Thickness and surface roughness of pure and CNT-containing PMMA–silica hybrids prepared at different BPO/MMA molar ratios.
\r\n\t
",isbn:"978-1-80355-367-2",printIsbn:"978-1-80355-366-5",pdfIsbn:"978-1-80355-368-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,hash:"d3a491e5194cad4c59b900dd57a11842",bookSignature:" Vladimir V. Kalinin",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11782.jpg",keywords:"Variety of Traits, Historical Remarks, Modern Definitions and Descriptions, Personality Disorders, Comorbid Psychopathology, Depression, Anxiety, Obsessions, Delusion, Treatment of Personality Disorders, Phenomenology of Personality Traits, Delusional Symptoms",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 9th 2022",dateEndSecondStepPublish:"May 12th 2022",dateEndThirdStepPublish:"July 11th 2022",dateEndFourthStepPublish:"September 29th 2022",dateEndFifthStepPublish:"November 28th 2022",remainingDaysToSecondStep:"9 days",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:'A researcher with over 300 publications in psychopathology, psychopharmacology, neuropsychiatry, and epileptology, a member of the Russian Society of Psychiatry, and the Russian Society of Epileptology. Dr. Kalinin\'s biography is included in Marquis "Who’s Who in Medicine and Healthcare" (2006-2007); Who’s Who in Science and Engineering 2008-2009"; "Who’s Who in the World" (2010, 2011), and in the Cambridge International Biographical Centre.',coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"31572",title:null,name:"Vladimir V.",middleName:null,surname:"Kalinin",slug:"vladimir-v.-kalinin",fullName:"Vladimir V. Kalinin",profilePictureURL:"https://mts.intechopen.com/storage/users/31572/images/system/31572.png",biography:"Vladimir V. Kalinin was born in1952 into a family of physicians in Orenburg (Russian Federation). He obtained an MD from Moscow State Medical Stomatological University in 1976. In 1976-1977 he completed an internship in Psychiatry. In 1978 he became a scientific researcher at Moscow Research Institute of Psychiatry of Ministry of Health and Social Development where he is currently the department head. His scientific interests concern a broad range of psychiatry problems. The topic of his doctoral thesis in 1996 was the psychopathology and therapy of anxiety disorders with an emphasis on panic disorder. Prof. Kalinin has authored 228 publications, including research articles in professional journals (in Russian and English), three monographs in Russian, and four monographs in English.",institutionString:"Moscow Research Institute of Psychiatry – The Branch of Serbsky's National Center of Psychiatry and Narcology of Ministry of Health",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"4",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"21",title:"Psychology",slug:"psychology"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"444312",firstName:"Sara",lastName:"Tikel",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/444312/images/20015_n.jpg",email:"sara.t@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"510",title:"Anxiety Disorders",subtitle:null,isOpenForSubmission:!1,hash:"183445801a9be3bfbce31fe9752ad3db",slug:"anxiety-disorders",bookSignature:"Vladimir Kalinin",coverURL:"https://cdn.intechopen.com/books/images_new/510.jpg",editedByType:"Edited by",editors:[{id:"31572",title:null,name:"Vladimir V.",surname:"Kalinin",slug:"vladimir-v.-kalinin",fullName:"Vladimir V. Kalinin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3808",title:"Obsessive-Compulsive Disorder",subtitle:"The Old and the New Problems",isOpenForSubmission:!1,hash:"a88e0e721da6859f0d527cdf5041baf9",slug:"obsessive-compulsive-disorder-the-old-and-the-new-problems",bookSignature:"Vladimir Kalinin",coverURL:"https://cdn.intechopen.com/books/images_new/3808.jpg",editedByType:"Edited by",editors:[{id:"31572",title:null,name:"Vladimir V.",surname:"Kalinin",slug:"vladimir-v.-kalinin",fullName:"Vladimir V. Kalinin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5152",title:"Epileptology",subtitle:"The Modern State of Science",isOpenForSubmission:!1,hash:"3cd008df10046135bfaa4f329e83af7f",slug:"epileptology-the-modern-state-of-science",bookSignature:"Vladimir V. Kalinin",coverURL:"https://cdn.intechopen.com/books/images_new/5152.jpg",editedByType:"Edited by",editors:[{id:"31572",title:null,name:"Vladimir V.",surname:"Kalinin",slug:"vladimir-v.-kalinin",fullName:"Vladimir V. Kalinin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9530",title:"Anxiety Disorders",subtitle:"The New Achievements",isOpenForSubmission:!1,hash:"702af230f376b968ca17900a9007cab9",slug:"anxiety-disorders-the-new-achievements",bookSignature:"Vladimir V. Kalinin, Cicek Hocaoglu and Shafizan Mohamed",coverURL:"https://cdn.intechopen.com/books/images_new/9530.jpg",editedByType:"Edited by",editors:[{id:"31572",title:null,name:"Vladimir V.",surname:"Kalinin",slug:"vladimir-v.-kalinin",fullName:"Vladimir V. Kalinin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6494",title:"Behavior Analysis",subtitle:null,isOpenForSubmission:!1,hash:"72a81a7163705b2765f9eb0b21dec70e",slug:"behavior-analysis",bookSignature:"Huei-Tse Hou and Carolyn S. Ryan",coverURL:"https://cdn.intechopen.com/books/images_new/6494.jpg",editedByType:"Edited by",editors:[{id:"96493",title:"Prof.",name:"Huei Tse",surname:"Hou",slug:"huei-tse-hou",fullName:"Huei Tse Hou"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9052",title:"Psychoanalysis",subtitle:"A New Overview",isOpenForSubmission:!1,hash:"69cc7a085f5417038f532cf11edee22f",slug:"psychoanalysis-a-new-overview",bookSignature:"Floriana Irtelli, Barbara Marchesi and Federico Durbano",coverURL:"https://cdn.intechopen.com/books/images_new/9052.jpg",editedByType:"Edited by",editors:[{id:"174641",title:"Dr.",name:"Floriana",surname:"Irtelli",slug:"floriana-irtelli",fullName:"Floriana Irtelli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10981",title:"Sport Psychology in Sports, Exercise and Physical Activity",subtitle:null,isOpenForSubmission:!1,hash:"5214c44bdc42978449de0751ca364684",slug:"sport-psychology-in-sports-exercise-and-physical-activity",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/10981.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde",surname:"Nielsen",slug:"hilde-nielsen",fullName:"Hilde Nielsen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10211",title:"The Science of Emotional Intelligence",subtitle:null,isOpenForSubmission:!1,hash:"447fc7884303a10093bc189f4c82dd47",slug:"the-science-of-emotional-intelligence",bookSignature:"Simon George Taukeni",coverURL:"https://cdn.intechopen.com/books/images_new/10211.jpg",editedByType:"Edited by",editors:[{id:"202046",title:"Dr.",name:"Simon George",surname:"Taukeni",slug:"simon-george-taukeni",fullName:"Simon George Taukeni"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7811",title:"Beauty",subtitle:"Cosmetic Science, Cultural Issues and Creative Developments",isOpenForSubmission:!1,hash:"5f6fd59694706550db8dd1082a8e457b",slug:"beauty-cosmetic-science-cultural-issues-and-creative-developments",bookSignature:"Martha Peaslee Levine and Júlia Scherer Santos",coverURL:"https://cdn.intechopen.com/books/images_new/7811.jpg",editedByType:"Edited by",editors:[{id:"186919",title:"Dr.",name:"Martha",surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"50446",title:"Protective Coatings Based on PMMA–Silica Nanocomposites Reinforced with Carbon Nanotubes",doi:"10.5772/62808",slug:"protective-coatings-based-on-pmma-silica-nanocomposites-reinforced-with-carbon-nanotubes",body:'\nOrganic–inorganic hybrids are a class of nanocomposite materials, which combine different components on the molecular or nanometric scale, resulting in hybrid systems that not only reflect the sum of the properties of the individual components but also are new materials with unique features. The blend of organic and inorganic phases interacting on the molecular scale combines properties such as processability, flexibility and hydrophobicity of the polymeric organic phases with thermal, chemical and mechanical stability of inorganic ceramic compounds. The nature, size and compatibility of the organic and inorganic phases are of critical importance, because they determine the transparency, homogeneity and stability of the hybrid material. The nature of the bonding at the interface between the phases is of particular significance for this class of nanocomposites. This can be used to classify these hybrid materials: the presence of relatively weak bonding such as van der Waals, dipole–dipole, hydrogen or ionic bonding is characteristic of a class I hybrid material, while strong covalent or ionic–covalent chemical bonding are both characteristic of class II hybrid materials [1].
\nThe sol–gel process is possibly the most suitable method for the synthesis of hybrid materials because of the relatively mild synthesis conditions, the environmental compatibility, and, in particular, the possibility of combining a large number of precursors in different proportions. The simultaneous hydrolytic condensation of the inorganic precursor and polymerization of the organic species produces homogeneous nanocomposites with tunable properties. The multifunctionality of hybrid materials enables them to be used in a variety of applications such as drug delivery systems, optical and electrical devices, catalysts, photochromic devices and protective coatings [1, 2].
\nAmong the large number of reported organic–inorganic nanocomposite systems, in which polymers such as epoxy, polyimide, acrylic and polyethylenimine phases are combined with inorganic oxides such as silica, alumina, zirconia, titania and ceria, one important hybrid class is the polymethylmethacrylate–silica (PMMA–silica) system. PMMA–silica nanocomposites have recently received considerable attention because of their ability to protect a wide variety of metal surfaces such as steels, stainless steels, aluminum alloys and magnesium alloys in an efficiently and environmentally compliant manner [3–5]. These alloys are particularly important for key industries such as the aerospace, automotive and offshore companies. However, most of these alloys suffer severe corrosion in maritime environments and even humid environments and therefore need appropriate surface passivation to survive for long periods in aggressive environments.
\nCorrosion is a spontaneous and irreversible reaction between a metal surface and its environment, resulting in significant economical losses, the failure of critical components and environmental problems. The prevention of corrosion, or at least its mitigation, is therefore one of the main challenges industrially worldwide. The application of protective coatings such as paints or resins, or those based on ceramic materials, is the most common way to improve the durability of metallic alloys significantly. However, organic coatings are relatively thick and can suffer poor thermal and mechanical stability and also a lack of adhesion, while coatings based solely on ceramic materials are likely to be porous and suffer from intrinsic stress-induced cracking, leading to thickness limitations [3, 6].
\nTherefore, organic–inorganic hybrids have been developed to overcome the limitations of traditional coatings, forming an efficient and durable corrosion protection system for metallic surfaces. In the case of PMMA–silica hybrid nanocomposites, this corrosion protection is a consequence of the covalent bonding between PMMA and silica nodes through the coupling agent 3-(trimethoxysilyl)propyl methacrylate (MPTS), formed by three methoxy-silane groups linked by a nonhydrolysable Si–C bond to a methacrylate tail. This bonding mechanism produces a class II hybrid with a nanostructure of dense silica cross-link nodes bridged by short polymeric chains. As a consequence, the closely packed nanostructure acts as an efficient corrosion barrier against the uptake of aggressive agents [3, 4].
\nOne drawback of most organic-inorganic hybrids is their relatively high polymer content of 60–80%; this leads to a reduced mechanical and thermal stability of these materials relative to ceramic systems. To overcome this limitation, carbon nanotubes (CNTs), known for their exceptional mechanical and thermal properties, are regarded as being the most suitable nanostructures to reinforce polymeric and hybrid materials. Thus, for example, in a recent study, Nafion® modified functionalized multiwall CNTs were dispersed in a PMMA–silica nanocomposite at carbon-to-silicon molar ratios of 0.1%, 1.0% and 5.0% [7]. The results of this study showed that the CNTs could be dispersed efficiently within the nanocomposite and that their presence did not affect the connectivity of the hybrid network. In addition, the coatings were able to maintain their high corrosion resistance, with an impedance modulus of about 107 Ω cm2 in 3.5% NaCl solution [7]. However, no mechanical tests were performed in this study.
\nOther studies also report on hybrids and, in particular, on polymers modified by CNTs [8–10]. The development of nanocomposites with improved electrical conductivity, thermal stability and mechanical strength by incorporation of CNTs are the most cited objectives in these studies. For polyethylene–CNT composites containing CNTs in the range of 1–2.5 wt.%, an increase in electrical conductivity up to six orders of magnitude has been observed [8]. A uniform dispersion of CNTs in a polypropylene (PP) matrix has been shown to produce a substantial increase in thermal stability at extremely low loading levels of CNTs, attributed to the relatively large interfacial area common to the PP chains and the free radial scavenging CNTs [9]. For epoxy–CNT nanocomposites, in which the epoxy resin matrix was modified with 0.1 wt.% of amino-functionalized CNTs, an improvement in strain to fracture and an increase in Young’s modulus from 3.29 GPa for the neat resin to 3.50 GPa for the nanocomposite have both been reported [10].
\nProtective hybrid coatings, modified with CNTs, have also been subject of a number of recent studies. Thus, for example, Fe3O4 nanoparticles attached to CNTs have been incorporated successfully at a concentration level of 3 wt.% into epoxy resin coatings deposited on carbon steel [11]. Experimental results showed a significant increase of coating adhesion and corrosion protection efficiency relative to coatings without both the Fe3O4 nanoparticles and the CNTs [11]. Epoxy–CNT composite coatings deposited on aluminum alloy 2024-T3 substrates at CNT levels of 0.1 wt% or 0.5 wt% showed a similar result with an improvement in adhesion strength, wear resistance and rate of corrosion with CNT loading, the latter explained by a CNT-induced decrease of the level of open porosity within the coating [12]. Polypyrrole (PPy) coatings containing low levels of CNTs and chitosan deposited on St-12 steel have shown a significant improvement in corrosion protection relative to PPy coatings with an increase in the corrosion resistance in 3.5% NaCl solution from 176 Ω cm2 for pure PPy to 861 Ω cm2 for PPy–CNT–chitosan coatings [13]. This was attributed to the improved density and more compact structure of the PPy–CNT–chitosan composite relative to the pure PPy coatings [13]. A study of the corrosion protection performance of poly(N-methylpyrrole)-dodecylsulfate/CNT composite coatings on SAE 304 stainless steel was performed in 0.5 mol L−1 H2SO4 solution [14]. In these coatings, the CNTs were added as a second layer on top of the poly(N-methylpyrrole)-dodecylsulfate base layer, either by electrodeposition or by dispersing the CNTs in a Nafion® solution. The results also confirmed a significantly improved corrosion protection of the base layer coated with the Nafion®-dispersed CNTs. This was attributed by these authors to the electrostatic repulsion of corrosive anionic species by the negatively charged CNTs and Nafion® containing surface layers [14]. Using a similar strategy, a conductive coating based on PPy has been modified with 0.25–1 at.% of functionalized and nonfunctionalized CNTs and coated on 60/40 α/β brass [15]. The observed improvement of corrosion protection efficiency of the brass in 3.5% NaCl solution relative to coatings without CNTs was explained by the authors in terms of an increase in electrical conductivity of the CNT-loaded coatings to help form anodically protecting passive oxide films on the metal and also to the increase in tortuosity of the paths corrosive ions have taken through the coating to reach the passive film in order to attack it chemically [15]. The ability for deliberately undercured coatings with 20 wt.% of CNTs and microcapsules containing electrically conductive epoxy resin with self-healing property has also been demonstrated [16]. In this work, Bailey et al. used a novel electrotensile test. Upon cracking of the undercured coating during tensile testing, microcapsules in the crack path release the healing solvent ethyl phenyl acetate (EPA), enabling the subsequent reaction with residual hardener in the vicinity of the crack to make the matrix swell locally and cause cracks to be closed [16].
\nIt is important to note that most as-synthesized CNTs consist of large aggregates or bundles insoluble both in water and in common organic solvents because of their enhanced polarizability induced by their cylindrical shape and hence the strong van der Waals’ interactions between individual nanotubes [17]. Efficient dispersion of CNTs in a polymer matrix requires the initial disentanglement of these large aggregates and chemical compatibility between the CNTs and the polymer matrix to maintain a homogeneous and stable composite structure. This chemical compatibility can be induced either by preselecting a matrix which interacts electrostatically with CNTs or by modifying the interaction potential between the CNTs and the polymer by functionalization. A suitable functionalization of CNTs is able to increase their electrostatic potential, thereby reducing their tendency to agglomerate [9]. However, it is evident that if harsh treatment conditions are used, such as prolonged sonication or excessive chemical treatment, a high level of damage to the hexagonal nanotube structure can occur, leading to a significant loss of mechanical and electrical performance of the CNTs.
\nAlternative approaches have been developed to disperse individual CNTs by noncovalent functionalization employing a wrapping agent, typically a surfactant or an organic polymer. A successful separation of CNTs leading to a stable suspension in aqueous solutions of sodium dodecyl sulfate (SDS) surfactant with coaddition of saturated fatty acids was recently demonstrated [17]. Following on from previous work on PMMA–silica coatings containing CNTs [7], we have successfully prepared CNT-reinforced protective hybrid coatings on carbon steel in this study. The uniform dispersion of CNTs in the PMMA–silica matrix was accomplished using two different pretreatments: the functionalization by carboxylic groups and surfactant assistance using SDS for subsequent introduction in the PMMA–silica hybrids. Particular attention was paid to the extent to which CNTs could be incorporated successfully into the PMMA–silica matrix without compromising the excellent anticorrosive characteristics of the hybrids. The effects of the inclusion of CNTs on the morphological, structural, thermal, mechanical and electrochemical properties of the hybrid matrix were evaluated by optical and atomic force microscopy (AFM), nuclear magnetic resonance, X-ray photoelectron spectroscopy (XPS), mechanical testing and electrochemical impedance spectroscopy (EIS).
\nAll reagents were purchased from Sigma-Aldrich and used as received, apart from the methyl methacrylate monomer, which had been distilled before use to remove the ≤30 ppm amount of 4-methoxyphenol added as a polymerization inhibitor. The PMMA–silica hybrid synthesis consisted of radical polymerization of methyl methacrylate (MMA) and 3-(trimethoxysilyl)propyl methacrylate (MPTS) using the thermal initiator benzoyl peroxide (BPO) and tetrahydrofuran (THF) as a solvent, followed by hydrolysis and polycondensation of tetraethoxysilane (TEOS) and MPTS silane sites, catalyzed by nitric acid (pH 1). The following molar ratios were kept constant: MMA/MPTS = 8, TEOS/MPTS = 2, H2O/Si = 3.5 and ethanol/H2O = 0.5. The BPO/MMA molar ratio was fixed at a value of 0.01 and 0.05 to study the influence of CNTs in two different matrices designated BPO0.01 and BPO0.05.
\nThe TEOS, MPTS and MMA molecular structures are shown in Figure 1. The siloxane bridges (C–Si–O) between the organic and the inorganic phase were derived from MPTS, a modified silicon alkoxide with a methacrylate group which acts as a coupling agent between the organic component, PMMA (polymerized MMA), and the inorganic component, silica. In the presence of acidified water, TEOS and MPTS form a silica network through sol–gel hydrolysis and condensation reactions, a process that converts a colloidal suspension (the sol) into a three-dimensional network (the gel). First, the alkoxy groups (O–CH2–CH3 and O–CH3) are hydrolysed, forming silanol groups (Si–OH) and eliminating alcohol molecules (HO–CH2CH3 and HO–CH3), and then silanol groups can react with one another or the initial reagent to yield Si–O–Si bonds [18].
\nMolecular structures of the synthesis reagents.
Single-wall CNTs were purchased from Dropsens for incorporation into the two hybrids BPO0.01 and BPO0.05. In one pretreatment prior to their incorporation, the CNTs were dispersed using the method described by Alves da Cunha et al. [17], in which aqueous solutions of SDS surfactant (Sigma-Aldrich) and hexadecanoic acid (palmitic acid, Sigma-Aldrich) are used. The dispersion procedure, schematized in Figure 2a, starts from raw CNTs and is based on the nonpolar groups of SDS and palmitic acid promoting physical interaction with CNTs, while polar groups of these two chemicals interact with water [17]. After dispersion in SDS and palmitic acid, the CNTs were added at the end of the PMMA–silica hybrid synthesis, at a CCNT/SiHybrid molar ratio of 0.05%, to the two matrices BPO0.01 and BPO0.05. The two nanocomposites produced in this manner were designated BPO0.01_CNT_SDS and BPO0.05_CNT_SDS, respectively.
\nIn addition to the SDS method, dispersion through functionalization with carboxyl groups was also studied. In the second method, 0.1 g of CNTs was first put in a flask containing 75 ml of concentrated sulfuric acid (H2SO4, Sigma-Aldrich) and 25 ml of concentrated nitric acid (HNO3, Sigma-Aldrich). The CNT-containing solution was then heated and stirred under reflux at 70°C for 2 h followed by 30°C for 4 h. Then, the functionalized CNTs were filtered through an ANOPORE 0.02 μm pore size membrane and washed with distilled water until the pH was 6. After this, drying was carried out at 70°C for 4 h under vacuum and at 200°C for 4 h in air (Figure 2b). The oxidation procedure with nitric acid and sulfuric acid adds carboxyl groups at the walls of the CNTs and enhances their solubility in the PMMA–silica hybrid. These functionalized CNTs (CNTCOOH) were dispersed using Nafion® and incorporated into BPO0.05 matrix in the inorganic phase at a CCNT/SiHybrid molar ratio of 0.05%. The nanocomposite produced in this manner was designated BPO0.05_CNTCOOH.
\nAfter synthesis, the five homogeneous and transparent hybrid sols were used to deposit films onto 2.5 cm x 2.5 cm x 0.4 cm A1020 carbon steel substrates by dip-coating (3 immersions, each of 1 min, at a withdrawal rate of 14 cm min−1, with air-drying intervals of 10 min between dips), with the remainder of the solutions placed in Teflon holders to obtain unsupported films, and then heat-treated initially at 60°C for 24 h, followed by 160°C for 3 h. Prior to being dipped, the carbon steel substrates had all been sanded with 100, 300, 600 and 1500 grit sandpaper, washed with isopropanol for 10 min in an ultrasound bath and dried under nitrogen.
\nExperimental procedure for the dispersion of carbon nanotubes by (a) interaction with SDS and palmitic acid and (b) functionalization with carboxyl groups.
A JEOL 71500F field-emission gun scanning electron microscope (FEG-SEM) was used to acquire micrographs of raw and dispersed CNTs.
\nXPS was used for characterization of the CNTs and the hybrids by extracting the elemental compositions and monitoring the local bonding structure of carbon (C 1s), oxygen (O 1s) and silicon (Si 2p) Measurements were performed in a UNI-SPECS UHV surface analysis system, using Mg Kα radiation (hν = 1253.6 eV) and a pass energy of 10 eV for high-resolution spectra. The inelastic background of the C 1s, O 1s and Si 2p photoemission peaks was subtracted using the Shirley baseline. The displacement due to charge accumulation was corrected by fixing the C–H component of the C 1s spectrum at 285.0 eV. The surface composition was determined from peak intensities corrected by the orbital sensitivity factors of the corresponding elements. The CasaXPS processing software was used for deconvolution of the spectra using combinations of Gaussian and Lorentzian functions (Voigt profiles) for analysis of the chemical bonding structure.
\n29Si nuclear magnetic resonance spectroscopy (29Si-NMR) measurements in the solid state were performed in a Varian Inova spectrometer operating at 300 MHz and 7.05 T, using a Larmor frequency of 59.59 Hz and tetramethyl silane (TMS) as an external standard. The spectra were obtained from Fourier transforms following a single excitation pulse of π/2 with a relaxation time of 2 s. The CasaXPS processing software was used for deconvolution of the spectra using Voigt profiles.
\nThe thickness of each coating was determined using a Filmetrics F3-CS optical interference system. AFM was used to evaluate the surface morphology of the coatings and to determine their roughness. Agilent Technologies Model 5500 and NX10 Park System atomic force microscopes were used in tapping mode with a silicon cantilever. The results were analyzed using Gwyddion software. RMS (root mean square) roughness values were obtained from 1 μm × 1 μm topography images of the hybrid coatings deposited on the A1020 carbon steel.
\nThermogravimetric analysis (TGA) of the five unloaded and CNT-loaded hybrids, each in the form of unsupported films, were carried out in a TA Instruments STD Q600 analyzer. The samples were heated at a rate of 5°C min−1 from 25°C to 800°C, under 100 mL min−1 of nitrogen flow.
\nNanoindentation measurements were carried out in a Nano Indenter® XP system, MTS, equipped with TestWorks 4 Professional level software. A diamond tip with Berkovich geometry was used. For each sample, nine measurements were performed, with 100 μm spacing between each indentation. The input parameters were Poisson ratio (0.35), depth limit (140 nm), allowable drift rate (0.8 nm/s), frequency target (45 Hz) and percent unload in stiffness calculation (50%). Use of the continuous stiffness measurement (CSM) method allowed the continuous determination of the contact stiffness during loading, providing more accurate results. This was achieved by superimposing a small oscillation on the primary loading signal and by analyzing the resulting response of the system using a lock-in amplifier. The hardness and elastic modulus were obtained as a continuous function of depth from a comparison of samples indented in the range of 60–120 nm. To avoid effects on the nanomechanical properties of the films from the underlying steel substrates, the maximum penetration depth for the indentation experiments was set at less than 10% of the coating thickness [19].
\nMicroscratch measurements were performed using homemade equipment at the National Physical Laboratory (Teddington, London, U.K.) to evaluate the scratch resistance and the adherence of the coatings to the A1020 carbon steel substrates. For each sample, 3 parallel tracks of 6 mm length with 1 mm spacing between the tracks were made using a linearly increasing load (from 2 mN to 100 mN), with a diamond tip with spherical conical geometry and 10 μm radius. For CNT-loaded hybrids, further microscratch experiments were undertaken where the load was increased up to a maximum of 240 mN. The measurements also provided the coefficient of friction as a function of the track distance. The tracks were analyzed using a Nikon Measuring Microscope MM-60, coupled with a Nikon SC-213 Digital Counter, which enabled the critical load at which delamination started to be determined.
\nThe anticorrosion efficiency of the hybrid coatings deposited on the A1020 carbon steel was analyzed by EIS using a Gamry Potentiostat Reference 600. The impedance data were collected once a week, until failure, over a frequency range from 10−2 Hz to 104 Hz with 10 points per decade and signal amplitude of 10 mV (rms) in an electrochemical cell containing 80 ml of 3.5% NaCl solution at 25°C. The electrochemical cell consisted of a Ag|AgCl|KClsat reference electrode, a platinum mesh counter electrode, a platinum electrode connected to the reference electrode through a 0.1 μF capacitor and the working electrode of either coated or uncoated carbon steel. The experimental data were fitted with equivalent electrical circuits using Zview software to analyze the EIS response.
\nVan der Waals’ forces between CNTs cause their agglomeration in the form of dense bundles. Commercial CNT powder consists of dense particles (Figure 3a), which comprises the bundles of CNTs (Figure 3b). It is evident from Figure 3c and Figure 3d that both procedures used for dispersing the CNTs were successful.
\nFEG-SEM micrographs of carbon nanotubes (a, b) commercial powder, (c) dispersed in SDS and palmitic acid and (d) functionalized and dispersed in the precursor solution.
CNTs have a peculiar XPS C 1s spectrum with the presence of a predominant aromatic C-C-sp2 component and characteristic π plasmon transitions, the intensities of which scale with the degree of order of the hexagonal carbon structure. XPS C 1s spectra of pure and functionalized CNTs are presented in Figure 4. Quantitative XPS analysis can detect all elements except hydrogen and helium. Discounting the presence of hydrogen, the raw CNTs are composed of 93.2 at.% of carbon and 6.8 at.% of oxygen (Figure 4a), partially related to surface contamination by oxygenated hydrocarbon groups of adventitious carbon. \nThe following characteristics indicate a highly aromatic structure: the presence of plasmon peaks (collective π → π* transitions at ~291 eV and ~394 eV) and the narrow and intense component related to aromatic C-C-sp2bonds (284.4 eV) with FWHM (full width at half maximum) of about 0.9 eV and a peak area of 65.5% [20]. The high energy components related to C–O, C=O and O–C=O bonds, which can also be observed in the O 1s XPS spectrum (Figure 4b), show the presence of ether/alcohol, carbonyl and carboxyl groups on the surface of the nanotubes, associated mainly with the presence of adventitious carbon responsible for the C–H component at ~285 eV. After functionalization, the O–C=O component increases significantly (Figure 4c and 4d) due to the linking of these groups to the walls of the nanotubes, aiding the dispersion of CNTs in the hybrid matrix through their polarity. The degree of functionalization of nanotube walls defined as the intensity ratio I(O–C=O)/I(C-C-sp2) was 0.3.
\n(a) C 1s and (b) O 1s XPS spectra of the as-received CNTs and (c) C 1s and (d) O 1s XPS spectra of functionalized CNTs.
All the PMMA–silica hybrid coatings deposited on the A1020 carbon steel were transparent with a homogeneous, colorless appearance. A representative image of one of the 2.5 cm x 2.5 cm x 0.4 cm coated samples is shown in Figure 5a. Inspection by optical microscopy performed on free standing hybrids in transmission mode confirmed the uniformity of these coatings (e.g., Figure 5b) and indicate a very good dispersion of CNTs in the nanocomposites.
\n(a) Representative image of BPO0.01_CNT_SDS coating deposited on A1020 carbon steel and (b) optical microscopy image showing a detail of the BPO0.01_CNT_SDS transparent film. Parallel lines in (b) are related to the steel substrate morphology.
One effect caused by increasing the BPO/MMA molar ratio from 0.01 to 0.05 was the reduced gel time of the hybrid sol. This occurred because of the enhanced polymerization rate induced by the increase in the number of radicals of the BPO thermal initiator, leading to a higher viscosity of the solution. In addition to this effect, the inclusion of CNTs also increased the viscosity of the solution prior to dip coating. Together, these two effects account for the trend in the observed hybrid coating thicknesses shown in Table 1.
\nSample name | \nBPO/MMA molar ratio | \nThickness (µm) | \nSurface RMS roughness (nm) | \n
---|---|---|---|
BPO0.01 | \n0.01 | \n2.8 | \n0.4 | \n
BPO0.01_CNT_SDS | \n0.01 | \n5.7 | \n0.4 | \n
BPO0.05 | \n0.05 | \n3.5 | \n0.4 | \n
BPO0.05_CNT_SDS | \n0.05 | \n6.6 | \n0.5 | \n
BPO0.05_CNTCOOH | \n0.05 | \n4.9 | \n0.2 | \n
Thickness and surface roughness of pure and CNT-containing PMMA–silica hybrids prepared at different BPO/MMA molar ratios.
AFM topography images obtained for pure PMMA–silica films and for those containing well-dispersed CNTs showed that each of the five hybrids presented a very smooth and uniform surface morphology (Figure 6). No defects, pores, cracks or inhomogeneities were observed on the coated samples. The RMS roughness (RRMS) extracted from AFM measurements (Table 1) showed very low values of <0.5 nm for all coatings, confirming the homogeneity of the films and the efficient dispersion of CNTs within the hybrid matrices. The BPO0.01_CNT_SDS surface morphology is shown in the high-resolution AFM image in Figure 7. The local smoothness of the surface is confirmed in this image, while there is also indication for a possible presence of a single CNT on the surface.
\nAFM images of all hybrid coatings deposited on carbon steel.
High-resolution AFM image of the BPO0.01_CNT_SDS sample.
XPS analysis showed that the composition of all hybrids was very similar, with values close to the nominal atomic percentages of 62 at.% of carbon, 32 at.% of oxygen and 6 at.% of silicon, with an experimental error of ±5%. Representative spectra of carbon, oxygen and silicon, deconvoluted into their structural components, are presented in Figure 8. The C 1s spectrum, shown in Figure 8a, has four components related to C–H,
Representative (a) C 1s, (b) O1s and (c) Si 2p XPS spectra of a PMMA–silica hybrid and (d) a schematic of the PMMA–silica hybrid structure.
29Si-NMR analysis also allows the identification of the local chemical bonding structure and the quantitative evaluation of the connectivity of the inorganic phase. To determine the influence of the CNTs on the inorganic silica network, NMR was used to compare the pure and CNT-containing hybrids. Representative spectra are shown in Figure 9 for a CNT-containing sample and a pure sample. Both spectra have two groups of peaks corresponding to Ti (i = 1, 2, 3) and Qj (j = 2,3,4) structures shown in Figure 10. These two forms of local structures arise as a consequence of the MPTS and TEOS precursor species, respectively. The peaks at chemical shifts of −45, −55 and −63 ppm correspond to T1, T2 and T3 environments, respectively, while the peaks at chemical shifts at −90, −100 and-110 ppm are associated with Q2, Q3 and Q4 environments, respectively (Figure 10) [22]. The connectivity of the inorganic phase, defined as degree of polycondensation (Cd), was determined from the fitted Voigt profiles using the following equation:
The degree of polycondensation determined for BPO0.01 was 78±1%, meaning that about 80% of the silicon atoms are bonded to other silicon atoms through Si–O–Si oxygen bridges. Similar Cd values were obtained for the CNT-containing hybrid BPO0.01_CNT_SDS, indicating that CNT loading did not affect the connectivity of the silica phase.
\n29Si-NMR spectrum from the BPO0.01 and BPO0.01_CNT_SDS samples.
Schematic representation of Ti and QJ structures. ‘R’ indicates OH or OCH3 groups in MPTS or OCH2CH3 in TEOS.
Thermogravimetry examines the overall connectivity of the hybrid network in terms of the thermal stability of the hybrid materials in different atmospheres. Under nitrogen, PMMA degrades in 3 events as the temperature increases: scission of head-to-head linkages at about 200°C (T1), scission of vinylidene chain-ends at about 300°C (T2) and finally random scissions of the polymer chains due to the rupture of head–tail segments at about 400°C (T3) [23, 24]. The T4 event at higher temperatures around 500°C is due to the dehydration of the remaining silanol groups of the silica network, detected in the XPS Si 2p spectra of Figure 8 [23]. Thermogravimetric (TG) curves and their derivatives (differential thermogravimetry curves – DTG curves) for all the hybrid samples are shown in Figure 11. The onset temperature, T0, which is a measure of the thermal stability of each material, is defined as the temperature at which a 5 % weight loss occurs. The temperatures of all events and the percentages of the silica and graphitic residues at 800°C are listed for the five hybrid samples in Table 2.
\nComparing the DTG results obtained for the BPO0.01 and BPO0.05 matrices (Figure 11b), it is apparent that the higher quantity of BPO leads to an increase in the degree of polymerization and thus to a higher thermal stability, so that the low-temperature events seen in BPO0.01 are suppressed in BPO0.05. It can be seen from the data in Table 2 that all five hybrids are stable up to 200°C, with sample BPO0.01_CNT_SDS having the highest thermal stability (220°C). Furthermore, considering that the T4 peak related to the dehydration of silanol is almost constant and that all loaded samples have the same CNT concentration, the residue formed mainly of pure silica (SiO2) and some remaining graphitic phase can be used to estimate the fraction of the organic phase. The observation that hybrids prepared at the lower BPO to MMA ratio of BPO0.01 have about 4% higher amount of residue than those synthesized at the higher ratio of 0.05 is consistent with an increase in polymerization and a higher fraction of the polymeric phase in the BPO0.05-based samples.
\nIt is also interesting to note that the addition of the CNTs to BPO0.01 enhanced its thermal stability. In addition to the 15°C increase in T0, the first two depolymerization events (T1 and T2) shifted by about 50°C to higher temperatures (Table 2). The T3 disintegration event increased by 20°C. This result is similar to that found by Jin et al. [25], in which T3 was shifted upwards by 30°C for a PMMA matrix containing 26 wt.% of CNTs, a concentration significantly higher than reported in this work. The retardation effect was attributed by Jin et al. to interactions between the carbon nanostructure and macroradicals generated during the depolymerization, as suggested by Troitskii et al. [26]. In contrast, the BPO0.05 matrix shows values of the thermal degradation events almost unchanged by the presence of CNTs. Compared to the BPO0.01 matrix, this behavior can be understood in terms of a more stable structure of the BPO0.05 matrix induced by the higher degree of polymerization.
\n(a) TG curves and (b–d) DTG curves of the five hybrid samples.
Hybrid | \nT0 (°C) | \nT1 (°C) | \nT2 (°C) | \nT3 (°C) | \nResidue (%) | \n
---|---|---|---|---|---|
BPO0.01 | \n205 | \n210 | \n290 | \n385 | \n24.0 | \n
BPO0.01_CNT_SDS | \n220 | \n255 | \n355 | \n390 | \n25.1 | \n
BPO0.05 | \n208 | \n220 | \n310 | \n390 | \n21.1 | \n
BPO0.05_CNT_SDS | \n209 | \n220 | \n310 | \n390 | \n19.8 | \n
BPO0.05_CNTCOOH | \n192 | \n220 | \n310 | \n385 | \n20.1 | \n
The characteristic temperatures of the degradation events of PMMA–silica hybrid and the residue percentage obtained by thermal analysis in nitrogen atmosphere.
T0: Temperature of 5% weight loss, and temperatures T1 of the first, T2 of the second and T3 of the third degradation event.
Our work and a number of other studies investigating the reinforcement effects by CNTs in diverse organic and hybrid matrices all come to the same conclusion: the modification improves the thermal stability of the composite. Thus, for example, in a recent study, Sabet et al. [27] used 5 wt.% of multiwall CNTs (MWCNTs) functionalized with carboxylic groups to reinforce an organic–inorganic hybrid matrix based on polyhedral oligomeric silsesquioxane (POSS). The approach involved a covalent conjugation between the CNTs and the POSS molecules through amide bonds. These authors observed that the decomposition under nitrogen of the neat POSS started at 265°C, and a complete weight loss was observed at 500°C. The POSS–MWCNT composite exhibited a fairly stable thermal behavior from room temperature to 200°C, and only 40% of weight loss by 1000°C measured by TGA.
\nZhang et al. [28] coated functionalized MWCNTs with silica nanospheres, and subsequently introduced these into PMMA at a loading level of 4.28 wt.% to make it more flame resistant. TGA of the resultant PMMA/silica/MWCNT nanocomposites heated at 20°C min−1 indicated that the MWCNT/silica combination not only increased the temperature indicating 5% weight loss from 300°C of PMMA to 343°C, but also the temperature of the maximum rate of degradation increased from 338°C for PMMA to 387°C for the nanocomposites. These results, supported by cone calorimeter tests and scanning electron microscopy, showed that the MWCNT/silica combination introduced into the PMMA noticeably improved the thermal stability and flame retardancy of PMMA by in effect forming a surface thermal barrier layer during burning which helped to protect the underlying bulk from exposure to the external heat source.
\nFraser et al. performed an in situ polymerization of PMMA in the presence of a low 0.1 wt.% concentration of either raw single-wall CNTs (SWCNTs) or acid-treated SWCNTs [29]. Although these transparent nanocomposites had slightly lower temperatures at which 10% weight loss had occurred in TGA when heated at 10°C min−1 in comparison with commercial PMMA, the temperature corresponding to the maximum rate of degradation increased by 8°C for the composites with the raw SWCNTs and by 18°C for the composites with acid-treated SWCNTs. Interestingly, these authors also showed using Raman spectroscopy that acid treating of the SWCNTs enabled them to bind covalently with the PMMA, rather than merely be in contact with it, as was the case with the raw SWCNTs.
\nThe thermal analysis results obtained by Xiong et al. for polyurethane (PU) covalently linked with 2 wt.% of amino-functionalized MWCNTs indicate that the temperature at which the maximum rate of degradation occurs increased from 408°C for PU to 419°C for the composite in TGA experiments with heating rates of 20°C min−1, once again indicating an improvement of thermal stability of a polymer matrix with the addition of CNTs [30]. Another TGA study, this time with a heating rate of 10°C min−1 on PU nanocomposite coatings modified with 5 wt.% MWCNTs, showed that the temperature at which there was complete decomposition of the matrix PU increased by 21°C with the introduction of the MWCNTs [31]. This was explained by the authors in terms of the relatively inert MWCNTs retarding the free movement of the PU chains.
\nOverall, it can be concluded that the improvement of the thermal stability of CNT-modified polymers and hybrid nanocomposites, reported by a number of laboratories, can be attributed to a variety of factors, all of which are related to the intrinsic thermal stability of CNTs, the effects of radical scavenging and by forming a physical barrier making it difficult for volatile products in the matrix to escape from the bulk.
\nNanoindentation curves provide continuous values of Young’s modulus and hardness during loading as a function of displacement (e.g., Figure 12). The average Young’s modulus and hardness values and the corresponding standard deviations and coefficients of variation for the five nanocomposites, determined from displacements between 60 and 120 nm, are summarized in Table 3.
\nRepresentative loading and unloading nanoindentation curves for sample BPO0.01 from which hardness and Young´s modulus values were obtained.
Nanoindentation results show a coating hardness between 0.38 ± 0.4 GPa and 0.49 ± 0.6 GPa for all samples, values about twice as high as those for PMMA (0.22–0.26 GPa), but, not surprisingly, significantly lower than amorphous SiO2 (7–9 GPa) [32]. Young’s modulus values were in the range between 6.6 ± 0.3 GPa and 7.7 ± 0.1 GPa, about three times higher than pure PMMA (2.24–3.24 GPa), but about one order of magnitude lower than the elastic modulus of silicon oxide (73 GPa). These values represent a significant improvement of hardness and stiffness compared to pure acrylic, despite the presence of more than 70% polymethacrylate groups in the hybrid [33]. The inclusion of CNTs only produced a significant increase in hardness for the BPO0.05_CNT_SDS coating, with an increase of some 20% in comparison with the hardness of the BPO0.05 reference sample.
\nSample | \nYoung’s modulus (GPa) | \nHardness (GPa) | \n||||
---|---|---|---|---|---|---|
Mean | \nStd. dev. | \n% COV | \nMean | \nStd. dev. | \n% COV | \n|
BPO0.01 | \n7.849 | \n0.398 | \n5.07 | \n0.400 | \n0.042 | \n10.41 | \n
BPO0.01_CNT_SDS | \n6.597 | \n0.346 | \n5.25 | \n0.379 | \n0.036 | \n9.58 | \n
BPO0.05 | \n7.749 | \n0.137 | \n1.77 | \n0.413 | \n0.012 | \n2.83 | \n
BPO0.05_CNT_SDS | \n7.718 | \n0.454 | \n5.88 | \n0.491 | \n0.059 | \n12.07 | \n
BPO0.05_CNTCOOH | \n7.501 | \n0.154 | \n2.06 | \n0.431 | \n0.014 | \n3.23 | \n
Young’s modulus and hardness values, determined from indentations between 60 and 120 nm deep.
Microscratch curves (a) for BPO0.01 matrix coatings and (b) for BPO0.05 matrix coatings.
Scratch testing is a widely used, fast and effective method to provide information on the level of adhesion, resistance to scratching, the mechanism of fracture, the coefficient of friction and the wear characteristics of coatings. In a typical experiment, a coating is scratched with increasing normal force using a diamond stylus. The track is then analyzed by optical or electron microscopy to determine the mechanism of mechanical failure, such as coating detachment (loss of adhesion to the substrate), cracking and plastic deformation. The scratch test provides the coefficient of friction, defined as the ratio of the applied load and the normal load, directly.
\nCurves of the coefficient of friction as a function of scratch distance (microscratch curves) for all hybrid coatings are shown in Figure 13. The increase of the friction coefficient is associated with an increase in scratch resistance (friction force), while the critical load for delamination is related to the difficulty in breaking the adhesive interaction between the coating and the metal substrates. The scratch tracks, shown in Figure 14, were analyzed by optical microscopy to determine the failure mechanism and the critical load for film cracking and delamination.
\nOptical microscopy of the five hybrid coatings deposited on A1020 carbon steel after scratch testing.
As is evident from Figure 14, the PMMA–silica reference samples (BPO0.01 and BPO0.05) were the softest coatings, showing four deformation stages with increasing force: (1) elastic deformation, (2) plastic deformation, (3) cracks and (4) delamination. The critical loads for delamination were 78 mN for BPO0.01 and 84 mN for BPO0.05, marked by the start of strong noise on the microscratch curves shown in Figure 13. The hybrids containing CNTs showed a higher scratch resistance and better adhesion to the A1020 steel substrate. Most interestingly, the BPO0.01_CNT_SDS coating showed an extreme reinforcement effect, with a higher coefficient of friction than carbon steel (0.5) [34] and no delamination up to a load of 240 mN (Figure 15a), the maximum load capacity of the equipment. BPO0.05_CNT_SDS and BPO0.05_CNTCOOH had critical loads for delamination of 133 mN (Figure 15b) and 122 mN (Figure 15c), respectively, both are higher than those obtained for the BPO0.05 matrix. These results confirm that the intrinsic mechanical properties of CNTs, i.e., the high elastic modulus (~1.4 TPa) and the high strength (50–500 GPa), contribute to a significant reinforcement of the hybrid [35]. The strong adhesion of the hybrid film to the carbon steel is a consequence of the covalent interaction between the hydroxyl groups of the substrate and the silanol groups of the inorganic part of the hybrid. The increased mechanical strength of the hybrids, induced by the incorporation of CNTs, increases the critical force for delamination, thus extending the functionality of protective PMMA–silica coatings to conditions where abrasive forces act in an aggressive environment, such as in reactors for the acidic processing of sugar cane, for example.
\n\nOptical microscopy of (a) the BPO0.01_CNT_SDS coating after scratch testing to a load of 240 mN, (b) the BPO0.05_CNT_SDS coating after scratch testing to a load of 133 mN and (c) the BPO0.05_CNTCOOH coating after scratch testing to a load of 122 mN.
Other studies have also examined the effect of CNT incorporation on the mechanical properties of organic and hybrid coatings. At the low SWCNT loading studied by Fraser et al. in their PMMA–SWCNT composites, no clear benefit was seen in the tensile properties, although there was some evidence to suggest that composites with acid-treated SWCNTs had improved impact strength in comparison with pure PMMA [29].
\nIn their recent study on epoxy–CNT composite coatings deposited on 2024-T3 aluminum alloy substrates, Khun et al. were able to conclude that 0.5 wt.% CNT loading clearly produced composites with improved adhesion to the substrates and improved wear resistance relative to the unloaded epoxy coatings [12]. This improvement was explained in terms of a relaxation of the residual stress within the epoxy coating caused by the incorporation of the CNTs.
\nKumar and Gasem have been able to demonstrate the beneficial effects of incorporating 2 wt.% of functionalized MWCNTs into polyaniline (PANI) coatings deposited on mild steel by dip coating [36]. The PANI–MWCNT coatings showed a Vickers micro hardness of 385 HV, compared with 266 HV for pure PANI coatings. Furthermore, PANI–MWCNT coatings showed significantly improved resistance to scratching in comparison with pure PANI coatings.
\nDespite the results obtained by Fraser et al. [29], the clear trend in the results of the work reported here and elsewhere is that controlled incorporation of CNTs into hybrid and polymer matrices at suitable levels is likely to be beneficial to the matrices in terms of improved mechanical performance. Thus, it is reasonable to expect significant improvements in terms of scratch and wear resistance, adhesion strength and also hardness and Young´s modulus of the matrices when incorporating CNTs. For the most part, this can be attributed to the excellent mechanical properties of the CNTs. However, more work is clearly required to understand fully the mechanism responsible for the beneficial effect of incorporating CNTs on the adhesion of these matrices to metallic substrates.
\nThe corrosion protection efficiency of the pure and the modified hybrid coatings was determined by EIS, performed in an electrochemical cell containing aqueous 3.5% NaCl solution at 25°C. The principle of EIS is to impose a small sinusoidal potential with varying frequency and, by measuring the alternating current response, to obtain the impedance of the electrochemical system. The impedance Z(ω) is composed of a real and an imaginary part, involving the ohmic and capacitive contributions, and can be represented as a vector of length |Z|, where |Z| = (Zreal2 + Zimag2)1/2. The angle between the Z vector and the Zreal axis is the phase angle ϕ [37]. For each measurement, three graphs were obtained: a Nyquist plot (Zreal vs. Zimag) and two Bode graphs of the impedance modulus and phase angle as a function of frequency.
\nEIS measurements were performed for all hybrid-coated samples after one day of immersion and then at 1 week intervals until a significant drop of the impedance modulus occurred due to pitting. The time interval until the onset of pitting defined the lifetime of the coating. The Nyquist and Bode plots are shown in Figure 16, while the equivalent electrical circuits of the electrolyte–coating–substrate system used to fit the EIS data are shown in Figure 17. For comparison, EIS characteristics of bare A1020 carbon steel substrate were also recorded, as shown in Figure 16. The impedance modulus at low frequency and the phase angle behavior is an indicator of the anticorrosion performance. Coatings with modulus higher than 108 Ω cm2 typically provide excellent protection, while those below 106 Ω cm2 have poor protection efficiency [38].
\nThe BPO0.01 matrix had an initial impedance modulus of 108 Ω cm2 which remained unchanged during 56 days it survived testing, while the BPO0.05 matrix had a one order of magnitude higher impedance modulus of 109 Ω cm2, remaining stable for its lifetime of 21 days. This finding might be related to the higher overall connectivity of the BPO0.05 hybrid, which, on the basis of the results of NMR, TG/DTG and mechanical testing, had highly polymerized organic moieties densely interconnected with reticulated silica nodes. This excellent performance of the PMMA–silica hybrid coating can be compared with the performance of the bare carbon steel. The coated samples showed up to 5 orders of magnitude higher corrosion resistance, a consequence of the dense structure acting as an efficient diffusion barrier against aggressive agents. In this context, it should be noted that the anticorrosive performance reported for most hybrid coatings, in terms of initial impedance modules, is usually of the order of 107 Ω cm2 [5, 39, 40].
\nThe addition of CNTs dispersed in SDS in the BPO0.01 matrix did not change neither the impedance modulus (108 Ω cm2) significantly, nor the lifetime of the coating (43 days). The addition of functionalized and dispersed CNTs to the BPO0.05 matrix increased the impedance modulus, but decreased the lifetime of the coating to 7 days for BPO0.05_CNT_SDS and 10 days for BPO0.05_CNTCOOH. As has been suggested in recent studies [12, 13], CNTs act in the PMMA–silica nanocomposite as structural reinforcements and densifier agents, providing improved thermal and mechanical properties without degrading the chemical barrier characteristics. The extraordinary electrochemical performance of these micron thick films, approaching that of thick paints, is related to their dense hybrid structure, thus providing an efficient passivation of metallic surfaces [4]. Although the CNT-containing coatings were thicker than pure hybrid films, they actually showed shorter lifetimes in the NaCl solution. This can be explained in terms of electrolyte uptake via diffusion paths along the outer nanotube walls and also through the cavities of the nanotubes. Therefore, the degradation of the coatings after long-term exposure is associated with the penetration of the electrolyte, involving Cl− ions, oxygen and water and subsequent chemical reaction (corrosion) at the coating/metal interface [38], causing a sudden drop of the electrochemical performance.
\nNyquist and Bode plots for uncoated carbon steel (a) BPO0.01 matrix and (b) BPO0.05 matrix after 1 day of immersion in 3.5% NaCl standard saline solution.
The electrical equivalent circuit used to fit all the EIS experimental data.
To obtain a quantitative model of the electrochemical system, the equivalent circuit of Figure 17 was used to fit the impedance data of Figure 16. The circuit consists of two time constants, Rc/Cc at high frequency (~104 Hz) and Rct/Cdl at low frequency (~1 Hz), where Rc is the coating resistance, Cc is the coating capacitance, Rct is the charge transfer resistance and Cdl is the capacitance of the electric double layer of the coating/carbon steel interface [38]. As frequently applied for electrochemical systems, the capacitors were replaced by a constant phase element (CPE) to take into account the nonideality of the capacitor representing the coating, expressed by the nc and ndl exponents. All circuit parameters obtained by fitting the EIS data are shown in Table 4. All chi-square (χ2) values were smaller than 10−3, ensuring a high fit quality. Coatings showing a combination of high corrosion resistance and low phase angle values close to −90°, indicative of ideal capacitive behavior, are very efficient in blocking the electrolyte uptake. All hybrid films showed elevated volume and interface resistances and high-frequency phase angle values below −80° over four decades, all of which are characteristics expected for efficient protective coatings.
\n\n | BPO0.01 | \nBPO0.01_CNT_SDS | \nBPO00.5 | \nBPO005_CNT_SDS | \nBPO005_CNTCOOH | \n|||||
---|---|---|---|---|---|---|---|---|---|---|
χ2 | \n1.4 × 10−3 | \n\n | 3.0 × 10−4 | \n\n | 3.0 × 10−4 | \n\n | 2.3 × 10−4 | \n\n | 4.4 × 10−4 | \n\n |
RC (Ω cm2) | \n2.8 × 107 | \n(3.80) | \n1.3 × 107 | \n(8.77) | \n1.5 × 107 | \n(5.52) | \n1.0 × 107 | \n(10.7) | \n1.5 × 107 | \n(5.52) | \n
CPEC (Ω−1cm−2sn) | \n3.8 × 10−9 | \n(1.00) | \n1.5 × 10−9 | \n(0.96) | \n2.7 × 10−9 | \n(0.77) | \n9.5 × 10−10 | \n(1.25) | \n2.7 × 10−9 | \n(0.77) | \n
nC | \n0.95 | \n(0.13) | \n0.96 | \n(0.10) | \n0.95 | \n(0.09) | \n0.96 | \n(0.13) | \n0.95 | \n(0.09) | \n
Rct (Ω cm2) | \n1.9 × 108 | \n(1.32) | \n1.6 × 108 | \n(1.09) | \n3.8 × 109 | \n(1.23) | \n2.6 × 1010 | \n(1.74) | \n3.8 × 109 | \n(1.23) | \n
CPEdl (Ω−1cm−2sn) | \n7.3 × 10−9 | \n(1.52) | \n1.7 × 10−9 | \n(1.29) | \n2.2 × 10−9 | \n(0.91) | \n6.6 × 10−10 | \n(1.76) | \n2.2 × 10−9 | \n(0.91) | \n
ndl | \n0.74 | \n(1.27) | \n0.65 | \n(0.93) | \n0.70 | \n(0.33) | \n0.70 | \n(0.43) | \n0.70 | \n(0.33) | \n
Equivalent circuit parameters for all samples after 1 day in 3.5% NaCl solution.
*Values in brackets represent the errors in percentage.
There are a number of related studies which have examined the electrochemical performance of CNT–hybrid and CNT–polymer nanocomposite coatings in contact with saline environments. Liu et al. modified bis-[triethoxysilylpropyl] tetrasulfide (BTESPT) silane films by MWCNTs functionalized with carboxylic groups [41]. EIS results, obtained for coated 304 stainless steel samples in 3.5 % NaCl solution, showed that the addition of different amounts of CNTs (0.5, 2.5 and 5 mg) improved the corrosion resistance relative to the pure BTESPT coatings. The impedance modulus of the BTESPT/MWCNT hybrid film reached about 107 Ω cm2, a value about three orders of magnitude higher than the bare substrate and one order of magnitude higher than the pure BTESPT film. The authors suggested that carboxylated MWCNTs react with silanol groups from the silane precursor to form covalent bonds between BTESPT and the MWCNTs which strengthen the adhesion strength of the film, increasing its density and thus inhibiting the penetration of the corrosive ions. In addition, it was suggested by these authors that the long chain structure of the CNTs may be able to fill pits and cracks in the film, thus helping to reduce the number of corrosion-induced defects.
\nJeon et al. reported EIS results combined with hygrothermal cyclic testing of their CNT-loaded epoxy coatings deposited on carbon steel [42]. In the hygrothermal testing, the temperature was ramped up from 25°C to 85°C and back to 25°C over a period of 12 hours while the coating was in contact with the electrolyte. This procedure was designed to accelerate the cumulative effect of the electrolyte on the coating/substrate interface. They found that after 30 hygrothermal test cycles the impedance modulus for pure epoxy coatings at 0.01 Hz decreased from 1010 Ω cm2 to 106 Ω cm2. For the two loadings of 0.25 and 0.5 wt.% that they examined for the CNT-containing samples, there was a lower initial resistance at 0.01 Hz because of the conductive nature of the CNTs, but after 30 cycles the impedance modulus at this frequency was higher than for the pure epoxy coatings. These results were explained by the authors in terms of the decrease in the water uptake of the CNT-loaded coatings, rather than any decrease in chemical attack by the 0.5 wt% NaCl solution, and the increase in adhesion strength of the coatings with the addition of the CNTs.
\nThe anticorrosive performance of epoxy–CNT composite coatings was also reported for aluminum alloy 2024-T3 substrates, tested by EIS in a 0.5 M NaCl solution by Kuhn et al. [12]. Epoxy coatings and epoxy coatings containing 0.1 wt.% of MWCNTs had a impedance modulus of 3 × 104 Ω cm2, slightly higher than bare Al, which had an impedance modulus of 104 Ω cm2. On comparison, epoxy coatings containing 0.5 wt.% of MWCNTs had a higher impedance modulus of 6 × 104 Ω cm2, explained by the authors in terms of the 3D dispersion of the MWCNTs in the epoxy matrix at this level contributing to a reduction in the porosity of the coating, and thus reducing its electrolyte uptake.
\nDeyab [43] studied the effect on the corrosion protection efficiency of coated carbon steel of different CNT concentrations from 0.2 to 0.5 wt.% in alkyd resin films used as the protective coatings. He found that all CNT-loaded films had an improved corrosion resistance in 3.5 wt.% NaCl saline solution relative to the pure alkyd resin films. These findings were attributed to the ability of the functionalized CNTs to absorb resin on their surfaces, thereby enhancing the density of the coatings, eliminating microflaws in the coating and making it more difficult for corrosive species to be transported through the coating to the underlying steel.
\nFinally, the corrosion protection performance of the PANI–MWCNT coatings studied by Kumar and Gasem demonstrated improved corrosion performance of the coating containing MWCNT in comparison with the pure PANI coatings [36]. This observation was also explained by the authors in terms of a reduced level of porosity in the PANI coating as a consequence of bonding between the PANI matrix and the functionalized CNTs, leading in turn to reduced permeability of coating to corrosive agents.
\nIn comparison with protective coatings based on organic–CNT composites reported to date in the literature, the PMMA–silica–CNT films on carbon steel, discussed in the work, are by far the most effective corrosion protection barrier, with a much higher impedance modulus and lifetime in 3.5% NaCl solution.
\nOverall, the results obtained in this study have shown that a homogeneous dispersion of single-wall CNTs in PMMA–silica nanocomposites represents a novel and very promising coating system that is able to combine high anticorrosive performance with elevated thermal and mechanical stability, extending the application of these coatings to abrasive environments.
\nSingle-wall CNTs have been dispersed through surfactant assistance and by functionalization with carboxylic groups. Both dispersion procedures have proved to be very effective in the modification of PMMA–silica hybrids, producing homogeneous and defect-free nanocomposite coatings with very smooth surfaces (RRMS <0.5 nm) and thicknesses of 2–7 μm. 29Si-NMR results showed that the addition of 500 ppm of CNTs into PMMA–silica hybrid matrices did not affect the high connectivity of the inorganic phase (~80%), while XPS results confirmed the nominal composition and the proportion of bonding environments forming the hybrid network. CNTs were effective in improving the thermal stability of the hybrids, increasing their onset temperature of degradation and shifting all depolymerization events to higher temperatures. Mechanical reinforcement of the hybrid coatings was achieved for both CNT dispersion methods, resulting in a significantly higher scratch resistance and improved adhesion of the coating to A1020 carbon steel substrate relative to the hybrid coatings without the CNTs. EIS results showed that the electrochemical performance of the CNT-loaded coatings is superior to most organic–CNT coating systems reported to date in the literature, being able to act for several weeks as efficient corrosion barriers in aggressive saline environments, maintaining an impedance modulus of up to 109 Ω cm2. These results suggest that CNT-reinforced PMMA–silica nanocomposites have a great potential to extend the applicability of these environmentally compliant, high efficiency anticorrosive coatings to abrasive environments.
\nWe would like to thank Dr John Nunn from the National Physical Laboratory, Teddington, U.K. for access to the microscratch equipment used in this work, and the Laboratory for Surface Science (LCS) at the National Nanotechnology Laboratory (LNNano) in Campinas, Brazil for AFM access. This work was supported by CNPq, CAPES and FAPESP.
\nThe primary application of refrigeration system is to transfer heat from a lower temperature region to a higher temperature one. A refrigeration cycle consists of a source at low temperature, a sink at high temperature, and a device to produce the work done to transfer heat from the source to sink. For the complete circulation, the refrigeration cycle should have an expansion device to circulate the refrigerant to the source.
\nMajor refrigeration systems include vapor-compression refrigeration system (VCRS), heat pump (HP), gas refrigeration system (GRS), multi-pressure refrigeration systems (MPRS), and absorption refrigeration system (ARS), as presented in Figure 1. These systems are combined with renewable sources, such as geothermal, solar, and wind energy sources.
\nThe classifications of refrigeration systems and renewable sources.
The vapor-compression refrigeration cycle (VCRS) is the most widely used cycle for refrigerators, air-conditioning systems, and heat pumps [1, 2]. It consists of four processes, as shown in Figure 2:
1-2 Isentropic compression in a compressor
2-3 Constant-pressure heat rejection in a condenser
3-4 Throttling in an expansion device
4-1 Constant-pressure heat absorption in an evaporator
Schematic and T-s diagram for the ideal VCRS.
The refrigerant enters the compressor from state 1 at saturated vapor to be isentropically compressed from low pressure of state 1 to high pressure and temperature of state 2, which is at the superheated region. Then, the refrigerant of state 2 enters the condenser to reject heat to the warm environment and exits at the saturated liquid as state 3. The refrigerant enters an adiabatic throttling or expansion valve to drop the pressure, which equals the pressure at the compressor inlet of state 1. The refrigerant temperature at state 1 is very low so that it absorbs heat from the refrigerated space at the evaporator and heated to be saturated vapor again. The vapor refrigeration system is a closed cycle where it starts and ends at state 1. This type of refrigeration system can be used for refrigerators, inside the air conditioners as split air conditioners, and separate as in radiant cooling systems [3, 4] and air-to-air systems [1].
\nThe first and second law of Thermodynamics for steady-state flow is applied for each component and the whole system. They include the energy balance equation (EnBE) and exergy balance equation (ExBE) in this order. The energy balance equation considers the heat transfer and work produced or done crossing the control volume of a component or a system, while the exergy balance equation considers the irreversibilities of a process, which are described by the exergy destruction. For the given system of Figure 2. The refrigerant mass flow rate is constant through the cycle and denotes as \n
The power input to the compressor, \n
The heat rejection rate from the condenser, \n
The energy and exergy balance equations for the expansion valve can be expressed as Eqs. (10) and (11), respectively. The expansion valves are considered to be decreasing the pressure adiabatically and isentropically, which means no heat transfer and work done in the throttling process [6]:
\nThe energy balance for the entire refrigeration system can be given as [5]:
\nThe coefficient of performance (COP) of the refrigeration system is defined as the ratio of useful energy, which is the rate of heat removal by the evaporator to the required energy, which is the power required to operate the compressor. The COP is given as below [5]:
\nThe Carnot or reversible COP is defined as the maximum COP of a refrigeration cycle operating between temperature limits \n
An actual vapor-compression refrigeration cycle differs from the ideal one because of the irreversibilities that occur in various components, such as fluid friction (causes pressure drops) and heat transfer to or from the surroundings. The aim of exergy analysis is to determine the exergy destruction in each component of the system and to determine the exergy efficiency of the entire system. Exergy destruction in a component can be evaluated based on entropy generation and an exergy balance equation using Eq. (15) [6]:
\nwhere \n
The exergetic coefficient of performance (\n
by substituting \n
Since \n
Heat pump system (HP) is similar to VCRS since it consists of a compressor, expansion valve, and outdoor and indoor coils, which operate exchangeably as condenser and evaporator. The advantage of HP systems is the ability to provide cooling and heating for the desired space, especially for the long winter season as in Canada and north European countries. This can be achieved by adding a reversing valve, as shown in Figure 3. There are two essential modes: heating mode and cooling mode. The condenser and evaporator are exchanging during the cooling and heating season since the reversing valve is switching between two modes according to the weather condition.
\nA heat pump can be used to heat a house in winter and to cool it in summer.
The energy source for heat pump can be classified into air-source, water-source, and ground-source. The air-source system uses atmospheric air through the evaporator, while the water-source system uses well water of depth 80 m and operates from 5 to 18°C. The ground-source system uses long piping under the ground since the soil temperature is not affected by climate change. The capacity and efficiency of heat pump drop at low-temperature environment, and therefore, other auxiliary systems, such as heaters or furnaces, are used to provide sufficient heating load for residential buildings.
\nThe COP of a heat pump is defined as the ratio of the heat removed for cooling mode or added for a heating mode of the indoor coil to the compressor power. Therefore, the COPheating and COPcooling are given in Eq. (19). \n
The exergetic COP is defined as the ratio of thermal exergy rate divided by the compressor power. It is also given as the ratio of COP to the reversible COP for both heating and cooling mode. \n
The VCRS is known as a modified, reverse Rankine cycle, while the gas refrigeration system (GRS) is known as a reverse Brayton cycle using a noncondensing gas such as air. The main advantage of this system is the small size for achieving the desired cooling due to the lighter weight of air than other refrigerants. This system can be used in aircraft cabin cooling.
\nAs illustrated in Figure 4, the major elements of GRS are compressor to raise the pressure of gas from state 1 to 2, a rejecting heat exchanger (condenser), turbine or expander to decrease the gas pressure isentropically, and an absorbing heat exchanger (evaporator) to absorb the heat from the refrigerated space at constant pressure. A regenerator heat exchanger can be added to the system for heat recovery between the hot and cold paths of circulated gas. It can be located between the two heat exchangers. Air is a popular refrigerant of this system since it can be utilized as a refrigerant and air-conditioning medium in smaller equipment units as aircraft cooling systems.
\nSimple gas refrigeration cycle and T-s diagram.
The energy analysis of a gas refrigeration system is similar to that of the vapor refrigeration system except that the gaseous fluid is treated as an ideal gas. Therefore, the enthalpy and entropy equations are written as [5]:
\nwhere the subscripts
A two-stage cascade refrigeration system with the same refrigerant in both stages.
Compressor:
\nHeat exchanger 2 (condenser):
\nTurbine (expander):
\nHeat exchanger 1 (evaporator):
\nFor the entire refrigeration system, the energy balance can be written as:
\nThe net power for the system becomes:
\nThe COP of the gas refrigeration system is given as:
\nThe total exergy destruction in the system can be calculated by adding exergy destructions of each component:
\nIt can also be expressed as:
\nThus, the minimum power input to accomplish the required refrigeration load \n
The VCRS is the most popular refrigeration cycle because it is simple, inexpensive, and reliable. However, the industrial refrigeration systems should be efficient by providing more refrigeration load. This can be achieved by modifying the simple VCRS into multi-pressure refrigeration systems (MPRS). The MPRS can be classified into cascade RS, multi-compression RS, and multipurpose RS.
\nSome industrial applications require low temperature below −70°C with substantially large pressure and temperature difference (−70 to 100°C). VCRS cannot achieve these applications because it can operate within a temperature range of +10 to −30°C. Therefore, a modification of VCRS can be performed by using multiple refrigeration cycles operating in series, the so-called cascade refrigeration systems. The refrigerants of each cycle can be different. The evaporator of the first refrigeration cycle is connected to the condenser of the next refrigeration system forming an interchange heat exchanger between the 2 cycles, as shown in Figure 5. Cascade refrigeration systems are mainly used for liquefaction of natural gas, hydrogen, and other gases [7, 8, 9]. The major benefit of this system is decreasing the compressor power and increasing the refrigeration load compared with a VCRS with large temperature and pressure difference, as shown in the T-s diagram of cascade system in Figure 5. Therefore, reducing system components can be fulfilled in an appropriate way [2].
\nThe net compressor power can be determined by the summation of all compressor power in all cascaded refrigeration system and written as [2]:
\nThe refrigeration load can be described as:
\nThe heat exchanger that connects the 2 cycles together has an energy balance equation as follows [5]:
\nTherefore, the COP and exergetic COP of the cascade refrigeration system can be explained as the following [5, 6]:
\nSimilar to the cascade refrigeration system, multistage compression refrigeration system is used for applications below −30°C. This requires a large-pressure-ratio compressor and cannot be performed by one compressor because of the lack of efficiency and performance. Therefore, using multistage compressors connected in series can improve the performance of the refrigeration system by increasing the pressure ratio and increasing the refrigeration load. As shown in Figure 6, a two-stage compression refrigeration cycle consists of two compressors, a condenser, an evaporator, a flash intercooler, a mixer, and two throttling valves. The compressors. The upper compressor compresses the total refrigerant mass flow rate in a vapor form from the intermediate pressure of state 9 to the high pressure of state 4. The vapor refrigerant cools down in the condenser to saturated liquid at high pressure of state 5 and then passes through the upper expansion valve to reduce the pressure to intermediate pressure. The wet refrigerant passes through the flash intercooler to split the vapor and liquid phase. The vapor phase at state 3 enters the mixer to mix with the exit superheated refrigerant of the lower compressor at state 2. The liquid phase at state 7 is expanded by the lower throttling valve to state 8, which enters the lower pressure evaporator to absorb heat from the refrigerated space. The minimum temperature can be achieved by two-stage compression at −65°C, while the three-stage compression can attain about −100°C.
\nA two-stage compression refrigeration system with a flash chamber.
The heat transfer to the evaporator can be written, according to Figure 6, as [10]:
\nwhere \n
Therefore, the COP of this system can be determined as the following [10]:
\nThe second efficiency or the exergetic COP can be calculated as [6, 10]:
\nMultipurpose refrigeration systems are also considered as a branch of MPRS. This type of system accomplishes different refrigeration loads in one system. Therefore, a modification of VCRS can be done by using multiple evaporators at different low pressure and different refrigerant capacity. Also, this system can be operated using one compressor or multistage compressor.
\nThere are different configurations of multipurpose refrigeration systems [2], as shown in Figure 7. Firstly, a system of a single compressor and individual expansion valves consists of two evaporators and single compressor with individual expansion valves for each evaporator and one compressor, as shown in Figure 7a. Operation under these conditions means the dropping of pressure from high-pressure evaporators through back pressure valves to ensure the compression of the vapor from the higher temperature evaporators through a pressure ratio. Secondly, a system of a single compressor with multi-expansion valves consists of two evaporators and a compressor with multiple arrangements of expansion valves, as shown in Figure 7b. The only advantage of the arrangement is that the flashed vapor at the pressure of the high-temperature evaporator is not allowed to go to the lower-temperature evaporator, thus improving its efficiency. Finally, a system of individual compressors with multi-expansion valves consists of a compressor for each evaporator and multiple arrangements of expansion valves, as shown in Figure 7c, to reduce the total power requirement. This amounts to parallel operation of evaporators and is called sectionalizing. There may be a separate condenser for each compressor or a common condenser for the whole plant.
\nMultipurpose refrigeration system: (a) two evaporators with individual expansion valve, (b) two evaporators and multi-expansion valve, and (c) individual compressors and multi-expansion valve.
The heat transfer to the evaporators and the net compressor power of the multipurpose refrigeration system despite the system configuration can be evaluated as [2]:
\nwhere \n
Therefore, the COP of this system can be determined as the following [5]:
\nThe second efficiency or the exergetic COP can be calculated as [6]:
\nThe absorption refrigeration system (ARS) is similar to the VCRS except that the compressor of the vapor-compression system is replaced by three elements: an absorber, a solution pump, and a generator. The ABS medium is a mixture of a refrigerant and absorbent, such as ammonia-water system (NH3 + H2O) and water-lithium bromide (LiBr2 + H2O). The solubility of refrigerant (ammonia or lithium bromide) in the absorbent (water) is satisfactory, but the difference in boiling points is significant, which may affect the purity of vaporization. Thus, a purge unit or rectifier is used in the system. The refrigerant concentration in the mixture changes according to the pressure and temperature for each step. The ABS.
\nAs shown in Figure 8, the ARS consists of a condenser, an evaporator, an absorber, a regeneration heat exchanger (HX1), heat recovery heat exchanger (HX2), a generator, two expansion valves, and a solution pump. The system includes an analyzer and a rectifier to remove the water vapor that may have formed in the generator. Thus, only ammonia vapor goes to the condenser. This system utilizes the absorbent water to release and absorb ammonia as the refrigerant. Starting from state 3, the strong solution (a high concentration of ammonia refrigerant) is heated in the high-pressure generator. This produces refrigerant vapor off the solution at state 7. The hot pure ammonia vapor is cooled in the condenser at state 8 and condenses at state 9 by passing through the HX2 before entering a throttling valve into the low pressure at state 10. Then the refrigerant liquid passes through the evaporator to remove the heat from refrigerated medium and leaves at low-pressure vapor phase of state 11. The pure ammonia is heated by the HX2 to enter the absorber and mixed with the absorbent water. The weak solution (about 24% ammonia concentration) flows down from the generator at state 4 through the regeneration heat exchanger HX1 at state 5 through a throttling valve and enters the absorber at state 6. Therefore, the weak refrigerant is absorbed by the water because of the strong chemical affinity for each other. The absorber is cooled to produce a strong solution at low pressure at state 1. The strong solution is obtained and pumped by a solution pump to the generator passing through HX1, where it is again heated, and the cycle continues. Then, the water absorbs the ammonia in the absorber at the condenser temperature supplied by the circulating water or air, and hence a strong solution (about 38% ammonia concentration) occurs. For ammonia-water ARSs, the most suitable absorber is the film-type absorber because of high heat and mass transfer rates, enhanced overall performance, and large concentration rates [11].
\nAmmonia absorption refrigeration cycle.
The energy and exergy analysis for each component is presented according to Figure 8. The partial mass balance (PMBE) is also included to determine the concentration mass of ammonia and water in the absorber and generator. That is because the ARS has two fluids as refrigerant and absorbent and their composition at different points is different, particularly in the absorber and generator. The exergy analysis of ammonia-water ARSs is to determine the exergy destruction of each component and to determine the overall exergy efficiency based on the second law of thermodynamics. The exergy analysis (ExBE) for each component is stated below [5, 6]:
\nAbsorber:
\nwhere \n
Solution pump:
\nRegeneration heat exchanger (HX1):
\nGenerator:
\nwhere \n
Condenser:
\nwhere \n
Heat recovery heat exchanger (HX2):
\nExpansion valves:
\nEvaporator:
\nwhere \n
For the entire system, the overall energy balance of the complete system can be written as follows, by considering that there is negligible heat loss to the environment:
\nThe COP of the system then becomes:
\nwhere \n
The ARS is a heat-driven system, which requires heat pump instead or required power by a compressor. That means the ARS is a combination of a heat pump and a refrigeration cycle without a compressor. Therefore, the maximum (reversible) of an ARS can be achieved by a reversible heat engine and a reversible refrigerator, as shown in Figure 9. A reversible heat pump is operating by absorbing the heat from a source at and rejecting heat to an environment of to produce a work output from the heat engine. This work is defined as the reversible efficiency of the heat pump multiplied by the heat absorber from the source, which is the heat transfer from the generator in the ARS. This work output is used by the reversible refrigerator to keep a refrigerated space at
The maximum COP of an absorption refrigeration system.
The temperature of the heat source is taken as the average temperature of geothermal water. Then the second-law efficiency of this absorption system is determined to be [10]:
\nThe refrigeration systems require an input work to release the heat from the refrigerated space to the environment, which is called as a work-driven system. The absorption refrigeration system is based on external heat transfer from an external source, which can be classified as a heat-driven system. For industrial refrigeration systems, energy demand is high and should be provided in a secure and eco-friendly approach to reduce environmental pollution. This can be executed by fossil-based fuels such as oil, natural gas, and coal, which produce substantial carbon mono-oxide and dioxide emissions that affect global warming and climate change. Massive efforts point to renewable sources such as geothermal energy, solar energy, and wind energy, which promise a potential solution to provide the clean energy needed as work or heat to operate the refrigeration. Schematic diagram of Figure 10 shows possible ways of renewable sources for work-driven and heat-driven refrigeration system.
\nRenewable sources for refrigeration systems: (a) work-driven and (b) heat-driven source.
An integrated system of a concentrated solar power plant integrated with desalination process and absorption refrigeration cycle is utilized to supply power, freshwater, and refrigeration [12]. The system, as shown in Figure 11, consists of concentrated solar collectors connected with steam turbine power plant, a multi-effect desalination process with a parallel feed of seawater, and a single-stage ammonia-water absorption refrigeration system. The solar collectors provide thermal energy 21,030 kW to the steam power plant to deliver an electric power of 4632 kW. The refrigeration load from the absorption cooling system is 820.8 kW. The desalination system can also provide 22.79 kg/s freshwater. This cycle has obtained overall energy and exergy efficiencies to be 80.70% and 66.05%, respectively.
\nSchematic diagram of the integrated solar thermal power plant, absorption refrigeration system, and MED cycle (adopted from [
Another example, a small-scale system, is designed to provide an electrical load to residential buildings [13]. This system utilizes, as shown in Figure 12, photovoltaic solar system (PV) to provide electrical power. This electric power is used for a water electrolyzer system to split the water electrochemically to produce hydrogen and oxygen gases. The hydrogen gas enters high-temperature solid oxide fuel cells (SOFC) to produce electricity and heat. The heat is transferred to an absorption cooling system by heat recovery generator. The PV system may generate excess electricity more than the demand during off-peak hours. This system is designed for a detached house in Toronto city, Canada. The PV solar system delivers maximum power of 3.35 kW. The water electrolyzer can produce 0.792 and 0.538 kg/day of gaseous hydrogen in summer and winter seasons. The SOFC fuel cell supplies 8.43 kWh per day in summer season. The maximum energy and exergy efficiencies of the photovoltaic system are 17 and 18.3%, respectively, while the maximum total energy and exergy efficiencies are obtained to be 55.7 and 49.0%, respectively.
\nSchematic of the photovoltaic-fuel cell CHIP system for residential applications (adopted from [
In a similar study, a hybrid renewable system was designed to produce electricity and clean fuel such as hydrogen gas and provide cooling for a residential building in two locations Egypt and Saudi Arabia in summer season [14]. The cooling loads for a house are 18.06 and 19.3 kW in Egypt and Saudi Arabia, respectively. This system, as shown in Figure 13, depends on the photovoltaic solar system and wind turbines to provide excess electricity more than the electric grid. The excess electricity is delivered to a water electrolyzer to produce pure oxygen and hydrogen gases stored in tanks for clean fueling services. Part of the hydrogen gas is used for a proton-exchange membrane (PEM) fuel cell that can produce heat and electricity through an electrochemical process without any mechanical parts. The heat generated from the fuel cell can be utilized by a generator of an ammonia-water ARS to provide cooling. The hybrid renewable system can operate in a significant performance with water mass flow rate of 1.8 kg/s to produce hydrogen with a mass flow rate of 0.2 kg/s and ammonia mass flow rate of about 0.2 kg/s to produce cooling load between 40 and 120 kW more than the design cooling load of one house. The energy and exergy efficiencies are obtained to be about 67 and 68%, respectively. Therefore, this hybrid system can be sufficient for more than one house.
\nSchematic diagram of a hybrid renewable system (adopted from [
A multigeneration system is designed by [15] and powered by geothermal energy assisted with solar energy to produce five outputs: heating air for residential building, hot domestic water, drying food, refrigeration for industry, and electricity. This multigeneration system, as shown in Figure 14, consists of a heat pump system, a single flash geothermal cycle, an absorption cooling system, thermal energy storage connected with auxiliary steam turbine and concentrated solar collectors, hot water system, and drying system. The system has achieved overall energy and exergy efficiencies to be 69.6 and 42.8%, respectively. The first and second steam turbines have the power of 10,043 and 9886 kW. The
Schematic diagram of the multigeneration system powered by the solar and geothermal energy (adopted from [
A wind system is combined with a refrigeration system, as shown in Figure 15. Wind energy is coupled with compressed air energy storage (CAES) systems to store wind energy for long-term usage [16]. The integrated system consists of a combined gas power cycle, including compressors, intercooling heat exchangers, and gas turbine, an organic Rankine power cycle (ORC), and an absorption refrigeration system (ARS). The system objective is to provide electricity, domestic hot water, and cooling load. The system can generate electricity of 33.67 kW provided by wind turbines (83.24 kWh) and fuel combustion (258.97 kWh), cooling load of 2.56 kW, and mass flow rate of hot water of 1.82 ton per day hot. The energy efficiency of the system is achieved to be 53.94%.
\nSchematic diagram of gas power cycle with wind turbine, CAES, ORC, and ARS (adopted from [
The refrigeration systems are applied in our life for preserving food, cooling air, and other industrial applications. Most refrigeration systems require external power or external heat to release the heat from the refrigerated space. Many industrial applications involve large cooling energy, which can be operated by multi-pressure refrigeration system, which requires a large amount of external power. The chapter has presented some applications with renewable sources to replace the fossil fuel-driven energy with an environmentally friendly energy source such as geothermal, solar, and wind energy so-called hybrid or integrated systems. In addition to cooling load, the hybrid systems can produce electricity, heating load, and clean fuel such as hydrogen fuel. The absorption refrigeration system is mostly-combined with hybrid system to use the heating load from solar or geothermal energy to produce cooling load.
\nAs a company committed to the wider dissemination of knowledge, IntechOpen supports the OAI Metadata Harvesting Protocol (OAI-PMH Version 2.0).
',metaTitle:"OAI-PMH",metaDescription:"As a firm believer in the wider dissemination of knowledge, IntechOpen supports the OAI Metadata Harvesting Protocol (OAI-PMH Version 2.0).",metaKeywords:null,canonicalURL:"/page/oai-pmh",contentRaw:'[{"type":"htmlEditorComponent","content":"The OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting) is used to govern the collection of metadata descriptions and enables other archives to access our database. The Protocol has been developed by the Open Archives Initiative, based on ensuring interoperability standards in order to ease and promote broader and more efficient dissemination of information within the scientific community.
\\n\\nWe have adopted the Protocol to increase the number of readers of our publications. All our Works are more widely accessible, with resulting benefits for scholars, researchers, students, libraries, universities and other academic institutions. Through this method of exposing metadata, IntechOpen enables citation indexes, scientific search engines, scholarly databases, and scientific literature collections to gather metadata from our repository and make our publications available to a broader academic audience.
\\n\\nAs a Registered Data Provider, metadata for published Books and Chapters are available via our interface at the base URL: http://mts.intechopen.com/oai/index.php
\\n\\nREQUESTS
\\n\\nYou can find out more about the Protocol by visiting the Open Archives website. For additional questions please contact us at ai@intechopen.com.
\\n\\nDATABASES
\\n\\nDatabases, repositories and search engines that provide services based on metadata harvested using the OAI metadata harvesting protocol include:
\\n\\nBASE - Bielefeld Academic Search Engine
\\n\\nOne of the world's most powerful search engines, used primarily for academic Open Access web resources.
\\n\\n\\n\\nA search engine for online catalogues of publications from all over the world.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'The OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting) is used to govern the collection of metadata descriptions and enables other archives to access our database. The Protocol has been developed by the Open Archives Initiative, based on ensuring interoperability standards in order to ease and promote broader and more efficient dissemination of information within the scientific community.
\n\nWe have adopted the Protocol to increase the number of readers of our publications. All our Works are more widely accessible, with resulting benefits for scholars, researchers, students, libraries, universities and other academic institutions. Through this method of exposing metadata, IntechOpen enables citation indexes, scientific search engines, scholarly databases, and scientific literature collections to gather metadata from our repository and make our publications available to a broader academic audience.
\n\nAs a Registered Data Provider, metadata for published Books and Chapters are available via our interface at the base URL: http://mts.intechopen.com/oai/index.php
\n\nREQUESTS
\n\nYou can find out more about the Protocol by visiting the Open Archives website. For additional questions please contact us at ai@intechopen.com.
\n\nDATABASES
\n\nDatabases, repositories and search engines that provide services based on metadata harvested using the OAI metadata harvesting protocol include:
\n\nBASE - Bielefeld Academic Search Engine
\n\nOne of the world's most powerful search engines, used primarily for academic Open Access web resources.
\n\n\n\nA search engine for online catalogues of publications from all over the world.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6601},{group:"region",caption:"Middle and South America",value:2,count:5906},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12541},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:12,limit:12,total:132763},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10744",title:"Astrocytes in Brain Communication and Disease",subtitle:null,isOpenForSubmission:!0,hash:"8b6a8e2bb5f070305768945fdef8eed2",slug:null,bookSignature:"Prof. Denis Larrivee",coverURL:"https://cdn.intechopen.com/books/images_new/10744.jpg",editedByType:null,editors:[{id:"206412",title:"Prof.",name:"Denis",surname:"Larrivee",slug:"denis-larrivee",fullName:"Denis Larrivee"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",subtitle:null,isOpenForSubmission:!0,hash:"727e7eb3d4ba529ec5eb4f150e078523",slug:null,bookSignature:"Dr. Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",editedByType:null,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11020",title:"Dietary Supplements - Challenges and Future Research",subtitle:null,isOpenForSubmission:!0,hash:"2283ae2d0816c17ad46cbedbe4ce5e78",slug:null,bookSignature:"Dr. Venketeshwer Rao and Dr. Leticia Rao",coverURL:"https://cdn.intechopen.com/books/images_new/11020.jpg",editedByType:null,editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11121",title:"Crystal Growth - Technologies and Applications",subtitle:null,isOpenForSubmission:!0,hash:"81f076fab2acb567946aeaa4b7281fc1",slug:null,bookSignature:"Dr. Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/11121.jpg",editedByType:null,editors:[{id:"300527",title:"Dr.",name:"Riadh",surname:"Marzouki",slug:"riadh-marzouki",fullName:"Riadh Marzouki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11168",title:"Sulfur Industry",subtitle:null,isOpenForSubmission:!0,hash:"39d4f4522a9f465bfe15ec2d85ef8861",slug:null,bookSignature:"Dr. Enos Wamalwa Wambu and Dr. Esther Nthiga",coverURL:"https://cdn.intechopen.com/books/images_new/11168.jpg",editedByType:null,editors:[{id:"187655",title:"Dr.",name:"Enos",surname:"Wambu",slug:"enos-wambu",fullName:"Enos Wambu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11273",title:"Ankylosing Spondylitis",subtitle:null,isOpenForSubmission:!0,hash:"e07e8cf78550507643fbcf71a6a9d48b",slug:null,bookSignature:"Dr. Jacome Bruges Armas",coverURL:"https://cdn.intechopen.com/books/images_new/11273.jpg",editedByType:null,editors:[{id:"70522",title:"Dr.",name:"Jacome",surname:"Bruges Armas",slug:"jacome-bruges-armas",fullName:"Jacome Bruges Armas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11294",title:"Blood Donation and Transfusion",subtitle:null,isOpenForSubmission:!0,hash:"5dcef6c86c9137be3e9e73514bc26dbf",slug:null,bookSignature:"Dr. Osaro Erhabor",coverURL:"https://cdn.intechopen.com/books/images_new/11294.jpg",editedByType:null,editors:[{id:"35140",title:"Dr.",name:"Osaro",surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11432",title:"Drugs Modification via Co-crystallization",subtitle:null,isOpenForSubmission:!0,hash:"a9e50e249a320b0fba2dfaf478848854",slug:null,bookSignature:"Prof. Aleksey Kuznetsov and Dr. Akbar Ali",coverURL:"https://cdn.intechopen.com/books/images_new/11432.jpg",editedByType:null,editors:[{id:"201033",title:"Prof.",name:"Aleksey",surname:"Kuznetsov",slug:"aleksey-kuznetsov",fullName:"Aleksey Kuznetsov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11433",title:"Human Migration in the Last Three Centuries",subtitle:null,isOpenForSubmission:!0,hash:"9836df9e82aa9f82e3852a60204909a8",slug:null,bookSignature:"Dr. Ingrid Muenstermann",coverURL:"https://cdn.intechopen.com/books/images_new/11433.jpg",editedByType:null,editors:[{id:"77112",title:"Dr.",name:"Ingrid",surname:"Muenstermann",slug:"ingrid-muenstermann",fullName:"Ingrid Muenstermann"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11434",title:"Indigenous Populations - Perspectives From Scholars and Practitioners in Contemporary Times",subtitle:null,isOpenForSubmission:!0,hash:"c0d1c1c93a36fd9d726445966316a373",slug:null,bookSignature:"Dr. Sylvanus Gbendazhi Barnabas",coverURL:"https://cdn.intechopen.com/books/images_new/11434.jpg",editedByType:null,editors:[{id:"293764",title:"Dr.",name:"Sylvanus",surname:"Barnabas",slug:"sylvanus-barnabas",fullName:"Sylvanus Barnabas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:62},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:10},{group:"topic",caption:"Medicine",value:16,count:123},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:792},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4387},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"287",title:"Environmental Engineering",slug:"technology-environmental-engineering",parent:{id:"24",title:"Technology",slug:"technology"},numberOfBooks:16,numberOfSeries:0,numberOfAuthorsAndEditors:347,numberOfWosCitations:224,numberOfCrossrefCitations:218,numberOfDimensionsCitations:571,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"287",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10975",title:"Sewage",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"0933f9b6aa7b8c65e710e951e674997d",slug:"sewage-recent-advances-new-perspectives-and-applications",bookSignature:"Tao Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/10975.jpg",editedByType:"Edited by",editors:[{id:"185487",title:"Associate Prof.",name:"Tao",middleName:null,surname:"Zhang",slug:"tao-zhang",fullName:"Tao Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10389",title:"Osmotically Driven Membrane Processes",subtitle:null,isOpenForSubmission:!1,hash:"d5bb1865e5a17251d299b5c1ada3f5c0",slug:"osmotically-driven-membrane-processes",bookSignature:"Muharrem Ince and Olcay Kaplan Ince",coverURL:"https://cdn.intechopen.com/books/images_new/10389.jpg",editedByType:"Edited by",editors:[{id:"258431",title:"Prof.",name:"Muharrem",middleName:null,surname:"Ince",slug:"muharrem-ince",fullName:"Muharrem Ince"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9921",title:"Promising Techniques for Wastewater Treatment and Water Quality Assessment",subtitle:null,isOpenForSubmission:!1,hash:"59ea12a5ea4a235dc8123537effc7cf1",slug:"promising-techniques-for-wastewater-treatment-and-water-quality-assessment",bookSignature:"Iqbal Ahmed Moujdin and J. Kevin Summers",coverURL:"https://cdn.intechopen.com/books/images_new/9921.jpg",editedByType:"Edited by",editors:[{id:"197244",title:"Associate Prof.",name:"Iqbal",middleName:null,surname:"Ahmed",slug:"iqbal-ahmed",fullName:"Iqbal Ahmed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7633",title:"Energy Policy",subtitle:null,isOpenForSubmission:!1,hash:"7b3214f2f9bbd4ca03ca927267b13cbf",slug:"energy-policy",bookSignature:"Tolga Taner",coverURL:"https://cdn.intechopen.com/books/images_new/7633.jpg",editedByType:"Edited by",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7645",title:"Desalination",subtitle:"Challenges and Opportunities",isOpenForSubmission:!1,hash:"79498ce21a56d214786502c9fe4ebd6b",slug:"desalination-challenges-and-opportunities",bookSignature:"Mohammad Hossein Davood Abadi Farahani, Vahid Vatanpour and Amir Hooshang Taheri",coverURL:"https://cdn.intechopen.com/books/images_new/7645.jpg",editedByType:"Edited by",editors:[{id:"249503",title:"Dr.",name:"Mohammad Hossein",middleName:null,surname:"Davood Abadi Farahani",slug:"mohammad-hossein-davood-abadi-farahani",fullName:"Mohammad Hossein Davood Abadi Farahani"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9415",title:"Advanced Oxidation Processes",subtitle:"Applications, Trends, and Prospects",isOpenForSubmission:!1,hash:"60d177837fbb691b82c80922cd9bb295",slug:"advanced-oxidation-processes-applications-trends-and-prospects",bookSignature:"Ciro Bustillo-Lecompte",coverURL:"https://cdn.intechopen.com/books/images_new/9415.jpg",editedByType:"Edited by",editors:[{id:"189304",title:"Dr.",name:"Ciro",middleName:"Fernando",surname:"Bustillo-Lecompte",slug:"ciro-bustillo-lecompte",fullName:"Ciro Bustillo-Lecompte"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8915",title:"Advances in Membrane Technologies",subtitle:null,isOpenForSubmission:!1,hash:"19febde893f705494f2334d02977fd83",slug:"advances-in-membrane-technologies",bookSignature:"Amira Abdelrasoul",coverURL:"https://cdn.intechopen.com/books/images_new/8915.jpg",editedByType:"Edited by",editors:[{id:"151521",title:"Dr.",name:"Amira",middleName:null,surname:"Abdelrasoul",slug:"amira-abdelrasoul",fullName:"Amira Abdelrasoul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8496",title:"Zero and Net Zero Energy",subtitle:null,isOpenForSubmission:!1,hash:"55f42cf4f87acf2e1ade4a7b5e9835a4",slug:"zero-and-net-zero-energy",bookSignature:"Getu Hailu",coverURL:"https://cdn.intechopen.com/books/images_new/8496.jpg",editedByType:"Edited by",editors:[{id:"250634",title:"Ph.D.",name:"Getu",middleName:null,surname:"Hailu",slug:"getu-hailu",fullName:"Getu Hailu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8804",title:"Water and Wastewater Treatment",subtitle:null,isOpenForSubmission:!1,hash:"ccb46d6518786712b3184b2498fb0cab",slug:"water-and-wastewater-treatment",bookSignature:"Murat Eyvaz",coverURL:"https://cdn.intechopen.com/books/images_new/8804.jpg",editedByType:"Edited by",editors:[{id:"170083",title:"Associate Prof.",name:"Murat",middleName:null,surname:"Eyvaz",slug:"murat-eyvaz",fullName:"Murat Eyvaz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7382",title:"Antarctica",subtitle:"A Key To Global Change",isOpenForSubmission:!1,hash:"deead09dc6b7b3f28dea1432ef711265",slug:"antarctica-a-key-to-global-change",bookSignature:"Masaki Kanao, Genti Toyokuni and Masa-yuki Yamamoto",coverURL:"https://cdn.intechopen.com/books/images_new/7382.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6500",title:"Low Carbon Transition",subtitle:"Technical, Economic and Policy Assessment",isOpenForSubmission:!1,hash:"637de6ab7049f98e96b610f7b28a3d63",slug:"low-carbon-transition-technical-economic-and-policy-assessment",bookSignature:"Valter Silva, Matthew Hall and Inês Azevedo",coverURL:"https://cdn.intechopen.com/books/images_new/6500.jpg",editedByType:"Edited by",editors:[{id:"187136",title:"Dr.",name:"Valter",middleName:null,surname:"Silva",slug:"valter-silva",fullName:"Valter Silva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6525",title:"Energy Systems and Environment",subtitle:null,isOpenForSubmission:!1,hash:"bf60dee49589a07a71b7f43f338dd2fd",slug:"energy-systems-and-environment",bookSignature:"Pavel Tsvetkov",coverURL:"https://cdn.intechopen.com/books/images_new/6525.jpg",editedByType:"Edited by",editors:[{id:"10023",title:"Dr.",name:"Pavel V.",middleName:null,surname:"Tsvetkov",slug:"pavel-v.-tsvetkov",fullName:"Pavel V. Tsvetkov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:16,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"66882",doi:"10.5772/intechopen.85919",title:"World’s Demand for Food and Water: The Consequences of Climate Change",slug:"world-s-demand-for-food-and-water-the-consequences-of-climate-change",totalDownloads:2126,totalCrossrefCites:10,totalDimensionsCites:35,abstract:"This study focused on analysis of global food demand and supply situation by 2030 and 2050, water demand-availability, impact of climate change on world water resource, food security and desalination challenges and development opportunities. The population of the world will be 8.6 billion in 2030 and 9.8 billion in 2050; Africa will be the major contributor. World cereal equivalent (CE) food demand is projected to be around 10,094 million tons in 2030 and 14,886 million tons in 2050, while its production is projected to be 10,120 million tons in 2030 and 15,970 million tons in 2050 having a marginal surplus. India and China are capturing large share of global food demand. The developing country will demand more animal origin foods due to income growth in the future. The growth rate of world demand for cereals will decline till 2050. Global water demand is projected to increase by 55% between 2000 and 2050 from 3500 to 5425 km3. Evidence showed that climate change will have adverse impact on world water resources and food production with high degree of regional variability and scarcity. A number of options are suggested for development of global water resource and food production.",book:{id:"7645",slug:"desalination-challenges-and-opportunities",title:"Desalination",fullTitle:"Desalination - Challenges and Opportunities"},signatures:"Sheikh Mohammad Fakhrul Islam and Zahurul Karim",authors:[{id:"288119",title:"Prof.",name:"S.M. Fakhrul",middleName:null,surname:"Islam",slug:"s.m.-fakhrul-islam",fullName:"S.M. Fakhrul Islam"},{id:"288121",title:"Prof.",name:"Zahurul",middleName:null,surname:"Karim",slug:"zahurul-karim",fullName:"Zahurul Karim"}]},{id:"60850",doi:"10.5772/intechopen.76624",title:"Wastewater Treatment Using Membrane Technology",slug:"wastewater-treatment-using-membrane-technology",totalDownloads:2961,totalCrossrefCites:14,totalDimensionsCites:29,abstract:"Water contamination by heavy metals, cyanides and dyes is increasing globally and needs to be addressed as this will lead to water scarcity as well as water quality. Different techniques have been used to clean and renew water for human consumption and agricultural purposes but they each have limitations. Among those techniques, membrane technology is promising to solve the issues. Nanotechnology present a great potential in wastewater treatment to improve treatment efficiency of wastewater treatment plants. In addition, nanotechnology supplement water supply through safe use of modern water sources. This chapter reviews recent development in membrane technology for wastewater treatment. Different types of membrane technologies, their properties, mechanisms advantages, limitations and promising solutions have been discussed.",book:{id:"6539",slug:"wastewater-and-water-quality",title:"Wastewater and Water Quality",fullTitle:"Wastewater and Water Quality"},signatures:"Azile Nqombolo, Anele Mpupa, Richard M. Moutloali and Philiswa\nN. Nomngongo",authors:[{id:"191669",title:"Dr.",name:"Philiswa",middleName:null,surname:"Nomngongo",slug:"philiswa-nomngongo",fullName:"Philiswa Nomngongo"}]},{id:"9113",doi:"10.5772/7588",title:"Photocatalytic Processes on the Oxidation of Organic Compounds in Water",slug:"photocatalytic-processes-on-the-oxidation-of-organic-compounds-in-water",totalDownloads:5773,totalCrossrefCites:3,totalDimensionsCites:24,abstract:null,book:{id:"3704",slug:"new-trends-in-technologies",title:"New Trends in Technologies",fullTitle:"New Trends in Technologies"},signatures:"C. J. Philippopoulos and M. D Nikolaki",authors:null},{id:"70242",doi:"10.5772/intechopen.90256",title:"Advancements in the Fenton Process for Wastewater Treatment",slug:"advancements-in-the-fenton-process-for-wastewater-treatment",totalDownloads:1873,totalCrossrefCites:9,totalDimensionsCites:21,abstract:"Fenton is considered to be one of the most effective advanced treatment processes in the removal of many hazardous organic pollutants from refractory/toxic wastewater. It has many advantages, but drawbacks are significant such as a strong acid environment, the cost of reagents consumption, and the large production of ferric sludge, which limits Fenton’s further application. The development of Fenton applications is mainly achieved by improving oxidation efficiency and reducing sludge production. This chapter presents a review on fundamentals and applications of conventional Fenton, leading advanced technologies in the Fenton process, and reuse methods of iron containing sludge to synthetic and real wastewaters are discussed. Finally, future trends and some guidelines for Fenton processes are given.",book:{id:"9415",slug:"advanced-oxidation-processes-applications-trends-and-prospects",title:"Advanced Oxidation Processes",fullTitle:"Advanced Oxidation Processes - Applications, Trends, and Prospects"},signatures:"Min Xu, Changyong Wu and Yuexi Zhou",authors:[{id:"307479",title:"Dr.",name:"Changyong",middleName:null,surname:"Wu",slug:"changyong-wu",fullName:"Changyong Wu"},{id:"307546",title:"Prof.",name:"Yuexi",middleName:null,surname:"Zhou",slug:"yuexi-zhou",fullName:"Yuexi Zhou"},{id:"311139",title:"Dr.",name:"Min",middleName:null,surname:"Xu",slug:"min-xu",fullName:"Min Xu"}]},{id:"67689",doi:"10.5772/intechopen.86952",title:"Membrane Distillation: Basics, Advances, and Applications",slug:"membrane-distillation-basics-advances-and-applications",totalDownloads:1444,totalCrossrefCites:9,totalDimensionsCites:20,abstract:"Membrane technology as an emerging separation process has become competitive with other separation techniques in recent decades. Among pressure-driven and isothermal membrane processes, membrane distillation (MD) as a thermally driven process has come out to put an end to hardships of such processes like distillation. MD process can be used in a wide variety of applications such as desalination and wastewater treatment. Generally, MD is a process which water is a main component of the feed solution and only water vapor can pass through a hydrophobic membrane pores. With four main configurations different from each other by their condensation procedure, the performance of MD process is limited due to the lack of appropriate module, membrane, and energy consumption rate. In recent years, many experiments have been carried out to find well-suited membrane type and module. Also, applying solar or waste heat as heat source and the capability of coupling with other processes like forward osmosis and osmotic distillation distinguish MD process from other membrane processes. This chapter addresses membrane characteristics, MD applications, transport mechanisms, and process challenges.",book:{id:"8915",slug:"advances-in-membrane-technologies",title:"Advances in Membrane Technologies",fullTitle:"Advances in Membrane Technologies"},signatures:"Mohammad Reza Shirzad Kebria and Ahmad Rahimpour",authors:[{id:"289042",title:"Associate Prof.",name:"Ahmad",middleName:null,surname:"Rahimpour",slug:"ahmad-rahimpour",fullName:"Ahmad Rahimpour"},{id:"289043",title:"Mr.",name:"Mohammad Reza",middleName:null,surname:"Shirzad Kebria",slug:"mohammad-reza-shirzad-kebria",fullName:"Mohammad Reza Shirzad Kebria"}]}],mostDownloadedChaptersLast30Days:[{id:"70242",title:"Advancements in the Fenton Process for Wastewater Treatment",slug:"advancements-in-the-fenton-process-for-wastewater-treatment",totalDownloads:1873,totalCrossrefCites:9,totalDimensionsCites:21,abstract:"Fenton is considered to be one of the most effective advanced treatment processes in the removal of many hazardous organic pollutants from refractory/toxic wastewater. It has many advantages, but drawbacks are significant such as a strong acid environment, the cost of reagents consumption, and the large production of ferric sludge, which limits Fenton’s further application. The development of Fenton applications is mainly achieved by improving oxidation efficiency and reducing sludge production. This chapter presents a review on fundamentals and applications of conventional Fenton, leading advanced technologies in the Fenton process, and reuse methods of iron containing sludge to synthetic and real wastewaters are discussed. Finally, future trends and some guidelines for Fenton processes are given.",book:{id:"9415",slug:"advanced-oxidation-processes-applications-trends-and-prospects",title:"Advanced Oxidation Processes",fullTitle:"Advanced Oxidation Processes - Applications, Trends, and Prospects"},signatures:"Min Xu, Changyong Wu and Yuexi Zhou",authors:[{id:"307479",title:"Dr.",name:"Changyong",middleName:null,surname:"Wu",slug:"changyong-wu",fullName:"Changyong Wu"},{id:"307546",title:"Prof.",name:"Yuexi",middleName:null,surname:"Zhou",slug:"yuexi-zhou",fullName:"Yuexi Zhou"},{id:"311139",title:"Dr.",name:"Min",middleName:null,surname:"Xu",slug:"min-xu",fullName:"Min Xu"}]},{id:"71660",title:"Applications of Chemical Kinetics in Heterogeneous Catalysis",slug:"applications-of-chemical-kinetics-in-heterogeneous-catalysis",totalDownloads:1104,totalCrossrefCites:3,totalDimensionsCites:3,abstract:"Chemical kinetics is a key subdiscipline of physical chemistry that studies the reaction rate in every elemental step and corresponding catalytic mechanism. It mainly concludes molecular reaction dynamics, catalytic dynamics, elemental reaction dynamics, macrodynamics, and microdynamics. Such a research field has wide applications in heterogeneous catalysis. Based on the Arrhenius plot fitted by the catalytic conversions below 15% without the mass transfer effect and heat transfer effect, the apparent activation energy echoing with the intrinsically catalytic sites and the pre-exponential factor echoing with the relative number of active sites can be, respectively, derived from the slope and intercept of the Arrhenius plots, which can be used to compare the intrinsically catalytic activity of different catalysts and the relative amount of active sites. Reaction orders of both reactants and products are derived from the reaction rate equation and also fitted by the catalytic conversions below 15% without the mass transfer effect and heat transfer effect. According to the acquired reaction orders, the reaction mechanism can be proposed and even defined in some simple reactions. Therefore, investigations of chemical kinetics are of extreme importance and meaning in heterogeneous catalysis.",book:{id:"9415",slug:"advanced-oxidation-processes-applications-trends-and-prospects",title:"Advanced Oxidation Processes",fullTitle:"Advanced Oxidation Processes - Applications, Trends, and Prospects"},signatures:"Zhenhua Zhang, Li-Ping Fan and Yue-Juan Wang",authors:[{id:"312555",title:"Prof.",name:"Zhenhua",middleName:null,surname:"Zhang",slug:"zhenhua-zhang",fullName:"Zhenhua Zhang"},{id:"316868",title:"Ms.",name:"Li-Ping",middleName:null,surname:"Fan",slug:"li-ping-fan",fullName:"Li-Ping Fan"},{id:"316869",title:"Prof.",name:"Yue-Juan",middleName:null,surname:"Wang",slug:"yue-juan-wang",fullName:"Yue-Juan Wang"}]},{id:"77416",title:"Application of Water Quality Index for the Assessment of Water from Different Sources in Nigeria",slug:"application-of-water-quality-index-for-the-assessment-of-water-from-different-sources-in-nigeria",totalDownloads:516,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"Water quality index (WQI) provides a single number that expresses the overall water quality, at a certain location and time, based on several water quality parameters. The objective of WQI is to turn complex water quality data into information that is understandable and usable by the public. A number of indices have been developed to summarize water quality data in an easily expressible and easily understood format. The WQI is basically a mathematical means of calculating a single value from multiple test results. This chapter discusses, in detail, the application of a water quality index for the assessment of water quality to different several water sources in Nigeria.",book:{id:"9921",slug:"promising-techniques-for-wastewater-treatment-and-water-quality-assessment",title:"Promising Techniques for Wastewater Treatment and Water Quality Assessment",fullTitle:"Promising Techniques for Wastewater Treatment and Water Quality Assessment"},signatures:"Ruth Olubukola Ajoke Adelagun, Emmanuel Edet Etim and Oko Emmanuel Godwin",authors:[{id:"256167",title:"Dr.",name:"Emmanuel",middleName:null,surname:"Edet Etim",slug:"emmanuel-edet-etim",fullName:"Emmanuel Edet Etim"},{id:"345734",title:"Mr.",name:"Oko",middleName:null,surname:"Emmanuel Godwin",slug:"oko-emmanuel-godwin",fullName:"Oko Emmanuel Godwin"},{id:"345735",title:"Dr.",name:"Ruth",middleName:null,surname:"Olubukola Ajoke Adelagun",slug:"ruth-olubukola-ajoke-adelagun",fullName:"Ruth Olubukola Ajoke Adelagun"}]},{id:"71348",title:"Water Treatment and Desalination",slug:"water-treatment-and-desalination",totalDownloads:1049,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"Water covers a large area of the earth that reaches about three quarters of the surface of this planet, but we cannot say that all of this water is fresh or drinkable; according to many statistics, the percentage of fresh water reaches about 1% of the total water on earth. But with the great need for fresh water, whether for drinking or other purposes such as agriculture, the search for water treatment methods has become much larger. One of the most important of these methods that have been developed is desalination of seawater using desalination plants; therefore, we will address here the most important methods used in desalination and water treatment.",book:{id:"7645",slug:"desalination-challenges-and-opportunities",title:"Desalination",fullTitle:"Desalination - Challenges and Opportunities"},signatures:"Mona M. Amin Abdel-Fatah and Ghada Ahmed Al Bazedi",authors:[{id:"286268",title:"Associate Prof.",name:"Mona",middleName:null,surname:"Abdel-Fatah",slug:"mona-abdel-fatah",fullName:"Mona Abdel-Fatah"},{id:"295973",title:"Dr.",name:"Ghada",middleName:null,surname:"Al-Basedi",slug:"ghada-al-basedi",fullName:"Ghada Al-Basedi"}]},{id:"69228",title:"Advances in Passive Cooling Design: An Integrated Design Approach",slug:"advances-in-passive-cooling-design-an-integrated-design-approach",totalDownloads:2073,totalCrossrefCites:1,totalDimensionsCites:4,abstract:"Incorporating passive cooling devices within building design requires analysis of device variables and actions to improve cooling performance, maximize efficiency, and integrate with building elements. Improving devices performance requires understanding the relation of devices to design stages, building elements, and working mechanism, and actions performed by devices to enhance cooling process and effectiveness. Therefore, designers could integrate passive devices as intrinsic design elements. The current research introduces SARS as an innovative classification of passive devices based on cooling actions that are performed by a device like storing, avoidance, removal or slowing (SARS). All actions, devices, and variables were discussed and analyzed to help integrate them within design stages: analysis, designing, and performance. Understanding actions will help maximize the performance of the devices, combine two or more devices together, and integrate the devices’ deign in design process. Combining more devices together to perform more than one function will move passive design to a new level to become as whole building design approach and to be a core design element.",book:{id:"8496",slug:"zero-and-net-zero-energy",title:"Zero and Net Zero Energy",fullTitle:"Zero and Net Zero Energy"},signatures:"Ahmed A.Y. Freewan",authors:[{id:"284866",title:"Dr.",name:"Ahmed A.Y.",middleName:null,surname:"Freewan",slug:"ahmed-a.y.-freewan",fullName:"Ahmed A.Y. Freewan"}]}],onlineFirstChaptersFilter:{topicId:"287",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null,scope:"