Summary of organic photovoltaic devices reviewed in this chapter
\\n\\n
Dr. Pletser’s experience includes 30 years of working with the European Space Agency as a Senior Physicist/Engineer and coordinating their parabolic flight campaigns, and he is the Guinness World Record holder for the most number of aircraft flown (12) in parabolas, personally logging more than 7,300 parabolas.
\\n\\nSeeing the 5,000th book published makes us at the same time proud, happy, humble, and grateful. This is a great opportunity to stop and celebrate what we have done so far, but is also an opportunity to engage even more, grow, and succeed. It wouldn't be possible to get here without the synergy of team members’ hard work and authors and editors who devote time and their expertise into Open Access book publishing with us.
\\n\\nOver these years, we have gone from pioneering the scientific Open Access book publishing field to being the world’s largest Open Access book publisher. Nonetheless, our vision has remained the same: to meet the challenges of making relevant knowledge available to the worldwide community under the Open Access model.
\\n\\nWe are excited about the present, and we look forward to sharing many more successes in the future.
\\n\\nThank you all for being part of the journey. 5,000 times thank you!
\\n\\nNow with 5,000 titles available Open Access, which one will you read next?
\\n\\nRead, share and download for free: https://www.intechopen.com/books
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Preparation of Space Experiments edited by international leading expert Dr. Vladimir Pletser, Director of Space Training Operations at Blue Abyss is the 5,000th Open Access book published by IntechOpen and our milestone publication!
\n\n"This book presents some of the current trends in space microgravity research. The eleven chapters introduce various facets of space research in physical sciences, human physiology and technology developed using the microgravity environment not only to improve our fundamental understanding in these domains but also to adapt this new knowledge for application on earth." says the editor. Listen what else Dr. Pletser has to say...
\n\n\n\nDr. Pletser’s experience includes 30 years of working with the European Space Agency as a Senior Physicist/Engineer and coordinating their parabolic flight campaigns, and he is the Guinness World Record holder for the most number of aircraft flown (12) in parabolas, personally logging more than 7,300 parabolas.
\n\nSeeing the 5,000th book published makes us at the same time proud, happy, humble, and grateful. This is a great opportunity to stop and celebrate what we have done so far, but is also an opportunity to engage even more, grow, and succeed. It wouldn't be possible to get here without the synergy of team members’ hard work and authors and editors who devote time and their expertise into Open Access book publishing with us.
\n\nOver these years, we have gone from pioneering the scientific Open Access book publishing field to being the world’s largest Open Access book publisher. Nonetheless, our vision has remained the same: to meet the challenges of making relevant knowledge available to the worldwide community under the Open Access model.
\n\nWe are excited about the present, and we look forward to sharing many more successes in the future.
\n\nThank you all for being part of the journey. 5,000 times thank you!
\n\nNow with 5,000 titles available Open Access, which one will you read next?
\n\nRead, share and download for free: https://www.intechopen.com/books
\n\n\n\n
\n'}],latestNews:[{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"}]},book:{item:{type:"book",id:"7804",leadTitle:null,fullTitle:"Teacher Education in the 21st Century",title:"Teacher Education in the 21st Century",subtitle:null,reviewType:"peer-reviewed",abstract:"A learner-centred curriculum provides space for the learner to be actively involved in knowledge production and learning. Such can only happen if the learner's confidence is boosted by a feeling of control and ability to manage his or her progress towards acquiring a qualification. The twenty-first century teacher must create an environment that not only supports the Four Pillars of Learning but also leads to learners being allowed a voice to ask pertinent questions. The teacher should be able to guide the student to full physical and mental maturity and should help to develop critical thinking, and the students should be encouraged to practice the truth and have self-respect and respect for other people. This can happen if the learner is afforded the opportunity to self-accept. If the learners fail to do so, they are likely to have lack of confidence, which will lead to lack of independence.",isbn:"978-1-78923-864-8",printIsbn:"978-1-78923-863-1",pdfIsbn:"978-1-83880-640-8",doi:"10.5772/intechopen.77621",price:119,priceEur:129,priceUsd:155,slug:"teacher-education-in-the-21st-century",numberOfPages:244,isOpenForSubmission:!1,isInWos:null,hash:"1722e45e6ebd731426bc0e4ac5c6eee2",bookSignature:"Reginald Botshabeng Monyai",publishedDate:"May 2nd 2019",coverURL:"https://cdn.intechopen.com/books/images_new/7804.jpg",numberOfDownloads:11862,numberOfWosCitations:0,numberOfCrossrefCitations:6,numberOfDimensionsCitations:10,hasAltmetrics:1,numberOfTotalCitations:16,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 10th 2018",dateEndSecondStepPublish:"October 1st 2018",dateEndThirdStepPublish:"November 30th 2018",dateEndFourthStepPublish:"February 18th 2019",dateEndFifthStepPublish:"April 19th 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"210249",title:"Dr.",name:"Reginald",middleName:"Botshabeng",surname:"Monyai",slug:"reginald-monyai",fullName:"Reginald Monyai",profilePictureURL:"https://mts.intechopen.com/storage/users/210249/images/system/210249.jpeg",biography:"Reginald Botshabeng Monyai is a senior lecturer in the Department of Adult Basic Education and Training (ABET) and Youth Development at the University of South Africa. He holds the following qualifications: BA, BA (Hons), MA (cum laude), and PhD. He had a stint as a senior education specialist (English) and deputy chief education specialist before joining higher education as a theory of education lecturer. He is a co-editor of an education textbook: The Educator as Mediator of Learning and has published articles and book chapters in local and international publication houses. Reginald has been involved with Quality Assurance in the General and Training Band at Umalusi (Council for Quality Assurance in General and Further Education and Training in South Africa), and has quality assured English and Life Orientation since 2005.",institutionString:"University of South Africa",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of South Africa",institutionURL:null,country:{name:"South Africa"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1316",title:"Higher Education",slug:"higher-education"}],chapters:[{id:"65676",title:"A Different Kind of Teacher for a Different Kind of School",doi:"10.5772/intechopen.84372",slug:"a-different-kind-of-teacher-for-a-different-kind-of-school",totalDownloads:715,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"John Fischetti",downloadPdfUrl:"/chapter/pdf-download/65676",previewPdfUrl:"/chapter/pdf-preview/65676",authors:[{id:"278132",title:"Prof.",name:"John",surname:"Fischetti",slug:"john-fischetti",fullName:"John Fischetti"}],corrections:null},{id:"66203",title:"Including Students with Disabilities in a Physical Education Teacher Preparation Program: An Institutional Perspective",doi:"10.5772/intechopen.85268",slug:"including-students-with-disabilities-in-a-physical-education-teacher-preparation-program-an-institut",totalDownloads:1104,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Ronnie Lidor and Yeshayahu Hutzler",downloadPdfUrl:"/chapter/pdf-download/66203",previewPdfUrl:"/chapter/pdf-preview/66203",authors:[{id:"293567",title:"Dr.",name:"Rony",surname:"Lidor",slug:"rony-lidor",fullName:"Rony Lidor"},{id:"293600",title:"Prof.",name:"Yeshayahu",surname:"Hutzler",slug:"yeshayahu-hutzler",fullName:"Yeshayahu Hutzler"}],corrections:null},{id:"64424",title:"The Difference of Teachers’ Beliefs Related to Students’ Practice of Confucian Analects: A Comparison among Three Chinese Fujian Ethnic Regions",doi:"10.5772/intechopen.82054",slug:"the-difference-of-teachers-beliefs-related-to-students-practice-of-confucian-analects-a-comparison-a",totalDownloads:597,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Jon-Chao Hong, Ming-Yueh Hwang and Kai-Hsin Tai",downloadPdfUrl:"/chapter/pdf-download/64424",previewPdfUrl:"/chapter/pdf-preview/64424",authors:[{id:"277495",title:"Prof.",name:"Jon-Chao",surname:"Hong",slug:"jon-chao-hong",fullName:"Jon-Chao Hong"}],corrections:null},{id:"65030",title:"Lack of Qualified Teachers: A Global Challenge for Future Knowledge Development",doi:"10.5772/intechopen.83417",slug:"lack-of-qualified-teachers-a-global-challenge-for-future-knowledge-development",totalDownloads:1281,totalCrossrefCites:2,totalDimensionsCites:3,signatures:"Mona Holmqvist",downloadPdfUrl:"/chapter/pdf-download/65030",previewPdfUrl:"/chapter/pdf-preview/65030",authors:[{id:"275455",title:"Prof.",name:"Mona",surname:"Holmqvist",slug:"mona-holmqvist",fullName:"Mona Holmqvist"}],corrections:null},{id:"65593",title:"Prospective Teachers’ Role in the Construction of Authentic Pedagogical Content Knowledge",doi:"10.5772/intechopen.84289",slug:"prospective-teachers-role-in-the-construction-of-authentic-pedagogical-content-knowledge",totalDownloads:493,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Mamsi Ethel Khuzwayo",downloadPdfUrl:"/chapter/pdf-download/65593",previewPdfUrl:"/chapter/pdf-preview/65593",authors:[{id:"275464",title:"Dr.",name:"Mamsi E",surname:"Khuzwayo",slug:"mamsi-e-khuzwayo",fullName:"Mamsi E Khuzwayo"}],corrections:null},{id:"65129",title:"A Professional Development Program for Beginning High School Teachers",doi:"10.5772/intechopen.83649",slug:"a-professional-development-program-for-beginning-high-school-teachers",totalDownloads:527,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Cristina Maciel de Oliveira",downloadPdfUrl:"/chapter/pdf-download/65129",previewPdfUrl:"/chapter/pdf-preview/65129",authors:[{id:"276924",title:"Dr.",name:"Cristina",surname:"Maciel De Oliveira",slug:"cristina-maciel-de-oliveira",fullName:"Cristina Maciel De Oliveira"}],corrections:null},{id:"66482",title:"Modernization and Development of Arts Education: Spiritual and Worldview Alternative",doi:"10.5772/intechopen.85375",slug:"modernization-and-development-of-arts-education-spiritual-and-worldview-alternative",totalDownloads:392,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Olga Oleksiuk",downloadPdfUrl:"/chapter/pdf-download/66482",previewPdfUrl:"/chapter/pdf-preview/66482",authors:[{id:"231520",title:"Prof.",name:"Olga",surname:"Oleksiuk",slug:"olga-oleksiuk",fullName:"Olga Oleksiuk"}],corrections:null},{id:"65417",title:"Significance of Aristotle’s Teaching Practice for Modern Education",doi:"10.5772/intechopen.84180",slug:"significance-of-aristotle-s-teaching-practice-for-modern-education",totalDownloads:1414,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Oleg A. Donskikh",downloadPdfUrl:"/chapter/pdf-download/65417",previewPdfUrl:"/chapter/pdf-preview/65417",authors:[{id:"283333",title:"Prof.",name:"Oleg",surname:"Donskikh",slug:"oleg-donskikh",fullName:"Oleg Donskikh"}],corrections:null},{id:"65929",title:"Challenges Faced by Educators in the Implementation of Continuing Professional Teacher Development (CPTD): Gauteng Province",doi:"10.5772/intechopen.84836",slug:"challenges-faced-by-educators-in-the-implementation-of-continuing-professional-teacher-development-c",totalDownloads:1907,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Gomba Georgina Kedibone Bernadine",downloadPdfUrl:"/chapter/pdf-download/65929",previewPdfUrl:"/chapter/pdf-preview/65929",authors:[{id:"280583",title:"Ms.",name:"Georgina",surname:"Gomba",slug:"georgina-gomba",fullName:"Georgina Gomba"}],corrections:null},{id:"65466",title:"Culturally Relevant Teaching",doi:"10.5772/intechopen.84181",slug:"culturally-relevant-teaching",totalDownloads:554,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Teboho Solomon Ngubane",downloadPdfUrl:"/chapter/pdf-download/65466",previewPdfUrl:"/chapter/pdf-preview/65466",authors:[{id:"282514",title:"Dr.",name:"Teboho",surname:"Ngubane",slug:"teboho-ngubane",fullName:"Teboho Ngubane"}],corrections:null},{id:"65304",title:"Professional Development as a Panacea for Lively Classrooms in South Africa: Experiences of Life Sciences Teachers in the Bojanala District (North West Province)",doi:"10.5772/intechopen.83471",slug:"professional-development-as-a-panacea-for-lively-classrooms-in-south-africa-experiences-of-life-scie",totalDownloads:353,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Florah Moleko Teane",downloadPdfUrl:"/chapter/pdf-download/65304",previewPdfUrl:"/chapter/pdf-preview/65304",authors:[{id:"278300",title:"Dr.",name:"Florah M",surname:"Teane",slug:"florah-m-teane",fullName:"Florah M Teane"}],corrections:null},{id:"65927",title:"The Changing Landscape of Leadership in Early Childhood Education in China",doi:"10.5772/intechopen.84799",slug:"the-changing-landscape-of-leadership-in-early-childhood-education-in-china",totalDownloads:996,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Dora Ho, Mo Wang and Pan He",downloadPdfUrl:"/chapter/pdf-download/65927",previewPdfUrl:"/chapter/pdf-preview/65927",authors:[{id:"275710",title:"Dr.",name:"Dora",surname:"Ho",slug:"dora-ho",fullName:"Dora Ho"},{id:"291154",title:"Dr.",name:"Wang",surname:"Mo",slug:"wang-mo",fullName:"Wang Mo"},{id:"291156",title:"Ms.",name:"Pan",surname:"He",slug:"pan-he",fullName:"Pan He"}],corrections:null},{id:"65231",title:"Advanced Digital Competence of the Teacher",doi:"10.5772/intechopen.83788",slug:"advanced-digital-competence-of-the-teacher",totalDownloads:479,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Marina S. Tsvetkova and Vladimir M. Kiryukhin",downloadPdfUrl:"/chapter/pdf-download/65231",previewPdfUrl:"/chapter/pdf-preview/65231",authors:[{id:"277683",title:"Dr.",name:"Marina",surname:"Tsvetkova",slug:"marina-tsvetkova",fullName:"Marina Tsvetkova"},{id:"280243",title:"Prof.",name:"Vladimir",surname:"Kiryukhin",slug:"vladimir-kiryukhin",fullName:"Vladimir Kiryukhin"}],corrections:null},{id:"66292",title:"Leagility in Pedagogy: Applying Logistics and Supply Chain Management Thinking to Higher Education",doi:"10.5772/intechopen.85264",slug:"leagility-in-pedagogy-applying-logistics-and-supply-chain-management-thinking-to-higher-education",totalDownloads:440,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Roy I. Morien",downloadPdfUrl:"/chapter/pdf-download/66292",previewPdfUrl:"/chapter/pdf-preview/66292",authors:[{id:"283117",title:"Mr.",name:"Roy",surname:"Morien",slug:"roy-morien",fullName:"Roy Morien"}],corrections:null},{id:"65028",title:"The Purposeful Teacher",doi:"10.5772/intechopen.83437",slug:"the-purposeful-teacher",totalDownloads:632,totalCrossrefCites:3,totalDimensionsCites:3,signatures:"Kirsi Tirri",downloadPdfUrl:"/chapter/pdf-download/65028",previewPdfUrl:"/chapter/pdf-preview/65028",authors:[{id:"234399",title:"Prof.",name:"Kirsi",surname:"Tirri",slug:"kirsi-tirri",fullName:"Kirsi Tirri"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"1990",title:"International Perspectives of Distance Learning in Higher Education",subtitle:null,isOpenForSubmission:!1,hash:"e9f445b89a42e6221004f529ac247127",slug:"international-perspectives-of-distance-learning-in-higher-education",bookSignature:"Joi L. Moore and Angela D. Benson",coverURL:"https://cdn.intechopen.com/books/images_new/1990.jpg",editedByType:"Edited by",editors:[{id:"102403",title:"Dr.",name:"Joi L.",surname:"Moore",slug:"joi-l.-moore",fullName:"Joi L. Moore"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5773",title:"Global Voices in Higher Education",subtitle:null,isOpenForSubmission:!1,hash:"98977ad0f9bc0a5224a23d6f67b343ca",slug:"global-voices-in-higher-education",bookSignature:"Susan L. Renes",coverURL:"https://cdn.intechopen.com/books/images_new/5773.jpg",editedByType:"Edited by",editors:[{id:"158868",title:"Dr.",name:"Susan",surname:"Renes",slug:"susan-renes",fullName:"Susan Renes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8283",title:"Innovations in Higher Education",subtitle:"Cases on Transforming and Advancing Practice",isOpenForSubmission:!1,hash:"9c8b8a6fe8578fbf2398932ce8c1b717",slug:"innovations-in-higher-education-cases-on-transforming-and-advancing-practice",bookSignature:"Dominique Parrish and Joanne Joyce-McCoach",coverURL:"https://cdn.intechopen.com/books/images_new/8283.jpg",editedByType:"Edited by",editors:[{id:"197795",title:"Associate Prof.",name:"Dominique",surname:"Parrish",slug:"dominique-parrish",fullName:"Dominique Parrish"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8039",title:"Theorizing STEM Education in the 21st Century",subtitle:null,isOpenForSubmission:!1,hash:"0c99d528dbcc6ed5e8a26f96b36c812d",slug:"theorizing-stem-education-in-the-21st-century",bookSignature:"Kehdinga George Fomunyam",coverURL:"https://cdn.intechopen.com/books/images_new/8039.jpg",editedByType:"Edited by",editors:[{id:"267912",title:"Dr.",name:"Kehdinga George",surname:"Fomunyam",slug:"kehdinga-george-fomunyam",fullName:"Kehdinga George Fomunyam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9040",title:"Pedagogy in Basic and Higher Education",subtitle:"Current Developments and Challenges",isOpenForSubmission:!1,hash:"3ef45143bf2a8d798f0e423e098afe6c",slug:"pedagogy-in-basic-and-higher-education-current-developments-and-challenges",bookSignature:"Kirsi Tirri and Auli Toom",coverURL:"https://cdn.intechopen.com/books/images_new/9040.jpg",editedByType:"Edited by",editors:[{id:"234399",title:"Prof.",name:"Kirsi",surname:"Tirri",slug:"kirsi-tirri",fullName:"Kirsi Tirri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7576",title:"Reimagining New Approaches in Teacher Professional Development",subtitle:null,isOpenForSubmission:!1,hash:"7ebab0695715a9b2a759da32380ded9a",slug:"reimagining-new-approaches-in-teacher-professional-development",bookSignature:"Vimbi Petrus Mahlangu",coverURL:"https://cdn.intechopen.com/books/images_new/7576.jpg",editedByType:"Edited by",editors:[{id:"196797",title:"Prof.",name:"Vimbi",surname:"Mahlangu",slug:"vimbi-mahlangu",fullName:"Vimbi Mahlangu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"71744",slug:"corrigendum-to-technical-advances-in-chloroplast-biotechnology",title:"Corrigendum to: Technical Advances in Chloroplast Biotechnology",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/71744.pdf",downloadPdfUrl:"/chapter/pdf-download/71744",previewPdfUrl:"/chapter/pdf-preview/71744",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/71744",risUrl:"/chapter/ris/71744",chapter:{id:"65358",slug:"technical-advances-in-chloroplast-biotechnology",signatures:"Muhammad Sarwar Khan, Ghulam Mustafa and Faiz Ahmad Joyia",dateSubmitted:"June 12th 2018",dateReviewed:"August 31st 2018",datePrePublished:"January 25th 2019",datePublished:"October 23rd 2019",book:{id:"6976",title:"Transgenic Crops",subtitle:"Emerging Trends and Future Perspectives",fullTitle:"Transgenic Crops - Emerging Trends and Future Perspectives",slug:"transgenic-crops-emerging-trends-and-future-perspectives",publishedDate:"October 23rd 2019",bookSignature:"Muhammad Sarwar Khan and Kauser Abdulla Malik",coverURL:"https://cdn.intechopen.com/books/images_new/6976.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"212511",title:"Prof.",name:"Muhammad Sarwar",middleName:null,surname:"Khan",slug:"muhammad-sarwar-khan",fullName:"Muhammad Sarwar Khan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"211046",title:"Dr.",name:"Ghulam",middleName:null,surname:"Mustafa",fullName:"Ghulam Mustafa",slug:"ghulam-mustafa",email:"drmustafa8@gmail.com",position:null,institution:{name:"University of Agriculture Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"212508",title:"Dr.",name:"Faiz",middleName:null,surname:"Ahmad",fullName:"Faiz Ahmad",slug:"faiz-ahmad",email:"faizahmad1980@gmail.com",position:null,institution:null},{id:"212511",title:"Prof.",name:"Muhammad Sarwar",middleName:null,surname:"Khan",fullName:"Muhammad Sarwar Khan",slug:"muhammad-sarwar-khan",email:"sarwarkhan_40@hotmail.com",position:null,institution:{name:"University of Agriculture Faisalabad",institutionURL:null,country:{name:"Pakistan"}}}]}},chapter:{id:"65358",slug:"technical-advances-in-chloroplast-biotechnology",signatures:"Muhammad Sarwar Khan, Ghulam Mustafa and Faiz Ahmad Joyia",dateSubmitted:"June 12th 2018",dateReviewed:"August 31st 2018",datePrePublished:"January 25th 2019",datePublished:"October 23rd 2019",book:{id:"6976",title:"Transgenic Crops",subtitle:"Emerging Trends and Future Perspectives",fullTitle:"Transgenic Crops - Emerging Trends and Future Perspectives",slug:"transgenic-crops-emerging-trends-and-future-perspectives",publishedDate:"October 23rd 2019",bookSignature:"Muhammad Sarwar Khan and Kauser Abdulla Malik",coverURL:"https://cdn.intechopen.com/books/images_new/6976.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"212511",title:"Prof.",name:"Muhammad Sarwar",middleName:null,surname:"Khan",slug:"muhammad-sarwar-khan",fullName:"Muhammad Sarwar Khan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"211046",title:"Dr.",name:"Ghulam",middleName:null,surname:"Mustafa",fullName:"Ghulam Mustafa",slug:"ghulam-mustafa",email:"drmustafa8@gmail.com",position:null,institution:{name:"University of Agriculture Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"212508",title:"Dr.",name:"Faiz",middleName:null,surname:"Ahmad",fullName:"Faiz Ahmad",slug:"faiz-ahmad",email:"faizahmad1980@gmail.com",position:null,institution:null},{id:"212511",title:"Prof.",name:"Muhammad Sarwar",middleName:null,surname:"Khan",fullName:"Muhammad Sarwar Khan",slug:"muhammad-sarwar-khan",email:"sarwarkhan_40@hotmail.com",position:null,institution:{name:"University of Agriculture Faisalabad",institutionURL:null,country:{name:"Pakistan"}}}]},book:{id:"6976",title:"Transgenic Crops",subtitle:"Emerging Trends and Future Perspectives",fullTitle:"Transgenic Crops - Emerging Trends and Future Perspectives",slug:"transgenic-crops-emerging-trends-and-future-perspectives",publishedDate:"October 23rd 2019",bookSignature:"Muhammad Sarwar Khan and Kauser Abdulla Malik",coverURL:"https://cdn.intechopen.com/books/images_new/6976.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"212511",title:"Prof.",name:"Muhammad Sarwar",middleName:null,surname:"Khan",slug:"muhammad-sarwar-khan",fullName:"Muhammad Sarwar Khan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10203",leadTitle:null,title:"Dyes and Pigments",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tThe use of dyes and pigments is narrowly associated with everyday life. Since ancient times, people have been using various types of dyes and pigments for both aesthetic and practical applications. Typically, the coloration of various materials e.g. textiles, clay, plastics, etc. has been their main purpose. Yet, the scope of contemporary dyes and pigments has become significantly broader and there is constant interest in new products fulfilling numerous requirements parallel to their ability to act as colorants. This trend has led to the development of functional dyes.
\r\n\r\n\tIn recent years, novel dyes and pigments with hi-tech applications have been developed and there is a continuous demand for new products with better properties and/or broader application scope. Of particular interest is the development of dyes and pigments with environment-responsive aptitudes i.e. products that can undergo some structural modification as a result of external stimuli e.g. light, heat, pressure, pH-changes, etc. These stimuli-responsive functional dyes have in turn found application in sensor technologies, optical data storage, molecular switches, etc. Acknowledging these facts, this book aims to cover current state-of-the-art research and development in the remarkably important area of environment-responsive (multi)functional dyes and pigments.
",isbn:"978-1-83968-615-3",printIsbn:"978-1-83968-614-6",pdfIsbn:"978-1-83968-616-0",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"624f533946a159bc8a03f109c2e1dc91",bookSignature:"Dr. Raffaello Papadakis",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10203.jpg",keywords:"Fluorescent Dyes, PH-Sensitive Dyes, Solvatochromism, Solvent Polarity Indicators, Chromic Betaines, Viscosity, Charge-Transfer Complexes, Spectroscopy, Piezochromism, Optoelectronics, Photochromism, Molecular Switches",numberOfDownloads:62,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"August 28th 2020",dateEndSecondStepPublish:"September 25th 2020",dateEndThirdStepPublish:"November 24th 2020",dateEndFourthStepPublish:"February 12th 2021",dateEndFifthStepPublish:"April 13th 2021",remainingDaysToSecondStep:"5 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"Chemical Engineer with working experience at the Institute of Molecular Sciences, CNRS/Aix-Marseille University in the research group of Dr. Thierry Tron, and at Uppsala University in the research group of Dr. Henrik Ottosson. Currently a Senior Research Scientist at Tdb Labs, Uppsala, Sweden.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"251885",title:"Dr.",name:"Raffaello",middleName:null,surname:"Papadakis",slug:"raffaello-papadakis",fullName:"Raffaello Papadakis",profilePictureURL:"https://mts.intechopen.com/storage/users/251885/images/system/251885.jpg",biography:"Raffaello Papadakis is a Chemical Engineer (MEng 2005) majoring in organic chemical technology and polymer science and technology. He started his PhD in the field of physical organic chemistry in 2006 under the supervision of Prof. (Emer.) Dr. Athanase Tsolomitis (National Technical University of Athens, Greece) and graduated in 2010. During his PhD he concentrated on the synthesis of solvatochromic probes and molecular switches. He later on spent two years in Marseille, France (September 2010–January 2013) working as a postodoctoral researcher at the Institute of Molecular Sciences, CNRS/Aix-Marseille University, in the field of water oxidation catalysts in the research group of Dr. Thierry Tron before moving to to Uppsala, Sweden in 2014. There he joined the group of Dr. Henrik Ottosson (Uppsala University) and he worked as a postdoc researcher and later as a researcher (Forskare) focusing on excited state (anti)aromaticity and graphene photochemistry-related research. His current research interests revolve around physical organic and materials chemistry with an emphasis on the chemistry and photochemistry of graphene and novel covalent organic frameworks as well as polymer chemistry. He is the author and coauthor of 24 scientific research papers, two book chapters and he has more than 35 contributions in international conference proceedings. Furthermore, he is an active referee of scientific peer-reviewed papers of world-class chemistry journals and he has acted as a scientific expert evaluating international research-grant proposals. Currently he works as a Senior Research Scientist at TdB Labs AB (Sweden) and specializes in polysaccharide modifications and derivatization placing particular interest in fluorescent dye polysaccharide-functionalizations.",institutionString:"TdB Labs",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"8",title:"Chemistry",slug:"chemistry"}],chapters:[{id:"74730",title:"Treatment of Textile Dyeing Waste Water Using TiO2/Zn Electrode by Spray Pyrolysis in Electrocoagulation Process",slug:"treatment-of-textile-dyeing-waste-water-using-tio2-zn-electrode-by-spray-pyrolysis-in-electrocoagula",totalDownloads:63,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"247865",firstName:"Jasna",lastName:"Bozic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/247865/images/7225_n.jpg",email:"jasna.b@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"51271",title:"Carbon Nanotube–Polymer Composites: Device Properties and Photovoltaic Applications",doi:"10.5772/62692",slug:"carbon-nanotube-polymer-composites-device-properties-and-photovoltaic-applications",body:'\nBlends of conjugated polymers and high performance carbon-based nanosemiconductors are an emerging class of easy-to-fabricate organic–inorganic nanocomposite materials with the potential to profoundly influence many electronic device market segments, including optoelectronics. Extraordinary characteristics of carbon nanotubes (CNTs) and prevalence of interfacial regions and the nanoscopic phase are a source of drastic change and gain in the opto-electrical response of the polymer matrix that typically falls outside of classical scaling behavior of conventional polymer composites. These novel nanocomposites and their based devices can be fabricated using roll-to-roll techniques that makes them ideally suited to industrial scale, high-throughput manufacturing of lightweight, flexible electronic, light switching and emitting as well as energy harvesting devices at extremely low cost [1–6].
\nConjugated polymers exhibit electronic and light emission properties that are similar to those of crystalline semiconductors and have been already implemented in organic optoelectronic devices such as organic light-emitting diodes (OLEDs), switches, and organic photovoltaic (OPV) cells [7]. Incorporating n-type dopants in the form of metallic CNTs into p-type polymer matrix has been shown to greatly enhance performance of such OPV cells by increasing the rates of non-radiative dissociation of excitons as well as charge-carrier collection efficiency. The formation of optimally loaded networks of electrically conductive nanotube network in turn entails detailed the consideration of the influence of the process parameters on the physical characteristics and interaction of the polymer with the nanotubes in a liquid phase. As the absorption coefficient of photosensitive polymers remains large, light is typically absorbed within a very thin layer, which drastically benefits the efficiency-to-cost ratio for these cells [8, 9]. The π-conjugation in polymers results in an energy separation of ~1–3 eV between the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO). As a result, the light absorption–emission spectrum falls in the visible near-infrared (NIR) spectral range that complements that of single-walled carbon nanotubes (SWNTs), that is, the near IR–UV [2, 10–12]. An abrupt, type-II band alignment between polymer matrix and carbon phase is required and can be realized for many nanotube–polymer composites to achieve sufficiently fast interfacial charge separation and pronounced photovoltaic effect [13, 14].
\nAmong different classes of nanomaterials including semiconductor quantum dots and fullerenes, SWNTs have been proven particularly suitable for uses in OPV, photodetector, and light-emitting diode applications based on conjugated polymers because of their large aspect ratio and remarkable optoelectronic properties including bandgap tunability, strong optical absorptivity, ballistic transport, solution-processability, and excellent chemical stability [15, 16]. Owing to their quasi-one-dimensional structure and improved transport characteristics, a class of SWNTs has been confirmed to exhibit many favorable device functionalities which make them attractive for application in a variety nano-electronic and mechanical devices and systems, among which are interconnects, rectifies, field-effect transistors, analyte, and light sensors. Compared with other nanostructures, SWNTs are also known to exhibit strong multi-range absorption in part associated with resonance-type interband electronic transitions (e.g., S11, M11, S22) as well as free carrier and plasmonic excitations. Recent experiments further confirmed on the presence of a strong photoconduction response in the infrared (IR) which can in turn afford many new opportunities in engineering nanophotovoltaic and optoelectronic organic polymer–SWNT-based devices operating over multiple spectral ranges, including IR [17–19].
\nHigh conversion efficiencies of ~5 and 9% were extracted in case of polymer-based OPV cells featuring C60 molecules and CNTs, respectively. Yet, unlike to C60, polymers incorporating aligned CNTs demonstrate much larger intrinsic charge mobility at lower percolation threshold/limit. At the same time, the increased photo-generated charge transport and in turn collection efficiency facilitate the development of OPV cells featuring larger light absorption (thicker active device layer) and electrical power output, which translates into overall higher efficiency-to-cost ratio for these cells. Combining SWNTs with electrooptically active polymers thus provides an attractive route to creating a new generation of multifunctional device-grade organic–inorganic electronic materials for uses as sensors, OLEDs, PV cells, electromagnetic absorbers, and other electronic devices [20–22].
\nIn this chapter, we review the progress while focusing on the fundamental aspects behind the light–matter interaction, photo-conversion, and photo-carrier generation as well charge-carrier transport in SWNT–polymer composites. The fabrication, structural–mechanical, and transport characteristics of various nanotubes–polymer-based composites are reviewed in Section 2. Key photo-physical processes that take place at the interface between SWNT and polymer molecules including energy transfer, exciton dissociation, charge transfer, and related effects are reviewed in Section 3. Section 4 discusses the electronic and optoelectronic devices built based on SWNT/polymer composites including OPV cells, light-emitting diodes, and IR sensors.
\nRecent studies involving fabrication and characterization of structural and underlying device characterizations have identified several processing-related challenges pertaining to producing polymer/nanotubes composites of high purity, structural anisotropy/alignment, and uniform dispersion [23, 24]. Because of the π-orbitals of the sp2-hybridized C atoms, CNTs show a tendency for strong intermolecular interaction and spontaneous aggregation (van der Waals interaction) into large diameter bundles that are not readily dispersible in organic solvents or polymer matrix. To address the dispersion-related and mixing challenges, the use of surfactants [25–31], performing shear mixing [32–34], sidewall chemical modification [35, 36], and in situ polymerization [37–41] were proposed. Among all these strategies, covalent chemical functionalization and introduction of defects into SWNT surfaces have been proven highly effective in achieving stable SWNT suspensions in polar solvents as discussed below.
\nIn defect functionalization, nanotubes are treated by oxidative methods that also help remove metal particles and amorphous carbon deposits, that is, raise purity. The resultant SWNTs oftentimes gain in localized surface defect density most of which are in the form as carboxyl, that is, –COOH attachments. Mawhinney et al. [42] studied surface defect site density of oxidatively treated SWNTs by probing the amounts of CO2(g) and CO(g) released during heating to up to 1273 K. The results indicated that as much as ~5% of the carbon atoms in such SWNTs can be defect-associated. Acid–base titration method [43] yielded similar results, that is, 1–3% of acidic sites in purified SWNTs. The density of defective sites created at the surfaces by this method is viewed generally insufficient for good nanotubes dispersion in the polymer matrix. However, the strategy can be used for covalent attachment of organic groups by first converting them into acid chlorides that can be next linked to amines to form amides. Such modified CNTs show significantly higher solubility in organic solvents as compared with unprocessed nanotubes [44].
\nNon-covalent functionalization routes are of further interest because they do not compromise the integrity of the nanotube backbone while helping improve their solubility and processability. This type of functionalization is primarily done with the aid of surfactants, bio-macromolecules, or non-covalent surface attachments, such as wrapping sidewalls with polymers. Successful implementation of both cationic and anionic surfactants as well as nonionic surfactants has been demonstrated in several studies involving non-covalent functionalization of nanotubes via microemulsion [45–47], ultrasonication [48], sonication [49], and emulsion polymerization [50–54]. Biological macromolecules such as protein/DNA and glucose [44, 55] have been also linked to CNTs via dialysis [56], electro-active interaction [57], and ultrasonication [58]. Poly (4-vinyl pyridine), poly (phenyl acetylene), poly(styrene)–poly(methacrylic acid) [59], poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) [60], and poly[2-methoxy-5-(20-ethylhexyloxy)21,4-phenylene vinylene] [61], have been reported to non-covalently wrap nanotubes using sol–gel chemistry, solution mixing, and immobilization methods, Figure 1.
\n(a) Scheme for the formation of MEH-PPV/carbon nanotubes composites, (b) top-view SEM image of the MEH-PPV encased nanotubes films fabricated by immobilization method. The lower inset shows a digital photo of the suspensions of the SWNTs and MEH-PPV–SWNTs.
Despite the fact that sp2-hybridized C atoms form a chemically stable backbone, a number of strategies were developed to covalently link chemical groups to CNTs [62–64]. In the case of covalent functionalization, the translational symmetry of nanotubes is disrupted by changing sp2 carbon atoms to sp3 carbon atoms that were reported to affect the electronic and transport properties of nanotubes [65, 66]. This route is highly effective in increasing solubility as well as dispersion of nanotubes in many organic solvents as well as polymers. Covalent functionalization can be accomplished either by the modification of surface-bound carboxyl groups on the nanotubes or by the direct elemental reaction with carbon atoms such as in the case of CHx-modified nanotubes. Poly (ε-caprolactone) [67, 68], poly(L-lactide) [69, 70], poly(methyl methacrylate) [71–73], Polystyrene [74–76], poly(N-isopropyl acrylamide) [77–80], polyimide [81, 82], polyvinyl (acetate-co-vinyl alcohol) [83], have been used to covalently attach to CNTs.
\nFrom the standpoint of device application, non-covalent functionalization remains preferred over the covalent approach, as the latter has the propensity to induce strong structural damage [24, 84]. The dispersion of nanotubes in polymer matrices is one of the most critical bottlenecks in the preparation of CNTs/polymer composites. Additional strategies to enhance dispersion of nanotubes included melt mixing and in situ polymerization, whereas Ni et al. confirmed considerable improvement in the dispersion of multi-walled CNTs in poly(vinyl alcohol) (PVA) matrix through gum Arabic treatment [24].
\nAbsorption of a photon by aromatic polymers leads to a formation of bound electron–hole pair known as exciton, which can dissociate radiatively by emitting a lower energy photon. The presence of semiconducting SWNTs has been shown to strongly affect the rate of radiative recombination by inducing the transfer of either holes or electrons to the nanotubes which depends on the electronic band alignment between SWNTs and polymer [85]. Alternatively, resonant energy transfer from polymers to SWNTs has been confirmed experimentally [86, 87]. In Umeyama et al. [86] study, a conjugated polymer, poly [(p-phenylene-1,2-vinylene)-co-(p-phenylene-1,1-vinylidene)] (coPPV), was synthesized and used to study the influence of SWNTs on the light emission characteristics of the former. UV–vis–NIR absorption and AFM measurements revealed that SWNTs were dispersed well in organic solvents likely via π–π interaction. The composite solution of coPPV–SWNTs exhibited a strong NIR emission originating from SWNT when the polymer was subject to a direct optical excitation with the light source operating at ~400–500 nm.
\nThe efficiency and rate of the energy transfer from polymers to SWNTs have been shown to be strongly dependent on the polymer concentration/aggregation on SWNTs [22, 88]. Further studies point to the polymer π-conjugation chain that governs the energy transfer in the polymer–SWNT system to remain more extended compared with that of the pure polymer system [85]. Massuyeau et al. [89] studied energy transfer between the polymer and nanotubes by examining steady state PL spectra of a series of composite films containing both metallic and semiconducting nanotubes. The results of these studies show that there is a substantial spectral overlap of PL and optical absorption of SWNTs, which favors the Förster energy transfer between polymer chains and CNTs.
\nCombining CNTs with polymers offers an attractive route not only to mechanically reinforcing polymer films but also to enhancing polymers’ charge transport properties and modifying electronic properties through a morphological modification or electronic coupling between the two [90]. The effect of nanotube doping has been systematically investigated by embedding nanotube powders in the emission, electron transport, and hole transport layers of OLEDs [91]. Such polymer/nanotube composites have been successfully exploited for various applications including OPV [92–95], OLEDs [96], and organic field-effect transistors [97, 98]. Among different transport models [99–104], percolation of the nanotube network within the polymer matrix has been suggested to play a primary role behind improved charge mobility of up to two orders of magnitude compared with that in the pristine polymer. This provides a technologically simple pathway to improving the performance of organic electronic and optoelectronic devices, while keeping their fabrication costs as low as possible [90].
\nThe low dielectric constant of conjugated polymers results in large Coulomb interactions between charge carriers, increasing exciton binding energy and photo-response characteristics. The majority of OPV devices operate based on exciton dissociation at the interface formed by two dissimilar materials with a type-II band alignment that favors interfacial charge separation and formation of free polarons. If the rate of bound electron–hole pair separation is low, other, that is, radiative and non-radiative recombinations will prevail, which is a primary reason behind efficiency loss. Internal electric fields at the polymer–metal interfaces (interface dipoles) or dissociation centers, for instance, oxygen impurities that can act as electron traps (monopoles) promote fast exciton dissociation. As the electron affinity remains smaller for conjugated polymers [105], percolated CNTs act as high mobility electron extraction paths or excitonic antennas. Even at low doping levels, highly conductive pathways can be still established due to a large aspect ratio and propensity of SWNT to bundling. While photo-generated electrons will tend to transfer to SWNT, the photo-generated holes are to remain in the polymer matrix that helps to lower the rate of internal recombinations and to mitigate charge-carrier losses [13, 106].
\nThe first solid evidence of the charge transfer between SWCNTs and conjugated polymers (MEH-PPV) was provided by Yang et al. [107] by performing photoinduced absorption spectroscopy. In their study, photoinduced charge transfer was deduced by observing a reduction of the emission from the polymer accompanied by an increase of the polaron peak in the MEH-PPV-SWCNT hybrids. Bindl et al. [108] examined exciton dissociation and charge transfer at s-SWCNT heterojunction formed with archetypical polymeric photovoltaic materials including fullerenes, poly(thiophene), and poly (phenylenevinylene) using an exciton dissociation-sensitive photo-capacitor measurement technique that is advantageously insensitive to optically induced thermal photoconductive effects. It was found that fullerene and polythiophene derivatives induce exciton dissociation resulting in electron and hole transfer away from optically excited s-SWCNTs. Significantly weaker and almost no charge transfer was observed for large bandgap polymers largely due to insufficient energy band offsets.
\nIn another study, Ham et al. [109] fabricated a planar nano-heterojunction comprising well-isolated millimeter-long SNWTs placed underneath a poly(3-hexylthiophene) (P3HT) layer. The resulting junctions displayed photovoltaic efficiencies per nanotube in the range of 3–4%, which exceeded those of polymer/nanotube bulk heterojunctions by almost two orders of magnitude. The increase was attributed to an absence of aggregates in case of the planar device geometry. It was shown that the polymer/nanotube interface itself can be responsible for the exciton dissociation with the best efficiency realized for ~60 nm thick P3HT layer.
\nAmong different classes of nanomaterials, semiconducting CNTs remain the primary candidates to enhance the charge separation when interfaced with conjugated polymers. The difference in the behavior of semiconducting and metallic CNTs in polymer was studied theoretically by Kanai et al. [110] who employed a density functional theory. Case studies involving poly-3-hexylthiophene (P3HT) interfaced with semiconducting and metallic CNTs were carried out. In case of semiconducting nanotubes, the theory predicts a formation of type-II heterojunction, critical to photovoltaic applications. In contrast, in case of the metallic nanotubes, substantial charge redistribution occurred and the built-in-potential was quite small, whereas P3HT became electrostatically more attractive for electrons. These observations confirm that in case of mixed single-walled nanotubes, a majority of interfaces would be made by metallic components to compromise the device performance. Similar conclusions were drawn by Holt et al. [111] in his study of P3HT-polymer/SWNT blends containing varying ratios of metallic to semiconducting SWNTs.
\nOPV devices based on π-conjugated polymers have been suggested as low-cost alternatives to silicon-based solar cells [106, 112]. Unlike to energy conversion devices based on semiconductors, in organic solar cell devices, a donor/acceptor (D/A) interface is required to break free photo-generated excitons into free charges carries before they can be collected by the electrodes [113, 114]. The list of the requirements for the materials for application in bulk PV devices includes the following: (1) strong light absorption over the whole solar emission spectrum; (2) sufficient separation between HOMO and LUMO; (3) large electron and hole mobilities within the device active layer; and (4) low device fabrication cost [22, 115]. In addition to a detailed consideration of intrinsic electronic aspects of the constituent components, geometric aspects and chemical stability play equally important role. For example, the dimensions of active layer should not exceed the exciton diffusion length, reportedly on the order of ~10 nm [22, 113].
\nIn CNTs/polymer photovoltaic devices, the dissociation of excitons can be accomplished through the formation of a staggered gap donor/acceptor, type-II heterojunction formed between the s-SWCNTs and the polymer in which the energy offsets at the hetero-interface exceed the exciton binding energy, EB. Recent experimental and theoretical studies by Schuettfort [116] and Kanai [110], respectively, demonstrate that a type-II band alignment only exists for certain interfaces, such as between small diameter semiconducting SWNTs and P3HT. Even for such blends, energy transfer from the polymer to SWNTs remains one of the fastest de-excitation channels that compete with the charge transfer processes, with the former facilitated by larger surface area and electron affinity of the nanotubes vs. polymers [105, 117].
\nKymakis et al. [118] examined both dark and photocurrent–voltage (J–V) characteristics of poly(3-octylthiophene) (P3OT)/SWNT composite photovoltaic cells as a function of SWNT concentration. An open-circuit voltage (VOC) as high as 0.75 V was obtained for 1% doped SWNTs/ P3OT composite which served as a device active layer. An almost 500-fold increase in the photo-response was partly attributed to a 50-fold increase in the hole mobility due to a reduction in the density of the localized states in P3OT matrix, and in part due to enhanced exciton extraction at the polymer/nanotube junctions. Despite the improvement in the rate of the charge separation, the power conversion efficiency was only 0.04% under 100 mW/cm2 illumination conditions. A poor dispersion of SWNT and the presence of a mixture of metallic and semiconducting tubes were believed the primary factors behind the low efficiency numbers. In 2011, the same group investigated the use of spin-coated SWNTs as a hole transport layer (HTL) in organic bulk heterojunction photovoltaic devices shown schematically in Figure 2 to raise the conversion efficiency [119]. Varying thickness SWNT films were repetitively spin coated with dichloroethane and next evaluated as the HTL in P3HT and 1-(3-methoxy-carbonyl)-propyl-1-phenyl-(6,6)C61 (PCBM) photovoltaic devices. It was shown that insertion of ~12-nm-thick SWNT layer led to power conversion efficiencies as high as 3.0%, compared with 1.2 and 2.8% for the devices without and with the traditional PEDOT:PSS acting as the HTL. The improved efficiency was attributed to improved hole transport in the polymer matrix due to a higher degree of crystallinity provided with SWNT.
\n(a) Schematic drawings of the P3HT:PCBM photovoltaic cell with the SWNTs acting as the HTL. (b) Energy level diagrams of photovoltaic device components referenced to the vacuum level.
In another study, June et al. implemented homogeneously dispersed CNTs using alkyl-amide groups to chemically modify nanotubes to improve their dispersion in organic medium [16]. The resultant composites and their based OPV cells exhibited gain in their optical and electrical properties with the device efficiency approaching ~4.4%. The schematic of the fabricated solar cell is shown in Figure 3.
\nSchematics of the functionalization of nanotubes with the alkyl-amide group for a homogeneous dispersion in organic solvent and the PV devices fabricated in [16].
In most OPV cells that host nanotubes, the open-circuit voltage (Voc) generally stayed below 1 V, another performance limiting factor. Rodolfo et al. [120] was able to raise Voc by ~20% by inserting continuous polymer layer between the electrode and SWNTs, which helped address problems with electrical shorting and shunts by the metallic tubes.
\nSome prior studies pointed out that uncontrolled interactions at the CNT–polymer interface can not only reduce the ability of the tubes to transport charge but also interfere with the photo-physical processes, which act as a source of recombination centers for excitons (metallic tubes) and energy quenchers (polymer–s-SWCNT), or by electrically shorting the circuit (long tubes). From the standpoint of device engineering practices, a more rational design of the CNTs–polymer interface across different length scales, that is, nano to meso and careful consideration/control of intermolecular level interactions via dispersion will be required [107, 121, 122].
\nOn this front, Arranz-Andres and Blau [122] investigated the influence of the nanotube dimensions (length and diameter) and concentration on the performance of a CNT–polymer device. They found that adding 5% of nanotubes by weight increased the power conversion efficiency (PCE) by three orders of magnitude compared with that of the native polymer. The incorporation of nanotubes into the P3HT matrix favorably affected the energy levels of the P3HT and the morphology of the active layer. They also found that the nanotubes can act as nucleation sites for P3HT chains, improving charge separation and electron transport.
\nJ–V characteristics of series-connected inverted tandem solar cell. Tandem cell curves (red), back cell (blue), front cell (black).
The three-component architectures based on nanotubes-fullerene–conjugated polymer composites were proposed to achieve better photovoltaic efficiencies. Li et al. [125] suggested using C60 as an electron acceptor and nanotubes for the photo-generated charge transport. Two types of chemically functionalized nanotubes were tested: carboxylated and octadecylamine functionalized multi-walled nanotubes, in short c-MWNT and o-MWNT. All three photovoltaic parameters, namely short-circuit current density, open-circuit voltage, and fill factor of the P3HT:c-MWNT/C60-based cells showed improvements over those of the P3HT:o-MWNT/C60 cell as a result of a faster electron transfer from C60 to the nanotube backbone. Derbal-Habak et al. [94] reported organic PV cells with power conversion efficiency of 3.6% by incorporating functionalized SWNTs within P3HT:PCBM layer that helped improve both the current density Jsc and open-circuit voltage, Voc attributed to a partial crystallization of the RR-P3HT as revealed by XRD studies. Nismy [126] probed the optical and electronic response of the composite devices comprising donor polymer and localized MWNTs also featuring triple heterojunction architecture/scheme. A significant improvement in photoluminescence quenching was observed for the devices with nanotubes embedded into the polymer matrix, with the former facilitating the formation of the trap states. The triple scheme is generally confirmed to yield a lower dark current and hence a significantly improved photovoltaic performance with the PCE approaching ~3.8%.
\nRelatively high PCEs of ~7.4% were demonstrated by introducing copper-phthalocyanine derivative (TSCuPc)/SWNT layer into the series-connected inverted tandem devices featuring front P3HT–ICBA and back PCBM–PCDTBT active layers, Figure 4.
\nAs summarized in Table 1, repeated results from studies on CNTs/polymer OPV devices reveal that the performance of nanotubes incorporated OPV cells is dependent on several factors such as the device architecture, treatment or functionalization method of nanotubes, type of CNTs, concentration of nanotubes as well as thickness of the nanotube-incorporated active layer.
\nType of CNT | \nType of polymer | \nPreparation method | \nPCE (%) | \nFF (%) | \nReferences | \n
---|---|---|---|---|---|
SWNT | \nP3HT:PCBM | \nSpin coating of surfactant-free CNTs as the hole transport layer | \n3.04 | \n50.7 | \n[119] | \n
SWNT | \nP3HT:PCBM | \nHomogenous dispersion by alkyl-amide functionalization of CNT | \n3.2–4.4 | \n38–52 | \n[16] | \n
SWNT 5 wt% | \nP3HT | \nDispersion in chloroform | \n52.3 | \n20.3 | \n[122] | \n
SWNT | \nRR-P3HT: PCBM | \nSolution mixing | \n3.66 | \n52.2 | \n[94] | \n
DWNT (double-walled CNT) | \nP3HT | \nDispersion in chloroform | \n47.2 | \n20.3 | \n[122] | \n
c-MWNT/C60\n | \nP3HT | \nDispersion of carboxylated nanotubes in o-dichlorobenzene (ODCB) solutions | \n0.8 | \n44 | \n[125] | \n
MWCNT | \nP3HT | \nDispersion in chloroform | \n26.8 | \n22 | \n[122] | \n
O-MWCNTs | \nP3HT, PCBM | \nSolution mixing | \n3.8 | \n70 | \n[126] | \n
Summary of organic photovoltaic devices reviewed in this chapter
To overcome problems with poor performance of bi-layer devices that stem from short exciton diffusion length in polymers, poor exciton dissociation and absence of a percolated network required for improved photo-generated charge transport, the devices incorporating polymer-fullerene-based donor–acceptor (D–A) material have been reconsidered. Comparative studies on bulk heterojunction devices vs. those with a nanotube-incorporated active layer formed by sequential deposition show that the latter architecture is prone to a higher recombination of carriers due to the introduction of trap states associated with the nanotubes. Photo-generated excitons are also quenched at the D/A material interface due to these additional energy levels and render lower Jsc values. On the other hand, the heterojunction scheme yields lower dark currents and better photovoltaic performance confirming a very critical role of the heterojunction in devices with organic/hybrid architectures. For the nanotube/polymer-based OPV cells, the nanotube type is also to influence the performance of such devices. While there is no clear link between the number of walls or the diameter of the nanotubes and the performance of the OPV device, the semiconducting nanotubes were concluded to form a needed, type-II heterojunction. In contrast, in case of metallic nanotubes, a substantial charge redistribution is to take place at the interface. As a result, the built-in-potential is quite small and unlikely to contribute significantly to the subsequent charge separation at this interface, leading to an inefficient PV device. The photovoltaic characteristics of the PV cells are also to depend on the concentration of nanotubes. In particular, the incorporation of low concentrations of nanotubes in the photoactive layer leads to an increase of the current density Jsc. The functional groups as well as the preparation methodology are among the other factors that were found to influence the performance of OPV cells.
\nOLEDs are indispensible to flexible light displays because of their excellent properties: They are lightweight and feature low power consumption, wide angle of view, fast response, low operational voltage, and excellent mechanical flexibility [127, 128]. Light-emitting polymers demonstrate excellent quantum efficiencies and can be solution processed to build electro-luminescent devices of very low cost. OLEDs are generally considered as “dual-injected” devices as holes and electrons are injected from the anode and cathode, respectively, into active molecular/macromolecular medium, where they form excitons that recombine radiatively [128, 129].
\nRecent progress in OLEDs stems not only from the advancement of the polymer science but also from achieving better control over the charge transport in the electroluminescent layers and doping of the emissive materials [22]. A proper layer sequence in OLEDs ensures that the injected charges are properly balanced within the emissive layer to achieve high external efficiency. SWNTs introduced into conducting polymers lower the charge injection barrier formed at the electrode–organic interface and hence favorably affect the device performance [130].
\nOne of the first studies to combine SWNT with conjugated polymer-based OLEDs was attempted by Curran et al. [131]. The observed increase in the quantum yield was attributed to intermolecular π–π stacking interactions that take place between the polymer and nanotubes. A polymer stiffening is another factor that can lead to an increase in the luminescence output. Moreover, when SWNTs are added the strength of the polymer–polymer interaction becomes weaker, which is a source of self-quenching effects. The concentration of SWNTs of 1% (by weight) is considered optimal/sufficient for the polymer strands to experience interaction with the nanotubes. Excess concentrations of SWNTs lead to a drop in the luminescence. Woo et al. [132] prepared double-emitting OLEDs (DE-OLEDs) based on SWNTs-PmPV. A low bias I-Vs obtained on the devices made from the composites were quadratic, while in the devices with pure PmPV, the dependence was significantly more nonlinear: I ~ V5; the result was explained by the presence of structural and chemical defects in the PmPV composite that favors continuous trap-limited charge transport.
\nIn a recent study, Gwinner et al. [134] investigated the influence of small amounts of semiconducting SWNTs on characteristics of ambipolar light-emitting field-effect transistors (LEFETs) comprising polyfluorenes such as poly (9,9-di-n-octylfluorene-alt-benzothiadiazole (F8BT) and poly(9,9-dioctylfluorene) (F8)-conjugated polymers, Figure 5. Incorporating SWNTs within a semiconducting layer at the concentrations below the percolation limit significantly augments both hole and electron injections, even for a large bandgap semiconductor such as F8, without invoking a significant luminescence quenching. In general, owning to lower contact resistance and threshold voltage, larger ambipolar currents and in turn higher output/light emissions can be realized.
\n(A) Schematic illustration of bottom contact/top gate polymer field-effect transistor with carbon nanotubes dispersed in the semiconducting polymers F8BT and F8. (B) Energy level diagram of a semiconducting SWNT with (7, 5) chirality, gold (injecting electrode), and HOMO/LUMO levels of both F8 and F8BT. Reprinted from [134] with permission. Copyright © 2011 American Chemical Society.
Divya et al. [134] investigated the use of a diketone ligand, 4,4,5,5,5-pentafluoro-3-hydroxy-1-(phenanthren-3-yl)pent-2-en-1-one (Hpfppd), containing a polyfluorinated alkyl group, by covalently immobilizing it onto the multi-walled CNT host via carboxylic acid functionalization pathway. The resultant nanocomposite displayed intense red emissions with an overall quantum yield of 27% under a wide excitation range from UV to visible (~330–460 nm), making it prime candidate for application in OLEDs.
\nIndium tin oxide (ITO) features a high transmittance at a low sheet resistance [127] and is ubiquitously employed as an OLED anode but not without drawbacks. ITO is brittle and can suffer from cracks that lead to electrical shorting; it can serve as a source of oxygen that diffuses into emissive layers, while it has insufficiently high work function of ~4.7 eV [129, 135].
\nOn this front, SWNT sheets have been considered as viable alternative and were studied for possible use as anodes in OLEDs, Figure 6 [136]. Some recent prototypes exhibited brightness of ~2800 cd m−2 that was comparable to that of OLED featuring ITO anodes.
\n(a) Schematic of the SWNT OLED device and (b) corresponding cross-sectional scanning electron microscopy image at a broken edge taken at a 20° angle from the surface normal. Reprinted from [136] with permission. Copyright © 2006 American Institute of Physics.
Zhang et al. [137] showed arc-discharge nanotubes were overwhelmingly better electrodes than HiPCO-nanotube-based films in all of the critical aspects, including surface roughness, sheet resistance, and transparency. Arc-discharge nanotube films that were PEDOT passivated showed high surface smoothness and featured sheet resistance of ~160 Ω/sq at 87% transparency.
\nParekh et al. [138] was able to improve the conductivity of transparent SWNT thin films by treating the samples with nitric acid and thionyl chloride. Geng et al. [139] was able to achieve a fourfold sheet conductance improvement by exposing SWNT films produced by spray technique to a nitric acid with the treated samples demonstrating sheet resistance of ~40 and 70 Ω/sq, at 70 and 80% transmittance, respectively. To break interdependence of the sheet conductance and the transparency, a magnetic field was applied during drop-casting of SWNT–polymer films onto ITO-coated glass and ITO-coated PET substrates [140]. This led to sample de-wetting and enhancement in the electrical conductivity of the films. For a functionalized SWNT–PEDOT:PSS film formed on an ITO-coated PET substrate, a sheet resistance of 90 Ω/sq at 88% transmittance was obtained. SWNT–PEDOT:PSS composite devices formed on PET substrate were proposed as a way to combat the problem, with the films featuring a sheet resistance of 80 Ω/sq, and having a transmittance of 75% at ~550 nm. The ratio of DC to optical conductivity was higher for composites with mass fractions of 5560 wt% than for nanotubes only films. For ~80-nm-thick composite filled with 60 wt% arc discharge nanotubes, this conductivity ratio was maximized at σDC/σ0P = 1, with the transmittance (at 550 nm) and sheet resistance of 75 and 80 Ω/sq, respectively. These composites also have excellent electromechanical stability, with <1% resistance change over 130 bend cycles.
\nAs outlined above, CNTs/polymer composites could be incorporated into conducting polymers as the buffer layer, or in the form of plain sheets as flexible anode electrode in OLEDs. The characteristics exhibited by the CNTs/polymer composite as the transport layer in OLEDs have been observed to change with the polymer system as influenced by the nature of the polymer–nanotube interactions. Additionally, nanotube sheets can serve as transparent electrodes in OLEDs which make them a viable alternative to the conventional ITO electrodes.
\n“Infra” from Latin means “below”; thus, IR refers to a spectral range beyond the red boundary of the visible electromagnetic spectrum, which corresponds approximately to ~0.8 μm. Since all objects emit IR radiation, the effect is known as a black body radiation, seeing in the dark or through obscured conditions, by detecting the IR energy emitted by objects is possible. IR imaging has therefore become a cornerstone technology for many military and civilian applications including night vision, target acquisition, surveillance, and thermal photovoltaic devices. Biomedical imaging and light-activated therapeutics represent another critical area that particularly benefits from high tissue transparency to IR light. Despite a recent progress in the field of IR sensing and imaging, high cost, requirement for cryogenic cooling, and spectrally limited sensitivity still remain the main disadvantages of this technology today.
\nTwo primary methods of IR detection exist: energy and photon detection. Energy detectors respond to temperature changes generated from incident IR radiation through changes in material properties. Energy detectors, the well-known examples of which are bolometers, pyroelectric, and thermopile detectors, are normally low cost and primarily used in single-detector applications; such applications include fire and motion detection systems as well as automatic light switches and remote thermometers. In contrast to energy detectors, light interacts directly with the semiconductors in photon detectors to generate electrical carriers. More specifically, incident light with energy greater than or equal to the energy gap of the semiconductor drives the semiconductor out of equilibrium by generating excess majority electrical carriers. This translates into a change in the net resistance of the detector. The well-established examples of photon detector materials are lead sulfide (PbS), lead selenide (PbSe). Since these detectors do not function by changing temperature, they respond much faster than energy detectors and in principle can be sensitive to a single photon, if used, for instance, in conjunction with the emerging class of single electron devices. Both, increased sensitivity and reduced response time provided with the use of small bandgap semiconductor materials, have recently led to the development of advanced and very sophisticated IR detection systems, which are of high technological relevance today.
\nThe higher the temperature of an object, the larger the amount of thermal radiation it emits, while its peak intensity also shifts to a shorter wavelength. The demonstrated strong spectral dependence of thermal radiation on the temperature, also known as a Wien’s law, necessitates the use of materials with optimized sensitivity at multiple wavelengths for two primary reasons: (1) to increase sensitivity and (2) to enable highly selective military/civilian target identification and acquisition. Until recently, the problem was addressed through simultaneous use of several materials with peak sensitivity corresponding to different wavelengths. As fabrication and processing change dramatically from one material system to another, engineering of wavelength-specific and ultra-sensitive IR detectors currently remains uneconomical.
\nA recent progress in the field of nanotechnologies, and in particular, in the area of non-lithographic fabrication of multi-functional nanomaterials such as quantum wells, wires, dots and CNTs opens new opportunities for advancing IR sensing technology beyond today’s confines. Unlike semiconductor alloys, the effective energy bandgap of nanomaterials and particularly CNTs can be easily tailored by simply changing their size which enables engineering of future IR-devices with expected spectral range of operation: from ~15 to ~0.6 μm (i.e., from ~0.1 to 2eV). Furthermore, as electron scattering is suppressed in materials featuring one-dimensional electronic configurations, nanotube-based IR photo-detectors are expected to demonstrate orders of magnitude improved sensitivity at room temperature as compared with the detectors operating on thin films or quantum wells. This property could potentially mitigate the requirement for cryogenic cooling currently implemented in most IR photon-type sensing devices.
\nFor IR-detection application, aligning of many nanotubes would be highly critical from two points of view: to increase packing density of nanotubes and thus device sensitivity and to realize polarization sensitive IR optical devices. In contrast to conventional semiconductors, conjugated polymers provide dramatic benefits for engineering active optical nano-electronic and photonic devices; this includes reduced processing cost, excellent physical flexibility, and large area coverage. Until now, application of polymers in electronic devices was primarily limited to a visible range of electromagnetic spectrum [142, 143]. While stability of most polymers represents a barrier to their use as UV sensors, extending their use in the IR range becomes possible by implementing CNTs for both light absorption and free carrier generation. The exciton dissociation rate can be increased by introducing heterojunctions or applying external electric fields. The former can be realized by incorporating p-type nanotubes into n-type polymer matrix, such as PPy (pyridine-2,5-diyl) conjugated polymer, which is also known to exhibit relatively high resistance to oxidation.
\nComposites of CNTs/polymer feature relatively high absorption in a wide spectral range of ~0.2–20 μm and an emissivity coefficient close to unity while. Moreover, such composites are resistive to hard radiation damages and can work in high magnetic fields [144]. Unlike MWNTs and graphene which possesses featureless visible/NIR absorption, semiconducting SWNTs in particular exhibit strong and discrete absorption in the visible/NIR region owing to first optically active interband transition (S11) with its energy scaling inversely proportional to the nanotube diameter. Lu et al. [148] reported a very large photocurrent in the device comprising semiconducting single-walled carbon nanotube (s-SWCNT)/polymer with type-II interface, Figure 7. The detector featured significantly enhanced NIR detectivity of ~108 cm·Hz1/2/W, which is comparable to that of the many conventional uncooled IR sensors, Figure 8.
\n(a) Diagram of s-SWCNT/P3HT nanohybrid. (b) Band structure of the s-SWCNT/P3HT type-II heterojunction. (c) AFM image of s-SWCNT/P3HT. (d) Optical absorbance spectra of sSWCNT and s-SWCNT/P3HT. Reprinted from [148] with permission. Copyright © 2012 American Chemical Society.
(a) Brief diagram of the electrical setup for IR detections. (b) Representative V−I curves of s-SWCNT/P3HT in dark and under NIR illumination of 2 mW/mm2. The inset shows the voltage-biased V−I curves of s-SWCNT control sample. (c) Differential conductance dI/dV of s-SWCNT/P3HT: The data were calculated from (b). Reprinted from [148] with permission. Copyright © 2012 American Chemical Society.
Among other composites, polyaniline–CNTs composite thin film sensors showed an IR photosensitivity enhancement of more than two orders of magnitude under ambient conditions [144]. The attained enhancement in the sensitivity (bolometric effect) is attributed to a higher heat generation by CNTs and large temperature dependence of the resistance of polyaniline. In another study, Aliev [143] built an uncooled bolometric sensor based on SWNTs/polymer composite with voltage responsivity of ~150 V/W. Another, all-printed NIR sensor was engineered by Gohier et al. [146] by depositing multi-walled CNTs on a flexible polyimide substrate; the sensor showed ultra-high responsivity of ~1.2 kV/W. A strong dependence of the device response on the surrounding atmosphere was though noted and attributed to desorption of water molecules that negatively affected the photosensitivity. Glamazda et al. [147] reported on a strong bolometric response in SWNT–polymer composite featuring higher degree of internal alignment. A better alignment dramatically increased the temperature sensitivity of the resistance explained within the framework of fluctuation-induced tunneling theory. A spectrally flat mid-IR responsivity of 500 V W−1 was observed and is among the highest reported for nanotube-based bolometers.
\nMyopia is a common refractive error in the population. It is defined as an optical aberration in which parallel light rays from a distant image are getting focused on a point anterior to the retina. Hereditary and environmental factors both play an important role in the development of myopia. Myopia typically appears between the age of 6 and 12, and the mean rate of progression is considered to be approximately 0.50 D per year, based on studies of mostly Caucasian children. One of the studies showed that progression of myopia can vary by ethnicity, as well as by age of the child. For instance, in ethnic Chinese children, the progression rate is higher [1].
\nA recent report in Nature, entitled “The Myopia Boom,” demonstrated, and it is now widely accepted, that there is an epidemic of myopia in the developed countries of East and Southeast Asia, paralleled by an epidemic of high myopia [2]. Recent meta-analyses have suggested that close to half of the world’s population may be myopic by 2050, with as much as 10% highly myopic [3]. Correction of refractive error can be achieved conservatively with glasses or contact lenses which is the treatment of choice in the childhood. However, despite the long-standing use of glasses and contact lenses, there are some disadvantages in both forms of optical correction. Increased light scatter, image magnification/minification, discomfort, and inconvenience are some of the issues with glasses, while contact lenses may irritate the ocular surface with increased risk of corneal scratches and infections. After the age of 21, various surgical treatments can be considered. The best surgical option depends on the amount of refractive error and the patient’s cornea, lens, and age. Available options include various laser vision corrections which are aimed on the cornea, implantation of phakic intraocular lenses (pIOLs), and refractive lens exchange (RLE) with implantation of multifocal and monofocal intraocular lenses (IOLs). It is important to perform a detailed examination of each patient and assess their needs, wishes, and expectations. Doctors need to explain in as much detail as possible what the expected results and risk would be with for the selected surgical method.
\nProcedures which involve altering the shape of the cornea with excimer laser are collectively referred to as keratorefractive surgery, refractive keratoplasty, laser vision correction, or refractive corneal surgery.
\nPhotorefractive keratectomy (PRK) was the first excimer laser technique for the treatment of refractive errors. Seiler performed the first corneal ablation in a live patient in 1985, and McDonald treated the first human sighted eye in 1985 after extensive preclinical investigation [4]. The PRK procedure involves removal of the central corneal epithelium, most commonly performed mechanically (brush, crescent knife, or alcohol) or with excimer laser when it is referred as transepithelial PRK (T-PRK). The denuded anterior stroma is then reshaped by the excimer laser, with either central corneal flattening, steepening, or a torical pattern when treating myopia, hyperopia, or astigmatism, respectively. Due to significant postoperative pain, relatively slow visual recovery, epithelial defects due to irregular healing, and haze development, especially when treating high myopia [5, 6], different techniques of epithelial removal were introduced over time to solve these complications [7]. Recently the role of surface ablations has been reevaluated due to raised issues of potential flap complications, risk of iatrogenic corneal ectasia, and inability to treat thin corneas with laser in situ keratomileusis (LASIK) [8]. With surface ablation techniques, there is no flap involved, and more cornea tissue is preserved, and by some it is still considered the overall safest procedure for treatment of low to moderate myopia [9]. It is performed, especially in corneas with superficial scarring, epithelial dystrophies, or recurrent erosions, in thin corneas, after penetrating keratoplasty and for keratorefractive retreatments. The introduction of mitomycin C and modern surface ablation techniques has also increased the range of treatment and lowered the risk of haze and regression after PRK [10]. Therefore today surface ablation includes several sub-techniques such as epithelial LASIK (epi-LASIK), laser-assisted subepithelial keratectomy (LASEK), and T-PRK [11].
\nThe term LASIK was first used in 1990 by Pallikaris [4]. The procedure is performed in two steps. The first step involves the formation of a front corneal flap and the lifting of the flap for the purpose of exposing the corneal stroma. The hinged flap consists of the corneal epithelium, the Bowman membrane, and superficial stroma. The second step is the application of the excimer laser on the stromal bed. Once the ablation with the excimer laser is finished, the flap is returned into its original position.
\nLASIK has now become the most common elective surgical procedure in the world, presumably because it is almost painless with fast visual recovery, as compared to PRK [4]. Nowadays, there are two techniques available for the formation of the flap—mechanical microkeratomes and femtosecond lasers. The use of femtosecond laser-assisted laser in situ keratomileusis (FsLASIK) offers greater precision in flap creation leading to better morphological stability of the flap compared to earlier bladed microkeratome keratomileusis. However, changes in the biomechanical strength of the cornea, induction of higher-order aberrations, and flap-related complications can still occur [12]. LASIK reduces the tensile strength of the stroma by about 35% when the ablation takes place between 10 and 30% of the stromal depth [13]. Regarding the available data, and our experience, there is no significant difference in shorter-term refractive stability and induction of high-order aberrations between T-PRK and LASIK (Figures 1 and 2 and Table 1). However, when higher refractive errors are treated, surface ablations pose more risk for haze development and regression [14].
\nComparison of change in spherical correction over time between T-PRK and LASIK.
Comparison of change in astigmatism correction over time between T-PRK and LASIK.
Comparison of change in high-order aberrations over time between T-PRK and LASIK.
The femtosecond laser corneal procedure known as small incision lenticule extraction (SMILE) was originally described by Sekundo et al. and became clinically available in 2011 [15]. The procedure does not require the creation of a flap: two precise intrastromal planar sections are created using a single femtosecond laser to form an intrastromal lenticule. The intrastromal lenticule is dissected from the pocket, grasped with a forceps, and manually extracted through a small incision. The incision is placed at the superior temporal/nasal quadrant, usually angled at 70°, and 2–5 mm in length. The removal of the intrastromal lenticule alters the shape of the cornea, thereby correcting myopia and astigmatism. Since Bowman’s layer remains intact, the procedure offers greater biomechanical stability, especially in the treatment of higher levels of myopia [15]. The flapless property of SMILE obviates the risks associated with LASIK including adverse events at flap creation and dislocation [16].
\nThe tensile strength of the cornea may reduce by 55% after a SMILE procedure when the lenticule is formed and extracted from the anterior half of the stroma. Loss of tensile strength is less profound when the lenticule is extracted from deeper regions of the stroma. Thus, the exact change in the biomechanical properties of the cornea will depend on the amount of ablation and the location where the lenticule is formed [13].
\nRegarding the available data, and our experience, LASIK and SMILE are comparable procedures in terms of visual quality and reduction of myopia; however, in treating astigmatism LASIK still offers better precision (Figures 3 and 4).
\nPolar diagram showing target and surgically induced astigmatic values for the SMILE group. The concentric semicircles reduce in 0.50 D steps from −2.00 DC (outermost semicircle) toward zero (central point) in 0.50 DC steps. From right to left, the 0 to 90 to 180° axes are shown in 30° steps. The target and surgically induced astigmatism data points are shown as empty circles and filled dots, respectively.
Polar diagram showing target and surgically induced astigmatic values for the FsLASIK group. The concentric semicircles reduce in 0.50 D steps from −2.00 DC (outermost semicircle) toward zero (central point) in 0.50 DC steps. From right to left, the 0 to 90 to 180° axes are shown in 30° steps. The target and surgically induced astigmatism data points are shown as empty circles and filled dots, respectively.
A detailed review of the patient’s condition before surgery and informing the patient about the results, benefits, and disadvantages of the procedure are the most important steps for a successful outcome of refractive surgery [17].
\nThe examination should include detailed medical history (systemic status, medications intake, allergies, ocular status, information about previous ocular surgeries—especially in the case of refractive lens exchange—and information about contact lens wear) and reasons/motivations for refractive surgery to identify patients with unrealistic expectations [18, 19]. It is important for patients to understand that refractive surgery primarily serves to reduce spectacle dependence and contact lens use, and it is not meant to completely remove all optical aids in all situations, for an indefinite time period.
\nPatients should discontinue contact lens use before the examination (for soft contact lenses, at least a week prior to the examination, and for rigid gas permeable contact lenses, at least 2–3 weeks prior) since corneal topography and biometry measurement can be severely affected by the corneal changes induced by contact lens wear. In the case of corneal warpage syndrome (corneal irregularities caused by contact lenses), contact lenses should be discontinued for at least 4–6 weeks [20].
\nThe preoperative evaluation must include monocular manifest refraction, cycloplegic refraction, uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), pupillometry, tonometry, anterior chamber depth (ACD) measurement, corneal topography/tomography, pachymetry, aberrometry, tear film quality and quantity, determining the dominant eye, ocular motility, and a fundus examination [18, 21]. Cycloplegic refraction is recommended to exclude the accommodation effect, while in patients in/or close to presbyopia age near visual acuity should be checked also. It is mandatory to check the patient’s refractive stability during the time, which can most often be obtained by inspecting the patient’s eyeglasses or by reviewing the previous ophthalmological documentation [21].
\nContraindications for refractive surgery may relate to systemic or ocular disorders. Absolute systemic contraindications are poorly controlled systemic immune diseases (e.g., rheumatoid arthritis, systemic lupus erythematosus, polyarteritis nodosa), as well as poorly controlled diabetes and AIDS. Such patients have a higher risk of complications associated with prolonged inflammation or corneal healing after refractive surgery [18, 22, 23, 24]. Surgical procedures are not recommended during pregnancy and lactation [25].
\nOcular absolute contraindications are considered to be poorly controlled or untreated eye inflammation (blepharitis, dry eye syndrome, atopy/allergy), poorly controlled glaucoma, clinically significant lens opacities, Stevens-Johnson syndrome, ocular pemphigoid, and chemical burns of the eye surface [26, 27]. Instability of refraction (i.e., a change greater than 0.50 D within a year) is considered as an absolute contraindication, as well as insufficient corneal thickness or corneal irregularities suspicious for keratoconus [21, 26, 28, 29]. Precautions are also needed in patients with certain systemic therapies (isotretinoin, amiodarone, sumatriptan, colchicine) [23, 24, 30]. Caution is also required in functional monocular patients and in patients with well-controlled glaucoma. Other relative contraindications are history of uveitis, herpes simplex, and varicella zoster keratitis. In patients with epithelial basal membrane degeneration, LASIK is not recommended, but PRK is the procedure to consider [21, 31].
\nComplications of corneal refractive surgery are considered rare. They can be divided in intraoperative and postoperative complications (which can be early or delayed).
\nRegarding the intraoperative complications, they are mainly correlated with corneal flap creation or excimer laser ablation. During the era of microkeratome, flap-related complications were encountered more often and fell within 3%; with the introduction of femtosecond lasers, they were almost nullified; however, some complications specific to femtosecond lasers appeared [32].
\nFlap-related complications include free or partial flap creation, incomplete and irregular flap creation, thin and perforated flaps, and corneal perforation. Those complications were mostly related to corneal anatomy (flat <41.00 D or steep >46.00 D corneas, small corneal diameter), inadequate suction, mechanical failure—a defect in the dissection blade or motor unit—and surgeon experience. Penetration into the anterior chamber is extremely rare and may occur during lamellar dissection or excimer laser photoablation usually on extremely thin corneas with old scars [33].
\nFemtosecond-related complications are closely correlated with cavitation bubbles and formation of the flap. They are presented in the form of confluent cavitation bubbles in the corneal lamellae or anterior chamber which can interfere with excimer laser systems and vertical gas breakthrough which is presented in the forms of incomplete buttonholes or difficulties in dissecting the flap due to tissue bridges [34]. Temporary hypersensitivity to light and rainbow glare are complications exclusively related to energy and pattern of femtosecond lasers characterized with normal visual acuity and photophobia without inflammation or light dispersion in low light conditions [35].
\nLaser-related complications include decentration of excimer laser ablation, irregular astigmatism, and formation of central islands. Those complications are clinically characterized by poor uncorrected and corrected distance visual acuity complaints of glare, “ghosting” around images and haloes, and refractive astigmatism in the axis of decentration [33].
\nEarly postoperative complications include flap striae, diffuse lamellar keratitis, central toxic keratopathy, pressure-induced steroid keratitis, infectious keratitis, and epithelial ingrowth.
\nFlap striae are caused by misalignment of the flap; peripheral striae usually are asymptomatic; however, central location of the striae is associated with loss in corrected distance visual acuity and night vision disturbances [33, 36].
\nDiffuse lamellar keratitis (Sands of Sahara syndrome) is a sterile inflammation probably caused by the introduction of toxins in the flap interface [37, 38]. It is graded in four stages, with stage one and two being mild and visually unthreatening, while stage four can lead to corneal melting and permanent changes [33, 39]. In comparison to diffuse lamellar keratitis, central toxic keratopathy is a rare noninflammatory central corneal opacification linked to enzymatic degradation of keratocytes with spontaneous resolution and mild central opacification which often causes refractory hyperopic shift [40].
\nPressure-induced stromal keratitis is also easily mistaken with diffuse lamellar keratitis but is caused by postoperative steroid use which leads to increase in intraocular pressure and represents as cystoid lamellar edema [41].
\nInfectious keratitis after LASIK is extremely rare but can be quite serious since invading organisms are already implanted into the deep corneal stroma. The most often isolated organisms include Streptococcus pneumoniae, Staphylococcus aureus, Mycobacterium chelonae, and Nocardia asteroides [33, 42].
\nEpithelial ingrowth under the LASIK flap is reported to occur in merely 1–2% of patients and is caused by migration of epithelial cells under the flap. It is usually insignificant, but if epithelial cells continue to grow, it can cause flap distortion and melting causing visual disturbances [43].
\nLate postoperative complications include dry eye, night vision problems, corneal haze, regression of refractive error, and iatrogenic corneal ectasia.
\nDry eye syndrome is caused by denervation and cutting of nerve fibers during the formation of the flap, removal of corneal tissue by excimer laser, and changes in the shape of the cornea. Dry eye syndrome is usually transient and symptoms fade away after healing period. It causes discomfort, fluctuation in vision quality, slower healing, and epithelial damage and may lead to regression of refractive error and reduced vision quality [44].
\nSymptoms of impaired visual quality are usually more expressed during the night due to physiological pupil dilatation. The main causes of nighttime issues are the increase in spherical aberrations at the centrally flatted cornea, decentered ablations, too small optical zones, newly emerging lens opacities, and induced astigmatism [45].
\nCorneal haze reduces corneal transparency at variable degrees and is more common after PRK and correction of high myopia (>−6.00 D). Besides the ablation depth, it is correlated with an excessive ocular UV-B radiation, duration of the epithelial defect, postoperative steroid treatment, male sex, and certain population with brown iris [46].
\nRegression of refractive error is defined as return of part of the primary refractive error and is associated with increase in thickness and curvature of the cornea. Potential mechanisms include nuclear sclerosis, stromal synthesis (wound healing), compensatory epithelial hyperplasia, and iatrogenic keratectasia [47].
\nPostoperative ectasia is linked to biomechanical weakening of the cornea and is characterized with progressive corneal steepening, either centrally or inferiorly, resulting in severe progressive irregular astigmatism and decrease of both uncorrected and best-corrected visual acuity. The incidence of ectasia after LASIK has been estimated between 0.04 and 0.9% [48]. Risk factors include abnormal topographic findings, thin cornea, and high myopia together with young age at the time of surgery [49].
\nIntraoperative complications of SMILE procedure are usually not sight threatening, and the procedure usually can be continued [13, 15, 50]. The most common complications are incision or cap tears, suction loss, cap perforation, black spots, and opaque bubble layer which lead to cap lenticular adhesions and retained lenticule. Regarding the postoperative complications of SMILE procedure, they are similar to all laser refractive procedures and include epithelial ingrowth, dry eye, diffuse lamellar keratitis, corneal haze, irregular astigmatism, minor interface infiltrates, increased aberrations, and iatrogenic ectasia [50, 51].
\nTwo basic intraocular procedures exist: phakic intraocular lens (pIOL) implantation and refractive lens exchange (RLE) with posterior chamber IOL implantation.
\nPhakic intraocular lenses (pIOL) provide a safe and effective alternative for young patients with moderate to high refractive errors who may not be suitable candidates for excimer laser procedures or who prefer a reversible form of vision correction with efficacy comparable to results of LASIK [52]. It has been established that attempted corrections of high myopia with excimer laser procedures induce more higher-order aberrations, affecting vision quality and creating problems such as glare, halos, and ghost imaging [53]. Additional advantages of intraocular procedures are a broader range of treatable ametropia, faster visual recovery, more stable refraction, and better visual quality. In addition, the pIOL implantation does not affect accommodation, and the procedure is reversible [52, 54].
\nCurrently, there are two types of phakic intraocular lenses approved for correcting refractive errors: anterior chamber—iris fixated—and posterior chamber. Verisyse and Veriflex lenses are iris-fixated intraocular lenses. More than 160,000 of these lenses have been safely implanted worldwide [55]. The Verisyse pIOL is made from rigid, ultraviolet-absorbing polymethyl methacrylate (PMMA). This lens requires a 5.5–6.5-mm incision, depending on the optic size of the lens, whereas the Veriflex pIOL requires a 3.2-mm incision. The Verisyse pIOL is available for myopia, hypermetropia, and astigmatism. For myopia, the pIOL is available in powers from −1.00 to −23.50 D in 0.50 D steps with two optic diameters of 5.0 or 6.0 mm. The Veriflex pIOL is a foldable implant with 6.0 mm flexible optic made of hydrophobic polysiloxane and features a PMMA haptic. It is available only for myopia in powers ranging from −2.00 to −14.50 D in 0.50 D steps.
\nThe Visian Implantable Collamer Lens (ICL) is a posterior chamber phakic intraocular lens resting in the ciliary sulcus. ICL is made from soft advanced collamer material and requires 3.2 mm incision. It is available for myopia, hypermetropia, and astigmatism. For myopia, the pIOL is available in powers from −0.50 to −18.00 D in 0.50 D steps with four lens diameters (12.1, 12.6, 13.2, 13.6 mm) and optical zone up to 6.1 mm.
\nThe preoperative evaluation of a patient for pIOL is the same as for any kind of refractive procedure. Inclusion criteria are more than 21 years of age, refractive stability (<0.50 D of change) for at least 1 year, ACD ≥ 3.0 mm measured from endothelium, endothelial cell count >2300 cells/mm2 (>2500 cell/mm2 if <40 years of age, > 2000 cells/mm2 if >40 years of age), irido-corneal angle ≥30° (at least grade II by gonioscopy examination), mesopic pupil size <6.00 mm, no anomaly of iris or pupil function, no evolving retinal pathology, absence of uveitis or any kind of ocular inflammation, and absence of glaucoma or any systemic immunological disorder [56, 57].
\npIOL optic power is calculated with the software provided by the manufacturer. The calculation is based on the formula developed by van der Heijde [58]. The formula uses the patient’s refraction at the 12-mm spectacle plane or the vertex refraction, the corneal keratometry dioptric power at its apex, and central ACD [59]. For Verisyse and Veriflex lenses, only one lens diameter is available, while for the ICL overall diameter depends on the ciliary sulcus diameter and should provide perfect stability with no excess of compression forces to the sulcus and allow correct vaulting. The ICL’s diameter should be oversized 0.5–1.0 mm from the white-to-white (WTW) measurements in myopic eyes and the same length or oversized 0.5 mm in hyperopic eyes. The internal diameter of the ciliary sulcus can be measured by ultrasound biometry (UBM) or can be approximated by horizontal WTW measurement obtained manually using a caliper or automatically by topographic or biometric devices [60].
\nThe complications relating to pIOLs can, at times, be more disabling than those from keratorefractive surgery. Night vision problems, corneal decompensation, glaucoma, cataract formation, dyscoria, uveitis, and endophthalmitis are potential complications after pIOL implantation. Night vision problems such as glare, halos, and diplopia are related to decentration of the pIOL and/or an optic diameter that is too small relative to the pupil size [61].
\nSurgically induced astigmatism is an issue primarily correlated with rigid Verisyse lenses and incision diameter. However, some investigators reported that the resulting surgically induced astigmatism (SIA) was less than expected [62, 63]. However, when compared with the Veriflex pIOL and ICL, the SIA was significantly higher [64].
\nImplantation of a pIOL, whether iris fixated or positioned in the posterior chamber, is associated with an accelerated decrease in endothelial cell density (ECD) [60]. Damage to the corneal endothelium may be due to the direct contact between pIOL and the inner surface of the cornea during implantation, from postoperative changes in pIOL position, or from subclinical inflammation, and direct toxicity to the endothelium. The magnitude of ECD loss after phakic intraocular lens implantation surpasses the expected natural annual decrease of 0.6% as reported in a 1997 benchmark study based on 42 adults [65]. Following implantation of an iris-claw phakic intraocular lens, the loss of ECD is highest during the first year varying between 0.75 and 7.2% [66]. Thereafter, the ECD loss continues without following an obvious pattern, to about 8.9% after 10 years. However, with an ICL the impact on the endothelium is claimed to be lower because the implant is placed in the posterior chamber further away from the endothelium itself. For the ICL the ECD loss is about 1.7% after 2 years [60] increasing to 6.2% after 8 years [54] and up to 19.75% after 12 years [67].
\nIn our experience after ICL implantation, there is a linear decrease in ECD over a 3-year period, without any signs of exponential EC loss or reaching a plateau or stable ECD during this time (Figure 5).
\nMean endothelial cell density during the 3-year follow-up (28 eyes); ± SD error bars are included indicating the variance in the data.
With modern pIOL designs, increased intraocular pressure (IOP) seems to be relatively uncommon after 3 months postoperatively and is typically thought to be related to corticosteroid response [68]. Posterior chamber pIOLs cause narrowing of anterior chamber angle due to its position in ciliary sulcus, and its sizing (too long lenses which cause excessive vaulting >750 μm) is closely correlated with possible angle-closure glaucoma, pupillary block glaucoma, or pigmentary dispersion glaucoma [69, 70]. Given the risk of pupillary block, peripheral iridectomy or iridotomy is carried out as a preventative measure in anterior pIOL procedures, while in newer models of ICL with aquaport, technology is not needed.
\nPupil ovalization/iris retraction is mainly correlated with iris-fixated pIOL and can occur if fixation of the pIOL haptics is performed asymmetrically [61, 68, 71]. No progressive pupil ovalization has been reported.
\nFormation of cataract due to the iris-claw pIOL is unlikely because the pIOL is inserted over a miotic pupil without contact with the crystalline lens [61]. The incidence of cataract formation was 1.1% for the iris-fixated pIOL. The overall incidence of cataract formation for posterior chamber pIOLs was 9.60%, which is significantly higher in comparison to iris-fixated pIOLs [72]. With various generations of the ICL, appearance of cataract formation is different. The less vaulted model V3 caused a higher incidence of cataract formation than the newer V4 and V5 models [73]. With the V4 model, the recently published FDA study showed an incidence of 2.1% anterior subcapsular opacities, which is the most common type of cataract after pIOL [59]. Possible reasons are operative trauma, continuous or intermittent contact of the posterior chamber pIOL with the crystalline lens, insufficient nutrition through anterior chamber flow between the posterior chamber pIOL and the crystalline lens, and chronic subclinical inflammation with disruption of the blood-aqueous barrier due to friction between the pIOL and posterior iris or the haptic on the ciliary sulcus [74, 75, 76].
\nThe risk of uveitis is a concern given the proximity of pIOLs to the iris, but it does not seem to be a significant long-term complication with modern designs. With iris-fixated pIOLs, a difficulty with enclavation of the iris can lead to iris atrophy and decentration of the implant [52]. Retinal detachment seems to be uncommon and lower than in clear lens extraction cases [68, 77]. A few cases of endophthalmitis have been reported after pIOL implantation, but it seems less common after pIOL implantation and then after cataract surgery [78, 79].
\nRefractive lens exchange (RLE) is by definition used to indicate the replacement of the cataractous/clear crystalline lens with an intraocular lens (IOL) to achieve emmetropia/near emmetropia. The improved efficacy, predictability, and safety of modern-day phacoemulsification have resulted in a resurgence of lens extraction as a modality for correction of high myopia. Increased numbers of RLE are being performed worldwide, especially in patients not suitable for LASIK or pIOL or with early lens changes in the presbyopia age group [80, 81]. Optics of the IOL confer better quality of vision as compared with LASIK, and this optical quality does not degrade with time except in the presence of a posterior capsular opacification. The refractive results are predictable and stable with a larger range of refractive correction possible than with either LASIK or pIOL. RLE addresses refractive error and cataract and with the use of modern multifocal IOLs results in a significant degree of spectacle independence for the patient. Visual recovery is faster, and it is more cost-effective, as the higher cost of pIOLs and future cataract surgery is eliminated. The principles of surgery are in the domain of most cataract/anterior segment surgeons [82].
\nOverall, patient satisfaction scores after implantation of multifocal IOLs are high. For example, using a 0–10 self-recording analogue scale, you can expect typical average satisfaction scores of 8.8 (Zeiss bifocal IOL, n = 48, range 2–10) and 9.00 (Zeiss trifocal IOL, n = 52, range 4–10). On closer examination satisfaction scores are closely linked to post-op uncorrected distance and intermediate, visual acuity as demonstrated in Figure 6.
\nPostoperative uncorrected distance visual acuity and patient satisfaction after RLE with implantation of multifocal IOLs.
Advanced technology multifocal IOLs tend to be less forgiving with respect to the surgical technique, multifocal IOL power selection, ocular comorbidities, and patient selection. Comorbidities such as dry eye, vitreomacular pathology, or implant decentration may be tolerated in patients after a monofocal IOL implantation. However, these are much less tolerated by the multifocal IOL patients [83, 84].
\nPresbyopia-correcting intraocular lenses should provide post-op emmetropia for the best visual outcome, as small amounts of residual refractive errors can limit visual performance and jeopardize the result [85].
\nIn evaluating the highly myopic patient, several aspects apart from the routine cataract/refractive surgery assessment should be noted. A detailed past ocular history is important, as previous refractive surgery or phakic intraocular lens implants or retinal problems (e.g., vitrectomy for previous retinal detachment) will affect lens formula choices and their final prognosis. Preoperative assessment should also include a detailed clinical examination of their lens status (e.g., cataract density and any zonular weakness) and refraction status of both eyes, as well as a dilated examination of the fovea and periphery for any retina disorder (e.g., myopic choroidal neovascular membrane, macular schisis, retinal tears, or detachment). Other issues for discussion include the potential use of toric or multifocal IOLs. Ideally, a larger haptic platform toric lens should be used in high myopes to reduce the risk of postoperative lens rotation, as the capsular bag is often large and floppy. In some cases, the use of a capsular tension ring to stretch the capsular bag may be required to prevent rotations. Multifocal IOLs should only be used in an eye with no retinal disorder [86].
\nInclusion criteria are more than 40 years of age with myopia not amenable to conventional laser refractive surgery (e.g., high refractive error, corneal irregularities, thin cornea) or phakic IOLS (e.g., shallow anterior chamber, poor endothelial cell count, early cataract changes), presbyopic myopic patients who want reasonable independence from glasses for both distance, and near-vision, myopic patients with early lens changes who desire refractive correction [80, 86]. For multifocal IOL it is important to rule out any irregularities of iris or pupil function, evolving retinal pathology, absence of uveitis, or any kind of ocular inflammation.
\nThe commonest disadvantage is the loss of accommodation with the need for near-vision glasses in the cases of monofocal IOL and the inherent risk associated with intraocular surgery, especially in high myopes [80]. The risk for endophthalmitis in general cataract surgery with implantation of a posterior chamber IOL is 0.1–0.7% with an optimal antiseptic perioperative treatment regimen [87]. Lens surgery is significantly more challenging in a highly myopic eye for several reasons. The issues that we take for granted in an eye of normal length (22–25 mm) such as the accuracy of axial length measurements and the choice of lens formula become a significant issue in the highly myopic eye as the predicted refractive outcomes are not achieved consistently. Axial length measurement error has been largely overcome by the use of optical interferometry. Despite this, consistent hyperopic errors are still reported. Improved predictive results are obtained with the Barrett Universal II (software constants), Haigis (ULIB), SRK/T, Holladay 2 (software constants), and Olsen (software constants) formulas in eyes with axial lengths greater than 26.0 mm and IOL powers greater than 6.0 D. In the eyes with axial lengths greater than 26.0 mm and IOL less than 6.00 D, the Barrett Universal II formula (software constants) and the Haigis (axial length adjusted) and Holladay 1 formulas (axial length adjusted) should be used [88, 89].
\nIntraoperatively, a highly myopic eye is surgically more challenging as the anterior chamber is deeper, with a floppy and large capsular bag and occasionally zonular weakness [90]. The anterior chamber is often unstable, and it is even less stable in a previously vitrectomized high myopic patient. There is also a concern that with elongated axial lengths, there is a higher risk of bag instability that can cause impaired vision, and the more complicated the IOL design is, the more sensitive the IOL is to final centration. A study by Soda et al. found that in uncomplicated cataract surgery with an IOL in the bag, the maximum decentration can be 0.3 mm for a satisfying result [91]. In addition, it is reported that myopic patients may exhibit worse results with more reported subjective symptoms and measurable aberrations like coma and glare in mesopic and scotopic lighting conditions compared to non-myopic controls, after multifocal IOL implantation with approximately the same amount of decentration [91]. RLE may increase the risk for retinal detachment and is generally not considered in myopic pre-presbyopic patients who can still accommodate.
\nThe incidence of retinal detachment is especially high among younger age groups (<50 years) and in the eyes with long axial length > 26 mm. The reported incidence of retinal detachment after RLE ranges from 2 to 8%. Meticulous surgery with minimal intraoperative vitreous disturbance and a regular follow-up postoperatively until the occurrence of posterior vitreous detachment can reduce the risk of retinal detachment further. With the higher risk of retinal detachment in younger patients, it is prudent to defer RLE in patients younger than 40 years if possible [92].
\nOther possible causes of unfavorable visual outcome after uncomplicated phacoemulsification are cystoid macular edema (CME) and choroidal neovascular membrane (CNVM). Overall incidence of subclinical CME diagnosed with optical coherence tomography (OCT) is 5%, and incidence of clinical CME is 3%; however, high myopia does not increase the risk of CME [93]. Reported incidence of CNVM after RLE for myopia is 12.5% [94]; however, whether this was related to the higher degree of myopia with preexisting lacquer crack that was missed or due to some inflammatory mediators and free radicals released after surgery cannot be conclusively proved. Because the reported incidence of CNVM after uncomplicated phacoemulsification is not high, we assume that it is secondary to the degree of myopia, and it is prudent to perform OCT preoperatively in all RLE patients, especially those with more than 10 D of myopia. The presence of a myopic CNVM in the fellow eye is also considered as a risk factor for developing CNVM in the operated eye [80, 94].
\nSurgical treatment of myopia is a viable, safe, efficient, and predictable method for treating patients with myopia. There are several options of surgical treatment; we as doctors must always use our best judgment and available data to make sure we recommend the best method for each patient and their respective needs while taking into account any possible risk and contraindications. Among elective procedures in medicine, myopia treatment is one of the most commonly performed surgeries because of the positive effect it brings the patients’ quality of life.
\nIf you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links.
",metaTitle:"List of Institutions by Country",metaDescription:"If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. However, if your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"open-access-funding-institutions-list",contentRaw:'[{"type":"htmlEditorComponent","content":"Book Chapters and Monographs
\\n\\nBook Chapters
\\n\\nMonographs Only
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nMonographs Only
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nMonographs Only
\\n\\n\\n\\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Book Chapters and Monographs
\n\n\n\nBook Chapters
\n\nMonographs Only
\n\n\n\nBook Chapters and Monographs
\n\nMonographs Only
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nMonographs Only
\n\n\n\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10366},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15789}],offset:12,limit:12,total:118187},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"23"},books:[{type:"book",id:"10656",title:"Intellectual Property",subtitle:null,isOpenForSubmission:!0,hash:"135df9b403b125a6458eba971faab3f6",slug:null,bookSignature:"Dr. Sakthivel Lakshmana Prabu and Dr. Suriyaprakash TNK",coverURL:"https://cdn.intechopen.com/books/images_new/10656.jpg",editedByType:null,editors:[{id:"91590",title:"Dr.",name:"Sakthivel",surname:"Lakshmana Prabu",slug:"sakthivel-lakshmana-prabu",fullName:"Sakthivel Lakshmana Prabu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10658",title:"Multilingualism",subtitle:null,isOpenForSubmission:!0,hash:"a6bf171e05831c00f8687891ab1b10b5",slug:null,bookSignature:"Prof. Xiaoming Jiang",coverURL:"https://cdn.intechopen.com/books/images_new/10658.jpg",editedByType:null,editors:[{id:"189844",title:"Prof.",name:"Xiaoming",surname:"Jiang",slug:"xiaoming-jiang",fullName:"Xiaoming Jiang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10913",title:"Indigenous Populations",subtitle:null,isOpenForSubmission:!0,hash:"c5e8cd4e3ec004d0479494ca190db4cb",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10913.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Racism",subtitle:null,isOpenForSubmission:!0,hash:"0737383fcc202641f59e4a5df02eb509",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:14},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:5},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9043",title:"Parenting",subtitle:"Studies by an Ecocultural and Transactional Perspective",isOpenForSubmission:!1,hash:"6d21066c7438e459e4c6fb13217a5c8c",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",bookSignature:"Loredana Benedetto and Massimo Ingrassia",coverURL:"https://cdn.intechopen.com/books/images_new/9043.jpg",editors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5227},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"158",title:"Metals and Nonmetals",slug:"metals-and-nonmetals",parent:{title:"Materials Science",slug:"materials-science"},numberOfBooks:113,numberOfAuthorsAndEditors:2715,numberOfWosCitations:2995,numberOfCrossrefCitations:2014,numberOfDimensionsCitations:4557,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"metals-and-nonmetals",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editedByType:"Edited by",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8787",title:"Bismuth",subtitle:"Fundamentals and Optoelectronic Applications",isOpenForSubmission:!1,hash:"7751170d0b538f61d14a27a56e6567a5",slug:"bismuth-fundamentals-and-optoelectronic-applications",bookSignature:"Yanhua Luo, Jianxiang Wen and Jianzhong Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/8787.jpg",editedByType:"Edited by",editors:[{id:"226148",title:"Dr.",name:"Yanhua",middleName:null,surname:"Luo",slug:"yanhua-luo",fullName:"Yanhua Luo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9949",title:"Lead Chemistry",subtitle:null,isOpenForSubmission:!1,hash:"b2f999b9583c748f957f612227976570",slug:"lead-chemistry",bookSignature:"Pipat Chooto",coverURL:"https://cdn.intechopen.com/books/images_new/9949.jpg",editedByType:"Edited by",editors:[{id:"197984",title:"Ph.D.",name:"Pipat",middleName:null,surname:"Chooto",slug:"pipat-chooto",fullName:"Pipat Chooto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9190",title:"Stability and Applications of Coordination Compounds",subtitle:null,isOpenForSubmission:!1,hash:"3f07c532e478beb8fcd2fe53b8c9bcfd",slug:"stability-and-applications-of-coordination-compounds",bookSignature:"Abhay Nanda Srivastva",coverURL:"https://cdn.intechopen.com/books/images_new/9190.jpg",editedByType:"Edited by",editors:[{id:"293623",title:"Dr.",name:"Abhay Nanda",middleName:"Nanda",surname:"Srivastva",slug:"abhay-nanda-srivastva",fullName:"Abhay Nanda Srivastva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7787",title:"Rare Earth Elements and Their Minerals",subtitle:null,isOpenForSubmission:!1,hash:"7ba4060b0830f7a68f00557da8ed8a39",slug:"rare-earth-elements-and-their-minerals",bookSignature:"Michael Aide and Takahito Nakajima",coverURL:"https://cdn.intechopen.com/books/images_new/7787.jpg",editedByType:"Edited by",editors:[{id:"185895",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Aide",slug:"michael-aide",fullName:"Michael Aide"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7722",title:"Recent Advancements in the Metallurgical Engineering and Electrodeposition",subtitle:null,isOpenForSubmission:!1,hash:"0d7ff67bd6f4c13830658bc6f9a75851",slug:"recent-advancements-in-the-metallurgical-engineering-and-electrodeposition",bookSignature:"Uday Basheer Al-Naib, Dhanasekaran Vikraman and K. Karuppasamy",coverURL:"https://cdn.intechopen.com/books/images_new/7722.jpg",editedByType:"Edited by",editors:[{id:"182041",title:null,name:"Uday",middleName:"M.",surname:"Basheer Al-Naib",slug:"uday-basheer-al-naib",fullName:"Uday Basheer Al-Naib"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7775",title:"Metallic Glasses",subtitle:null,isOpenForSubmission:!1,hash:"665fb007e1e410d119fc09d709c41cc3",slug:"metallic-glasses",bookSignature:"Dragica Minić and Milica Vasić",coverURL:"https://cdn.intechopen.com/books/images_new/7775.jpg",editedByType:"Edited by",editors:[{id:"30470",title:"Prof.",name:"Dragica",middleName:"M",surname:"Minić",slug:"dragica-minic",fullName:"Dragica Minić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8653",title:"Electromagnetic Materials and Devices",subtitle:null,isOpenForSubmission:!1,hash:"0cc0489a203ae888b1105719a4e70ecd",slug:"electromagnetic-materials-and-devices",bookSignature:"Man-Gui Han",coverURL:"https://cdn.intechopen.com/books/images_new/8653.jpg",editedByType:"Edited by",editors:[{id:"250649",title:"Prof.",name:"Man-Gui",middleName:null,surname:"Han",slug:"man-gui-han",fullName:"Man-Gui Han"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8886",title:"Cobalt Compounds and Applications",subtitle:null,isOpenForSubmission:!1,hash:"0241f740fc6e17cd9dc69362ef388d04",slug:"cobalt-compounds-and-applications",bookSignature:"Yasemin Yıldız and Aynur Manzak",coverURL:"https://cdn.intechopen.com/books/images_new/8886.jpg",editedByType:"Edited by",editors:[{id:"208129",title:"Dr.",name:"Yasemin",middleName:null,surname:"Yıldız",slug:"yasemin-yildiz",fullName:"Yasemin Yıldız"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8416",title:"Non-Equilibrium Particle Dynamics",subtitle:null,isOpenForSubmission:!1,hash:"2c3add7639dcd1cb442cb4313ea64e3a",slug:"non-equilibrium-particle-dynamics",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/8416.jpg",editedByType:"Edited by",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8408",title:"Titanium Alloys",subtitle:"Novel Aspects of Their Manufacturing and Processing",isOpenForSubmission:!1,hash:"e5533136b732dc4ada818553023d4d55",slug:"titanium-alloys-novel-aspects-of-their-manufacturing-and-processing",bookSignature:"Maciej Motyka, Waldemar Ziaja and Jan Sieniawsk",coverURL:"https://cdn.intechopen.com/books/images_new/8408.jpg",editedByType:"Edited by",editors:[{id:"101690",title:"Associate Prof.",name:"Maciej",middleName:null,surname:"Motyka",slug:"maciej-motyka",fullName:"Maciej Motyka"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:113,mostCitedChapters:[{id:"37067",doi:"10.5772/35482",title:"Fourier Transform Infrared Spectroscopy for Natural Fibres",slug:"fourier-transform-infrared-spectroscopy-for-natural-fibres",totalDownloads:8290,totalCrossrefCites:119,totalDimensionsCites:285,book:{slug:"fourier-transform-materials-analysis",title:"Fourier Transform",fullTitle:"Fourier Transform - Materials Analysis"},signatures:"Mizi Fan, Dasong Dai and Biao Huang",authors:[{id:"104647",title:"Prof.",name:"Mizi",middleName:null,surname:"Fan",slug:"mizi-fan",fullName:"Mizi Fan"}]},{id:"60680",doi:"10.5772/intechopen.76082",title:"Environmental Contamination by Heavy Metals",slug:"environmental-contamination-by-heavy-metals",totalDownloads:12266,totalCrossrefCites:65,totalDimensionsCites:115,book:{slug:"heavy-metals",title:"Heavy Metals",fullTitle:"Heavy Metals"},signatures:"Vhahangwele Masindi and Khathutshelo L. Muedi",authors:[{id:"225304",title:"Dr.",name:"Vhahangwele",middleName:null,surname:"Masindi",slug:"vhahangwele-masindi",fullName:"Vhahangwele Masindi"},{id:"241403",title:"M.Sc.",name:"Khathutshelo",middleName:"Lilith",surname:"Muedi",slug:"khathutshelo-muedi",fullName:"Khathutshelo Muedi"}]},{id:"46243",doi:"10.5772/57255",title:"Corrosion Inhibitors – Principles, Mechanisms and Applications",slug:"corrosion-inhibitors-principles-mechanisms-and-applications",totalDownloads:13e3,totalCrossrefCites:30,totalDimensionsCites:104,book:{slug:"developments-in-corrosion-protection",title:"Developments in Corrosion Protection",fullTitle:"Developments in Corrosion Protection"},signatures:"Camila G. Dariva and Alexandre F. Galio",authors:[{id:"169261",title:"Dr.",name:"Camila",middleName:"G.",surname:"Dariva",slug:"camila-dariva",fullName:"Camila Dariva"},{id:"170138",title:"Dr.",name:"Alexandre",middleName:"Ferreira",surname:"Galio",slug:"alexandre-galio",fullName:"Alexandre Galio"}]}],mostDownloadedChaptersLast30Days:[{id:"60680",title:"Environmental Contamination by Heavy Metals",slug:"environmental-contamination-by-heavy-metals",totalDownloads:12290,totalCrossrefCites:66,totalDimensionsCites:115,book:{slug:"heavy-metals",title:"Heavy Metals",fullTitle:"Heavy Metals"},signatures:"Vhahangwele Masindi and Khathutshelo L. Muedi",authors:[{id:"225304",title:"Dr.",name:"Vhahangwele",middleName:null,surname:"Masindi",slug:"vhahangwele-masindi",fullName:"Vhahangwele Masindi"},{id:"241403",title:"M.Sc.",name:"Khathutshelo",middleName:"Lilith",surname:"Muedi",slug:"khathutshelo-muedi",fullName:"Khathutshelo Muedi"}]},{id:"59905",title:"Synthesis of Silver Nanoparticles",slug:"synthesis-of-silver-nanoparticles",totalDownloads:5054,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"silver-nanoparticles-fabrication-characterization-and-applications",title:"Silver Nanoparticles",fullTitle:"Silver Nanoparticles - Fabrication, Characterization and Applications"},signatures:"Remziye Güzel and Gülbahar Erdal",authors:[{id:"226613",title:"Dr.",name:"Remziye",middleName:null,surname:"Güzel",slug:"remziye-guzel",fullName:"Remziye Güzel"},{id:"240772",title:"MSc.",name:"Gülbahar",middleName:null,surname:"Erdal",slug:"gulbahar-erdal",fullName:"Gülbahar Erdal"}]},{id:"59857",title:"Introductory Chapter: Introducing Heavy Metals",slug:"introductory-chapter-introducing-heavy-metals",totalDownloads:4331,totalCrossrefCites:3,totalDimensionsCites:9,book:{slug:"heavy-metals",title:"Heavy Metals",fullTitle:"Heavy Metals"},signatures:"Martin Koller and Hosam M. Saleh",authors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:"M.",surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}]},{id:"60518",title:"Synthetic Methods for Titanium Dioxide Nanoparticles: A Review",slug:"synthetic-methods-for-titanium-dioxide-nanoparticles-a-review",totalDownloads:3286,totalCrossrefCites:10,totalDimensionsCites:17,book:{slug:"titanium-dioxide-material-for-a-sustainable-environment",title:"Titanium Dioxide",fullTitle:"Titanium Dioxide - Material for a Sustainable Environment"},signatures:"Pardon Nyamukamba, Omobola Okoh, Henry Mungondori,\nRaymond Taziwa and Simcelile Zinya",authors:[{id:"196100",title:"Dr.",name:"Raymond",middleName:null,surname:"Taziwa",slug:"raymond-taziwa",fullName:"Raymond Taziwa"},{id:"219920",title:"Prof.",name:"Omobola",middleName:null,surname:"Okoh",slug:"omobola-okoh",fullName:"Omobola Okoh"},{id:"226567",title:"Dr.",name:"Pardon",middleName:null,surname:"Nyamukamba",slug:"pardon-nyamukamba",fullName:"Pardon Nyamukamba"},{id:"239758",title:"Mr.",name:"Simcelile",middleName:null,surname:"Zinya",slug:"simcelile-zinya",fullName:"Simcelile Zinya"}]},{id:"58868",title:"Iron Ore Pelletizing Process: An Overview",slug:"iron-ore-pelletizing-process-an-overview",totalDownloads:3186,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"iron-ores-and-iron-oxide-materials",title:"Iron Ores and Iron Oxide Materials",fullTitle:"Iron Ores and Iron Oxide Materials"},signatures:"Sandra Lúcia de Moraes, José Renato Baptista de Lima and Tiago\nRamos Ribeiro",authors:[{id:"216788",title:"Dr.",name:"Sandra",middleName:"Lúcia",surname:"De Moraes",slug:"sandra-de-moraes",fullName:"Sandra De Moraes"},{id:"233466",title:"Prof.",name:"José Renato Baptista",middleName:null,surname:"De Lima",slug:"jose-renato-baptista-de-lima",fullName:"José Renato Baptista De Lima"},{id:"233467",title:"MSc.",name:"Tiago Ramos",middleName:null,surname:"Ribeiro",slug:"tiago-ramos-ribeiro",fullName:"Tiago Ramos Ribeiro"}]},{id:"58797",title:"Green Corrosion Inhibitors, Past, Present, and Future",slug:"green-corrosion-inhibitors-past-present-and-future",totalDownloads:2788,totalCrossrefCites:5,totalDimensionsCites:7,book:{slug:"corrosion-inhibitors-principles-and-recent-applications",title:"Corrosion Inhibitors, Principles and Recent Applications",fullTitle:"Corrosion Inhibitors, Principles and Recent Applications"},signatures:"Omnia S. Shehata, Lobna A. Korshed and Adel Attia",authors:[{id:"220734",title:"Associate Prof.",name:"Omnia",middleName:null,surname:"Shehata",slug:"omnia-shehata",fullName:"Omnia Shehata"},{id:"227918",title:"Prof.",name:"Adel",middleName:null,surname:"Attia",slug:"adel-attia",fullName:"Adel Attia"},{id:"227919",title:"Dr.",name:"Lobna",middleName:null,surname:"Korshed",slug:"lobna-korshed",fullName:"Lobna Korshed"}]},{id:"51497",title:"The Review of Some Commonly Used Methods and Techniques to Measure the Thermal Conductivity of Insulation Materials",slug:"the-review-of-some-commonly-used-methods-and-techniques-to-measure-the-thermal-conductivity-of-insul",totalDownloads:4196,totalCrossrefCites:13,totalDimensionsCites:28,book:{slug:"insulation-materials-in-context-of-sustainability",title:"Insulation Materials in Context of Sustainability",fullTitle:"Insulation Materials in Context of Sustainability"},signatures:"Numan Yüksel",authors:[{id:"178245",title:"Dr.",name:"Numan",middleName:null,surname:"Yüksel",slug:"numan-yuksel",fullName:"Numan Yüksel"}]},{id:"70661",title:"Bioremediation Techniques for Polluted Environment: Concept, Advantages, Limitations, and Prospects",slug:"bioremediation-techniques-for-polluted-environment-concept-advantages-limitations-and-prospects",totalDownloads:195,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",title:"Trace Metals in the Environment",fullTitle:"Trace Metals in the Environment - New Approaches and Recent Advances"},signatures:"Indu Sharma",authors:[{id:"301262",title:"Associate Prof.",name:"Indu",middleName:null,surname:"Sharma",slug:"indu-sharma",fullName:"Indu Sharma"}]},{id:"47427",title:"Corrosion and Surface Treatment of Magnesium Alloys",slug:"corrosion-and-surface-treatment-of-magnesium-alloys",totalDownloads:3470,totalCrossrefCites:10,totalDimensionsCites:24,book:{slug:"magnesium-alloys-properties-in-solid-and-liquid-states",title:"Magnesium Alloys",fullTitle:"Magnesium Alloys - Properties in Solid and Liquid States"},signatures:"Henry Hu, Xueyuan Nie and Yueyu Ma",authors:[{id:"170745",title:"Prof.",name:"Henry",middleName:null,surname:"Hu",slug:"henry-hu",fullName:"Henry Hu"}]},{id:"58695",title:"Organic Corrosion Inhibitors",slug:"organic-corrosion-inhibitors",totalDownloads:3133,totalCrossrefCites:4,totalDimensionsCites:13,book:{slug:"corrosion-inhibitors-principles-and-recent-applications",title:"Corrosion Inhibitors, Principles and Recent Applications",fullTitle:"Corrosion Inhibitors, Principles and Recent Applications"},signatures:"Bogumił Eugeniusz Brycki, Iwona H. Kowalczyk, Adrianna Szulc,\nOlga Kaczerewska and Marta Pakiet",authors:[{id:"197271",title:"Prof.",name:"Bogumil E.",middleName:null,surname:"Brycki",slug:"bogumil-e.-brycki",fullName:"Bogumil E. Brycki"},{id:"207547",title:"Dr.",name:"Iwona",middleName:null,surname:"Kowalczyk",slug:"iwona-kowalczyk",fullName:"Iwona Kowalczyk"},{id:"207548",title:"Dr.",name:"Adrianna",middleName:null,surname:"Szulc",slug:"adrianna-szulc",fullName:"Adrianna Szulc"},{id:"207549",title:"Dr.",name:"Olga",middleName:null,surname:"Kaczerewska",slug:"olga-kaczerewska",fullName:"Olga Kaczerewska"},{id:"220728",title:"MSc.",name:"Marta",middleName:null,surname:"Pakiet",slug:"marta-pakiet",fullName:"Marta Pakiet"}]}],onlineFirstChaptersFilter:{topicSlug:"metals-and-nonmetals",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/carbon-nanotubes-current-progress-of-their-polymer-composites/carbon-nanotube-polymer-composites-device-properties-and-photovoltaic-applications",hash:"",query:{},params:{book:"carbon-nanotubes-current-progress-of-their-polymer-composites",chapter:"carbon-nanotube-polymer-composites-device-properties-and-photovoltaic-applications"},fullPath:"/books/carbon-nanotubes-current-progress-of-their-polymer-composites/carbon-nanotube-polymer-composites-device-properties-and-photovoltaic-applications",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()