Enantioselective photo-organocatalytic intramolecular [2+2]-photocycloaddition of quinolones.
\r\n\tWe need such information of the environmental indicators day and night, from the crowded cities and the most remote locations. Therefore the study, development, and application of automated sensing systems have been booming during the last decades and the progress in this field is really fast.
\r\n\r\n\tThe current book intends to provide the reader with the most recent trends in the development of sensing technologies for environmental control and monitoring, application of these novel technologies for the detection and monitoring of different environmental indicators, but also identification of hazardous chemical compounds and pathogens, and to introduce various aspects of using the online sensing data for decision-making in different fields of social life.
\r\n\t
In general, organocatalysts are divided into two main classes according to the interaction, covalent or non-covalent (H-bonding, proton transfer, ion pair formation), with the organic substrate within the catalytic cycle. In this context, an organocatalyst reacts with an organic molecule in order to form a stable organic compound or a labile intermediate. At this stage, the activation induced by the organocatalyst enables the attack of the second reagent to form a second adduct that releases the desired product with the concomitant regeneration of the organocatalyst.
Most of the common organocatalysts used for carbon-carbon bond formation reactions are based in chiral and achiral secondary amines, while reagents are electrophiles such as aldehydes, ketones, or α,β-unsaturated carbonyls. For these cases, the selected organocatalysts normally promote the generation of either an iminium ion or an enamine.
Photocatalysis, where an electronically excited species acts as the catalyst, has gained increasing interest over the last years, with different organic transformations under such conditions being reported.
Recently, the catalytic activation of organic molecules by visible light photoredox catalysis that works under stereochemical control and provides chiral molecules in an asymmetric fashion has been largely reported. Generically, this approach relies on the ability of metal complexes and organic dyes to engage in single-electron transfer (SET) processes with organic substrates upon photoexcitation with visible light. Most common visible light photocatalysts are based on polypyridyl complexes of ruthenium, for example, tris(2,2′-bipyridine)ruthenium(II) or [Ru(bpy)3]2+, and iridium. These complexes absorb light in the visible region of the electromagnetic spectrum to give stable, long-living photoexcited states. The lifetime of the excited species is sufficiently long that it may engage in bimolecular electron transfer reactions in competition with deactivation pathways. Although these species are poor single-electron oxidants and reductants in the ground state, excitation of an electron affords excited states that are very potent single-electron transfer reagents. The ability of [Ru(bpy)3]2+ and related complexes to function as visible light photocatalysts has been recognized and currently applied to the electrolysis of water and the reduction in carbon dioxide to methane. These photocatalysts have also been employed in organic transformations including asymmetric approaches. Much of the excitement around visible light photoredox organocatalysis is due to the ability to achieve unique, if not exotic bond constructions that are not possible using the established protocols. For instance, photoredox organocatalysis can perform under overall redox neutral reactions where both oxidants and reductants are transiently generated in the same reaction vessel. This approach stands in contrast to methods requiring stoichiometric chemical oxidants and reductants, which are often incompatible with each other, as well as to electrochemical approaches, which are not amenable to redox neutral transformations.
\nElectro-organocatalysis has also received recent interest from both academia and industry. Electron transfer is one of the most important processes in organic chemistry in which one electron is added to or removed from an electroactive substrate. Such an electron transfer is reversible only when the resulting species are stable under those conditions. In other cases, an electron transfer generates subsequent chemical processes such as bond dissociation and bond formation. In general, radical cations and radical anions can be generated by electrochemical electron transfer reactions. Carbocations, carbon-free radicals, and carbanions can also be generated by subsequent bond dissociation or bond-forming processes. Several organic synthetic transformations especially carbon-carbon bond formation reactions, oxidation, and reduction processes (electrocatalytic processes) have been reported.
In the area of catalytic reactions, tremendous improvement has been made in the last decades, mostly upon the discovery of efficient transition metal catalysts. According to the variety of reactions, accessible, metal-catalyzed and enantioselective reactions have become significant tools in organic synthesis [1]. However, some disadvantages remain, such as the high cost and toxicity of the transition metal catalysts, employed and in some cases the problems that their residues, mainly in pharmaceutical products, can cause. Nonetheless, this transition metal catalysis will certainly continue to have an impact in synthetic organic chemistry in the future [2]. Alternatively, over the last years, a metal-free approach known as organocatalysis has reached a level of reliability that has allowed researchers to combine this procedure with other powerful techniques for molecule activation based on photochemical processes promoted by visible light. This green strategy has allowed previously unachievable synthetic issues to be solved and has rapidly progressed with application in both symmetric and asymmetric reactions (e.g., nucleophilic substitutions, Michael additions, cycloadditions, and aldol reactions) [3]. Generically, the organic catalysts can be categorized into two main classes according to the covalent or non-covalent (
Homogeneous catalytic asymmetric transformations utilizing visible light photocatalysis include chiral and racemic photocatalysts with chiral organocatalysts, chiral Brønsted acids, or chiral Lewis acids [4]. In photo-organocatalytic processes, there are two main reaction models: the photocatalyst (PC) can act through an electron transfer (ET) process that causes an one-electron oxidation/reduction in the organic substrate R-X (Scheme 1, route a) or through hydrogen atom transfer (HAT, route b) from a hydrogen donor R-H [5]. Most of the photo-organocatalysts are aromatic ketones, dyes, and (chiral) secondary amines, while R substrates are electrophiles, typically aldehydes, ketones, or α,β-unsaturated carbonyls [5, 6]. Furthermore, photosensitization is known as an energy transfer between the excited photocatalyst (PC*) and substrate, which creates an excited state (R-Y*, from quenching of PC*), that is able to initiate a chemical reaction (route c). Sensitization can occurs by energy or electron transfer processes. The catalyst is transformed to act as a photosensitizer via photo-induced electron transfer (PET), hence leading the resulting photo-organocatalytic reaction to occur under stereoselective control [7].
\nNowadays, a possible alternative can be considered in the photochemical activation step, in which the complexation of an organic reagent R-Z is controlled by a distinct, photostable chiral catalyst (route d) [8].
\nThe aim of this subchapter was to point out the effective tools that the stereoselective ground-state processes offer to enantioselective photochemistry. The catalysts control the photoactivation of the substrates by inducing the transient formation of photon-absorbing chiral electron donor-acceptor (EDA) complexes. In addition, high stereocontrol in synthetically relevant intermolecular carbon-carbon bond-forming reactions driven by visible light can be provided by the inherent chirality of the catalysts.
\nThe group of Bach focuses on catalytic processes, which allow previously unknown transformations employing both photochemical and conventional techniques. Their published papers concern photoredox organocatalysis, such as the first highly enantioselective (up to 90%
Four years later, the same group tested the intramolecular [2+2] photocycloaddition of prochiral 4-(3′-butenyloxy) quinolone to the desired products (Scheme 2) [12]. The previously characterized chiral organocatalyst-benzophenone
This photo-organocatalytic transformation was provided by applying a chiral, hydrogen-bonding template with an attached catalytically active sensitizing unit (benzophenone or xanthone). In all cases, it was possible to obtain high yields (78–99%) and enantioselectivities (83–94%
Entry | \nSubstrate | \nCatalyst (mol%) | \nYield (%)a | \n||
---|---|---|---|---|---|
1 | \n1 | \n300 | \n\n | \n43 | \n89 | \n
2 | \n2 | \n300 | \n\n | \n87 | \n>90 | \n
3 | \n3 | \n300 | \n\n | \n66 | \n83 | \n
4 | \n4 | \n366 | \n\n | \n89 | \n89 | \n
5 | \n5 | \n366 | \n\n | \n99 | \n90 | \n
6 | \n6 | \n366 | \n\n | \n99 | \n94 | \n
7 | \n4 | \n366 | \n\n | \n58 | \n92 | \n
8 | \n4 | \n366 | \n\n | \n75 | \n90 | \n
9 | \n4 | \n366 | \n\n | \n50 | \n91 | \n
10 | \n4 | \n366 | \n\n | \n46 | \n89 | \n
11 | \n4 | \n366 | \n\n | \n48 | \n90 | \n
12 | \n4 | \n366 | \n53 | \n94 | \n
Enantioselective photo-organocatalytic intramolecular [2+2]-photocycloaddition of quinolones.
a Yield of isolated product.
b The enantiomeric excess of the straight photocycloaddition products was determined by chiral HPLC analysis.
In parallel, the group of Bach proposed an immobilization of earlier mentioned chiral photo-organocatalysts and their use in intramolecular [2+2] photocycloaddition of 4-allyloxyquinolone (Scheme 3) [14]. Under irradiation with light, the immobilized templates
In different experiments, the group of Bach also investigated enantioselective photochemical reactions resorting on chiral Lewis acids as catalysts [15]. They reported the AlBr3-activated chiral cationic oxazaborolidine catalyst for enantioselective intramolecular [2+2] photocycloaddition reactions of 4-alkenyl-substituted coumarins (78%
More recently, Vallavoju et al. [16] reported intramolecular [2+2] photocycloadditions of 4-alkenyl-substituted coumarins promoted by various atropisomeric binaphthyl-derived thioureas as photo-organocatalysts (Scheme 4). Thiourea catalysts are simple, environmentally benign, sustainable, and inexpensively synthesized from ‘chiral pool’, as well as easy to modulate and to handle. The photocatalytic cycle involves the formation of both static and dynamic complexes (exciplex formation) between the photo-organocatalyst and the reactive substrate, which are stabilized by hydrogen bonding. The corresponding products were achieved with high enantioselectivities (77–96%
Melchiorre and co-workers presented the catalytic approach using a chiral organic catalyst with hydrogen-bonding motifs to bind a specific substrate selectively in synthetically relevant intermolecular carbon-carbon bond-forming reactions driven by visible light [7]. In the asymmetric α-alkylation of aldehydes with alkyl halides, the commercially available diarylprolinol silyl ether catalysts [17]
In 2014, the authors describe the first light-driven enantioselective organocatalytic alkylation of unmodified ketones with alkyl halides [18]. This correlates to the previously established mechanism, in which the chiral enamines are the key intermediates in ground-state organocatalytic asymmetric processes. A variety of chiral primary amines (20 mol%) to activate cyclohexanone towards benzylation with 2,4-dinitrobenzyl bromide were studied. A chiral secondary amine did not show any ability to catalyze the photochemical alkylation; nevertheless, the primary amines displayed promising (entries 4 and 5) or even excellent (entry 6) reactivity, but insufficient enantioselectivity. The primary cinchona-based amine catalyst
Asymmetric α-alkylation of aldehydes and ketones with alkyl halides by photo-organocatalysis.
Last year, the group of Melchiorre reported the photo-organocatalytic enantioselective α- and γ-alkylation of aldehydes and enals with bromomalonates by a fluorescent light bulb without the need of any external photoredox catalyst [19]. The preliminary studies involved butanal and diethyl bromomalonate (Table 2) as substrates for this photo-organocatalytic reaction. The results showed that using the aminocatalyst
In parallel, the same group of researchers investigated the phase transfer catalyzed, enantioselective perfluoroalkylation and trifluoromethylation of cyclic β-ketoesters under visible light irradiation [21]. The photo-organocatalytic approach is again caused by the photochemical activity of EDA complexes generated
The above presented strategies of enantioselective photo-organocatalytic processes have a great potential for the sustainable preparation of chiral molecules, a rapidly developing area of modern chemical research.
\nIn parallel to the efforts performed in the field of asymmetric photo-organocatalysis, some attempts were also performed in the non-enantioselective processes.
\nNon-asymmetric photocatalysis has gained a great deal of attention during the last decades [23, 24], and a remarkable and interesting case was recently described by the already cited group of Melchiorre, in which an aromatic aldehyde was involved in the intermolecular atom transfer radical additions (ATRA) of a variety of haloalkanes to alkenes, one of the essential carbon-carbon bond-forming processes in organic chemistry [25]. In an ATRA reaction, the addition of an organic halide across a carbon-carbon double-bond yields a new C─C and C─X bond (X = halogen) in a single operation. Once more, organic compounds known to be capable of high photoreactivity [25] could alternatively be used as an energy transfer photocatalyst. It is important to note that for the first time, aromatic aldehydes have been used as photo-organocatalysts in an effective and valuable process [26]. Recent exciting findings by Melchiorre and co-workers have also shown the metal-free photo-organocatalysis which allows the direct alkylation of 2- and 3-substituted 1
The term photoredox organocatalysis has its origin in the work by Nicewicz and MacMillan in 2008. They reported the enantioselective α-alkylation of aldehydes using [Ru(bpy)3]Cl2 as a photoredox catalyst. This complex, alongside many others such as [Ir(ppy)2(dtb-bpy)]PF6 and
\nScheme 7 depicts the most popular dyes investigated in photoredox catalysis procedures.
\nThe photoactivation reveals the ability of the photosensitizer to absorb in the visible domain and to act both as a strong oxidant in the excited state S* and as an efficient reductant in its semi-reduced form S•–. In Scheme 8, a comparison between the general photoredox catalytic cycles of ruthenium-based catalysts and a photo-organocatalyst,
One of the most explored aspects investigated in the field of enantioselective photoredox catalysis has been the use of organic dyes as photocatalysts. In the seminal work by Zeitler
Using the same conditions adapted to a microreactor flow regime, smaller reaction times were obtained with comparable results [29]. Rose Bengal was also applied as photoredox catalyst in this type of reaction (Table 3, entries 3–9). Again, imidazolinone
On the other hand, asymmetric α-amination of aldehydes has also been accomplished by means of photoredox chemistry [31]. By using an amine substrate bearing ODNs, photolabile groups that simultaneously work as the photoredox catalyst and also release the reactive carbamyl reagent that couples with the
Entry | \nR1 | \nR2 | \nR3 | \nYield (%) | \nRef. | \n|
---|---|---|---|---|---|---|
1 | \nH | \n(CF2)3CF3 | \n56 | \n96 | \n[28] | \n|
2 | \nH | \nPNP-CO | \n82 | \n95 | \n[28] | \n|
3 | \nPh | \nCO2Et | \nH | \n76 | \n86 | \n[28] | \n
\n | Ph | \nCO2Et | \nH | \n89 | \n83 | \n[30] | \n
4 | \nCO2Et | \nH | \n85 | \n88 | \n[28] | \n|
\n | CO2Et | \nH | \n88 | \n80 | \n[30] | \n|
5 | \n4- | \nCO2Et | \nH | \n51 | \n83 | \n[30] | \n
6 | \n3-ClPh | \nCO2Et | \nH | \n90 | \n82 | \n[30] | \n
7 | \n4-OMePh | \nCO2Et | \nH | \n94 | \n80 | \n[30] | \n
8 | \n2,4-(OMe)2Ph | \nCO2Et | \nH | \n51 | \n83 | \n[30] | \n
9 | \n(CH2)2CH═CHEt | \nCO2Et | \nH | \n56 | \n85 | \n[30] | \n
Asymmetric alkylation of aldehydes catalyzed by Eosin Y or Rose Bengal.
Entry | \nR1 | \nR2 | \nR3 | \nYield (%) | \nRef. | \n||
---|---|---|---|---|---|---|---|
1 | \nPh | \nMe | \nCbz | \n77 | \n89 | \n[31] | \n\n |
2 | \nPh | \nMe | \nAlloc | \n75 | \n90 | \n[31] | \n|
3 | \nPh | \nMe | \nBoc | \n71 | \n89 | \n[31] | \n|
4 | \nPh | \nMe | \nFmoc | \n73 | \n89 | \n[31] | \n|
5 | \nPh | \nBu | \nCO2Me | \n76 | \n90 | \n[31] | \n|
6 | \nPh | \nMOM | \nCO2Me | \n75 | \n94 | \n[31] | \n|
7 | \nPh | \n(CH2)3Ph | \nCO2Me | \n71 | \n86 | \n[31] | \n|
8 | \nPh | \nMe | \nCO2Me | \n79 | \n92 | \n[31] | \n|
9 | \n\n | \nMe | \nCO2Me | \n71 | \n90 | \n[31] | \n|
10 | \n(CH2)2OBn | \nMe | \nCO2Me | \n73 | \n88 | \n[31] | \n|
11 | \n(CH2)2ONPhth | \nMe | \nCO2Me | \n77 | \n90 | \n[31] | \n|
12 | \nCH═CH2 | \nMe | \nCO2Me | \n76 | \n90 | \n[31] | \n|
13 | \n(CH2)2CO2Et | \nMe | \nCO2Me | \n71 | \n90 | \n[31] | \n|
14 | \nPMP | \nMe | \nCO2Me | \n79 | \n91 | \n[31] | \n|
15 | \nCyclohexyl | \nMe | \nCO2Me | \n72 | \n91 | \n[31] | \n|
16 | \nMe2 | \nMe | \nCO2Me | \n67 | \n94 | \n[31] | \n
Asymmetric α-amination of aldehydes by ODNs dual catalysis.
Entry | \nR1 | \nR2 | \nYield (%) | \nRef. | \n||
---|---|---|---|---|---|---|
1 | \n4-FPh | \n72 | \n83 | \n[32] | \n||
2 | \nPh | \n75 | \n97 | \n[32] | \n||
3 | \nPh | \n(CH2)2SCH3 | \n76 | \n69 | \n[32] | \n\n |
4 | \nPh | \nBn | \n37 | \n88 | \n[32] | \n
Decarboxylative reduction in 1-aryl-2,2,2-trifluoroethyl-substituted amino acids.
Cyclization of polyprenoids and 1,3-ketocabonyls catalyzed by Eosin Y.
Wallentin et al. [32] reported the photocatalyzed decarboxylative reduction in several classes of biologically relevant enantio-enriched 1-aryl-2,2,2-trifluoroethyl-substituted amino acids (see Table 5). A plausible redox-coupled hydrogen shuttle mechanism was proposed by using one of the strongest oxidizing organic dyes mesityl acridinium (Mes-Acr+BF4−,
A stereoselective radical cascade cyclization of polyprenoids through a photocatalytic mechanism has been reported yielding polyenes in moderate to very high yields with excellent diastereoselectivities (d.r. > 19:1) in HFIP and using Eosin Y as the photoredox catalyst (Table 6) [33]. The methodology was based on the cyclization by terminal OH groups of a large substrate array of aliphatic alcohols, phenols, or enols, which was tolerable to electron-rich or electron-poor substituents. In addition, the cyclization of 1,3-diketones required the use of LiBr as a weak Lewis acid. Stern-Volmer analysis reinforced that these reactions proceeded
The photoredox catalyst 2,4,6-
Over the last years, several publications involving non-asymmetric photoredox organocatalytic synthetic transformations mediated by metal-free organic photoredox catalysis under mild conditions have been reported [35].
\nFrom the industrial point of view, it is important to focus the recent developments on selective photocatalytic transformations of benzene, in particular the oxidation of benzene to phenol [36], alkoxylation of benzene [37], and monofluorination of benzene with fluoride and oxygen [38]. As an alternative to inorganic catalysts, the selective oxidation of benzene to phenol can be made under visible light irradiation of 2,3-dichloro-5,6-dicyano-
Photocatalytic [2+2] cycloaddition of dioxygen to tetraphenylethylene (TPE)
Eosin Y as a well-known low-cost organic dye that absorbs green light (characteristic peak at 539 nm) has been extensively investigated as photoredox catalyst for different organic transformations [42–49].
\nAs described in the previous sections, the electron transfer (ET) process is a crucial step in the organic chemistry field on which many organic reactions rely in order to occur [50, 51]. Essentially, an electron transfer process is based on the removal (or addition) of at least one electron from (or to) the electroactive substrate. This process is considered reversible only when the obtained products are stable under those experimental conditions. An electron transfer can generate intermediates which subsequently undergo chemical processes such as bond dissociation and bond formation. Basically, electroctrochemical techniques can be applied to establish the electrochemical oxidation and reduction mechanisms, that is the electron transfer reaction (formation and determination of the intermediates) and subsequent chemical reaction associated with the electrochemical generated process (formation of the reaction products). Thus, those formed intermediates are radical cations (or radical anions), and they can be generated by electrosynthetic processes using organic compounds. Carbon-free radicals (carbocations and carbanions) can also be generated by subsequent bond dissociation or bond formation process. Several electro-organic synthetic transformations, especially carbon-carbon, carbon-nitrogen, and carbon-phosphorous bond formation reactions, as well as oxidation and reduction processes have been reported [52]. Electrochemical processes are considered ‘green’ procedures for those synthetic transformations. The main advantage of the electrosynthetic approach is that electrons flow as current and are regard as one inexpensive reactant, thus making the route more environmentally friendly. Moreover, reactions take place in low-temperature conditions, reducing the local consumption of energy and the risk of corrosion, material failure, and accidental release. Finally, it is important to highlight that electrodes can be regarded as heterogeneous catalysts that are easily separated from the products. The low or even almost inexistent volatility of the reaction media is another factor to be taken into account. Therefore, electro-organocatalysis constitutes a valuable tool for the organic chemist with numerous applications in both academia [53, 54] and industry [55].
\nThe electro-organocatalysis field can be divided into two main branches, depicted in Scheme 11(A) direct electrolysis, in which the redox process occurs between the electrode surface and the reactant without the addition of other compounds and (B) ‘indirect electrolysis’ where the redox process occurs between the electrode surface and an external redox catalyst (or ‘mediator’) which then performs the ET with the reactive species) [56].
\nIn the direct electro-organocatalysis process, the electron transfer (ET) step occurs at the electrode surface. Due to its heterogeneous nature, the catalyst recycling can be performed easily by separating it from the reaction media after the formation of the desired organic product.
\n\'Direct electro-organocatalysis\' or electro-organic synthesis has recently gained increasing attention, which can be attributed to their sustainable and ‘green’ features when compared to the traditional ones.
\nIn the literature, there are few reports concerning bond formation and bond dissociation reactions. Gallardo and co-workers reported the formation of C─C [52, 57, 58], C─N [58], C─P [59], and C─S [60] bonds by an electrochemical approach of nucleophilic aromatic substitution reactions (SNAr). The proposed new route for the electrochemical processes consists on the reaction between an electron-deficient, aromatic compound and a nucleophile, leading to the formation of a σ-complex or Meisenheimer complex intermediate. Then, this species undergoes an oxidation that leads to the departure of the leaving group (heteroatom radical [NASX] and/or hydride, two electrons and a proton [NASH]). This procedure was similarly conducted with other nucleophiles (hydride, cyanide, fluoride, methoxy, ethanethiolate, and n-butylamine) and aromatic compounds as starting materials. In addition, preparative electrolysis was also employed as means to promote the oxidation of the intermediate produced in the first step of the process [52, 58].
\nThis technique allows determination, characterization, and quantification of the type and number of electrochemically produced complexes present in the reaction media. It is also possible to assess if the reaction was successful once most classical SNAr reactions give lower yields.
\nThe main drawbacks of the electrochemical approach are the use of solvent and the amount of tetraalkylammonium salt as electrolyte, which consequently have to be separated from the desired product. The use of ionic liquids (ILs) in particular room temperature ionic liquid (RTIL) as solvents may address this specific problem. They are considered non-flammable, non-volatile, and thermally stable over a wide range of temperatures, as well as good solvents for organic and inorganic compounds. In addition, they may be applied concomitantly as solvent and as electrolyte thereby enhancing the ‘green’ aspect of these procedures.
\nGallardo and co-workers [61] adapted the electrochemical approach of nucleophilic aromatic substitution reactions to this \'greener\' alternative family of solvents. The authors described the investigation of the electrocatalytic process as well as regioselectivity effects induced by the solvation properties of the RTILs (1-butyl-3-methylimidazolium [BMIM] combined with tetrafluoroborate [BF4], hexafluorophosphate [PF6], bis(trifluoromethylsulfonyl)imide [NTf2], and acetate [AcO] as anions).
\nThe use of electrochemical techniques such as cyclic voltammetry (CV) and controlled potential electrolysis allows the evaluation of the nature and stability of the electrochemically generated intermediate on the solvent, as well as the extension of the reaction.
\nDespite the successful reports on SNAr reactions, the ‘direct electrolysis’ approach requires the application of high potentials in order for the electrosynthetic process to occur. To address this issue, the redox process can be applied to organocatalysts which then lead to yield the desired products in the indirect electrocatalysis fashion.
\nIn the indirect electro-organocatalysis process, the electron transfer (ET) step is shifted from a heterogeneous process occurring at the electrode surface (as described earlier as ‘direct electrolysis’) to homogeneous process that can provide an electrochemically generated substance which acts as a so-called organocatalyst (or ‘mediator’). Usually triarylamines, triarylimidazoles and
In order to explore and generalize this methodology, analogous organocatalysts with modified aromatic rings were also reported by the authors. The desired products were formed in good yields [63].
\nIn this specific case of the ‘indirect electro-organocatalysis’, particular conditions of solvent and catalyst are employed in order to enhance the enantioselectivity of the formed products. It is considered as safer and ‘green route’ towards enantioselective reactions by combining asymmetric organocatalysis with electrochemistry. The selected organocatalysts are stable, stereoselective organic compounds that can undergo the electrosynthetic process under unsuitable conditions for conventional catalysts. Asymmetric electro-organocatalysis methodologies have been successfully employed to produce several optically active compounds with application in life sciences. Scheme 12 depicts the direct intermolecular α-arylation of aldehydes to produce meta-alkylated anilines using electron-rich aromatic compounds [66].
\nThe described methodology for the regio- and stereoselective electroorganocatalyzed production of the
In 2005, Schäfer and co-workers [67] reported the reaction of enamines and mediated anodic oxidation of carbohydrates in the presence of 2,2,6,6-tetramethylpiperidine-1-oxoammonium cation ([TEMPO]) as organocatalyst. These species reacted with selected enaminoesters to form intermediate imidazolium cations, which selectively oxidize the primary hydroxy groups of trisaccharides at the anode to give tricarboxylic acid sugars in 50–80% yields. The relative stability of the electrogenerated TEMPO cation in acetonitrile enables it to react as a selective oxidant, electrophile, and also catalyst.
\nEnantioselective α-oxyamination of aldehydes has been reported by the group of H.-J. Jang using a
An asymmetric electro-organocatalysis method for enantioselective α-alkylation of aldehydes with xanthene has also been devised by the group of Jang et al. [69]. Scheme 15 depicts the best results using a chiral imidazole as organocatalyst, which was chosen from a plethora of differently substituted imidazole-based compounds [69]. According to electrochemical studies and control experiments, the reaction is probable to occur through the formation of an enamine intermediate. DFT calculations suggested that xanthene adds to the opposite side of the phenyl ring of the radical intermediate blue to stereochemical hindrance issues, thus enhancing the stereoselectivity of the reaction.
\nIn 2014, Xu and co-workers [70] published an electrochemical intramolecular aminooxygenation reaction of unactivated alkenes based on the addition of N-centered radicals to alkenes (generated from electrochemical oxidation) followed by trapping of the cyclized radical intermediate with TEMPO. This process allowed the preparation of different aminooxygenation products in high yields and excellent trans-selectivity for cyclic systems (d.r. up to > 20:1).
\nVery recent, Xu and collaborators [71] reported the first electrocatalytic method using ferrocene as a cheap redox catalyst to produce amidyl radicals from N-arylamides. The conventional methods for oxidative generation of amidyl radicals from N─H amides need to use a stoichiometric quantity of expensive noble-metal catalysts or strong oxidants. In this case, the authors showed an efficient radical-generating process based on intramolecular olefin hydroamidation reaction.
\nThis work was supported by Fundação para a Ciência e a Tecnologia through projects (PEst-C/LA0006/2013) one contract under principal investigator FCT (L.C. Branco) and one postdoctoral fellowships (Hugo Cruz—SFRH/BPD/102705/2014).
Wheat (
There are various wheat diseases such as fungal, which include stem or black rust, caused by
Among the wheat diseases, rusts have become the most destructive diseases of wheat in Kenya resulting in yield losses of up to 100% in susceptible cultivars [10, 11]. Breeders have been breeding for wheat rust resistance, since 1908, but up to date, there is no permanent solution to the rust diseases as the pathogens keep on evolving rendering the resistant cultivars ineffective [12]. Since the beginning of the wheat breeding program in Kenya in the 1900s, until early 1980s, stem rust was the most serious disease of the three wheat rusts and therefore was given a high research priority by the breeding program. Consequently, many resistant wheat cultivars were developed and the disease seemed to have been controlled. It was until between 1985 and 1988 that trace amounts of the disease were observed in the experimental plots in Njoro; in 1996, it was recorded in some commercial cultivars in Mau-Narok and Molo, and in the year 2000 all the cultivars had become susceptible [10, 12].
Stem or black rust of wheat, caused by
Wheat yellow or stripe rust, caused by
Stripe rust to limits wheat production by affecting the yield and quality of kernels as it develops at an early crop stage when temperatures are favorable for rust development [30]. Stripe rust destroys leaves at jointing to booting growth stages. Consequently, infection of stripe rust on wheat reduces photosynthetic area as early as tillering and jointing stages of development. Stripe rust epidemic has occurred in more than 60 countries in every continent causing yield losses of up to 100% in susceptible cultivars [31]. In East Africa, Kenya, and Ethiopia the epidemics caused yield loss of 67−100% in the year 2010 [25]. In Kenya, wheat is grown throughout the year in different agro-ecological zones, and this increases the concentration of the urediniospores in the air making it difficult to control the disease in susceptible varieties [12, 16]. Yield losses of up to 80% have been estimated but some fields with susceptible cultivars go up to 100% [10, 25].
Stripe rust is a global problem evolving into different races, either from their wild ancestor or their host through introductions [32]. In Kenya and Ethiopia
Wheat leaf rust caused by
Highly effective durable resistance to leaf rust has been difficult to achieve due to the high degree of virulence variation in the
Fusarium diseases, mainly Fusarium head blight of wheat (FHB), also called head scab, are caused mainly by the fungus
Septoria diseases are caused by
Spot blotch caused by
The sudden upsurge of
The highland areas of wheat production in Kenya: Molo, Mau Narok (Central Rift), Eldoret and Endebess (North Rift) have a pH of 4.3−5.5 [56]. All wheat cultivars grown in these areas have shown susceptibility to the pathogen but no direct screening has been done. Aluminum toxicity in acid soils has been documented as the primary factor in the reduction of the crop yields [56]. Seed borne nature of the disease has been reported in wheat cultivars in Kenya [57, 58], and studies on disease management revealed that the pathogen can be reduced by the use of seed treatment fungicides [59]. Biological control methods have also been reported [60, 61].
Loose smut caused by
Take All (
Apart from fungal diseases, another disease that threatens wheat production in Kenya is the Barley Yellow Dwarf Virus (BYDV), which is an important virus disease of cereals globally and has a wide host range that includes wheat, barley, oats, triticale, and over 150 grass species [51]. The disease was first reported in Kenya in 1984 and causes serious damage in barley, wheat, and oats and estimated losses range from 16.5−54.7% [62, 63]. Cereal aphids are vectors of the barley yellow dwarf and five strains have been known to occur in Kenya: RPV (
Under favorable environmental conditions, infection of the wheat crop with these diseases can reduce quantity and quality of the grain. Disease surveillance is an epidemiological practice by which the spread is monitored to establish patterns of progression and is key in identifying new diseases and races which can be used in risk assessment and resistance breeding. This review highlights the prevalence, distribution of wheat diseases, host plant resistance in the key wheat-growing regions, and future prospects in Kenya.
Surveys were conducted in the farmer fields in the major wheat-growing regions (Central Rift, South Rift, North Rift, and Mount (Mt) Kenya from 2011 to 2019. The objective was to determine the prevalence and distribution of the wheat diseases and host plant resistance in these regions. Farms were randomly picked along the routes, stopping at every 3 to 5 kilometers. Crops were observed for disease symptoms. An International Standardized survey form was used to keep the records on disease incidence and severity, cultivar grown, production area, and growth stage [66], also any other data that was useful. The Global positioning system (GPS) tool was used to collect precise information on latitude, longitude, and elevation of the sampled farms. Stem, yellow, and leaf rust severities were taken using modified Cobb scale, 0−100% where; 0- immune and 100- susceptible [67]. The host plant response to infection was scored as resistant (R), moderately resistant (MR), moderately susceptible (MS), and susceptible(S) [68]. Incidence and severity of other diseases observed during the surveys were also taken using recommended scales. Septoria diseases were assessed using 0−9 scale [49], where 0 = Free from infection and 9 = Very susceptible/severe infection. Similarly, barley yellow dwarf virus was assessed on a scale of 0−9 [69], where 0 = no symptoms and 9 = full symptom expression, and the Fusarium disease score rating system was 0−5 [70]. Tables 1 and 2 show the occurrence (percent infection and severity & plant response) of the diseases in all the wheat-growing regions. Rust diseases are common in the wheat fields and stem rust is widespread in all the regions. This explains the importance of stem rust, Ug99 race group, since its detection in Uganda and spread to the wheat-growing areas of Kenya, throughout eastern Africa, Yemen, Sudan, Iran, Zimbabwe, Tanzania, South Africa, Mozambique, Zimbabwe, and Iraq [15, 16, 22]. The prediction for the rust diseases to spread towards North Africa, Middle East, Asia and beyond, raises serious concerns of major epidemics that could destroy the world’s wheat crop [19].
Year | Region | No. of sampled farms | Lr Infection (%) | Lr% severity (%) | ||||
---|---|---|---|---|---|---|---|---|
2011 | Central Rift | 62 | 70.9 | 0-100S | 17.7 | TR -60S | 17.7 | TR-40S |
South Rift | 125 | 68.8 | TR-100S | 6.4 | TR- 20S | 17.7 | TR-20S | |
North Rift | 73 | 48.3 | TR-90S | 10.9 | TR- 20S | 10.9 | TR-20S | |
Mt. Kenya region | 67 | 68.0 | TR- 60S | 10.4 | 0 - 40S | 13.4 | TR-20S | |
2012 | Central Rift | 67 | 65.7 | TR-80S | 4.5 | 5-50S | 11.9 | 5-30S |
South Rift | 71 | 5.6 | TR-20S | — | — | — | — | |
North Rift | 101 | 26.7 | TR-70S | 5.9 | 5-70S | 3.9 | 10-50S | |
Mt. Kenya region | 39 | 58.9 | TR-50S | 5.1% | 5-60S | 2.6 | 30S | |
2013 | Central Rift | 97 | 71.0 | TR-70S | 8.3 | TR-50S | 6.7 | TR-50S |
South Rift | 104 | 68.3 | TR-100S | 3.8 | 10S–30S | 5.8 | TR-50S | |
North Rift | 78 | 33.3 | TR-70S | 10.3 | TR-50S | 6.5 | TR-50S | |
Mt. Kenya region | 54 | 25.9 | TR-60S | 7.4 | 10S–30S | 0 | 0 | |
2014 | Central Rift | 92 | 82.5 | TR-80S | 6.2 | TR -50S | 6.2 | 10S–50S |
South Rift | 79 | 72.2 | TR-80S | 8.9 | TR- 60S | — | ||
North Rift | 95 | 55.8 | TR-80S | 6.3 | TR- 40S | 5.3 | 0 - 40S | |
Mt. Kenya region | 71 | 57.7 | TR- 60S | 15.5 | 5S - 60S | 1.4 | 0-40S | |
2015 | Central Rift | 66 | 54.54 | TR-80S | 5.8 | 5S–40S | 1.5 | 0-30S |
South Rift | 101 | 35.6 | TR-60S | — | — | — | — | |
North Rift | 106 | 75.5 | TR-50S | 8.5 | TR-40S | 1.9 | TR-30S | |
Mt. Kenya region | 63 | 71.4 | TR-60S | — | — | — | — | |
2016 | Central Rift | 60 | 88.3 | TR-80S | 16.7 | TR-60S | 3.3 | 30S–50S |
South Rift | 81 | 76.5 | TR-70S | 4.9 | TR-10S | 1.2 | 0-50S | |
North Rift | 98 | 72.4 | TR-80S | 13.3 | TR-40S | 10.2 | TR-50S | |
Mt. Kenya region | 61 | 80.3 | TR-90S | 1.6 | TR | — | — | |
2017 | Central Rift | 54 | 87.03 | TR-70S | 8.9 | 0 -30S | — | — |
South Rift | 79 | 69.2 | TR-100S | 3.79 | TR- 10S | — | — | |
North Rift | 78 | 64.1 | TR-60S | 8.97 | TR- 30S | 24.4 | TR-40S | |
Mt. Kenya region | 38 | 44.1 | TR- 30S | 10.5 | TR - 40S | — | — | |
2018 | Central Rift | 64 | 74.0 | 5-50S | 10.0 | 5-60S | 10.0 | TR-30S |
South Rift | 85 | 42.2 | 5-70S | 3.3 | 10S–30S | 1.1 | TR-40S | |
North Rift | 89 | 25.84 | 5-80S | 19.1 | 5S–60S | 24.35 | 5S–70S | |
Mt. Kenya region | 62 | 47.9 | 5-40S | 2.81 | 10S–30S | — | — | |
2019 | Central Rift | 56 | 82.2 | TR-50S | 2.2 | 0-40S | — | — |
South Rift | 87 | 83.13 | TR-80S | 1.2 | TR | — | — | |
North Rift | 101 | 22.77 | TR-40S | 7.92 | TR-40S | 4.95 | TR-20S | |
Mt. Kenya region | 46 | 63.04 | TR-50S | 10.86 | 15S–60S | 6.5 | 5S–30S | |
Occurrence of wheat rust diseases in the commercial fields in year 2011−2019.
Year | Region | No of sampled farms | Disease incidence (%) | ||
---|---|---|---|---|---|
BYDV | |||||
2011 | Central Rift | 62 | 16.1 | 9.6 | 0 |
South Rift | 125 | 4 | 1.6 | 0.8 | |
North Rift | 73 | 27.4 | 12.3 | 0 | |
Mt. Kenya | 67 | 1.5 | 0 | 0 | |
2012 | Central Rift | 67 | 42.8 | 8.9 | 16.4 |
South Rift | 71 | 46.5 | 2.8 | 0 | |
North Rift | 101 | 41.8 | 0.9 | 0.9 | |
Mt. Kenya | 39 | 17.9 | 2.7 | 0 | |
2013 | Central Rift | 97 | 8.2 | 6.2 | 2.1 |
South Rift | 104 | 14.4 | 0.9 | 0.9 | |
North Rift | 78 | 28.2 | 0 | 0 | |
Mt. Kenya | 54 | 45.3 | 1.9 | 0 |
Occurrence of
Yellow rust, which was first described in 1777, and attacked wheat in Kenya as early as 1908 [26], was observed in low incidences but high severities across all the regions (Table 1). The disease is also a major threat as no cultivar is resistant [28, 29]. Newly introduced resistant varieties lose their resistance within a short time and farmers are forced to spray to save on yields. Serious attacks of the pathogen occur annually and the disease severity increases with altitude [33]. Serious epidemics also occur in the lower latitudes areas. All the wheat-growing areas are prone to disease in low medium and high altitudes areas.
In Kenya, leaf rust has been sporadic and has not been a problem for the past 20 years, but it has recently emerged in the wheat fields (Table 1), and experimental plots, including the international screening nursery with a severity of over 50%. Our cultivars are now at risk given the fact that virulences and new races have been identified in Njoro and also South Rift, Ololulung’a areas (data not shown).
The growing of wheat in diverse agro-ecological zones throughout the year [71, 72] in Kenya creates a significant pool of airborne urediniospores, which coupled with favorable climatic conditions and the presence of host plants, favors rapid build up of inoculum and the occurrence of epidemics. This implies that there is a shift in races present each year, which affects different cultivars of wheat. There is continuous attack, due to the presence of wheat crops throughout the year. The breakdown in resistance could also be attributed to mutations [24]. It is, therefore, a problem to reduce the disease infection in susceptible cultivars and also not possible to grow a profitable crop of wheat without the application of fungicides [10, 16]. Septoria diseases, Fusarium spp., Barley yellow dwarf virus are also becoming more prevalent in the commercial fields (Table 2), year 2011 to 2013. Disease incidence varied from year to year depending on the chemical/spray applied. Data for the occurrence of these diseases from 2014 to 2019 was not shown because it was similar as shown in Table 2.
Conventional breeding, which includes testing genotypes in different environments to determine the adaptability of the varieties has been used largely in Kenyan wheat breeding programs to identify resistant varieties [72]. Crop improvement by traditional methods, involves collection, hybridization, and inbreeding that has been practiced since the beginning of 20th Century. However, it has now been realized that these methods are insufficient to make further breakthroughs or cope with the increasing demand for improvement in crop varieties [73]. Some of the limitations of conventional breeding include the exhaustion of the gene pool, low response to biotic and abiotic stress of the introduced materials, and low combining ability, especially with complex characters. In Kenya, diverse agro-ecological zones and favorable environs highly contribute to the emergence of new races. The cultivars grown are at high risk of being infected with diseases, therefore, it is necessary to identify and incorporate genes that confer durable resistance to contain major epidemics [74, 75]. There are various strategies employed to control these diseases in wheat. These include incorporation of genetic resistance into susceptible wheat genotypes, crop management plus use of fungicides. Despite the fact that it takes a long-time, breeding for durable resistance remains to be a cost-effective strategy of minimizing loss due to wheat diseases [76]. Therefore, host resistance is the primary tool to protect wheat crops from wheat fungal rust diseases and other biotic stresses [77]. Breeding for vertical (qualitative) resistance based on major genes and horizontal (quantitative) influenced by several minor genes for wheat disease resistance has been going on in Kenya since wheat introduction in the 19th century. However, due to pathogen evolution, most of the genotypes with qualitative and quantitative resistance become susceptible to the new races, especially wheat rusts pathogens. For instance, wheat cultivars Robin and Eagle 10 released in Kenya as resistant varieties in 2009 and 2010 were overcome by Ug99 variant
No | Variety | Region and variety area planted (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Central Rift | South Rift | North Rift | Mt.Kenya | ||||||||||
2011 | 2012 | 2013 | 2011 | 2012 | 2013 | 2011 | 2012 | 2013 | 2011 | 2012 | 2013 | ||
1 | NjoroBW2 | 30.4 | 34.3 | 24.7 | 29.6 | 39.4 | 42.3 | 49.0 | 60.4 | 57.7 | 26.2 | — | — |
2 | KS Mwamba | 50.4 | 14.9 | 12.3 | 50.4 | 15.5 | 20.2 | 45.2 | 28.7 | 26.9 | 33.8 | 25.6 | 25.9 |
3 | Kwale | 14.0 | 20.9 | 14.4 | 14.4 | 9.9 | 20.2 | 4.1 | 1.9 | 5.1 | 6.2 | 23.1 | 11.4 |
4 | Robin | — | 7.5 | 20.6 | — | 1.4 | — | — | — | 7.7 | — | — | 22.2 |
5 | Mixed | 3.2 | 8.9 | 10.3 | — | — | 1.9 | 1.3 | 5.9 | 1.3 | — | 17.9 | 7.4 |
6 | Eagle10 | 1.6 | — | — | — | 1.4 | 0.9 | — | — | — | — | 1.6 | |
7 | Others | 0.4 | 13.5 | 17.7 | 5.6 | 32.4 | 14.5 | 0.4 | 3.1 | 1.3 | 33.8 | 33.1 | 31.5 |
Commonly grown cultivars in the key wheat-growing regions in the year 2011−2013.
-cultivar not planted.
Kenyan wheat cultivars Robin, NjoroBW2, KS Mwamba, Kwale, Kenya Korongo, Robin, Eagle 10, Kenya Black Hawk 12 (Tables 3 and 4), and Kenya Seed Company cultivars were grown by most farmers in the wheat-growing regions of Kenya.
Commercial Name | Pedigree | Yield potential tons/Ha | Days to Maturity | Year of release | Resistant status |
---|---|---|---|---|---|
Robin | BABAX/LR42//BABAX*2/3/TUKURU | 8.1 | 110–120 | 2009 | Overcome by TTKTT race in 2014 |
Eagle10 | EMB16/CBRD//CBRD | 6.5 | 100–110 | 2010 | Good resistance to stem rust (Ug99 strain). |
Kenya Wren | THELIN#2/TUKURU | 8.5 | 120–130 | 2012 | APR to both yellow and stem rust diseases. |
Kenya Tai | ND643/2*WBLLI | 6.5 | 100–110 | 2012 | Resistant to both stem rust and yellow rust. |
Kenya Sunbird | ND643/2*WBLLI | 6.5 | 100–110 | 2012 | Resistance to stem rust, |
Kenya Korongo | BABAX/LR42//BABAX*2/4/SNI/TRAP#1/3KAUZ*2/TRAP//KAUZ | 8.5 | 120–130 | 2012 | Overcome by TTKTT race in 2014 |
Kenya Kingbird | TAM-200/TUI/6/PAVON-76//CAR-422/ANAHUAC-75/5/BOBWHITE/CROW//BUCKBUCK/PAVON-76/3/YECORA-70/4/TRAP-1 | 6.0 | 90–110 | 2012 | Developed for Adult plant resistance to both stem rust and yellow rust. |
Black Hawk12 | URES/JUN//KAUZ/3/BABAX/4/TILHI | 8.0 | 120–130 | 2012 | Overcome by TTKTT race in 2014 |
Kenya Hornbill | PASTOR//HXL7573/2*BAU/3/SOKOLL/WBLL1 | 7.5 | 110–120 | 2016 | High APR to yellow rust and moderate resistance to stem rust. |
Kenya Deer | PBW343*2/KUKUNA*2//YANAC | 7.8 | 100–110 | 2016 | High adult plant resistance to stem rust and yellow. |
Kenya Weaverbird | PRINIA/3/ALTAR84/AE. SQ //2*OPATA/4/CHEN/AEGILOPS SQUARROSA(TAUS)//BCN/3/BAV92 | 8.0 | 110–120 | 2016 | High APR to stem rust. |
Kenya Peacock | QUAIU/3/PGO/SERI/BAV92 | 120–130 | 2016 | High APR to both stem and yellow rusts. | |
Kenya Falcon | KSW/5/2*ATLAR 84/AE. SQUARROSA (221)//3*BORL95/3/URES/JUN/KAUZ/4/WBLL1 | 8.0 | 100–115 | 2016 | Excellent seedling and APR to stem rust. Highly resistant to yellow rust |
Kenya Songbird | KSW/5/2*ALTAR 84/AE. SQUARROSA (221)//3*BORL95/3/URES/JUN/KAUZ/4/WBLL1 | 8.2 | 110–120 | 2016 | _ |
Kenya Pelican | KSW/5/2*ALTAR84 /AE. AQUARROSA (221)//3*BORL95/3/URES/JUN/KAUZ/4/WBLL1 | 8.5 | 120–130 | 2016 | High APR to stem rust. |
Kenya Jacana | KSW/SAUAL//SAUAL/3/REEDLING #1 | 6.5–8.0 | 110–130 Days | 2019 | Moderately resistant to original Ug99 races. In warmer weather, susceptible to race “TTKTT” |
Kenya Kasuko | KSW/SAUAL//SAUAL/3/REEDLING #1 | 7.0–8.0 | 110–120 Days | 2019 | Moderately resistant to original Ug99 races. In warmer weather, susceptible to race “TTKTT” |
Current wheat varieties released in Kenya, their yield potential and resistant attributes.
APR = adult plant resistant.
Source: http://wheatatlas.org/country/varieties/KEN/0?AspxAutoDetectCookieSupport=1.
In 2011, KS Mwamba occupied the largest area in Central and South Rift (50.4%), North Rift (45.2%), and in Mount Kenya region 33.8% (Table 3). In 2012, the area planted with NjoroBW2 increased: 34.3%, 39.4%, 60.4%, while it decreased for KS Mwamba, 14.9%, 15.5%, and 28.7% in Central, South, and North Rift, respectively (Table 3). Cultivar Kwale was highly grown in Central Rift (20.9%), Mt. Kenya (23.1%), and South Rift (20.2%) in 2013. For the cultivars released in 2010 with adult plant resistance (APR) to the wheat stem rust race
In 2014, cultivar Robin was highest in Central Rift (43.3%), South Rift (41.8%), and Mt. Kenya region (43.7%) while cultivar NjoroBW2 was highest in North Rift (64.2%), Central Rift (15.5%), Mt. Kenya (12.7%), and South Rift (8.9%). KS Mwamba was highest in North Rift (16.4%), Central Rift (15.5%), South Rift (11.4%), and Mount Kenya (9.9%). The area under cultivar Kwale was highest in Central Rift (10.3%), followed by South Rift and Mt. Kenya region (7.6% and 7.0%), respectively. The area under cultivar Eagle 10 was only noted in South Rift 18.9% and overall occupied only 4.4% across the region. Mixed and other unknown cultivars were common in Mt. Kenya region: Kenya Ibis occupied 1.2%, Duma (0.6%), mixed cultivars (1.8%).
In 2015, the area planted with NjoroBW2 increased in North Rift from 63.2% in 2014 to 70.6% in 2015 cultivar Robin increased in Mt. Kenya region (66.7%) as opposed to 2014 (43.7%), but decreased in Central Rift from to 21.2%. The area under production in North Rift increased from to 16.5% and decreased in South Rift from 35.6%. Cultivar Eagle 10 was only observed in South Rift (20.8%) of the sampled fields. Cultivars Kenya Wren and Kenya Hawk12 were observed only in the South Rift (1.9%).
The area planted on NjoroBW2 decreased in North Rift to 64.3% Mt. Kenya 49.2% in 2016. Cultivar Eagle 10 was only grown in South Rift (9.9%) and in North Rift (2.0%) of the sampled fields. Cultivars Kenya Wren was grown in South Rift (2.5%) and North Rift (1.0%) while Kenya Hawk12 was grown in the South Rift (6.2%). Kenya Korongo was grown in South Rift (8.3%) and North Rift (1.0%).
In 2017, cultivar NjoroBW2 was popular in North Rift (69.2%), Central Rift (40.7%), and South Rift (32.9%). Robin was popular in Mt. Kenya region (32.4%), followed by South Rift (20.3%), Central Rift (10.7%), and North Rift (7.7%). Kenya Korongo was only popular in the Central Rift (27.8%). Kwale was popular in Central Rift (7.4%), South Rift (6.3%), and Mt. Kenya (5.3%) area under production of the sampled fields. Cultivar NjoroBW2 occupied the largest area in North Rift (69.2%) and Central Rift (40.7%). Cultivar Eagle 10 was recorded in South Rift (13.9%), Central Rift (1.9%), and in North Rift (1.3%) of the sampled fields. While variety Duma was popular in Mt. Kenya region (42.1%) area under production of the sampled fields. Kenya Wren was grown in Central Rift 1.9.3%), South Rift (1.3%), and North Rift (1.0%) while Kenya Black Hawk12 was grown in South Rift (6.2%) and North Rift (1.3%). Kingbird was only grown in South Rift (2.5%) and North Rift (1.3%) area under production of the sampled fields.
In 2018, cultivar NjoroBW2 was popular in all the regions: North Rift (70.8%), Central Rift (44.0%), South Rift (34.4%), and Mt. Kenya region (14.08%). Robin was grown in North Rift (16.0%), Mt. Kenya (14.6%), Central Rift (12.0%), and South Rift (11.8). Kenya Korongo was only popular in the Mt. Kenya region (36.6%) while Kwale was grown in Central Rift (8.0%) and South Rift (4.7%). Variety Eagle 10 was only popular in South Rift (14.0%) area under production of the sampled fields. The area under production of variety Eagle 10 remained the same in the South Rift as the previous year. Kenya Wren was only grown in South Rift (3.5%), Kenya Black Hawk12 was grown in North Rift (2.5%). while Kingbird was grown in South Rift (1.2%) and North Rift (1.3%).
In 2019 cultivar NjoroBW2 was popular in Mt. Kenya (43.5%). North Rift (42.5%), Central Rift (39.28%), South Rift (31.0%). Kenya Korongo was grown in Mt. Kenya (23.9%), Central Rift (16.0%), South Rift (11.5%), and North Rift (7.92%). Cultivar Robin was popular in the Mt. Kenya (23.9%), South Rift (13.8%), and Central Rift (5.4%). Kwale was grown in North Rift (9.9.0%), South Rift (8.0%), Mt. Kenya (6.5%), Central Rift (5.4%) area under production of the sampled fields. Cultivar Eagle 10 was only popular in South Rift (14.9%) and Central Rift (7.1%) area under production of the sampled fields. The Kenya Seed Company cultivars were more popular in the North Rift (24.8%) area under production of the sampled fields.
Over fifty percent of the previously released varieties (Table 4) are now susceptible to the Ug99 race. Robin, Kenya Black Hawk12, Kenya Korongo, Kenya Jacana, and Kenya Kasuko are susceptible to Ug99 races (TTKTK and TTKTT) that were detected on Robin with virulence to
There is a long history of wheat breeding in Kenya as early as 1908, however, the use of molecular breeding tools is very limited thereby hampering the rate of genetic gains achieved. As such, the national breeding program has depended on introductions of wheat lines from international wheat breeding programs including CIMMYT and ICARDA. Understanding the composition and diversity of fungal wheat disease resistance in Kenya wheat germplasm is important for defining breeding strategies and prioritizing trait targets for wheat improvement [82].
Biotechnological approaches in wheat breeding such as double haploid (DH) and mutational breeding have been used to speed up breeding by complementing conventional breeding [72]. DH which shortens the breeding period by a single cycle has been used in Kenya to produce varieties such as K. Ibis. Mutation breeding brings about genetic variation and accelerates the outcome of variety release has been applied at KARLO, Njoro to release varieties NjoroBW2 and K. Heroe by irradiation using gamma rays [72, 83]. Conventional method of gene pyramiding is time-consuming, hence, the incorporation of molecular breeding is efficient in breeding for biotic and abiotic stresses in wheat for quick release of resistant varieties. The use of molecular markers enhances phenotypic selection because it makes it more efficient, effective, reliable, and cost-effective compared to conventional plant breeding, hence improving the latter [84]. There has been some concern about the incorporation of DNA marker technology in many plant-breeding institutions and most institutions can now develop their own markers [85, 86]. Molecular markers such as SSR, AFLP, and KASP markers have been developed to evaluate genotypes for biotic stresses such as diseases in Kenyan varieties [7, 82, 87].
Other than host plant resistance, cultural and chemical methods have been used to control wheat diseases in Kenya. Cultural control techniques such as growing resistant genotypes, late planting, reduced irrigation, avoidance of excessive nitrogen use, and elimination of volunteer and grass plants can reduce stripe rust severities as they limit exposure time to inoculum [25]. Altering planting date and separating the vulnerable crop from the pathogen in either time or space controls certain airborne disseminated pathogens of wheat [88]. Although the cultural techniques are used, they are either not profitable, conflict with conservation farming, or reduce yield potential [89]. Genetic resistance combined with chemical treatments, although expensive to the poor resource farmers may often be very effective in controlling wheat diseases [90]. Some of the fungicides used by farmers in Kenya are listed in Table 5. The application of seed treatment chemicals such as
No | Chemical name | Common name | Rate L/ha |
---|---|---|---|
1 | Nativo 300SC | 1.0 | |
2 | Prosaro 250EC | 1.0 | |
3 | Twiga Epox GF | 1.0 | |
4 | Fezan 250 EW GF | 1.0 | |
5 | Acanto Plus | 1.0 | |
6 | Abacus SE | 1.0 | |
7 | Rexduo SE | 1.0 | |
8 | Osiris EC | 1.0 | |
9 | Cherokee 487.5 SE | 1.0 | |
10 | Menara 410EC | 0.5 | |
11 | Tebulis 430 SC | 0.5 | |
12 | Azimut SC | 1.0 | |
13 | Skyway Xpro 275 EC | 1.2 | |
14 | Atlas 300EC | 1.0 | |
15 | Quilt Excel 265 SE | 1.25 | |
16 | Swing Xtra 497 SC | 1.0 | |
17 | Fosphite Liquid | 4.0 | |
18 | Amizoc 480 EC | 1.8 | |
19 | Zantara 216 EC | 1.0 | |
20 | Ceriax 149.8 EC | 1.0 | |
21 | Stamina 500SC | 0.9 | |
22 | Token 325 SC | 0.75 | |
23 | Elatus Arc 265.14 SE | 1.0 | |
24 | Silvacur 375 EC | 1.0 | |
25 | Folicur 250 EC | 1.0 | |
26 | (t | Shadow 750 WG SC | 400 g |
Recommended fungicides for control/reduction of foliar wheat diseases in Kenya.
* Can control Fusarium Head Blight (FHB) when spayed at flowering**Can control Fusarium Head Blight (FHB) and Septoria diseases GF- Generic fungicide.
During surveys, we noted that farmers who sprayed following the right recommendations of fungicides in Table 5 had good yields compared to those who did not spray or sprayed without following the proper recommendations hence losing the crop to the disease. Majority of the farmers sprayed the fungicides to reduce/suppress disease infections, particularly the rusts, but some sprayed farms were noted to have high disease infections. These are farms that either had been sprayed late or the timing/ chemical concentrations were not right.
Despite the occurrence of wheat diseases in Kenya, information on the genetic basis of the diseases and wheat cultivars is limited. Molecular genetic markers have been advanced from phenotypic and protein-based markers to DNA sequence polymorphism, this accelerates the process of plant breeding when coupled with conventional breeding [93]. Since many traits valued by plant breeders are complex and polygenic, it is essential to involve the deliberate combination of various genomic regions from many different individuals in the development of an adapted elite variety [94]. Sequencing polymorphism markers are important in identifying genetic diversity in cultivated and wild genotypes, the source of novel genomic regions, alleles, and traits [95].
In crops, marker-assisted selection (MAS) has been made efficient by designation of markers associated with economic importance, for instance, disease resistance (wheat rust), response to abiotic stress and seed quality [96, 97]. The use of molecular markers enhances phenotypic selection because it makes it more efficient, effective, reliable, and cost-effective compared to conventional plant breeding hence improving the latter [84]. There has been some concern about the incorporation of DNA marker technology in many plant-breeding institutions but most institutions can now develop their own markers [85, 86].
In genetic studies of wheat, genetic markers such as amplified fragment length polymorphism (AFLP), restriction fragment length polymorphism (RFLP), random amplified polymorphic DNA (RAPD), simple sequence repeat (SSR), and single nucleotide polymorphism (SNP) have been used but they are limited in their own ways [98]. These limitations are being overcome by improving already available techniques to form next-generation sequencing (NGS) [98]. With next-generation sequencing (NGS) technologies, SNP markers have been discovered in wheat, which is a good choice due to their abundance in the genome as they are distributed across all the wheat chromosomes [99]. These technologies offer easier means to map polymorphic genetic loci and identify genes for important traits [98]. Microsatellite markers have been used to determine the genetic diversity of wheat stem rust races in Kenya ([100]; Wanyera, unpublished data).
Single nucleotide variations in genome sequences of individuals of a population are known as SNPs. They result when DNA sequence differs by a single base and are the most abundant molecular markers in the genome [101]. SNPs and flanking sequences are found by library construction and sequencing or through the screening of readily available sequence databases [102]. Genotyping methods, including DNA chips, allele-specific PCR, and primer extension approaches based on SNPs, are particularly attractive for their high data throughput and for suitability for automation [103]. They are used for a wide range of purposes, including rapid identification of crop cultivars and construction of ultra-high-density genetic maps [103, 104]. SNPs markers have been used in wheat in identifying resistance genes for stripe rust
Application of modern marker-assisted breeding approaches can help accelerate variety development efforts, single nucleotide polymorphisms (SNPs) markers have emerged as powerful tools for many genetic applications mainly due to their low assay cost, high abundance, co-dominant inheritance, high-throughput, and ease of use [101]. Numerous genotyping platforms have therefore been developed for SNP genotyping [108, 109] including KASP (Kompetitive Allele Specific PCR) which is a gel-free and fluorescent-based genotyping platform. KASP is fast emerging as a global benchmark in SNP genotyping [110, 111] developed and validated 70 KASP assays for functional genes controlling economically important traits such as plant height, disease resistance, yield, and quality in bread wheat. KASP markers have been used to determine alleles for important agronomic traits in wheat in East Africa, Kenya, and Ethiopia [82].
The application of molecular markers in different epidemiological studies is crucial in developing strain-specific markers such as Sequence-characterized-amplified-region (SCAR) markers [112]. The SCAR markers are codominant, while others are dominant single locus which allows for quick and easy PCR amplification-based detection and hence used in the studies of pathogens [113]. The SCAR markers are efficient in testing large samples and useful in tracing the origin and spread of microbial pathogens with the ability for long-distance disposal and invasion like yellow rust [114]. SCAR markers SCAR1265 and SCAR1400 were developed in wheat to identify powdery mildew (
There are high disease incidences and severity of wheat diseases particularly wheat rusts in the farmers’ fields, which is attributed to the use of highly susceptible wheat cultivars and also climate change contributing to emerging of new diseases. For example, the evolution and spread of Ug99 race group and additional races like Digalu race (TKTTF) are spreading very fast causing epidemics subjecting the wheat germplasm to vulnerability.
Other wheat diseases such as
In Kenya, different research groups consisting of plant breeders, plant pathologists, agronomists, international partners, and farmers are working towards achieving host plant resistance and ways to combat wheat diseases in order to achieve high yields and contribute to food security.
The authors wish to acknowledge the technical staff of the Plant Pathology section KALRO, Njoro, for assistance in collating pertinent information for this article.
Our journals are currently in their launching issue. They will be applied to all relevant indexes as soon as they are eligible. These include (but are not limited to): Web of Science, Scopus, PubMed, MEDLINE, Database of Open Access Journals (DOAJ), Google Scholar and Inspec.
\n\nIntechOpen books are indexed by the following abstracting and indexing services:
",metaTitle:"Indexing and Abstracting",metaDescription:"IntechOpen was built by scientists, for scientists. We understand the community we serve, but to bring an even better service to the table for IntechOpen Authors and Academic Editors, we partnered with the leading companies and associations in the industry and beyond.",metaKeywords:null,canonicalURL:"/page/indexing-and-abstracting",contentRaw:'[{"type":"htmlEditorComponent","content":"Clarivate Web Of Science - Book Citation Index
\\n\\nCroatian Library (digital NSK)
\\n\\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:'
Clarivate Web Of Science - Book Citation Index
\n\nCroatian Library (digital NSK)
\n\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\n\n\n\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2458},{group:"region",caption:"Asia",value:4,count:12717},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",topicId:"20"},books:[{type:"book",id:"11858",title:"Terahertz Radiation",subtitle:null,isOpenForSubmission:!0,hash:"f08ee0bf20cd8b5fa772b4752081f2fe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11858.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:30},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:14},{group:"topic",caption:"Computer and Information Science",value:9,count:8},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:10},{group:"topic",caption:"Engineering",value:11,count:24},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:7},{group:"topic",caption:"Materials Science",value:14,count:9},{group:"topic",caption:"Mathematics",value:15,count:5},{group:"topic",caption:"Medicine",value:16,count:83},{group:"topic",caption:"Neuroscience",value:18,count:5},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:1},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:24},{group:"topic",caption:"Technology",value:24,count:1}],offset:12,limit:12,total:1},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"923",title:"Process Engineering",slug:"ceramics-process-engineering",parent:{id:"155",title:"Ceramics",slug:"ceramics"},numberOfBooks:9,numberOfSeries:0,numberOfAuthorsAndEditors:288,numberOfWosCitations:914,numberOfCrossrefCitations:383,numberOfDimensionsCitations:988,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"923",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7333",title:"Sintering Technology",subtitle:"Method and Application",isOpenForSubmission:!1,hash:"d0b37ebc58f468e22dd7c63f94d0761e",slug:"sintering-technology-method-and-application",bookSignature:"Malin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/7333.jpg",editedByType:"Edited by",editors:[{id:"165407",title:"Dr.",name:"Malin",middleName:null,surname:"Liu",slug:"malin-liu",fullName:"Malin Liu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4788",title:"Advanced Ceramic Processing",subtitle:null,isOpenForSubmission:!1,hash:"537975e8ade968caf3e16ea092b9c973",slug:"advanced-ceramic-processing",bookSignature:"Adel Mohamed",coverURL:"https://cdn.intechopen.com/books/images_new/4788.jpg",editedByType:"Edited by",editors:[{id:"148964",title:"Dr.",name:"A.M.A",middleName:null,surname:"Mohamed",slug:"a.m.a-mohamed",fullName:"A.M.A Mohamed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4485",title:"Sintering Techniques of Materials",subtitle:null,isOpenForSubmission:!1,hash:"f3b86bfd3fbf78fd259db41fedf4123f",slug:"sintering-techniques-of-materials",bookSignature:"Arunachalam Lakshmanan",coverURL:"https://cdn.intechopen.com/books/images_new/4485.jpg",editedByType:"Edited by",editors:[{id:"94482",title:"Dr.",name:"Arunachalam",middleName:null,surname:"Lakshmanan",slug:"arunachalam-lakshmanan",fullName:"Arunachalam Lakshmanan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3478",title:"Sintering Applications",subtitle:null,isOpenForSubmission:!1,hash:"78b5ad7a210c4dcb3346ca452f828938",slug:"sintering-applications",bookSignature:"Burcu Ertuğ",coverURL:"https://cdn.intechopen.com/books/images_new/3478.jpg",editedByType:"Edited by",editors:[{id:"97820",title:"Dr.",name:"Burcu",middleName:null,surname:"Ertug",slug:"burcu-ertug",fullName:"Burcu Ertug"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2200",title:"Ceramic Materials",subtitle:"Progress in Modern Ceramics",isOpenForSubmission:!1,hash:"612da9cb87615f384b89b64be02c39be",slug:"ceramic-materials-progress-in-modern-ceramics",bookSignature:"Feng Shi",coverURL:"https://cdn.intechopen.com/books/images_new/2200.jpg",editedByType:"Edited by",editors:[{id:"24821",title:"Dr.",name:"Feng",middleName:null,surname:"Shi",slug:"feng-shi",fullName:"Feng Shi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2132",title:"Sintering",subtitle:"Methods and Products",isOpenForSubmission:!1,hash:"a4374d54a1172051ff65e9f3aebee8f3",slug:"sintering-methods-and-products",bookSignature:"Volodymyr Shatokha",coverURL:"https://cdn.intechopen.com/books/images_new/2132.jpg",editedByType:"Edited by",editors:[{id:"111000",title:"Dr.",name:"Volodymyr",middleName:null,surname:"Shatokha",slug:"volodymyr-shatokha",fullName:"Volodymyr Shatokha"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1422",title:"Sintering of Ceramics",subtitle:"New Emerging Techniques",isOpenForSubmission:!1,hash:"285c4e1c255669f44ed4f19f066c84cb",slug:"sintering-of-ceramics-new-emerging-techniques",bookSignature:"Arunachalam Lakshmanan",coverURL:"https://cdn.intechopen.com/books/images_new/1422.jpg",editedByType:"Edited by",editors:[{id:"94482",title:"Dr.",name:"Arunachalam",middleName:null,surname:"Lakshmanan",slug:"arunachalam-lakshmanan",fullName:"Arunachalam Lakshmanan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"474",title:"Advances in Ceramics",subtitle:"Synthesis and Characterization, Processing and Specific Applications",isOpenForSubmission:!1,hash:null,slug:"advances-in-ceramics-synthesis-and-characterization-processing-and-specific-applications",bookSignature:"Costas Sikalidis",coverURL:"https://cdn.intechopen.com/books/images_new/474.jpg",editedByType:"Edited by",editors:[{id:"42599",title:"Prof.",name:"Costas",middleName:null,surname:"Sikalidis",slug:"costas-sikalidis",fullName:"Costas Sikalidis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"473",title:"Advances in Ceramics",subtitle:"Characterization, Raw Materials, Processing, Properties, Degradation and Healing",isOpenForSubmission:!1,hash:null,slug:"advances-in-ceramics-characterization-raw-materials-processing-properties-degradation-and-healing",bookSignature:"Costas Sikalidis",coverURL:"https://cdn.intechopen.com/books/images_new/473.jpg",editedByType:"Edited by",editors:[{id:"42599",title:"Prof.",name:"Costas",middleName:null,surname:"Sikalidis",slug:"costas-sikalidis",fullName:"Costas Sikalidis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:9,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"42566",doi:"10.5772/53706",title:"Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials",slug:"challenges-and-opportunities-for-spark-plasma-sintering-a-key-technology-for-a-new-generation-of-mat",totalDownloads:9145,totalCrossrefCites:98,totalDimensionsCites:209,abstract:null,book:{id:"3478",slug:"sintering-applications",title:"Sintering Applications",fullTitle:"Sintering Applications"},signatures:"M. Suárez, A. Fernández, J.L. Menéndez, R. Torrecillas, H. U. Kessel, J. Hennicke, R. Kirchner and T. Kessel",authors:[{id:"102383",title:"Dr.",name:"Marta",middleName:null,surname:"Suárez",slug:"marta-suarez",fullName:"Marta Suárez"},{id:"103822",title:"Dr.",name:"J.L",middleName:null,surname:"Menendez",slug:"j.l-menendez",fullName:"J.L Menendez"},{id:"103833",title:"Prof.",name:"Ramón",middleName:null,surname:"Torrecillas",slug:"ramon-torrecillas",fullName:"Ramón Torrecillas"},{id:"162633",title:"Dr.",name:"Adolfo",middleName:null,surname:"Fernández",slug:"adolfo-fernandez",fullName:"Adolfo Fernández"}]},{id:"17600",doi:"10.5772/20472",title:"Molten Salt Synthesis of Ceramic Powders",slug:"molten-salt-synthesis-of-ceramic-powders",totalDownloads:8325,totalCrossrefCites:30,totalDimensionsCites:82,abstract:null,book:{id:"474",slug:"advances-in-ceramics-synthesis-and-characterization-processing-and-specific-applications",title:"Advances in Ceramics",fullTitle:"Advances in Ceramics - Synthesis and Characterization, Processing and Specific Applications"},signatures:"Toshio Kimura",authors:[{id:"39121",title:"Prof.",name:"Toshio",middleName:null,surname:"Kimura",slug:"toshio-kimura",fullName:"Toshio Kimura"}]},{id:"47735",doi:"10.5772/59275",title:"An Overview of Densification, Microstructure and Mechanical Property of Additively Manufactured Ti-6Al-4V — Comparison among Selective Laser Melting, Electron Beam Melting, Laser Metal Deposition and Selective Laser Sintering, and with Conventional Powder",slug:"an-overview-of-densification-microstructure-and-mechanical-property-of-additively-manufactured-ti-6a",totalDownloads:5962,totalCrossrefCites:28,totalDimensionsCites:58,abstract:null,book:{id:"4485",slug:"sintering-techniques-of-materials",title:"Sintering Techniques of Materials",fullTitle:"Sintering Techniques of Materials"},signatures:"Ming Yan and Peng Yu",authors:[{id:"170985",title:"Dr.",name:"Ming",middleName:null,surname:"Yan",slug:"ming-yan",fullName:"Ming Yan"}]},{id:"42532",doi:"10.5772/53325",title:"Powder Preparation, Properties and Industrial Applications of Hexagonal Boron Nitride",slug:"powder-preparation-properties-and-industrial-applications-of-hexagonal-boron-nitride",totalDownloads:5841,totalCrossrefCites:10,totalDimensionsCites:32,abstract:null,book:{id:"3478",slug:"sintering-applications",title:"Sintering Applications",fullTitle:"Sintering Applications"},signatures:"Burcu Ertug",authors:[{id:"97820",title:"Dr.",name:"Burcu",middleName:null,surname:"Ertug",slug:"burcu-ertug",fullName:"Burcu Ertug"}]},{id:"29775",doi:"10.5772/34181",title:"Microwave Fast Sintering of Ceramic Materials",slug:"-microwave-fast-sintering-of-ceramic-materials",totalDownloads:7893,totalCrossrefCites:6,totalDimensionsCites:28,abstract:null,book:{id:"1422",slug:"sintering-of-ceramics-new-emerging-techniques",title:"Sintering of Ceramics",fullTitle:"Sintering of Ceramics - New Emerging Techniques"},signatures:"Romualdo R. Menezes, Pollyane M. Souto and Ruth H.G.A. Kiminami",authors:[{id:"89279",title:"Dr.",name:"Romualdo",middleName:"Rodrigues",surname:"Menezes",slug:"romualdo-menezes",fullName:"Romualdo Menezes"},{id:"99069",title:"Prof.",name:"Ruth",middleName:null,surname:"Kiminami",slug:"ruth-kiminami",fullName:"Ruth Kiminami"},{id:"104043",title:"Dr.",name:"Pollyane",middleName:null,surname:"Souto",slug:"pollyane-souto",fullName:"Pollyane Souto"}]}],mostDownloadedChaptersLast30Days:[{id:"17554",title:"Considerations about Degradation of the Red Ceramic Material Manufactured with Granite Waste",slug:"considerations-about-degradation-of-the-red-ceramic-material-manufactured-with-granite-waste",totalDownloads:4561,totalCrossrefCites:0,totalDimensionsCites:1,abstract:null,book:{id:"473",slug:"advances-in-ceramics-characterization-raw-materials-processing-properties-degradation-and-healing",title:"Advances in Ceramics",fullTitle:"Advances in Ceramics - Characterization, Raw Materials, Processing, Properties, Degradation and Healing"},signatures:"Xavier Gustavo de Castro, Saboya Fernando, Maia Paulo Cesar de Almeida and Alexandre Jonas",authors:[{id:"30785",title:"Dr.",name:"Gustavo",middleName:null,surname:"Xavier",slug:"gustavo-xavier",fullName:"Gustavo Xavier"},{id:"40982",title:"Dr.",name:"Fernando",middleName:null,surname:"Saboya",slug:"fernando-saboya",fullName:"Fernando Saboya"},{id:"40983",title:"Dr.",name:"Paulo",middleName:null,surname:"Maia",slug:"paulo-maia",fullName:"Paulo Maia"},{id:"40984",title:"Dr.",name:"Jonas",middleName:null,surname:"Alexandre",slug:"jonas-alexandre",fullName:"Jonas Alexandre"}]},{id:"42532",title:"Powder Preparation, Properties and Industrial Applications of Hexagonal Boron Nitride",slug:"powder-preparation-properties-and-industrial-applications-of-hexagonal-boron-nitride",totalDownloads:5841,totalCrossrefCites:10,totalDimensionsCites:32,abstract:null,book:{id:"3478",slug:"sintering-applications",title:"Sintering Applications",fullTitle:"Sintering Applications"},signatures:"Burcu Ertug",authors:[{id:"97820",title:"Dr.",name:"Burcu",middleName:null,surname:"Ertug",slug:"burcu-ertug",fullName:"Burcu Ertug"}]},{id:"47771",title:"Recycling of Polytetrafluoroethylene (PTFE) Scrap Materials",slug:"recycling-of-polytetrafluoroethylene-ptfe-scrap-materials",totalDownloads:4907,totalCrossrefCites:1,totalDimensionsCites:2,abstract:null,book:{id:"4485",slug:"sintering-techniques-of-materials",title:"Sintering Techniques of Materials",fullTitle:"Sintering Techniques of Materials"},signatures:"Arunachalam Lakshmanan and S.K. Chakraborty",authors:[{id:"94482",title:"Dr.",name:"Arunachalam",middleName:null,surname:"Lakshmanan",slug:"arunachalam-lakshmanan",fullName:"Arunachalam Lakshmanan"}]},{id:"62099",title:"Advanced Ceramic Materials Sintered by Microwave Technology",slug:"advanced-ceramic-materials-sintered-by-microwave-technology",totalDownloads:1682,totalCrossrefCites:6,totalDimensionsCites:9,abstract:"Processing of ceramic materials has also a strong impact in the quality of the consolidated body, as it plays a key role in the resulting microstructure and, as a consequence, in its final properties. Advanced ceramic materials are commonly processed as powders and densified via a high-temperature process. Traditional processing techniques include hot isostatic pressing, mold casting, and sintering in conventional ovens. As ceramics require very high processing temperatures compared to metals and polymers, these processes tend to be very energy intensive and result in higher production costs to the manufacturers. Therefore, new technologies known as nonconventional sintering techniques, such as microwave technology, are being developed in order to reduce energy consumption, while maintaining or even improving the characteristics of the resulting ceramic material. This novel and innovative technology aims at helping industrial sectors lower their production costs and, at the same time, lessen their environmental impact. On the other hand, it is interesting and necessary to know and explore the basic principles of microwaves to advance in the development of materials that demand, every day more, the different industrial sectors. This chapter presents the most recent advances of two materials with a great industrial future: zirconia and lithium aluminosilicate.",book:{id:"7333",slug:"sintering-technology-method-and-application",title:"Sintering Technology",fullTitle:"Sintering Technology - Method and Application"},signatures:"Amparo Borrell and Maria Dolores Salvador",authors:[{id:"21888",title:"Dr.",name:"Maria",middleName:null,surname:"Salvador",slug:"maria-salvador",fullName:"Maria Salvador"},{id:"245662",title:"Dr.",name:"Amparo",middleName:null,surname:"Borrell",slug:"amparo-borrell",fullName:"Amparo Borrell"}]},{id:"17604",title:"SiCf/SiC Composite: Attainment Methods, Properties and Characterization",slug:"sicf-sic-composite-attainment-methods-properties-and-characterization",totalDownloads:6437,totalCrossrefCites:0,totalDimensionsCites:4,abstract:null,book:{id:"474",slug:"advances-in-ceramics-synthesis-and-characterization-processing-and-specific-applications",title:"Advances in Ceramics",fullTitle:"Advances in Ceramics - Synthesis and Characterization, Processing and Specific Applications"},signatures:"Marcio Florian, Luiz Eduardo de Carvalho and Carlos Alberto Alves Cairo",authors:[{id:"28365",title:"Dr.",name:"Marcio",middleName:null,surname:"Florian",slug:"marcio-florian",fullName:"Marcio Florian"},{id:"42856",title:"Dr.",name:"Luiz Eduardo",middleName:null,surname:"de Carvalho",slug:"luiz-eduardo-de-carvalho",fullName:"Luiz Eduardo de Carvalho"},{id:"64265",title:"Dr.",name:"Carlos Alberto",middleName:null,surname:"Alves Cairo",slug:"carlos-alberto-alves-cairo",fullName:"Carlos Alberto Alves Cairo"}]}],onlineFirstChaptersFilter:{topicId:"923",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"June 11th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",slug:"andries-engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:19,paginationItems:[{id:"82196",title:"Multi-Features Assisted Age Invariant Face Recognition and Retrieval Using CNN with Scale Invariant Heat Kernel Signature",doi:"10.5772/intechopen.104944",signatures:"Kamarajugadda Kishore Kumar and Movva Pavani",slug:"multi-features-assisted-age-invariant-face-recognition-and-retrieval-using-cnn-with-scale-invariant-",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"82063",title:"Evaluating Similarities and Differences between Machine Learning and Traditional Statistical Modeling in Healthcare Analytics",doi:"10.5772/intechopen.105116",signatures:"Michele Bennett, Ewa J. Kleczyk, Karin Hayes and Rajesh Mehta",slug:"evaluating-similarities-and-differences-between-machine-learning-and-traditional-statistical-modelin",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:28,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11578",title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",hash:"3731c009f474c6ed4293f348ca7b27ac",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"225390",title:"Dr.",name:"Asghar Ali",surname:"Kamboh",slug:"asghar-ali-kamboh",fullName:"Asghar Ali Kamboh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12086",title:"Cattle Diseases - Molecular and Biochemical Approach",coverURL:"https://cdn.intechopen.com/books/images_new/12086.jpg",hash:"afdbf57e32d996556a94528c06623cf3",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 5th 2022",isOpenForSubmission:!0,editors:[{id:"219081",title:"Dr.",name:"Abdulsamed",surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11579",title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",hash:"12e4f41264cbe99028655e5463fa941a",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 8th 2022",isOpenForSubmission:!0,editors:[{id:"51520",title:"Dr.",name:"Shao-Wen",surname:"Hung",slug:"shao-wen-hung",fullName:"Shao-Wen Hung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:14,paginationItems:[{id:"82457",title:"Canine Hearing Management",doi:"10.5772/intechopen.105515",signatures:"Peter M. Skip Scheifele, Devan Marshall, Stephen Lee, Paul Reid, Thomas McCreery and David Byrne",slug:"canine-hearing-management",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",doi:"10.5772/intechopen.105085",signatures:"Megha Gupta",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:38,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:153,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78849",title:"Application of Vermicompost Fertilizer in Aquaculture Nutrition: Review",doi:"10.5772/intechopen.100326",signatures:"Sonnia Nzilani Musyoka and Rita Nairuti",slug:"application-of-vermicompost-fertilizer-in-aquaculture-nutrition-review",totalDownloads:71,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Nutrition - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11416.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",doi:"10.5772/intechopen.100051",signatures:"Chan I-Ping and Hsueh Tung",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:183,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",doi:"10.5772/intechopen.99067",signatures:"Christophe Casteleyn and Jaco Bakker",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:349,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77999",title:"Bronchus-Associated Lymphoid Tissue (BALT) Histology and Its Role in Various Pathologies",doi:"10.5772/intechopen.99366",signatures:"Tuba Parlak Ak",slug:"bronchus-associated-lymphoid-tissue-balt-histology-and-its-role-in-various-pathologies",totalDownloads:212,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78242",title:"Genomic Instability and Cyto-Genotoxic Damage in Animal Species",doi:"10.5772/intechopen.99685",signatures:"María Evarista Arellano-García, Olivia Torres-Bugarín, Maritza Roxana García-García, Daniel García-Flores, Yanis Toledano-Magaña, Cinthya Sofia Sanabria-Mora, Sandra Castro-Gamboa and Juan Carlos García-Ramos",slug:"genomic-instability-and-cyto-genotoxic-damage-in-animal-species",totalDownloads:150,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},subseriesFiltersForOFChapters:[{caption:"Animal Nutrition",value:20,count:1,group:"subseries"},{caption:"Animal Science",value:19,count:13,group:"subseries"}],publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",slug:"brain-computer-interface",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Vahid Asadpour",hash:"a5308884068cc53ed31c6baba756857f",volumeInSeries:9,fullTitle:"Brain-Computer Interface",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",institutionString:"Kaiser Permanente Southern California",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10859",title:"Data Mining",subtitle:"Concepts and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10859.jpg",slug:"data-mining-concepts-and-applications",publishedDate:"March 30th 2022",editedByType:"Edited by",bookSignature:"Ciza Thomas",hash:"63a4e514e537d3962cf53ef1c6b9d5eb",volumeInSeries:8,fullTitle:"Data Mining - Concepts and Applications",editors:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10651",title:"Machine Learning",subtitle:"Algorithms, Models and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10651.jpg",slug:"machine-learning-algorithms-models-and-applications",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Jaydip Sen",hash:"6208156401c496e0a4ca5ff4265324cc",volumeInSeries:7,fullTitle:"Machine Learning - Algorithms, Models and Applications",editors:[{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",institutionString:"Praxis Business School",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9869",title:"Self-Driving Vehicles and Enabling Technologies",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9869.jpg",slug:"self-driving-vehicles-and-enabling-technologies",publishedDate:"September 22nd 2021",editedByType:"Edited by",bookSignature:"Marian Găiceanu",hash:"fd451ca2e4785ef098e04b7d695a18d9",volumeInSeries:6,fullTitle:"Self-Driving Vehicles and Enabling Technologies",editors:[{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9958",title:"Artificial Intelligence",subtitle:"Latest Advances, New Paradigms and Novel Applications",coverURL:"https://cdn.intechopen.com/books/images_new/9958.jpg",slug:"artificial-intelligence-latest-advances-new-paradigms-and-novel-applications",publishedDate:"September 1st 2021",editedByType:"Edited by",bookSignature:"Eneko Osaba, Esther Villar, Jesús L. Lobo and Ibai Laña",hash:"39648fbfdaa11385097d62b1f13aad54",volumeInSeries:5,fullTitle:"Artificial Intelligence - Latest Advances, New Paradigms and Novel Applications",editors:[{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",institutionString:"Tecnalia Research & Innovation",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Computational Neuroscience",value:23,count:1},{group:"subseries",caption:"Evolutionary Computation",value:25,count:1},{group:"subseries",caption:"Machine Learning and Data Mining",value:26,count:3},{group:"subseries",caption:"Applied Intelligence",value:22,count:4}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:2},{group:"publicationYear",caption:"2019",value:2019,count:2}],authors:{paginationCount:0,paginationItems:[]}},subseries:{item:{id:"90",type:"subseries",title:"Human Development",keywords:"Neuroscientific research, Brain functions, Human development, UN’s human development index, Self-awareness, Self-development",scope:"