be highly efficient to transfect otherwise hard to transfect cells such as dendritic cells and human hematopoietic or embryonic cells [75–77]. Depending on the cell type used, the results may be controversial. Ley et al. [73] compared transposition efficiency in PEI-transfected versus electroporated mesoangioblasts and were not able to obtain efficient long-term expression in muscle after in vivo electroporation.
\n
Other physicals methods have therefore been developed. For example, ultrasound targeted microbubble destruction (UTMD) results in pore formation on the cell membrane after ultrasonic waves application. Recently, two in vivo studies have been carried out with clinical perspectives [78,79]. In parallel to UTMD, the hydrodynamic (HD) injection has been applied to transfer the clotting factor VIII [80]. However, they are proinflammatory consequences inducing a lack of transgene expression. To circumvent this drawback, Doherty et al. [81] suggested to induce transient transgene repression, thereby preventing the priming of transgene-specific T cells.
\n
\n
\n
\n
3.2. Cross the nuclear barrier and transgene integration
\n
\n
3.2.1. The transposase is driven to the nucleus
\n
For an efficient transposition, the transposase needs to be localized into the nucleus at the same time as the pseudo-transposon DNA.
\n
The transposases contain a nuclear localization signal, driving them to the nucleus [82]. An engineered PB transposase have been developed for increasing its localization within the nucleoli by adding a nucleolus-predominant (NP) signal peptide from HIV-1 TAT protein [83]. With this NP-mPB, a three- to fourfold increase in PB transposition rate, in both murine and human cells, was observed.
\n
From the pseudo-transposon point of view, its nuclear targeting is also essential. Thus, DNA nuclear targeting sequences (DTS) might be added to the plasmid backbone. These DTS consist, for example, to a 72-bp sequence from the SV40 enhancer and act as a sequence driver [84].
\n
\n
\n
3.2.2. Integration profile of the gene of interest
\n
All transposon systems have less integration bias than viruses, as previously described [85–88]. However, it is important to note that there are some differences within transposon systems [89]. The SB transposase is known to allow the more random integration [90], with approximately 35% into RefSeq sequences. It has been notified that the SB transposition has an affinity for the heterochromatin topology [91]. In contrast, the Tol2 and PB transposases are not considered to allow random integration. Indeed, the PB transposase shows a bias towards integration of the transgene into CpG islands and transcriptional start site, with approximately 49% into RefSeq sequences [16,27], and the Tol2 transposase presents a strong bias for the intergenic regions [92].
\n
Interestingly, this global integration profile could be affected by various parameters, such as the transposase variant [93] or the cell type [94].
\n
In addition, it is important to note that, for now, studies have been essentially established in in vitro models and no predictions could be drawn regarding the in vivo integration profile. Indeed, after in vivo UTMD transfection, the pseudo-transposon showed a significant bias of transgene integration into chromosome 14 [49], but no bias was observed in their in vitro control.
\n
\n
\n
\n
\n
4. Side effect of the transgene integration system
\n
The newly integrated foreign DNA is considered as an invader by the cell. This leads to postintegrative transgene silencing. Conversly, the transgene copy might also influence surrounding sequences according to the integration site. To conter these mutual side-effects numerous strategies have been developed.
\n
\n
4.1. Communication mechanisms between the transgene and the genome
\n
During their evolution, transposons have been made extinct by at least chromatin condensation and by RNA interference (RNAi) induction.
\n
The transcriptional regulation includes DNA CpG methylation and histone modifications. It has been confirmed that the transgene expression could be restored by a demethylating agent such as 5-aza-2’-deoxycytidine or by a histone deacetylase inhibitor such as trichostatin A [95]. However, it is easier to avoid the induction of upstream gene silencing. To this end, working with a methylated pseudo-transposon plasmid unlike an unmethylated one showed more transposition rate with the SB transposase [96]. Curiously, when the SB, PB, and Tol2 transposase systems are directly compared, the integrated transgene is less silenced if integrated by the PB transposase [97].
\n
The role of RNAi in posttranscriptional silencing of exogenous DNA transposons remains unclear. One study demonstrated that, in the absence of an efficient cellular RNAi system, by establishing p19 protein knockdown cells, the number of colonies is increased [98]. Nonetheless, the mechanism is still not elucidated.
\n
Besides the host-to-transgene effect, a transgene-to-host effect, driving perturbations in sequences surrounding the transgene by DNA methylation modulation, has been highlighted [99]. A further study investigated the expression levels of host genes neighboring the SB transposon and underlined variations depending on the chromosomal location of the transgene [100]. Therefore, solutions allowing a complete isolation of the transgene should be developed.
\n
\n
\n
4.2. Overcoming the host regulation for a sustained expression
\n
In gene correction, maintaining the expression level of the transgene and limiting host genome perturbations are crucial for having an efficient therapeutic effect.
\n
\n
4.2.1. Matrix attachment region (MAR)
\n
The human MAR elements are natural elements of the eukaryotic genome, which mediate the structural organization of the chromatin domains. When included in a transposon plasmid, they do not affect the number of transposed transgene copies but rather increase the transgene expression per integrated copy [101]. Moreover, when the MAR element is included in the transposase vector, an increased transposition efficacy has been observed [102].
\n
\n
\n
4.2.2. Insulators
\n
Insulators are short DNA sequences naturally present in the genome and act as genetic boundary elements. In a recent study, four different insulators (cHS4, D4Z4, CTCF, and CTF/NF1) were compared and showed that D4Z4 and CTF/NF1 had insulator functions when combined with transposition [51]. The protective effect of the cHS4 insulator has been demonstrated by a strong diminution of the activation of a nearby promoter [103] and by a prolonged fluorescent marker expression [104,105]. Some equivalent studies corroborated this role in clinically relevant cells as well as primary hematopoietic CD34+ cells [106]. Moreover, cHS4 insulators abolished the RNAi pathway effects regulating transposon-derived transgene expression by epigenetic silencing [98]. Nevertheless, for an optimal boundarie effect of insulators, it is necessary to consider the model used. Indeed, the size of the pseudo-transposon increased by the insulator or steric hindrance of transposase action [103] could also influence the transgene expression..
\n
\n
\n
\n
\n
5. Going further
\n
For many years, researchers have provided elements for a better understanding of their mechanism and have given solutions for the optimal use of these systems. Here, we recall promising leads for further work in this area: targeting a specific site within the genome and targeting a specific tissue at the body scale.
\n
\n
5.1. Targeting a specific site within the genome
\n
Replacing a defective gene or introducing a gene of interest into a completely safe, predetermined, specific genomic site is the ideal approach for gene correction. This potential locus could be defined by numerous criteria determined by its position from gene, miRNA, transcription unit, or ultraconserved region. All of these aspects have been recently reviewed [107].
\n
\n
5.1.1. Transposon targeting strategies
\n
The SB, PB, and Tol2 transposases have short integration target sites: TA, TTAA, and 8-bp sequences, respectively. Thus, transposon-derived systems should be optimized by combining the transposase to a system able to target a specific DNA sequence, such as a DNA-binding domain (DBD). The first strategy uses a fusion protein containing both the transposase and a DBD. In the second method, a fusion protein is constructed between a DBD and a protein, which is able to specifically recruit the transposase. To date, only one protein is known to be able to interact with the SB transposase, which is named N-57 [108]. Finally, another solution is based on a fusion protein between two DBD, one recognizing a genomic sequence and one specific to a sequence inserted within the pseudo-transposon plasmid. Few parameters of this third approach have been explored in a mammalian model [108]. Considerations of these three strategies have been recently reviewed [109], and we herein detail only chimeric transposases.
\n
The proof-of-concept has been demonstrated by studying intraplasmic integration using the PB transposase fused to the Gal4 domain [110]. However, the system revealed to be more restrictive than expected both in the conservation of the transposition activity and the ability to restrict integration in the targeted locus. Therefore, the transposition activity might be affected by the DBD fusion. Indeed, the DBD Gal4 (a zinc finger domain, ZF) has been tested in fusion to the Tol2, SB11, and PB transposases. The number of chromosomal integrations of the transposon is abolished with Gal4-Tol2 and Gal4-SB11, but no loss of efficiency was observed for the Gal4-PB transposase [111]. Some studies have been carry out to analyze the parameters of this loss of activity, such as the sequence surrounding the targeted site [108], the orientation of the fusion [112], or the choice of the linker [113]. The DBD type has also been evaluated in their ability to avoid off-target integration. With the Gal4-PB transposase, transposition occurred at 23% within 0.8 kb of Gal4 site compared to 5% for the native transposase [114]. However, for improvement of the targeting, artificial ZFs have been created by assembling six ZF domains to create a polydactyl protein capable of targeting a unique sequence of 18 bp [115]. For example, the sequence targeting with these artificial ZF allowed 44.3% of integration events near the CHK2-ZF site [116]. Comparatively, when the Sp1 ZF is fused with the PB transposase, which preferentially binds the CG-rich motif, the integration increased near the CpG islands (25.7% versus 10.5% with the native PB transposase) but without modification regarding the integration into the RefSeq genes [117].
\n
\n
\n
5.1.2. Other systems allowing a targeting integration
\n
In 2011, the discovery of the CRISPR/Cas9 system revolutionized the gene transfer because of its ability to drive the transgene in its physiological site, but no studies directly compared the efficiency of both transposon and CRISPR/Cas9-based systems. It has been supposed that this system arises from casposon in the evolutionary tree. Casposons are mobile cryptic sequences present in Achaea and bacteria, and two independent studies described this superfamily of mobile elements by linking transposon and CRISPR/Cas systems [118,119].
\n
Recently, a combinatory approach was developed, in which the correction is realized gene by gene (CRISPR/Cas9 role) and temporarily needed sequences are removed from the genome (transposase role). This method has been applied for gene correction of β-thalassemia [120] and to create iPSC with deletion into the CCR5 gene [121].
\n
\n
\n
\n
5.2. Targeting a specific tissue at the organism scale
\n
For in vivo application of gene correction, it is important to express the transgene of interest only in the organ, tissue, or cell types in which the transgene expression is required. The design of the transgene vector is essential and might contain specific elements such as tissue-specific promoter or regulatory sequences. The second option is to deliver the system only in the specific cells.
\n
\n
5.2.1. Design of the transgene vector for in vivo applications
\n
In the ideal gene transfer, the transgene is expressed in the same conditions, as it is in physiological conditions. Indeed, overexpression of the transgene or expression in a nontarget cell could improve cytotoxicity, induce its clearance by the immune system, and increase its gene silencing (reviewed in Ref. [122]). With this aim, vectors have been designed in such a way as promoters or regulatory sequences are chosen for restricting the expression of the gene of interest only in the cells of interest. Tissue-specific promoters control gene expression in a tissue-dependent manner or according to the development stage of the cells. In plasmid design, several approaches are available such as using a promoter regulating an endogenous gene expressed in one type of cell (minimal promoter) or combining numerous enhancers to a minimal promoter.
\n
In the first case, the transposon is under a native promoter. For example, endothelin-1 [123] allows a decreased GFP expression in a nonendothelial cell line while maintaining the expression level in endothelial cell lines. When the targeted cell type is the final point of a differentiation lineage, it seems essential to have the expression of the therapeutic protein only in the differentiated state, such as promoters capable of restricting β-globin expression in differentiated erythroid cells from transfected proerythroid cells [124]. In cancer therapy, a study based on the SB transposition showed that the HSV-TK transgene driven by a telomerase reverse transcriptase promoter increased death rate in cancer cell lines compared to fibroblast cell lines [125].
\n
The second approach is based on constructions containing a minimal promoter with specific enhancers. For example, the SB transposon system has been used for the introduction of the telomerase gene driven by a combination of the transthyretin (TTR) gene promoter/enhancer, the human alcohol dehydrogenase gene promoter, and the SV40 enhancer [126]. The authors observed an induced transcriptional activity only in hepatocytes. In an in vivo study, the authors developed a TTR minimal promoter coupled to a hepatocyte-specific cis-regulatory module, driving the clotting factor IX for correction of hemophilia B [127]. This promoter has also been combined with a PB transposon-mediated gene transfer and confirmed the high efficiency of the transgene construct [128].
\n
\n
\n
5.2.2. Limiting the ectopic integrations by tissue targeting
\n
For improvement of tissue targeting, two major routes have been developed, either administration of ex vivo premodified cells of interest or direct delivery of the integrative system, containing the transgene, to the whole organism.
\n
\n
5.2.2.1. Administration route for ex vivo modified cells
\n
The delivery of premodified cells to a patient was extensively carried out in adoptive cell transfer of immune cells expressing an artificial T-cell receptor (TCR) designed to target an antigen. Briefly, T cells are removed from a patient and transformed to express the artificial TCR (also named chimeric antigen receptor or CAR). After amplification, modified T cells are intravenously readministrated to the organism. In the field of transposon technology, this approach has been used in several applications. For example, a human epidermal growth factor receptor 2-specific CAR was introduced into cytotoxic T cells, thanks to the PB transposase [129]. More recently, T lymphocytes were modified to express the CD19-CAR transgene, and after 7 days of coculture, CAR T cells eradicated all CD19+ tumor cells in vitro [130]. In lower proportions, the Tol2 transposase has also been used for the integration of a CD19-CAR into T cells [131]. However, production of CD19-CAR T cells usually uses SB transposase and clinical trials are currently under investigation [132]. The authors detailed their protocol for manufacturing clinical-grade CD19-specific T cells [76].
\n
It is also possible to reimplant modified cells in situ after their encapsulation. In this aim, Fjord-Larsen et al. [133] developed a model in which a new clinical-grade cell line expresses a high level of neural growth factor after striatum implantation.
\n
The administration of already modified cells increases the security of the transfer system. However, applications are, for now, restricted to cells easy to collect and reimplant to a patient. For less accessible tissue or organs, targeting methods are more often driven by a direct administration of the transgene.
\n
\n
\n
5.2.2.2. Administration route for transposon DNA system
\n
The administration of the therapeutic gene, associated with the transposase, needs a delivery method able to drive them into the organ or tissue of interest. To this end, two strategies have been developed. The first one takes advantages of specific administration route properties, whereas the second one uses vehicles expressing receptors capable of specific recognition of the targeting tissue.
\n
It has been demonstrated that all gene delivery methods do not present an equal distribution in the different organs. For example, the HD injection is known to target the liver at 95%, as detailed by Bell et al. [134]. In agreement, Herweijer and Wolff [135] showed that transgene expression was also found in others organs such as the heart, spleen, and kidneys at levels approximately 100-fold lower than in the liver. This liver targeting way has been applied in gene correction, and in 2007, Aronovich et al. showed a model of correction of mucopolysaccharidosis mice by SB-mediated transgene α-L-iduridase (IDUA) transposition [136]. They mentioned a persistent expression of IDUA in plasma for almost 10 weeks after injection. In cancer therapy, liver metastasis of colorectal cancer was reduced after antiangiogenic genes were integrated by the SB transposase [137].
\n
As a complement, the DNA transposon could also been administrated after complexation to a targeting vehicle. After an intravenous administration, Kren et al. [47] highlighted a hepatocyte-specific integration of the transgene when condensated with coated nanocapsules. Comparatively, the transgene complexed to the PEI showed an expression in the lung, not observed after HD injection [138]. More specifically, within the lung, the polyplexes are addressed into pneumocytes and no transgene expression was detected within the conducting airways [139].
\n
Coupling specific administration route and nanocapsules is the future way. In this aim, the UTMD gene delivery method allows mediating the site-specific delivery of transposons. Briefly, the transgene is intravenously injected and cell penetration occurs at the targeted organ by acoustic cavitation [49]. This approach has been used for the transposition of the Nkx2.2 transcriptional factor to the pancreas by the PB system [78] or for the transposition of the thymosine β4 gene, or the glucagon-like peptide-1 one, to the heart [79,140].
\n
In gene correction, targeting the tissue of interest is essential for reflecting physiological conditions. Compared to viral transduction, the transposon systems are more customizable and numerous possibilities are available for users. Depending on the tissue to target, it is possible to play at the same time on the promoter, the administration route, and the presence of targeting molecules.
\n
\n
\n
\n
\n
\n
6. Therapy applications of transposase tools
\n
Some technological aspects previously discussed offer a suitable transposon toolbox to gene correction. Transposon-based systems allow first the transgene integration in a large range of clinically relevant target cells, including hematopoietic stem cells [141], mesenchymal stromal cells [142], iPSC [143], and lymphoid T cells [131]. Transposon-mediated correction could therefore be used in a large-scale application, such as treatment of inherited disorders, cancer, and tissue degeneration (Table 2).
Transposons have naturally drawn genomes since the first forms of life. Scientists have taken advantage of their properties with the aim of constantly updating the safety of this nonviral tool for gene transfer. With the other integrative systems derived from casposons, such as CRISPR/Cas9, we dispose of complementary tools for reshaping the genome. Latest discoveries have open new horizons, but a long road is still ahead.
\n
\n
Acknowledgments
\n
This work has been supported by La Ligue Contre le Cancer.
\n
\n',keywords:"transposon, piggyBac, Sleeping Beauty, gene transfer, Molecular engineering",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/50203.pdf",chapterXML:"https://mts.intechopen.com/source/xml/50203.xml",downloadPdfUrl:"/chapter/pdf-download/50203",previewPdfUrl:"/chapter/pdf-preview/50203",totalDownloads:1633,totalViews:166,totalCrossrefCites:0,totalDimensionsCites:0,totalAltmetricsMentions:0,impactScore:0,impactScorePercentile:13,impactScoreQuartile:1,hasAltmetrics:0,dateSubmitted:"September 22nd 2015",dateReviewed:"February 3rd 2016",datePrePublished:null,datePublished:"May 18th 2016",dateFinished:"March 31st 2016",readingETA:"0",abstract:"Transposable elements (TEs) are mobile genetic sequences that are able to move in the genome from one location to another. TEs were first regarded as junk or selfish DNA, as they comprise the largest molecular class within most metazoan genomes having no genomic function. It was necessary to wait until whole genome sequencing to provide new insights about the origin, diversity, and impact of TEs on the genome function. Thus, due to advances in molecular technology, TEs have been shown to create new regulatory sequence networks. Although nowadays most TEs present in the human genome are silenced, particularly DNA transposons, it does not mean that these sequences are dead. In this review, we detail how DNA transposons could be emphasized to create a new tool for gene correction. DNA-based transposon vectors are derived from three models: Sleeping Beauty, piggyBac, and Tol2, which all work via a “cut-and-paste” mechanism where transposase enzyme is alone able to catalyze the transposition process, which means integrating the genes of interest in chromosomal DNA. Limitations and improvements of the systems are discussed, particularly the latest way to target a specific integration site, showing that the DNA transposon-derived system and its engineering, are powerful tools for gene correction.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/50203",risUrl:"/chapter/ris/50203",book:{id:"5132",slug:"modern-tools-for-genetic-engineering"},signatures:"Colette Bastie and Florence Rouleux-Bonnin",authors:[{id:"178101",title:"Dr.",name:"Florence",middleName:null,surname:"Rouleux-Bonnin",fullName:"Florence Rouleux-Bonnin",slug:"florence-rouleux-bonnin",email:"florence.bonnin@univ-tours.fr",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"François Rabelais University",institutionURL:null,country:{name:"France"}}},{id:"184724",title:"MSc.",name:"Colette",middleName:null,surname:"Bastie",fullName:"Colette Bastie",slug:"colette-bastie",email:"colette.bastie@etu.univ-tours.fr",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_1_2",title:"1.1. Transposable elements (TEs) in the genome: a brief history from their discovery to their biotechnological use in gene transfer",level:"2"},{id:"sec_3",title:"2. Transposon-based strategies",level:"1"},{id:"sec_3_2",title:"2.1. Different types of transposase",level:"2"},{id:"sec_3_3",title:"2.1.1. The three musketeers",level:"3"},{id:"sec_4_3",title:"2.1.2. Transposases confer specific properties to the system",level:"3"},{id:"sec_4_4",title:"2.1.2.1. Cargo size capacity",level:"4"},{id:"sec_5_4",title:"2.1.2.2. Overproduction inhibition",level:"4"},{id:"sec_6_4",title:"2.1.2.3. Integration is reversible",level:"4"},{id:"sec_9_2",title:"2.2. Design of the coupled pseudo-transposon/transposase architecture",level:"2"},{id:"sec_9_3",title:"Table 1.",level:"3"},{id:"sec_10_3",title:"2.2.2. Risks and solutions associated to each strategy",level:"3"},{id:"sec_10_4",title:"2.2.2.1. Risk of linearized backbone integration",level:"4"},{id:"sec_11_4",title:"2.2.2.2. Risk of transposase gene integration",level:"4"},{id:"sec_15",title:"3. Editing the genome: the final step after a long journey through the cell",level:"1"},{id:"sec_15_2",title:"3.1. Cross the cellular membrane and escape immune response",level:"2"},{id:"sec_15_3",title:"3.1.1. Viral hybrid systems",level:"3"},{id:"sec_16_3",title:"3.1.2. Chemical agents",level:"3"},{id:"sec_17_3",title:"3.1.3. Physical gene transfer",level:"3"},{id:"sec_19_2",title:"3.2. Cross the nuclear barrier and transgene integration",level:"2"},{id:"sec_19_3",title:"3.2.1. The transposase is driven to the nucleus",level:"3"},{id:"sec_20_3",title:"3.2.2. Integration profile of the gene of interest",level:"3"},{id:"sec_23",title:"4. Side effect of the transgene integration system",level:"1"},{id:"sec_23_2",title:"4.1. Communication mechanisms between the transgene and the genome",level:"2"},{id:"sec_24_2",title:"4.2. Overcoming the host regulation for a sustained expression",level:"2"},{id:"sec_24_3",title:"4.2.1. Matrix attachment region (MAR)",level:"3"},{id:"sec_25_3",title:"4.2.2. Insulators",level:"3"},{id:"sec_28",title:"5. Going further",level:"1"},{id:"sec_28_2",title:"5.1. Targeting a specific site within the genome",level:"2"},{id:"sec_28_3",title:"5.1.1. Transposon targeting strategies",level:"3"},{id:"sec_29_3",title:"5.1.2. Other systems allowing a targeting integration",level:"3"},{id:"sec_31_2",title:"5.2. Targeting a specific tissue at the organism scale",level:"2"},{id:"sec_31_3",title:"5.2.1. Design of the transgene vector for in vivo applications",level:"3"},{id:"sec_32_3",title:"5.2.2. Limiting the ectopic integrations by tissue targeting",level:"3"},{id:"sec_32_4",title:"5.2.2.1. Administration route for ex vivo modified cells",level:"4"},{id:"sec_33_4",title:"5.2.2.2. Administration route for transposon DNA system",level:"4"},{id:"sec_37",title:"6. Therapy applications of transposase tools",level:"1"},{id:"sec_38",title:"7. Conclusion",level:"1"},{id:"sec_39",title:"Acknowledgments",level:"1"}],chapterReferences:[{id:"B1",body:'\nPiégu B, Bire S, Arensburger P, Bigot Y. A survey of transposable element classification systems—A call for a fundamental update to meet the challenge of their diversity and complexity. Mol Phylogenet Evol. 2015;86:90–109.\n'},{id:"B2",body:'\nFinnegan DJ. Eukaryotic transposable elements and genome evolution. Trends Genet. 1989;5:103–7.\n'},{id:"B3",body:'\nde Souza FSJ, Franchini LF, Rubinstein M. Exaptation of transposable elements into novel cis-regulatory elements: is the evidence always strong? Mol Biol Evol. 2013;30:1239–51.\n'},{id:"B4",body:'\nAlzohairy AM, Gyulai G, Jansen RK, Bahieldin A. Transposable elements domesticated and neofunctionalized by eukaryotic genomes. Plasmid. 2013;69:1–15.\n'},{id:"B5",body:'\nDoolittle WF, Sapienza C. Selfish genes, the phenotype paradigm and genome evolution. Nature. 1980;284:601–3.\n'},{id:"B6",body:'\nBirney E, Stamatoyannopoulos JA, Dutta A, GuigóRR, Gingeras TR, Margulies EH, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447:799–816.\n'},{id:"B7",body:'\nLynch VJ, Leclerc RD, May G, Wagner GP. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat Genet. 2011;43:1154–9.\n'},{id:"B8",body:'\nBritten RJ. Transposable element insertions have strongly affected human evolution. Proc Natl Acad Sci. 2010;107:19945–8.\n'},{id:"B9",body:'\nMuotri AR, Marchetto MCN, Coufal NG, Gage FH. The necessary junk: new functions for transposable elements. Hum Mol Genet. 2007;16:R159–67.\n'},{id:"B10",body:'\nPace JKI, Feschotte C. The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res. 2007;17:422–32.\n'},{id:"B11",body:'\nIvics Z, Hackett PB, Plasterk RH, Izsvák Z. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell. 1997;91:501–10.\n'},{id:"B12",body:'\nDing S, Wu X, Li G, Han M, Zhuang Y, Xu T. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell. 2005;122:473–83.\n'},{id:"B13",body:'\nKawakami K, Noda T. Transposition of the Tol2 element, an Ac-like element from the Japanese medaka fish Oryzias latipes, in mouse embryonic stem cells. Genetics. 2004;166:895–9.\n'},{id:"B14",body:'\nMátés L, Chuah MKL, Belay E, Jerchow B, Manoj N, Acosta-Sanchez A, et al. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet. 2009;41:753–61.\n'},{id:"B15",body:'\nYusa K, Zhou L, Li MA, Bradley A, Craig NL. A hyperactive piggyBac transposase for mammalian applications. Proc Natl Acad Sci. 2011;108:1531–6.\n'},{id:"B16",body:'\nGrabundzija I, Irgang M, Mátés L, Belay E, Matrai J, Gogol-Döring A, et al. Comparative analysis of transposable element vector systems in human cells. Mol Ther. 2010;18:1200–9.\n'},{id:"B17",body:'\nDoherty JE, Huye LE, Yusa K, Zhou L, Craig NL, Wilson MH. Hyperactive piggyBac gene transfer in human cells and in vivo. Hum Gene Ther. 2012;23:311–20.\n'},{id:"B18",body:'\nZayed H, Izsvák Z, Walisko O, Ivics Z. Development of hyperactive Sleeping Beauty transposon vectors by mutational analysis. Mol Ther. 2004;9:292–304.\n'},{id:"B19",body:'\nTurchiano G, Latella MC, Gogol-Döring A, Cattoglio C, Mavilio F, Izsvák Z, et al. Genomic analysis of Sleeping Beauty transposon integration in human somatic cells. PLoS One. 2014;9:e112712.\n'},{id:"B20",body:'\nLi MA, Turner DJ, Ning Z, Yusa K, Liang Q, Eckert S, et al. Mobilization of giant piggyBac transposons in the mouse genome. Nucleic Acids Res. 2011;39:e148.\n'},{id:"B21",body:'\nBalciunas D, Wangensteen KJ, Wilber A, Bell J, Geurts A, Sivasubbu S, et al. Harnessing a high cargo-capacity transposon for genetic applications in vertebrates. PLoS Genet. 2006;2:e169.\n'},{id:"B22",body:'\nSuster ML, Sumiyama K, Kawakami K. Transposon-mediated BAC transgenesis in zebrafish and mice. BMC Genomics. 2009;10:477.\n'},{id:"B23",body:'\nRostovskaya M, Fu J, Obst M, Baer I, Weidlich S, Wang H, et al. Transposon-mediated BAC transgenesis in human ES cells. Nucleic Acids Res. 2012;40:e150.\n'},{id:"B24",body:'\n\nLoperfido M, Jarmin S, Dastidar S, Di Matteo M, Perini I, Moore M, et al. piggyBac transposons expressing full-length human dystrophin enable genetic correction of dystrophic mesoangioblasts. Nucleic Acids Res. 2015 Dec 17;44(2):744–60.\n'},{id:"B25",body:'\nBire S, Casteret S, Arnaoty A, Piégu B, Lecomte T, Bigot Y. Transposase concentration controls transposition activity: myth or reality? Gene. 2013;530:165–71.\n'},{id:"B26",body:'\nLohe AR, Hart DL. Autoregulation of mariner transposase activity by overproduction and dominant-negative complementation. Mol Biol Evol. 1996;13:549–55.\n'},{id:"B27",body:'\nWilson MH, Coates CJ, George AL. PiggyBac transposon-mediated gene transfer in human cells. Mol Ther. 2007;15:139–45.\n'},{id:"B28",body:'\nCadiñanos J, Bradley A. Generation of an inducible and optimized piggyBac transposon system. Nucleic Acids Res. 2007;35:e87.\n'},{id:"B29",body:'\nLiu G, Aronovich EL, Cui Z, Whitley CB, Hackett PB. Excision of Sleeping Beauty transposons: parameters and applications to gene therapy. J Gene Med. 2004;6:574–83.\n'},{id:"B30",body:'\nHuang P, Xu L, Liang W, Tam CI, Zhang Y, Qi F, et al. Genomic deletion induced by Tol2 transposon excision in zebrafish. Nucleic Acids Res. 2013;41:e36.\n'},{id:"B31",body:'\nIgawa K, Kokubu C, Yusa K, Horie K, Yoshimura Y, Yamauchi K, et al. Removal of reprogramming transgenes improves the tissue reconstitution potential of keratinocytes generated from human induced pluripotent stem cells. Stem Cells Transl Med. 2014;3:992–1001.\n'},{id:"B32",body:'\nTalluri TR, Kumar D, Glage S, Garrels W, Ivics Z, Debowski K, et al. Non-viral reprogramming of fibroblasts into induced pluripotent stem cells by Sleeping Beauty and piggyBac transposons. Biochem Biophys Res Commun. 2014;450:581–7.\n'},{id:"B33",body:'\nHu K. All roads lead to induced pluripotent stem cells: the technologies of iPSC generation. Stem Cells Dev. 2014;23:1285–300.\n'},{id:"B34",body:'\nLi X, Burnight ER, Cooney AL, Malani N, Brady T, Sander JD, et al. piggyBac transposase tools for genome engineering. Proc Natl Acad Sci. 2013;110:E2279–87.\n'},{id:"B35",body:'\nMikkelsen JG, Yant SR, Meuse L, Huang Z, Xu H, Kay MA, et al. Helper-independent Sleeping Beauty transposon-transposase vectors for efficient nonviral gene delivery and persistent gene expression in vivo. Mol Ther. 2003;8:654–65.\n'},{id:"B36",body:'\nSaridey SK, Liu L, Doherty JE, Kaja A, Galvan DL, Fletcher BS, et al. PiggyBac transposon-based inducible gene expression in vivo after somatic cell gene transfer. Mol Ther. 2009;17:2115–20.\n'},{id:"B37",body:'\nNakanishi H, Higuchi Y, Kawakami S, Yamashita F, Hashida M. Comparison of piggyBac transposition efficiency between linear and circular donor vectors in mammalian cells. J Biotechnol. 2011;154:205–8.\n'},{id:"B38",body:'\nSaha S, Woodard LE, Charron EM, Welch RC, Rooney CM, Wilson MH. Evaluating the potential for undesired genomic effects of the piggyBac transposon system in human cells. Nucleic Acids Res. 2015;43:1770–82.\n'},{id:"B39",body:'\nNakazawa Y, Saha S, Galvan DL, Huye L, Rollins L, Rooney CM, et al. Evaluation of long-term transgene expression in piggyBac-modified human T lymphocytes. J Immunother. 2013;36:3–10.\n'},{id:"B40",body:'\nNakazawa Y, Huye LE, Dotti G, Foster AE, Vera JF, Manuri PR, et al. Optimization of the PiggyBac transposon system for the sustained genetic modification of human T lymphocytes. J Immunother. 2009;32:826–36.\n'},{id:"B41",body:'\nSharma N, Cai Y, Bak RO, Jakobsen MR, Schrøder LD, Mikkelsen JG. Efficient Sleeping Beauty DNA transposition from DNA minicircles. Mol Ther Nucleic Acids. 2013;2:e74.\n'},{id:"B42",body:'\nYant SR, Ehrhardt A, Mikkelsen JG, Meuse L, Pham T, Kay MA. Transposition from a gutless adeno-transposon vector stabilizes transgene expression in vivo. Nat Biotechnol. 2002;20:999–1005.\n'},{id:"B43",body:'\nLi MA, Pettitt SJ, Eckert S, Ning Z, Rice S, Cadinanos J, et al. The piggyBac transposon displays local and distant reintegration preferences and can cause mutations at noncanonical integration sites. Mol Cell Biol. 2013;33:1317–30.\n'},{id:"B44",body:'\nUrschitz J, Kawasumi M, Owens J, Morozumi K, Yamashiro H, Stoytchev I, et al. Helper-independent piggyBac plasmids for gene delivery approaches: strategies for avoiding potential genotoxic effects. Proc Natl Acad Sci. 2010;107:8117–22.\n'},{id:"B45",body:'\nUrschitz J, Moisyadi S. Transpositional transgenesis with piggyBac. Mob Genet Elements. 2013;3:e25167.\n'},{id:"B46",body:'\nChakraborty S, Ji H, Chen J, Gersbach CA, Leong KW. Vector modifications to eliminate transposase expression following piggyBac-mediated transgenesis. Sci Rep. 2014;4:7403.\n'},{id:"B47",body:'\nKren BT, Unger GM, Sjeklocha L, Trossen AA, Korman V, Diethelm-Okita BM, et al. Nanocapsule-delivered Sleeping Beauty mediates therapeutic Factor VIII expression in liver sinusoidal endothelial cells of hemophilia A mice. J Clin Invest. 2009;119:2086–99.\n'},{id:"B48",body:'\nHuang X, Wilber AC, Bao L, Tuong D, Tolar J, Orchard PJ, et al. Stable gene transfer and expression in human primary T cells by the Sleeping Beauty transposon system. Blood. 2006;107:483–91.\n'},{id:"B49",body:'\nAnderson CD, Urschitz J, Khemmani M, Owens JB, Moisyadi S, Shohet RV, et al. Ultrasound directs a transposase system for durable hepatic gene delivery in mice. Ultrasound Med Biol. 2013;39:2351–61.\n'},{id:"B50",body:'\nHuang X, Haley K, Wong M, Guo H, Lu C, Wilber A, et al. Unexpectedly high copy number of random integration but low frequency of persistent expression of the Sleeping Beauty transposase following trans delivery in primary human T cells. Hum Gene Ther. 2010;14:1–14.\n'},{id:"B51",body:'\nBire S, Ley D, Casteret S, Mermod N, Bigot Y, Rouleux-Bonnin F. Optimization of the piggyBac transposon using mRNA and insulators: toward a more reliable gene delivery system. PLoS One. 2013;8:e82559.\n'},{id:"B52",body:'\nGalla M, Schambach A, Falk CS, Maetzig T, Kuehle J, Lange K, et al. Avoiding cytotoxicity of transposases by dose-controlled mRNA delivery. Nucleic Acids Res. 2011;39:7147–60.\n'},{id:"B53",body:'\nBell JB, Aronovich EL, Schreifels JM, Beadnell TC, Hackett PB. Duration of expression and activity of Sleeping Beauty transposase in mouse liver following hydrodynamic DNA delivery. Mol Ther. 2010;18:1796–802.\n'},{id:"B54",body:'\nWilber A, Frandsen JL, Geurts JL, Largaespada DA, Hackett PB, McIvor RS. RNA as a source of transposase for Sleeping Beauty-mediated gene insertion and expression in somatic cells and tissues. Mol Ther. 2006;13:625–30.\n'},{id:"B55",body:'\nCai Y, Bak RO, Krogh LB, Staunstrup NH, Moldt B, Corydon TJ, et al. DNA transposition by protein transduction of the piggyBac transposase from lentiviral Gag precursors. Nucleic Acids Res. 2014;42:e28.\n'},{id:"B56",body:'\nLee C-Y, Li J-F, Liou J-S, Charng Y-C, Huang Y-W, Lee H-J. A gene delivery system for human cells mediated by both a cell-penetrating peptide and a piggyBac transposase. Biomaterials. 2011;32:6264–76.\n'},{id:"B57",body:'\nJärver P, Fernaeus S, EL-Andaloussi S, Tjörnhammar M-L, Langel Ü. Co-transduction of Sleeping Beauty transposase and donor plasmid via a cell-penetrating peptide: a simple one step method. Int J Pept Res Ther. 2007;14:58–63.\n'},{id:"B58",body:'\nBire S, Gosset D, Jégot G, Midoux P, Pichon C, Rouleux-Bonnin F. Exogenous mRNA delivery and bioavailability in gene transfer mediated by piggyBac transposition. BMC Biotechnol. 2013;13:75.\n'},{id:"B59",body:'\nBowers WJ, Mastrangelo MA, Howard DF, Southerland HA, Maguire-Zeiss KA, Federoff HJ. Neuronal precursor-restricted transduction via in utero CNS gene delivery of a novel bipartite HSV amplicon/transposase hybrid vector. Mol Ther. 2006;13:580–8.\n'},{id:"B60",body:'\nMüther N, Noske N, Ehrhardt A. Viral hybrid vectors for somatic integration—are they the better solution? Viruses. 2009;1:1295–324.\n'},{id:"B61",body:'\nSkipper KA, Andersen PR, Sharma N, Mikkelsen JG. DNA transposon-based gene vehicles—scenes from an evolutionary drive. J Biomed Sci. 2013;20:92.\n'},{id:"B62",body:'\nHausl MA, Zhang W, Müther N, Rauschhuber C, Franck HG, Merricks EP, et al. Hyperactive Sleeping Beauty transposase enables persistent phenotypic correction in mice and a canine model for hemophilia B. Mol Ther. 2010;18:1896–906.\n'},{id:"B63",body:'\nZhang W, Muck-Hausl M, Wang J, Sun C, Gebbing M, Miskey C, et al. Integration profile and safety of an adenovirus hybrid-vector utilizing hyperactive Sleeping Beauty transposase for somatic integration. PLoS One. 2013;8:e75344.\n'},{id:"B64",body:'\nSmith RP, Riordan JD, Feddersen CR, Dupuy AJ. A hybrid adenoviral vector system achieves efficient long-term gene expression in the liver via piggyBac transposition. Hum Gene Ther. 2015;26:377–85.\n'},{id:"B65",body:'\nZhang W, Solanki M, Müther N, Ebel M, Wang J, Sun C, et al. Hybrid adeno-associated viral vectors utilizing transposase-mediated somatic integration for stable transgene expression in human cells. PLoS One. 2013;8:e76771.\n'},{id:"B66",body:'\nLuo W-Y, Shih Y-S, Hung C-L, Lo K-W, Chiang C-S, Lo W-H, et al. Development of the hybrid Sleeping Beauty: baculovirus vector for sustained gene expression and cancer therapy. Gene Ther. 2012;19:844–51.\n'},{id:"B67",body:'\nStaunstrup NH, Moldt B, Mátés L, Villesen P, Jakobsen M, Ivics Z, et al. Hybrid lentivirus-transposon vectors with a random integration profile in human cells. Mol Ther. 2009;17:1205–14.\n'},{id:"B68",body:'\nVink CA, Gaspar HB, Gabriel R, Schmidt M, McIvor RS, Thrasher AJ, et al. Sleeping beauty transposition from nonintegrating lentivirus. Mol Ther. 2009;17:1197–204.\n'},{id:"B69",body:'\nSakurai H, Kawabata K, Sakurai F, Nakagawa S, Mizuguchi H. Innate immune response induced by gene delivery vectors. Int J Pharm. 2008;354:9–15.\n'},{id:"B70",body:'\nBieber T, Meissner W, Kostin S, Niemann A, Elsasser H-P. Intracellular route and transcriptional competence of polyethylenimine-DNA complexes. J Control Release. 2002;82:441–54.\n'},{id:"B71",body:'\nRejman J, Bragonzi A, Conese M. Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. Mol Ther. 2005;12:468–74.\n'},{id:"B72",body:'\nKang Y, Yu W, Sun Q, Zhang X, Jiang W, Wu C, et al. High-level transgene expression mediated by the piggyBac transposon enhances transgenic therapeutic effects in cervical cancer xenografts. Oncol Rep. 2010;24:897–907.\n'},{id:"B73",body:'\nLey D, Van Zwieten R, Puttini S, Iyer P, Cochard A, Mermod N. A PiggyBac-mediated approach for muscle gene transfer or cell therapy. Stem Cell Res. 2014;13:390–403.\n'},{id:"B74",body:'\nLin E-H, Keramidas M, Rome C, Chiu W-T, Wu C-W, Coll J-L, et al. Lifelong reporter gene imaging in the lungs of mice following polyethyleneimine-mediated Sleeping-Beauty transposon delivery. Biomaterials. 2011;32:1978–85.\n'},{id:"B75",body:'\nChicaybam L, Sodre AL, Curzio BA, Bonamino MH. An efficient low cost method for gene transfer to T lymphocytes. PLoS One. 2013;8:e60298.\n'},{id:"B76",body:'\nSingh H, Figliola MJ, Dawson MJ, Olivares S, Zhang L, Yang G, et al. Manufacture of clinical-grade CD19-specific T cells stably expressing chimeric antigen receptor using Sleeping Beauty system and artificial antigen presenting cells. PLoS One. 2013;8:e64138.\n'},{id:"B77",body:'\nSingh H, Huls H, Kebriaei P, Cooper LJN. A new approach to gene therapy using Sleeping Beauty to genetically modify clinical-grade T cells to target CD19. Immunol Rev. 2014;257:181–90.\n'},{id:"B78",body:'\nChen S, Shimoda M, Chen J, Matsumoto S, Grayburn PA, Paul A. Ectopic transgenic expression of NKX2.2 induces differentiation of adult pancreatic progenitors and mediates islet regeneration. Cell Cycle. 2012;11:1544–53.\n'},{id:"B79",body:'\nChen S, Shimoda M, Chen J, Grayburn PA. Stimulation of adult resident cardiac progenitor cells by durable myocardial expression of thymosin beta 4 with ultrasound-targeted microbubble delivery. Gene Ther. 2013;20:225–33.\n'},{id:"B80",body:'\nStaber JM, Pollpeter MJ, Arensdorf A, Sinn PL, Rutkowski DT, McCray PB. piggyBac-mediated phenotypic correction of factor VIII deficiency. Mol Ther Methods Clin Dev. 2014;1:14042.\n'},{id:"B81",body:'\nDoherty JE, Woodard LE, Bear AS, Foster AE, Wilson MH. An adaptable system for improving transposon-based gene expression in vivo via transient transgene repression. FASEB J. 2013;27:3753–62.\n'},{id:"B82",body:'\nKeith JH, Fraser TS, Fraser MJ. Analysis of the piggyBac transposase reveals a functional nuclear targeting signal in the 94 c-terminal residues. BMC Mol Biol. 2008;9:72.\n'},{id:"B83",body:'\nHong J-B, Chou F-J, Ku AT, Fan H-H, Lee T-L, Huang Y-H, et al. A nucleolus-predominant piggyBac transposase, NP-mPB, mediates elevated transposition efficiency in mammalian cells. PLoS One. 2014;9:e89396.\n'},{id:"B84",body:'\nMiller AM, Dean DA. Tissue-specific and transcription factor-mediated nuclear entry of DNA. Adv Drug Deliv Rev. 2009;61:603–13.\n'},{id:"B85",body:'\nde Jong J, Akhtar W, Badhai J, Rust AG, Rad R, Hilkens J, et al. Chromatin landscapes of retroviral and transposon integration profiles. PLoS Genet. 2014;10:e1004250.\n'},{id:"B86",body:'\nLi X, Ewis H, Hice RH, Malani N, Parker N, Zhou L, et al. A resurrected mammalian hAT transposable element and a closely related insect element are highly active in human cell culture. Proc Natl Acad Sci. 2013;110:E478–87.\n'},{id:"B87",body:'\nMoldt B, Miskey C, Staunstrup NH, Gogol-Döring A, Bak RO, Sharma N, et al. Comparative genomic integration profiling of Sleeping Beauty transposons mobilized with high efficacy from integrase-defective lentiviral vectors in primary human cells. Mol Ther. 2011;19:1499–510.\n'},{id:"B88",body:'\nField A-C, Vink C, Gabriel R, Al-Subki R, Schmidt M, Goulden N, et al. Comparison of lentiviral and Sleeping Beauty mediated αβ T cell receptor gene transfer. PLoS One. 2013;8:e68201.\n'},{id:"B89",body:'\nHuang X, Guo H, Tammana S, Jung Y-C, Mellgren E, Bassi P, et al. Gene transfer efficiency and genome-wide integration profiling of Sleeping Beauty, Tol2, and piggyBac transposons in human primary T cells. Mol Ther. 2010;18:1803–13.\n'},{id:"B90",body:'\nYant SR, Wu X, Huang Y, Garrison B, Burgess SM, Kay MA. High-resolution genome-wide mapping of transposon integration in mammals. Mol Cell Biol. 2005;25:2085–94.\n'},{id:"B91",body:'\nIkeda R, Kokubu C, Yusa K, Keng VW, Horie K, Takeda J. Sleeping beauty transposase has an affinity for heterochromatin conformation. Mol Cell Biol. 2007;27:1665–76.\n'},{id:"B92",body:'\nMeir Y-JJ, Weirauch MT, Yang H-S, Chung P-C, Yu RK, Wu SC-Y. Genome-wide target profiling of piggyBac and Tol2 in HEK 293: pros and cons for gene discovery and gene therapy. BMC Biotechnol. BioMed Central Ltd; 2011 Jan;11:28.\n'},{id:"B93",body:'\nBurnight ER, Staber JM, Korsakov P, Li X, Brett BT, Scheetz TE, et al. A hyperactive transposase promotes persistent gene transfer of a piggyBac DNA transposon. Mol Ther Nucleic Acids. 2012;1:e50.\n'},{id:"B94",body:'\nGalvan DL, Nakazawa Y, Kaja A, Kettlun C, Laurence JN, Rooney CM, et al. Genome-wide mapping of PiggyBac transposon integrations in primary human T cells. J Immunother. 2009;32:837–44.\n'},{id:"B95",body:'\nGarrison BS, Yant SR, Mikkelsen JG, Kay MA. Postintegrative gene silencing within the Sleeping Beauty transposition system. Mol Cell Biol. 2007;27:8824–33.\n'},{id:"B96",body:'\nYusa K, Takeda J, Horie K. Enhancement of Sleeping Beauty transposition by CpG methylation: possible role of heterochromatin formation. Mol Cell Biol. 2004;24:4004–18.\n'},{id:"B97",body:'\nSharma N, Hollensen AK, Bak RO, Staunstrup NH, Schrøder LD, Mikkelsen JG. The impact of cHS4 insulators on DNA transposon vector mobilization and silencing in retinal pigment epithelium cells. PLoS One. 2012;7:e48421.\n'},{id:"B98",body:'\nRauschhuber C, Ehrhardt A. RNA interference is responsible for reduction of transgene expression after Sleeping Beauty transposase mediated somatic integration. PLoS One. 2012;7:e35389.\n'},{id:"B99",body:'\nPark CW, Park J, Kren BT, Steer CJ. Sleeping Beauty transposition in the mouse genome is associated with changes in DNA methylation at the site of insertion. Genomics. 2006;88:204–13.\n'},{id:"B100",body:'\nZhu J, Park CW, Sjeklocha L, Kren BT, Steer CJ, Park CW, et al. High-level genomic integration, epigenetic changes, and expression of Sleeping Beauty transgene. Biochemistry. 2010;49:1507–21.\n'},{id:"B101",body:'\nLey D, Harraghy N, Le Fourn V, Bire S, Girod P-A, Regamey A, et al. MAR elements and transposons for improved transgene integration and expression. PLoS One. 2013;8:e62784.\n'},{id:"B102",body:'\nSjeklocha L, Chen Y, Daly MC, Steer CJ, Kren BT. β-Globin matrix attachment region improves stable genomic expression of the Sleeping Beauty transposon. J Cell Biochem. 2011;112:2361–75.\n'},{id:"B103",body:'\nWalisko O, Schorn A, Rolfs F, Devaraj A, Miskey C, Izsvák Z, et al. Transcriptional activities of the Sleeping Beauty transposon and shielding its genetic cargo with insulators. Mol Ther. 2008;16:359–69.\n'},{id:"B104",body:'\nDalsgaard T, Moldt B, Sharma N, Wolf G, Schmitz A, Pedersen FS, et al. Shielding of Sleeping Beauty DNA transposon-delivered transgene cassettes by heterologous insulators in early embryonal cells. Mol Ther. 2009;17:121–30.\n'},{id:"B105",body:'\nMossine VV, Waters JK, Hannink M, Mawhinney TP. piggyBac Transposon plus insulators overcome epigenetic silencing to provide for stable signaling pathway reporter cell lines. PLoS One. 2013;8:e85494.\n'},{id:"B106",body:'\nSjeklocha LM, Park C-W, Wong PY-P, Roney MJ, Belcher JD, Kaufman DS, et al. Erythroid-specific expression of β-globin from Sleeping Beauty-transduced human hematopoietic progenitor cells. PLoS One. 2011;6:e29110.\n'},{id:"B107",body:'\nBire S, Rouleux-bonnin F. Transgene Site-specific integration: problems and solutions. In: Renault S, Duchateau P, editors. Site-directed insertion of transgenes. Dordrecht, Netherlands: Springer; 2013:3–39.\n'},{id:"B108",body:'\nIvics Z, Katzer A, Stüwe EE, Fiedler D, Knespel S, Izsvák Z. Targeted Sleeping Beauty transposition in human cells. Mol Ther. 2007;15:1137–44.\n'},{id:"B109",body:'\nDemattei M-V, Thomas X, Carnus E, Augé-Gouillou C, Renault S. Site-directed integration of transgenes: transposons revisited using DNA-binding-domain technologies. Genetica. 2010;138:531–40.\n'},{id:"B110",body:'\nMaragathavally KJ, Kaminski JM, Coates CJ. Chimeric Mos1 and piggyBac transposases result in site-directed integration. FASEB J. 2006;20:1880–2.\n'},{id:"B111",body:'\nWu SC-Y, Meir Y-JJ, Coates CJ, Handler AM, Pelczar P, Moisyadi S, et al. piggyBac is a flexible and highly active transposon as compared to Sleeping Beauty, Tol2, and Mos1 in mammalian cells. Proc Natl Acad Sci. 2006;103:15008–13.\n'},{id:"B112",body:'\nWilson MH, Kaminski JM, George AL. Functional zinc finger/Sleeping Beauty transposase chimeras exhibit attenuated overproduction inhibition. FEBS Lett. 2005;579:6205–9.\n'},{id:"B113",body:'\nYant SR, Huang Y, Akache B, Kay MA. Site-directed transposon integration in human cells. Nucleic Acids Res. 2007;35:e50.\n'},{id:"B114",body:'\nOwens JB, Urschitz J, Stoytchev I, Dang NC, Stoytcheva Z, Belcaid M, et al. Chimeric piggyBac transposases for genomic targeting in human cells. Nucleic Acids Res. 2012;40:6978–91.\n'},{id:"B115",body:'\nMandell JG, Barbas CF. Zinc finger tools: custom DNA-binding domains for transcription factors and nucleases. Nucleic Acids Res. 2006;34:W516–23.\n'},{id:"B116",body:'\nKettlun C, Galvan DL, George AL, Kaja A, Wilson MH. Manipulating piggyBac transposon chromosomal integration site selection in human cells. Mol Ther. 2011;19:1636–44.\n'},{id:"B117",body:'\nWang H, Mayhew D, Chen X, Johnston M, Mitra RD. “Calling cards” for DNA-binding proteins in mammalian cells. Genetics. 2012;190:941–9.\n'},{id:"B118",body:'\nHickman AB, Dyda F. CRISPR-Cas immunity and mobile DNA: a new superfamily of DNA transposons encoding a Cas1 endonuclease. Mob DNA. 2014;5:23.\n'},{id:"B119",body:'\nKrupovic M, Makarova KS, Forterre P, Prangishvili D, Koonin EV. Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity. BMC Biol. 2014;12:36.\n'},{id:"B120",body:'\nXie F, Ye L, Chang JC, Beyer AI, Wang J, Muench MO, et al. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res. 2014;24:1526–33.\n'},{id:"B121",body:'\nYe L, Wang J, Beyer AI, Teque F, Cradick TJ, Qi Z, et al. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection. Proc Natl Acad Sci. 2014;111:9591–6.\n'},{id:"B122",body:'\nToscano MG, Romero Z, Muñoz P, Cobo M, Benabdellah K, Martin F. Physiological and tissue-specific vectors for treatment of inherited diseases. Gene Ther. 2011;18:117–27.\n'},{id:"B123",body:'\nLiu L, Sanz S, Heggestad AD, Antharam V, Notterpek L, Fletcher BS. Endothelial targeting of the Sleeping Beauty transposon within lung. Mol Ther. 2004;10:97–105.\n'},{id:"B124",body:'\nZhu J, Kren BT, Park CW, Bilgim R, Wong PY-P, Steer CJ. Erythroid-specific expression of beta-globin by the Sleeping Beauty transposon for Sickle cell disease. Biochemistry. 2007;46:6844–58.\n'},{id:"B125",body:'\nHong I-S, Lee H-Y, Kim H-P. Novel therapeutic approaches for various cancer types using a modified Sleeping Beauty-based gene delivery system. PLoS One. 2014;9:e86324.\n'},{id:"B126",body:'\nSong JS, Kim HP, Rubin E. Development of a Sleeping Beauty-based telomerase gene delivery system for hepatocytes. Biosci Biotechnol Biochem. 2011;75:227–31.\n'},{id:"B127",body:'\nChuah MK, Petrus I, De Bleser P, Le Guiner C, Gernoux G, Adjali O, et al. Liver-specific transcriptional modules identified by genome-wide in silico analysis enable efficient gene therapy in mice and non-human primates. Mol Ther. 2014;22:1605–13.\n'},{id:"B128",body:'\nDi Matteo M, Samara-Kuko E, Ward NJ, Waddington SN, Waddingon SN, McVey JH, et al. Hyperactive piggyBac transposons for sustained and robust liver-targeted gene therapy. Mol Ther. 2014;22:1614–24.\n'},{id:"B129",body:'\nNakazawa Y, Huye LE, Salsman VS, Leen AM, Ahmed N, Rollins L, et al. PiggyBac-mediated cancer immunotherapy using EBV-specific cytotoxic T-cells expressing HER2-specific chimeric antigen receptor. Mol Ther. 2011;19:2133–43.\n'},{id:"B130",body:'\nSaito S, Nakazawa Y, Sueki A, Matsuda K, Tanaka M, Yanagisawa R, et al. Anti-leukemic potency of piggyBac-mediated CD19-specific T cells against refractory Philadelphia chromosome-positive acute lymphoblastic leukemia. Cytotherapy. 2014;16:1257–69.\n'},{id:"B131",body:'\nTsukahara T, Iwase N, Kawakami K, Iwasaki M, Yamamoto C, Ohmine K, et al. The Tol2 transposon system mediates the genetic engineering of T-cells with CD19-specific chimeric antigen receptors for B-cell malignancies. Gene Ther. 2015;22:209–15.\n'},{id:"B132",body:'\nKebriaei P, Huls H, Jena B, Munsell M, Jackson R, Lee DA, et al. Infusing CD19-directed T cells to augment disease control in patients undergoing autologous hematopoietic stem-cell transplantation for advanced B-lymphoid malignancies. Hum Gene Ther. 2012;23:444–50.\n'},{id:"B133",body:'\nFjord-Larsen L, Kusk P, Emerich DF, Thanos C, Torp M, Bintz B, et al. Increased encapsulated cell biodelivery of nerve growth factor in the brain by transposon-mediated gene transfer. Gene Ther. 2012;19:1010–7.\n'},{id:"B134",body:'\nBell JB, Podetz-Pedersen KM, Aronovich EL, Belur LR, McIvor RS, Hackett PB. Preferential delivery of the Sleeping Beauty transposon system to livers of mice by hydrodynamic injection. Nat Protoc. 2007;2:3153–65.\n'},{id:"B135",body:'\nHerweijer H, Wolff JA. Progress and prospects: naked DNA gene transfer and therapy. Gene Ther. 2003;10:453–8.\n'},{id:"B136",body:'\nAronovich EL, Bell JB, Belur LR, Gunther R, Koniar B, Erickson DCC, et al. Prolonged expression of a lysosomal enzyme in mouse liver after Sleeping Beauty transposon-mediated gene delivery: implications for non-viral gene therapy of mucopolysaccharidoses. J Gene Med. 2007;9:403–15.\n'},{id:"B137",body:'\nBelur LR, Podetz-Pedersen KM, Sorenson BS, Hsu AH, Parker JB, Carlson CS, et al. Inhibition of angiogenesis and suppression of colorectal cancer metastatic to the liver using the Sleeping Beauty transposon system. Mol Cancer. 2011;10:14.\n'},{id:"B138",body:'\nPodetz-Pedersen KM, Bell JB, Steele TWJ, Wilber A, Shier WT, Belur LR, et al. Gene expression in lung and liver after intravenous infusion of polyethylenimine complexes of Sleeping Beauty transposons. Hum Gene Ther. 2010;21:210–20.\n'},{id:"B139",body:'\nBelur L, Frandsen JL, Dupuy AJ, Ingbar DH, Largaespada DA, Hackett PB, et al. Gene insertion and long-term expression in lung mediated by the Sleeping Beauty transposon system. Mol Ther. 2003;8:501–7.\n'},{id:"B140",body:'\nChen S, Chen J, Huang P, Meng X-L, Clayton S, Shen J-S, et al. Myocardial regeneration in adriamycin cardiomyopathy by nuclear expression of GLP1 using ultrasound targeted microbubble destruction. Biochem Biophys Res Commun. 2015;458:823–9.\n'},{id:"B141",body:'\nXue X, Huang X, Nodland SE, Mátés L, Ma LL, Izsvák Z, et al. Stable gene transfer and expression in cord blood-derived CD34+ hematopoietic stem and progenitor cells by a hyperactive Sleeping Beauty transposon system. Gene. 2010;114:1319–30.\n'},{id:"B142",body:'\nMa K, Wang D-D, Lin Y, Wang J, Petrenko V, Mao C. Synergetic targeted delivery of Sleeping-Beauty transposon system to mesenchymal stem cells using LPD nanoparticles modified with a phage-displayed targeting peptide. Adv Funct Mater. 2013;23:1172–81.\n'},{id:"B143",body:'\nTsukiyama T, Asano R, Kawaguchi T, Kim N, Yamada M, Minami N, et al. Simple and efficient method for generation of induced pluripotent stem cells using piggyBac transposition of doxycycline-inducible factors and an EOS reporter system. Genes Cells. 2011;16:815–25.\n'},{id:"B144",body:'\nMatsui H, Fujimoto N, Sasakawa N, Ohinata Y, Shima M, Yamanaka S, et al. Delivery of full-length factor VIII using a piggyBac transposon vector to correct a mouse model of hemophilia A. PLoS One. 2014;9:e104957.\n'},{id:"B145",body:'\nLiu L, Mah C, Fletcher BS. Sustained FVIII expression and phenotypic correction of hemophilia A in neonatal mice using an endothelial-targeted Sleeping Beauty transposon. Mol Ther. 2006;13:1006–15.\n'},{id:"B146",body:'\nOhlfest JR, Frandsen JL, Fritz S, Lobitz PD, Perkinson SG, Clark KJ, et al. Phenotypic correction and long-term expression of factor VIII in hemophilic mice by immunotolerization and nonviral gene transfer using the Sleeping Beauty transposon system. Blood. 2005;105:2691–8.\n'},{id:"B147",body:'\nYant SR, Meuse L, Chiu W, Ivics Z, Izsvak Z, Kay MA. Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nat Genet. 2000;25:35–41.\n'},{id:"B148",body:'\nChen ZJ, Kren BT, Wong PY-P, Low WC, Steer CJ. Sleeping Beauty-mediated down-regulation of huntingtin expression by RNA interference. Biochem Biophys Res Commun. 2005;329:646–52.\n'},{id:"B149",body:'\nPan X-J, Ma Z-Z, Zhang Q-J, Fan L, Li Q-H. Sleeping Beauty transposon system is a reliable gene delivery tool for hereditary tyrosinaemia type 1 disease gene therapy: size of the foreign gene decides the timing of stable integration into the host chromosomes. J Int Med Res. 2012;40:1850–9.\n'},{id:"B150",body:'\nMontini E, Held PK, Noll M, Morcinek N, Al-Dhalimy M, Finegold M, et al. In vivo correction of murine tyrosinemia type I by DNA-mediated transposition. Mol Ther. 2002;6:759–69.\n'},{id:"B151",body:'\nWilber A, Wangensteen KJ, Chen Y, Zhuo L, Frandsen JL, Bell JB, et al. Messenger RNA as a source of transposase for Sleeping Beauty transposon-mediated correction of hereditary tyrosinemia type I. Mol Ther. 2007;15:1280–7.\n'},{id:"B152",body:'\nBelcher JD, Vineyard JV, Bruzzone CM, Chen C, Beckman JD, Nguyen J, et al. Heme oxygenase-1 gene delivery by Sleeping Beauty inhibits vascular stasis in a murine model of sickle cell disease. J Mol Med (Berl). 2010;88:665–75.\n'},{id:"B153",body:'\nSjeklocha LM, Wong PY-P, Belcher JD, Vercellotti GM, Steer CJ. β-Globin Sleeping Beauty transposon reduces red blood cell sickling in a patient-derived CD34(+)-based in vitro model. PLoS One. 2013;8:e80403.\n'},{id:"B154",body:'\nAronovich EL, Bell JB, Khan SA, Belur LR, Gunther R, Koniar B, et al. Systemic correction of storage disease in MPS I NOD/SCID mice using the Sleeping Beauty transposon system. Mol Ther. 2009;17:1136–44.\n'},{id:"B155",body:'\nAronovich EL, Hall BC, Bell JB, Mc Ivor RS, Hackett PB. Quantitative analysis of α-L-iduronidase expression in immunocompetent mice treated with the Sleeping Beauty transposon system. PLoS One. 2013;8:e78161.\n'},{id:"B156",body:'\nYusa K, Rashid ST, Strick-Marchand H, Varela I, Liu P-Q, Paschon DE, et al. Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature. 2011;478:391–4.\n'},{id:"B157",body:'\nHyland KA, Olson ER, Clark KJ, Aronovich EL, Hackett PB, Blazar BR, et al. Sleeping Beauty-mediated correction of Fanconi anemia type C. J Gene Med. 2011;13:462–9.\n'},{id:"B158",body:'\nWang X, Sarkar DP, Mani P, Steer CJ, Chen Y, Guha C, et al. Long-term reduction of jaundice in Gunn rats by nonviral liver-targeted delivery of Sleeping Beauty transposon. Hepatology. 2009;50:815–24.\n'},{id:"B159",body:'\nOrtiz-Urda S, Lin Q, Yant SR, Keene D, Kay MA, Khavari PA. Sustainable correction of junctional epidermolysis bullosa via transposon-mediated nonviral gene transfer. Gene Ther. 2003;10:1099–104.\n'},{id:"B160",body:'\nBertino P, Urschitz J, Hoffmann FW, You BR, Rose AH, Park WH, et al. Vaccination with a piggyBac plasmid with transgene integration potential leads to sustained antigen expression and CD8(+) T cell responses. Vaccine. 2014;32:1670–7.\n'},{id:"B161",body:'\nMartinez-Fernandez A, Nelson TJ, Reyes S, Alekseev AE, Secreto F, Perez-Terzic C, et al. iPS cell-derived cardiogenicity is hindered by sustained integration of reprogramming transgenes. Circ Cardiovasc Genet. 2014;7:667–76.\n'},{id:"B162",body:'\nTsukiyama T, Kato-Itoh M, Nakauchi H, Ohinata Y. A comprehensive system for generation and evaluation of induced pluripotent stem cells using piggyBac transposition. PLoS One. 2014;9:e92973.\n'},{id:"B163",body:'\nYin J, Fan Y, Qin D, Xiaocui Bian X, Bi X. Generation and characterization of virus-free reprogrammed melanoma cells by the piggyBac transposon. J Cancer Res Clin Oncol. 2013;139:1591–9.\n'},{id:"B164",body:'\nInada E, Saitoh I, Watanabe S, Aoki R, Miura H, Ohtsuka M, et al. PiggyBac transposon-mediated gene delivery efficiently generates stable transfectants derived from cultured primary human deciduous tooth dental pulp cells (HDDPCs) and HDDPC-derived iPS cells. Int J Oral Sci. 2015;7:144–54.\n'},{id:"B165",body:'\nHe C-X, Shi D, Wu W-J, Ding Y-F, Feng D-M, Lu B, et al. Insulin expression in livers of diabetic mice mediated by hydrodynamics-based administration. World J Gastroenterol. 2004;10:567–72.\n'},{id:"B166",body:'\nJohnen S, Izsvák Z, Stöcker M, Harmening N, Salz AK, Walter P, et al. Sleeping Beauty transposon-mediated transfection of retinal and iris pigment epithelial cells. Invest Ophthalmol Vis Sci. 2012;53:4787–96.\n'},{id:"B167",body:'\nOhlfest JR, Demorest ZL, Motooka Y, Vengco I, Oh S, Chen E, et al. Combinatorial antiangiogenic gene therapy by nonviral gene transfer using the Sleeping Beauty transposon causes tumor regression and improves survival in mice bearing intracranial human glioblastoma. Mol Ther. 2005;12:778–88.\n'},{id:"B168",body:'\nKang Y, Zhang X-Y, Jiang W, Wu C-Q, Chen C-M, Gu J-R, et al. The piggyBac transposon is an integrating non-viral gene transfer vector that enhances the efficiency of GDEPT. Cell Biol Int. 2009;33:509–15.\n'},{id:"B169",body:'\nBahrambeigi V, Ahmadi N, Moisyadi S, Urschitz J, Salehi R, Haghjooy Javanmard S. PhiC31/PiggyBac modified stromal stem cells: effect of interferon γ and/or tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) on murine melanoma. Mol Cancer. 2014;13:255.\n'},{id:"B170",body:'\nHuang X, Guo H, Kang J, Choi S, Zhou TC, Tammana S, et al. Sleeping Beauty transposon-mediated engineering of human primary T cells for therapy of CD19+ lymphoid malignancies. Mol Ther. 2008;16:580–9.\n'},{id:"B171",body:'\nSingh H, Manuri PR, Olivares S, Dara N, Dawson MJ, Huls H, et al. Redirecting specificity of T-cell populations for CD19 using the Sleeping Beauty system. Cancer Res. 2008;68:2961–71.\n'},{id:"B172",body:'\nMaiti SN, Huls H, Singh H, Dawson M, Figliola M, Olivares S, et al. Sleeping beauty system to redirect T-cell specificity for human applications. J Immunother. 2013;36:112–23.\n'},{id:"B173",body:'\nGalvan DL, O’Neil RT, Foster AE, Huye L, Bear A, Rooney CM, et al. Anti-tumor effects after adoptive transfer of IL-12 transposon-modified murine splenocytes in the OT-I-melanoma mouse model. PLoS One. 2015;10:e0140744.\n'},{id:"B174",body:'\nRamanayake S, Bilmon I, Bishop D, Dubosq M-C, Blyth E, Clancy L, et al. Low-cost generation of Good Manufacturing Practice-grade CD19-specific chimeric antigen receptor-expressing T cells using piggyBac gene transfer and patient-derived materials. Cytotherapy. 2015;17:1251–67.\n'},{id:"B175",body:'\nManuri PVR, Wilson MH, Maiti SN, Mi T, Singh H, Olivares S, et al. piggyBac transposon/transposase system to generate CD19-specific T cells for the treatment of B-lineage malignancies. Hum Gene Ther. 2010;21:427–37.\n'},{id:"B176",body:'\nHuye LE, Nakazawa Y, Patel MP, Yvon E, Sun J, Savoldo B, et al. Combining mTor inhibitors with rapamycin-resistant T cells: a two-pronged approach to tumor elimination. Mol Ther. 2011;19:2239–48.\n'},{id:"B177",body:'\nHuang G, Yu L, Cooper LJN, Hollomon M, Huls H, Kleinerman ES. Genetically modified T cells targeting interleukin-11 receptor α-chain kill human osteosarcoma cells and induce the regression of established osteosarcoma lung metastases. Cancer Res. 2012;72:271–81.\n'},{id:"B178",body:'\nDeniger DC, Yu J, Huls MH, Figliola MJ, Mi T, Maiti SN, et al. Sleeping Beauty transposition of chimeric antigen receptors targeting receptor tyrosine kinase-like orphan receptor-1 (ROR1) into diverse memory T-cell populations. PLoS One. 2015;10:e0128151.\n'},{id:"B179",body:'\nJin Z, Maiti S, Huls H, Singh H, Olivares S, Mátés L, et al. The hyperactive Sleeping Beauty transposase SB100X improves the genetic modification of T cells to express a chimeric antigen receptor. Gene Ther. 2011;18:849–56.\n'},{id:"B180",body:'\nXiao J, Meng X-M, Huang XR, Chung AC, Feng Y-L, Hui DS, et al. miR-29 inhibits bleomycin-induced pulmonary fibrosis in mice. Mol Ther. 2012;20:1251–60.\n'},{id:"B181",body:'\nLiu H, Liu L, Fletcher BS, Visner GA. Sleeping Beauty-based gene therapy with indoleamine 2,3-dioxygenase inhibits lung allograft fibrosis. FASEB J. 2006;20:E1694–703.\n'},{id:"B182",body:'\nLiu L, Liu H, Visner G, Fletcher BS. Sleeping Beauty-mediated eNOS gene therapy attenuates monocrotaline-induced pulmonary hypertension in rats. FASEB J. 2006;20:2594–1596.\n'},{id:"B183",body:'\nLiang M, Woodard LE, Liang A, Luo J, Wilson MH, Mitch WE, et al. Protective role of insulin-like growth factor-1 receptor in endothelial cells against unilateral ureteral obstruction-induced renal fibrosis. Am J Pathol. 2015;185:1234–50.\n'}],footnotes:[],contributors:[{corresp:null,contributorFullName:"Colette Bastie",address:null,affiliation:'
LNOX GICC UMR CNRS 7292, Department of Medicine, France
LNOX GICC UMR CNRS 7292, Department of Medicine, France
'}],corrections:null},book:{id:"5132",type:"book",title:"Modern Tools for Genetic Engineering",subtitle:null,fullTitle:"Modern Tools for Genetic Engineering",slug:"modern-tools-for-genetic-engineering",publishedDate:"May 18th 2016",bookSignature:"Michael S.D. Kormann",coverURL:"https://cdn.intechopen.com/books/images_new/5132.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-953-51-2234-0",printIsbn:"978-953-51-2392-7",pdfIsbn:"978-953-51-5432-7",reviewType:"peer-reviewed",numberOfWosCitations:5,isAvailableForWebshopOrdering:!0,editors:[{id:"173868",title:"Prof.",name:"Michael",middleName:"Sebastian Daniel",surname:"Kormann",slug:"michael-kormann",fullName:"Michael Kormann"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"417"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"50176",type:"chapter",title:"Next-Generation Therapeutics: mRNA as a Novel Therapeutic Option for Single-Gene Disorders",slug:"next-generation-therapeutics-mrna-as-a-novel-therapeutic-option-for-single-gene-disorders",totalDownloads:2677,totalCrossrefCites:1,signatures:"Tatjana Michel, Hans-Peter Wendel and Stefanie Krajewski",reviewType:"peer-reviewed",authors:[{id:"45899",title:"Prof.",name:"Hans Peter",middleName:null,surname:"Wendel",fullName:"Hans Peter Wendel",slug:"hans-peter-wendel"},{id:"178484",title:"Dr.",name:"Stefanie",middleName:null,surname:"Krajewski",fullName:"Stefanie Krajewski",slug:"stefanie-krajewski"},{id:"184179",title:"MSc.",name:"Tatjana",middleName:null,surname:"Michel",fullName:"Tatjana Michel",slug:"tatjana-michel"}]},{id:"50590",type:"chapter",title:"Gene Delivery Technologies for Efficient Genome Editing: Applications in Gene Therapy",slug:"gene-delivery-technologies-for-efficient-genome-editing-applications-in-gene-therapy",totalDownloads:2008,totalCrossrefCites:0,signatures:"Francisco Martin, Sabina Sánchez-Hernández, Alejandra Gutierrez-\nGuerrero and Karim Benabdellah",reviewType:"peer-reviewed",authors:[{id:"32294",title:"Dr.",name:"Francisco",middleName:null,surname:"Martín-Molina",fullName:"Francisco Martín-Molina",slug:"francisco-martin-molina"}]},{id:"50203",type:"chapter",title:"DNA Elements Tetris: A Strategy for Gene Correction",slug:"dna-elements-tetris-a-strategy-for-gene-correction",totalDownloads:1633,totalCrossrefCites:0,signatures:"Colette Bastie and Florence Rouleux-Bonnin",reviewType:"peer-reviewed",authors:[{id:"178101",title:"Dr.",name:"Florence",middleName:null,surname:"Rouleux-Bonnin",fullName:"Florence Rouleux-Bonnin",slug:"florence-rouleux-bonnin"},{id:"184724",title:"MSc.",name:"Colette",middleName:null,surname:"Bastie",fullName:"Colette Bastie",slug:"colette-bastie"}]},{id:"50195",type:"chapter",title:"Gene Correction Technology and Its Impact on Viral Research and Therapy",slug:"gene-correction-technology-and-its-impact-on-viral-research-and-therapy",totalDownloads:1595,totalCrossrefCites:0,signatures:"Guan-Huei Lee and Myo Myint Aung",reviewType:"peer-reviewed",authors:[{id:"178173",title:"Dr.",name:"Guan-Huei",middleName:null,surname:"Lee",fullName:"Guan-Huei Lee",slug:"guan-huei-lee"},{id:"184207",title:"Dr.",name:"Myo Myint",middleName:null,surname:"Aung",fullName:"Myo Myint Aung",slug:"myo-myint-aung"}]},{id:"50138",type:"chapter",title:"Gene Editing in Adult Hematopoietic Stem Cells",slug:"gene-editing-in-adult-hematopoietic-stem-cells",totalDownloads:2092,totalCrossrefCites:1,signatures:"Sergio López-Manzaneda, Sara Fañanas-Baquero, Virginia Nieto-\nRomero, Francisco-Jose Roman-Rodríguez, Maria Fernandez-Garcia,\nMaria J. Pino-Barrio, Fatima Rodriguez-Fornes, Begoña Diez-\nCabezas, Maria Garcia-Bravo, Susana Navarro, Oscar Quintana-\nBustamante and Jose C. Segovia",reviewType:"peer-reviewed",authors:[{id:"35353",title:"Dr.",name:"Jose",middleName:"C",surname:"Segovia",fullName:"Jose Segovia",slug:"jose-segovia"},{id:"59062",title:"Dr.",name:"Susana",middleName:null,surname:"Navarro",fullName:"Susana Navarro",slug:"susana-navarro"},{id:"158069",title:"Dr.",name:"Oscar",middleName:null,surname:"Quintana-Bustamante",fullName:"Oscar Quintana-Bustamante",slug:"oscar-quintana-bustamante"},{id:"158742",title:"Dr.",name:"Maria",middleName:null,surname:"Garcia-Bravo",fullName:"Maria Garcia-Bravo",slug:"maria-garcia-bravo"},{id:"178374",title:"Dr.",name:"Sergio",middleName:null,surname:"López-Manzaneda",fullName:"Sergio López-Manzaneda",slug:"sergio-lopez-manzaneda"},{id:"178428",title:"MSc.",name:"Virginia",middleName:null,surname:"Nieto-Romero",fullName:"Virginia Nieto-Romero",slug:"virginia-nieto-romero"},{id:"178429",title:"MSc.",name:"Sara",middleName:null,surname:"Fañanás-Baquero",fullName:"Sara Fañanás-Baquero",slug:"sara-fananas-baquero"},{id:"184199",title:"Ph.D. Student",name:"Francisco Jose",middleName:null,surname:"Roman-Rodriguez",fullName:"Francisco Jose Roman-Rodriguez",slug:"francisco-jose-roman-rodriguez"},{id:"184200",title:"MSc.",name:"Maria",middleName:null,surname:"Fernandez-Garcia",fullName:"Maria Fernandez-Garcia",slug:"maria-fernandez-garcia"},{id:"184201",title:"MSc.",name:"María José",middleName:null,surname:"Pino-Barrio",fullName:"María José Pino-Barrio",slug:"maria-jose-pino-barrio"},{id:"184202",title:"MSc.",name:"Fatima",middleName:null,surname:"Rodriguez-Fornes",fullName:"Fatima Rodriguez-Fornes",slug:"fatima-rodriguez-fornes"},{id:"184203",title:"Dr.",name:"Begoña",middleName:null,surname:"Diez-Cabezas",fullName:"Begoña Diez-Cabezas",slug:"begona-diez-cabezas"}]},{id:"50215",type:"chapter",title:"Insulin Gene Therapy for Type 1 Diabetes Mellitus: Unique Challenges Require Innovative Solutions",slug:"insulin-gene-therapy-for-type-1-diabetes-mellitus-unique-challenges-require-innovative-solutions",totalDownloads:2383,totalCrossrefCites:0,signatures:"Andrew M Handorf, Hans W Sollinger and Tausif Alam",reviewType:"peer-reviewed",authors:[{id:"26540",title:"Dr.",name:"Hans",middleName:null,surname:"Sollinger",fullName:"Hans Sollinger",slug:"hans-sollinger"},{id:"178930",title:"Dr.",name:"Andrew",middleName:null,surname:"Handorf",fullName:"Andrew Handorf",slug:"andrew-handorf"},{id:"179017",title:"Dr.",name:"Tausif",middleName:null,surname:"Alam",fullName:"Tausif Alam",slug:"tausif-alam"}]},{id:"49756",type:"chapter",title:"Application of Genome Editing Technology to MicroRNA Research in Mammalians",slug:"application-of-genome-editing-technology-to-microrna-research-in-mammalians",totalDownloads:2232,totalCrossrefCites:2,signatures:"Lei Yu, Jennifer Batara and Biao Lu",reviewType:"peer-reviewed",authors:[{id:"176226",title:"Dr.",name:"Biao",middleName:null,surname:"Lu",fullName:"Biao Lu",slug:"biao-lu"},{id:"177461",title:"Prof.",name:"Lei",middleName:null,surname:"Yu",fullName:"Lei Yu",slug:"lei-yu"},{id:"177462",title:"MSc.",name:"Jennifer",middleName:null,surname:"Batara",fullName:"Jennifer Batara",slug:"jennifer-batara"}]},{id:"50164",type:"chapter",title:"Emerging Gene Correction Strategies for Muscular Dystrophies: Scientific Progress and Regulatory Impact",slug:"emerging-gene-correction-strategies-for-muscular-dystrophies-scientific-progress-and-regulatory-impa",totalDownloads:1680,totalCrossrefCites:0,signatures:"Houria Bachtarzi and Tim Farries",reviewType:"peer-reviewed",authors:[{id:"178430",title:"Dr.",name:"Houria",middleName:null,surname:"Bachtarzi",fullName:"Houria Bachtarzi",slug:"houria-bachtarzi"},{id:"180826",title:"Dr.",name:"Tim",middleName:null,surname:"Farries",fullName:"Tim Farries",slug:"tim-farries"}]}]},relatedBooks:[{type:"book",id:"620",title:"Genetic Engineering",subtitle:"Basics, New Applications and Responsibilities",isOpenForSubmission:!1,hash:"a8acb6135be37ff5f1b5050934a95b62",slug:"genetic-engineering-basics-new-applications-and-responsibilities",bookSignature:"Hugo A. Barrera-Saldaña",coverURL:"https://cdn.intechopen.com/books/images_new/620.jpg",editedByType:"Edited by",editors:[{id:"78442",title:"Dr.",name:"Hugo",surname:"Barrera-Saldaña",slug:"hugo-barrera-saldana",fullName:"Hugo Barrera-Saldaña"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"25749",title:"Expression of Non-Native Genes in a Surrogate Host Organism",slug:"expression-of-non-native-genes-in-a-surrogate-host-organism",signatures:"Dan Close, Tingting Xu, Abby Smartt, Sarah Price, Steven Ripp and Gary Sayler",authors:[{id:"27028",title:"Dr.",name:"Dan",middleName:null,surname:"Close",fullName:"Dan Close",slug:"dan-close"},{id:"34168",title:"Dr.",name:"Steven",middleName:null,surname:"Ripp",fullName:"Steven Ripp",slug:"steven-ripp"},{id:"34169",title:"Dr.",name:"Gary",middleName:null,surname:"Sayler",fullName:"Gary Sayler",slug:"gary-sayler"},{id:"89407",title:"Dr.",name:"Tingting",middleName:null,surname:"Xu",fullName:"Tingting Xu",slug:"tingting-xu"},{id:"89408",title:"Ms.",name:"Abby",middleName:null,surname:"Smartt",fullName:"Abby Smartt",slug:"abby-smartt"},{id:"125164",title:"Ms.",name:"Sarah",middleName:null,surname:"Price",fullName:"Sarah Price",slug:"sarah-price"}]},{id:"25750",title:"Gateway Vectors for Plant Genetic Engineering: Overview of Plant Vectors, Application for Bimolecular Fluorescence Complementation (BiFC) and Multigene Construction",slug:"gateway-vectors-for-plant-genetic-engineering-overview-of-plant-vectors-application-for-bimolecular-",signatures:"Yuji Tanaka, Tetsuya Kimura, Kazumi Hikino, Shino Goto,\nMikio Nishimura, Shoji Mano and Tsuyoshi Nakagawa",authors:[{id:"89749",title:"Prof.",name:"Tsuyoshi",middleName:null,surname:"Nakagawa",fullName:"Tsuyoshi Nakagawa",slug:"tsuyoshi-nakagawa"},{id:"124398",title:"MSc.",name:"Yuji",middleName:null,surname:"Tanaka",fullName:"Yuji Tanaka",slug:"yuji-tanaka"},{id:"124404",title:"Dr.",name:"Tetsuya",middleName:null,surname:"Kimura",fullName:"Tetsuya Kimura",slug:"tetsuya-kimura"},{id:"124405",title:"Ms.",name:"Kazumi",middleName:null,surname:"Hikino",fullName:"Kazumi Hikino",slug:"kazumi-hikino"},{id:"124406",title:"Dr.",name:"Shino",middleName:null,surname:"Goto",fullName:"Shino Goto",slug:"shino-goto"},{id:"124407",title:"Dr.",name:"Shoji",middleName:null,surname:"Mano",fullName:"Shoji Mano",slug:"shoji-mano"},{id:"124408",title:"Dr.",name:"Mikio",middleName:null,surname:"Nishimura",fullName:"Mikio Nishimura",slug:"mikio-nishimura"}]},{id:"25751",title:"Thermostabilization of Firefly Luciferases Using Genetic Engineering",slug:"thermostabilization-of-firefly-luciferases-using-genetic-engineering",signatures:"Natalia Ugarova and Mikhail Koksharov",authors:[{id:"82717",title:"Prof.",name:"Natalia",middleName:"Nikolaevna",surname:"Ugarova",fullName:"Natalia Ugarova",slug:"natalia-ugarova"}]},{id:"25752",title:"Genetic Engineering of Phenylpropanoid Pathway in Leucaena leucocephala",slug:"genetic-engineering-of-phenylpropanoid-pathway-in-leucaena-leucocephala",signatures:"Bashir M. Khan, Shuban K. Rawal, Manish Arha, Sushim K. Gupta, Sameer Srivastava, Noor M. Shaik, Arun K. Yadav, Pallavi S. Kulkarni, O. U. Abhilash, SantoshKumar, Sumita Omer, Rishi K. Vishwakarma, Somesh Singh, R. J. Santosh Kumar, Prashant Sonawane, Parth Patel, C. Kannan, Shakeel Abbassi",authors:[{id:"85329",title:"Dr.",name:"Bashir",middleName:null,surname:"Khan",fullName:"Bashir Khan",slug:"bashir-khan"},{id:"124009",title:"MSc.",name:"Santosh",middleName:null,surname:"Kumar",fullName:"Santosh Kumar",slug:"santosh-kumar"},{id:"124010",title:"MSc.",name:"Sumita",middleName:null,surname:"Omer",fullName:"Sumita Omer",slug:"sumita-omer"},{id:"125097",title:"Dr.",name:"Sushim",middleName:null,surname:"Kumar Gupta",fullName:"Sushim Kumar Gupta",slug:"sushim-kumar-gupta"},{id:"125098",title:"Dr.",name:"Sameer",middleName:null,surname:"Srivastava",fullName:"Sameer Srivastava",slug:"sameer-srivastava"},{id:"125099",title:"Dr.",name:"Noor",middleName:null,surname:"M. Shaik",fullName:"Noor M. Shaik",slug:"noor-m.-shaik"},{id:"125100",title:"Dr.",name:"Arun",middleName:null,surname:"K. Yadav",fullName:"Arun K. Yadav",slug:"arun-k.-yadav"},{id:"125101",title:"Dr.",name:"Pallavi",middleName:null,surname:"S. Kulkarni",fullName:"Pallavi S. Kulkarni",slug:"pallavi-s.-kulkarni"},{id:"125102",title:"MSc.",name:"Rishi",middleName:null,surname:"K. Vishwakarma",fullName:"Rishi K. Vishwakarma",slug:"rishi-k.-vishwakarma"},{id:"125103",title:"MSc.",name:"Somesh",middleName:null,surname:"Singh",fullName:"Somesh Singh",slug:"somesh-singh"},{id:"125226",title:"MSc.",name:"Parth",middleName:null,surname:"Patel",fullName:"Parth Patel",slug:"parth-patel"},{id:"126667",title:"MSc.",name:"Prashant",middleName:null,surname:"Sonawane",fullName:"Prashant Sonawane",slug:"prashant-sonawane"},{id:"126668",title:"MSc.",name:"R.J.",middleName:null,surname:"Santosh Kumar",fullName:"R.J. Santosh Kumar",slug:"r.j.-santosh-kumar"},{id:"126669",title:"Dr.",name:"S.K.",middleName:null,surname:"Rawal",fullName:"S.K. Rawal",slug:"s.k.-rawal"},{id:"126670",title:"MSc.",name:"Shakeel",middleName:null,surname:"Abbassi",fullName:"Shakeel Abbassi",slug:"shakeel-abbassi"},{id:"126671",title:"MSc.",name:"Kannan",middleName:null,surname:"Chinnathambi",fullName:"Kannan Chinnathambi",slug:"kannan-chinnathambi"},{id:"126672",title:"Dr.",name:"Manish",middleName:null,surname:"Arha",fullName:"Manish Arha",slug:"manish-arha"},{id:"126676",title:"Dr.",name:"Abhilash O.",middleName:null,surname:"Usharraj",fullName:"Abhilash O. Usharraj",slug:"abhilash-o.-usharraj"}]},{id:"25753",title:"Genetic Engineering of Plants for Resistance to Viruses",slug:"genetic-engineering-of-plants-for-resistance-to-viruses",signatures:"Richard Mundembe, Richard F. Allison and Idah Sithole-Niang",authors:[{id:"86176",title:"Dr.",name:"Richard",middleName:null,surname:"Mundembe",fullName:"Richard Mundembe",slug:"richard-mundembe"},{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",fullName:"Idah Sithole-Niang",slug:"idah-sithole-niang"},{id:"131378",title:"Prof.",name:"Richard",middleName:null,surname:"Allison",fullName:"Richard Allison",slug:"richard-allison"}]},{id:"25754",title:"Strategies for Improvement of Soybean Regeneration via Somatic Embryogenesis and Genetic Transformation",slug:"strategies-for-improvement-of-soybean-regeneration-via-somatic-embryogenesis-and-genetic-transformat",signatures:"Beatriz Wiebke-Strohm, Milena Shenkel Homrich, Ricardo Luís Mayer Weber, Annette Droste and Maria Helena Bodanese-Zanettini",authors:[{id:"90436",title:"Dr.",name:"Annette",middleName:null,surname:"Droste",fullName:"Annette Droste",slug:"annette-droste"},{id:"90504",title:"Dr.",name:"Beatriz",middleName:null,surname:"Wiebke-Strohm",fullName:"Beatriz Wiebke-Strohm",slug:"beatriz-wiebke-strohm"},{id:"90505",title:"Dr.",name:"Maria Helena",middleName:null,surname:"Bodanese-Zanettini",fullName:"Maria Helena Bodanese-Zanettini",slug:"maria-helena-bodanese-zanettini"},{id:"90507",title:"Dr.",name:"Milena Schenkel",middleName:null,surname:"Homrich",fullName:"Milena Schenkel Homrich",slug:"milena-schenkel-homrich"},{id:"127474",title:"Dr.",name:"Ricardo Luís Mayer",middleName:null,surname:"Weber",fullName:"Ricardo Luís Mayer Weber",slug:"ricardo-luis-mayer-weber"}]},{id:"25755",title:"Genetic Engineering and Biotechnology of Growth Hormones",slug:"genetic-engineering-and-biotechnology-of-growth-hormones",signatures:"Jorge Angel Ascacio-Martínez and Hugo Alberto Barrera-Saldaña",authors:[{id:"126345",title:"Prof.",name:"Jorge",middleName:null,surname:"Ascacio",fullName:"Jorge Ascacio",slug:"jorge-ascacio"}]},{id:"25756",title:"Genetically Engineered Virus-Vectored Vaccines – Environmental Risk Assessment and Management Challenges",slug:"genetically-engineered-virus-vectored-vaccines-environmental-risk-assessment-and-management-challeng",signatures:"Anne Ingeborg Myhr and Terje Traavik",authors:[{id:"30163",title:"Dr.",name:"Anne Ingeborg",middleName:null,surname:"Myhr",fullName:"Anne Ingeborg Myhr",slug:"anne-ingeborg-myhr"},{id:"30165",title:"Prof.",name:"Terje",middleName:"Ingemar",surname:"Traavik",fullName:"Terje Traavik",slug:"terje-traavik"}]},{id:"25757",title:"Genetic Engineering and Moral Responsibility",slug:"genetic-engineering-and-moral-responsibility",signatures:"Bruce Small",authors:[{id:"89086",title:"Dr.",name:"Bruce",middleName:null,surname:"Small",fullName:"Bruce Small",slug:"bruce-small"}]}]}],publishedBooks:[{type:"book",id:"620",title:"Genetic Engineering",subtitle:"Basics, New Applications and Responsibilities",isOpenForSubmission:!1,hash:"a8acb6135be37ff5f1b5050934a95b62",slug:"genetic-engineering-basics-new-applications-and-responsibilities",bookSignature:"Hugo A. Barrera-Saldaña",coverURL:"https://cdn.intechopen.com/books/images_new/620.jpg",editedByType:"Edited by",editors:[{id:"78442",title:"Dr.",name:"Hugo",surname:"Barrera-Saldaña",slug:"hugo-barrera-saldana",fullName:"Hugo Barrera-Saldaña"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2562",title:"Mutagenesis",subtitle:null,isOpenForSubmission:!1,hash:"7574fdd072594f99c2972bccc2585c55",slug:"mutagenesis",bookSignature:"Rajnikant Mishra",coverURL:"https://cdn.intechopen.com/books/images_new/2562.jpg",editedByType:"Edited by",editors:[{id:"144908",title:"Dr.",name:"Rajnikant",surname:"Mishra",slug:"rajnikant-mishra",fullName:"Rajnikant Mishra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3359",title:"Genetic Engineering",subtitle:null,isOpenForSubmission:!1,hash:"e8f1c765a3b89770adaad569cfd851d7",slug:"genetic-engineering",bookSignature:"Idah Sithole-Niang",coverURL:"https://cdn.intechopen.com/books/images_new/3359.jpg",editedByType:"Edited by",editors:[{id:"90172",title:"Prof.",name:"Idah",surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5132",title:"Modern Tools for Genetic Engineering",subtitle:null,isOpenForSubmission:!1,hash:"37201ca138b78c27e431029445ecc675",slug:"modern-tools-for-genetic-engineering",bookSignature:"Michael S.D. Kormann",coverURL:"https://cdn.intechopen.com/books/images_new/5132.jpg",editedByType:"Edited by",editors:[{id:"173868",title:"Prof.",name:"Michael",surname:"Kormann",slug:"michael-kormann",fullName:"Michael Kormann"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6670",title:"Secondary Metabolites",subtitle:"Sources and Applications",isOpenForSubmission:!1,hash:"05d354e4a05e7df7d08ea65f76e0b268",slug:"secondary-metabolites-sources-and-applications",bookSignature:"Ramasamy Vijayakumar and Suresh S.S. Raja",coverURL:"https://cdn.intechopen.com/books/images_new/6670.jpg",editedByType:"Edited by",editors:[{id:"176044",title:"Dr.",name:"Ramasamy",surname:"Vijayakumar",slug:"ramasamy-vijayakumar",fullName:"Ramasamy Vijayakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[{type:"book",id:"5132",title:"Modern Tools for Genetic Engineering",subtitle:null,isOpenForSubmission:!1,hash:"37201ca138b78c27e431029445ecc675",slug:"modern-tools-for-genetic-engineering",bookSignature:"Michael S.D. Kormann",coverURL:"https://cdn.intechopen.com/books/images_new/5132.jpg",editedByType:"Edited by",editors:[{id:"173868",title:"Prof.",name:"Michael",surname:"Kormann",slug:"michael-kormann",fullName:"Michael Kormann"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},onlineFirst:{chapter:{type:"chapter",id:"76056",title:"Lupus Nephritis: Current Updates",doi:"10.5772/intechopen.96891",slug:"lupus-nephritis-current-updates",body:'
1. Introduction
Lupus nephritis (LN) is the most common severe organ manifestation of systemic lupus erythematosus (SLE). It may be the presenting manifestation of SLE and usually arises within 5 years of diagnosis [1]. Approximately 40–70% of SLE patients will develop LN [2] with histopathological changes observed in most patients even among those without renal manifestations (known as “silent LN”; mostly with “milder” class I and II histologic lesions) [3, 4]. Clinical presentation of LN is highly variable, ranging from asymptomatic proteinuria with normal renal function to rapidly progressive renal failure.
Recent data demonstrates reduction in the temporal mortality trend among end stage renal disease (ESRD) LN patients [5]; however, the risk of progression to ESRD in LN remains unchanged [5, 6]. Despite significant improvement of outcome in this modern era, less than 50% of patients achieve complete clinical remission following immune suppression [7] with 10–20% of patients progressing to ESRD [8]. This chapter explores recent studies that have substantially contributed to our understanding of LN and provides new insights into the epidemiology, pathogenesis, classification criteria and management strategies of LN.
2. Epidemiology
The prevalence of SLE and LN varies based on age, gender, geographical location, socioeconomic status and ethnicity. There are also disproportionate differences in the incidence and prevalence, depending upon the validated classification criteria or methods of case ascertainment used.
2.1 Systemic lupus erythematosus (SLE)
In a large retrospective study performed in the United Kingdom (UK) involving more than 7,000 SLE cases between 1999 and 2012, the overall annual incidence of SLE was 4.9 cases per 100,000 population per year with overall prevalence of 97 per 100,000 population; highest in Afro-Caribbean ethnic subgroup (517 per 100,000), followed by the Indian subgroup (193 per 100,000) while Caucasian subgroup was 134 per 100,000 [9]. Other studies found similar estimates with annual incidence between 4 and 8 cases per 100,000 population per year. Expectedly, the worldwide prevalence of SLE also varies between 30 to 90 cases per 100,000 population, highest in the African populations, lowest in Caucasians, with Hispanic and Asian subgroups in between the two extremes [10, 11].
All studies worldwide have demonstrated marked predominance of women in SLE, between 6 and 9 times higher than men. In the United States (US) and UK, the peak incidence was in women aged between 40 and 59 [10, 12]; in contrast, a population based study in Taiwan involving almost 7000 SLE patients revealed earlier peak incidence in women aged between 20 and 29 [13], a consistent trend among other studies in the Asia-Pacific region [14].
2.2 Lupus nephritis (LN)
Renal involvement occurs in 25–50% of SLE patients at the time of diagnosis [15]. The cumulative incidence, again, varies according to ethnicities. In a US study involving three ethnic subgroups, the incidence of LN was found to be the highest among the African subgroup (69%) followed by Hispanics (61%) and Caucasians (29%) [16]. In the Asia-Pacific region, the cumulative incidence of LN varies between 30% and 82%, lowest in Australian and highest in Malaysian populations respectively [14].
Despite higher overall incidence of SLE in women than in men, strikingly, renal involvement was found to be 50% higher in SLE men in a meta-analysis involving nearly 12,000 SLE patients across multiple countries [17]. Left untreated, LN carries significant morbidity and mortality, with the mortality rate estimated to be 6 times higher than general population. However, with the current therapeutic options, the 10-year survival for patients with LN can exceed 98% [18].
3. Pathogenesis
The pathogenesis of LN is complex and achieving full understanding of its pathophysiologic mechanisms has proved challenging due to the molecular and phenotypic heterogeneity. Genetic predisposition, epigenetic dysregulation and environmental triggers are all likely to contribute to the disease expression [1, 19, 20]. Dysregulation of both innate and adaptive immune responses manifested by disturbance in apoptotic cell clearance, cytokines stimulation, B-cell immunity and T-cell function leads to glomerular and/or tubulointerstitial injury.
Production of autoantibodies targeting self-DNA, other self-nuclear antigens and non-nuclear materials results from loss of immune self-tolerance and autoimmunity in genetically predisposed individuals. Formation of immune complexes (ICs) may occur in circulation and deposits in various organ systems including the kidneys. Antibodies can also directly target in situ nephritogenic antigens at the major resident renal cells (mesangial cells, glomerular endothelial cells, tubular epithelial cells and podocytes) [21]. Co-stimulation by Fc receptors (FcRs) and endosomal Toll-like receptors (TLRs) leads to activation of the complement system and subsequent release of cytokines and chemokines leading to renal tissue injury [22, 23, 24, 25]. Anti-C1q antibodies, while not exclusive to LN, are strongly associated with renal inflammation and severe LN, amplifying complement activation in situ [26, 27].
Overactivation of 1) Interferon (IFN)-I signalling pathway, which is regulated by dendritic cells (DCs), interleukins (eg. IL 12/23), JAK1, TYK2 and various STAT proteins and 2) NFκB are both implicated early in the innate immune response and play major roles in the pathogenesis [28, 29]. Adaptive responses including persistent activation and interaction of aberrant polyclonal B and T cells involving multiple co-stimulatory molecules promote chronic inflammation and renal tissue damage. Studies have also uncovered that formation of long-lived memory T-cells and plasma cells that reside in survival niches in bone marrow and inflamed tissue render them resistant to conventional immunosuppression or B cell therapies [30].
B cell activation factor (BAFF)/B-lymphocyte stimulator (BLyS) promotes formation of tertiary lymphoid structures (TLSs) that contribute to lymphocyte priming and autoantibody production within the kidneys [31] while evidence in patients and animal models have demonstrated high levels of IL-17 producing T cells in LN [32]. Several other regulators of apoptosis have also been implicated in the development of LN including dysregulation of autophagy, BCL-2, phosphatase and tensin homologue (PTEN), mannose-binding lectin (MBL) and neutrophil extracellular traps (NETs) among several others [33, 34, 35, 36, 37, 38, 39, 40].
More than 10 genome-wide association studies (GWAS) have been conducted thus far with more than 50 genes implicated involving various pathogenic mechanisms in the pathogenesis of SLE, some associated with LN [2, 41]. These candidate genes are likely to undergo further evaluation and validation from deep sequencing and mechanistic studies. Mohan et al. have elegantly categorised the implicated genes into four functional groups; genes that influence 1) lymphocyte activation, particularly B cells (eg. BLK, STAT4, TNFSF4, HLA-DR) 2) innate immune signalling (notably NFκB and IFN-I; eg. IKZF1, IRF5, TLR9, TNFAIP3) 3) intra-renal signalling (eg. ACE, KLK) and 4) handling of apoptotic material, chromatin and ICs (eg. ATG5, ITGAM, FCGR2A/3A/3B); genetic interaction from multiple categories is required for severe LN to develop [2].
The TLR7 gene, which is located at chromosome X, has recently been the focus of considerable research in SLE and LN. Theories regarding the contribution of TLR7 gene have included 1) Enhanced TLR7 protein expression in renal DCs and macrophages which correlated with renal disease parameters in murine models [42] 2) Emerging evidence that TLR7 dosage is a key pathogenic factor to the pathogenesis of SLE: Dillon et al. assembled the largest group consisting of 316 men with SLE and found high prevalence of SLE in X chromosome aneuploides such as Klinefelter’s syndrome (KS; 47, XXY) and de la Chapelle’s syndrome (46, XX male) [43] while recently, Souyris and colleagues provided proof that TLR7gene evades X chromosome inactivation in immune cells in women and KS men, and proposed this as a mechanism for the elevated risk of SLE in women and KS [44], which may partially explain the high preponderance of SLE in females.
4. Diagnosis and classification
Current non-invasive SLE biomarkers such as proteinuria or active urine sediment, serum creatinine, anti dsDNA and hypocomplementemia could not reliably confirm the presence, severity and/or chronicity, or predict the outcome of LN. Many novel biomarkers are currently being explored in the management and as therapeutic target in LN; unfortunately, none so far had been utilised in daily clinical practice [45].
In patients suspected of LN, certain clinical and laboratory features may however predict the class of LN a patient may have. In a retrospective study analysing 297 renal biopsies of SLE patients with some degree of proteinuria, absence of malar rash, negative anti-dsDNA and urine leukocytes of <5/high power field under microscopy are independent predictors for class II LN. Class III or IV can independently be predicted by younger age at diagnosis (<32 years), musculoskeletal involvement, hypertension, presence of anti-dsDNA, elevated creatinine level, absence of nephrotic range proteinuria and presence of leucocytes and cellular cast in urine. Older age, malar rash and low C3 level may be predictive for class V LN [46].
4.1 Role of renal biopsy
Renal biopsy is the gold standard for the diagnosis and current classification of LN. The histological findings may assist physicians to optimise therapeutic strategies in individual patients, including assessing disease activity and/or chronicity for guidance to escalate or de-escalate immunosuppression accordingly. It is an invasive procedure with potential risks, most notably bleeding; however, given the lack of available biomarkers to identify disease activity, it remains an irreplaceable tool and mainstay of current management in LN.
Indication for a renal biopsy includes significant proteinuria of >0.5 g/day (or equivalent), certain unclear acute elevation of serum creatinine level, and in patients with severe disease relapse (Table 1) [47]. Biopsy is rarely done in patients with isolated haematuria or proteinuria of <0.5 g/day; hence, class I LN is rarely seen in the histology. Performed by either experienced nephrologist or interventional radiologist, adequate tissue is obtained in >95% of times.
Should biopsy
May biopsy
Proteinuria >0.5 g/24 hours Unexplained renal insufficiency Differentiating activity vs. chronicity Severe relapse
Isolated haematuria or pyuria Proteinuria less than 0.5 g/24 hours ‘Protocol’ biopsy during/after treatment Mild relapse
Table 1.
Possible indications for kidney biopsy in SLE patient.
Given the location of kidney where no direct compression can be performed post biopsy, bleeding (as detected by routine CT scan or ultrasound post biopsy) was found to be common, ranging in 57–91% of patients [48]; however, the actual incidence of clinically important bleeding is small. Meta-analysis of 34 relevant studies found low rates of macroscopic haematuria (3.5%) and blood transfusion (0.9%), with lower rates yielded in need for interventions (0.6%) such as catheter insertion for bladder obstruction (0.3%) and nephrectomy (0.01%) and death (0.02%) [49].
The bleeding risk increases in females, use of larger needle (14-G), elevated serum creatinine (>176 umol/L) or acute renal failure, uncontrolled systolic blood pressure (>170 mmHg) [49, 50] and in patients with coagulopathies or are on anticoagulation/antiplatelet agents. Most serious complications are detected within 4 hours of biopsy, and majority within 12 hours [51, 52]. Routine 1-hour post biopsy ultrasound for presence of haematoma to predict complication has not been shown to be clinically beneficial (positive predictive value of 43%; negative predictive value of 95%) [53].
The role of repeat renal biopsy in LN flares is controversial. In essence, a repeat biopsy is required if it may change management; for example, this is particularly true in a patient with stable renal function who developed sudden deterioration of creatinine associated with active urine sediment. This may reflect the possibility of crescentic glomerulonephritis (GN) that warrants stronger immunosuppression. During LN flare, histological transformation is more likely to occur if the initial histology revealed non-proliferative disease (initial class II); although, many would still have persistent active lesions in proliferative disease [54, 55].
Renal biopsy may also be considered to determine disease chronicity in patients with persistent proteinuria and lower glomerular filtration rate (GFR), which warrant de-escalation of immunosuppression. It is well documented that repeat biopsies lead to change to immunosuppression in more than half of the cases [55].
Decision to stop maintenance immunosuppression in LN is often challenging and some researchers perform ‘protocol biopsies’ after a period of complete clinical remission to guide withdrawal of treatment. Its’ value however is still debatable, as studies mostly looked at the prognosis based on the histological features [54]. In a study by De Rosa et al., 36 LN patients on immunosuppressive therapy for more than 3 years and in clinical remission (proteinuria <0.5 g/day) were re-biopsied. Regardless of the results of biopsy, the immunosuppressive medications were tapered down. Those patients with residual activity in histology had higher chance of relapses upon reducing therapy [56], which supports histology-based approach in treatment withdrawal.
4.2 Classification criteria
4.2.1 SLE and renal involvement
The revised American College of Rheumatology (ACR) 1997 criteria specifies that a patient can be diagnosed with SLE if 4 of 11 criteria are met at any interval of observation (Table 2). Renal involvement can be considered if patient developed proteinuria of >0.5/day or appearance of cellular cast (red cells, haemoglobin, granular, tubular or mixed) [57]. The 2012 Systemic Lupus International Collaborating Clinics (SLICC) criteria divided SLE features into 11 clinical and 6 immunologic criteria, where SLE can be fulfilled by a) biopsy-proven LN in presence of ANA or anti-DNA antibodies or b) meeting ≥4 of 17 criteria, with at least 1 criterion from each division [58].
ACR 1997
SLICC 2012
ACR 2019
4 out of 11 criteria
4 out of 17 criteria, with at least 1 from each domain
Fulfil the entry criterion, followed by 10 points in additive criteria
Clinical Domain Acute cutaneous lupus Chronic cutaneous lupus Oral ulcer Synovitis Non-scarring alopecia Serositis Renal Neurologic Haemolytic anaemia Leukopenia or lymphopenia Thrombocytopenia Immunologic Domain ANA Anti dsDNA Anti-Sm Antiphospholipid antibody Low complement Direct Coomb’s test
Entry criterion ANA positive Additive criteria Clinical domain Constitutional Fever (2) Haematologic Leukopenia (3) Thrombocytopenia (4) Autoimmune haemolysis (4) Neuropsychiatric Delirium (2) Psychosis (3) Seizure (5) Mucocutaneous Non-scarring alopecia (2) Oral ulcers (2) Subcutanoues OR discoid lupus (4) Acute cutaneous lupus (6) Serosal Pleural/Pericardial effusion (5) Acute pericarditis (6) Musculoskeletal Joint involvement (6) Renal Proteinuria > 0.5 g/24 h (4) Renal biopsy class II or V (8) Renal biopsy class III or IV (10) Immunology domain Antiphospholipid antibodies Anti-cardiolipin OR anti-B2GP1 antibodies OR lupus anticoagulant (2) Complement proteins Low C3 OR low C4 (3) Low C3 AND low C4 (4) SLE-specific antibodies Anti-dsDNA antibody OR anti-Smith antibody (6)
Table 2.
Criteria for SLE diagnosis based on different criteria.
European League Against Rheumatism (EULAR)/ACR published a new set of criteria for SLE diagnosis in 2019 [58]. It employs the strategy that ANA must be positive for the diagnosis to be considered, followed by 10 domains with different individual weightage; diagnosis can be made if total score reaches 10 points, again with renal involvement carrying a high weight between 4 and 10 depending on the renal manifestations (Table 2) [59].
4.3 Diagnosis of lupus nephritis
The clinical presentations of LN may differ ranging from asymptomatic haematuria to rapidly progressive GN. All patients with SLE should have urinalysis checked on regular basis to detect renal involvement. Presence of significant proteinuria would trigger the need for a renal biopsy, although many would perform biopsies for reasons such as persistent haematuria and elevated serum creatinine [54]. Biopsy is critical to distinguish between active nephritis, non-glomerular pathology of SLE (such as tubulointerstitial nephritis or thrombotic microangiopathy) and disease chronicity (such as interstitial fibrosis, tubular atrophy and glomerulosclerosis). Importantly, biopsy findings should be interpreted and correlated carefully with patients’ clinical features and serology.
In an analysis by Ishizaki et al. of 48 SLE patients who had renal biopsies but no urine abnormality, 36 patients were identified to have some morphologic changes. Although majority had class I/II (72%), six (17%) patients were found to have class III/IV LN [60]. LN has characteristic histological features that differ from other glomerular pathology and may involve lesions in the glomerular, vascular or tubulointerstitial structures. Analysis of 860 renal biopsies by Kudose S et al. confirmed 5 histopathological features of LN; 1) “full-house” staining by immunofluorescence (IF) 2) intense C1q staining 3) extraglomerular deposits 4) combined subendothelial and subepithelial deposits and 5) endothelial tubuloreticular inclusion [61].
The first published classification of glomerular changes in LN was formulated in 1974 under the auspices of the World Health Organisation (WHO; Table 3). It divides glomerular changes into five classes, which became the basis of today’s classification. Class I applies to biopsies with no detectable changes in glomeruli; class II for pure mesangial disease, class III and IV were defined as proliferative disease, with the former affecting <50% of glomeruli and latter >50%. Class V was for membranous changes. This was modified in 1982, which include replacement of “focal proliferative” term to “focal segmental” GN and addition of a new category, class VI, which denoted advanced sclerosing GN (Table 3) [62].
WHO 1974
ISN/RPS 2003
ISN/RPS 2018
Class I Normal glomeruli
Class I Minimal mesangial lupus nephritis
Class I Minimal mesangial lupus nephritis d
Class II Pure mesangial alteration
Class II Mesangial proliferative lupus nephritis
Class II Mesangial proliferative lupus nephritis d
Class III Focal proliferative glomerulonephritis
Class III Focal lupus nephritis a, b
Class III Focal lupus nephritis d
Class IV Diffuse proliferative glomerulonephritis
Class IV Diffuse segmental (IV-S) or global (IV-G) lupus nephritis a, b
Class IV Diffuse lupus nephritis d
Class V Membranous glomerulonephritis
Class V Membranous lupus nephritis c
Class V Membranous lupus nephritis c, d
Class VI Advanced sclerosing lupus nephritis
Class VI Advanced sclerosing lupus nephritis d
Table 3.
Lupus nephritis classification.
WHO: World Health Organisation; ISN/RPS: International Society of Nephrology/Renal Pathology Society; a: indicate the proportion of glomeruli with active and sclerotic lesions; b: indicate the proportion of glomeruli with fibrinoid necrosis and cellular crescents; c: may occur in combination with class III or IV; d: activity and chronicity indices (total scores of 24 for activity, 12 for chronicity).
Due to inconsistencies and ambiguities of the available classification criteria, under the auspices of International Society of Nephrology/Renal Pathology Society (ISN/RPS), a new classification of LN was proposed in 2003 [63]. While keeping the overall architecture of the 6 classes in LN, several significant changes were made and emphasis was given to standardisation of biopsy reports. Definition of class I was changed to normal glomeruli under light microscopy but with mesangial deposits under IF. There was also subdivision of class IV into diffuse segmental (IV-S) or diffuse global (IV-G), while terms active (A), chronic (C) or acute-on-chronic (A/C) lesions were also introduced.
The ISN/RPS classification for LN was revised in 2018; among the changes include elimination of the subdivisions of class IV into segmental (IV-S) or global (IV-G), replacement of previous denomination of active (A) and chronic (C) to the actual activity indices (maximum score for activity index is 24 and chronicity index is 12; Table 4), and preference for the term “hypercellularity” rather than “proliferation” [64]. The lack of classification for tubulointerstitial and vascular involvement in LN will be addressed and revised after the next (phase 2) international nephropathology working group evaluation and recommendations [64].
Items
Score
Comment
Activity Index
Endocapillary hypercellularity
0 to 3+
0 to 3+ based on % involvement of glomeruli or tubulointerstitium. 0 = none, 1+ = <25%, 2+ = 25–50%, 3+ = > 50%.
Neutrophils/karyorrhexis
0 to 3+
Fribrinoid necrosis
0 to 3+ (x2)
Hyaline deposits
0 to 3+
Cellular/fibrocellular crescents
0 to 3+ (x2)
Double weightage for fibrinoid necrosis and cellular/fibrocellular crescent.
Interstitial inflammation
0 to 3+
TOTAL
24
Chronicity Index
Total glomerulosclerosis score
0 to 3+
0 to 3+ based on % involvement of glomeruli or tubulointerstitium. 0 = none, 1+ = <25%, 2+ = 25–50%, 3+ = > 50%.
Fibrous crescent
0 to 3+
Tubular atrophy
0 to 3+
Interstitial fibrosis
0 to 3+
TOTAL
12
Table 4.
Modified NIH activity and chronicity scoring system (ISN/RPS 2018).
5. Management
5.1 Current management strategies
Early treatment in LN has been shown to improve outcome; however, effective management remains a challenge. It requires a multidisciplinary team approach (MDT), ideally by rheumatologists, nephrologists and nephropathologists. The cornerstone of treatment entails corticosteroids, antimalarial, and steroid-sparing agents (conventional immunomodulators and/or biological therapies) tailored to individual patients based upon histological class and severity to achieve rapid resolution of inflammation, proteinuria <0.5–0.7 g/day by 12 months (or up to 24 months in baseline nephrotic range proteinuria) [47] and prevention of relapsing episodes.
5.1.1 Induction phase
While there is little agreement for class II LN, in active proliferative class III, IV and pure membranous class V (with nephrotic range proteinuria or proteinuria >1 g/day despite optimal use of renin-angiotensin-aldosterone system (RAAS) blockers), the current recommendation for initial induction treatment options include either low-dose intravenous cyclophosphamide (CYCi; 500 mg fortnightly infusions for 3 months) or mycophenolate mofetil (MMF; 2-3 g/day or mycophenolic acid (MPA) at equivalent dose) [47, 65, 66, 67, 68]. This is combined with high-dose pulsed intravenous methylprednisolone followed by oral corticosteroid taper. High-dose CYCi is reserved for patients with severe LN due to its’ various unfavourable side effects (mainly severe cytopenias and infection, cystitis, ovarian failure, cervical dysplasia and malignancy).
The use of calcineurin inhibitors (CNIs) namely tacrolimus (TAC) and cyclosporin (Cys) either as monotherapy or as part of a multitarget regimen therapy (with MMF/MPA and glucocorticoid) may have a favourable efficacy to induce remission. Meta-analysis in 2017 which included 45 induction trials of diverse participant background confirmed superior efficacy in induction by multitarget therapy compared to CYCi [69]; however, safety concern with its long term use mainly of chronic progressive irreversible nephrotoxicity remains an issue [70].
5.1.2 Maintenance phase
In the maintenance phase of treatment where less intensive therapy is required, MMF (1-2 g/day or MPA at equivalent dose) or azathioprine (AZA) are the drugs of choice [47, 71, 72] (with or without low dose <7.5 mg/day corticosteroid), depending on the induction regimen and plan for pregnancy. Hydroxychloroquine (HCQ) is recommended for all LN patients in the absence of contraindications [47]. Due to possible ocular toxicity, the dose should not exceed 5 mg/kg body weight and should be adjusted in patients with renal and liver disease, with regular ophthalmological screening.
5.1.3 Refractory lupus nephritis
Rituximab (RTX), although off-label, is not only indicated in patients refractory to conventional therapy or after great cumulative dose of CYCi, but also in patients of child bearing age [47, 73, 74]. Another B-cell targeting therapy which inhibits BlyS, Belimumab has recently been proven to be beneficial as add-on to the standard of care (SOC) therapy (mainly in the MMF subgroup) with primary efficacy renal response seen by week 24 and sustained through week 104 [75].
It is recommended not to discontinue immunosuppression too early as most renal flares occurs during this period. Treatment withrawal can be considered in patients with sustained complete remission for 3–5 years, with treatment deescalation prior to complete withrawal of therapy [47]. Close monitoring of patients and management of co-morbidities including blood pressure (BP) control, treatment of hyperlipidaemia with statins and proteinuria with RAAS blockers are important, while vaccination against influenza and Streptococcus pneumoniae are strongly recommended. Repeat renal biopsy may be considered to guide the duration of maintenance immunotherapy and may be required in patients with incomplete response or recurrent LN flares [47, 65].
5.2 Future novel therapeutic options
Developing more effective treatment strategies in LN remains a priority among clinicians and researchers across the globe; however, major challenges exist in its advancement due to the complex pathophysiology and heterogeneity, which directly impact on clinical trial design and overall outcome. Moreover, most trials are conducted with background therapy, which is difficult to control during the study and its subsequent analysis, as there is no clear definition in the SOC [76]. Notwithstanding this, extensive therapeutic strategies have emerged with wide array of novel treatments to improve patient outcomes. Major trend in current treatment landscape for LN focuses on reduction of steroid use.
There is gathering evidence, especially in more recent times, documenting the successful safe use of Belimumab, a monoclonal antibody (mAb) directed against BlyS as an add-on therapy in LN, especially in patients with low complement levels and high anti-DNA antibodies [75, 77]. It is the first targeted therapy and currently the only biological agent approved specifically for LN. There is also increasing interest in the sequential use of two B-cell targeting agents, RTX and Belimumab in active LN [78, 79] with a phase III trial already underway [80]. The rationale for this approach is due to the hypothesis that their co-administration may enhance depletion of circulating and tissue-resident autoreactive B cells.
Another potent BAFF-inhibitor, Blisibimod, was associated with reduction in steroid use, decreased proteinuria and biomarker responses in a multinational phase III trial [81]. Tabalumab, a selective mAb that neutralises both membrane and soluble BAFF, despite having the same therapeutic class, on the contrary did not yield the expected positive statistical significance results in two phase III studies involving SLE patients; however, only approximately 10% of patients in these studies had renal involvement [82, 83].
Voclosporin, a novel next generation CNIs (an analogue of cyclosporin) with enhanced calcineurin inhibition, better safety profile and consistent predictable dose response, despite initial safety concerns in the prior phase II study [84], has recently been demonstrated in a phase III trial to be highly effective for treatment of LN when combined with MMF, with acceptable safety profile, at least for the short term (52 weeks) [85]. More importantly, it has just received the approval by the United States’ Food and Drug Administration (FDA) on the 22nd of January 2021, making it the only second targeted therapy approved specifically for LN [86].
There is emerging theoretical evidence for targeting autoantibody-secreting long-lived plasma cells (PCs) that recide in dedicated survival niches in the bone marrow or inflammed tissues of LN patients. Bortezomib, a proteasome inhibitor has been shown to be effective in both animal models and real-world setting but is limited by treatment related toxicity [87, 88, 89]. Recently, Ostendorf and colleagues have demosntrated succesful use of Daratumumab, a mAb that targets CD38 and depletes PCs with acceptable safety profile in a patient with refractory LN [90]. The experience of its use however is still limited and more data will be required.
Obinutuzumab, a novel anti-CD20 mAb demonstrated encouraging sustained 18-months B-cell depletion and renal response in a phase II trial with further evaluation in phase III trial underway (can be accessed at ClinicalTrials.gov with identification number: NCT04221477) [91]. BI 655064 (anti CD40 mAb; NCT02770170) has recently completed a phase II trial as add-on therapy to SOC treatment in active LN and awaiting evaluation. Other biological agents currently undergoing clinical trials in the treatment of LN include Anifrolumab (Type I IFN receptor mAb; NCT02547922) in phase II, while Dapirolizumab (pegylated anti CD40 ligand; NCT04294667) and Secukinumab (anti-IL-17 mAb; NCT04181762) are both in phase III trials [92].
A pipeline of novel agents in LN are being developed or asssesed in clinical trials including Ravulizumab (novel anti complement C5 antibody; NCT04564339), Guselkumab (IL-23 inhibitor; NCT04376827), Itolizumab, (anti CD6 antibody; NCT04128579), KZR-616 (proteasome inhibitor; NCT03393013), Iguratimod (novel small molecule; NCT02936375), and BMS-986165 (novel tyrosine kinase 2 (TYK2) inhibitor; NCT03943147) among many others [92].
Targeting the JAK/STAT signalling pathway with Tofacitinib, or CP-690, 550 have been shown to be effective in murine LN model and may potentially serve as therapeutic target in LN [93, 94]. Successful Bruton’s Tyrosine Kinase (BTK) inhibition in several studies involving mice LN models supports Kong et al. finding of significantly upregulated BTK expression in glomerulus of LN patients and may potentially be a therapeutic target in LN [95, 96, 97].
Despite looking promising in SLE, a placebo-controlled phase II/III study to evaluate Atacicept (recombinant fusion protein that inhibits BAFF/BLyS or APRIL) in combination with MMF and corticosteroids in active LN patients was prematurely terminated due to unexpected substantial decline in serum IgG and serious pneumonia infections in Atacicept-treated patients [98, 99]. Abatacept, a recombinant fusion protein co-stimulation modulator, trialled as add on to SOC in LN failed the primary end point of a phase III trial despite demonstarating more rapid reduction of proteinuria and earlier sustained remission [100].
Newer treatment paradigms showing promising results include succesful use of autologous haematopoietic and allogeneic mesenchymal stem cell transplantations for LN in animal studies and among Asian patients [101, 102, 103, 104, 105, 106] while Yu et al. demonstrated in vitro the protective role by vitamin D in podocyte injury induced by autoantibodies from patients with LN and suggested possible role of vitamin D as a novel therapy target in LN [107].
6. Special considerations
6.1 Pregnancy and lupus nephritis
6.1.1 Pre-pregnancy
Women of childbearing age with LN should understand and be counselled about the potential risks of pregnancy, even if she is in complete remission. Age, previous pregnancy complication, duration from last LN relapse, medication exposure, treatment adherence, blood pressure (BP) control and current disease status are among the important factors that may determine the outcome of future pregnancy. Baseline complement levels, antibody status for dsDNA, SS-A and SS-B, presence of antiphospholipid antibodies (aPL; notably lupus anticoagulant antibody) and urinalysis for proteinuria should be obtained prior to pregnancy.
Possible maternal complications include flare of nephritis, uncontrolled hypertension, pre-eclampsia, risk of Caesarean section, worsening renal function and thrombosis. Foetal risks include prematurity, growth retardation, congenital heart block and intrauterine death [108]. Patients with active disease at conception, uncontrolled hypertension, proteinuria of >1 g/day and abnormal renal function have the highest risk for complications; therefore, good control of disease prior to pregnancy is critically important to optimise pregnancy outcome and ideally the pregnancy should be planned.
Patients on MMF should be transitioned to pregnancy-safe immunosuppressive drugs such as AZA or TAC, while HCQ should be continued throughout pregnancy. MMF exposure especially after the first trimester increases the risk of miscarriage and congenital malformation [109], and practically should be stopped at least 3–6 months prior to conception to ensure disease control is maintained with the new agent(s) [47]. CYC is also teratogenic, associated with premature ovarian failure and increases miscarriage rate [110].
RAAS blockers should ideally be stopped before conception due to possible teratogenicity risk [111]; however, later publications seemed to suggest that they may be safe to be used until pregnancy is confirmed [112]. This is important especially for those who have residual proteinuria as attempt to conceive may take months or even years of effort. Stopping RAAS blockers early on in these patients would essentially exclude them from its’ benefits.
6.1.2 During pregnancy
Multidisciplinary team approach is important during pregnancy and should ideally involve the obstetrician, neonatologist, nephrologist and rheumatologist. Majority of patients (80%) with quiescent LN would have successful pregnancies [113]; however, about a third may relapse during pregnancy [108]. Identification of patients who are at higher risk is important when pregnancy begins, as these patients will require closer observation to ensure good maternal and foetal outcomes (Table 5) [109, 114, 115, 116, 117, 118].
Miscarriage and embryopathy involving ear, mouth, finger and ocular malformation [109]
Table 5.
Baseline risk assessment during pregnancy.
IUGR: Intra-uterine growth retardation.
During early pregnancy, BP would usually remain normal even in patients who required antihypertensive before pregnancy. Gradually, BP may rise as pregnancy progresses, requiring reintroduction of hypertensive medications such as labetalol, methyldopa or nifedipine. BP control should be targeted to be less than 140/90 mmHg [119]. As these patients are at higher risk to develop pre-eclampsia, high dose calcium supplementation and aspirin should be prescribed before entering 16 weeks of gestation [120, 121]. Ultrasound screening including uterine and umbilical artery Doppler to detect early signs of placental insufficiency may be performed at regular interval, especially in high-risk patients.
Hydroxychloroquine is safe during pregnancy and discontinuation has been associated with lupus flare. It also significantly reduces the risk of foetal congenital heart block in patients with positive SS-A (anti-Ro) [116]. Other drugs for consideration in LN and compatible with pregnancy include AZA, CNIs (TAC, Cys), plasma exchange and intravenous immunoglobulins. Data on RTX in pregnancy is limited, although some clinicians have used it safely in early trimester without apparent complication [122]. LN flare during pregnancy can be treated with drugs mentioned above and with addition or increased dosage of steroid. Pulsed intravenous methylprednisolone may be given during severe flares, followed by oral prednisolone [114]. While use of steroid is associated with elevated BP and new onset diabetes, it is probably not related to cleft lip and palate as previously thought [123, 124] (Table 6).
Medication
Pregnancy
Breastfeeding
Cyclophosphamide
Increased risk of teratogenicity, especially in 1st trimester
May cause infants’ bone marrow suppression
Mycophenolate
Increased risk of congenital malformation and miscarriage
Limited data, not recommended
Azathioprine
Relatively safe. Alternative to mycophenolate
Relatively safe
Hydroxychloroquine
Relatively safe. Improve outcome in antiphospholipid syndrome
Relatively safe
Glucocorticoids
Increase risk of hypertension, preeclampsia, GDM. May have neutral effect on cleft lip and palate
Relatively safe
Calcineurin inhibitor
Increase risk of high blood pressure and diabetes. Relatively safe
Relatively safe
Rituximab
Limited data. No teratogenic effect in animal. 1st trimester use may be possible.
Limited data
Immunoglobulin
Safe in pregnancy. Headache & rash common side effect
Relatively safe
Table 6.
Summary of immunosuppressive drugs during perinatal period.
GDM: Gestational diabetes mellitus.
Differentiating between pre-eclampsia and LN flare in pregnancy may be difficult, especially after 20 weeks gestation. Features like proteinuria, high BP, thrombocytopenia and renal impairment are common in both conditions. Red cell cast in urine, abnormal level of complements and anti-dsDNA may point toward LN flare [125]. Elevated soluble fms-like tyrosine kinase 1 (sFlt1)/placental growth factor (PlGF) ratio may assist in predicting pre-eclampsia [126, 127] although not commonly available in clinical practice.
Renal biopsy may be required during pregnancy but poses increased risk of complications. In a systematic review involving data on renal biopsies performed during pregnancy, overall complication rate was higher at 7%, compared to 1% when performed post-partum. Importantly, 4 biopsies during pregnancy had major bleeding complications that required blood transfusion, with median gestational age of 25 weeks; hence, biopsy should only be considered early during the course of pregnancy when results may lead to changes in therapy. Biopsy should be considered if LN flare is suspected and to distinguish it from pre-eclampsia, with finding of glomerular endotheliosis would suggest the latter [128].
Multidisciplinary team approach and patients’ engagement are prudent during severe LN flare, as pregnancy termination may be considered with risks and benefits weighed carefully, so that patient can be treated with urgent cytotoxic drugs. Overall rate for preterm delivery and Caesarean section are higher in patients with LN. For patients with non-active disease, delivery at term should be aimed. In those likely to deliver prematurely, dexamethasone should be given to accelerate foetal lung maturation. Delivery should be aimed after 34 weeks to minimise neonatal adverse outcomes; nonetheless, this strategy relies on the overall clinical picture. Timing of delivery is determined by usual obstetric indications and risk of renal deterioration. Mode of delivery does not seem to affect maternal renal function and again should be based on the usual indications accordingly [129].
6.1.3 After pregnancy
The WHO recommends breastfeeding for all babies until 6 months of age, even in patients on immunosuppressive therapy. Although studies found trace amount of immunosuppressives excreted into breast milk, the amount absorbed by infant is negligible and do not exert any clinical effect [130]. Hence, immunosuppressives deemed safe during pregnancy such as corticosteroid, AZA and CNIs can be safely taken during breastfeeding [114]. Post-partum, regular antihypertensive drugs such as amlodipine or bisoprolol can be reinstated and RAAS blockers such as enalapril or captopril can be safely used during breastfeeding [131] (Table 6).
Postpartum risk of thromboembolic disease increases in SLE especially in active LN patients with nephrotic-range proteinuria. Preventative measure with heparin during postpartum period is controversial, but may be considered in active LN patients with risk factors such as advanced age, obesity, Caesarean section delivery, and pre-eclampsia [132]. For patients with chronic kidney disease and significant proteinuria during pregnancy, careful monitoring after delivery is required as decline in renal function may accelerate within 6–12 months postpartum, despite having stable renal function during pregnancy [133].
6.2 Renal transplantation in lupus nephritis
Approximately 10–20% of patients with LN will progress to ESRD, with young female of African ancestry having the highest risk [8, 134]. In general, outcome for renal transplant is better compared to dialysis particularly with preemptive transplantation, including in patients with LN [135]. However, many patients may not be in complete remission despite dialysis initiation, making preemptive transplantation difficult. Current guidelines suggest that clinical lupus activity and ideally, serologically should be quiescent for 6 months and on no or minimal immunosuppression prior to transplantation [47, 136]. Even if on dialysis, the waiting time for transplant should be maximally shortened to reduce potential risk of graft failure [137].
Although the benefit of transplantation is clear, earlier studies have suggested that LN patients may have worse survival outcome compared to ESRD patients of other aetiologies; however, more contemporary studies seem to abrogate this finding [138]. Clinically relevant recurrence rate of SLE post transplantation is less than 5%, but it increases the risk of graft failure [136]. The rate may even be higher if electron microscopy finding is included and protocol biopsy implemented; nevertheless, the lower rate is probably due to the similar immunosuppressive therapy used in both transplant recipient and active LN.
During pre-transplant evaluation, particular attention should be given to screening of aPL as its’ presence increases the risk of graft thrombosis. Patients with APS would require careful consideration of perioperative anticoagulation to prevent graft loss. Presence of anti-dsDNA or low complement level is not a predictor for renal transplant outcomes. SLE patients have higher risk for cardiovascular mortality hence will require careful cardiac evaluation prior to transplantation [138]. Recurrence of LN after transplantation can be treated by increasing the dose of the immunosuppressive drugs already being used post transplant. CYC may be considered in severe or aggressive disease while RTX has been used in resistant cases [139].
There is concern in LN patients of having higher risk to develop cancer with prolonged exposure to immunosuppression. Previous exposure to CYC doubles the risk for cancer post transplantation, primarily of the skin [140]. Prior use of immunosuppressive therapies before transplant also increases the risk for non-Hodgkin’s lymphoma, anogenital, breast, renal and bladder cancers [141, 142]. Furthermore, prolonged corticosteroid exposure in transplanted SLE patients should adhere to the screening and treatment recommendations on bone health [143].
7. Conclusion
Emerging insights into the heterogenous immunopathogenesis of LN have lead to novel, tailored therapeutic options, resulting in significantly better disease control and prolonged remission among patients; nonetheless, more in-depth studies are required to better understand the pathogenesis while novel therapies continue to be tested. The advent of signature biomarkers show promise in diagnosis, evaluation and management of LN and will continue to be validated for meaningful real-world application. Timely diagnosis, prompt treat-to-target treatment, MDT approach and adherence to therapy are important factors to preserve renal function, prevent disease progression and significantly improve patients’ overall outcome.
Better understanding of disease pathways and discoveries with subsequent validation of biomarkers will provide opportunity for improvement in early detection, prognostic and disease severity prediction, subgroups stratification, treatment adherence assessment, and decision for best treatment option in a timely manner. Studies targeting a single organ or specific subgroup with similar disease severity, duration and background SOC therapy will assist in better assesment of drug effectiveness and accelerate drug development in LN.
\n',keywords:"SLE, lupus, nephritis",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/76056.pdf",chapterXML:"https://mts.intechopen.com/source/xml/76056.xml",downloadPdfUrl:"/chapter/pdf-download/76056",previewPdfUrl:"/chapter/pdf-preview/76056",totalDownloads:284,totalViews:0,totalCrossrefCites:0,dateSubmitted:"October 3rd 2020",dateReviewed:"February 26th 2021",datePrePublished:"March 31st 2021",datePublished:"August 25th 2021",dateFinished:"March 31st 2021",readingETA:"0",abstract:"Lupus is a heterogenous multisystem autoimmune disease whereby nephritis is one of its most common cause of overall morbidity and mortality. Accurate, timely diagnosis and effective treatment in lupus nephritis (LN) remains a challenge to many clinicians including those who are directly involved in the daily care of these patients. Despite significant improvement in patients’ survival rate in recent years, in this era of precision medicine, there is pressing need to further improve our understanding and management of this disease. Our chapter would shed light on the key issues in LN including recent advances in our scientific understanding of its’ pathophysiology, major challenges and treatment strategies.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/76056",risUrl:"/chapter/ris/76056",signatures:"Fahd Adeeb and Wan Ahmad Hafiz Wan Md Adnan",book:{id:"9104",type:"book",title:"Lupus",subtitle:"Need to Know",fullTitle:"Lupus - Need to Know",slug:"lupus-need-to-know",publishedDate:"August 25th 2021",bookSignature:"Reem Hamdy A. Mohammed",coverURL:"https://cdn.intechopen.com/books/images_new/9104.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83968-405-0",printIsbn:"978-1-83968-403-6",pdfIsbn:"978-1-83968-406-7",isAvailableForWebshopOrdering:!0,editors:[{id:"36290",title:"Prof.",name:"Reem Hamdy A.",middleName:null,surname:"Mohammed",slug:"reem-hamdy-a.-mohammed",fullName:"Reem Hamdy A. Mohammed"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"201088",title:"Dr.",name:"Fahd",middleName:null,surname:"Adeeb",fullName:"Fahd Adeeb",slug:"fahd-adeeb",email:"fahd_adeeb@yahoo.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Kerry General Hospital",institutionURL:null,country:{name:"Ireland"}}},{id:"334104",title:"Dr.",name:"Wan Ahmad Hafiz",middleName:null,surname:"Wan Md Adnan",fullName:"Wan Ahmad Hafiz Wan Md Adnan",slug:"wan-ahmad-hafiz-wan-md-adnan",email:"wahafiz@um.edu.my",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"University Malaya Medical Centre",institutionURL:null,country:{name:"Malaysia"}}}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Epidemiology",level:"1"},{id:"sec_2_2",title:"2.1 Systemic lupus erythematosus (SLE)",level:"2"},{id:"sec_3_2",title:"2.2 Lupus nephritis (LN)",level:"2"},{id:"sec_5",title:"3. Pathogenesis",level:"1"},{id:"sec_6",title:"4. Diagnosis and classification",level:"1"},{id:"sec_6_2",title:"4.1 Role of renal biopsy",level:"2"},{id:"sec_7_2",title:"4.2 Classification criteria",level:"2"},{id:"sec_7_3",title:"Table 2.",level:"3"},{id:"sec_9_2",title:"4.3 Diagnosis of lupus nephritis",level:"2"},{id:"sec_11",title:"5. Management",level:"1"},{id:"sec_11_2",title:"5.1 Current management strategies",level:"2"},{id:"sec_11_3",title:"5.1.1 Induction phase",level:"3"},{id:"sec_12_3",title:"5.1.2 Maintenance phase",level:"3"},{id:"sec_13_3",title:"5.1.3 Refractory lupus nephritis",level:"3"},{id:"sec_15_2",title:"5.2 Future novel therapeutic options",level:"2"},{id:"sec_17",title:"6. Special considerations",level:"1"},{id:"sec_17_2",title:"6.1 Pregnancy and lupus nephritis",level:"2"},{id:"sec_17_3",title:"6.1.1 Pre-pregnancy",level:"3"},{id:"sec_18_3",title:"Table 5.",level:"3"},{id:"sec_19_3",title:"6.1.3 After pregnancy",level:"3"},{id:"sec_21_2",title:"6.2 Renal transplantation in lupus nephritis",level:"2"},{id:"sec_23",title:"7. Conclusion",level:"1"}],chapterReferences:[{id:"B1",body:'Anders H, Saxena R, Zhao M, Parodis I, Salmon JE, Mohan C. lupus nephritis. Nat Rev Dis Primers 2020; 6: 7'},{id:"B2",body:'Mohan, C., Putterman, C. Genetics and pathogenesis of systemic lupus erythematosus and lupus nephritis. Nat Rev Nephrol 2015; 11: 329-341'},{id:"B3",body:'Gonzalez-Crespo MR, Lopez-Fernandez JI, Usera G, Poveda MJ, Gomez-Reino JJ. Outcome of silent lupus nephritis. Semin Arthritis Rheum 1996; 26: 468-76'},{id:"B4",body:'Wakasugi D, Gono T, Kawaguchi Y, Hara M, Koseki Y, Katsumata Y, et al. Frequency of Class III and IV Nephritis in Systemic Lupus Erythematosus without Clinical Renal Involvement: An Analysis of Predictive Measures. J Rheumatol 2012; 39: 79-85'},{id:"B5",body:'Jorge A, Wallace ZS, Zhang Y, Lu N, Costenbader KH, Choi HK. All-Cause and Cause-Specific Mortality Trends of End-Stage Renal Disease Due to Lupus Nephritis From 1995 to 2014. Arthritis Rheumatol 2019; 71: 403-410'},{id:"B6",body:'Tektonidou MG, Dasgupta A, Ward MM. Risk of End-Stage Renal Disease in Patients With Lupus Nephritis, 1971-2015: A Systematic Review and Bayesian Meta-Analysis. Arthritis Rheumatol 2016; 68: 1432-41'},{id:"B7",body:'Davidson A. What is damaging the kidney in lupus nephritis? Nat Rev Rheumatol 2016; 12: 143-153'},{id:"B8",body:'Maroz N, Segal MS. lupus nephritis and end-stage kidney disease. Am J Med Sci 2013; 346: 319-23'},{id:"B9",body:'Rees F, Doherty M, Grainge M, Davenport G, Lanyon P, Zhang W. The incidence and prevalence of systemic lupus erythematosus in the UK, 1999-2012. Annals of the rheumatic diseases 2016; 75: 136-41'},{id:"B10",body:'Rees F, Doherty M, Grainge MJ, Lanyon P, Zhang W. The worldwide incidence and prevalence of systemic lupus erythematosus: a systematic review of epidemiological studies. Rheumatology 2017; 56: 1945-61'},{id:"B11",body:'Stojan G, Petri M. Epidemiology of systemic lupus erythematosus: an update. Curr Opin Rheumatol 2018; 30: 144-50'},{id:"B12",body:'Dall\'Era M, Cisternas MG, Snipes K, Herrinton LJ, Gordon C, Helmick CG. The Incidence and Prevalence of Systemic Lupus Erythematosus in San Francisco County, California: The California Lupus Surveillance Project. Arthritis Rheumatol 2017; 69: 1996-2005'},{id:"B13",body:'Yeh KW, Yu CH, Chan PC, Horng JT, Huang JL. Burden of systemic lupus erythematosus in Taiwan: a population-based survey. Rheumatol Int 2013; 33: 1805-11'},{id:"B14",body:'Jakes RW, Bae SC, Louthrenoo W, Mok CC, Navarra SV, Kwon N. Systematic review of the epidemiology of systemic lupus erythematosus in the Asia-Pacific region: prevalence, incidence, clinical features, and mortality. Arthritis Care Res 2012; 64: 159-68'},{id:"B15",body:'Imran TF, Yick F, Verma S, Estiverne C, Ogbonnaya-Odor C, Thiruvarudsothy S, et al. Lupus nephritis: an update. Clin Exp Nephrol 2016; 20: 1-13'},{id:"B16",body:'Bastian HM, Roseman JM, McGwin G, Jr., Alarcón GS, Friedman AW, Fessler BJ, et al. Systemic lupus erythematosus in three ethnic groups. XII. Risk factors for lupus nephritis after Diagnosis. lupus 2002; 11: 152-60'},{id:"B17",body:'Boodhoo KD, Liu S, Zuo X. Impact of sex disparities on the clinical manifestations in patients with systemic lupus erythematosus: A systematic review and meta-analysis. Medicine 2016; 95: e4272'},{id:"B18",body:'Yap DY, Tang CS, Ma MK, Lam MF, Chan TM. Survival analysis and causes of mortality in patients with lupus nephritis. Nephrol Dial Transplant 2012; 27: 3248-54'},{id:"B19",body:'Wardowska A, Komorniczak M, Bułło-Piontecka B, Dȩbska-Ślizień MA, Pikuła M. Transcriptomic and Epigenetic Alterations in Dendritic Cells Correspond With Chronic Kidney Disease in Lupus Nephritis. Front Immunol 2019;10: 2026'},{id:"B20",body:'Zhao M, Zhou Y, Zhu B, Wan M, Jiang T, Tan Q , Liu Y, Jiang J, Luo S, Tan Y, et al. IFI44L promoter methylation as a blood biomarker for systemic lupus erythematosus. Ann Rheum 2016; 75: 1998-2006'},{id:"B21",body:'Yung S, Chan TM. Autoantibodies and resident renal cells in the pathogenesis of lupus nephritis: getting to know the unknown. Clin Dev Immunol 2012; 2012: 139365'},{id:"B22",body:'Devarapu SK, Anders HJ. Toll-like receptors in lupus nephritis. J Biomed Sci 2018; 25: 35'},{id:"B23",body:'Santiago-Raber ML, Baudino L, Izui S. Emerging roles of TLR7 and TLR9 in murine SLE. J Autoimmun. 2009; 33: 231-8'},{id:"B24",body:'Bergtold A, Gavhane A, D\'Agati V, Madaio M, Clynes R. FcR-bearing myeloid cells are responsible for triggering murine lupus nephritis. J Immunol 2006; 177: 7287-95'},{id:"B25",body:'Werwitzke S, Trick D, Sondermann P, Kamino K, Schlegelberger B, Kniesch K, Tiede A, Jacob U, Schmidt RE, Witte T. Treatment of lupus-prone NZB/NZW F1 mice with recombinant soluble Fc gamma receptor II (CD32). Ann Rheum Dis 2008; 67: 154-61'},{id:"B26",body:'Pickering MC, Botto M. Are anti-C1q antibodies different from other SLE autoantibodies? Nat Rev Rheumatol. 2010; 6: 490-3'},{id:"B27",body:'Stojan G, Petri M. Anti-C1q in systemic lupus Erythematosus. lupus 2016; 25: 873-877'},{id:"B28",body:'Rönnblom L, Leonard D. Interferon pathway in SLE: one key to unlocking the mystery of the disease. Lupus Sci Med. 2019; 6: e000270'},{id:"B29",body:'Chalmers SA, Garcia SJ, Reynolds JA, Herlitz L, Putterman C. NF-kB signalling in myeloid cells mediates the pathogenesis of immune-mediated nephritis. J Autoimmun 2019; 98: 33-43'},{id:"B30",body:'Hiepe F, Radbruch A. Plasma cells as an innovative target in autoimmune disease with renal manifestations. Nat Rev Nephrol 2016; 12: 232-40'},{id:"B31",body:'Kang S, Fedoriw Y, Brenneman EK, Truong YK, Kikly K, Vilen BJ. BAFF induces tertiary lymphoid structures and positions T cells within the glomeruli during lupus nephritis. J Immunol 2017; 198: 2602-11'},{id:"B32",body:'Koga T, Ichinose K, Tsokos GC. T cells and IL-17 in lupus nephritis. Clin Immunol 2017;185:95-99'},{id:"B33",body:'Martinez J, Cunha LD, Park S, Yang M, Lu Q , Orchard R, et al. Noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells. Nature 2016; 533: 115-119'},{id:"B34",body:'Qi YY, Zhou XJ, Cheng FJ, Hou P, Ren YL, Wang S, et al. Increased autophagy is cytoprotective against podocyte injury induced by antibody and interferon-alpha in lupus nephritis. Ann Rheum Dis 2018; 77: 1799-1809'},{id:"B35",body:'Zhou XJ, Klionsky DJ, Zhang H. Podocytes and autophagy: a potential therapeutic target in lupus nephritis. Autophagy 2019; 15: 908-912'},{id:"B36",body:'Ko K, Wang J, Perper S, et al. Bcl-2 as a Therapeutic Target in Human Tubulointerstitial Inflammation. Arthritis Rheumatol 2016; 68: 2740-2751'},{id:"B37",body:'Tanha N, Troelsen L, From Hermansen ML, Kjær L, Faurschou M, Garred P, Jacobsen S. MBL2 gene variants coding for mannose-binding lectin deficiency are associated with increased risk of nephritis in Danish patients with systemic lupus Erythematosus. lupus 2014; 23: 1105-11'},{id:"B38",body:'Wu S, Wang J, Li F. Dysregulation of PTEN caused by the underexpression of microRNA-130b is associated with the severity of lupus nephritis. Mol Med Rep 2018; 17: 7966-7972'},{id:"B39",body:'Pieterse E, van der Vlag J. Breaking immunological tolerance in systemic lupus erythematosus. Front Immunol 2014; 5: 164'},{id:"B40",body:'Gupta S, Kaplan MJ. The role of neutrophils and NETosis in autoimmune and renal diseases. Nat Rev Nephrol 2016; 12: 402-413'},{id:"B41",body:'Yu F, Haas M, Glassock R, Zhao MH. Redefining lupus nephritis: clinical implications of pathophysiologic subtypes. Nat Rev Nephrol 2017;13: 483-495'},{id:"B42",body:'Celhar T, Lu HK, Benso L, Rakhilina L, Lee HY, Tripathi S, et al. TLR7 Protein Expression in Mild and Severe Lupus-Prone Models Is Regulated in a Leukocyte, Genetic, and IRAK4 Dependent Manner. Front Immunol 2019; 10: 1546'},{id:"B43",body:'Dillon SP, Kurien BT, Li S, Bruner GR, Kaufman KM, Harley JB, Gaffney PM, Wallace DJ, Weisman MH, Scofield RH. Sex chromosome aneuploidies among men with systemic lupus erythematosus. J Autoimmun 2012; 38: J129-34'},{id:"B44",body:'Souyris M, Cenac C, Azar P, Daviaud D, Canivet A, Grunenwald S, et al. TLR7 escapes X chromosome inactivation in immune cells. Sci Immunol 2018; 3: eaap8855'},{id:"B45",body:'Soliman S, Mohan C. lupus nephritis biomarkers. Clin Immunol 2017; 185: 10-20'},{id:"B46",body:'Mavragani CP, Fragoulis GE, Somarakis G, Drosos A, Tzioufas AG, Moutsopoulos HM. Clinical and laboratory predictors of distinct histopathogical features of lupus nephritis. Medicine 2015; 94: e829'},{id:"B47",body:'Fanouriakis A, Kostopoulou M, Cheema K, Anders HJ, Aringer M, Bajema I, et al. 2019 Update of the Joint European League Against Rheumatism and European Renal Association-European Dialysis and Transplant Association (EULAR/ERA-EDTA) recommendations for the management of lupus nephritis. Ann Rheum Dis 2020; 79: 713-23'},{id:"B48",body:'Hogan JJ, Mocanu M, Berns JS. The Native Kidney Biopsy: Update and Evidence for Best Practice. Clin J Am Soc Nephrol 2016; 11: 354-62'},{id:"B49",body:'Corapi KM, Chen JL, Balk EM, Gordon CE. Bleeding complications of native kidney biopsy: a systematic review and meta-analysis. Am J Kidney Dis 2012; 60: 62-73'},{id:"B50",body:'Korbet SM, Volpini KC, Whittier WL. Percutaneous renal biopsy of native kidneys: a single-center experience of 1,055 biopsies. Am J Nephrol 2014; 39: 153-62'},{id:"B51",body:'Marwah DS, Korbet SM. Timing of complications in percutaneous renal biopsy: what is the optimal period of observation? Am J Kidney Dis 1996; 28: 47-52'},{id:"B52",body:'Schorr M, Roshanov PS, Weir MA, House AA. Frequency, Timing, and Prediction of Major Bleeding Complications From Percutaneous Renal Biopsy. Can J Kidney Health Dis 2020; 7: 2054358120923527'},{id:"B53",body:'Waldo B, Korbet SM, Freimanis MG, Lewis EJ. The value of post-biopsy ultrasound in predicting complications after percutaneous renal biopsy of native kidneys. Nephrol Dial Transplant 2009; 24: 2433-9'},{id:"B54",body:'Moroni G, Depetri F, Ponticelli C. lupus nephritis: When and how often to biopsy and what does it mean? J Autoimmun 2016; 74: 27-40'},{id:"B55",body:'Narváez J, Ricse M, Gomà M, Mitjavila F, Fulladosa X, Capdevila O, et al. The value of repeat biopsy in lupus nephritis flares. Medicine 2017; 96: e7099'},{id:"B56",body:'De Rosa M, Azzato F, Toblli JE, De Rosa G, Fuentes F, Nagaraja HN, et al. A prospective observational cohort study highlights kidney biopsy findings of lupus nephritis patients in remission who flare following withdrawal of maintenance therapy. Kidney Int 2018; 94: 788-94'},{id:"B57",body:'Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1997; 40: 1725'},{id:"B58",body:'Petri M, Orbai AM, Alarcón GS, Gordon C, Merrill JT, Fortin PR, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum 2012; 64: 2677-86'},{id:"B59",body:'Aringer M, Costenbader K, Daikh D, Brinks R, Mosca M, Ramsey-Goldman R, et al. 2019 European League Against Rheumatism/American College of Rheumatology Classification Criteria for Systemic Lupus Erythematosus. Arthritis Rheum 2019; 71: 1400-12'},{id:"B60",body:'Ishizaki J, Saito K, Nawata M, Mizuno Y, Tokunaga M, Sawamukai N, et al. Low complements and high titre of anti-Sm antibody as predictors of histopathologically proven silent lupus nephritis without abnormal urinalysis in patients with systemic lupus erythematosus. Rheumatology 2015; 54: 405-12'},{id:"B61",body:'Kudose S, Santoriello D, Bomback AS, Stokes MB, D’Agati VD, Markowitz GS. Sensitivity and Specificity of Pathologic Findings to Diagnose Lupus Nephritis. Clin J Am Soc Nephrol 2019; 14: 1605'},{id:"B62",body:'Churg J, Sobin LH. Renal disease. Classification and Atlas of Glomerular Disease. Tokyo, Igaku-Shoin, 1982; 359'},{id:"B63",body:'Weening JJ, D\'Agati VD, Schwartz MM, Seshan SV, Alpers CE, Appel GB, et al. The classification of glomerulonephritis in systemic lupus erythematosus revisited. Kidney Int 2004; 65: 521-30'},{id:"B64",body:'Bajema IM, Wilhelmus S, Alpers CE, Bruijn JA, Colvin RB, Cook HT, et al. Revision of the International Society of Nephrology/Renal Pathology Society classification for lupus nephritis: clarification of definitions, and modified National Institutes of Health activity and chronicity indices. Kidney Int 2018; 93: 789-96'},{id:"B65",body:'Kostopoulou M, Adamichou C, Bertsias G. An Update on the Diagnosis and Management of Lupus Nephritis. Curr Rheumatol Rep 2020; 22: 30'},{id:"B66",body:'Palmer SC, Tunnicliffe DJ, Singh-Grewal D, Mavridis D, Tonelli M, Johnson DW, et al. Induction and Maintenance Immunosuppression Treatment of Proliferative Lupus Nephritis: A Network Meta-analysis of Randomized Trials. Am J Kidney Dis 2017; 70: 324-336'},{id:"B67",body:'Houssiau FA, Vasconcelos C, D\'Cruz D, Sebastiani GD, Garrido Ed Ede R, Danieli MG, et al. Immunosuppressive therapy in lupus nephritis: the Euro-Lupus Nephritis Trial, a randomized trial of low-dose versus high-dose intravenous cyclophosphamide. Arthritis Rheum 2002; 46: 2121-31'},{id:"B68",body:'Rathi M, Goyal A, Jaryal A, Sharma A, Gupta PK, Ramachandran R, et al. Comparison of low-dose intravenous cyclophosphamide with oral mycophenolate mofetil in the treatment of lupus nephritis. Kidney Int 2016; 89: 235-42'},{id:"B69",body:'Palmer SC, Tunnicliffe DJ, Singh-Grewal D, Mavridis D, Tonelli M, Johnson DW, et al. Induction and Maintenance Immunosuppression Treatment of Proliferative Lupus Nephritis: A Network Meta-analysis of Randomized Trials. Am J Kidney Dis 2017; 70: 324-336'},{id:"B70",body:'Nankivell BJ, PʼNg CH, O’Connell PJ, Chapman JR. Calcineurin Inhibitor Nephrotoxicity Through the Lens of Longitudinal Histology: Comparison of Cyclosporine and Tacrolimus Eras. Transplantation 2016; 100: 1723-31'},{id:"B71",body:'Tamirou F, D\'Cruz D, Sangle S, Remy P, Vasconcelos C, Fiehn C, et al. Long-term follow-up of the MAINTAIN Nephritis Trial, comparing azathioprine and mycophenolate mofetil as maintenance therapy of lupus nephritis. Ann Rheum Dis 2016; 75: 526-31'},{id:"B72",body:'Dooley MA, Jayne D, Ginzler EM, Isenberg D, Olsen NJ, Wofsy D, et al. Mycophenolate versus azathioprine as maintenance therapy for lupus nephritis. N Engl J Med 2011; 365: 1886-95'},{id:"B73",body:'Díaz-Lagares C, Croca S, Sangle S, Vital EM, Catapano F, Martínez-Berriotxoa A, et al; UK-BIOGEAS Registry. Efficacy of rituximab in 164 patients with biopsy-proven lupus nephritis: pooled data from European cohorts. Autoimmun Rev 2012; 11: 357-64'},{id:"B74",body:'Condon MB, Ashby D, Pepper RJ, Cook HT, Levy JB, Griffith M, et al. Prospective observational single-centre cohort study to evaluate the effectiveness of treating lupus nephritis with rituximab and mycophenolate mofetil but no oral steroids. Ann Rheum Dis 2013; 72: 1280-6'},{id:"B75",body:'Furie R, Rovin BH, Houssiau F, Malvar A, Teng YKO, Contreras G, et al. Two-Year, Randomized, Controlled Trial of Belimumab in Lupus Nephritis. N Engl J Med 2020; 383: 1117-1128'},{id:"B76",body:'Dall\'Era M, Bruce IN, Gordon C, Manzi S, McCaffrey J, Lipsky PE. Current challenges in the development of new treatments for lupus. Ann Rheum Dis 2019; 78: 729-735'},{id:"B77",body:'Dooley MA, Houssiau F, Aranow C, D\'Cruz DP, Askanase A, Roth DA, et al; BLISS-52 and -76 Study Groups. Effect of belimumab treatment on renal outcomes: results from the phase 3 belimumab clinical trials in patients with SLE. Lupus 2013; 22: 63-72'},{id:"B78",body:'Gualtierotti R, Borghi MO, Gerosa M, Schioppo T, Larghi P, Geginat J, et al. Successful sequential therapy with rituximab and belimumab in patients with active systemic lupus erythematosus: a case series. Clin Exp Rheumatol 2018; 36: 643-647'},{id:"B79",body:'Simonetta F, Allali D, Roux-Lombard P, Chizzolini C. Successful treatment of refractory lupus nephritis by the sequential use of rituximab and belimumab. Joint Bone Spine 2017; 84: 235-236'},{id:"B80",body:'Teng YKO, Bruce IN, Diamond B, Furie RA, van Vollenhoven RF, Gordon D, et al. Phase III, multicentre, randomised, double-blind, placebo-controlled, 104-week study of subcutaneous belimumab administered in combination with rituximab in adults with systemic lupus erythematosus (SLE): BLISS-BELIEVE study protocol. BMJ Open 2019; 9: e025687'},{id:"B81",body:'Merrill JT, Shanahan WR, Scheinberg M, Kalunian KC, Wofsy D, Martin RS. Phase III trial results with blisibimod, a selective inhibitor of B-cell activating factor, in subjects with systemic lupus erythematosus (SLE): results from a randomised, double-blind, placebo-controlled trial. Ann Rheum Dis 2018; 77: 883-889'},{id:"B82",body:'Isenberg DA, Petri M, Kalunian K, Tanaka Y, Urowitz MB, Hoffman RW, et al. Efficacy and safety of subcutaneous tabalumab in patients with systemic lupus erythematosus: results from ILLUMINATE-1, a 52-week, phase III, multicentre, randomised, double-blind, placebo-controlled study. Ann Rheum Dis 2016; 75: 323-31'},{id:"B83",body:'Merrill JT, van Vollenhoven RF, Buyon JP, Furie RA, Stohl W, Morgan-Cox M, et al. Efficacy and safety of subcutaneous tabalumab, a monoclonal antibody to B-cell activating factor, in patients with systemic lupus erythematosus: results from ILLUMINATE-2, a 52-week, phase III, multicentre, randomised, double-blind, placebo-controlled study. Ann Rheum Dis 2016; 75: 332-40'},{id:"B84",body:'Rovin BH, Solomons N, Pendergraft WF 3rd, Dooley MA, Tumlin J, Romero-Diaz J, et al; AURA-LV Study Group. A randomized, controlled double-blind study comparing the efficacy and safety of dose-ranging voclosporin with placebo in achieving remission in patients with active lupus nephritis. Kidney Int 2019; 95: 219-231'},{id:"B85",body:'Arriens C, Polyakova S, Adzerikho I, Rhandawa S, Solomons N. OP0277 AURORA Phase 3 Study Demonstrates Voclosporin Statistical Superiority Over Standard of Care in Lupus Nephritis (LN). Ann Rheum Dis 2020; 79: 172-173'},{id:"B86",body:'U.S Food and Drug Administration, Center for Drug Evaluation and Research. Lupkynis (voclosporin) approval letter. January 22, 2021. Retrieved 28/1/21 from www.accessdata.fda.gov/drugsatfda_docs/appletter/2021/213716Orig1s000ltr.pdf'},{id:"B87",body:'Neubert K, Meister S, Moser K, Weisel F, Maseda D, Amann K, et al. The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat Med 2008; 14: 748-55'},{id:"B88",body:'Alexander T, Sarfert R, Klotsche J, Kühl AA, Rubbert-Roth A, Lorenz HM, et al. The proteasome inhibitior bortezomib depletes plasma cells and ameliorates clinical manifestations of refractory systemic lupus erythematosus. Ann Rheum Dis 2015; 74: 1474-8'},{id:"B89",body:'Segarra A, Arredondo KV, Jaramillo J, Jatem E, Salcedo MT, Agraz I, Ramos N, Carnicer C, Valtierra N, Ostos E. Efficacy and safety of bortezomib in refractory lupus nephritis: a single-center experience. Lupus 2020; 29: 118-125'},{id:"B90",body:'Ostendorf L, Burns M, Durek P, Heinz GA, Heinrich F, Garantziotis P, Enghard P, Richter U, Biesen R, Schneider U, Knebel F, Burmester G, Radbruch A, Mei HE, Mashreghi MF, Hiepe F, Alexander T. Targeting CD38 with Daratumumab in Refractory Systemic Lupus Erythematosus. N Engl J Med 2020; 383: 1149-1155'},{id:"B91",body:'Furie R, Aroca G, Alvarez A, Fragoso-Loyo H, Zuta Santillan E, Rovin B, et al. Two-Year Results from a Randomized Controlled Study of Obinutuzumab for Proliferative Lupus Nephritis [asbtract]. Arthritis Rheumatol 2020; 72 (suppl 10)'},{id:"B92",body:'United States National Library of Medicine database for clinical trials. Can be assessed at ClinicalTrials.gov with subsequent insertion of identification number'},{id:"B93",body:'Zhou M, Guo C, Li X, Huang Y, Li M, Zhang T, et al. JAK/STAT signalling controls the fate of CD8+CD103+tissue-resident memory T cell in lupus nephritis. J Autoimmun 2020; 109: 102424'},{id:"B94",body:'Ripoll È, de Ramon L, Draibe Bordignon J, Merino A, Bolaños N, Goma M, et al. JAK3-STAT pathway blocking benefits in experimental lupus nephritis. Arthritis Res Ther 2016; 18: 134. Erratum in: Arthritis Res Ther 2016; 18: 152'},{id:"B95",body:'Kim YY, Park KT, Jang SY, Lee KH, Byun JY, Suh KH, et al. HM71224, a selective Bruton\'s tyrosine kinase inhibitor, attenuates the development of murine lupus. Arthritis Res Ther 2017; 19: 211'},{id:"B96",body:'Chalmers SA, Glynn E, Garcia SJ, Panzenbeck M, Pelletier J, Dimock J, et al. BTK inhibition ameliorates kidney disease in spontaneous lupus nephritis. Clin Immunol 2018; 197: 205-218'},{id:"B97",body:'Kong W, Deng W, Sun Y, Huang S, Zhang Z, Shi B, et al. Increased expression of Bruton\'s tyrosine kinase in peripheral blood is associated with lupus nephritis. Clin Rheumatol 2018; 37: 43-49'},{id:"B98",body:'Merrill JT, Wallace DJ, Wax S, Kao A, Fraser PA, Chang P, et al; ADDRESS II Investigators. Efficacy and Safety of Atacicept in Patients With Systemic Lupus Erythematosus: Results of a Twenty-Four-Week, Multicenter, Randomized, Double-Blind, Placebo-Controlled, Parallel-Arm, Phase IIb Study. Arthritis Rheumatol 2018; 70: 266-276. Erratum in: Arthritis Rheumatol 2018; 70: 467'},{id:"B99",body:'Ginzler EM, Wax S, Rajeswaran A, Copt S, Hillson J, Ramos E, et al. Atacicept in combination with MMF and corticosteroids in lupus nephritis: results of a prematurely terminated trial. Arthritis Res Ther 2012; 14: R33'},{id:"B100",body:'Furie R, Dooley M, Wofsy D, Takeuchi T, Malvar A, Doria A, et al. OP0253 A phase III randomised, double-blind, placebo-controlled study to evaluate the efficacy and safety of abatacept or placebo on standard of care in patients with active class iii or iv lupus nephritis. Ann Rheum Dis 2018; 77: 176-177'},{id:"B101",body:'Bukulmez H, Horkayne-Szakaly I, Bilgin A, Baker TP, Caplan AI, Jones OY. Intrarenal injection of mesenchymal stem cell for treatment of lupus nephritis in mice - a pilot study. Lupus 2020: 961203320968897'},{id:"B102",body:'Tang X, Li W, Wen X, Zhang Z, Chen W, Yao G, et al. Transplantation of dental tissue-derived mesenchymal stem cells ameliorates nephritis in lupus mice. Ann Transl Med 2019; 7: 132'},{id:"B103",body:'Huang X, Chen W, Ren G, Zhao L, Guo J, Gong D, et al. Autologous Hematopoietic Stem Cell Transplantation for Refractory Lupus Nephritis. Clin J Am Soc Nephrol 2019; 14: 719-727'},{id:"B104",body:'Yuan X, Qin X, Wang D, Zhang Z, Tang X, Gao X, et al. Mesenchymal stem cell therapy induces FLT3L and CD1c+ dendritic cells in systemic lupus erythematosus patients. Nat Commun 2019; 10: 2498'},{id:"B105",body:'Gu F, Wang D, Zhang H, Feng X, Gilkeson GS, Shi S, et al. Allogeneic mesenchymal stem cell transplantation for lupus nephritis patients refractory to conventional therapy. Clin Rheumatol 2014; 33: 1611-9'},{id:"B106",body:'Leng XM, Jiang Y, Zhou DB, Tian XP, Li TS, Wang SJ, et al. Good outcome of severe lupus patients with high-dose immunosuppressive therapy and autologous peripheral blood stem cell transplantation: a 10-year follow-up study. Clin Exp Rheumatol 2017; 35: 494-499'},{id:"B107",body:'Yu Q , Qiao Y, Liu D, Liu F, Gao C, Duan J, et al. Vitamin D protects podocytes from autoantibodies induced injury in lupus nephritis by reducing aberrant autophagy. Arthritis Res Ther 2019; 21: 19'},{id:"B108",body:'Smyth A, Oliveira GH, Lahr BD, Bailey KR, Norby SM, Garovic VD. A systematic review and meta-analysis of pregnancy outcomes in patients with systemic lupus erythematosus and lupus nephritis. Clin J Am Soc Nephrol 2010; 5: 2060-8'},{id:"B109",body:'Perez-Aytes A, Marin-Reina P, Boso V, Ledo A, Carey JC, Vento M. Mycophenolate mofetil embryopathy: A newly recognized teratogenic syndrome. Eur J Med Genet 2017; 60: 16-21'},{id:"B110",body:'Rengasamy P. Congenital Malformations Attributed to Prenatal Exposure to Cyclophosphamide. Anticancer Agents Med Chem 2017; 17: 1211-1227'},{id:"B111",body:'Cooper WO, Hernandez-Diaz S, Arbogast PG, Dudley JA, Dyer S, Gideon PS, et al. Major congenital malformations after first-trimester exposure to ACE inhibitors. N Engl J Med 2006; 354: 2443-51'},{id:"B112",body:'Porta M, Hainer JW, Jansson SO, Malm A, Bilous R, Chaturvedi N, et al. Exposure to candesartan during the first trimester of pregnancy in type 1 diabetes: experience from the placebo-controlled DIabetic REtinopathy Candesartan Trials. Diabetologia 2011; 54: 1298-303'},{id:"B113",body:'Buyon JP, Kim MY, Guerra MM, Laskin CA, Petri M, Lockshin MD, et al. Predictors of Pregnancy Outcomes in Patients With Lupus: A Cohort Study. Ann Intern Med 2015; 163: 153-63'},{id:"B114",body:'Andreoli L, Bertsias GK, Agmon-Levin N, Brown S, Cervera R, Costedoat-Chalumeau N, et al. EULAR recommendations for women\'s health and the management of family planning, assisted reproduction, pregnancy and menopause in patients with systemic lupus erythematosus and/or antiphospholipid syndrome. Ann Rheum Dis 2017; 76: 476-85'},{id:"B115",body:'Imbasciati E, Gregorini G, Cabiddu G, Gammaro L, Ambroso G, Del Giudice A, et al. Pregnancy in CKD stages 3 to 5: fetal and maternal outcomes. Am J Kidney Dis 2007; 49: 753-62'},{id:"B116",body:'Izmirly PM, Costedoat-Chalumeau N, Pisoni CN, Khamashta MA, Kim MY, Saxena A, et al. Maternal use of hydroxychloroquine is associated with a reduced risk of recurrent anti-SSA/Ro-antibody-associated cardiac manifestations of neonatal lupus. Circulation 2012; 126: 76-82'},{id:"B117",body:'Tangren JS, Wan Md Adnan WAH, Powe CE, Ecker J, Bramham K, Hladunewich MA, et al. Risk of Preeclampsia and Pregnancy Complications in Women With a History of Acute Kidney Injury. Hypertension 2018; 72: 451-9'},{id:"B118",body:'Piccoli GB, Cabiddu G, Attini R, Vigotti FN, Maxia S, Lepori N, et al. Risk of Adverse Pregnancy Outcomes in Women with CKD. J Am Soc Nephrol 2015; 26: 2011-22'},{id:"B119",body:'Magee LA, von Dadelszen P, Singer J, Lee T, Rey E, Ross S, et al. The CHIPS Randomized Controlled Trial (Control of Hypertension in Pregnancy Study): Is Severe Hypertension Just an Elevated Blood Pressure? Hypertension 2016; 68: 1153-9'},{id:"B120",body:'Hofmeyr GJ, Lawrie TA, Atallah AN, Duley L, Torloni MR. Calcium supplementation during pregnancy for preventing hypertensive disorders and related problems. Cochrane Database Syst Rev 2014; 6: CD001059'},{id:"B121",body:'Rolnik DL, Wright D, Poon LC, O\'Gorman N, Syngelaki A, de Paco Matallana C, et al. Aspirin versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia. N Engl J Med 2017; 377: 613-22'},{id:"B122",body:'Ojeda-Uribe M, Afif N, Dahan E, Sparsa L, Haby C, Sibilia J, et al. Exposure to abatacept or rituximab in the first trimester of pregnancy in three women with autoimmune diseases. Clin Rheumatol 2013; 32: 695-700'},{id:"B123",body:'Carmichael SL, Shaw GM, Ma C, Werler MM, Rasmussen SA, Lammer EJ, et al. Maternal corticosteroid use and orofacial clefts. Am J Obstet Gynecol 2007; 197: 585 e1-7; discussion 683-4, e1-7'},{id:"B124",body:'Skuladottir H, Wilcox AJ, Ma C, Lammer EJ, Rasmussen SA, Werler MM, et al. Corticosteroid use and risk of orofacial clefts. Birth Defects Res A Clin Mol Teratol 2014; 100: 499-506'},{id:"B125",body:'Lightstone L, Hladunewich MA. Lupus Nephritis and Pregnancy: Concerns and Management. Semin Nephrol 2017; 37: 347-53'},{id:"B126",body:'Rolfo A, Attini R, Nuzzo AM, Piazzese A, Parisi S, Ferraresi M, et al. Chronic kidney disease may be differentially diagnosed from preeclampsia by serum biomarkers. Kidney Int 2013; 83: 177-81'},{id:"B127",body:'de Jesús GR, Lacerda MI, Rodrigues BC, Dos Santos FC, do Nascimento AP, Porto LC, et al. VEGF, PlGF and sFlt-1 serum levels allow differentiation between active lupus nephritis during pregnancy and preeclampsia. Arthritis Care Res 2020'},{id:"B128",body:'Piccoli GB, Daidola G, Attini R, Parisi S, Fassio F, Naretto C, et al. Kidney biopsy in pregnancy: evidence for counseling? A systematic narrative review. BJOG 2013; 120: 412-27'},{id:"B129",body:'Wiles K, Chappell L, Clark K, Elman L, Hall M, Lightstone L, et al. Clinical practice guideline on pregnancy and renal disease. BMC Nephrol 2019; 20: 401'},{id:"B130",body:'Haseler E, Melhem N, Sinha MD. Renal disease in pregnancy: Fetal, neonatal and long-term outcomes. Best Pract Res Clin Obstet Gynaecol 2019; 57: 60-76'},{id:"B131",body:'Redman CW. Hypertension in pregnancy: the NICE guidelines. Heart 2011; 97: 1967-9'},{id:"B132",body:'Lamont MC, McDermott C, Thomson AJ, Greer IA. United Kingdom recommendations for obstetric venous thromboembolism prophylaxis: Evidence and rationale. Semin Perinatol 2019; 43: 222-8'},{id:"B133",body:'Pillay C, Clark K. Postpartum care of women with renal disease. Best Pract Res Clin Obstet Gynaecol 2019; 57: 89-105'},{id:"B134",body:'Morales E, Galindo M, Trujillo H, Praga M. Update on Lupus Nephritis: Looking for a New Vision. Nephron. 2020:1-13'},{id:"B135",body:'Naveed A, Nilubol C, Melancon JK, Girlanda R, Johnson L, Javaid B. Preemptive kidney transplantation in systemic lupus erythematosus. Transplant Proc 2011; 43: 3713-4'},{id:"B136",body:'Chadban SJ, Ahn C, Axelrod DA, Foster BJ, Kasiske BL, Kher V, et al. KDIGO Clinical Practice Guideline on the Evaluation and Management of Candidates for Kidney Transplantation. Transplantation 2020; 104 (4S1 Suppl 1): S11-S103'},{id:"B137",body:'Plantinga LC, Patzer RE, Drenkard C, Kramer MR, Klein M, Lim SS, et al. Association of time to kidney transplantation with graft failure among U.S. patients with end-stage renal disease due to lupus nephritis. Arthritis Care Res 2015; 67: 571-81'},{id:"B138",body:'Wong T, Goral S. lupus Nephritis and Kidney Transplantation: Where Are We Today? Adv Chronic Kidney Dis 2019; 26: 313-22'},{id:"B139",body:'Lionaki S, Skalioti C, Boletis JN. Kidney transplantation in patients with systemic lupus erythematosus. World J Transplant 2014; 4: 176-82'},{id:"B140",body:'Jorgenson MR, Descourouez JL, Singh T, Astor BC, Panzer SE. Malignancy in Renal Transplant Recipients Exposed to Cyclophosphamide Prior to Transplantation for the Treatment of Native Glomerular Disease. Pharmacotherapy 2018; 38: 51-7'},{id:"B141",body:'Hibberd AD, Trevillian PR, Wlodarczyk JH, Kemp DG, Stein AM, Gillies AH, et al. Effect of immunosuppression for primary renal disease on the risk of cancer in subsequent renal transplantation: a population-based retrospective cohort study. Transplantation 2013; 95: 122-7'},{id:"B142",body:'Song L, Wang Y, Zhang J, Song N, Xu X, Lu Y. The risks of cancer development in systemic lupus erythematosus (SLE) patients: a systematic review and meta-analysis. Arthritis Res Ther 2018; 20: 270'},{id:"B143",body:'Ketteler M, Block GA, Evenepoel P, Fukagawa M, Herzog CA, McCann L, et al. Executive summary of the 2017 KDIGO Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) Guideline Update: what\'s changed and why it matters. Kidney Int 2017; 92: 26-36'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Fahd Adeeb",address:"fahd_adeeb@yahoo.com",affiliation:'
Department of Rheumatology, University Hospital Kerry, Ireland
'},{corresp:null,contributorFullName:"Wan Ahmad Hafiz Wan Md Adnan",address:null,affiliation:'
Department of Nephrology, University Malaya, Malaysia
'}],corrections:null},book:{id:"9104",type:"book",title:"Lupus",subtitle:"Need to Know",fullTitle:"Lupus - Need to Know",slug:"lupus-need-to-know",publishedDate:"August 25th 2021",bookSignature:"Reem Hamdy A. Mohammed",coverURL:"https://cdn.intechopen.com/books/images_new/9104.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83968-405-0",printIsbn:"978-1-83968-403-6",pdfIsbn:"978-1-83968-406-7",isAvailableForWebshopOrdering:!0,editors:[{id:"36290",title:"Prof.",name:"Reem Hamdy A.",middleName:null,surname:"Mohammed",slug:"reem-hamdy-a.-mohammed",fullName:"Reem Hamdy A. Mohammed"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"170297",title:"Dr.",name:"Gurdeep S.",middleName:null,surname:"Matharoo",email:"gmath82@gmail.com",fullName:"Gurdeep S. Matharoo",slug:"gurdeep-s.-matharoo",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:null},booksEdited:[],chaptersAuthored:[{id:"46884",title:"Preoperative Evaluation of Bariatric Surgery Patients",slug:"preoperative-evaluation-of-bariatric-surgery-patients",abstract:null,signatures:"Gurdeep S. Matharoo, Erika Renick, John N. Afthinos, Tracey Straker\nand Karen E. Gibbs",authors:[{id:"89919",title:"Dr.",name:"Karen E.",surname:"Gibbs",fullName:"Karen E. Gibbs",slug:"karen-e.-gibbs",email:"kegibbsmd@aol.com"},{id:"135377",title:"Dr.",name:"John N.",surname:"Afthinos",fullName:"John N. Afthinos",slug:"john-n.-afthinos",email:"afthinos@gmail.com"},{id:"170297",title:"Dr.",name:"Gurdeep S.",surname:"Matharoo",fullName:"Gurdeep S. Matharoo",slug:"gurdeep-s.-matharoo",email:"gmath82@gmail.com"},{id:"170298",title:"Ms.",name:"Erika",surname:"Renick",fullName:"Erika Renick",slug:"erika-renick",email:"erenick@siuh.edu"},{id:"170300",title:"Dr.",name:"Tracey",surname:"Straker",fullName:"Tracey Straker",slug:"tracey-straker",email:"tstraker@montefiore.org"}],book:{id:"3814",title:"Essentials and Controversies in Bariatric Surgery",slug:"essentials-and-controversies-in-bariatric-surgery",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"89919",title:"Dr.",name:"Karen E.",surname:"Gibbs",slug:"karen-e.-gibbs",fullName:"Karen E. Gibbs",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89919/images/4001_n.png",biography:null,institutionString:null,institution:{name:"Staten Island University Hospital",institutionURL:null,country:{name:"United States of America"}}},{id:"90684",title:"Dr.",name:"Maria Rita Marques",surname:"De Oliveira",slug:"maria-rita-marques-de-oliveira",fullName:"Maria Rita Marques De Oliveira",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Sao Paulo State University",institutionURL:null,country:{name:"Brazil"}}},{id:"100486",title:"MSc.",name:"Patrícia Fátima",surname:"Souza Novais",slug:"patricia-fatima-souza-novais",fullName:"Patrícia Fátima Souza Novais",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Sao Paulo State University",institutionURL:null,country:{name:"Brazil"}}},{id:"100489",title:"Prof.",name:"Irineu",surname:"Rasera Junior",slug:"irineu-rasera-junior",fullName:"Irineu Rasera Junior",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Sao Paulo State University",institutionURL:null,country:{name:"Brazil"}}},{id:"100493",title:"Dr.",name:"Celso",surname:"Vieira De Souza Leite",slug:"celso-vieira-de-souza-leite",fullName:"Celso Vieira De Souza Leite",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Sao Paulo State University",institutionURL:null,country:{name:"Brazil"}}},{id:"135377",title:"Dr.",name:"John N.",surname:"Afthinos",slug:"john-n.-afthinos",fullName:"John N. Afthinos",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"170298",title:"Ms.",name:"Erika",surname:"Renick",slug:"erika-renick",fullName:"Erika Renick",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"170300",title:"Dr.",name:"Tracey",surname:"Straker",slug:"tracey-straker",fullName:"Tracey Straker",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"170452",title:"Dr.",name:"Alex",surname:"Crisp",slug:"alex-crisp",fullName:"Alex Crisp",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"170453",title:"Ms.",name:"Flávia Andreia",surname:"Marin",slug:"flavia-andreia-marin",fullName:"Flávia Andreia Marin",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]},generic:{page:{slug:"terms-and-conditions",title:"Terms and Conditions",intro:'
These Terms and Conditions outline the rules and regulations pertaining to the use of IntechOpen’s website www.intechopen.com and all the subdomains owned by IntechOpen located at 5 Princes Gate Court, London, SW7 2QJ, United Kingdom.
',metaTitle:"Terms and Conditions",metaDescription:"These terms and conditions outline the rules and regulations for the use of IntechOpen Website at https://intechopen.com and all its subdomains owned by Intech Limited located at 7th floor, 10 Lower Thames Street, London, EC3R 6AF, UK.",metaKeywords:null,canonicalURL:"/page/terms-and-conditions",contentRaw:'[{"type":"htmlEditorComponent","content":"
1. Terms
\\n\\n
By accessing the website at www.intechopen.com you are agreeing to be bound by these Terms of Service, all applicable laws and regulations, and agree that you are responsible for compliance with any applicable local laws. Use and/or access to this site is based on full agreement and compliance of these Terms. All materials contained on this website are protected by applicable copyright and trademark laws.
\\n\\n
The following terminology applies to these Terms and Conditions, Privacy Statement, Disclaimer Notice, and any or all Agreements:
\\n\\n
“Client”, “Customer”, “You” and “Your” refers to you, the person accessing this website and accepting the Company’s Terms and Conditions;
\\n\\n
“The Company”, “Ourselves”, “We”, “Our” and “Us”, refers to our Company, IntechOpen;
\\n\\n
“Party”, “Parties”, or “Us”, refers to both the Client and ourselves, or either the Client or ourselves.
\\n\\n
All Terms refer to the offer, acceptance, and consideration of payment necessary to provide assistance to the Client in the most appropriate manner, whether by formal meetings of a fixed duration, or by any other agreed means, for the express purpose of meeting the Client’s needs in respect of provision of the Company’s stated services/products, and in accordance with, and subject to, the prevailing laws of the United Kingdom.
\\n\\n
Any use of the above terminology, or other words in the singular, plural, capitalization and/or he/she or they, are taken as interchangeable.
\\n\\n
2. License
\\n\\n
Unless otherwise stated, IntechOpen and/or its licensors own the intellectual property rights for all materials on www.intechopen.com. All intellectual property rights are reserved. You may view, download, share, link and print pages from www.intechopen.com for your own personal use, subject to the restrictions set out in these Terms and Conditions.
\\n\\n
3. Cookies
\\n\\n
We employ the use of cookies. By using the IntechOpen website you consent to the use of cookies in accordance with IntechOpen’s Privacy Policy. Most modern day interactive websites use cookies to enable the retrieval of user details for each visit. On our site, cookies are predominantly used to enable functionality and ease of use for those visiting the site.
\\n\\n
4. Limitations
\\n\\n
In no circumstances shall IntechOpen or its suppliers be liable for any damages (including, without limitation, damages for loss of data or profit, or due to business interruption) arising out of the use, or inability to use, the materials on IntechOpen's websites, even if IntechOpen or an IntechOpen authorized representative has been notified orally or in writing of the possibility of such damage. Some jurisdictions do not allow limitations on implied warranties, or limitations of liability for consequential or incidental damages; consequently, these limitations may not apply to you.
\\n\\n
5. Accuracy of Materials
\\n\\n
Intechopen.com website content and services are provided on an "AS IS" and an "AS AVAILABLE" basis. Material appearing on www.intechopen.com could include minor technical, typographical, or photographic errors. IntechOpen may make changes to any material contained on its website at any time without notice.
\\n\\n
6. Links
\\n\\n
IntechOpen has no formal affiliation to any external sites that link to www.intechopen.com, unless otherwise specifically stated. As such, it is not responsible for content that appears on any such sites. The inclusion of any link to IntechOpen does not imply endorsement by IntechOpen. Use of any such linked website is done solely at the user's own discretion.
\\n\\n
We reserve the right of ownership over our entire website www.intechopen.com, and all contents. By using our services, you agree to remove all links to our website immediately upon request. We also reserve the right to amend these Terms and Conditions and our linking policy at any time. By continuing to link to our website, you agree to be bound to, and abide by, these linking Terms and Conditions.
\\n\\n
If you find any link on our website, or any linked website, objectionable for any reason, please Contact Us. We will consider all requests to remove links but will have no obligation to do so.
\\n\\n
7. Frames
\\n\\n
Without prior approval and express written permission, you may not create frames around our web pages or use other techniques that alter in any way the visual presentation or appearance of our website.
\\n\\n
8. Modifications
\\n\\n
IntechOpen may revise its Terms of Service for its website at any time without notice. By using this website, you are agreeing to be bound by the current version of all Terms at the time of use.
\\n\\n
9. Governing Law
\\n\\n
These Terms and Conditions are governed by and construed in accordance with the laws of the United Kingdom and you irrevocably submit to the exclusive jurisdiction of the courts in London, United Kingdom.
\\n\\n
Croatian version of Terms and Conditions available here
By accessing the website at www.intechopen.com you are agreeing to be bound by these Terms of Service, all applicable laws and regulations, and agree that you are responsible for compliance with any applicable local laws. Use and/or access to this site is based on full agreement and compliance of these Terms. All materials contained on this website are protected by applicable copyright and trademark laws.
\n\n
The following terminology applies to these Terms and Conditions, Privacy Statement, Disclaimer Notice, and any or all Agreements:
\n\n
“Client”, “Customer”, “You” and “Your” refers to you, the person accessing this website and accepting the Company’s Terms and Conditions;
\n\n
“The Company”, “Ourselves”, “We”, “Our” and “Us”, refers to our Company, IntechOpen;
\n\n
“Party”, “Parties”, or “Us”, refers to both the Client and ourselves, or either the Client or ourselves.
\n\n
All Terms refer to the offer, acceptance, and consideration of payment necessary to provide assistance to the Client in the most appropriate manner, whether by formal meetings of a fixed duration, or by any other agreed means, for the express purpose of meeting the Client’s needs in respect of provision of the Company’s stated services/products, and in accordance with, and subject to, the prevailing laws of the United Kingdom.
\n\n
Any use of the above terminology, or other words in the singular, plural, capitalization and/or he/she or they, are taken as interchangeable.
\n\n
2. License
\n\n
Unless otherwise stated, IntechOpen and/or its licensors own the intellectual property rights for all materials on www.intechopen.com. All intellectual property rights are reserved. You may view, download, share, link and print pages from www.intechopen.com for your own personal use, subject to the restrictions set out in these Terms and Conditions.
\n\n
3. Cookies
\n\n
We employ the use of cookies. By using the IntechOpen website you consent to the use of cookies in accordance with IntechOpen’s Privacy Policy. Most modern day interactive websites use cookies to enable the retrieval of user details for each visit. On our site, cookies are predominantly used to enable functionality and ease of use for those visiting the site.
\n\n
4. Limitations
\n\n
In no circumstances shall IntechOpen or its suppliers be liable for any damages (including, without limitation, damages for loss of data or profit, or due to business interruption) arising out of the use, or inability to use, the materials on IntechOpen's websites, even if IntechOpen or an IntechOpen authorized representative has been notified orally or in writing of the possibility of such damage. Some jurisdictions do not allow limitations on implied warranties, or limitations of liability for consequential or incidental damages; consequently, these limitations may not apply to you.
\n\n
5. Accuracy of Materials
\n\n
Intechopen.com website content and services are provided on an "AS IS" and an "AS AVAILABLE" basis. Material appearing on www.intechopen.com could include minor technical, typographical, or photographic errors. IntechOpen may make changes to any material contained on its website at any time without notice.
\n\n
6. Links
\n\n
IntechOpen has no formal affiliation to any external sites that link to www.intechopen.com, unless otherwise specifically stated. As such, it is not responsible for content that appears on any such sites. The inclusion of any link to IntechOpen does not imply endorsement by IntechOpen. Use of any such linked website is done solely at the user's own discretion.
\n\n
We reserve the right of ownership over our entire website www.intechopen.com, and all contents. By using our services, you agree to remove all links to our website immediately upon request. We also reserve the right to amend these Terms and Conditions and our linking policy at any time. By continuing to link to our website, you agree to be bound to, and abide by, these linking Terms and Conditions.
\n\n
If you find any link on our website, or any linked website, objectionable for any reason, please Contact Us. We will consider all requests to remove links but will have no obligation to do so.
\n\n
7. Frames
\n\n
Without prior approval and express written permission, you may not create frames around our web pages or use other techniques that alter in any way the visual presentation or appearance of our website.
\n\n
8. Modifications
\n\n
IntechOpen may revise its Terms of Service for its website at any time without notice. By using this website, you are agreeing to be bound by the current version of all Terms at the time of use.
\n\n
9. Governing Law
\n\n
These Terms and Conditions are governed by and construed in accordance with the laws of the United Kingdom and you irrevocably submit to the exclusive jurisdiction of the courts in London, United Kingdom.
\n\n
Croatian version of Terms and Conditions available here
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2459},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"11"},books:[{type:"book",id:"11168",title:"Sulfur Industry",subtitle:null,isOpenForSubmission:!0,hash:"39d4f4522a9f465bfe15ec2d85ef8861",slug:null,bookSignature:"Dr. Enos Wamalwa Wambu and Dr. Esther Nthiga",coverURL:"https://cdn.intechopen.com/books/images_new/11168.jpg",editedByType:null,editors:[{id:"187655",title:"Dr.",name:"Enos",surname:"Wambu",slug:"enos-wambu",fullName:"Enos Wambu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11451",title:"Molecular Docking - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"8c918a1973786c7059752b28601f1329",slug:null,bookSignature:"Dr. Erman Salih Istifli",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",editedByType:null,editors:[{id:"179007",title:"Dr.",name:"Erman Salih",surname:"Istifli",slug:"erman-salih-istifli",fullName:"Erman Salih Istifli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11452",title:"Cryopreservation - Applications and Challenges",subtitle:null,isOpenForSubmission:!0,hash:"a6c3fd4384ff7deeab32fc82722c60e0",slug:null,bookSignature:"Dr. Marian Quain",coverURL:"https://cdn.intechopen.com/books/images_new/11452.jpg",editedByType:null,editors:[{id:"300385",title:"Dr.",name:"Marian",surname:"Quain",slug:"marian-quain",fullName:"Marian Quain"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11453",title:"Biomimetics - Bridging the Gap",subtitle:null,isOpenForSubmission:!0,hash:"173e62fa4d7bf5508cec3bdd8e3cb32d",slug:null,bookSignature:"Prof. Ziyad S. Haidar",coverURL:"https://cdn.intechopen.com/books/images_new/11453.jpg",editedByType:null,editors:[{id:"222709",title:"Prof.",name:"Ziyad S.",surname:"Haidar",slug:"ziyad-s.-haidar",fullName:"Ziyad S. Haidar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11507",title:"New Generation of Sustainable Smart Cities",subtitle:null,isOpenForSubmission:!0,hash:"dc693757b86ab8742367a38cda6cb622",slug:null,bookSignature:"Prof. Amjad Almusaed and Prof. Asaad Almssad",coverURL:"https://cdn.intechopen.com/books/images_new/11507.jpg",editedByType:null,editors:[{id:"446856",title:"Prof.",name:"Amjad",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11509",title:"Wireless Power Transfer - Perspectives and Application",subtitle:null,isOpenForSubmission:!0,hash:"f188555eee4211fc24b6cca361983149",slug:null,bookSignature:"Dr. Kim Ho Yeap",coverURL:"https://cdn.intechopen.com/books/images_new/11509.jpg",editedByType:null,editors:[{id:"126825",title:"Dr.",name:"Kim Ho",surname:"Yeap",slug:"kim-ho-yeap",fullName:"Kim Ho Yeap"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11510",title:"New Trends in Electric Machines - Technology and Applications",subtitle:null,isOpenForSubmission:!0,hash:"f57b5e35a1bf18acd4fd0d41fe59f49c",slug:null,bookSignature:"Dr. Miguel Delgado Prieto, Dr. José Alfonso Antonino-Daviu and Dr. Roque A. Osornio-Rios",coverURL:"https://cdn.intechopen.com/books/images_new/11510.jpg",editedByType:null,editors:[{id:"234568",title:"Dr.",name:"Miguel",surname:"Delgado Prieto",slug:"miguel-delgado-prieto",fullName:"Miguel Delgado Prieto"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11513",title:"Gas Sensors",subtitle:null,isOpenForSubmission:!0,hash:"8eeb7ab232fa8d5c723b61e0da251857",slug:null,bookSignature:"Dr. Soumen Dhara and Dr. Gorachand Dutta",coverURL:"https://cdn.intechopen.com/books/images_new/11513.jpg",editedByType:null,editors:[{id:"196334",title:"Dr.",name:"Soumen",surname:"Dhara",slug:"soumen-dhara",fullName:"Soumen Dhara"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11514",title:"Vision Sensors - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"6da8427ef3062c142b4e9650a5fed534",slug:null,bookSignature:"Dr. Francisco J. Gallegos-Funes",coverURL:"https://cdn.intechopen.com/books/images_new/11514.jpg",editedByType:null,editors:[{id:"2868",title:"Dr.",name:"Francisco",surname:"Gallegos-Funes",slug:"francisco-gallegos-funes",fullName:"Francisco Gallegos-Funes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11515",title:"Light-Emitting Diodes - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"08a7e9ae6b64e49a2118515e285b78da",slug:null,bookSignature:"Dr. Chandra Shakher Pathak and Mr. Uday Dadwal",coverURL:"https://cdn.intechopen.com/books/images_new/11515.jpg",editedByType:null,editors:[{id:"318029",title:"Dr.",name:"Chandra Shakher",surname:"Pathak",slug:"chandra-shakher-pathak",fullName:"Chandra Shakher Pathak"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11517",title:"Phase Change Materials - Technology and Applications",subtitle:null,isOpenForSubmission:!0,hash:"1b7a5f2631db5e49399539ade1edf264",slug:null,bookSignature:"Dr. Manish K Rathod",coverURL:"https://cdn.intechopen.com/books/images_new/11517.jpg",editedByType:null,editors:[{id:"236035",title:"Dr.",name:"Manish",surname:"Rathod",slug:"manish-rathod",fullName:"Manish Rathod"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11518",title:"The Acoustics of Materials - New Approaches",subtitle:null,isOpenForSubmission:!0,hash:"769f942393275479acca64e4f4fea958",slug:null,bookSignature:"Dr. Bankole Kolawole Fasanya and Dr. Sridhar Krishnamurti",coverURL:"https://cdn.intechopen.com/books/images_new/11518.jpg",editedByType:null,editors:[{id:"214494",title:"Dr.",name:"Bankole",surname:"Fasanya",slug:"bankole-fasanya",fullName:"Bankole Fasanya"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:89},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"263",title:"Archaeology",slug:"archaeology",parent:{id:"23",title:"Social Sciences",slug:"social-sciences"},numberOfBooks:3,numberOfSeries:0,numberOfAuthorsAndEditors:62,numberOfWosCitations:40,numberOfCrossrefCitations:30,numberOfDimensionsCitations:72,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"263",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9251",title:"Pleistocene Archaeology",subtitle:"Migration, Technology, and Adaptation",isOpenForSubmission:!1,hash:"65e1040ad23f0385a56f2d0472b4aee5",slug:"pleistocene-archaeology-migration-technology-and-adaptation",bookSignature:"Rintaro Ono and Alfred Pawlik",coverURL:"https://cdn.intechopen.com/books/images_new/9251.jpg",editedByType:"Edited by",editors:[{id:"177123",title:"Dr.",name:"Rintaro",middleName:null,surname:"Ono",slug:"rintaro-ono",fullName:"Rintaro Ono"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7699",title:"Advanced Methods and New Materials for Cultural Heritage Preservation",subtitle:null,isOpenForSubmission:!1,hash:"4e4bd9a9b8cef15b9739f45ef05927c8",slug:"advanced-methods-and-new-materials-for-cultural-heritage-preservation",bookSignature:"Daniela Turcanu-Carutiu and Rodica-Mariana Ion",coverURL:"https://cdn.intechopen.com/books/images_new/7699.jpg",editedByType:"Edited by",editors:[{id:"176482",title:"Prof.",name:"Daniela",middleName:null,surname:"Turcanu-Carutiu",slug:"daniela-turcanu-carutiu",fullName:"Daniela Turcanu-Carutiu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1999",title:"Archaeology",subtitle:"New Approaches in Theory and Techniques",isOpenForSubmission:!1,hash:"ec63f4de8c846ec578d2bca6cbf35ac2",slug:"archaeology-new-approaches-in-theory-and-techniques",bookSignature:"Imma Ollich-Castanyer",coverURL:"https://cdn.intechopen.com/books/images_new/1999.jpg",editedByType:"Edited by",editors:[{id:"118972",title:"Dr.",name:"Imma",middleName:null,surname:"Ollich-Castanyer",slug:"imma-ollich-castanyer",fullName:"Imma Ollich-Castanyer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"36571",doi:"10.5772/38066",title:"Archaeometallurgical Investigation of Iron Artifacts from Shipwrecks - A Review",slug:"archaeometallurgical-investigation-of-iron-artifacts-from-shipwrecks-a-review",totalDownloads:5235,totalCrossrefCites:3,totalDimensionsCites:13,abstract:null,book:{id:"1999",slug:"archaeology-new-approaches-in-theory-and-techniques",title:"Archaeology",fullTitle:"Archaeology, New Approaches in Theory and Techniques"},signatures:"D. Ashkenazi, E. Mentovich, D. Cvikel, O. Barkai, A. Aronson and Y. Kahanov",authors:[{id:"115412",title:"Dr.",name:"Dana",middleName:null,surname:"Ashkenazi",slug:"dana-ashkenazi",fullName:"Dana Ashkenazi"},{id:"115414",title:"Dr.",name:"Elad",middleName:null,surname:"Mentovich",slug:"elad-mentovich",fullName:"Elad Mentovich"},{id:"115415",title:"Dr.",name:"Yaacov",middleName:null,surname:"Kahanov",slug:"yaacov-kahanov",fullName:"Yaacov Kahanov"},{id:"115416",title:"Dr.",name:"Deborah",middleName:null,surname:"Cvikel",slug:"deborah-cvikel",fullName:"Deborah Cvikel"},{id:"115419",title:"MSc.",name:"Ofra",middleName:null,surname:"Barkai",slug:"ofra-barkai",fullName:"Ofra Barkai"},{id:"115420",title:"BSc.",name:"Ayal",middleName:null,surname:"Aronson",slug:"ayal-aronson",fullName:"Ayal Aronson"}]},{id:"63772",doi:"10.5772/intechopen.80975",title:"Cultural Heritage in Marker-Less Augmented Reality: A Survey",slug:"cultural-heritage-in-marker-less-augmented-reality-a-survey",totalDownloads:1644,totalCrossrefCites:6,totalDimensionsCites:9,abstract:"Augmented reality (AR) is considered as one of the most significant technologies in the field of computer graphics and is utilised in many applications. In this chapter, we have presented a brief comprehensive survey of cultural heritage using augmented reality systems. This survey describes the main objectives and characteristics of marker-less augmented reality systems through presenting up-to-date research results in this area. We describe the marker-less technologies in the area of AR, indoor marker-less AR, outdoor marker-less AR, real-time solutions to the tracking problem, real-time registration, cultural heritage in AR, 3D remonstration techniques, as well as presenting the problems in each research.",book:{id:"7699",slug:"advanced-methods-and-new-materials-for-cultural-heritage-preservation",title:"Advanced Methods and New Materials for Cultural Heritage Preservation",fullTitle:"Advanced Methods and New Materials for Cultural Heritage Preservation"},signatures:"Hoshang Kolivand, Abdennour El Rhalibi, Mostafa Tajdini, Sarmad Abdulazeez\nand Pisit Praiwattana",authors:[{id:"151219",title:"Prof.",name:"Abdennour",middleName:null,surname:"El Rhalibi",slug:"abdennour-el-rhalibi",fullName:"Abdennour El Rhalibi"},{id:"225824",title:"Dr.",name:"Hoshang",middleName:null,surname:"Kolivand",slug:"hoshang-kolivand",fullName:"Hoshang Kolivand"},{id:"256916",title:"Dr.",name:"Sarmad",middleName:null,surname:"Abdulazeez",slug:"sarmad-abdulazeez",fullName:"Sarmad Abdulazeez"},{id:"256917",title:"Dr.",name:"Pisit",middleName:null,surname:"Praiwattana",slug:"pisit-praiwattana",fullName:"Pisit Praiwattana"},{id:"289071",title:"Dr.",name:"Mostafa",middleName:null,surname:"Tajdini",slug:"mostafa-tajdini",fullName:"Mostafa Tajdini"}]},{id:"36570",doi:"10.5772/45619",title:"Archaeological Geophysics - From Basics to New Perspectives",slug:"archaeological-geophysics-from-basics-to-new-perspectives",totalDownloads:6627,totalCrossrefCites:4,totalDimensionsCites:8,abstract:null,book:{id:"1999",slug:"archaeology-new-approaches-in-theory-and-techniques",title:"Archaeology",fullTitle:"Archaeology, New Approaches in Theory and Techniques"},signatures:"Roger Sala, Ekhine Garcia and Robert Tamba",authors:[{id:"131865",title:"Dr.",name:"Roger",middleName:null,surname:"Sala",slug:"roger-sala",fullName:"Roger Sala"}]},{id:"36574",doi:"10.5772/37679",title:"The Study of Shell Object Manufacturing Techniques from the Perspective of Experimental Archaeology and Work Traces",slug:"the-study-of-shell-object-manufacturing-techniques-from-the-perspective-of-experimental-archaeology-",totalDownloads:3127,totalCrossrefCites:1,totalDimensionsCites:6,abstract:null,book:{id:"1999",slug:"archaeology-new-approaches-in-theory-and-techniques",title:"Archaeology",fullTitle:"Archaeology, New Approaches in Theory and Techniques"},signatures:"Adrián Velázquez-Castro",authors:[{id:"113840",title:"Dr.",name:"Adrian",middleName:null,surname:"Velazquez",slug:"adrian-velazquez",fullName:"Adrian Velazquez"}]},{id:"70612",doi:"10.5772/intechopen.89154",title:"The Technological Diversity of Lithic Industries in Eastern South America during the Late Pleistocene-Holocene Transition",slug:"the-technological-diversity-of-lithic-industries-in-eastern-south-america-during-the-late-pleistocen",totalDownloads:690,totalCrossrefCites:1,totalDimensionsCites:4,abstract:"Brazilian archaeological literature has insisted for decades upon associating hunter-gatherer sites dated to the Pleistocene–Holocene transition either to the Itaparica tradition, if located in central or northeastern Brazil, or to the Umbu tradition and Humaitá tradition, if located in southern Brazil, Uruguay, or any other adjacent part of Paraguay and Argentina. These associations have been based almost entirely on the presence or absence of lesmas and “projectile points,” regardless of their morphological and technological features. In the Uruguayan archaeological literature, three other cultures are recognised: Fell industry, Catalanense industry, and Tigre tradition, all in the Uruguayan region. However, the last 10 years of systematic studies on the lithic assemblages from these sites have shown that Paleoindian societies from Eastern South America are more culturally diverse than expected and that previously defined archaeological cultures present several issues in their definition, suggesting that many of these “traditions” are not valid and should no longer be used. Instead, new lithic industries and archaeological cultures should be defined only when cultural patterns are observable through systematic analyses.",book:{id:"9251",slug:"pleistocene-archaeology-migration-technology-and-adaptation",title:"Pleistocene Archaeology",fullTitle:"Pleistocene Archaeology - Migration, Technology, and Adaptation"},signatures:"João Carlos Moreno De Sousa",authors:[{id:"303361",title:"Dr.",name:"João Carlos",middleName:null,surname:"Moreno De Sousa",slug:"joao-carlos-moreno-de-sousa",fullName:"João Carlos Moreno De Sousa"}]}],mostDownloadedChaptersLast30Days:[{id:"36570",title:"Archaeological Geophysics - From Basics to New Perspectives",slug:"archaeological-geophysics-from-basics-to-new-perspectives",totalDownloads:6628,totalCrossrefCites:4,totalDimensionsCites:8,abstract:null,book:{id:"1999",slug:"archaeology-new-approaches-in-theory-and-techniques",title:"Archaeology",fullTitle:"Archaeology, New Approaches in Theory and Techniques"},signatures:"Roger Sala, Ekhine Garcia and Robert Tamba",authors:[{id:"131865",title:"Dr.",name:"Roger",middleName:null,surname:"Sala",slug:"roger-sala",fullName:"Roger Sala"}]},{id:"36576",title:"Homage to Marcel Proust - Aspects of Dissemination and Didactic in a Museum and a Science Centre: Science Communication Visions for the Third Generation Museums",slug:"generations-of-ancient-history-dissemination-towards-the-public-at-the-university-museum-in-trondhei",totalDownloads:2669,totalCrossrefCites:1,totalDimensionsCites:1,abstract:null,book:{id:"1999",slug:"archaeology-new-approaches-in-theory-and-techniques",title:"Archaeology",fullTitle:"Archaeology, New Approaches in Theory and Techniques"},signatures:"Kistian Overskaug",authors:[{id:"117119",title:"Dr.",name:"Kristian",middleName:null,surname:"Overskaug",slug:"kristian-overskaug",fullName:"Kristian Overskaug"}]},{id:"63772",title:"Cultural Heritage in Marker-Less Augmented Reality: A Survey",slug:"cultural-heritage-in-marker-less-augmented-reality-a-survey",totalDownloads:1644,totalCrossrefCites:6,totalDimensionsCites:9,abstract:"Augmented reality (AR) is considered as one of the most significant technologies in the field of computer graphics and is utilised in many applications. In this chapter, we have presented a brief comprehensive survey of cultural heritage using augmented reality systems. This survey describes the main objectives and characteristics of marker-less augmented reality systems through presenting up-to-date research results in this area. We describe the marker-less technologies in the area of AR, indoor marker-less AR, outdoor marker-less AR, real-time solutions to the tracking problem, real-time registration, cultural heritage in AR, 3D remonstration techniques, as well as presenting the problems in each research.",book:{id:"7699",slug:"advanced-methods-and-new-materials-for-cultural-heritage-preservation",title:"Advanced Methods and New Materials for Cultural Heritage Preservation",fullTitle:"Advanced Methods and New Materials for Cultural Heritage Preservation"},signatures:"Hoshang Kolivand, Abdennour El Rhalibi, Mostafa Tajdini, Sarmad Abdulazeez\nand Pisit Praiwattana",authors:[{id:"151219",title:"Prof.",name:"Abdennour",middleName:null,surname:"El Rhalibi",slug:"abdennour-el-rhalibi",fullName:"Abdennour El Rhalibi"},{id:"225824",title:"Dr.",name:"Hoshang",middleName:null,surname:"Kolivand",slug:"hoshang-kolivand",fullName:"Hoshang Kolivand"},{id:"256916",title:"Dr.",name:"Sarmad",middleName:null,surname:"Abdulazeez",slug:"sarmad-abdulazeez",fullName:"Sarmad Abdulazeez"},{id:"256917",title:"Dr.",name:"Pisit",middleName:null,surname:"Praiwattana",slug:"pisit-praiwattana",fullName:"Pisit Praiwattana"},{id:"289071",title:"Dr.",name:"Mostafa",middleName:null,surname:"Tajdini",slug:"mostafa-tajdini",fullName:"Mostafa Tajdini"}]},{id:"73769",title:"Human Evolution in the Center of the Old World: An Updated Review of the South Asian Paleolithic",slug:"human-evolution-in-the-center-of-the-old-world-an-updated-review-of-the-south-asian-paleolithic",totalDownloads:883,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"The Indian Subcontinent was an important geographic region for faunal and hominin evolution in Asia. While the Oldowan as the earliest technocomplex continues to be elusive, the oldest Acheulean is dated to ~1.5 Ma and the early Middle Paleolithic is ~385 ka (from the same site). New Late Pleistocene dates have been reported for the Middle Paleolithic which continues up to 38 Ka in southern India. The Upper Paleolithic remains ambiguous and requires critically multidisciplinary investigations. The microlithic evidence appears to spread rapidly across the subcontinent soon after its emergence at ~48 Ka (though its origin is debated) and continues into the Iron Age. The timeline of the initial arrival of Homo sapiens continues to be debated based on the archaeology (advanced Middle Paleolithic vs. microlithic) and genetic studies on indigenous groups. Other issues that need consideration are: interactions between archaics and arriving moderns, the marginal occurrence of symbolic behavior, the absolute dating of rock art and the potential role of hominins in specific animal extinctions and ecological marginalization. The region does not appear to have been a corridor for dispersals towards Southeast Asia (although gene flow may have occurred). Instead, once various prehistoric technologies appeared in the Subcontinent, they possibly followed complex trajectories within relative isolation.",book:{id:"9251",slug:"pleistocene-archaeology-migration-technology-and-adaptation",title:"Pleistocene Archaeology",fullTitle:"Pleistocene Archaeology - Migration, Technology, and Adaptation"},signatures:"Parth R. Chauhan",authors:[{id:"307040",title:"Dr.",name:"Parth",middleName:null,surname:"Chauhan",slug:"parth-chauhan",fullName:"Parth Chauhan"}]},{id:"73386",title:"Island Migration, Resource Use, and Lithic Technology by Anatomically Modern Humans in Wallacea",slug:"island-migration-resource-use-and-lithic-technology-by-anatomically-modern-humans-in-wallacea",totalDownloads:742,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Island migration and adaptation including both marine and terrestrial resource use and technological development by anatomically modern humans (AMH) are among the most significant issues for Pleistocene archaeology in Southeast Asia and Oceania, and directly related to the behavioral and technological advancements by AMH. This paper discusses such cases in the Wallacean islands, located between the past Sundaland and the Sahul continent during the Pleistocene. The Pleistocene open sea gaps between the Wallacean islands and both landmasses are very likely the major factor for the relative scarcity of animal species originating from Asia and Oceania and the high diversity of endemic species in Wallacea. They were also a barrier for hominin migration into the Wallacean islands and Sahul continent. We summarize three recent excavation results on the Talaud Islands, Sulawesi Island and Mindoro Island in Wallacea region and discuss the evidence and timeline for migrations of early modern humans into the Wallacean islands and their adaptation to island environments during the Pleistocene.",book:{id:"9251",slug:"pleistocene-archaeology-migration-technology-and-adaptation",title:"Pleistocene Archaeology",fullTitle:"Pleistocene Archaeology - Migration, Technology, and Adaptation"},signatures:"Rintaro Ono, Alfred Pawlik and Riczar Fuentes",authors:[{id:"177123",title:"Dr.",name:"Rintaro",middleName:null,surname:"Ono",slug:"rintaro-ono",fullName:"Rintaro Ono"},{id:"300616",title:"Dr.",name:"Alfred",middleName:null,surname:"Pawlik",slug:"alfred-pawlik",fullName:"Alfred Pawlik"},{id:"330591",title:"Dr.",name:"Riczar",middleName:null,surname:"Fuentes",slug:"riczar-fuentes",fullName:"Riczar Fuentes"}]}],onlineFirstChaptersFilter:{topicId:"263",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",isOpenForSubmission:!0,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",isOpenForSubmission:!0,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",isOpenForSubmission:!0,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:23,paginationItems:[{id:"82392",title:"Nanomaterials as Novel Biomarkers for Cancer Nanotheranostics: State of the Art",doi:"10.5772/intechopen.105700",signatures:"Hao Yu, Zhihai Han, Cunrong Chen and Leisheng Zhang",slug:"nanomaterials-as-novel-biomarkers-for-cancer-nanotheranostics-state-of-the-art",totalDownloads:21,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"82184",title:"Biological Sensing Using Infrared SPR Devices Based on ZnO",doi:"10.5772/intechopen.104562",signatures:"Hiroaki Matsui",slug:"biological-sensing-using-infrared-spr-devices-based-on-zno",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hiroaki",surname:"Matsui"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82122",title:"Recent Advances in Biosensing in Tissue Engineering and Regenerative Medicine",doi:"10.5772/intechopen.104922",signatures:"Alma T. Banigo, Chigozie A. Nnadiekwe and Emmanuel M. Beasi",slug:"recent-advances-in-biosensing-in-tissue-engineering-and-regenerative-medicine",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82080",title:"The Clinical Usefulness of Prostate Cancer Biomarkers: Current and Future Directions",doi:"10.5772/intechopen.103172",signatures:"Donovan McGrowder, Lennox Anderson-Jackson, Lowell Dilworth, Shada Mohansingh, Melisa Anderson Cross, Sophia Bryan, Fabian Miller, Cameil Wilson-Clarke, Chukwuemeka Nwokocha, Ruby Alexander-Lindo and Shelly McFarlane",slug:"the-clinical-usefulness-of-prostate-cancer-biomarkers-current-and-future-directions",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11601",title:"Econometrics - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11601.jpg",hash:"bc8ab49e2cf436c217a49ca8c12a22eb",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 13th 2022",isOpenForSubmission:!0,editors:[{id:"452331",title:"Dr.",name:"Brian",surname:"Sloboda",slug:"brian-sloboda",fullName:"Brian Sloboda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12141",title:"Leadership - Advancing Great Leadership Practices and Good Leaders",coverURL:"https://cdn.intechopen.com/books/images_new/12141.jpg",hash:"85f77453916f1d80d80d88ee4fd2f2d1",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 1st 2022",isOpenForSubmission:!0,editors:[{id:"420133",title:"Dr.",name:"Joseph",surname:"Crawford",slug:"joseph-crawford",fullName:"Joseph Crawford"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12139",title:"Global Market and Trade",coverURL:"https://cdn.intechopen.com/books/images_new/12139.jpg",hash:"fa34af07c3a9657fa670404202f8cba5",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 21st 2022",isOpenForSubmission:!0,editors:[{id:"243649",title:"Dr.Ing.",name:"Ireneusz",surname:"Miciuła",slug:"ireneusz-miciula",fullName:"Ireneusz Miciuła"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82212",title:"Protein Prenylation and Their Applications",doi:"10.5772/intechopen.104700",signatures:"Khemchand R. Surana, Ritesh B. Pawar, Ritesh A. Khairnar and Sunil K. Mahajan",slug:"protein-prenylation-and-their-applications",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82096",title:"An Important Component of Tumor Progression: Fatty Acids",doi:"10.5772/intechopen.105087",signatures:"Jin Wang, Qifei Wang and Guangzhen Wu",slug:"an-important-component-of-tumor-progression-fatty-acids",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82029",title:"Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety",doi:"10.5772/intechopen.104908",signatures:"Vinayak Adimule, Pravin Kendrekar and Sheetal Batakurki",slug:"synthesis-characterization-and-antimicrobial-properties-of-novel-benzimidazole-amide-derivatives-bea",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:1,group:"subseries"},{caption:"Chemical Biology",value:15,count:5,group:"subseries"},{caption:"Metabolism",value:17,count:13,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:15,group:"subseries"}],publishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:4},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:9},{group:"subseries",caption:"Chemical Biology",value:15,count:13}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:8},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:301,paginationItems:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}},{id:"338856",title:"Mrs.",name:"Nur Alvira",middleName:null,surname:"Pascawati",slug:"nur-alvira-pascawati",fullName:"Nur Alvira Pascawati",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universitas Respati Yogyakarta",country:{name:"Indonesia"}}},{id:"441116",title:"Dr.",name:"Jovanka M.",middleName:null,surname:"Voyich",slug:"jovanka-m.-voyich",fullName:"Jovanka M. Voyich",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Montana State University",country:{name:"United States of America"}}},{id:"330412",title:"Dr.",name:"Muhammad",middleName:null,surname:"Farhab",slug:"muhammad-farhab",fullName:"Muhammad Farhab",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"349495",title:"Dr.",name:"Muhammad",middleName:null,surname:"Ijaz",slug:"muhammad-ijaz",fullName:"Muhammad Ijaz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Veterinary and Animal Sciences",country:{name:"Pakistan"}}}]}},subseries:{item:{id:"20",type:"subseries",title:"Animal Nutrition",keywords:"Sustainable Animal Diets, Carbon Footprint, Meta Analyses",scope:"An essential part of animal production is nutrition. Animals need to receive a properly balanced diet. One of the new challenges we are now faced with is sustainable animal diets (STAND) that involve the 3 P’s (People, Planet, and Profitability). We must develop animal feed that does not compete with human food, use antibiotics, and explore new growth promoters options, such as plant extracts or compounds that promote feed efficiency (e.g., monensin, oils, enzymes, probiotics). These new feed options must also be environmentally friendly, reducing the Carbon footprint, CH4, N, and P emissions to the environment, with an adequate formulation of nutrients.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/20.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11416,editor:{id:"175967",title:"Dr.",name:"Manuel",middleName:null,surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo",profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",biography:"Dr. Manuel González Ronquillo obtained his doctorate degree from the University of Zaragoza, Spain, in 2001. He is a research professor at the Faculty of Veterinary Medicine and Animal Husbandry, Autonomous University of the State of Mexico. He is also a level-2 researcher. He received a Fulbright-Garcia Robles fellowship for a postdoctoral stay at the US Dairy Forage Research Center, Madison, Wisconsin, USA in 2008–2009. He received grants from Alianza del Pacifico for a stay at the University of Magallanes, Chile, in 2014, and from Consejo Nacional de Ciencia y Tecnología (CONACyT) to work in the Food and Agriculture Organization’s Animal Production and Health Division (AGA), Rome, Italy, in 2014–2015. He has collaborated with researchers from different countries and published ninety-eight journal articles. He teaches various degree courses in zootechnics, sheep production, and agricultural sciences and natural resources.\n\nDr. Ronquillo’s research focuses on the evaluation of sustainable animal diets (StAnD), using native resources of the region, decreasing carbon footprint, and applying meta-analysis and mathematical models for a better understanding of animal production.",institutionString:null,institution:{name:"Universidad Autónoma del Estado de México",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,series:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517"},editorialBoard:[{id:"175762",title:"Dr.",name:"Alfredo J.",middleName:null,surname:"Escribano",slug:"alfredo-j.-escribano",fullName:"Alfredo J. Escribano",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGnzQAG/Profile_Picture_1633076636544",institutionString:"Consultant and Independent Researcher in Industry Sector, Spain",institution:null},{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}},{id:"216995",title:"Prof.",name:"Figen",middleName:null,surname:"Kırkpınar",slug:"figen-kirkpinar",fullName:"Figen Kırkpınar",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRMzxQAG/Profile_Picture_1625722918145",institutionString:null,institution:{name:"Ege University",institutionURL:null,country:{name:"Turkey"}}}]},onlineFirstChapters:{paginationCount:2,paginationItems:[{id:"82392",title:"Nanomaterials as Novel Biomarkers for Cancer Nanotheranostics: State of the Art",doi:"10.5772/intechopen.105700",signatures:"Hao Yu, Zhihai Han, Cunrong Chen and Leisheng Zhang",slug:"nanomaterials-as-novel-biomarkers-for-cancer-nanotheranostics-state-of-the-art",totalDownloads:21,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"81778",title:"Influence of Mechanical Properties of Biomaterials on the Reconstruction of Biomedical Parts via Additive Manufacturing Techniques: An Overview",doi:"10.5772/intechopen.104465",signatures:"Babatunde Olamide Omiyale, Akeem Abiodun Rasheed, Robinson Omoboyode Akinnusi and Temitope Olumide Olugbade",slug:"influence-of-mechanical-properties-of-biomaterials-on-the-reconstruction-of-biomedical-parts-via-add",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}}]},publishedBooks:{paginationCount:7,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Dr.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:null,institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"14",title:"Cell and Molecular Biology",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression"},{id:"15",title:"Chemical Biology",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors"},{id:"17",title:"Metabolism",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation"},{id:"18",title:"Proteomics",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/50203",hash:"",query:{},params:{id:"50203"},fullPath:"/chapters/50203",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()