Open access peer-reviewed Edited Volume

Quarks

Zbigniew Piotr Szadkowski

University of Łódź

The designer of the 2nd level trigger for the fluorescence detector and the designer of the 1st level trigger and the Front-End Boards for the surface detector of the Pierre Auger Observatory.

Covering

Chiral Symmetries Weak Interactions Neutrinoless Double Beta Decay Deep Inelastic Scattering Quantum Chromodynamics (QCD) Color Confinement Quarks Mixing Cabibbo Angle Kobayashi-Maskawa Matrix Quarks Multiplets CP-Nonconservation Neutrino Oscillation

Register your interest in contributing to this book

Collaborate with our community and contribute your knowledge.

About the book

The quark model was independently proposed by Murray Gell-Mann and George Zweig in 1964. A quark is one of the fundamental particles in physics. They join to form hadrons, such as protons and neutrons, which are components of the nuclei of atoms. The antiparticle of a quark is the antiquark. Quarks and antiquarks are the only two fundamental particles that interact through all four fundamental forces of physics: gravitation, electromagnetism, and the strong and weak interactions.
A quark exhibits confinement, which means that the quarks are not observed independently but always in combination with other quarks. This makes determining the properties (mass, spin, and parity) impossible to measure directly; these traits must be inferred from the particles composed of them. There are six flavors of quarks: up, down, strange, charm, bottom, and top. The flavor of the quark determines its properties.
There are three generations of quarks, based on pairs of weak positive/negative, weak isospin. The first generation quarks are up and down quarks, the second-generation quarks are strange and charm quarks, the third generation quarks are top and bottom quarks. The up and down quarks make up protons and neutrons, seen in the nucleus of ordinary matter. They are the lightest and most stable. The heavier quarks are produced in high-energy collisions and rapidly decay into up and down quarks.

The baryons and mesons known at the time fell into symmetric families of multiplets (octuplets, decuplets) sharing two identical quantum numbers (spin and parity), but differing in an ordered way in others (mass, charge, baryon number and strangeness). The mathematical group to fit this complex situation-SU3, the symmetric, unitary group of dimension 3-was proposed independently by Gell-Mann and Ne'eman. The validity of SU3 was demonstrated by the experiment. A major prediction was that a particle (the omega-minus), an isotopic singlet with spin = 3/2, positive parity, mass of roughly 1,680 MeV, negative charge, baryon number +1, strangeness = -3, and stable to strong decay, should exist to complete the 3/2+ baryon decuplet. It was therefore a major triumph for the scheme when the omega-minus, a baryon with the precise mass, charge, and strangeness predicted, was discovered in 1964. All these facts introduced a quark idea fully into modern physics.

This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.

Publishing process

Book initiated and editor appointed

Date completed: July 6th 2020

Applications to edit the book are assessed and a suitable editor is selected, at which point the process begins.

Chapter proposals submitted and reviewed

Deadline Extended: Open for Submissions

Potential authors submit chapter proposals ready for review by the academic editor and our publishing review team.

Approved chapters written in full and submitted

Deadline for full chapters: September 25th 2020

Once approved by the academic editor and publishing review team, chapters are written and submitted according to pre-agreed parameters

Full chapters peer reviewed

Review results due: December 14th 2020

Full chapter manuscripts are screened for plagiarism and undergo a Main Editor Peer Review. Results are sent to authors within 30 days of submission, with suggestions for rounds of revisions.

Book compiled, published and promoted

Expected publication date: February 12th 2021

All chapters are copy-checked and typesetted before being published. IntechOpen regularly submits its books to major databases for evaluation and coverage, including the Clarivate Analytics Book Citation Index in the Web of ScienceTM Core Collection. Other discipline-specific databases are also targeted, such as Web of Science's BIOSIS Previews.

About the editor

Zbigniew Piotr Szadkowski

University of Łódź

Dr. Szadkowski completed his Ph.D. with a thesis 'Quarks mixing in chiral symmetries SU4 x SU4 and SU6 x SU6”. Habilitation: „Triggers in the Pierre Auger Observatory: Designs, Implementation and the Impact on the Experimental Results”. Development of the FPGA-based 2nd level trigger for 24 fluorescence detectors and 1st level trigger for 1660 surface detectors of the Pierre Auger Observatory, FPGA based filters suppressing radio-frequency interferences (RFI) in radio detector of Auger Engineering Radio Array, FPGA based triggers for the Auger surface detectors dedicated for a recognition of very inclined EAS induced by 'old” proton showers or 'young” neutrino showers. Dr. Szadkowski has worked as a research scientist in Michigan Technological University, Associate Professor in College de France, Senior Wissenschaftler, Bergische Universität Wuppertal, and currently is working as the head of the Department of High-Energy Astrophysics and as an Associate Professor at the University of Łódź.

View profile

Book chapters authored 4

Books edited 1

Introducing your Author Service Manager

Ms. Dolores Kuzelj

As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact.

Ask a question
creativecommons
alpsp
cope
stm
ithenticate
crossref
doi
oaspa

Book will be abstracted and indexed in

googlescholar
worldcat
base
az
openaire