\r\n\tWith the discovery of more unconventional heavier crude and alternative hydrocarbon sources, primary upgrading or cracking of the oil into lighter liquid fuel is critical. With increasing concern for environmental sustainability, the regulations on fuel specifications are becoming more stringent. Processing and treating crude oil into a cleaner oil with better quality is equally important. Hence, there has been a relentless and continuous effort to develop new crude upgrading and treating technologies, such as various catalytic systems for more economical and better system performance, as well as cleaner and higher-quality oil.
\r\n
\r\n\tThis edited book aims to provide the reader with an overview of the state-of-the-art technologies of crude oil downstream processing which include the primary and secondary upgrading or treating processes covering desulfurization, denitrogenation, demetallation, and evidence-based developments in this area.
",isbn:"978-1-80356-681-8",printIsbn:"978-1-80356-680-1",pdfIsbn:"978-1-80356-682-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"808b0ddfb3b92e0636ae44a83ef7dbd9",bookSignature:"Dr. Ching Thian Tye",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11542.jpg",keywords:"Crude Oil Properties, Hydrocracking, Catalytic Cracking, Coking, Visbreaking, Thermal Cracking, Hydroprocessing, Hydrodesulfurization, Desulfurization, Denitrogenation, Demetallation, Dearomatization",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 22nd 2022",dateEndSecondStepPublish:"April 19th 2022",dateEndThirdStepPublish:"June 18th 2022",dateEndFourthStepPublish:"September 6th 2022",dateEndFifthStepPublish:"November 5th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Associate professor at the School of Chemical Engineering in Universiti Sains Malaysia and dedicated researcher in fuel-related catalytic process and chemical reaction engineering. Dr. Tye serves on a review panel for international and national refereed journals, scientific proceedings as well as international grants.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"304947",title:"Dr.",name:"Ching Thian",middleName:null,surname:"Tye",slug:"ching-thian-tye",fullName:"Ching Thian Tye",profilePictureURL:"https://mts.intechopen.com/storage/users/304947/images/system/304947.jpg",biography:"Dr. Tye is an associate professor at the School of Chemical Engineering in Universiti Sains Malaysia. She received her doctoral degree at The University of British Columbia, Canada. She is working in the area of chemical reaction engineering and catalysis. She has been involved in projects to improve catalysis activities, system efficiency, as well as products quality via different upgrading and treating paths that are related to petroleum and unconventional oil such as heavy oil, used motor oil, spent tire pyrolysis oils as well as renewable resources like palm oil. She serves as a review panel for international & national refereed journals, scientific proceedings as well as international grants.",institutionString:"Universiti Sains Malaysia",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Universiti Sains Malaysia",institutionURL:null,country:{name:"Malaysia"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"453623",firstName:"Silvia",lastName:"Sabo",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/453623/images/20396_n.jpg",email:"silvia@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"43389",title:"Metal Oxide Nanomaterials, Conducting Polymers and Their Nanocomposites for Solar Energy",doi:"10.5772/51432",slug:"metal-oxide-nanomaterials-conducting-polymers-and-their-nanocomposites-for-solar-energy",body:'
1. Introduction
The increasing concern on energy and the global warming due to the depletion of fossil fuel demands to search the alternative renewable energy resources for covering the energy crisis in the coming decade. A very popular renewable source called photovoltaic device is anticipated to solve energy problem, which converts directly the solar energy from sun to the electricity energy. Recently, dye sensitized solar cells (DSSCs) are widely used as promising photovoltaic device owing to its important properties like high solar to electricity energy conversion efficiency, low production cost, ease of fabrication and vast varieties of various semiconducting materials. DSSC is composed of few micrometer-thick nanocrystalline semiconducting oxides thin film combined with monolayer of charge-transfer dye as a photoanode, a redox electrolyte and a platinum metal electrode as counter electrode. In principle, upon illumination, the electron injection to conduction band of semiconductor takes place by the absorption of photons from dye molecules and the redox electrolyte regenerates the oxidized dye by the transportation of charges or ions. These days, the photovoltaic devices are facing inherent drawbacks such as leakage and evaporation problem that limits its practical application. In this regards, efforts are being done to overcome the leakage and evaporation of liquid electrolyte with solid or gel electrolytes such as room temperature molten salts (RTMSs), p-type semiconductor, conducting organic polymers and polymer gel electrolytes. Furthermore, the choice of catalytic in counter component of DSSCs is crucial to improve the reduction rate of I3- to I- in the redox electrolyte. In general, the conducting glass electrode without any catalytic materials such as metals, conducting polymers etc shows very low electrocatalytic activity towards the iodide couple electrolyte due to overvoltage and high energy loss. It has been realized that the low resistance and high electrocatalytic materials might deliver the better catalyst to avoid the overvoltage and energy loss for the high reduction of I3- in redox electrolyte.
The semiconducting nanomaterials based thin film electrodes with high surface area are of great significance for acquiring the high amount dye adsorption which leads to the higher light harvesting efficiency and photocurrent density. Various metal oxides semiconductors such as TiO2, ZnO and SnO2 have shown good optical and electronic properties and are accepted as the effective photoanode materials for DSSCs. Additionally, the morphology and sizes of metal oxides semiconducting materials, particularly one dimensional (1D) nanostructures like nanorods (NRs), nanowires (NWs) and nanotubes (NTs) based electrodes have shown increased electron transfer during the operation of DSSCs owing to their high surface to volume ratio and arrangements. Until now, the photoanodes with TiO2, SnO2/ZnO, Nb2O5 and ZnO nanomaterials have presented the maximum solar to electricity energy conversion efficiencies of ~11.2%, ~8%, ~2% and ~5% respectively.
On the other hand, the conducting polymers are regarded as promising semiconducting materials due to distinguishable electrical properties, mechanical flexibility, and the relative ease of processing. The conductive polymers such as polypyrrole, poly (3, 4-ethylenedioxythiophene) and polyaniline (PANI) are frequently used in DSSC as hole transport materials, electron acceptor and electrocatalytic materials for tri-iodide reduction in redox electrolyte. Among them, PANI is an excellent host for the trapping of semiconducting nanomaterials and conducts the electric charges through the polymeric chain due to extended π-electron conjugation. The conducting polymers and dye sensitized metal oxides are good electron donors upon the photo-excitation during the operation of DSSCs.
In this chapter, we have briefly discussed the different conducting polymers, metal oxides and their application for the performance of DSSCs. The chapter includes the brief literature surveys, properties and photovoltaic properties of various metal oxides nanomaterials, nanofillers in polymer electrolytes and the conducting polymers. Additionally, the latest research advancements are surveyed for the development of efficient conducting polymers as p-type semiconducting nanomaterials for counter electrode materials and efficient nanofillers in the solid polymers of DSSCs. Moreover, the doping and the utilization of TiO2 and ZnO nanomaterials for the performance of DSSCs have been discussed in details. It has been seen that the preparation methods, doping, morphologies, and the sizes of conducting polymers and metal oxides have shown the considerable impact on the electrical properties of the nanomaterials and performances of DSSCs. The study also demonstrates the enhanced properties of inorganic metal oxides like ZnO and TiO2 with different sizes and morphologies for achieving the efficient photovoltaic properties of DSSCs such as JSC, VOC, FF and conversion efficiency.
2. Types of conducting polymers
The conducting polymers are composed of π-conjugated polymeric chain and are known as “synthetic metals” [1-2]. These extended π-conjugated systems of conducting polymers have alternating single and double bonds along the polymeric chain [3]. The conducting polymers display the overlapping of molecular orbital to allow the formation of delocalized molecular wave functions and secondly these molecular orbital must be partially filled so that there is a free movement of electrons in the polymeric structure. The presence of unusual electronic properties such as electrical conductivity, low ionization potential and high electron affinity are associated with the π-electron backbone of the conjugated polymers. These are promising candidates for electronics applications, and offer possible replacements of the conventional metals and inorganic semiconductors [4-5]. The electrical conductivity of the conducting polymers could be altered upon partial oxidation or reduction by a commonly referred process called ‘doping’. The electrical conductivity of these polymers could be changed from insulating to metallic by chemical or electrochemical doping and they could be used to produce electronic devices. These polymers have the electrical properties like that of metals, and have attractive characteristics of organic polymers such as light weight, resistance to corrosion, flexibility and lower cost. Additionally, these polymers could be tailor-made to the requirements of the application through modifications in the polymer structure by varying the functional groups in the organic moiety. The commercial applications of conducting polymers are in thin film transistor, batteries, antistatic coatings, electromagnetic shielding, artificial muscles, light-emitting diodes, gas and bio-sensors [6], fuel and solar cells, fillers [7] and corrosion protective coatings [8]. The conducting polymers are easy to synthesize through chemical or electrochemical processes, and their molecular chain structure could be modified conveniently by the copolymerization or structural derivations. Typically, the conducting polymers are of several types as listed below:
2.1. Polypyrrole (PPy)
Polypyrrole (PPy) is a versatile polymer of significant properties like redox activity [9] ion-exchange, ion discrimination capacities [10], electrochromic effects, charge/discharge processes [11] and exhibits strong absorptive properties towards gases [12], catalytic activity [13] and corrosion protection properties [14]. It is one of the important conducting polymers due to its good electrochemical reversibility between its conducting and insulating states and the ease of preparation through chemical or electrochemical routes [15].
2.2. Poly phenylenes) (PP)
Poly phenylene (PP) is one of the most unusual electro conducting polymers due to the extended planar conjugated π-system, along with high strength and high heat resistance [16]. The most widely used method of PP production is benzene oxidation with a Friedel-Crafts catalyst (the Kovacic method) [17], which yield a polycrystalline powder. Besides, electrochemical polymerization is also a method for PP synthesis, but the molecular weight of the polymer is limited due to its insolubility and chemical defect [18].
2.3. Polyacetylene (PA)
Polyacetylene (PA) is the polymer of highest conductivity as compared to those of conventional metals. PA has the simplest structure of the linear chains of C-H units with alternating single and double bonds [19]. Moreover, the existence of the two hydrogen atoms in its repeat unit offers ample opportunity to decorate the backbone with pendants which perturbs the electronic conjugation and influences the molecular alignment of the polymeric chain. Significantly, the proper structural design might tune the backbone-pendant interplay into harmony and synergy, generating new substituted PAs with novel functionalities [20].
2.4. Polyazule (PAz)
The electron-donor and electron-acceptor character of polyazulene (PAz) has been explained by the electron-donor effect of the seven-membered ring toward the five-membered ring. The five-membered ring carries a partial negative charge and the seven-membered ring of azulene carries a partial positive charge. The polymers and its derivatives show high electrical conductivity almost similar as polythiophene, polypyrrole and polyaniline [21].
2.5. Polyindole (PIN)
Polyindol (PIN) is an electroactive polymer which could be obtained by the anodic oxidation of indole in various electrolytes. It is reported that the conductivity of PIN is lower than that of PPy and PANI but its thermal stability is better with respect to PANI and PPy. PIN, a macromolecular compound, is a good candidate for applications in various areas, such as electronics, electrocatalysis, and active materials for anodes of batteries, anticorrosion coatings and pharmacology.
2.6. Polycarbazole (PCz)
Polycarbazole (PCz) among conducting polymers, is attributed with good electroactivity, and useful thermal, electrical and photophysical properties [22]. However, π-π electron system along its backbone imparts rigidity to the polymer and therefore, makes it infusible and poorly processable. The increasing interest in PCz is towards its role as a hole-transport material and an efficient photoluminescence unit [23]. Derivatives of carbazole are easily prepared by the substitution at -N atom and thus, the solubility and functionality of the resulting polymers could be improved. More importantly, the substituted groups might influence the effective conjugation length which is promising materials in making the emitting light in devices.
2.7. Polyaniline (PANI)
Polyaniline (PANI) exhibits the high stability, conductivity and low cost [24-25]. PANI basically undergoes oxidative polymerization in the presence of a protonic acid. Protonation induces an insulator-to-conductor transition, while the number of π-electrons in the chain remains constant. The oxidation and reduction takes place on this –NH– group, and various forms are obtained due to the number of imine and amine segments on the PANI chain. Other substituted aniline like N-benzenesulfaniline [26], o-, p- and m-toluidine, o-chloroaniline [27], o-, m- and p-halogenated anilines [28] and 1-Napthylamine are also the subject of current studies and could be used for the semiconducting polymers based electronic applications.
Out of several conducting polymers, the interest of researchers in PANI could possibly be linked to the numerous applications that exist for the electronic conducting polymers and also aniline is cheap product and also a very stable material. On the other hand, the nanocomposites of conducting polymers with inorganic semiconducting nanomaterials show the improved mechanical, electrical and thermal properties due to the combined effects of both the semiconducting nanomaterials and conducting polymers. In particular, PANI nanocomposites display applications on a large scale for various electrochemical, electrorheological and in the electronic fields such as batteries, sensors, controlling systems and organic displays [29]. The nanocomposites of PANI with cadmium sulphide has been discussed in the next section of the chapter
3. Nanocomposites of conducting polymers
3.1. Nanocomposites of PANI and cadmium sulphide
Cadmium Sulphide (CdS) is a semiconductor with a direct band gap of ~2.42 eV which displays superior optical, photophysical and photochemical properties [30]. The nanocomposites of CdS and PANI have presented the effective electrode materials for many electrochemical, photoelectrochemical, sensing and electrochromic devices [31]. The nanocomposites are anticipated as effective and promising electrode materials in many electrochemical devices. Xi et al studied the influence of optical and absorption properties of CdS by the incorporation of CdS into PANI matrix [32]. R. Seoudi et al studied the dependence of structural, vibrational spectroscopy and optical properties on the particle sizes of PANI/CdS nanocomposites [33]. B.T. Raut et al reported the novel method of fabrication of PANI/CdS nanocomposites and studied the structural, morphological and optoelectronic properties [34]. In this regards, Ameen et al has reported a simple solution method to synthesize the CdS decorated PANI nanorods (NRs) and studied the electrochemical impedance properties of the nanocomposites [35].
The synthesized PANI NRs exhibit the entangled network with diameter of ~40-50 nm and length of several hundred nanometers, as shown in Fig. 1 (a). The uniform decoration and the thicknesses of CdS-PANI NRs increase gradually with the increase of CdCl2 concentration. After sensitization with the highest concentration of CdCl2 (0.1 M), the surface of PANI NRs (Fig. 1(b)) is completely decorated by CdS nanoparticles which results in the enhanced diameter of ∼60-70 nm. The TEM characterization (Fig. 1 (c and d)) clearly justifies the decoration of CdS nanomaterials on the surface of PANI NRs and shows the increased thickness of PANI NRs with the average diameter of ~60-70 nm due to the decoration of CdS nanoparticles with highest concentration of CdCl2 (0.1 M). From the EDS studies, the overall CdS contents have been estimated as 0.34, 0.53 and 1.08 wt% in the synthesized CdS-PANI NRs with CdCl2 concentrations of 0.01 M, 0.05 M and 0.1 M respectively.
The Raman bands at ∼1175 cm−1, ∼1507 cm−1, ∼1595 cm−1 are observed in all the samples of CdS-PANI NRs (Fig. 2), corresponding to the C-H bending vibration of the semi quinonoid rings (cation-radical segments), N-H deformation vibration associated with the semiquinonoid structures and C=C stretching vibration in the quinonoid ring respectively [36]. PANI NRs show a relatively high band at ∼1368 cm−1 in the spectrum which provides the information of the C-N+• vibration of delocalized polaronic structures [37]. The absence of this band in CdS-PANI NRs might due to the efficient interaction of imine (-NH) group of PANI with CdS nanomaterials.
The UV-Vis absorption spectra of the PANI NRs and CdS-PANI NRs are depicted in Fig. 3(a). In PANI NRs, the broad absorption bands at ~617 nm is related to n-π* transition, and the absorption peak at ~268 nm and ~327 nm arises due to π-π* transition within the benzenoid segment which is associated to the extent of conjugation between adjacent phenyl rings in the PANI [38]. On comparison to PANI NRs, the red shifting are seen and absorption bands move to higher wavelength of ~279 nm, ~338 nm and ~630 nm respectively in CdS-PANI NRs due to the sensitization of CdS nanomaterials with PANI NRs. The red shift of absorption bands with high intensities reveals that PANI NRs might form a partial bond with CdS nanoparticles. The room temperature photoluminescence (PL) spectra (Fig. 3(b)) of PANI NRs and CdS-PANI NRs exhibit a single large amplitude band in the blue green region which originated due to the π–π* transition of the benzenoid unit of PANI [39]. The sensitization of PANI NRs with the highest concentration of CdCl2 (0.1 M) causes a significant red shift from ~421 nm to ~438 nm as compared to the PANI NRs which might occur by the chemical interaction between -NH groups of the PANI chains and surface of CdS. The CdS-PANI NRs sensitized with 0.1 M CdCl2, shows the lowest PL intensity and the highest peak shift, suggesting the large π–π* transition of the benzenoid unit and the strong chemical interaction between -NH groups of the PANI chains and surface of CdS.
The X-rays Photoelectron Spectroscopy (XPS) has studied to examine the interaction between CdS nanoparticles and the PANI NRs, as shown in Fig. 4. The C 1s XPS spectrum (Fig. 4 (a)) of CdS-PANI NRs shows the center peak at ∼284.0 eV with five resolved peaks at the binding energies spanning the range from ∼288 to ∼283 eV. The strong peak at ∼ 283.4 eV represents the carbon (C) of benzonoid ring in which a combination of protonation of imine and amine sites are formed via shake-up processes [40]. The next three resolved peaks at ∼284.8 eV, ∼285.7 eV and ∼286.8 eV confirm the origin of the neutral C-C/C-H bond-PANI backbone, C-N+/C=N+ bond and C=O/C-O bond (might occur due to the absorption of moisture on the CdS-PANI), respectively [41]. The resolved peaks at ∼287.8 eV assigns to the π-π* bonding in a long-range order with a polymer chain shake-up satellite structure and coincides with the doped states. On comparison with typical PANI peak [42], C 1s peak has shifted backwardly, suggesting that C toms of PANI is interacted with other materials (CdS, TiO2 etc.) or impurities [43]. The O 1s XPS spectrum (Fig. 4(c)) exhibits the center peak at ∼530.1 eV with three resolved peaks at ∼530.7, ∼531.8 and ∼532.7 eV, suggesting the absorption of moisture and some oxygen impurities on the surface of CdS-PANI NRs during the synthesis. In N 1s XPS spectra (Fig. 4(b)), the main center peak with binding energy at ∼400.5 eV and a resolved peak with lower binding energy at ∼399.4 eV attribute to nitrogen atom originated from benzenoid diamine and quinoid di-imine nitrogen of PANI respectively. The other binding energies of ∼401.7 and ∼402.6 eV are ascribed to the positively charged nitrogens i.e. oxidized amine ( N+) and protonated imine ( N+) respectively [44]. The positive shifting is seen in the binding energies at ∼401.7 eV and ∼402.6 eV as compared with N 1s spectrum of pristine PANI indicating the involvement of positively charged nitrogen or protonated nitrogen for the partial bonding between PANI and CdS. Furthermore, the singlet peak at ∼404.01 eV observes in Cd 3d XPS (Fig. 4(d)) spectrum, corresponding to Cd 3d5/2 and the typical peak of Cd+2 atoms in CdS [45]. Fig. 4(e) presents the S 2p XPS spectrum of CdS-PANI NRs and observed one distinct peak of S2p3/2 at ∼161.9 eV, corresponds to S−2 of CdS nanoparticles. This suggests the interaction and bonding between CdS nanomaterials and PANI molecules. Thus, it is concluded that the PANI and CdS nanomaterials are partially interacted and bonded by two charged nitrogen species (N+ and N+) of PANI with CdS nanomaterials.
Fig. 5 shows the Nyquist plot of EIS measurement for PANI NRs and CdS-PANI NRs electrodes in the electrolyte (LiI, I2 and LiClO4 in ethanol) at a frequency range from 100 kHz to 1 Hz. The almost same RS (electrolyte resistance) with a depressed semi circle in the high frequency region is observed for the all the samples. The presence of depressed semi circle plot is ascribed to the parallel combination of the charge transfer resistance (RCT) of the electrochemical reaction and the double layer capacitance (Cdl) of the PANI film/electrolyte interface [46] has been removed. As shown in Fig. 5, the PANI NRs electrode displays large RCT value of ~17 kΩ. The RCT values drastically decreases by the incremental addition of CdCl2 in PANI NRs, and the order of RCT values are measured as 8.4 kΩ (CdCl2 (0.01 M)-PANI NRs) < 5.7 kΩ (CdCl2 (0.05 M)-PANI NRs) < 4.08 kΩ (CdCl2 (0.10 M)-PANI NRs). Usually, the electrode with large RCT leads the slow charge transfer rate of the electrochemical system [46]. It could be seen that the highest RCT value of PANI NRs electrode might result the low charge transfer rate to the electrochemical system. Moreover, the CdS decorated PANI NRs electrode with 0.01 M CdCl2 presents lowest RCT value which delivers the higher charge transfer rate. The variation in charge transfer resistance (RCT) after the CdS sensitization by different concentrations of CdCl2 might attribute to the changes in the NRs structure. Considerably, the direct band gap of CdS nanoparticles might also affect which improve the electronic state like polarons and bipolarons of PANI for the high charge carriers and enhance the charge transfer. Therefore, the CdS-PANI NRs is potential and cost effective electrode materials for the fabrication of efficient electrochemical (sensor, field emission transistor), photoelectrochemical and photovoltaic devices.
Last few decades, considerable researches on DSSCs have extensively explored in terms of both fundamental and applied viewpoints. The basic components of DSSCs involves the conducting fluorine doped tin oxide (FTO) glass, sensitized dye, titania nanoparticles, electrolyte and Pt deposited FTO glass. The working principle of DSSC, involves the adsorption of photons by dye molecules upon light illumination and the injection of electrons from their excited states into the conduction band of the TiO2 nanoparticles. During the entire process, the oxidized dye molecules are recharged by a redox electrolyte, which transports the positive charges by diffusion to a Pt counter electrode. The low absorption coefficient of a dye monolayer is compensated by the mesoporous structure of the TiO2 film, which leads to a strong increase in the number of TiO2/dye/electrolyte interfaces through which photons pass, thus increases the absorption probability. The following steps are in photoelectric chemical mechanism process of DSSC:
For the efficient working of DSSCs, the rate of re-reduction of the oxidized dye must be higher than the rate of back reaction of the injected electrons with the dye as well as the rate of reaction of injected electrons with the electron acceptor in the electrolyte. The kinetics of the reaction at the counter electrode and mesoscopic semiconductor materials with an enormous internal surface area to absorb more incident light via dye as sensitizers determines the fast regeneration of charge mediator performance [47]. Apart from this, the other significant parameters which influence the performance of DSSCs are the mesoporous morphology with high surface area of semiconducting electrode to allow absorption of a larger amount of dye and the efficient charge carriers transport at the interface of photoanode and counter electrode by the semiconducting electrode. Moreover, the oxidized dye should be reduced to its ground state rapidly, after the injection of photoexcited electron from dye into the conduction band of semiconducting electrode. Furthermore, the semiconducting electrode must be able to permit the fast diffusion of charge carriers (higher conductivity) and produces good interfacial contact with the porous nanocrystalline layer and the counter electrode, the long-term stability, including chemical, thermal, optical, electrochemical, and interfacial stability of the electrolyte, which does not cause the desorption and degradation of the dye from the oxide surface and lastly, the optimized concentration of I–/I3– which could reduce the visible light absorption by the dye, and the efficient reaction of I3– ions with the injected electrons to increase the dark current.
5. DSSCs based on conducting polymers
5.1. PANI as hole transport materials for DSSCs
The DSSCs and polymer solar cell have been exploring the new approaches in the design of both active materials and device architectures [48]. J. Wagner et al reported the new carbazole-based polymers for DSSCs with hole-conducting polymer [49]. N. Kudo et al fabricated the organic-inorganic hybrid solar cells based on conducting polymer and SnO2 nanoparticles which were chemically modified with a fullerene derivative [50]. S. Woo et al reported the hybrid solar cells with conducting polymers and vertically aligned silicon nanowire arrays and studied the effects of silicon conductivity [51]. F. Tan et al synthesized PANI films by electrodepostied methods and applied as anode buffer layers in solar cells [52]. M. Y. Chang et al fabricated the polymer solar cells by incorporating one-dimensional polyaniline nanotubes [53]. T. H. Lim et al utilized PANI for a flexible organic solar cells anode [54]. H. Bejbouji et al reported PANI as a hole injection layer on organic photovoltaic cells [55]. S. Zhu et al synthesized the hybrid structure of PANI/ZnO nanograss for the application in dye-sensitized solar cell1 [56]. PANI is also known as large band gap hole transporting material (HMTs) which could easily deposit as thin film on several substrates. In this regards, Ameen et al has reported the application of PANI as photoelectrode using N710 and Z907 as sensitizers for the performance of DSSCs [57].
The morphologies of ZnO nanoparticles, PANI/N719/ZnO and PANI/Z907/ZnO thin films exhibit well crystalline ZnO nanoparticles of size ~30-40 nm. The size of ZnO nanoparticles increases by ~10-15 nm from their original particle sizes after the plasma enhanced chemical vapor deposition (PECVD) polymerization of PANI molecule on dye (N719 and Z907) sensitized ZnO nanoparticulate thin film. PANI/Z907/ZnO thin film displays uniform covering or coating of PANI, indicating the well penetration of PANI on the surface of Z907/ZnO nanoparticulate thin film. The arrangement of ZnO/PANI nanoparticles are more pronounced for PANI/Z907/ZnO thin films might due to the substantive interaction and the incorporation of Z907 into ZnO nanoparticulate thin film which might allow the uniform deposition and well penetration of PANI through PECVD process. Likewise, the TEM images of ZnO nanoparticles and PANI/Z907/ZnO thin film electrode, again confirm the enhancement in the size of ZnO nanoparticles after PECVD polymerization of PANI. Significantly, after PECVD deposition of PANI, the aggregation of nanoparticles enhances the size of ZnO nanoparticles [57].
UV-Vis spectroscopy is investigated to describe the optical properties of PANI and PANI/ZnO thin film. The PECVD polymerized PANI exhibits the characteristic absorption bands at ~273 nm and ~345 nm which are ascribed to π–π* transitions. However, the broad band at ~611 nm is referred to n-π* transitions which provides the information of the polarons formation into the conducting PANI. The UV-visible spectrum of PANI/ZnO thin film shows the clear red shifts with the absorption bands at ~299 nm and ~628 nm from ~273 and ~611 nm, indicating the interference in the absorption bands of PANI by ZnO nanoparticles. These shifts in the peaks are usually associated to the interactions between ZnO and PANI in PANI-ZnO thin film which might due to the existence of partial hydrogen bonding between NH (PANI)..O–Zn (metal oxide) [58].
The room temperature PL spectra of PECVD polymerized PANI shows two absorption bands in blue-green region at ~438 nm and ~642 nm. The significant higher absorption wavelength shift at ~452 nm with slightly decreased peak intensity is observed in the PANI/ZnO thin film. The considerable changes in the PL emission peak might arise due to the effective interaction between imine (-NH) of PANI and hydroxyl (-OH) group of ZnO nanoparicles in PECVD polymerized PANI-ZnO thin film [57].
The current density-voltage (J-V) characteristics at one sun light illumination (100 mW/cm2, 1.5AM) have been carried out to evaluate the performances of solar cell fabricated with PANI/N719/ZnO and PANI/Z907/ZnO thin film electrode. The measurements of VOC, JSC, FF and overall solar-to-electrical energy conversion efficiency are obtained from the J-V characteristics of both the DSSCs. The PANI/N719/ZnO electrode based DSSC exhibits low solar-to-electricity conversion efficiency of ~0.6%, with JSC of ~2.80 mA/cm2, VOC ~0.432 V and FF ~0.51, whereas, PANI/Z907/ZnO electrode based DSSC executes the greater overall solar-to-electricity conversion efficiency of ~1.31% with VOC of JSC ~4.56 mA/cm2, ~0.521 V, and FF ~0.55. On comparison with PANI/N719/ZnO electrode, DSSC with PANI/Z907/ZnO electrode attains considerably improved the solar-to-electricity conversion efficiency by ~53% along with other parameters of J-V characteristics. The enhanced performances and JSC might attribute to the fast movements of photon generated electrons at the interface of the PANI/ZnO and the nature of Ru dye (Z907) with long chain alkyl group at pyridine rings. Moreover, as seen in FESEM results, the high penetration of the hole conductor (PANI) into the pores of Z907 sensitized ZnO thin film might execute reasonably fast charge injection and electron transfer at the interface of PANI and ZnO layer to Pt layer of electrode. Thus, the choice of dye is crucial to obtain the high performance DSSC with PECVD polymerized PANI/ZnO electrodes. In other previous report, Ameen et al showed the effects of PANI on TiO2 as an effective photoelectrode for the performance of DSSCs [59].
A schematic energy level diagram for the device FTO/TiO2/Dye/PANI/Pt is shown in Fig. 6 (a). The diagram, in accordance with step (1) indicates that the electrons from the dye, upon illumination, jumps from the HOMO level to the LUMO level and thus, as per step (2), these electrons are transferred from the conduction band (C.B) to the valence band (V.B) of TiO2. The step (3) shows the transfer of electrons from V.B to the HOMO of PANI. As indicated by step (4), further transfer of electrons could be preceded through two different possible ways. Firstly, the electron could move either through the LUMO of PANI, followed by step (5) or then may jump to the LUMO of the dye and finally move onwards by repeating the step (2). Secondly, electrons, from step (3), could also jump to the HOMO of dye and would move ahead by following the same step (1), leading to the transfer of electrons to the entire cell. During the entire cycle, the recovery of the holes is accomplished at the counter electrode. Additionally, Fig. 6(b) depicts that PANI participates in the light absorption through the effective injection of electrons from its LUMO to the C.B of TiO2. Therefore, the proposed mechanism presents that FTO/TiO2/Dye/PANI/Pt system might deliver the high transportation of charge carriers during the operation of device under the illumination.
To elucidate the charge transfer properties of TiO2/PANI electrodes, an electrical impedance spectroscopy (EIS) measurement is used. According to the diffusion recombination model proposed by Bisquert [60], an equivalent circuit representing device is illustrated [(Inset of Fig. 7 (a)]. Equivalent circuit is composed of the series resistance (RS), the charge transfer resistance at the junction of TiO2 and PANI layer in TiO2/PANI or TiO2/Dye/PANI electrodes (RCT), the charge transfer resistance at the interface of TiO2/PANI or TiO2/Dye/PANI and TCO (RP/TCO), the capacitance of accumulation (of e−) layer of the TiO2 (Cacc), and space charge capacitance (CSC) [61]. The values of real impedance (Zre) are used to estimate the values of RP/TCO and RCT at different frequencies. Fig. 7 (a, b) exhibits the Nyquist curve of cell fabricated with TiO2/PANI and TiO2/Dye/PANI electrodes. A very high RP/TCO of 52.4Ω and RCT of 3700 Ω observed for TiO2/PANI electrodes based cells, which are estimated from Fig. 7(a). Comparatively, TiO2/Dye/PANI based device (Fig.7 (b)) shows the low RP/TCO (35.8 Ω) and RCT (81.9 Ω) due to the influence of dye layer which is placed between the TiO2 and PANI layer of the electrode. It is reported that a small RCT of the device suggests the fast electron transfer, while a large RCT indicates the slow charge transfer at the junction of inorganic and organic layer [62]. In our case, it is found that the value of RCT in TiO2/Dye/PANI based device is very low as compared to the RCT of TiO2/PANI based device. Therefore, it explains the high electron transfer at the junction of TiO2 and PANI in TiO2/Dye/PANI based device, resulting in the high photocurrent density and overall conversion efficiency, which are in the excellent agreement with the J-V curve results of the devices. The impedance results clearly indicate that the high photocurrent density, high overall conversion efficiency and low RCT are resulted from the uniform distribution of PANI molecules on the mesoporous surface of TiO2 electrode. Therefore, the lower RCT and RP/TCO in TiO2/Dye/PANI based device reveals that the dye and PANI layers on the surface of TiO2 electrode play an important role in the charge transfer at hole conductor (PANI)-dye absorbed TiO2 region, which results the high JSC, FF, and conversion efficiency than that of TiO2/PANI electrode based cells.
The J-V performance of solar cell FTO/TiO2/Dye/PANI/Pt and FTO/TiO2/PANI/Pt are shown in Fig. 8 (a, b) under 100 mW/cm2 light intensity. On comparison with TiO2/PANI, the solar cell based on TiO2/Dye/PANI electrode executes great improvement in the overall conversion efficiency with the incorporation of dye layer on TiO2/PANI electrode. The conversion efficiency of the solar cell drastically increases from ~0.005% to ~0.68%. It is noteworthy that the photovoltaic properties such as VOC, JSC and FF of the DSSCs enhance dramatically as compared to TiO2/PANI electrode based DSSC. The high JSC is imputed to the high electrical conductivity of PANI/TiO2 thin film. The enhancement in JV parameters are resulted from the formation of TiO2/PANI thin film, where the photon generated electrons could freely travel at the interface of PANI and TiO2 without decay, and dissociate into free charge carriers effectively. Moreover, the pore filling extent of the hole conductor into the dye-sensitized TiO2 film, and the electric contact of the hole conductor are the two important factors to determine the photovoltaic behaviors of device. The advanced TiO2/Dye/PANI electrode executes reasonably fast charge injection and transfer of electron at the interface of hole conductor (PANI) and Pt layer of electrode.
The counter electrode in DSSCs is responsible for the electrocatalytic reduction of I3− ions. Until now, Pt counter electrode shows the high electrocatalytic activity for I3− ions reduction, high conductivity, and stability. Pt is one of the most expensive components in DSSCs. Therefore, the development of counter electrodes with alternative materials is expected to reduce production costs of DSSCs. Several varieties of materials such as carbon nanotubes, activated carbon, graphite, and conducting polymers are employed as active catalysts for counter electrodes. In this regards, M. H. Yeh et al reported the conducting polymer-based counter electrode for a quantum-dot-sensitized solar cell (QDSSC) with a polysulfide electrolyte [63]. K. M. Lee et al fabricated the DSSC based on poly (3, 4-alkylenedioxythiophene) as counter electrode [64]. In another report, K. M. Lee et al exhibited the effects of mesoscopic poly (3, 4-ethylenedioxythiophene) films as counter electrodes for DSSCs [65]. W. Maiaugree et al optimized the TiO2 nanoparticle mixed PEDOT-PSS counter electrodes for high efficiency of DSSCs [66]. J. Chen et al reported polyaniline nanofiber-carbon film as flexible counter electrodes in platinum-free dye-sensitized solar cells [67]. Q. Li et al fabricated the microporous polyaniline thin film as counter electrode for DSSCs [68]. J. Zhang et al applied the nanostructured PANI thin film as counter electrode for DSSCs and investigated the electrochemical formation mechanism [69]. Furthermore, G. Wang et al synthesized PANI-graphene hybrids thin film and utilized as a counter electrode in DSSCs [70]. Tai et al prepared the highly uniform and transparent PANI counter electrodes by a facile in situ polymerization method for the DSSCs [71]. In this regards, Ameen et al performed the doping of PANI with sulfamic acid (SFA) and applied as counter electrode for the efficient performance of DSSCs [72].
Fig. 9(a) shows the J-V curve of the DSSCs fabricated with the counter electrodes made of PANI NFs and SFA-doped PANI NFs under dark and light intensity of 100 mW/cm2 (1.5AM). DSSCs fabricated with SFA-doped PANI NFs counter electrode achieve high conversion efficiency (η) of ~5.5% with JSC of ~13.6 mA/cm2, VOC of ~0.74 V, and FF of ~0.53. Significantly, the conversion efficiency increases from ~4.0% to ~5.5% after SFA doping into the PANI NFs. DSSC fabricated with SFA-doped PANI NFs counter electrode has appreciably improved the conversion efficiency and JSC by ∼27% and ∼20% than that of DSSC fabricated with PANI NFs counter electrode. These improvements are resulted from the higher electrocatalytic activity of SFA-doped PANI NFs, which serves a good path for the charge transport of I-/I3– redox. Therefore, the superior photovoltaic properties such as η, JSC, and VOC of the cell are attributed to the sufficiently high conductivity and electrocatalytic activity of doped PANI NFs, which alleviates the reduction of I3- at the thin SFA-doped PANI NFs layers. Fig. 9(b) presents the IPCE curves of DSSCs fabricated with PANI NFs and SFA-doped PANI NFs counter electrodes. DSSCs fabricated with PANI NFs counter electrode exhibits the low IPCE of ~54% in the absorption range of 400-650 nm. The IPCE value is prominently increased by ~70% with the SFA doped PANI NFs counter electrode-based DSSCs. It is noteworthy that the IPCE of the device is considerably enhanced by ~24% upon SFA doping on PANI NFs-based counter electrodes. The enhanced IPCE results are consistent with high electrical conductivity [73] and the electrocatalytic activity of the SFA-doped PANI NFs electrode. Thus, SFA doping significantly enhances the electrical conductivity and increases the higher reduction of I3- to I- in the electrolyte at the interface of PANI NFs layer and electrolyte.
5.3. Other ions doped PANI counter electrode based DSSCs
Z. Li et al recently studied on the in situ electropolymerized-PANI thin film of thickness ~5–20 µm, deposited on FTO glass. The PANI thin films were doped by various counter ions like SO2-4, ClO-4, BF-4, Cl-, p-toluenesulfonate (TsO-), etc. Different doping counter ions showed different impact on the morphology, electrochemical activity of the electropolymerized-PANI thin film. The electropolymerized-PANI doped by SO2-4 anion (PANI-SO4) film was much porous morphology with pore size diameter of several micrometers and possessed the higher reduction current for the reduction of I3- and a low charge transfer resistance of 1.3 Ωcm2 as compared with Pt as counter electrode (CE). Dye-sensitized solar cell (DSSC) with PANI-SO4 as CE was assembled, and the device under full sunlight illumination (100mWcm-2, AM 1.5 G) showed ~5.6% photovoltaic conversion efficiency, which was comparable to ~6.0% of that with Pt CE under the same experimental condition. The electropolymerized-PANI doped with SO2-4 ion with a porous and homogeneously structure was a promising candidate which showed the high performance of DSSC. On the other hand, PANI-BF4 and PANI-Cl was porous and fibrillar thin film which exhibited the modest efficiency of ~3.9% and ~2.6%. On the other hand, PANI-ClO4 and PANI-TsO showed the very low performance of DSSC ca. <1%, and the RCT was greatly increased accordingly to over 100 Ωcm2 [74].
6. DSSCs based on metal oxide semiconductors
In DSSCs, the choice of semiconductor is governed by the conduction band energy and density of states, which facilitate the charge separation and minimize the recombination. Secondly, the high surface area and morphology of semiconductors is important to maximize the light absorption by the dye molecules while maintaining the good electrical connectivity with the substrate [75]. The semiconducting metal oxides such as titania (TiO2), zinc oxide (ZnO), and tin oxide (SnO2) have shown good optical and electronic properties and are accepted as the effective photoelectrode materials for DSSCs. To improve the light harvesting efficiency, the metal oxide nanostructures must possess a high surface-to-volume ratio for high absorption of dye molecules. Particularly in DSSCs, the porous nature of nanocrystalline TiO2 films provides the large surface for dye-molecule adsorption and therefore, the suitable energy levels at the semiconductor-dye interface (the position of the conduction band of TiO2 being lower than the excited-state energy level of the dye) allow for the effective injection of electrons from the dye molecules to the semiconductor. Compared with other photovoltaic materials, anatase phase TiO2 is outstanding for its stability and wide band gap and, thus, widely used in the devices [76]. On the other hand, ZnO nanomaterials are chosen as an alternative material to TiO2 photoanodes due to their wide band gap with higher electronic mobility, which would be favorable for the efficient electron transport, with reduced recombination loss in DSSCs. Studies have already been reported on the use of ZnO material photoanodes for the application in DSSCs. Although the conversion efficiencies of ZnO (0.4-5.8%) is comparably lower than TiO2 (~11%), ZnO is still a distinguished alternative to TiO2 due to its ease of crystallization and anisotropic growth. In this part of the chapter, the TiO2 and ZnO have been briefly summarized for the application for DSSCs.
6.1. DSSCs Based on TiO2 Photoanode
Due to versatile and the exotic properties, TiO2 nanomaterials are so far used in many technological applications as a photocatalyst, photovoltaic material, gas sensor, optical coating, structural ceramic, electrical circuit varistor, biocompatible material for bone implants, and spacer material for magnetic spin valve systems etc [77]. The dimensionality of TiO2 at the nanoscale level is the crucial characteristic for determining the physiological and electrical properties. In recent years, one dimensional (1D) TiO2 nanomaterials like NRs, NWs and NTs display significantly larger surface areas as compared to bulk materials, which deliver unique chemical and the physical properties [78] and contribute towards the electrical and photoelectrochemical applications [79]. The 1D TiO2 such as NRs and NTs have shown the reduced recombination rate for the excited electron-hole pair and display unique optical and the electric properties [80]. Particularly, the vertically grown TiO2 NRs allow shorter and the uninterrupted electrical pathways for the photogenerated carriers and improves the charge separation and charge transport properties in many photoelectrochemical devices like dye sensitized solar cells (DSSCs) [81]. As compared to TiO2 nanoparticles, it is expected that the highly oriented TiO2 NRs could be the potential electrode and photocatalyst material for several photoelectrochemical applications. S. Ameen et al reported the TiO2 nanorods (NRs) based photoanode for the fabrication of DSSCs [82].
The morphology of the TiO2 NR thin films deposited on FTO substrates by the hydrothermal process with variations of the ethanol/DI water precursor solution is shown in FESEM images (Fig. 10). With an ethanol/DI water ratio of 0:100 v/v as the precursor solution, the distorted hexagonal TiO2 NRs (Fig. 10 (a, b)) of average diameter ~100-200 nm and length of 3.0 mm are obtained. However, the round headed TiO2 NRs with ethanol/DI water (50: 50 v/v) as the precursor solution (Fig. 10 (c, d)) is formed. The highly ordered tetragonal TiO2 NRs have grown on the FTO substrate with the precursor solution of ethanol/DI water (80: 20 v/v) as seen in Fig. 10 (e, f). The grown TiO2 NRs possess the average lengths of 2-4 mm and diameters of ~50–70 nm respectively. The high amount of ethanol in the precursor solution is crucial to achieve the highly ordered nanorods.
Fig. 11 shows the transmission electron microscopy (TEM), high resolution (HR) TEM and the selected area electron patterns (SAED) of the grown TiO2 NR coated FTO substrate. Similar to the FESEM results, the highly ordered tetrgonal TiO2 NRs from the precursor solution of ethanol/DI water (80:20v/v) solvent comprises the average length of 2-4 mm and the diameter of 50-70 nm, as shown in Fig. 11 (a). Each NR is made of a bundle of the densely packed nanofibers (NFs) with an average fibril’s diameter of ~5 nm. The corresponding SAED pattern (Fig. 11 (b)) displays the clear phases, suggesting the high crystal quality with the single crystalline fibrils derived from TiO2 NRs along the [001] direction. However, the HRTEM image (Fig. 11 (c)) shows the well-resolved lattice fringes of the grown TiO2 NRs and estimates an average interplanar distance of 0.35 nm between the two fringes, which reveals the typical interplanar distance of anatase TiO2 [83]. On the other side, the width and length of distorted hexagonal TiO2 NRs are respectively observed as ~200 nm and ~3.2 mm, as seen in Fig. 11(d).
The XRD patterns (Fig. 12) of grown TiO2 NRs from both precursor solutions exhibit the anatase phase with the peaks at 25.1o, 37.9o, 48.1o, 53.8o and 55.1o, which correspond to typical anatase TiO2 materials and indexes at JCPDS no. 89-4203. However, the diffraction peaks of the FTO substrate are also observed at 33.8o, 35.7o and 52.8 o (JCPDS no. 88-0287). On comparison with the distorted hexagonal TiO2 NRs, the intensities of XRD diffraction peaks have slightly changed, which might indicate the high crystalline nature of the highly ordered tetragonal TiO2 NRs.
The J-V characteristics (Fig. 13 (A)) have been performed to elucidate the performance of the DSSCs fabricated with the photoanodes of grown TiO2 NRs and are measured under a light intensity of 100 mW cm-2 (1.5 AM). DSSC fabricated with the distorted hexagonal TiO2 NRs photoanode shows a relatively low solar efficiency of ~1.08%, with a low JSC of ~4.48 mA cm-2, VOC ~0.571 V and FF of ~0.42. However, DSSCs fabricated with the highly ordered tetragonal TiO2 NRs photoanode achieves an appreciably improved overall conversion efficiency of ~3.2% with a high JSC of ~8.7 mA cm-2, VOC of ~0.67 V, and FF of ~0.54. As compared to the distorted hexagonal TiO2 NRs photoanode based DSSC, the photovoltaic performance, JSC, VOC and FF are significantly enhanced by ~ 67%, ~48%, ~15% and ~22% respectively. It is seen that the size of the NRs also plays an important role for achieving the high photocurrent density and performance of the device. It is known that the high photovoltaic performance and photocurrent density are related to high light harvesting through the highly uniform and high surface to volume ratio of the photoanode materials [84]. In general, the TiO2 thin film electrodes with larger particles have the smaller surface area and produce moderate contact points between nanoparticles at the interface of the sintered nanoparticles and the conducting substrate, leading to the lower availability of the active surface for dye adsorption, which perhaps decreases the amount of light absorbed and generates the large number of electrons and holes. Whereas, the TiO2 thin film with smaller particles acquires the larger surface area and higher number of contact points of the sintered colloidal particles present at the interface of the nanoparticles and the conducting substrate, which gives rise to larger dye adsorption and higher light harvesting efficiency [85]. In this case, the distorted hexagonal TiO2 NRs consist of larger diameters and lengths as compared to the highly ordered TiO2 NRs, as shown in the FESEM images. It is believed that the smaller diameters of the NRs might generate the high light harvesting efficiency, which might lead to the high photocurrent density and the conversion efficiency. From the UV-Vis spectra (Fig. 13 (B)) of the dye desorption from dye absorbed TiO2 NRs photoanodes in NaOH solution, the photoanode of highly ordered tetragonal TiO2 NRs attains the higher dye loading than the photoanode of the distorted hexagonal TiO2 NRs. Herein, the enhanced photovoltaic performance and JSC are related to the highly ordered NRs morphology, high dye loading and improved light harvesting efficiency through the high surface area of the film. Besides these, the unique ordered morphology of the NRs might retard the recombination rate and contribute to longer electron lifetimes [86], resulting in the increased VOC and FF of device.
The IPCE (Fig. 14) of DSSCs fabricated with highly ordered tetragonal TiO2 NRs and distorted hexagonal TiO2 NRs photoanodes have shown the broad the absorption edge of visible spectrum from 400-800 nm. The highly ordered tetragonal TiO2 NRs photoanode based DSSC exhibits the maximum IPCE of ~31.5% at the highest absorption edge of ~528 nm, whereas ~17.9% IPCE at ~528 nm is achieved by the distorted hexagonal TiO2 NRs photoanode based DSSC. The highly ordered tetragonal TiO2 NRs photoanode based DSSC considerably improves IPCE by approximately two times to DSSC with distorted hexagonal TiO2 NRs photoanode, which is attributed to the high dye loading of the photoanode, resulting in the high light harvesting efficiency and the electron injection from dye to CB of TiO2. Thus, the highly ordered tetragonal TiO2 NRs photoanode with enhanced dye loading, light harvesting and IPCE, have resulted to increased JSC, VOC and the photovoltaic performance for DSSC.
Another metal oxide nanomaterials such as ZnO nanomaterials, are recently dealing with the versatile applications in various fields such as field-effect transistors, lasers, photodiodes, sensors and photovoltaics owing to their unique photoelectric properties, optical transparency, electric conductivity and piezoelectricity properties [87]. Importantly, ZnO nanomaterials possess similar wide band gap (~3.37 eV) with large exciton binding energy (~60 meV) and higher electron mobility [88]. Moreover, ZnO nanomaterials with different nanostructures have presented the versatile properties like higher surface-to-volume ratio, chemical stability, high exciton binding energy, and moderate charge transport capability [89] and therefore, it becomes one of the promising alternatives of nanocrystalline TiO2 photoanode in DSSCs and hybrid solar devices. To control the parameters like morphology, physical and the crystalline properties of ZnO nanomaterials, the performance of DSSCs could be accelerated [90]. So far, the different morphologies of ZnO nanostructures such as nanorods [91], nanotetrapods, nanosheet [92] and nanobelts based photoanodes have been studied for the fabrication of efficient DSSCs [93] and achieved encouraging results. Law et al. firstly designed ZnO NW arrays to increase the electron diffusion length, and applied as photoelectrodes for the fabrication of DSSCs [94]. The grown ZnO NW array films exhibited relatively good resistivity values that ranged from 0.3 to 2.0 Ωcm for individual NWs and a mobility of 1-5 cm2 V−1s−1. The overall conversion efficiencies of ~1.2-1.5% were obtained by DSSCs fabricated with ZnO NW arrays with JSC of ~5.3-5.85 mA/cm2, VOC of ~0.610-0.710 V, and FF of ~0.36-0.38. Another group synthesized ZnO NWs by the use of ammonium hydroxide for changing the super saturation degree of Zn precursors in solution process [95]. The length-to-diameter aspect ratio of the individual NWs was easily controlled by changing the concentration of ammonium hydroxide. The fabricated DSSCs exhibited remarkably high conversion efficiency of ~1.7%, which was much higher than DSSC with ZnO NR arrays [96]. Jiang et al. fabricated the flexible DSSCs with a highly bendable ZnO NWs film on PET/ITO substrate which was prepared by a low-temperature hydrothermal growth at 85oC [97]. The fabricated composite films obtained by immersing the ZnO NPs powder in a methanolic solution of 2% titanium isopropoxide and 0.02 M acetic acid was treated with heat, which favored a good attachment of NPs onto the NW surfaces [97]. Here, the achieved conversion efficiency of the fabricated DSSCs was less as compared to DSSCs based on NPs. Recently, Akhtar et al. demonstrated that the performance of DSSCs effectively altered by varying the morphologies of ZnO nanomaterials. They reported the morphology of ZnO nanomaterials through a hydrothermal process using Zinc acetate, NaOH and different capping agents, as shown in Fig 15. The photoanode was prepared by spreading the ZnO paste on an FTO substrate by a doctor blade technique for the fabrication of DSSCs [98], and they obtained non-uniform surface of film. Unfortunately, the DSSCs with ZnO NRs photoanode presented a very low conversion efficiency of ~0.3% with a high FF of ~0.54 (Fig 16), which might attribute to the low dye absorption on the surface of ZnO NRs due to the less uniformity of the thin film with low surface-to-volume ratio (Fig 17). Furthermore, a flower-like structure consisted of NRs/NWs could deliver a larger surface area and a direct pathway for electron transport with the channels arisen from the branched to NR/NW backbone. Recently, hydrothermally grown ZnO nanoflower films accomplished an improved overall conversion efficiency of ~1.9%, with a high JSC of ~5.5 mA/cm2 and an FF of ~0.53 [99]. These parameters are higher than NR arrays film-based DSSCs of the conversion efficiency ~1.0%, JSC ~4.5 mA/cm2, and FF ~0.36. Recently, S. Ameen et al reported the nanospikes decorated ZnO sheets thin film as photoanode for the performance of DSSCs [100].
The FESEM image (Fig. 18) shows dense and uniform deposition of the nanospikes decorated ZnO sheets morphology on the FTO substrate. Each nanospikes decorated ZnO sheets is comprised of a sheet with the average thickness of ~50-60 nm and the aligned nanospikes with the average diameter of ~80-100 nm and length of ~150-200 nm. Interestingly, the nanospikes are consisted of the bundles of small nanorods. The nanospikes are aligned either on one side or other side of ZnO sheet, but in some cases, these nanospikes are found on the both sides of ZnO sheets.
Similarly, TEM images (Fig. 19(a)) present the nanospikes with nanosheets in which nanospikes decorated on both the sides of ZnO sheet. The average thickness of the sheet is ~50-60 nm and the decorated nanospikes possess the average diameter of ~30 nm (single rods) and the length of ~150-200 nm. From the HRTEM image (Fig. 19 (b)), the well-resolved lattice reveals that the grown ZnO nanomaterials exhibit the good crystallinity. The inter-planar spacing of ~0.52 nm is observed which is consistent to the lattice constant in the reference (JCPDS No. 36-1451) for ZnO nanomaterials. This inter-planar spacing value of the lattice fringes correspond to the [0001] crystal plane of the wurtzite ZnO confirms that the grown ZnO nanomaterials are almost defect free [100]. Moreover, the corresponding selected area electron diffraction (SAED) also indicates the typical wurtzite single crystalline structure and the ZnO nanomaterials are grown along caxis direction [0001].
XRD patterns (Fig. 20 (a)) of the nanospikes decorated ZnO sheets obtain all the diffraction peaks appeared at 32.3o (100), 35.2o (002), 36.8o (101), 48.2o (102), 57.2o (110), 63.5o (103) and 66.2o (200) which are well matched with the JCPDS card No.36-1451. It confirms that the ZnO nanomaterials possess the hexagonal wurtzite phase with the lattice parameters: a-3.246 and c-5.206 Å. The intensity of (101) diffraction peak is much higher compared to other peaks, indicating the preferential growth direction due to the instability of polar (101) plane [101]. A single narrow absorption peak is observed near the UV region at ~376 nm in the UV-Vis absorbance spectrum of nanospikes decorated ZnO sheets structures (Fig. 20 (b)), corresponds to the characteristic band of the wurtzite hexagonal structure in bulk ZnO [102]. Moreover, the single peak suggests purity of the grown nanospikes decorated sheets morphology.
The survey XPS spectrum (Fig. 21 (a)) of grown nanospikes decorated ZnO sheets shows the three strong binding energies of Zn 2p3/2, Zn 2p1/2 and O 1s along with small C 1s binding energy. The other binding energies peaks are not detected, indicating the presence of Zn and O without other impurities. However, the C1s binding energy at ~ 284.6 eV is usually used as calibration for other binding energies in the spectrum to avoid the specimen charging [103]. The Zn 2p spectrum of the doublet peaks with the binding energies of ~1021 eV and ~1045 eV are shown Fig 21(b), corresponding to Zn 2p3/2 and Zn 2p1/2 in better symmetry, respectively. These binding energies and the difference between two binding energies to ~24 eV are attributed to the typical lattice Zinc in ZnO [104]. The peak at ~1021 eV is associated with the Zn2+ in ZnO wurzite structure [105]. Moreover, Zn 2p binding energy and the binding energy difference values confirm that Zn atoms are in +2 oxidation state in ZnO. The deconvolution of O 1s XPS spectrum (Fig. 21(c)) exhibits the main peak at ~528.3 eV along with three resolved peaks at ~529.2 eV, ~530.1 eV and ~531.1 eV. The higher and lower binding energy component at ~528.3 eV and ~529.2 eV are attributed to O2- ions on the wurtzite structure of the hexagonal Zn2+ ions [106]. Every O2- ions are surrounded by Zn atoms with the full appreciation of nearest neighbor O2- ions. The other binding energies at ~530.1 eV and ~531.1 eV are ascribed to few oxygen deficiency or oxygen vacancies within the ZnO materials. Therefore, highest binding energy of Zn 2p and O 1s spectra are associated with Zn2+ and O2- ions which form Zn-O bonds in ZnO crystals.
The J-V curve (Fig. 22(a)) of DSSC fabricated with nanospikes decorated ZnO sheets photoanodes is demonstrated under the light intensity of 100 mW/cm2 (1.5 AM). The fabricated DSSC with the photoanode of nanospikes decorated ZnO sheets has achieved the overall conversion efficiency of ~2.51% with the reasonably high JSC of ~6.07 mA/cm2, VOC of ~0.68 V and FF of ~0.60. The relatively high JSC is associated to high dye absorption through nanospikes decorated ZnO sheets morphology, resulting from the high amount of dye absorption (2.05 x10-7 mol/cm2) which is calculated by area integration of the maximum absorbance in the UV-Vis spectrum of desorbed dye from the photoanode (as shown in inset of Fig. 22(a)). The unique morphology of the prepared nanospikes decorated ZnO sheets might pronounce the charge collection and transfer properties of electrode due to the presence of standing spikes on the ZnO sheets [107]. The improved VOC and FF of DSSC might attribute to the reduced charge recombination and the series resistance by the photoanode of nanospikes decorated ZnO sheets. As compared to the reported DSSCs based on ZnO nanostructures photoanodes, the nanospikes decorated ZnO sheets photoanode based DSSC shows the significantly higher conversion efficiency and JSC [108]. It has been estimated that the conversion efficiency and JSC are enhanced by ~40% and ~25% as compared to reported values. In this case, the sheets morphology of ZnO display highly uniform and the standing nanospikes might considerably facilitates the electrons transfer at the interface of the conduction and the electrolyte layer. The fabricated DSSC with photoanode of nanospikes decorated ZnO sheets attains the moderate IPCE of ~31.8%, as shown in Fig. 22 (b), which is probably originated from the larger amount of dye-loading through large surface area of sheet and the standing spikes of photoanode. Moreover, the presence of nanospikes on ZnO sheets might efficiently enhance the electron transport and reduces the recombination rate to high IPCE and JSC value 109].
7. Doping of ZnO for improved electrical and photovoltaic properties
One of the modifications is still in the developing stage called doping of ZnO nanomaterials by metals like F, Cu, Ag, Ga, Al, In, Sn and Sb which usually tailors the chemical, conductive and the electrical properties of ZnO nanomaterials [110]. The metal doping is an effective procedure to modify the grain size, orientation and the conductivity and could greatly influence the crystalline, optical and the electrical properties of the ZnO nanostructures. Among various metal doping, Sn-ion is recently known as promising dopant to ZnO nanomaterials for enhancing the electrical and optical properties [111]. Tsay et al. [112] prepared the Sn doped ZnO thin films coated glass substrates and investigated the effects of Sn doping on the crystallinity, microstructures and the optical properties of ZnO thin film. Several reports are available on the preparation of the Sn doped ZnO thin films and the effects of Sn doping on grain size, vibrational structure, optical and the structural properties of ZnO thin film substrates [113]. Ameen et al recently reported the doping of ZnO nanostructures with Sn ion by simple hydrothermal process for the fabrication of DSSC [114].
7.1. Sn doped ZnO nanostructures for solar cell performance
The synthesized ZnO and Sn-ZnO nanostructures are morphologically characterized by the FESEM images, as shown in Fig. 23. The ZnO nanostructure shows the irregular, non-uniform and highly aggregated nanoparticles with the average size of range ~150–200 nm. After Sn-ion doping, the ZnO nanostructures have dramatically arranged into the spindle shaped morphology and each Sn-ZnO spindle comprises of small aggregated nanoparticles with average size of 350 ±50 nm.
Fig. 24 (a, b) shows the high resolution TEM images of Sn-ZnO nanostructures which are completely consistent with FESEM observations. The aggregated ZnO nanoparticles arranged spindle shaped morphology is observed with some black spots or particles, clearly indicating the presence of the Sn-ions. The HR-TEM image of Sn-ZnO displays dark spots on the fringes which are expressed by the circles in Fig. 24(c). The morphological changes in Sn-ZnO nanostructures might due to the substantive influence of Sn-ion into ZnO nanostructures. The EDS spectrum (Fig. 24 (d)) obtains two high intense peaks (Zn & O) and single small peak (C) along with Sn peaks, again confirming the Sn-ion doping into the ZnO nanostructures.
From the UV-DRS spectra of ZnO and Sn-ZnO nanostructures (Fig. 25), the broad intense absorption edge from ~400 nm to lower wavelengths region is assigned to the charge-transfer process from the valence band to conduction band of ZnO [115]. After Sn-ion doping, the absorption wavelength of ZnO has significantly shifted from ~389 nm to ~406 nm and its band gap has changed from ~3.18 eV to ~3.05 eV. It has arisen due to the presence of interstitially embedded Sn-ion into ZnO nanomaterials. This small variation in band gaps again confirms the Sn-ion doping into ZnO nanomaterials.
The XPS survey (Fig. 26 (a)) spectrum displays all Zn 2p, O 1s and Sn 3d binding energy peaks with very small C 1s binding energy. Sn-ZnO nanomaterials show the doublet binding energies at ~1022.1 eV and ~1046.1 eV in Zn 2p XPS spectra (Fig. 26 (b)) which correspond to Zn 2p3/2 and Zn 2p1/2 respectively. The energy difference between doublet binding energies is calculated to ~24 eV, which is in excellent agreement with the standard value of ~22.97 eV. The deconvoluted O 1s XPS presents the four binding energies peaks at ~533.6 eV, ~532.4 eV, ~530.8 eV and ~529.1 eV, as shown in Fig. 26 (c). The highest binding energy at ~533.6 eV is originated from the oxygen atoms chemisorbed at the surface of synthesized materials [116]. The binding energy at ~532.4 e V is ascribed to O2− ions (surface hydroxyl (OH) group) on the synthesized Sn-ZnO (in the oxygen deficient region) and the lowest binding energy at ~529.1 eV is attributed to O2− ions in the Zn-O structures The binding energy at ~530.8 eV is attributed to oxidized metal ions in the synthesized Sn-ZnO such as, O-Sn and O-Zn in the ZnO lattice. Sn 3d spectra (Fig. 26 (d)) presents the doublet binding energies at ~487.2 eV and ~496.7 eV, correspond to Sn 3d5/2 and Sn 3d3/2 respectively. The appearance of these peaks indicates the incorporation of Sn dopant in the form of O-Sn in the ZnO lattice [117], as deduced by O 1s XPS results. Moreover, the energy gap of ~9.5 eV is observed between these two peaks which resembles to the reported value [118]. It is observed that since no diffraction peaks corresponding to the SnO and SnO2 are observed in the XRD spectra therefore, the O-Sn bonding could be considered as the substitutional doping of Sn-ions into the ZnO lattice.
DSSC fabricated (Fig. 27) with Sn-ZnO photoanode depicts reasonably high solar-to -electricity conversion efficiency of ~1.82% with JSC of 5.1 mA/cm2, VOC of 0.786 V and FF of 0.45. While, DSSC with ZnO photoanode shows relatively low conversion efficiency of ~1.49% with JSC of ~4.05 mA/cm2, VOC (~0.761 V) and FF of ~0.48. Noticeably, the conversion efficiency and JSC are considerably enhanced by ~20% and ~21% respectively after Sn-ion doping into ZnO nanostructures. Moreover, it could be explained that Sn-ZnO nanostructures might due to the increase of high charge collection and the transfer of electrons at the interface of Sn-ZnO and the electrolyte layer. The dopants like Sn, is known to enhance the electrons transport capacity and electron mobility of ZnO nanomaterials [119]. Moreover, the Sn-ion doping into ZnO nanostructures might increase the specific surface area by lowering the particle size and arranging into spindle shaped morphology, which might contribute to high dye absorption. The increased photocurrent density and the improved photovoltaic performance might also result from high dye absorption and the improved electron transport by Sn-ZnO nanostructures, leading the enhancement in light harvesting efficiency and photo-excited electron transportation under sun light. Therefore, the arrangement of ZnO nanoparticles into Sn-ZnO spindle shaped, and good optical properties of Sn-ZnO are crucial to improve the conversion efficiency and the photocurrent density of the fabricated DSSCs.
7.2. Ga doped ZnO nanostructures with improved electrical properties
ZnO nanomaterials along with conjugated polymers like PANI, PPy and poly (3-alkylthiophene) comports the high quality organic/inorganic Schottky diodes [120]. Recently, ZnO-PANI films sandwiched between indium tin oxide (ITO) and a Pt electrode have displayed the linear I-V behavior [121]. The effects of Ga ion doping on ZnO NPs have been studied by Ameen et al on the basis of optical and electrical properties of the fabricated heterostructure devices [122]. The morphology of the synthesized ZnO and Ga-ZnO NPs were studied by FESEM and TEM analysis, as shown in Fig. 28 (a-d). The synthesized ZnO NPs obtain an average diameter of ~20–25 nm. After Ga ion doping, the average diameter increases to ~30–35 nm by the agglomeration of NPs due to entrapping and the substantive influence of Ga ion with ZnO NPs.
The optical properties of ZnO and Ga-doped ZnO NPs were studied by the UV-Vis spectra, as shown in Fig. 29 (a, b). ZnO and Ga-doped ZnO NPs present the absorption in the UV region with strong absorption peak at ~370 nm and ~378 nm respectively, corresponding to the characteristic band of wurtzite hexagonal ZnO nanomaterials [123]. A considerable red shift from ~370 nm to ~378 nm after Ga ion doping is seen in the absorption peak of Ga-ZnO NPs and results that the band gap of ZnO NPs has changed from ~3.4 eV to ~3.26 eV due to the presence of interstitially embedded Ga ion on the surface of ZnO NPs. Thus, the small variation in band gaps again confirms the Ga doping on the surface of ZnO NPs.
Fig. 30 shows the XPS of PANI/Ga-ZnO thin film electrodes. The Carbon (C 1s), oxygen (O 1s), nitrogen (N 1s) and Zinc (Zn 2p) peaks at ~284.4 eV, ~529.8 eV, ~400.9 eV and ~1019.4/1042.5 eV are taken to investigate the interaction between PANI and Ga-ZnO NPs. The deconvoluted C 1s peak at ~284.4 eV presents four resolved peaks at ~289.1, ~286.8, ~285.7 eV and ~284.9 eV (Fig. 30 (a)) and are ascribed to C = O/C–O bond, C–N+/C = N+ bond, neutral C–C/C–H bond of PANI backbone and C of the benzonoid ring showing a combination of protonation of imine and amine sites via shake-up processes [124]. Figure 30(b) shows the four O 1s XPS resolved peaks of PANI/Ga-ZnO thin film. The main peak at ~529.8 eV confirms the nature of oxygen atom originated from metal oxide [125] i.e. the oxide of ZnO NPs. Zn 2p XPS of PANI/Ga-ZnO thin film typically exhibits the doublet peaks at ~1019.4 eV/1042.5 eV (Fig. 30 d), suggests that Zn atoms are linked with oxide bond in Ga doped ZnO NPs. Moreover, Fig. 30(e) shows the Ga 2p peak at ~1116.2 eV which confirms the doping of ZnO with the Ga+2 oxidation state [126]. N 1s XPS spectrum of PANI/Ga-ZnO thin film (Fig. 30(c)) exhibits the bonding between imine group of PANI and Ga-ZnO. The centered peak at ~400.9 eV ascribes quinoid di-imine nitrogen of PANI [127]. The main peak at ~400.9 eV is resolved into four hide peaks at ~400.5, ~401.3, ~401.9 and ~402.8 eV which correspond to benzenoid di-amine nitrogen, quinoid di-imine nitrogen, positively charged nitrogen (−N+) and the protonated imine (=N+) respectively. It is known that the protonation of PANI produces electronic defects such as polarons or bipolarons which might form by the addition of protons to the neutral polymer chain. In this case, positively shifted binding energy at ~401.9 and ~402.8 eV might exhibit the participation of protonated N atom for the bond formation between PANI and Ga-ZnO. These two charged nitrogen species (−N+ and =N+) are originated from these defect states [128] and are observed in N 1s results of PANI/Ga-ZnO thin film. In conclusion, the PANI and Ga-ZnO are interacted to each other by the formation of partial hydrogen bonding between two charged nitrogen species (−N+ and =N+) of PANI and surface hydroxyl of Ga-ZnO.
The I-V characteristics of Pt/PANI/ZnO and Pt/PANI/Ga-ZnO heterostructure devices are obtained at 298 K with applied voltage from −1 V to +1 V, shown in Fig. 31. Both the devices display non-linear and rectifying behavior of I–V curves due to the existence of Schottky barrier via a Schottky contact at the interfaces of Pt layer and PANI-ZnO thin film layer. Pt/PANI/ZnO device shows almost Ohmic or very weak rectifying behavior (Fig. 31(a)) that attains very low turn-on voltage (~0.0005 V) with least current (~0.002 mA). Similarly, in forward bias, a breakdown voltage (~0.05 V) and high leakage current (~0.015 mA) indicate poor I-V characteristics of Pt/PANI/ZnO device. Whereas, Pt/PANI/Ga-ZnO device (Fig. 31 (b)) presents rectifying behavior of lower turn on voltage (~0.4 V) with least current (~0.09 mA) and breakdown voltage (~0.56 V) with high leakage current (~0.5 mA). The I-V properties of Pt/PANI/Ga-ZnO device are considerably better than the data reported elsewhere on PANI/ZnO and PANI based heterostructure devices [129]. Herein, the Ga ion doping to ZnO NPs might generate high density of minority charge carriers and the efficient charge movement at the junction of PANI and Ga-ZnO interfaces, resulting in the high leakage current with moderate turn on and breakdown voltage [130]. Additionally, the improved I-V properties might result from the molecular geometry of PANI chains and the increased electronic conduction by Ga ions in ZnO NPs which likely generate the hopping effect.
8. Metal oxides as nanofillers in polymer electrolytes
The inorganic semiconductor especially metal oxides nanomaterials as nanofillers are conceived to improve the mechanical, thermal, interfacial, and ionic conductivity properties of the polymer electrolytes, which could effectively utilize for high performance solid-state DSSCs. In general, the introduction of inorganic NPs in the polymer alters the conduction mechanisms, which assigns to the ions conduction. In 1998, Croce et al. [131] studied the enhancement of the ionic conductivity of polymer electrolytes by the addition of TiO2 and other NPs. Later, a ternary component polymer-gel electrolyte with TiO2 NPs was prepared by Kang et al and explicated that these NPs led to a light-scattering effect [132]. The fabricated DSSC with the ternary component polymer electrolyte showed a high overall conversion efficiency of ~7.2% under 100 mW/cm2. Falaras et al [133] developed the polymer composite electrolyte by the addition of commercial TiO2 nanoparticles (NPs, P25, Degussa) consisted of polyethylene oxide (PEO), LiI, and I2. The addition of TiO2 NPs considerably prevented the re-crystallization and decreased the degree of crystallinity of PEO due to their large surface area. The differential scanning calorimetry (DSC) studies revealed that the introduction of TiO2 NPs caused a significant increase in the glass transition temperature of PEO, which indicated the incorporation of the polymer to the inorganic oxide fillers. The fabricated DSSCs with TiO2-PEO nanocomposite electrolyte achieved a reasonably high overall conversion efficiency of ~4.2% with a JSC of ~7.2 mA/cm2, VOC ~0.664 V, and FF ~0.58 at ~65.6 mW/cm2 [134]. Additionally, other research groups have also used TiO2 NPs as nanofillers and explained the effects of nanofillers on different polymer electrolytes. Recently, Akhtar et al [135] reported a composite electrolyte of polyethylene glycol methyl ether (PEGME) and TiO2 NPs and demonstrated the heat treatment effects on the properties of PEGME-TiO2 composite electrolyte. It was found that the heat treatment was an essential step to improve morphology, amorphicity, and ionic conductivity of PEGME-TiO2 composite electrolytes. From AFM images (Fig. 32), TiO2 particles with ~20-30 nm size are well distributed on the PEGME matrix in the case of PEGME-TiO2 composite film (Fig. 32(a). However, TiO2 particles are aggregated and become a bigger size (40-60 nm) on the polymer matrix in PEGME-TiO2/80oC (Fig. 32 (b)). From the film roughness analysis (Fig. 32 (c, d)), it is observed that the surface roughness of the PEGME-TiO2/80oC and PEGME-TiO2 composites are estimated to be about ~23.1 nm and ~18.5 nm for the root mean square roughness (Rrms), and ~12 nm and 8~.8 nm for the average surface roughness (Ra), respectively. Generally, it has been well known that the low surface roughness of the polymer composite film is ascribed to the high-crystallized surface of thr composite materials. Therefore, the crystallinity of PEGME-TiO2/80oC might lower than PEGME-TiO2 because the former exhibits the higher Rrms and Ra value than later composite film. Consistently, the 3D AFM images (Fig. 32 (d)) of PEGME-TiO2/80oC exhibit a highly rough surface morphology with non-uniformly distributed TiO2 particles into the PEGME matrix, while a highly uniform and less rough surface is observed in PEGME-TiO2 composite film before heating (Fig. 32 (c)). This rough morphology of PEGME-TiO2/80oC might create free spaces and voids in which the I−/I3− ions could easily migrate, which suggest the PEGME-TiO2/80oC as excellent electrolyte materials. With the improved morphology of PEGME-TiO2 composite, the electrolyte shows the high ionic conductivity of ~1.9 mS/cm as compared to the PEGME acid (1.2 mS/cm) and PEGME-TiO2 (0.92 mS/cm) which results from the enhanced morphological properties in terms of high roughness and amorphicity after heating of PEGME-TiO2. The Raman spectra (Fig. 33) of the PEGME-acid, PEGME-TiO2, and PEGME-TiO2/80oC composite electrolytes exhibit a significant peak at the range of 110-115 cm−1, which is ascribed to the symmetric stretch of I3− species in redox electrolytes [136]. The heat treatment on PEGME-TiO2 drastically increased the strong Raman peak, indicating a significant increase in the amount of I3− species in redox electrolytes. It might attribute to the increased bond strength between PEGME and TiO2 and high roughness of the composite materials, which might help to absorb a large amount of the iodide couple as compared to PEGME-acid and PEGME-TiO2 composite electrolytes. The increased intensity of peak suggests that a large amount of I3− species is formed in the PEGME-TiO2/80oC composite electrolyte upon heat treatment. In general, the diffusional I−/I3− ions migration in the redox electrolyte is responsible for the ionic conductivity of electrolyte, which causes electron exchange between ions by electronic conduction process [137]. The electronic conduction in redox electrolyte depends on the formation of I3− ions. Raman results show the proportional relation between the ionic conductivity and concentration of I3− species of the composite electrolytes, which is directly related to relative intensity of Raman peak. The enhanced ionic conductivity of PEGME-TiO2/80oC composite electrolyte might associate with the formation of high I3− species in redox electrolyte. However, low ionic conductivity in PEGME-acid and PEGME-TiO2 composite electrolyte results from the low relative intensity of the Raman peak and less formation of I3− species in redox electrolyte. Therefore, a heat treatment step plays an essential role to prepare the improved composite electrolyte with enhanced ionic conductivity. DSSC fabricated with PEGME-TiO2/80oC composite electrolyte shows the maximum overall conversion efficiency of ~3.1% with a JSC of ~8.9 mA/cm2, VOC of ~0.625 volt, and FF of ~56.2%. The conversion efficiency and JSC of DSSCs with PEGME-TiO2/80oC composite electrolytes is higher than those of fabricated with PEGME-acid (~1.3%) and PEGME-TiO2 (~2.4%) electrolytes. This could be expected from the enhanced ionic conductivity and enlargement of the amorphous phase of the polymer upon heat treatment. The heat treatment on PEGME-TiO2 composites enhances the ionic conductivity and cross-linking properties of composite electrolyte, which are essential factors to achieve the high current density and high PV performance. Furthermore, Akhtar et al [138] investigated the effect of titania nanotubes (NTs) as nanofillers on the properties of PEG-based electrolytes and fabricated solid-state DSSCs. PEG-TiNT electrolytes with 10% of TiNTs exhibit the high penetration and complete filling into the pores of the TiO2 film, as shown in Fig. 34. The XPS studies (Fig. 35) were carried out to elucidate the strong interaction between PEG and TiNTs. PEG-TiNT10 electrolyte shows the highest interaction between the titanium atoms of the NTs and the polymer network as compared to those of other PEG-TiNTs electrolytes. This results to the decrease in the crystallinity degree of the polymer after introduction of the NTs which achieves the highest ionic conductivity of ~2.4×10−3 S/cm. DSSC fabricated with PEG-TiNT composite electrolyte (Fig. 36) exhibits the maximum overall conversion efficiency of ~4.4% with JSC of ~9.4 mA/cm2, VOC of ~0.73 V, and FF of ~0.65 under 100 mW/cm2 irradiation. No significant decrease of the conversion efficiency for 30 days was observed in DSSCs fabricated with PEG-TiNT10 (inset of Fig. 36), indicating the high stability of the composite electrolytes. The lower current density in PEG-TiNT20 is due to its lower ion conductivity, lower penetration, and weak interaction between PEG to TiNTs. It is proved that the better penetration into the pores of the TiO2 layer was obtained at a ratio of TiNT and PEG in the composite electrolyte (PEG-TiNT10). Thus, due to the better interfacial contact between the electrolyte and TiO2 layer, high ion conductivity is obtained, which enhances the photocurrent density. Moreover, the PEG-TiNT composite electrolytes might facilitate the movement of electrons in the redox (I−/I3−) couple due to the fast electron transfer characteristics of NTs with less grain-boundary, in comparison to NPs. The other metal oxide nanomaterials, such as ZnO, SiO2 and Al2O3, have been introduced as nanofillers to different polymer electrolytes [139]. Caruso et al. prepared the polymer composite electrolyte with the composition of PEO-poly (vinylidenefluoride) (PVDF) and SiO2 NPs and applied as a solid electrolyte for solid-state DSSCs [140]. These kinds of solid state electrolytes presented high viscosity to the solid state electrolyte with TiO2-based polymer composites. They used a vacuum technique for introducing the composite polymer electrolytes into the dye-sensitized TiO2 electrode which showed that the vacuum method exhibited a better performance than those prepared via the conventional drop casting method. This approach improved the fulfilling of the photoelectrode with a solid electrolyte by vacuum technique, but the optimization of the electrolyte composition is still an important issue. In this regards, Xia et al utilized ZnO NPs as nanofillers for preparing the composite polymeric electrolyte of poly (ethylene glycol methyl ether) (PEGME) [141]. The PEGME was first grafted onto the surface of ZnO NPs through covalent bond formation by a chemical process. The solid composite electrolyte consisted of KI and I2 dissolved in PEGME and ~24 wt% of the polymer-grafted ZnO NPs. The obtained prepared electrolyte showed that the ionic conductivity increased as the salt concentration increased and reached a maximum value of ~3.3×10−4 S/cm and then decreased, acting as a classical polymer electrolyte system. DSSC fabricated with polymer-grafted NPs electrolyte presented the lower conversion efficiency of ~3.1% compared to that of DSSC with a liquid electrolyte (~4.0%). After the addition of polymer-grafted ZnO NPs in liquid electrolyte, the VOC of DSSC increased by ~0.13 V while the JSC decreased, this was probably due to the high viscosity of the gel electrolyte. Another report addressed the new polymer electrolyte system of Al2O3 NPs with different sizes and a PVDF derivative and polyacrylonitrile in an ionic-liquid-based electrolyte [142]. The diffusion coefficient of I3− ions altered by the addition Al2O3 NPs. The variation in sizes of Al2O3 NPs greatly influenced the charge transfer rate at the electrolyte and semiconducting layer interfaces. In this report, the imidazolium cations might adsorb on the NP surface, which might help in the charge transfer at counter and anions I−/I3− gather around them. Some researchers have recently used clay-like NPs as nanofillers in the polymer electrolytes and applied to the DSSCs [143]. Nogueira et al. [144] examined the incorporation of a montmorillonite (MMT) derivative to a polymer electrolyte based on a poly-(ethylene oxide) copolymer, the plasticizer GBL, and Li I/I2. The improved ionic conductivity of the composite electrolyte attributed to the large number of charge carriers introduced into the complex after the addition of the clay. The addition of 5 wt% MMT promoted the increase in the mechanical stability of the nanocomposite polymer electrolyte film, resulted in the lower deformation as compared to the film without any clay. From their observations, it was found that the addition of MMT clay to the plasticized polymer electrolyte not only increased the ionic conductivity but also improved the solidification of the electrolyte. These improvements led to the mechanical stability of the polymer composite films and the stability of DSSCs as well. DSSCs fabricated with the nanocomposites polymer electrolyte showed reasonable conversion efficiencies of ~1.6% and ~3.2% at 100 mW/cm2 and 10 mW/cm2, respectively. The device presented very poor FF values of ~0.40 at 100 mW/cm2, which was attributed to the low penetration of the composite electrolyte into the pores of the TiO2 film. The MMT clay as nanofillers was also used by Lin et al. They prepared the nanocomposites of poly (nisopropylacrylamide) with MMT clay to a liquid electrolyte system as a gelator and applied as solid polymer electrolyte. The poly (nisopropylacrylamide)-MMT electrolyte-based DSSC achieved a relatively high conversion efficiency of ~5.4% with a JSC of ~12.6 mA/cm2, VOC of ~0.73 V, and FF of ~0.59, whereas the DSSC prepared with the electrolyte gelled with the pure polymer presented lower photovoltaic parameters of JSC (~7.28 mA/cm2), VOC (~0.72 V), FF (0.60), and conversion efficiency (~3.2%) at 100 mW/cm2. From the electrochemical impedance spectroscopy, a considerable decrease in impedance values was observed by DSSC fabricated with nanocomposite-gelled electrolyte. The impedance at the electrolyte/dye-coated TiO2 interface, and the Nernstian diffusion within the electrolytes were decreased, resulted in the high photocurrent density leading to the high performance of DSSCs. They also investigated the molar conductivity of the nanocomposite-gelled electrolytes to explain the high ionic conductivity and improved electrochemical behavior of electrolyte.
In summary, the morphological, structural, crystalline, optical, electrical and photovoltaic properties of conducting polymers, nanocomposites of conducting polymer/inorganic nanomaterials and semiconducting metal oxides have been discussed. The PANI nanocomposites with semiconducting materials have shown the improved penetration and optoelectronic properties, and applied for the electrical and electronic application such as diodes and solar cells. Here, the uniform distribution of CdS nanomaterials effectively improves the electronic state of PANI like polarons and bipolarons for the high charge carriers and enhances the charge transfer. The unique conducting polymers, particularly PANI nanomaterials have been used as hole transporting material and as counter electrodes for the applications of DSSCs. The metal oxide semiconducting nanomaterials, particularly TiO2 and ZnO nanomaterials, in terms of morphology, surface properties, dye absorption and application in DSSCs are extensively summarized. Various morphologies of metal oxides nanostructures greatly affect the performances of dye absorption, electrical, electrochemical, and photovoltaic devices. The metal oxides semiconducting nanomaterials with different morphologies and sizes enhance the surface-to-volume ratio and produce the highly advanced photoanodes for the efficient DSSCs. The morphologies of metal oxides semiconducting considerably influence the dye absorption, light harvesting and results in increased electron transfer and reduce the recombination rate during the operation of DSSCs. The photovoltaic properties such as JSC, VOC, FF, and conversion efficiency have significantly improved by altering the sizes and shapes of the metal oxides semiconductors. The chapter also summarizes the use of various metal oxide semiconducting nanomaterials as nanofillers in polymer electrolytes and describes their effect on the properties of polymer electrolytes and the performances of DSSCs. The introduction of metal oxide semiconducting nanomaterials into the polymer matrix has significantly improved the amorphicity, mechanical, thermal and ionic conductivity of polymer electrolytes. The chapter includes some of the polymer composite electrolytes and their photovoltaic properties for DSSCs.
\n',keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/43389.pdf",chapterXML:"https://mts.intechopen.com/source/xml/43389.xml",downloadPdfUrl:"/chapter/pdf-download/43389",previewPdfUrl:"/chapter/pdf-preview/43389",totalDownloads:5918,totalViews:689,totalCrossrefCites:5,totalDimensionsCites:15,totalAltmetricsMentions:0,impactScore:6,impactScorePercentile:95,impactScoreQuartile:4,hasAltmetrics:0,dateSubmitted:"March 27th 2012",dateReviewed:"July 16th 2012",datePrePublished:null,datePublished:"March 6th 2013",dateFinished:"February 26th 2013",readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/43389",risUrl:"/chapter/ris/43389",book:{id:"3118",slug:"solar-cells-research-and-application-perspectives"},signatures:"Sadia Ameen, M. Shaheer Akhtar, Minwu Song and Hyung Shik Shin",authors:[{id:"36666",title:"Prof.",name:"Hyung-Shik",middleName:null,surname:"Shin",fullName:"Hyung-Shik Shin",slug:"hyung-shik-shin",email:"hsshin@jbnu.ac.kr",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/36666/images/system/36666.jpg",institution:{name:"Jeonbuk National University",institutionURL:null,country:{name:"Korea, South"}}},{id:"52613",title:"Dr.",name:"Sadia",middleName:null,surname:"Ameen",fullName:"Sadia Ameen",slug:"sadia-ameen",email:"sadiaameen@jbnu.ac.kr",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/52613/images/system/52613.jpg",institution:{name:"Jeonbuk National University",institutionURL:null,country:{name:"Korea, South"}}}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Types of conducting polymers ",level:"1"},{id:"sec_2_2",title:"2.1. Polypyrrole (PPy) ",level:"2"},{id:"sec_3_2",title:"2.2. Poly phenylenes) (PP) ",level:"2"},{id:"sec_4_2",title:"2.3. Polyacetylene (PA)",level:"2"},{id:"sec_5_2",title:"2.4. Polyazule (PAz) ",level:"2"},{id:"sec_6_2",title:"2.5. Polyindole (PIN) ",level:"2"},{id:"sec_7_2",title:"2.6. Polycarbazole (PCz) ",level:"2"},{id:"sec_8_2",title:"2.7. Polyaniline (PANI) ",level:"2"},{id:"sec_10",title:"3. Nanocomposites of conducting polymers",level:"1"},{id:"sec_10_2",title:"3.1. Nanocomposites of PANI and cadmium sulphide ",level:"2"},{id:"sec_12",title:"4. Basic structure and kinetics of DSSCs",level:"1"},{id:"sec_13",title:"5. DSSCs based on conducting polymers",level:"1"},{id:"sec_13_2",title:"5.1. PANI as hole transport materials for DSSCs",level:"2"},{id:"sec_14_2",title:"5.2. PANI as counter electrodes for DSSCs",level:"2"},{id:"sec_15_2",title:"5.3. Other ions doped PANI counter electrode based DSSCs",level:"2"},{id:"sec_17",title:"6. DSSCs based on metal oxide semiconductors",level:"1"},{id:"sec_17_2",title:"6.1. DSSCs Based on TiO2 Photoanode",level:"2"},{id:"sec_18_2",title:"6.2. DSSCs based ZnO photoanode ",level:"2"},{id:"sec_20",title:"7. Doping of ZnO for improved electrical and photovoltaic properties",level:"1"},{id:"sec_20_2",title:"7.1. Sn doped ZnO nanostructures for solar cell performance ",level:"2"},{id:"sec_21_2",title:"7.2. Ga doped ZnO nanostructures with improved electrical properties ",level:"2"},{id:"sec_23",title:"8. Metal oxides as nanofillers in polymer electrolytes",level:"1"},{id:"sec_24",title:"9. Conclusions",level:"1"}],chapterReferences:[{id:"B1",body:'Shirakawa H. The discovery of polyacetylene film: the dawning of an era of conducting polymers. Angewandte Chemie International Edition 2001;40:2575–2580.'},{id:"B2",body:'MacDiarmid AG. Synthetic metals: a novel role for organic polymers. Angewandte Chemie International Edition 2001; 40:2581–2590.'},{id:"B3",body:'Gerard M, Chaubey A, Malhotra BD. Biosens. Application of conducting polymers to biosensors. Biosensors and Bioelectronics 2002;17:345-359.'},{id:"B4",body:'Friend RH, Gymer RW, Holmes AB, Burroughes JH, Marks RN, Taliani C, Bradley DD C, Santos DA, Brédas JL, Lögdlund M, Salaneck WR. Electroluminescence in conjugated polymers. Nature 1999; 397:121-128.'},{id:"B5",body:'Sirringhaus H, Tessler N, Friend RH. Integrated Optoelectronic Devices based on. Conjugated Polymers. Science 1998; 280:1741-1744.'},{id:"B6",body:'Morrin A, Wilbeer F, Ngamna O, Moulton SE, Killard AJ, Wallace GG, Novel biosensor fabrication methodology based on processable conducting polyaniline nanoparticles. Electrochemistry Communication 2005; 7:317-322.'},{id:"B7",body:'Jang J, Bae J, Lee K. Synthesis and characterization of polyaniline nanorods as curing agent and nanofiller for epoxy matrix composite, Polymer 2005;46:3677-3684.'},{id:"B8",body:'Plesu N, Ilia G, Pascariu A, Vlase G. Preparation, degradation of polyaniline doped with organic phosphorus acids and corrosion essays of poly aniline-acrylic blends. Synthetic Metals 2006; 156:230-238.'},{id:"B9",body:'Han DH, Lee HJ, Park SM. Electrochemistry of conductive polymers XXXV: Electrical and morphological characteristics of polypyrrole films prepared in aqueous media studied by current sensing atomic force microscopy. Electrochimica Acta 2005;50:3085-3092.'},{id:"B10",body:'Johanson U, Marandi A, Tamm T, Tamm J. Comparative study of the behavior of anions in polypyrrole films. Electrochimica Acta 2005;50:1523-1528.'},{id:"B11",body:'Krivan E, Peintler G, Visy C. Matrix rank analysis of spectral studies on the electropolymerisation and discharge process of conducting polypyrrole/dodecyl sulfate films. Electrochimica Acta 2005;50:1529-1535.'},{id:"B12",body:'Chehimi MM, Abel ML, Perruchot C, Delamar M, Lascelles SF, Armes SP. The determination of the surface energy of conducting polymers by inverse gas chromatography at infinite dilution. Synthetic Metals 1999;104:51-59.'},{id:"B13",body:'Khomenko VG, Barsukov VZ, Katashinskii AS. The catalytic activity of conducting polymers toward oxygen reduction. Electrochimica Acta 2005;50:1675-1683.'},{id:"B14",body:'Hien NTL, Garcia B, Pailleret A, Deslouis C. Role of doping ions in the corrosion protection of iron by polypyrrole films. Electrochimica Acta 2005;50:1747-1755.'},{id:"B15",body:'Liu L, Zhao Y, Zhou Q, Xu H, Zhao C, Jiang Z. Nano-polypyrrole supercapacitor arrays prepared by layer-by-layer assembling method in anodic aluminum oxide templates. Journal of Solid State Electrochemistry 2007;11:32-37.'},{id:"B16",body:'Krivoshei IV, Skorobogatov VM. “Polyacetylene and Polyarylenes; Polymer Monographs.” Vol. 10,Gordon and Breach Science Publishers, Philadelphia, PA, 1991'},{id:"B17",body:'Kovacic P, Jones MB. Dehydro coupling of aromatic nuclei by catalyst-oxidant systems: poly(p-phenylene). Chemical Reviews 1987;87:357-379.'},{id:"B18",body:'Shi G, Xue G, Li C, Jin S, Yu B. Uniaxial oriented poly(p-phenylene) fibrils and films. Macromolecules 1994;27:3678-3679.'},{id:"B19",body:'Roth S, Bleier H. Solitons in polyacetylene. Advances in Physics1987;36:385-462.'},{id:"B20",body:'Jacky JWY, Tang BZ. Functional polyacetylenes. Account of Chemical Research 2005;38:745-754.'},{id:"B21",body:'Asato AE, Liu RSH, Rao VP, Cai YM. Azulene-Containing Donor-Acceptor Compounds as Second-Order Nonlinear Chromophores. Tetrahedron Letters 1996;37:419-422.'},{id:"B22",body:'Taudi H, Bernede JC, Valle D, Bonnet MAA, Morsli M. Influence of the electrochemical conditions on the properties of polymerized carbazole. Journal of Materials Science 2001;36:631-634.'},{id:"B23",body:'Baba A, Onishi K, Knoll W, Advincula RC. Investigating Work Function Tunable Hole-Injection/Transport Layers of Electrodeposited Polycarbazole Network Thin Films. Journal of Physical Chemistry B 2004;108:18949-18955.'},{id:"B24",body:'Pud AA. Stability and degradation of conducting polymers in electrochemical systems. Synthetic Metals 1994;66(1):1–18.'},{id:"B25",body:'Min G. Conducting polymers and their applications in the film industry: polyaniline polyimide blended films. Synthetic Metals 1999;102(1–3):1163–1166.'},{id:"B26",body:'Davies JE, Less RJ, May I, Rawson JM. Isolation of the first diselenadiazolyl complex, Pd3[PhCNSeSeN]2[PPh3]4 2PhMe New J. Chem. 1998;22:763-765 '},{id:"B27",body:'Hahiwara T, Demura T, Iwata K. Synthesis and properties of electrically conducting polymers from aromatic amines. Synthetic Metals 1987;18:317-322. '},{id:"B28",body:'Snauwaert P, Lazzaroni R, Riga J, Verbist JJ. Electronic structure of polyaniline and substituted derivatives. Synthetic Metals 1987; 18:335-340.'},{id:"B29",body:'Cho MS, Cho YH, Choi HJ, Jhon MS. Synthesis and electrorheological characteristics of polyaniline-coated poly(methyl methacrylate) microsphere: Size effect. Langmuir 2003;19:5875-5881.'},{id:"B30",body:'Jindal Z, Verma NK. Electrochemical template–assisted fabrication of CdS micro/nanostructures. Physica E 2009;41:1752–1756.'},{id:"B31",body:'Soudi R, Kamal M, Shabaka AA, Abdelrazek EM, Eisa W. Synthesis, characterization and spectroscopic studies of CdS/polyaniline core/shell nanocomposites. Synthetic Metals 2010;160:479–484.'},{id:"B32",body:'Xi Y, Zhou J, Guo H, Cai C, Lin Z. Enhanced photoluminescence in core-sheath CdS–PANI coaxial nanocables: a charge transfer mechanism. Chemical Physics Letters 2005;412:60-63.'},{id:"B33",body:'Seoudi R, Shabaka AA., Kamal M, Abdelrazek EM, Eisa H. Dependence of structural, vibrational spectroscopy and optical properties on the particle sizes of CdS/polyaniline core/shell nanocomposites. Journal of Molecular Structure 2012;10(13):156-162. '},{id:"B34",body:'Raut BT, Chougule MA, Sen S, Pawar RC, Lee CS, Patil VB. Novel method of fabrication of polyaniline–CdS nanocomposites: Structural, morphological and optoelectronic properties. Ceramics International 2012;38:3999-4007. '},{id:"B35",body:'Ameen S, Akhtar MS, Kim YS, Shin HS. Synthesis and electrochemical impedance properties of CdS nanoparticles decorated polyaniline nanorods. Chemical Engineering Journal 2012;181–182:806–812. '},{id:"B36",body:'Boyer MI, Quillard S, Louarn G, Froyer G, Lefrant S. Vibrational study of the FeCl3-doped dimer of polyaniline; a good model compound of emeraldine salt. Journal of Physical Chemistry B 2000;104:8952–896.'},{id:"B37",body:'Mazeikiene R, Statino A, Kuodis Z, Niaura G, Malinauskas A. In situ Raman spectroelectrochemical study of self-doped polyaniline degradation kinetics. Electrochemistry Communications 2006;8:1082–1086.'},{id:"B38",body:'Khiew PS. Huang NM, Radiman S, Ahmad MS. Synthesis and characterization of conducting polyaniline-coated cadmium sulphide nanocomposites in reverse microemulsion. Materials Letters 2004;58:516–521.'},{id:"B39",body:'Shimano JY, MacDiarmid AG. Polyaniline, a dynamic block copolymer: key to attaining its intrinsic conductivity. Synthetic Metals 2001;123:251–262.'},{id:"B40",body:'Monkman AP, Stevens GC, Bloor D. X-ray photoelectron spectroscopic investigations of the chain structure and doping mechanisms in polyaniline. Journal of Physics D: Applied Physics 1991;24:738–743.'},{id:"B41",body:'Wu MS, Wen TC, Gopalan A. Electrochemical copolymerization of diphenylamine and anthranilic acid with various feed ratios. Journal of the Electrochemical Society 2001;148:D65–D73.'},{id:"B42",body:'Ameen S, Akhtar MS., Kim YS, Yang OB, Shin HS. Electrical and structural characterization of plasma polymerized polyaniline/TiO2 heterostructure diode: a comparative study of single and bilayer TiO2 thin film electrode. Journal of Nanoscience and Nanotechnology 2011;11:3306–3313.'},{id:"B43",body:'Glidle A, Swann MJ, Hadyoon CS, Cui L, Davis J, Ryder KS, Cooper JM. XPS assaying of electrodeposited copolymer composition to optimise sensor materials. Journal of Electron Spectroscopy and Related Phenomena 121 (2001) 131–148.'},{id:"B44",body:'Suzer S, Birer O, Sevil UA, Guven O. XPS investigations on conducting polymers. Turkish Journal of Chemistry 1998;22:59–65.'},{id:"B45",body:'Duran JDG, Guindo MC, Delgado AV, Caballero FG. Surface chemical analysis and electrokinetic properties of synthetic spherical mixed zinc–cadmium sulfides, Journal of Colloids and Interface Science 1997;193:223–233.'},{id:"B46",body:'Fiordiponti P, Pistoia G. An impedance study of polyaniline films in aqueous and organic solutions. Electrochimica Acta 1989;34:215–221. (b) Vorotyntsev MA, Badiali JP, Inzelt G. Electrochemical impedance spectroscopy of thin films with two mobile charge carriers: effects of the interfacial charging. Journal of Electroanalytical Chemistry 1999;472:7–19.'},{id:"B47",body:'Hagfeldt A, Gratzel M. Light-Induced Redox Reactions in Nanocrystalline Systems. Chemical Reviews 1995;95:49-68.'},{id:"B48",body:'Cheng YJ, Yang SH, Hsu CS. Synthesis of conjugated polymers for organic solar cell applications, Chemical Reviews 2009;109:5868–5923.'},{id:"B49",body:'Jaglarz J, Wagner T, Cisowski J, Sanetra J. Ellipsometric studies of carbazole-containing polymer layers. Optical Materials, 2007;29:908-912.'},{id:"B50",body:'Kudo N, Shimazaki Y, Ohkita H, Ohoka M, Ito S. Organicinorganic hybrid solar cells based on conducting polymer and SnO2 nanoparticles chemically modified with a fullerene derivative. Solar Energy Materials Solar Cells 2007;91:1243-1247. '},{id:"B51",body:'Woo S, Jeong JH, Lyu HK, Jeong S, Sim JH, Kim WH, Han YS, Kim Y. Hybrid solar cells with conducting polymers and vertically aligned silicon nanowire arrays: The effect of silicon conductivity. Physica B: Condensed Matter 2012;407:3059-3062. '},{id:"B52",body:'Tan F, Qu S, Wu J, Wang Z, Jin L, Bi Y, Cao J, Liu K, Zhang J. Wang Z., Electrodepostied polyaniline films decorated with nano-islands: Characterization and application as anode buffer layers in solar cells. Solar Energy Materials Solar Cells 2011;95:440-445. '},{id:"B53",body:'Chang MY, Wu CS, Chen YF, Hsieh BZ, Huang WY, Ho KS, Hsieh TH, Han YK. Polymer solar cells incorporating one-dimensional polyaniline nanotubes. Organic Electronics 2008; 9:1136-1139.'},{id:"B54",body:'Lim TH, Oh KW, Kim SH. Self-assembly supramolecules to enhance electrical conductivity of polyaniline for a flexible organic solar cells anode. Solar Energy Materials Solar Cells 2012;101:232-240. '},{id:"B55",body:'Bejbouji H, Vignau LL, Miane J, Dang MT, Oualim EM, Harmouchi M, Mouhsen A. Polyaniline as a hole injection layer on organic photovoltaic cells. Solar Energy Materials Solar Cells. 2010;94:176-181.'},{id:"B56",body:'Zhu S., Wei W., Chen X., Jiang M., Zhou Z. Hybrid structure of polyaniline/ZnO nanograss and its application in dye-sensitized solar cell with performance improvement. Journal of Solid State Chemistry 2012;190:174-179. '},{id:"B57",body:'Ameen S, Akhtar MS, Song M, Kim YS, Shin HS. Plasma Deposited Polyaniline on Ruthenium Dye Sensitized Zno Thin Film for Dye Sensitized Solar Cell. Advanced Science Letters 2012: doi:10.1166/asl.2012.3305.'},{id:"B58",body:'Malherbe R, Martinez J, Reguera E, Navarro E. Journal of Materials Science 1992;28:274. '},{id:"B59",body:'Ameen S, Akhtar MS, Kim G-S, Kim YS, Yang O-B, Shin HS. Plasma-enhanced polymerized aniline/TiO2 dye-sensitized solar cells. Journal of Alloys and Compounds 2009;487:382–386.'},{id:"B60",body:'Bisquert J. Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer. Journal of Physical Chemistry B 2002;106:325-333.'},{id:"B61",body:'J.R. Macdonald, Impedance Spectroscopy, John Wiley & Sons, New York, 1987.'},{id:"B62",body:'Brad AJ, Faulkner LR. Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons, New York, 1980, p. 350.'},{id:"B63",body:'Yeh MH, Lee CP, Chou CY, Lin LY, Wei HY, Chu CW, Vittal R, Ho KC. Conducting polymer-based counter electrode for a quantum-dot-sensitized solar cell (QDSSC) with a polysulfide electrolyte. Electrochimica Acta, 2011;57:277-284.'},{id:"B64",body:'] Lee KM, Chen PY, Hsu CY, Huang JH, Ho WH, Chen HC, Ho KC. A high-performance counter electrode based on poly(3,4-alkylenedioxythiophene) for dye-sensitized solar cells. Journal of Power Sources. 2009;188:313-318.'},{id:"B65",body:'Lee KM, Chiu WH, Wei HY, Hu CW, Suryanarayanan V, Hsieh WF, Ho KC. Effects of mesoscopic poly(3,4-ethylenedioxythiophene) films as counter electrodes for dye-sensitized solar cells. Thin Solid Films, 2010;518:1716-1721'},{id:"B66",body:'Maiaugree W, Pimanpang S, Towannang M, Saekow S, Jarernboon W, Amornkitbamrung V. Optimization of TiO2 nanoparticle mixed PEDOT–PSS counter electrodes for high efficiency dye sensitized solar cell. Journal of Non-Crystalline Solids 2012; In Press: doi:10.1016/j.jnoncrysol.2011.12.104. '},{id:"B67",body:'Chen J, Li B, Zheng J, Zhao J, Jing H, Zhu Z. Polyaniline nanofiber/carbon film as flexible counter electrodes in platinum-free dye-sensitized solar cells. Electrochimica Acta 2011; 56:4624-4630. '},{id:"B68",body:'Li Q, Wu J, Tang Q, Lan Z, Li P, Lin J, Fan L. Application of microporous polyaniline counter electrode for dye-sensitized solar cells. Electrochemistry Communications 2008; 10:1299-1302. '},{id:"B69",body:'Zhang J, Hreid T, Li X, Guo W, Wang L, Shi X, Su H, Yuan Z. Nanostructured polyaniline counter electrode for dye-sensitised solar cells: Fabrication and investigation of its electrochemical formation mechanism. Electrochimica Acta, 2010;55:3664-3668. '},{id:"B70",body:'Wang G, Xing W, Zhuo S. The production of polyaniline/graphene hybrids for use as a counter electrode in dye-sensitized solar cells. Electrochimica Acta 2012;66:151-157. '},{id:"B71",body:'Tai Q, Chen B, Guo F, Xu S, Hu H, Sebo B, Zhao XZ. In situ prepared transparent polyaniline electrode and its application in bifacial dye-sensitized solar cells. ACS Nano 2011; 24;5(5):3795-9. '},{id:"B72",body:'Ameen S, Akhtar MS, Kim YS, Yang OB, Shin HS. Sulfamic Acid-Doped Polyaniline Nanofibers Thin Film-Based Counter Electrode: Application in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C 2010;114:4760–4764.'},{id:"B73",body:"Nazeeruddin, MK, Kay A, Rodicio I, Humphry-Baker R, Muller E, Liska P, lachopoulosn N, Gratzel M. Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society 1993;115:6382–6390."},{id:"B74",body:'Li Z, Ye B, Hu X, Ma X, Zhang X, Deng Y. Facile Electropolymerized-PANI as counter electrode for low cost dye-sensitized solar cells. Electrochemistry Communications 2009;11:1768-1771.'},{id:"B75",body:'Graetzel M. Photoelectrochemical cells. Nature 2011;414:338-344.'},{id:"B76",body:'Kawai T, Takahashi H, Matsushima Y, Ogata T, Unuma H. Evaluation of Photocatalytic Activity of TiO2 Thin Films by Spin-Trap ESR Spectroscopy. Science of Advanced Materials, 2010; 2:74-78.'},{id:"B77",body:'Thomas J, Kumar KP, Mathew S. Enhancement of Sunlight Photocatalysis of Nano TiO2 by Ag Nanoparticles Stabilized with D-Glucosamine. Science of Advanced Materials 2011;3:59-65.'},{id:"B78",body:'Lee SM, Cho SN, Cheon S. Anisotropic Shape Control of Colloidal Inorganic Nanocrystals. Advanced Materials 2003;15:441-444.'},{id:"B79",body:'Hyam RS, Bhosale RK, Lee W, Han SH, Hannoyer B, Ogale SB. Room Temperature Synthesis of Rutile TiO2 Hierarchical Nanoneedle Flower Morphology for Dye Sensitized Solar Cell. Journal of Nanoscience and Nanotechnology 2010;10:5894-5898.'},{id:"B80",body:'Du G, Wan B, Guo Z, Shen J, Li Y, Liu H. Effect of Annealing on Electrochemical Performance of Anodized TiO2 Nanotubes for Lithium Ion Batteries. Advanced Science Letters, 2011;4:469-473.'},{id:"B81",body:'Mor GK, Shankar K, Paulose M, Varghese PK, Grimes CA. Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells. Nano Letters, 2006;6:215-218.'},{id:"B82",body:'Ameen S, Akhtar MS, Kim YS, Shin HS. Controlled synthesis and photoelectrochemical properties of highly ordered TiO2 nanorods. RSC Advances, 2012;2:4807–4813'},{id:"B83",body:'Shin K, Seok SI, Im SH, Park JH. CdS or CdSe decorated TiO2 nanotube arrays from spray pyrolysis deposition: use in photoelectrochemical cells. Chemical Communication, 2010;46:2385-2387.'},{id:"B84",body:'Du PA, Chen HH, Lu YC. Dye sensitized solar cells using well-aligned zinc oxide nanotip arrays. Applied Physics Letters 2006;89:253513-253615.'},{id:"B85",body:'Gregg BA. Interfacial processes in the dye-sensitized solar cell. Coordination Chemistry Reviews 2004;248:1215-1224.'},{id:"B86",body:'Lee S, Cho IS, Lee JH, Kim HD, Kim DW, Kim JY, Shin H, Lee JK, Jung HS, Park NG, Kim K, Ko MJ, Hong KS. Two-Step Sol−Gel Method-Based TiO2 Nanoparticles with Uniform Morphology and Size for Efficient Photo-Energy Conversion Devices. Chemistry of Materials, 2010;22:1958-1965.'},{id:"B87",body:'Chakravarty R, Periasamym C. Effect of aluminium doping on structural and optoelectronic properties of sol-gel derived nanocrystalline ZnO thin film. Science of Advanced Materials 2011;3:276–283.'},{id:"B88",body:'Chao CH, Chan CH, Huang JJ, Chang LS, Shih HC. Manipulated the band gap of 1D ZnO nano-rods array with controlled solution concentration and its application for DSSCs. Current Applied Physics 2011;11:S136–S139'},{id:"B89",body:'Mohanta SK, Kim DC, Kong BH, Cho HK, Liu W, Tripathy S. Optical Properties of ZnO Nanorods and Hybrid Structures Grown on p-type GaN/Sapphire and Silicon-on-Insulator Substrates. Science of Advanced Materials 2010;2:64-68. (b) Zhang H, Du N, Chen B, Li D, Yang D. Carbon Nanotube-ZnO Nanosphere Heterostructures: Low-Temperature Chemical Reaction Synthesis, Photoluminescence, and Their Application for Room Temperature NH3 Gas Sensor. Science of Advanced Materials 2009;1:13-17.'},{id:"B90",body:'Akhtar MS, Khan MA, Jeon MS, Yang OB. Controlled synthesis of various ZnO nanostructured materials by capping agents-assisted hydrothermal method for dye-sensitized solar cells. Electrochimica Acta 2008;53:7869–7874.'},{id:"B91",body:'Tseng YK, Hsu HC, Hsieh WF, Liu KS, Chen IC. Two-step oxygen injection process for growing ZnO nanorods. Journal of Materials Research 2003;18:2837–2844.'},{id:"B92",body:'Yu WD, Li XM, Gao XD, Self-catalytic synthesis and photoluminescence of ZnO nanostructures on ZnO nanocrystal substrates, Applied Physics Letters 2004;84:2651–2658.'},{id:"B93",body:'Uthirakumar P, Kang JH, Senthilarasu S, Hong CH. The different types of ZnO materials on the performance of dye-sensitized solar cells, Physica E 2011;43:1746–1751.'},{id:"B94",body:'Greene LE, Yuhas BD, Law M, Zitoun D, Yang PD. Solution-Grown Zinc Oxide Nanowires. Inorganic Chemistry 2006;45:7535-7543.'},{id:"B95",body:'Han H, Bach U, Cheng YB, Caruso RA. Increased nanopore filling: Effect on monolithic all-solid-state dye-sensitized solar cells. Applied Physics Letters 2007;90:213510-213512.'},{id:"B96",body:'Gao YF, Nagai M, Chang TC, Shyue JJ. Solution-Derived ZnO Nanowire Array Film as Photoelectrode in Dye-Sensitized Solar Cells. Crystal Growth and Design 2007;7:2467-2471.'},{id:"B97",body:'Jiang CY, Sun XW, Tan KW, Lo GQ, Kyaw AKK, Kwong DL. High-bendability flexible dye-sensitized solar cell with a nanoparticle-modified ZnO-nanowire electrode. Applied Physics Letters 2008;92:143101-143103.'},{id:"B98",body:'Akhtar MS, Khan MA, Jeon MS, Yang OB. Controlled synthesis of various ZnO nanostructured materials by capping agents-assisted hydrothermal method for dye-sensitized solar cells. Electrochimica Acta 2008;53:7869-7874.'},{id:"B99",body:'Umar A, Al-Hajry A, Hahn YB, Kim DH. Rapid synthesis and dye-sensitized solar cell applications of hexagonal-shaped ZnO nanorods. Electrochimica Acta 2009;54:5358-5362.'},{id:"B100",body:'Ameen S, Akhtar MS, Shin HS. Growth and characterization of nanospikes decorated ZnO sheets and their solar cell application. Chemical Engineering Journal 2012;195-196:307–313.'},{id:"B101",body:'Umar A, Kim SH, Kim JH, Al-Hajry A, Hahn YB. Temperature-dependant non-catalytic growth of ultraviolet-emitting ZnO nanostructures on silicon substrate by thermal evaporation process. Journal of Alloys and Compounds 2008;463:516–521.'},{id:"B102",body:'Laudise RA, Kolb ED, Caporason AJ. Hydrothermal growth of large sound crystals of zinc oxide. Journal of the American Ceramic Society 1964;47:9–12. '},{id:"B103",body:'Ameen S, Akhtar MS., Kim YS, Yang OB, Shin HS. Influence of seed layer treatment on low temperature grown ZnO nanotubes: performances in dye sensitized solar cells, Electrochimica Acta 2011;56:1111–1116.'},{id:"B104",body:'Wagner CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE. Handbook of X-ray Photoelectron Spectroscopy, Perkin Elmer, Eden Prairie, 1979.'},{id:"B105",body:'Leunga CY, Djurisic AB, Leung YH, Ding L, Yang CL, Ge WK. Influence of the carrier gas on the luminescence of ZnO tetrapod nanowires, Journal of Crystal Growth 2006;290:131–136.'},{id:"B106",body:'Fan JCC, Goodenough JB. X-ray photoemission spectroscopy studies of Sn doped indium-oxide films, Journal of Applied Physics 1977;48:3524–3531.'},{id:"B107",body:'Martinson ABF, Elam JW, Hupp JT, Pellin MJ. ZnO nanotube based dyesensitized solar cells Nano. Letters 2007;7:2183–2187.'},{id:"B108",body:'Umar A, Singh P, Al-Ghamdi AA, Al-Heniti S. Direct growth of ZnO nanosheets on FTO substrate for dye-sensitized solar cells applications, Journal of Nanoscience and Nanotechnology 2010;10:6666–6671.'},{id:"B109",body:'Al-Hajry A, Umar A, Hahn YB, Kim DH. Growth, properties and dyesensitized solar cells–applications of ZnO nanorods grown by lowtemperature solution process. Superlattice Microstructures 2009;45:529–534.'},{id:"B110",body:'Ilican S, Caglar Y, Caglar M, Yakuphanoglu F. Structural, optical and electrical properties of F-doped ZnO nanorod semiconductor thin films deposited by solgel process. Applied Surface Science 2008;255:2353–2359.'},{id:"B111",body:'Peiteado M, Iglesias Y, Fernandez JF, De Frutos J, Caballero AC. Microstructural development of tin-doped ZnO bulk ceramics. Materials Chemistry and Physics 2007;101:1–6.'},{id:"B112",body:'Tsay CY, Cheng HC, Tung YT, Tuan WH, Lin CK. Effect of Sn-doped on microstructural and optical properties of ZnO thin films deposited by sol-gel method. Thin Solid Films 2008;517:1032–1036.'},{id:"B113",body:'Yung KC, Liem H, Choy HS, 185002 enhanced redshift of the optical band gap in Sn-doped ZnO free standing films using the sol–gel method. Journal of Physics D: Applied Physics 2009;42:15002-15006.'},{id:"B114",body:'Ameen S, Akhtar MS, Seo HK, Kim YS, Shin HS. Influence of Sn doping on ZnO nanostructures from nanoparticles to spindle shape and their photoelectrochemical properties for dye sensitized solar cells. Chemical Engineering Journal 2012;187: 351– 356'},{id:"B115",body:'Exarhos GJ, Sharma SK. Influence of processing variables on the structure and properties of ZnO films. Thin Solid Films 1995;270:27–32.'},{id:"B116",body:'Yang J, Lee J, Im K, Lim S, Influence of Sn-doping in hydrothermal methods on the optical property of the ZnO nanorods. Physica E 2009;42:51–56.'},{id:"B117",body:'Sheini FJ, More MA, Jadkar SR, Patil KR, Pillai VK, Joag DS. Observation of photoconductivity in Sn-doped ZnO nanowires and their photoenhanced field emission behavior. Journal of Physical Chemistry C 2010;114:3843–3849.'},{id:"B118",body:'Dolbec R, ElKhakani MA, Serventi AM, Jacques RGS. Influence of the nanostructural characteristics on the gas sensing properties of pulsed laser deposited tin oxide thin films. Sensors and Actuators B 2003;93:566–571.'},{id:"B119",body:'Ye N, Qi J, Qi Z, Zhang X, Yang Y, Liu J, Zhang Y. Improvement of the performance of dye-sensitized solar cells using Sn-doped ZnO nanoparticles. Journal of Power Sources 2010;195:5806–5809.'},{id:"B120",body:'Kim MH, Suh M, Gowrishankar V, McGehee MD, Kwon YU. Confinement Effects of P3HT in Nanochannels and Their Implications for Bulk Heterojunction Solar Cells. Journal of Nanoscience and Nanotechnology 2010;10:279–284.'},{id:"B121",body:'Mridha S, Basak D. ZnO/polyaniline based inorganic/organic hybrid structure: Electrical and photoconductivity properties. Applied Physics Letters 2008;92:142111–142113'},{id:"B122",body:'Ameen S, Akhtar MS, Kim YS, Yang OB, Shin HS. Polyaniline/Ga doped ZnO Heterostructure Device via Plasma Enhanced Polymerization. Microchim Acta 2011;172:471–478.'},{id:"B123",body:'Umar A, Al-Hajry A, Hahn YB, Kim DH. Rapid synthesis and dye-sensitized solar cell applications of hexagonal-shaped ZnO nanorods. Electrochimica Acta 2009;54:5358–5362.'},{id:"B124",body:'Monkman AP, Stevens GC, Bloor D. X-ray photoelectron spectroscopic investigations of the chain structure and doping mechanisms in polyaniline. Journal of Physics D: Applied Physics 1991;24:738-741.'},{id:"B125",body:'Barr TL. Recent advances in x-ray photoelectron spectroscopy studies of oxides. Journal of Vacuum Science & Technology A 1991;93:179-185.'},{id:"B126",body:'Sans JA, Segura A, Royo JFS, Barber V, Fenollosa MAH, Marí B. Correlation between optical and transport properties of Ga doped ZnO thin films prepared by pulsed laser deposition. Superlattice Microstructures 2006;39:282–290.'},{id:"B127",body:'Chen Y, Kang ET, Neon KG, Lim SL, Ma ZH, Tan KL. Intrinsic redox states of polyaniline studied by high-resolution X ray photoelectron spectroscopy. Colloid and Polymer Science 2001;279:73–76.'},{id:"B128",body:'Kang ET, Neoh KG, Tan KL. Polyaniline: A polymer with many interesting intrinsic redox states. Progress in Polymer Science 1998;23:277–324.'},{id:"B129",body:'Mridha S, Basak D. ZnO/polyaniline based inorganic/organic hybrid structure: Electrical and photoconductivity properties. Appl. Phys. Lett. 2008;92:142111–142113.'},{id:"B130",body:'Ameen S, Akhtar MS, Ansari SG, Yang OB, Shin HS. Electrophoretically deposited polyaniline/ZnO nanoparticles for p–n heterostructure diodes. Superlattice and Microstructures 2009;46:872–880.'},{id:"B131",body:'Croce F, Appetechi GB, Persi L, Scrosati B. Nanocomposite polymer electrolytes for lithium batteries. Nature (London) 1998;394: 456-458.'},{id:"B132",body:'Kang MS, Ahnand KS, Lee JW. Quasi-solid-state dye-sensitized solar cells employing ternary component polymer-gel electrolytes. Journal of Power Sources 2008;180:896-901.'},{id:"B133",body:'Katsaros G, Stergiopoulos T, Arabatzis IM, Papadokostaki KG, Falaras P. A solvent-free composite polymer/inorganic oxide electrolyte for high efficiency solid-state dye-sensitized solar cells. Journal of Photochemistry and Photobiology A 2002;149:191-198.'},{id:"B134",body:'Stergiopoulos T, Arabatzis IM, Katsaros G, Falaras P. Binary Polyethylene Oxide/Titania Solid-State Redox Electrolyte for Highly Efficient Nanocrystalline TiO2 Photoelectrochemical Cells. Nano Letters 2002;2:1259-1261.'},{id:"B135",body:'Akhtar MS, Park JG, Kim UY, Yang OB. Composite electrolytes of polyethylene glycol methyl ether and TiO2 for dye-sensitized solar cells—Effect of heat treatment. Materials Chemistry and Physics 2011;127:479-483.'},{id:"B136",body:'Tadayyoni MA, Gao P, Weaver MJ. Application of surface-enhanced Raman spectroscopy to mechanistic electrochemistry: Oxidation of iodide at gold electrodes. Journal of Electroanalytical Chemistry 1986;198:125-136.'},{id:"B137",body:'Kubo W, Murakoshi K, Kitamura T, Yoshida S, Haruki M, Hanabusa K, Shirai H, Wada Y, Yanagida S. Quasi-Solid-State Dye-Sensitized TiO2 Solar Cells: Effective Charge Transport in Mesoporous Space Filled with Gel Electrolytes Containing Iodide and Iodine. Journal of Physical Chemistry B 2001;105:12809- 12815.'},{id:"B138",body:'Akhtar MS, Chun J M, Yang OB. Advanced composite gel electrolytes prepared with titania nanotube fillers in polyethylene glycol for the solid-state dye-sensitized solar cell. Electrochemistry Communications 2007;9:2833-2837.'},{id:"B139",body:'Zhang J, Han H, Wu S, Xu S, Yang Y, Zhou C, Zhao X. Conductive carbon nanoparticles hybrid PEO/P(VDF-HFP)/SiO2 nanocomposite polymer electrolyte type dye sensitized solar cells. Solid State Ionics 2007;178:1595-1601.'},{id:"B140",body:'Han H, Bach U, Cheng YB. Caruso R A. Increased nanopore filling: Effect on monolithic all-solid-state dye-sensitized solar cells. Applied Physics Letters 2007;90:213510-213412.'},{id:"B141",body:'Zhang X, Yang H, Xiong HM, Li FY, Xia YY. A quasi-solid-state dye-sensitized solar cell based on the stable polymer-grafted nanoparticle composite electrolyte. Journal of Power Sources 2006;160:1451-1455.'},{id:"B142",body:'Nazmutdinova G, Sensfuss S, Schrödner M, Hinsch A, Sastrawan R, Gerhard., Himmler S, Wasserscheid P. Quasi-solid state polymer electrolytes for dye-sensitized solar cells: Effect of the electrolyte components variation on the triiodide ion diffusion properties and charge-transfer resistance at platinum electrode. Solid State Ionics 2006;177:3141-3146.'},{id:"B143",body:'Tu CW, Liu KY, Chien AT, Yen MH, Weng TH, Ho KC, Lin KF. Enhancement of photocurrent of polymer-gelled dye-sensitized solar cell by incorporation of exfoliated montmorillonite nanoplatelets. Journal of Polymer Science A: Polymer Chemistry 2008;46:47- 53.'},{id:"B144",body:'Ito BI, de Freitas JN, De Paoli MA, Nogueira AF. Application of a Composite Polymer Electrolyte Based on Montmorillonite in Dye Sensitized Solar Cells. Journal of Brazilian Chemical Society 2008:19:688-696.'}],footnotes:[],contributors:[{corresp:null,contributorFullName:"Sadia Ameen",address:null,affiliation:'
Energy Materials & Surface Science Laboratory, Solar Energy Research Center, School of Chemical Engineering, Chonbuk National University, Jeonju, Republic of Korea
Energy Materials & Surface Science Laboratory, Solar Energy Research Center, School of Chemical Engineering, Chonbuk National University, Jeonju, Republic of Korea
Energy Materials & Surface Science Laboratory, Solar Energy Research Center, School of Chemical Engineering, Chonbuk National University, Jeonju, Republic of Korea
'}],corrections:null},book:{id:"3118",type:"book",title:"Solar Cells",subtitle:"Research and Application Perspectives",fullTitle:"Solar Cells - Research and Application Perspectives",slug:"solar-cells-research-and-application-perspectives",publishedDate:"March 6th 2013",bookSignature:"Arturo Morales-Acevedo",coverURL:"https://cdn.intechopen.com/books/images_new/3118.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:null,printIsbn:"978-953-51-1003-3",pdfIsbn:"978-953-51-6313-8",reviewType:"peer-reviewed",numberOfWosCitations:78,isAvailableForWebshopOrdering:!0,editors:[{id:"90486",title:"Prof.",name:"Arturo",middleName:null,surname:"Morales-Acevedo",slug:"arturo-morales-acevedo",fullName:"Arturo Morales-Acevedo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"770"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"38725",type:"chapter",title:"Optimization of Third Generation Nanostructured Silicon- Based Solar Cells",slug:"optimization-of-third-generation-nanostructured-silicon-based-solar-cells",totalDownloads:4912,totalCrossrefCites:6,signatures:"Foozieh Sohrabi, Arash Nikniazi and Hossein Movla",reviewType:"peer-reviewed",authors:[{id:"35018",title:"Mr.",name:"Hossein",middleName:null,surname:"Movla",fullName:"Hossein Movla",slug:"hossein-movla"},{id:"52330",title:"Ms.",name:"Foozieh",middleName:null,surname:"Sohrabi",fullName:"Foozieh Sohrabi",slug:"foozieh-sohrabi"},{id:"52331",title:"M.Sc.",name:"Arash",middleName:null,surname:"Nikniazi",fullName:"Arash Nikniazi",slug:"arash-nikniazi"}]},{id:"38949",type:"chapter",title:"Silicon Solar Cells with Nanoporous Silicon Layer",slug:"silicon-solar-cells-with-nanoporous-silicon-layer",totalDownloads:3549,totalCrossrefCites:8,signatures:"Tayyar Dzhafarov",reviewType:"peer-reviewed",authors:[{id:"36681",title:"Prof.",name:"Tayyar",middleName:null,surname:"Dzhafarov",fullName:"Tayyar Dzhafarov",slug:"tayyar-dzhafarov"}]},{id:"40442",type:"chapter",title:"Influence of Surface Treatment on the Conversion Efficiency of Thin-Film a-Si:H Solar Cells on a Stainless Steel Substrate",slug:"influence-of-surface-treatment-on-the-conversion-efficiency-of-thin-film-a-si-h-solar-cells-on-a-sta",totalDownloads:2211,totalCrossrefCites:1,signatures:"Wen-Cheng Ke and Shuo-Jen Lee",reviewType:"peer-reviewed",authors:[{id:"35538",title:"Prof.",name:"Wen-Cheng",middleName:null,surname:"Ke",fullName:"Wen-Cheng Ke",slug:"wen-cheng-ke"},{id:"51386",title:"Prof.",name:"Shuo-Jen",middleName:null,surname:"Lee",fullName:"Shuo-Jen Lee",slug:"shuo-jen-lee"}]},{id:"38947",type:"chapter",title:"Polycrystalline Cu(InGa)Se2/CdS Thin Film Solar Cells Made by New Precursors",slug:"polycrystalline-cu-inga-se2-cds-thin-film-solar-cells-made-by-new-precursors",totalDownloads:2956,totalCrossrefCites:2,signatures:"Alessio Bosio, Daniele Menossi, Alessandro Romeo and Nicola Romeo",reviewType:"peer-reviewed",authors:[{id:"154059",title:"Prof.",name:"Alessio",middleName:null,surname:"Bosio",fullName:"Alessio Bosio",slug:"alessio-bosio"},{id:"154251",title:"Dr.",name:"Alessandro",middleName:null,surname:"Romeo",fullName:"Alessandro Romeo",slug:"alessandro-romeo"},{id:"154370",title:"Dr.",name:"Daniele",middleName:null,surname:"Menossi",fullName:"Daniele Menossi",slug:"daniele-menossi"},{id:"154371",title:"Prof.",name:"Nicola",middleName:null,surname:"Romeo",fullName:"Nicola Romeo",slug:"nicola-romeo"}]},{id:"37686",type:"chapter",title:"Cu2ZnSnS4 Thin Film Solar Cells: Present Status and Future Prospects",slug:"cu2znsns4-thin-film-solar-cells-present-status-and-future-prospects",totalDownloads:10877,totalCrossrefCites:26,signatures:"Minlin Jiang and Xingzhong Yan",reviewType:"peer-reviewed",authors:[{id:"42857",title:"Dr.",name:"Xingzhong",middleName:null,surname:"Yan",fullName:"Xingzhong Yan",slug:"xingzhong-yan"},{id:"153957",title:"MSc.",name:"Minlin",middleName:null,surname:"Jiang",fullName:"Minlin Jiang",slug:"minlin-jiang"}]},{id:"39155",type:"chapter",title:"Thin Film Solar Cells Using Earth-Abundant Materials",slug:"thin-film-solar-cells-using-earth-abundant-materials",totalDownloads:7317,totalCrossrefCites:5,signatures:"Parag S. Vasekar and Tara P. Dhakal",reviewType:"peer-reviewed",authors:[{id:"35137",title:"Dr.",name:"Parag",middleName:null,surname:"Vasekar",fullName:"Parag Vasekar",slug:"parag-vasekar"},{id:"158611",title:"Dr.",name:"Tara",middleName:"P",surname:"Dhakal",fullName:"Tara Dhakal",slug:"tara-dhakal"}]},{id:"39072",type:"chapter",title:"Enhancing the Light Harvesting Capacity of the Photoanode Films in Dye-Sensitized Solar Cells",slug:"enhancing-the-light-harvesting-capacity-of-the-photoanode-films-in-dye-sensitized-solar-cells",totalDownloads:4628,totalCrossrefCites:7,signatures:"Xiang-Dong Gao, Xiao-Min Li and Xiao-Yan Gan",reviewType:"peer-reviewed",authors:[{id:"35389",title:"Prof.",name:"Xiang-Dong",middleName:null,surname:"Gao",fullName:"Xiang-Dong Gao",slug:"xiang-dong-gao"}]},{id:"43389",type:"chapter",title:"Metal Oxide Nanomaterials, Conducting Polymers and Their Nanocomposites for Solar Energy",slug:"metal-oxide-nanomaterials-conducting-polymers-and-their-nanocomposites-for-solar-energy",totalDownloads:5918,totalCrossrefCites:5,signatures:"Sadia Ameen, M. Shaheer Akhtar, Minwu Song and Hyung Shik Shin",reviewType:"peer-reviewed",authors:[{id:"36666",title:"Prof.",name:"Hyung-Shik",middleName:null,surname:"Shin",fullName:"Hyung-Shik Shin",slug:"hyung-shik-shin"},{id:"52613",title:"Dr.",name:"Sadia",middleName:null,surname:"Ameen",fullName:"Sadia Ameen",slug:"sadia-ameen"}]},{id:"40645",type:"chapter",title:"Investigation of Organic Bulk Heterojunction Solar Cells from Optical Aspect",slug:"investigation-of-organic-bulk-heterojunction-solar-cells-from-optical-aspect",totalDownloads:3349,totalCrossrefCites:2,signatures:"Chunfu Zhang, Yue Hao, Dazheng Chen, Zhizhe Wang and Zhenhua Lin",reviewType:"peer-reviewed",authors:[{id:"46204",title:"Prof.",name:"Chunfu",middleName:null,surname:"Zhang",fullName:"Chunfu Zhang",slug:"chunfu-zhang"}]},{id:"43437",type:"chapter",title:"GaAsN Grown by Chemical Beam Epitaxy for Solar Cell Application",slug:"gaasn-grown-by-chemical-beam-epitaxy-for-solar-cell-application",totalDownloads:2608,totalCrossrefCites:0,signatures:"Kazuma Ikeda, Han Xiuxun, Bouzazi Boussairi and Yoshio Ohshita",reviewType:"peer-reviewed",authors:[{id:"137935",title:"Prof.",name:"Yoshio",middleName:null,surname:"Ohshita",fullName:"Yoshio Ohshita",slug:"yoshio-ohshita"},{id:"154558",title:"Dr.",name:"Kazuma",middleName:null,surname:"Ikeda",fullName:"Kazuma Ikeda",slug:"kazuma-ikeda"}]},{id:"43390",type:"chapter",title:"Solar Cell Efficiency vs. Module Power Output: Simulation of a Solar Cell in a CPV Module",slug:"solar-cell-efficiency-vs-module-power-output-simulation-of-a-solar-cell-in-a-cpv-module",totalDownloads:4148,totalCrossrefCites:2,signatures:"Egbert Rodriguez Messmer",reviewType:"peer-reviewed",authors:[{id:"41695",title:"Dr.",name:"Egbert",middleName:null,surname:"Rodriguez Messmer",fullName:"Egbert Rodriguez Messmer",slug:"egbert-rodriguez-messmer"}]},{id:"43396",type:"chapter",title:"Electric Energy Management and Engineering in Solar Cell System",slug:"electric-energy-management-and-engineering-in-solar-cell-system",totalDownloads:4075,totalCrossrefCites:1,signatures:"Purnomo Sidi Priambodo, Didik Sukoco, Wahyudi Purnomo, Harry Sudibyo and Djoko Hartanto",reviewType:"peer-reviewed",authors:[{id:"36839",title:"Ph.D.",name:"Purnomo Sidi",middleName:null,surname:"Priambodo",fullName:"Purnomo Sidi Priambodo",slug:"purnomo-sidi-priambodo"}]},{id:"43442",type:"chapter",title:"Effect of Source Impedance on Hybrid Wind and Solar Power System",slug:"effect-of-source-impedance-on-hybrid-wind-and-solar-power-system",totalDownloads:3188,totalCrossrefCites:0,signatures:"Mu-Kuen Chen and Chao-Yuan Cheng",reviewType:"peer-reviewed",authors:[{id:"154184",title:"Prof.",name:"Mu-Kuen",middleName:null,surname:"Chen",fullName:"Mu-Kuen Chen",slug:"mu-kuen-chen"}]}]},relatedBooks:[{type:"book",id:"3633",title:"Solar Energy",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"solar-energy",bookSignature:"Radu D Rugescu",coverURL:"https://cdn.intechopen.com/books/images_new/3633.jpg",editedByType:"Edited by",editors:[{id:"8615",title:"Prof.",name:"Radu",surname:"Rugescu",slug:"radu-rugescu",fullName:"Radu Rugescu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"8548",title:"Potential of the Solar Energy on Mars",slug:"potential-of-the-solar-energy-on-mars",signatures:"Dragos Ronald Rugescu and Radu Dan Rugescu",authors:[null]},{id:"8549",title:"Surface-Barrier Solar Cells Based On Monocrystalline Cadmium Telluride with the Modified Boundary",slug:"surface-barrier-solar-cells-based-on-monocrystalline-cadmium-telluride-with-the-modified-boundary",signatures:"P.М. Gorley, V.P. Makhniy, P.P. Horley, Yu.V. Vorobiev and J. González-Hernández",authors:[null]},{id:"8550",title:"Control of a 3KW Polar-Axis Solar Power Platform with Nonlinear Measurements",slug:"control-of-a-3kw-polar-axis-solar-power-platform-with-nonlinear-measurements",signatures:"John T. Agee and Adisa A. Jimoh",authors:[null]},{id:"8551",title:"Silicon Solar Cells: Recombination and Electrical Parameters",slug:"silicon-solar-cells-recombination-and-electrical-parameters",signatures:"Saïdou, Madougou, Mohamadou Kaka and Gregoire Sissoko",authors:[null]},{id:"8552",title:"Efficient Silicon Solar Cells Fabricated with a Low Cost Spray Technique",slug:"efficient-silicon-solar-cells-fabricated-with-a-low-cost-spray-technique",signatures:"Oleksandr Malik and F. Javier De la Hidalga-W.",authors:[null]},{id:"8553",title:"Efficiency of Thin-Film CdS/CdTe Solar Cells",slug:"efficiency-of-thin-film-cds-cdte-solar-cells",signatures:"Leonid Kosyachenko",authors:[null]},{id:"8554",title:"Energy Control System of Solar Powered Wheelchair",slug:"energy-control-system-of-solar-powered-wheelchair",signatures:"Yoshihiko Takahashi, Syogo Matsuo, and Kei Kawakami",authors:[null]},{id:"8555",title:"Uses of Concentrated Solar Energy in Materials Science",slug:"uses-of-concentrated-solar-energy-in-materials-science",signatures:"Gemma Herranz and Gloria P. Rodríguez",authors:[null]},{id:"8556",title:"Solar Chimney Power Plants – Developments and Advancements",slug:"solar-chimney-power-plants-developments-and-advancements",signatures:"Marco Aurélio dos Santos Bernardes",authors:[null]},{id:"8557",title:"Floating Solar Chimney Technology",slug:"floating-solar-chimney-technology",signatures:"Christos D. Papageorgiou",authors:[null]},{id:"8558",title:"Organic Solar Cells Performances Improvement Induced by Interface Buffer Layers",slug:"organic-solar-cells-performances-improvement-induced-by-interface-buffer-layers",signatures:"J. C. Bernède, A. Godoy, L. Cattin, F. R. Diaz, M. Morsli and M. A. del Valle",authors:[null]},{id:"8559",title:"New Trends in Designing Parabolic trough Solar Concentrators and Heat Storage Concrete Systems in Solar Power Plants",slug:"new-trends-in-designing-parabolic-trough-solar-concentrators-and-heat-storage-concrete-systems-in-so",signatures:"Valentina A. Salomoni, Carmelo E. Majorana, Giuseppe M. Giannuzzi, Adio Miliozzi and Daniele Nicolini",authors:[null]},{id:"8560",title:"Charge Carrier Recombination in Bulk Heterojunction Organic Solar Cells",slug:"charge-carrier-recombination-in-bulk-heterojunction-organic-solar-cells",signatures:"Gytis Juška and Kęstutis Arlauskas",authors:[null]},{id:"8561",title:"Numerical Simulation of Solar Cells and Solar Cell Characterization Methods: the Open-Source on Demand Program AFORS-HET",slug:"numerical-simulation-of-solar-cells-and-solar-cell-characterization-methods-the-open-source-on-deman",signatures:"Rolf Stangl, Caspar Leendertz and Jan Haschke",authors:[null]},{id:"8562",title:"Amorphous Silicon Carbide Photoelectrode for Hydrogen Production from Water using Sunlight",slug:"amorphous-silicon-carbide-photoelectrode-for-hydrogen-production-from-water-using-sunlight",signatures:"Feng Zhu, Jian Hu, Ilvydas Matulionis, Todd Deutsch, Nicolas Gaillard, Eric Miller, and Arun Madan",authors:[null]},{id:"8563",title:"Contact Definition in Industrial Silicon Solar Cells",slug:"contact-definition-in-industrial-silicon-solar-cells",signatures:"Luis Jaime Caballero",authors:[null]},{id:"8564",title:"Aerostat for Solar Power Generation",slug:"aerostat-for-solar-power-generation",signatures:"G. S. Aglietti, S. Redi, A. R. Tatnall, T. Markvart and S.J.I. Walker",authors:[null]},{id:"8565",title:"Photon Management in Dye Sensitized Solar Cells",slug:"photon-management-in-dye-sensitized-solar-cells",signatures:"Silvia Colodrero, Mauricio E. Calvo and Hernán Míguez",authors:[null]}]}],publishedBooks:[{type:"book",id:"894",title:"Solar Power",subtitle:null,isOpenForSubmission:!1,hash:"f83c61c054d71d074164ecd3914f57a4",slug:"solar-power",bookSignature:"Radu D. Rugescu",coverURL:"https://cdn.intechopen.com/books/images_new/894.jpg",editedByType:"Edited by",editors:[{id:"8615",title:"Prof.",name:"Radu",surname:"Rugescu",slug:"radu-rugescu",fullName:"Radu Rugescu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5063",title:"Perovskite Materials",subtitle:"Synthesis, Characterisation, Properties, and Applications",isOpenForSubmission:!1,hash:"aa79b2307aac87c44aee1b9c4eb26096",slug:"perovskite-materials-synthesis-characterisation-properties-and-applications",bookSignature:"Likun Pan and Guang Zhu",coverURL:"https://cdn.intechopen.com/books/images_new/5063.jpg",editedByType:"Edited by",editors:[{id:"175680",title:"Dr.",name:"Likun",surname:"Pan",slug:"likun-pan",fullName:"Likun Pan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9430",title:"Sustainable Energy Investment",subtitle:"Technical, Market and Policy Innovations to Address Risk",isOpenForSubmission:!1,hash:"944911e9a2154a0bf8b358cafc971f42",slug:"sustainable-energy-investment-technical-market-and-policy-innovations-to-address-risk",bookSignature:"Joseph Nyangon and John Byrne",coverURL:"https://cdn.intechopen.com/books/images_new/9430.jpg",editedByType:"Edited by",editors:[{id:"225597",title:"Dr.",name:"Joseph",surname:"Nyangon",slug:"joseph-nyangon",fullName:"Joseph Nyangon"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1288",title:"Solar Cells",subtitle:"Dye-Sensitized Devices",isOpenForSubmission:!1,hash:"05a255471069664ecf5fbf8778b92076",slug:"solar-cells-dye-sensitized-devices",bookSignature:"Leonid A. Kosyachenko",coverURL:"https://cdn.intechopen.com/books/images_new/1288.jpg",editedByType:"Edited by",editors:[{id:"6262",title:"Prof.",name:"Leonid A.",surname:"Kosyachenko",slug:"leonid-a.-kosyachenko",fullName:"Leonid A. Kosyachenko"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5244",title:"Wind Turbines",subtitle:"Design, Control and Applications",isOpenForSubmission:!1,hash:"1eda49a6c4049bf223b9ac92f3004f04",slug:"wind-turbines-design-control-and-applications",bookSignature:"Abdel Ghani Aissaoui and Ahmed Tahour",coverURL:"https://cdn.intechopen.com/books/images_new/5244.jpg",editedByType:"Edited by",editors:[{id:"105795",title:"Prof.",name:"Abdel Ghani",surname:"Aissaoui",slug:"abdel-ghani-aissaoui",fullName:"Abdel Ghani Aissaoui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[{type:"book",id:"1288",title:"Solar Cells",subtitle:"Dye-Sensitized Devices",isOpenForSubmission:!1,hash:"05a255471069664ecf5fbf8778b92076",slug:"solar-cells-dye-sensitized-devices",bookSignature:"Leonid A. Kosyachenko",coverURL:"https://cdn.intechopen.com/books/images_new/1288.jpg",editedByType:"Edited by",editors:[{id:"6262",title:"Prof.",name:"Leonid A.",surname:"Kosyachenko",slug:"leonid-a.-kosyachenko",fullName:"Leonid A. Kosyachenko"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9305",title:"Graphene Production and Application",subtitle:null,isOpenForSubmission:!1,hash:"2ffaa7a52817a2243007f03345983404",slug:"graphene-production-and-application",bookSignature:"Sadia Ameen, M. Shaheer Akhtar and Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/9305.jpg",editedByType:"Edited by",editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},onlineFirst:{chapter:{type:"chapter",id:"65307",title:"Shikimic Acid Pathway in Biosynthesis of Phenolic Compounds",doi:"10.5772/intechopen.83815",slug:"shikimic-acid-pathway-in-biosynthesis-of-phenolic-compounds",body:'\n
\n
1. Introduction
\n
The secondary metabolism is a biosynthetic source of several interesting compounds useful to chemical, food, agronomic, cosmetics, and pharmaceutical industries. The secondary pathways are not necessary for the survival of individual cells but benefit the plant as a whole [1]. Another general characteristic of secondary metabolism is that found in a specific organism, or groups of organisms, and is an expression of the individuality of species [2]. The secondary metabolism provides chemical diversity to organic molecules with low molecular weight that are related by the respective pathways; such organic molecules are called secondary metabolites. The secondary metabolites are often less than 1% of the total carbon in plant molecules [3]. These organic molecules isolated from terrestrial plants are the most studied, and their syntheses have an important role in the protection against pathogens, unfavorable temperature and pH, saline stress, heavy metal stress, and UVB and UVA radiation [3]. Secondary metabolism reflects plant environments more closely than primary metabolism [4]. There are three principal kinds of secondary metabolites biosynthesized by plants: phenolic compounds, terpenoids/isoprenoids, and alkaloids and glucosinolates (nitrogen- or sulfur-containing molecules, respectively) [5]. Phenolic compounds are biosynthesized by the shikimate pathway and are abundant in plants. The shikimate pathway, in plants, is localized in the chloroplast. These aromatic molecules have important roles, as pigments, antioxidants, signaling agents, electron transport, communication, the structural element lignan, and as a defense mechanism [6], Figure 1. The seven steps of the shikimate pathway and the metabolites for branch point are described in this chapter, as factors that induce the synthesis of phenolic compounds in plants. Some representative examples that show the effect of biotic and abiotic stress on the production of phenolic compounds in plants are discussed.
\n
Figure 1.
Phenolic compound biosynthesis promoted by biotic and abiotic stresses (e.g., herbivores, pathogens, unfavorable temperature and pH, saline stress, CO2, O3, heavy metal stress, and UVB and UVA radiation).
\n
\n
\n
2. The shikimate pathway
\n
The shikimate biosynthesis pathway provides precursors for aromatic molecules in bacteria, fungi, apicomplexan, and plants, but not in animals [2, 7]. Shikimic acid is named after the highly toxic Japanese shikimi (Illicium anisatum) flower from which it was first isolated [8]. This biochemical pathway is a major link between primary and secondary metabolism in higher plants [6]. In microorganisms, the shikimate pathway produces aromatic amino acids L-phenylalanine (L-Phe), L-tyrosine (L-Tyr), and L-tryptophan (L-Trp), molecular building blocks for protein biosynthesis [9]. But in plants, these aromatic amino acids are not only crucial components of protein biosynthesis; they also serve as precursors for diverse secondary metabolites that are important for plant growth [10]. These secondary metabolites are called phenolic compounds and are synthesized when needed by the plant [11]. These molecules play an important role in the adaptation of plants to their ecosystem, and their study advances biochemical techniques and molecular biology [3, Bourgaud]. The principal aromatic phenolic compounds synthesized from L-Phe and L-Tyr are cinnamic acids and esters, coumarins, phenylpropenes, chromones (C6-C3), stilbenes, anthraquinones (C6-C2-C6), chalcones, flavonoids, isoflavonoids, neoflavonoids (C6-C3-C6), and their dimers and trimers, respectively (C6-C3-C6)2,3, lignans, neolignans (C6-C3)2, lignans (C6-C3)n, aromatic polyketides, or diphenylheptanoids (C6-C7-C6) [12]. L-Trp is a precursor of alkaloids in the secondary metabolism [2]. Additionally, diverse hydroxybenzoic acids and aromatic aldehydes (C6-C1) are biosynthesized via branch points in the shikimate pathway, Figure 2. Phenolic compounds biosynthesized from the shikimate pathway have structural versatility.
\n
Figure 2.
The shikimic and chorismic acids are the common precursors for the synthesis of L-Phe, L-Tyr, and L-Trp and diverse phenolic compounds.
\n
The shikimate pathway consists of seven sequential enzymatic steps and begins with an aldol-type condensation of two phosphorylated active compounds, the phosphoenolpyruvic acid (PEP), from the glycolytic pathway, and the carbohydrate D-erythrose-4-phosphate, from the pentose phosphate cycle, to give 3-deoxy-D-arabino-heptulosonic acid 7-phosphate (DAHP), Figure 3. The seven enzymes that catalyze the pathway are known: 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS; EC 4.1.2.15, now EC 2.5.1.54), 3-dehydroquinate synthase (DHQS; EC 4.2.3.4), 3-dehydroquinate dehydratase/shikimate dehydrogenase (DHQ/SDH; EC 4.2.1.10/EC 1.1.1.25), shikimate kinase (SK; EC 2.7.1.71), 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS; EC 2.5.1.19), and chorismate synthase (CS; EC 4.2.3.5) [13], Table 1.
\n
Figure 3.
Shikimate pathway.
\n
\n
\n
\n
\n
\n\n
\n
Reaction step
\n
Substrate
\n
Enzyme/cofactor
\n
Product
\n
\n\n\n
\n
1
\n
Phosphoenolpyruvate (PEP), erythrose-4-phosphate
\n
3-Deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS; EC 4.1.2.15, now EC 2.5.1.54)/Co2+, Mg2+ or Mn2+ [15]
\n
3-Deoxy-D-arabino-heptulosonic acid 7-phosphate (DAHP), Pi
The shikimate pathway has special characteristics that are present only in bacteria, fungi, and plants. The absence of the pathway in all other organisms provides the enzymes catalyzing these reactions with potentially useful targets for the development of antibacterial agents and herbicides. For example, 5-enolpyruvylshikimate 3-phosphate synthase (EPSP-synthase) catalyzes the transfer of the enolpyruvyl (carboxyvinyl) moiety from PEP to shikimic acid 3-phosphate (S3P) [6].
\n
In the second reaction step, DAHP loses phosphate (Pi); the enolic-type product is cyclized through a second aldol-type reaction to produce 3-dehydroquinic acid (DHQ). The 3-dehydroquinate synthase (DHQS) catalyzes this cyclization in the shikimate pathway. The DHQ dehydrates to produce 3-dehydroshikimic acid (DHS) (3-dehydroquinate dehydratase); this compound has a conjugated double carbon-carbon, Figure 3. The protocatechuic and the gallic acids (C6-C1) are produced by branch-point reactions from DHS [2]. The fourth step in the pathway is a reduction reaction of DHS with reduced nicotinamide adenine dinucleotide phosphate (NADPH), Figure 3. The fifth section of the pathway is the activation of shikimic acid with adenosine triphosphate (ATP) (shikimate kinase, SK) to make shikimic acid 3-phosphate (S3P). The sixth chemical reaction is the addition of PEP to S3P to generate 5-enolpyruvylshikimic acid 3-phosphate; the enzyme that catalyzes this reaction step, 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS), has been extensively studied. The reason for this interest is because glyphosate [N-(phosphonomethyl)glycine] is a powerful inhibitor of EPSPS [2], so glyphosate has been used as a broad-spectrum systemic herbicide. It is an organophosphorus molecule, phosphonic acid, and glycine derivative that has a similar molecular structure to PEP, Figure 4.
\n
Figure 4.
PEP and glyphosate (powerful inhibitor of the 5-enolpyruvylshikimate 3-phosphate synthase, EPSPS).
\n
The last reaction step of the shikimate pathway is the production of chorismic acid from catalytic action on the chorismate synthase (CS). This reaction is a 1,4-trans elimination of Pi, to yield the conjugated molecule, chorismic acid, Figure 3.
\n
\n
2.1. Synthesis of 3-deoxy-D-arabino-heptulosonic acid 7-phosphate (DAHP)
\n
The first reaction of the shikimate pathway is an aldol-type condensation of PEP and carbohydrate erythrose-4-P, to give 3-deoxy-D-arabino-heptulosonic acid 7-phosphate (DAHP), Figures 3 and 5. A new stereogenic center is generated in the condensation product DAHP catalyzed by the 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase enzyme (DAHPS; EC 4.1.2.15, now EC 2.5.1.54). Results of enzymatic kinetic and labeled PEP with tritium (Z)-[3-3H] PEP suggest that the nucleophilic attack of PEP is from the Si face of PEP to the Re face of the carbonyl group of D-erythrose-4-P, Figure 5 [14]. Two isoenzymes of DAHPS have been found for the catalysis of this first reaction step. One isozyme needs only Mn2+, and the other, either Co2+, Mg2+, or Mn2+ for the catalysis [15].
\n
Figure 5.
Stereochemistry of the condensation reaction of (Z)-[3-3H]PEP and D-erythrose-4-phosphate by DAHP synthase [14].
\n
\n
\n
2.2. Synthesis of 3-dehydroquinic acid (DHQ)
\n
The second reaction of the shikimate pathway is an intramolecular aldol-type reaction cyclization, where the enol (C6-C7) of DAHP nucleophilically attacks the carbonyl group (C2), to produce a six-member cycle, the 3-dehydroquinic acid (DHQ), Figures 3 and 6. The enzyme that catalyzes this reaction, 3-dehydroquinate synthase DHQS (EC. 4.2.3.4), is a carbon-oxygen lyase enzyme that requires Co2+ and bound oxidized nicotinamide adenine dinucleotide (NAD+) as cofactors [15, 16]. The Co2+ is essential for the catalytic activity of DHQS. Bender et al. [16] found that DHQS, from Escherichia coli, is a monomeric metalloenzyme that contains tightly bound Co2+, and DHQS is deactivated with ethylenediaminetetraacetic acid (EDTA). The presence of the substrate (DAHP) blocks the inactivation by EDTA. The NAD+ cofactor dissociates form the DHQS enzyme rapidly in the presence of DAHP [16]. The reaction mechanism of the enzyme-catalyzed conversion of DAHP to DHQ involves five transformations from the DAHP hemiketal form, a pyranose: (1) oxidation of the hydroxyl at C5 adjacent to the lost proton that requires NAD+ (NAD+ need never dissociate from the active site), (2) the elimination of Pi of C7 to make the α,β-unsaturated ketone, (3) the reduction of C5 with NADH + H+, (4) the ring opening of the enol to yield an enolate, and (5) the intramolecular aldol-like reaction to produce DHQ. All five-reaction steps occur through the function of DHQS, Figure 6.
\n
Figure 6.
Reaction mechanism of DAHP (hemiketal form) to 3-dehydroquinic acid (DHQ) by 3-dehydroquinate synthase DHQS (EC. 4.2.3.4) [16].
\n
The reduction reaction of DHQ leads to quinic acid at this branch point in the shikimate pathway. Quinic acid is a secondary metabolite that is free, forming esters or as part of alkaloids such as quinine. Quinic acid is found in high quantities in mature kiwi fruit (Actinidia chinensis and other species of Actinidia) and is a distinguishing characteristic of fresh kiwi fruit [7]. Also, the quinic acid is abundant in roasted coffee [17].
\n
\n
\n
2.3. Synthesis of 3-dehydroshikimic acid (DHS) and shikimic acid
\n
The third and fourth reaction steps of the shikimate pathway are catalyzed by a bifunctional enzyme: 3-dehydroquinate dehydratase/shikimate dehydrogenase (DHQ dehydratase/SDH; EC 4.2.1.10/EC 1.1.1.25). The DHQ dehydratase enzyme is a hydro-lyase kind, and the SDH is an oxidoreductase enzyme. The DHQ dehydratase, in the third reaction step, converts DHQ into 3-dehydroshikimic acid (DHS) by eliminating water, and this reaction is reversible, Figure 7. The DHS is converted to shikimic acid in the fourth reaction step, by the reduction of the carbonyl group at C-5 by the catalytic action of SDH with NADPH, Figure 3. The biosynthesis of DHS is a branch point to shikimic acid and to the catabolic quinate pathway. If the DHS dehydrates, it produces protocatechuic acid (C6-C1) or gallic acid, Figure 3. Gallic acid (C6-C1) is a hydroxybenzoic acid that is a component of tannins [2].
\n
Figure 7.
Reaction mechanism to produce 3-dehydroshikimic acid (DHS) by type I DHQ dehydratase enzyme [21].
\n
Two structurally different kinds of 3-dehydroquinate dehydratase are known: type I (not heat-stable) and type II (heat-stable). Type I enzyme is present in bacteria and higher plants, and type II is found in fungi, which have both types of enzymes [18, 19]. The catalytic mechanism of the type I DHQ dehydratase has been detected by electrospray MS [20]. This catalytic mechanism involves the amino acid residue Lys-241 that forms a Schiff base with the substrate and product, Figure 7 [21]. The fourth step is the reduction of DHS with NADPH that enantioselectively reduces the carbonyl of the ketone group of DHS to produce shikimic acid (shikimate dehydrogenase, SDH), Figure 3.
\n
Sigh and Christendat [22] reported the crystal structure of DHQ dehydratase/SDH from the plant genus Arabidopsis. The crystal structure has the shikimate bound at the SDH and the tartrate molecule at the DHQ dehydratase. The studies show that Asp 423 and Lys 385 are key catalytic amino acids and Ser 336 is a key-binding group.
\n
\n
\n
2.4. Synthesis of shikimic acid 3-phosphate (S3P)
\n
The shikimate kinase enzyme (SK; EC 2.7.1.71) catalyzes the phosphorylation of the shikimic acid, the fifth chemical reaction of the shikimate pathway, and the products are shikimic acid 3-phosphate (S3P) and ADP, Figures 3 and 8. Shikimic acid is phosphorylated with ATP in the 5-hydroxyl group of shikimic acid. SK is an essential enzyme in several bacterial pathogens and is not present in the human cell; therefore the SK enzyme has been classified as a protein target for drug design, especially for chemotherapeutic development of antitubercular drugs [23, 24].
\n
Figure 8.
Phosphorylation of shikimic acid with ATP.
\n
\n
\n
2.5. Synthesis of 5-enolpyruvylshikimate 3-phosphate (EPSP)
\n
The 5-enolpyruvylshikimate 3-phosphate synthase, also called aroA enzyme (EPSPS; EC 2.5.1.19), catalyzes the condensation of PEP to the 5-hydroxyl group of S3P in the sixth reaction of the shikimate pathway to form 5-enolpyruvylshikimate 3-phosphate (EPSP). The reaction mechanism involves the protonation of PEP to subsequent nucleophilic attack of the hydroxyl at C-5 of S3P to form an intermediate that loses Pi to form EPSP, Figure 9 [25].
\n
Figure 9.
Reaction mechanism of the condensation of S3P with PEP by EPSPS (EC 2.5.1.19) to form EPSP [25].
\n
EPSPS is the most studied enzyme of the shikimate pathway because it plays a crucial role in the penultimate step. If this enzyme is inhibited, there is an accumulation of shikimic acid [26], and the synthesis of aromatic amino acid is disabled, leading to the death of the plant [27]. Therefore, EPSPS is used as a target for pesticides, like glyphosate, Figure 4, the active ingredient in the herbicides RoundUp™, Monsanto Chemical Co., and Touchdown™, Syngenta. Glyphosate (N-(phosphonomethyl)glycine) inhibits EPSPS and is a potent nonselective herbicide that mimics the carbocation of PEP and binds EPEPS competitively [28]. Because the glyphosate is nonselective and kills food crops, there is interest in finding glyphosate-tolerant genes for genetically modified crops [29]. Two types of EPSPS enzymes have been identified: type I EPSPS (sensitive to glyphosate) identified mostly in plants and bacteria and type II EPSPS (nonsensitive to glyphosate and has a high affinity for PEP), found in some bacteria [27].
\n
\n
\n
2.6. Synthesis of chorismic acid
\n
The seventh and last reaction step of the shikimate pathway is the 1,4-trans elimination of the Pi group at C-3 from EPSPS to synthetize chorismic acid. This last step is catalyzed by chorismate synthase (CS; EC 4.2.3.5) that needs reduced flavin mononucleotide (FMNH2) as a cofactor that is not consumed [2, 19]. The FMNH2 transfers an electron to the substrate reversibly [30]. Spectroscopic techniques and kinetic isotope effect studies suggest that a radical intermediate in a non-concerted mechanism is developed [30, 31], Figure 10. Chorismic acid, the final molecule of the shikimate pathway, is a key branch point to post-chorismic acid pathways, to obtain L-Phe, L-Tyr, and L-Trp, Figure 2. L-Phe is the substrate to phenylpropanoid and flavonoid pathways [13].
\n
Figure 10.
Reaction of mechanism to yield chorismic acid by chorismate synthase [30].
\n
\n
\n
\n
3. Factors that induce the synthesis of phenolic compounds in plants
\n
The expression of phenolic compounds is promoted by biotic and abiotic stresses (e.g., herbivores, pathogens, unfavorable temperature and pH, saline stress, heavy metal stress, and UVB and UVA radiation). UV radiation is divided into UVC (≤280 nm), UVB (280–320 nm), and UVA (300–400 nm). UVA and UVB radiation are transmitted through the atmosphere; all UVC and some UVB radiation (highly energetic) are absorbed by the Earth’s ozone layer. This accumulation is explained by the increase in enzymatic activity of the phenylalanine ammonia-lyase and chalcone synthase enzymes, among others [12]. Studies have been done about the increase of phenolic compounds, such as anthocyanins, in plants when they are exposed to UVB radiation [13]. Another study demonstrates that UVB exposure enhances anthocyanin biosynthesis in “Cripps pink” apples (Malus x domestica Borkh.) but not in “Forelle” pears (Pyrus communis L.) [32]. This effect may be due to UV radiation exposure and the cultivar of the plants studied. It is known that if plants are under stress, they accumulate phenolic compounds.
\n
The increase in phenolic compounds in blueberry (Vaccinium corymbosum) plantlets cultivated in vitro exposed to aluminum (Al) and cadmium (Cd) has also been studied. These heavy metals cause high toxicity in plants, because they increase the oxidative stress by the production of reactive oxygen species (ROS). The authors of the study suggest that the phenolic compounds, specifically chlorogenic and ellagic acids, Figure 11, reduce the ROS in blueberry plants [33].
\n
Figure 11.
Chemical structure of chlorogenic (C6-C3) and ellagic (C6-C1) acids.
\n
An interesting study was carried out in 2011 by Mody et al., where they studied the effect of the resistance response of apple tree seedlings (Malus x domestica) to a leaf-chewing insect (Spodoptera littoralis) [34]. The authors found a significant herbivore preference for undamaged plants (induced resistance) was first observed 3 days after herbivore damage in the most apical leaf. Also, the results showed higher concentrations of the flavonoid phlorizin, Figure 12, in damaged plants than undamaged plants. This indicates that insect preference for undamaged apple plants may be linked to phlorizin, which is the main secondary metabolite of the phenolic type in apple leaves.
\n
Figure 12.
Chemical structure of phlorizin (C6-C3).
\n
\n
\n
4. Conclusions
\n
Knowledge of the biosynthetic pathway of shikimic acid leads to understanding the reaction mechanisms of enzymes and thus discovering antimicrobials, pesticides, and antifungals. Studies with isotopic labeling of substrates, the use of X-ray diffraction, nuclear magnetic resonance (NMR), mass spectrometry (ES), biotechnology, as well as organic synthesis have contributed to explaining the shikimate pathway. Although the seven steps of the biosynthetic pathway are elucidated, these metabolites are the precursors of phenolic compounds, more complex molecules that are necessary for the adaptation of plants to the environment. So, the shikimate pathway is the basis for the subsequent biosynthesis of phenolic compounds. There is scientific interest in continuing to investigate the biosynthesis of phenolic compounds from several points of view: pharmaceuticals, agronomy, chemical and food industries, genetics, and health.
\n
\n
Acknowledgments
\n
The authors thank Carol Ann Hayenga for her English assistance in the preparation of this manuscript. The Technological University of the Mixteca provided support.
\n
Conflict of interest
The authors have no conflict of interest to declare and are responsible for the content and writing of the manuscript.
\n
Ethical approval
\n
This chapter does not contain any studies with human participants or animals performed by any of the authors.
\n
\n',keywords:"shikimate pathway, phenolic compounds, biosynthetic routes, phenylpropanoid metabolism",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/65307.pdf",chapterXML:"https://mts.intechopen.com/source/xml/65307.xml",downloadPdfUrl:"/chapter/pdf-download/65307",previewPdfUrl:"/chapter/pdf-preview/65307",totalDownloads:4154,totalViews:3,totalCrossrefCites:31,dateSubmitted:"September 17th 2018",dateReviewed:"December 25th 2018",datePrePublished:"January 31st 2019",datePublished:"September 4th 2019",dateFinished:"January 23rd 2019",readingETA:"0",abstract:"Phenolic compounds are secondary metabolites found most abundantly in plants. These aromatic molecules have important roles, as pigments, antioxidants, signaling agents, the structural element lignan, and as a defense mechanism. The expression of phenolic compounds is promoted by biotic and abiotic stresses (e.g., herbivores, pathogens, unfavorable temperature and pH, saline stress, heavy metal stress, and UVB and UVA radiation). These compounds are formed via the shikimate pathway in higher plants and microorganisms. The enzymes responsible for the regulation of phenolic metabolism are known, and shikimic acid is a central metabolite. The shikimate pathway consists of seven reaction steps, beginning with an aldol-type condensation of phosphoenolpyruvic acid (PEP) from the glycolytic pathway, and D-erythrose-4-phosphate, from the pentose phosphate cycle, to produce 3-deoxy-D-arabino-heptulosonic acid 7-phosphate (DAHP). A key branch-point compound is chorismic acid, the final product of the shikimate pathway. The shikimate pathway is described in this chapter, as well as factors that induce the synthesis of phenolic compounds in plants. Some representative examples that show the effect of biotic and abiotic stress on the production of phenolic compounds in plants are discussed.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/65307",risUrl:"/chapter/ris/65307",signatures:"Norma Francenia Santos-Sánchez, Raúl Salas-Coronado, Beatriz Hernández-Carlos and Claudia Villanueva-Cañongo",book:{id:"7688",type:"book",title:"Plant Physiological Aspects of Phenolic Compounds",subtitle:null,fullTitle:"Plant Physiological Aspects of Phenolic Compounds",slug:"plant-physiological-aspects-of-phenolic-compounds",publishedDate:"September 4th 2019",bookSignature:"Marcos Soto-Hernández, Rosario García-Mateos and Mariana Palma-Tenango",coverURL:"https://cdn.intechopen.com/books/images_new/7688.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-78984-034-6",printIsbn:"978-1-78984-033-9",pdfIsbn:"978-1-78985-640-8",isAvailableForWebshopOrdering:!0,editors:[{id:"65790",title:"Prof.",name:"Marcos",middleName:null,surname:"Soto-Hernández",slug:"marcos-soto-hernandez",fullName:"Marcos Soto-Hernández"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"143354",title:"Dr.",name:"Raúl",middleName:null,surname:"Salas-Coronado",fullName:"Raúl Salas-Coronado",slug:"raul-salas-coronado",email:"rsalas@mixteco.utm.mx",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"148546",title:"Dr.",name:"Norma Francenia",middleName:null,surname:"Santos-Sánchez",fullName:"Norma Francenia Santos-Sánchez",slug:"norma-francenia-santos-sanchez",email:"nsantos@mixteco.utm.mx",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/148546/images/4640_n.jpg",institution:null},{id:"193718",title:"Dr.",name:"Beatriz",middleName:null,surname:"Hernández-Carlos",fullName:"Beatriz Hernández-Carlos",slug:"beatriz-hernandez-carlos",email:"bhcarlos@mixteco.utm.mx",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"277799",title:"Dr.",name:"Claudia",middleName:null,surname:"Villanueva-Cañongo",fullName:"Claudia Villanueva-Cañongo",slug:"claudia-villanueva-canongo",email:"claudiavc@mixteco.utm.mx",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. The shikimate pathway",level:"1"},{id:"sec_2_2",title:"2.1. Synthesis of 3-deoxy-D-arabino-heptulosonic acid 7-phosphate (DAHP)",level:"2"},{id:"sec_3_2",title:"2.2. Synthesis of 3-dehydroquinic acid (DHQ)",level:"2"},{id:"sec_4_2",title:"2.3. Synthesis of 3-dehydroshikimic acid (DHS) and shikimic acid",level:"2"},{id:"sec_5_2",title:"2.4. Synthesis of shikimic acid 3-phosphate (S3P)",level:"2"},{id:"sec_6_2",title:"2.5. Synthesis of 5-enolpyruvylshikimate 3-phosphate (EPSP)",level:"2"},{id:"sec_7_2",title:"2.6. Synthesis of chorismic acid",level:"2"},{id:"sec_9",title:"3. Factors that induce the synthesis of phenolic compounds in plants",level:"1"},{id:"sec_10",title:"4. Conclusions",level:"1"},{id:"sec_11",title:"Acknowledgments",level:"1"},{id:"sec_14",title:"Conflict of interest",level:"1"},{id:"sec_11",title:"Ethical approval",level:"1"}],chapterReferences:[{id:"B1",body:'Adams ZP, Ehlting J, Edwards R. The regulatory role of shikimate in plant phenylalanine metabolism. Journal of Theoretical Biology. 2019;462:158-170. DOI: 10.1016/j.jtbi.2018.11.005\n'},{id:"B2",body:'Dewick PM. Medicinal Natural Products: A Biosynthetic Approach. 3rd ed. United Kingdom: John Wiley and Sons Ltd.; 2009. p. 539. DOI: 10.1002/9780470742761\n'},{id:"B3",body:'Bourgaud F, Gravot A, Milesi S, Gontier E. Production of plant secondary metabolites: A historical perspective. Plant Science. 2001;161:839-851. DOI: 10.1016/S0168-9452(01)00490-3\n'},{id:"B4",body:'Yang D, Huang Z, Jin W, Xia P, Jia Q, Yang Z, et al. DNA methylation: A new regulator of phenolic acids biosynthesis in Salvia miltiorrhiza. Industrial Crops and Products. 2018;124:402-411. DOI: 10.1016/j.indcrop.2018.07046\n'},{id:"B5",body:'Aharoni A, Galili G. Metabolic engineering of the plant primary-secondary metabolism interface. Current Opinion in Biotechnology. 2011;22:239-244. DOI: 10.1016/j.copbio.2010.11.004\n'},{id:"B6",body:'Macheroux P, Schmid J, Amrhein N, Schaller A. A unique reaction in a common pathway: Mechanism and function of chorismate synthase in the shikimate pathway. Planta. 1999;207:325-334\n'},{id:"B7",body:'Mittelstädt G, Negron L, Schofiel LR, Marsh K, Parker EJ. Biochemical and structural characterisation of dehydroquinate synthase from the New Zealand kiwifruit Actinidia chinensis. Archives of Biochemistry and Biophysics. 2013;537:185-191. DOI: 10.1016/j.abb.2013.07.022\n'},{id:"B8",body:'Ghosh S, Chisti Y, Banerjee UC. Production of shikimic acid. Biotechnology Advances. 2012;30:1425-1431. DOI: 10.1016/j.biotechadv.2012.03.001\n'},{id:"B9",body:'Weaver LM, Herrmann KM. Dynamic of the shikimate pathway. Trends in Plant Science. 1997;9:346-351\n'},{id:"B10",body:'Tzin V, Galili G. Amino acids biosynthesis pathways in plants. Molecular Plant. 2010;3:956-972. DOI: 10.1093/mp/ssq048\n'},{id:"B11",body:'Dixon RA, Strack D. Phytochemistry meets genome analysis, and beyond. Phytochemistry. 2003;62:815-816\n'},{id:"B12",body:'Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S. Plant phenolics: Recent advances on their biosynthesis, genetics and ecophysiology. Plant Physiology and Biochemistry. 2013;72:1-20. DOI: 10.1016/j.plaphy.2013.05.009\n'},{id:"B13",body:'Zhang Z-Z, Li X-X, Chu Y-N, Zhang M-X, Wen Y-Q, Duan C-Q, et al. Three types of ultraviolet irradiation differentially promote expression of shikimate pathway genes and production of anthocyanins in grape berries. Plant Physiology and Biochemistry. 2012;57:74-83. DOI: 10.1016/j.plaphy.2012.05.005\n'},{id:"B14",body:'Floss HG, Onderka DK, Carroll M. Stereochemistry of the 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase reaction and the chorismite synthetase reaction. The Journal of Biological Chemistry. 1972;247:736-744\n'},{id:"B15",body:'Schmid J, Amrhein N. Molecular organization of the shikimate pathway in higher plants. Phytochemistry. 1995;39:737-749\n'},{id:"B16",body:'Bender SL, Mehdi S, Knowles JR. Dehydroquinate synthase: The role of divalent metal cations and of nicotinamide adenine dinucleotide in catalysis. Biochemistry. 1989;28:7555-7560\n'},{id:"B17",body:'Scholz BM, Maier G. Isomers of quinic acid and quinide in roasted coffee. Zeitschrift für Lebensmittel-Untersuchung und -Forschung. 1990;190:132-134\n'},{id:"B18",body:'Harris JM, Gonzalez-Bello C, Kleanthous C, Hawkins A, Coggins J, Abell C. Evidence from kinetic isotope studies for an enolate intermediate in the mechanism of type II dehydroquinases. Biochemical Journal. 1999;319:333-336\n'},{id:"B19",body:'Hermann KM. The shikimate pathway: Early steps in the biosynthesis of aromatic compounds. The Plant Cell. 1995;7:907-919\n'},{id:"B20",body:'Shneier A, Kleanthous C, Deka R, Coggins JR, Abel C. Observation of an imine intermediate on dehydroquinase by electrospray mass spectrometry. Journal of the American Chemical Society. 1991;113:9416-9418\n'},{id:"B21",body:'Sigh SA, Christendat D. The DHQ-dehydroshikimate-SDH-shikimate-NADP(H) complex: Insights into metabolite transfer in the shikimate pathway. Crystal Growth & Design. 2007;7:2153-2160\n'},{id:"B22",body:'Sigh SA, Christendat D. Structure of Arabidopsis dehydroquinate dehydratase-shikimate dehydrogenase and implications for metabolic channeling in the shikimate pathway. Biochemistry. 2006;45:7787-7796. DOI: 10.1021/bi060366+\n'},{id:"B23",body:'Coracini JD, de Azevedo WF Jr. Shikimate kinase, a protein target for drug design. Current Medicinal Chemistry. 2014;21:592-604. DOI: 10.2174/09298673113206660299\n'},{id:"B24",body:'Blanco B, Prado V, Lence E, Otero JM, García-Doval C, van Raaij MJ, et al. Mycobacterium tuberculosis shikimate kinase inhibitors: Design and simulation studies of the catalytic turnover. Journal of the American Chemical Society. 2013;135:12366-12376. DOI: 10.1021/ja405853p\n'},{id:"B25",body:'Lewis J, Johnson KA, Anderson KS. The catalytic mechanism of EPSP synthase revisited. Biochemistry. 1999:7372-7379\n'},{id:"B26",body:'Maroli A, Nandula V, Duke S, Tharayil N. Stable isotope resolved metabolomics reveals the role of anabolic and catabolic processes in glyphosate-induced amino acid accumulation in Amaranthus palmeri biotypes. Journal of Agricultural and Food Chemistry. 2016;64:7040-7048. DOI: 10.1021/acs.jafc.6b02196\n'},{id:"B27",body:'Cao G, Liu Y, Zhang S, Yang X, Chen R, Zhang Y, et al. A novel 5-enolpyruvylshikimate-3-phosphate synthase shows high glyphosate tolerance in Escherichia coli and Tobacco Plants. PLoS One. 2012;7:e38718. DOI: 10.1371/journal.pone.0038718\n'},{id:"B28",body:'Yi S-y, Cui Y, Zhao Y, Z-d L, Y-j L, Zhou F. A novel naturally occurring class I 5-enolpyruvyl shikimate-3-phosphate synthase from Janibacter sp. confers high glyphosate tolerance to rice. Scientific Reports. 2016;6:1904\n'},{id:"B29",body:'Liu F, Cao Y. Expression of a bacterial aroA gene confers tolerance to glyphosate in tobacco plants. Turkish Journal of Biology. 2018;42:187-194. DOI: 10.3906/biy-1712-56\n'},{id:"B30",body:'Bornemann S, Theoclitou M-E, Brune M, Webb MR, Thorneley RNF, Abell C. A secondary β deuterium kinetic isotope effect in the chorismate synthase reaction. Bioorganic Chemistry. 2000;28:191-204. DOI: 10.1006/bioo.2000.1174\n'},{id:"B31",body:'Osborne A, Thorneley RNF, Abell C, Bornemann S. Studies with substrate and cofactor analogues provide evidence for radical mechanism in the chorismate synthase reaction. The Journal of Biological Chemistry. 2000;275:35825-35830\n'},{id:"B32",body:'Marais E, Jacobs G, Holcroft DM. Postharvest irradiation enhances anthocyanin synthesis in apples but nor in pears. HortScience. 2001;36:738-740\n'},{id:"B33",body:'Manquián-Cerda K, Cruces E, Escudey M, Zúñiga G, Calderón R. Interactive effects of aluminum and cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets cultivated in vitro. Ecotoxicology and Environmental Safety. 2018;150:320-326. DOI: 10.1016/j.ecoenv.2017.12.050\n'},{id:"B34",body:'Gutbrod B, Mody K, Wittwer R, Dorn S. Within-plant distribution of induced resistance in apple seedlings: Rapid acropetal and delayed basipetal responses. Planta. 2011;233:1199-1207\n'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Norma Francenia Santos-Sánchez",address:"nsantos@mixteco.utm.mx",affiliation:'
Institute of Agroindustry, Technological University of the Mixteca, Huajuapan de León, Oaxaca, Mexico
Institute of Agroindustry, Technological University of the Mixteca, Huajuapan de León, Oaxaca, Mexico
'}],corrections:null},book:{id:"7688",type:"book",title:"Plant Physiological Aspects of Phenolic Compounds",subtitle:null,fullTitle:"Plant Physiological Aspects of Phenolic Compounds",slug:"plant-physiological-aspects-of-phenolic-compounds",publishedDate:"September 4th 2019",bookSignature:"Marcos Soto-Hernández, Rosario García-Mateos and Mariana Palma-Tenango",coverURL:"https://cdn.intechopen.com/books/images_new/7688.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-78984-034-6",printIsbn:"978-1-78984-033-9",pdfIsbn:"978-1-78985-640-8",isAvailableForWebshopOrdering:!0,editors:[{id:"65790",title:"Prof.",name:"Marcos",middleName:null,surname:"Soto-Hernández",slug:"marcos-soto-hernandez",fullName:"Marcos Soto-Hernández"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"185838",title:"Dr.",name:"Prasada Rao",middleName:null,surname:"Talakonda",email:"prasadview@gmail.com",fullName:"Prasada Rao Talakonda",slug:"prasada-rao-talakonda",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:{name:"Koneru Lakshmaiah Education Foundation",institutionURL:null,country:{name:"India"}}},booksEdited:[],chaptersAuthored:[{id:"52133",title:"Excitation‐Intensity (EI) Effect on Photoluminescence of ZnO Materials with Various Morphologies",slug:"excitation-intensity-ei-effect-on-photoluminescence-of-zno-materials-with-various-morphologies",abstract:"The chapter discusses about excitation‐intensity effects on photoluminescence emission peaks of zinc oxide (ZnO) material. ZnO is an ideal material for optoelectronic devices due to its wide band gap of 3.37 eV and some exciting optical properties. The performance of optoelectronic devices is greatly affected by the vibrational properties of the material, which are influenced by the interaction of phonons with free and bound electron‐hole pairs. The photoluminescence (PL) spectroscopy is used to understand the extrinsic and intrinsic defects in ZnO materials. Understanding PL of ZnO nanostructures/thin films may lead to development of more efficient ZnO‐based optoelectronic devices.",signatures:"Prasada Rao Talakonda",authors:[{id:"185838",title:"Dr.",name:"Prasada Rao",surname:"Talakonda",fullName:"Prasada Rao Talakonda",slug:"prasada-rao-talakonda",email:"prasadview@gmail.com"}],book:{id:"5348",title:"Luminescence",slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"7227",title:"Dr.",name:"Hiroaki",surname:"Matsui",slug:"hiroaki-matsui",fullName:"Hiroaki Matsui",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Tokyo",institutionURL:null,country:{name:"Japan"}}},{id:"99242",title:"Prof.",name:"Jagannathan",surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99242/images/system/99242.png",biography:"Dr. J. Thirumalai received his Ph.D. from Alagappa University, Karaikudi in 2010. He was also awarded the Post-doctoral Fellowship from Pohang University of Science and Technology (POSTECH), Republic of Korea, in 2013. He worked as Assistant Professor of Physics, B.S. Abdur Rahman University, Chennai, India (2011 to 2016). Currently, he is working as Senior Assistant Professor of Physics, Srinivasa Ramanujan Centre, SASTRA Deemed University, Kumbakonam (T.N.), India. His research interests focus on luminescence, self-assembled nanomaterials, and thin film opto-electronic devices. He has published more than 60 SCOPUS/ISI indexed papers and 11 book chapters, edited 4 books and member in several national and international societies like RSC, OSA, etc. Currently, he served as a principal investigator for a funded project towards the application of luminescence based thin film opto-electronic devices, funded by the Science and Engineering Research Board (SERB), India. As an expert in opto-electronics and nanotechnology area, he has been invited as external and internal examiners to MSc and PhD theses, invited to give talk in some forum, review papers for international and national journals.",institutionString:"SASTRA University",institution:null},{id:"102985",title:"Dr.",name:"Mokhotswa",surname:"Dhlamini",slug:"mokhotswa-dhlamini",fullName:"Mokhotswa Dhlamini",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of South Africa",institutionURL:null,country:{name:"South Africa"}}},{id:"185581",title:"Dr.",name:"Seshadri",surname:"Meruva",slug:"seshadri-meruva",fullName:"Seshadri Meruva",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Juiz de Fora",institutionURL:null,country:{name:"Brazil"}}},{id:"185746",title:"Dr.",name:"Hirobumi",surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null},{id:"185891",title:"Dr.",name:"Manoj Kumar",surname:"Mahata",slug:"manoj-kumar-mahata",fullName:"Manoj Kumar Mahata",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/185891/images/4721_n.jpg",biography:null,institutionString:null,institution:{name:"Charité",institutionURL:null,country:{name:"Germany"}}},{id:"193648",title:"Prof.",name:"Anjos",surname:"V",slug:"anjos-v",fullName:"Anjos V",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"193649",title:"Prof.",name:"Bell",surname:"M.J.V",slug:"bell-m.j.v",fullName:"Bell M.J.V",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"194423",title:"Prof.",name:"Hans",surname:"Hofsäss",slug:"hans-hofsass",fullName:"Hans Hofsäss",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"194424",title:"Dr.",name:"Ulrich",surname:"Vetter",slug:"ulrich-vetter",fullName:"Ulrich Vetter",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]},generic:{page:{slug:"OA-publishing-fees",title:"Open Access Publishing Fees",intro:"
The Open Access model is applied to all of our publications and is designed to eliminate subscriptions and pay-per-view fees. This approach ensures free, immediate access to full text versions of your research.
As a gold Open Access publisher, an Open Access Publishing Fee is payable on acceptance following peer review of the manuscript. In return, we provide high quality publishing services and exclusive benefits for all contributors. IntechOpen is the trusted publishing partner of over 140,000 international scientists and researchers.
\\n\\n
The Open Access Publishing Fee (OAPF) is payable only after your book chapter, monograph or journal article is accepted for publication.
\\n\\n
OAPF Publishing Options
\\n\\n
\\n\\t
1,400 GBP Chapter - Edited Volume
\\n\\t
850 GBP Chapter - Book Series Topic (Annual Volume)
\\n\\t
10,000 GBP Monograph - Long Form
\\n\\t
4,000 GBP Compacts Monograph - Short Form
\\n\\t
850 GBP Journal Article (Across Portfolio)
\\n
\\n\\n
During the launching phase journals do not charge an APC, rather they will be funded by IntechOpen.
\\n\\n
*These prices do not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT as long as provision of the VAT registration number is made during the application process. This is made possible by the EU reverse charge method.
\\n\\n
Services included are:
\\n\\n
\\n\\t
An online manuscript tracking system to facilitate your work
\\n\\t
Personal contact and support throughout the publishing process from your dedicated Author Service Manager
\\n\\t
Assurance that your manuscript meets the highest publishing standards
\\n\\t
English language copyediting and proofreading, including the correction of grammatical, spelling, and other common errors
\\n\\t
XML Typesetting and pagination - web (PDF, HTML) and print files preparation
\\n\\t
Discoverability - electronic citation and linking via DOI
\\n\\t
Permanent and unrestricted online access to your work
\\n
\\n\\n
What isn't covered by the Open Access Publishing Fee?
\\n\\n
If your manuscript:
\\n\\n
\\n\\t
Exceeds the number of pages defined by the publishing guidelines, an additional fee per page may be required
\\n\\t
If a manuscript requires Heavy Editing or Language Polishing, this will incur additional fees.
\\n
\\n\\n
Your Author Service Manager will inform you of any items not covered by the OAPF and provide exact information regarding those additional costs before proceeding.
\\n\\n
Open Access Funding
\\n\\n
To explore funding opportunities and learn more about how you can finance your IntechOpen publication, go to our Open Access Funding page. IntechOpen offers expert assistance to all of its Authors. We can support you in approaching funding bodies and institutions in relation to publishing fees by providing information about compliance with the Open Access policies of your funder or institution. We can also assist with communicating the benefits of Open Access in order to support and strengthen your funding request and provide personal guidance through your application process. You can contact us at funders@intechopen.com for further details or assistance.
\\n\\n
For Authors who are still unable to obtain funding from their institutions or research funding bodies for individual projects, IntechOpen does offer the possibility of applying for a Waiver to offset some or all processing feed. Details regarding our Waiver Policy can be found here.
\\n\\n
Added Value of Publishing with IntechOpen
\\n\\n
Choosing to publish with IntechOpen ensures the following benefits:
\\n\\n
\\n\\t
Indexing and listing across major repositories, see details ...
\\n\\t
Long-term archiving
\\n\\t
Visibility on the world's strongest OA platform
\\n\\t
Live Performance Metrics to track readership and the impact of your chapter
\\n\\t
Dissemination and Promotion
\\n
\\n\\n
Benefits of Publishing with IntechOpen
\\n\\n
\\n\\t
Proven world leader in Open Access book publishing with over 10 years experience
\\n\\t
+5,700 OA books published
\\n\\t
Most competitive prices in the market
\\n\\t
Fully compliant with OA funding requirements
\\n\\t
Optimized processes that assure your research is made available to the scientific community without delay
\\n\\t
Personal support during every step of the publication process
\\n\\t
+184,650 citations in Web of Science databases
\\n\\t
Currently strongest OA platform with over 175 million downloads
As a gold Open Access publisher, an Open Access Publishing Fee is payable on acceptance following peer review of the manuscript. In return, we provide high quality publishing services and exclusive benefits for all contributors. IntechOpen is the trusted publishing partner of over 140,000 international scientists and researchers.
\n\n
The Open Access Publishing Fee (OAPF) is payable only after your book chapter, monograph or journal article is accepted for publication.
\n\n
OAPF Publishing Options
\n\n
\n\t
1,400 GBP Chapter - Edited Volume
\n\t
850 GBP Chapter - Book Series Topic (Annual Volume)
\n\t
10,000 GBP Monograph - Long Form
\n\t
4,000 GBP Compacts Monograph - Short Form
\n\t
850 GBP Journal Article (Across Portfolio)
\n
\n\n
During the launching phase journals do not charge an APC, rather they will be funded by IntechOpen.
\n\n
*These prices do not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT as long as provision of the VAT registration number is made during the application process. This is made possible by the EU reverse charge method.
\n\n
Services included are:
\n\n
\n\t
An online manuscript tracking system to facilitate your work
\n\t
Personal contact and support throughout the publishing process from your dedicated Author Service Manager
\n\t
Assurance that your manuscript meets the highest publishing standards
\n\t
English language copyediting and proofreading, including the correction of grammatical, spelling, and other common errors
\n\t
XML Typesetting and pagination - web (PDF, HTML) and print files preparation
\n\t
Discoverability - electronic citation and linking via DOI
\n\t
Permanent and unrestricted online access to your work
\n
\n\n
What isn't covered by the Open Access Publishing Fee?
\n\n
If your manuscript:
\n\n
\n\t
Exceeds the number of pages defined by the publishing guidelines, an additional fee per page may be required
\n\t
If a manuscript requires Heavy Editing or Language Polishing, this will incur additional fees.
\n
\n\n
Your Author Service Manager will inform you of any items not covered by the OAPF and provide exact information regarding those additional costs before proceeding.
\n\n
Open Access Funding
\n\n
To explore funding opportunities and learn more about how you can finance your IntechOpen publication, go to our Open Access Funding page. IntechOpen offers expert assistance to all of its Authors. We can support you in approaching funding bodies and institutions in relation to publishing fees by providing information about compliance with the Open Access policies of your funder or institution. We can also assist with communicating the benefits of Open Access in order to support and strengthen your funding request and provide personal guidance through your application process. You can contact us at funders@intechopen.com for further details or assistance.
\n\n
For Authors who are still unable to obtain funding from their institutions or research funding bodies for individual projects, IntechOpen does offer the possibility of applying for a Waiver to offset some or all processing feed. Details regarding our Waiver Policy can be found here.
\n\n
Added Value of Publishing with IntechOpen
\n\n
Choosing to publish with IntechOpen ensures the following benefits:
\n\n
\n\t
Indexing and listing across major repositories, see details ...
\n\t
Long-term archiving
\n\t
Visibility on the world's strongest OA platform
\n\t
Live Performance Metrics to track readership and the impact of your chapter
\n\t
Dissemination and Promotion
\n
\n\n
Benefits of Publishing with IntechOpen
\n\n
\n\t
Proven world leader in Open Access book publishing with over 10 years experience
\n\t
+5,700 OA books published
\n\t
Most competitive prices in the market
\n\t
Fully compliant with OA funding requirements
\n\t
Optimized processes that assure your research is made available to the scientific community without delay
\n\t
Personal support during every step of the publication process
\n\t
+184,650 citations in Web of Science databases
\n\t
Currently strongest OA platform with over 175 million downloads
\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2459},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12058",title:"Future Housing",subtitle:null,isOpenForSubmission:!0,hash:"e7f4a1e57fab392b61156956c1247b9e",slug:null,bookSignature:"Dr. Ivan Oropeza-Perez and Dr. Astrid Helena Petzold-Rodríguez",coverURL:"https://cdn.intechopen.com/books/images_new/12058.jpg",editedByType:null,editors:[{id:"282172",title:"Dr.",name:"Ivan",surname:"Oropeza-Perez",slug:"ivan-oropeza-perez",fullName:"Ivan Oropeza-Perez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12215",title:"Cell Death and Disease",subtitle:null,isOpenForSubmission:!0,hash:"dfd456a29478fccf4ebd3294137eb1e3",slug:null,bookSignature:"Dr. Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",editedByType:null,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12112",title:"The Colorectal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"21c65e742d31d5b69fb681ef78cfa0be",slug:null,bookSignature:"Dr. Muhammad Shamim",coverURL:"https://cdn.intechopen.com/books/images_new/12112.jpg",editedByType:null,editors:[{id:"235128",title:"Dr.",name:"Muhammad",surname:"Shamim",slug:"muhammad-shamim",fullName:"Muhammad Shamim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12079",title:"Strategies Towards the Synthesis of Heterocycles and Their Applications",subtitle:null,isOpenForSubmission:!0,hash:"bc4022af925c0883636e0819008971ee",slug:null,bookSignature:"Dr. Premlata Kumari and Dr. Amit B Patel",coverURL:"https://cdn.intechopen.com/books/images_new/12079.jpg",editedByType:null,editors:[{id:"177041",title:"Dr.",name:"Premlata",surname:"Kumari",slug:"premlata-kumari",fullName:"Premlata Kumari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11998",title:"Biocomposites - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"8bc7ffd7544fff1901301c787e64fada",slug:null,bookSignature:"Prof. Magdy Elnashar",coverURL:"https://cdn.intechopen.com/books/images_new/11998.jpg",editedByType:null,editors:[{id:"12075",title:"Prof.",name:"Magdy",surname:"Elnashar",slug:"magdy-elnashar",fullName:"Magdy Elnashar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11999",title:"Earthquakes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"b2af07109b13b76e5af9583532ab5bee",slug:null,bookSignature:"Dr. Walter Salazar",coverURL:"https://cdn.intechopen.com/books/images_new/11999.jpg",editedByType:null,editors:[{id:"236461",title:"Dr.",name:"Walter",surname:"Salazar",slug:"walter-salazar",fullName:"Walter Salazar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12102",title:"Current Trends in Ambulatory Care",subtitle:null,isOpenForSubmission:!0,hash:"fa37d79f81893fd0a9ab346ae1c3e4a9",slug:null,bookSignature:"Dr. Xin-Nong Li",coverURL:"https://cdn.intechopen.com/books/images_new/12102.jpg",editedByType:null,editors:[{id:"345917",title:"Dr.",name:"Xin-Nong",surname:"Li",slug:"xin-nong-li",fullName:"Xin-Nong Li"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12050",title:"Advanced Biodiesel - Technological Advances, Challenges, and Sustainability Considerations",subtitle:null,isOpenForSubmission:!0,hash:"bb86ab5c5ca0dab95f01941eb350f920",slug:null,bookSignature:"Dr. IMR Fattah",coverURL:"https://cdn.intechopen.com/books/images_new/12050.jpg",editedByType:null,editors:[{id:"463663",title:"Dr.",name:"IMR",surname:"Fattah",slug:"imr-fattah",fullName:"IMR Fattah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12208",title:"Metformin - A Prospective Alternative for the Treatment of Chronic Diseases",subtitle:null,isOpenForSubmission:!0,hash:"aa4b8aac3f44ba3ab334530c5d5646ea",slug:null,bookSignature:"Prof. Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/12208.jpg",editedByType:null,editors:[{id:"41865",title:"Prof.",name:"Farid A.",surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12172",title:"Health Risks of Food Additives - Recent Developments and Trends in Food Sector",subtitle:null,isOpenForSubmission:!0,hash:"f6aa23b1045d266d0928fcef04fa3417",slug:null,bookSignature:"Dr. Muhammad Sajid Arshad and Mr. Waseem Khalid",coverURL:"https://cdn.intechopen.com/books/images_new/12172.jpg",editedByType:null,editors:[{id:"192998",title:"Dr.",name:"Muhammad Sajid",surname:"Arshad",slug:"muhammad-sajid-arshad",fullName:"Muhammad Sajid Arshad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11500",title:"Multi-Objective Optimization - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"842f84f308439c0a55c4e8e6a8fd9c01",slug:null,bookSignature:"Dr. Adel El-Shahat",coverURL:"https://cdn.intechopen.com/books/images_new/11500.jpg",editedByType:null,editors:[{id:"193331",title:"Dr.",name:"Adel",surname:"El-Shahat",slug:"adel-el-shahat",fullName:"Adel El-Shahat"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:417},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"452",title:"Economic Sociology",slug:"development-economics-economic-sociology",parent:{id:"65",title:"Development Economics",slug:"development-economics"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:24,numberOfWosCitations:55,numberOfCrossrefCitations:46,numberOfDimensionsCitations:64,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"452",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"1682",title:"An Ethnography of Global Landscapes and Corridors",subtitle:null,isOpenForSubmission:!1,hash:"f29f609042bf26a006413c690a52bb39",slug:"an-ethnography-of-global-landscapes-and-corridors",bookSignature:"Loshini Naidoo",coverURL:"https://cdn.intechopen.com/books/images_new/1682.jpg",editedByType:"Edited by",editors:[{id:"106389",title:"Dr.",name:"Loshini",middleName:null,surname:"Naidoo",slug:"loshini-naidoo",fullName:"Loshini Naidoo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"31537",doi:"10.5772/34659",title:"Natural Interactions in Artificial Situations: Focus Groups as an Active Social Experiment",slug:"natural-interactions-in-artificial-situations-focus-groups-as-an-active-social-experiment-",totalDownloads:2291,totalCrossrefCites:8,totalDimensionsCites:16,abstract:null,book:{id:"1682",slug:"an-ethnography-of-global-landscapes-and-corridors",title:"An Ethnography of Global Landscapes and Corridors",fullTitle:"An Ethnography of Global Landscapes and Corridors"},signatures:"Jakob Demant",authors:[{id:"101137",title:"Dr.",name:"Jakob",middleName:null,surname:"Demant",slug:"jakob-demant",fullName:"Jakob Demant"}]},{id:"31540",doi:"10.5772/34178",title:"A Service Value Creation Model and the Role of Ethnography",slug:"a-service-value-creation-model-and-the-role-of-ethnography",totalDownloads:2273,totalCrossrefCites:14,totalDimensionsCites:12,abstract:null,book:{id:"1682",slug:"an-ethnography-of-global-landscapes-and-corridors",title:"An Ethnography of Global Landscapes and Corridors",fullTitle:"An Ethnography of Global Landscapes and Corridors"},signatures:"Michitaka Kosaka",authors:[{id:"99047",title:"Prof.",name:"Michitaka",middleName:null,surname:"Kosaka",slug:"michitaka-kosaka",fullName:"Michitaka Kosaka"}]},{id:"31539",doi:"10.5772/34719",title:"Accessing Material Culture by Following Intermediary Objects",slug:"following-intermediary-objects-in-order-to-access-material-culture",totalDownloads:2121,totalCrossrefCites:6,totalDimensionsCites:10,abstract:null,book:{id:"1682",slug:"an-ethnography-of-global-landscapes-and-corridors",title:"An Ethnography of Global Landscapes and Corridors",fullTitle:"An Ethnography of Global Landscapes and Corridors"},signatures:"Dominique Vinck",authors:[{id:"101342",title:"Prof.",name:"Dominique",middleName:null,surname:"Vinck",slug:"dominique-vinck",fullName:"Dominique Vinck"}]},{id:"31534",doi:"10.5772/39248",title:"Ethnography: An Introduction to Definition and Method",slug:"introduction-to-ethnography",totalDownloads:7041,totalCrossrefCites:7,totalDimensionsCites:9,abstract:null,book:{id:"1682",slug:"an-ethnography-of-global-landscapes-and-corridors",title:"An Ethnography of Global Landscapes and Corridors",fullTitle:"An Ethnography of Global Landscapes and Corridors"},signatures:"Loshini Naidoo",authors:[{id:"106389",title:"Dr.",name:"Loshini",middleName:null,surname:"Naidoo",slug:"loshini-naidoo",fullName:"Loshini Naidoo"}]},{id:"31535",doi:"10.5772/36039",title:"Ethnographic Field Notes and Reflexivity",slug:"ethnographic-field-notes-and-reflexivity-",totalDownloads:4424,totalCrossrefCites:6,totalDimensionsCites:8,abstract:null,book:{id:"1682",slug:"an-ethnography-of-global-landscapes-and-corridors",title:"An Ethnography of Global Landscapes and Corridors",fullTitle:"An Ethnography of Global Landscapes and Corridors"},signatures:"Päivi Eriksson, Elina Henttonen and Susan Meriläinen",authors:[{id:"106870",title:"Prof.",name:"Paivi",middleName:null,surname:"Eriksson",slug:"paivi-eriksson",fullName:"Paivi Eriksson"},{id:"108700",title:"Dr.",name:"Elina",middleName:null,surname:"Henttonen",slug:"elina-henttonen",fullName:"Elina Henttonen"},{id:"108701",title:"Prof.",name:"Susan",middleName:null,surname:"Merilainen",slug:"susan-merilainen",fullName:"Susan Merilainen"}]}],mostDownloadedChaptersLast30Days:[{id:"31535",title:"Ethnographic Field Notes and Reflexivity",slug:"ethnographic-field-notes-and-reflexivity-",totalDownloads:4424,totalCrossrefCites:6,totalDimensionsCites:8,abstract:null,book:{id:"1682",slug:"an-ethnography-of-global-landscapes-and-corridors",title:"An Ethnography of Global Landscapes and Corridors",fullTitle:"An Ethnography of Global Landscapes and Corridors"},signatures:"Päivi Eriksson, Elina Henttonen and Susan Meriläinen",authors:[{id:"106870",title:"Prof.",name:"Paivi",middleName:null,surname:"Eriksson",slug:"paivi-eriksson",fullName:"Paivi Eriksson"},{id:"108700",title:"Dr.",name:"Elina",middleName:null,surname:"Henttonen",slug:"elina-henttonen",fullName:"Elina Henttonen"},{id:"108701",title:"Prof.",name:"Susan",middleName:null,surname:"Merilainen",slug:"susan-merilainen",fullName:"Susan Merilainen"}]},{id:"31546",title:"Written Reminiscences and Media Ethnography: Television Creating Worldview",slug:"written-reminiscences-and-media-ethnography-television-creating-worldview",totalDownloads:2892,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"1682",slug:"an-ethnography-of-global-landscapes-and-corridors",title:"An Ethnography of Global Landscapes and Corridors",fullTitle:"An Ethnography of Global Landscapes and Corridors"},signatures:"Jukka Kortti",authors:[{id:"106727",title:"Dr.",name:"Jukka",middleName:null,surname:"Kortti",slug:"jukka-kortti",fullName:"Jukka Kortti"}]},{id:"31534",title:"Ethnography: An Introduction to Definition and Method",slug:"introduction-to-ethnography",totalDownloads:7041,totalCrossrefCites:7,totalDimensionsCites:9,abstract:null,book:{id:"1682",slug:"an-ethnography-of-global-landscapes-and-corridors",title:"An Ethnography of Global Landscapes and Corridors",fullTitle:"An Ethnography of Global Landscapes and Corridors"},signatures:"Loshini Naidoo",authors:[{id:"106389",title:"Dr.",name:"Loshini",middleName:null,surname:"Naidoo",slug:"loshini-naidoo",fullName:"Loshini Naidoo"}]},{id:"31539",title:"Accessing Material Culture by Following Intermediary Objects",slug:"following-intermediary-objects-in-order-to-access-material-culture",totalDownloads:2121,totalCrossrefCites:6,totalDimensionsCites:10,abstract:null,book:{id:"1682",slug:"an-ethnography-of-global-landscapes-and-corridors",title:"An Ethnography of Global Landscapes and Corridors",fullTitle:"An Ethnography of Global Landscapes and Corridors"},signatures:"Dominique Vinck",authors:[{id:"101342",title:"Prof.",name:"Dominique",middleName:null,surname:"Vinck",slug:"dominique-vinck",fullName:"Dominique Vinck"}]},{id:"31541",title:"Food and Nutrition in Embera Indigenous People",slug:"food-and-nutrition-in-embera-indigenous-people",totalDownloads:2468,totalCrossrefCites:0,totalDimensionsCites:1,abstract:null,book:{id:"1682",slug:"an-ethnography-of-global-landscapes-and-corridors",title:"An Ethnography of Global Landscapes and Corridors",fullTitle:"An Ethnography of Global Landscapes and Corridors"},signatures:"Javier Rosique, Aída Gálvez, María Teresa Restrepo, Luz Mariela Manjarrés and Erika Valencia",authors:[{id:"98472",title:"Dr.",name:"Javier",middleName:null,surname:"Rosique Gracia",slug:"javier-rosique-gracia",fullName:"Javier Rosique Gracia"},{id:"98482",title:"Dr.",name:"Aida",middleName:null,surname:"Galvez A.",slug:"aida-galvez-a.",fullName:"Aida Galvez A."},{id:"107822",title:"MSc.",name:"Maria Teresa",middleName:null,surname:"Restrepo",slug:"maria-teresa-restrepo",fullName:"Maria Teresa Restrepo"},{id:"108064",title:"Ms.",name:"Erika",middleName:null,surname:"Valencia C.",slug:"erika-valencia-c.",fullName:"Erika Valencia C."},{id:"109834",title:"Dr.",name:"Luz Mariela",middleName:null,surname:"Manjarres",slug:"luz-mariela-manjarres",fullName:"Luz Mariela Manjarres"}]}],onlineFirstChaptersFilter:{topicId:"452",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"25",title:"Environmental Sciences",doi:"10.5772/intechopen.100362",issn:"2754-6713",scope:"
\r\n\tScientists have long researched to understand the environment and man’s place in it. The search for this knowledge grows in importance as rapid increases in population and economic development intensify humans’ stresses on ecosystems. Fortunately, rapid increases in multiple scientific areas are advancing our understanding of environmental sciences. Breakthroughs in computing, molecular biology, ecology, and sustainability science are enhancing our ability to utilize environmental sciences to address real-world problems. \r\n\tThe four topics of this book series - Pollution; Environmental Resilience and Management; Ecosystems and Biodiversity; and Water Science - will address important areas of advancement in the environmental sciences. They will represent an excellent initial grouping of published works on these critical topics.
",coverUrl:"https://cdn.intechopen.com/series/covers/25.jpg",latestPublicationDate:"June 28th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:1,editor:{id:"197485",title:"Dr.",name:"J. Kevin",middleName:null,surname:"Summers",slug:"j.-kevin-summers",fullName:"J. Kevin Summers",profilePictureURL:"https://mts.intechopen.com/storage/users/197485/images/system/197485.jpg",biography:"J. Kevin Summers is a Senior Research Ecologist at the Environmental Protection Agency’s (EPA) Gulf Ecosystem Measurement and Modeling Division. He is currently working with colleagues in the Sustainable and Healthy Communities Program to develop an index of community resilience to natural hazards, an index of human well-being that can be linked to changes in the ecosystem, social and economic services, and a community sustainability tool for communities with populations under 40,000. He leads research efforts for indicator and indices development. Dr. Summers is a systems ecologist and began his career at the EPA in 1989 and has worked in various programs and capacities. This includes leading the National Coastal Assessment in collaboration with the Office of Water which culminated in the award-winning National Coastal Condition Report series (four volumes between 2001 and 2012), and which integrates water quality, sediment quality, habitat, and biological data to assess the ecosystem condition of the United States estuaries. He was acting National Program Director for Ecology for the EPA between 2004 and 2006. He has authored approximately 150 peer-reviewed journal articles, book chapters, and reports and has received many awards for technical accomplishments from the EPA and from outside of the agency. Dr. Summers holds a BA in Zoology and Psychology, an MA in Ecology, and Ph.D. in Systems Ecology/Biology.",institutionString:null,institution:{name:"Environmental Protection Agency",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:13,paginationItems:[{id:"38",title:"Pollution",coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",editor:{id:"110740",title:"Dr.",name:"Ismail M.M.",middleName:null,surname:"Rahman",slug:"ismail-m.m.-rahman",fullName:"Ismail M.M. Rahman",profilePictureURL:"https://mts.intechopen.com/storage/users/110740/images/2319_n.jpg",biography:"Ismail Md. Mofizur Rahman (Ismail M. M. Rahman) assumed his current responsibilities as an Associate Professor at the Institute of Environmental Radioactivity, Fukushima University, Japan, in Oct 2015. He also has an honorary appointment to serve as a Collaborative Professor at Kanazawa University, Japan, from Mar 2015 to the present. \nFormerly, Dr. Rahman was a faculty member of the University of Chittagong, Bangladesh, affiliated with the Department of Chemistry (Oct 2002 to Mar 2012) and the Department of Applied Chemistry and Chemical Engineering (Mar 2012 to Sep 2015). Dr. Rahman was also adjunctly attached with Kanazawa University, Japan (Visiting Research Professor, Dec 2014 to Mar 2015; JSPS Postdoctoral Research Fellow, Apr 2012 to Mar 2014), and Tokyo Institute of Technology, Japan (TokyoTech-UNESCO Research Fellow, Oct 2004–Sep 2005). \nHe received his Ph.D. degree in Environmental Analytical Chemistry from Kanazawa University, Japan (2011). He also achieved a Diploma in Environment from the Tokyo Institute of Technology, Japan (2005). Besides, he has an M.Sc. degree in Applied Chemistry and a B.Sc. degree in Chemistry, all from the University of Chittagong, Bangladesh. \nDr. Rahman’s research interest includes the study of the fate and behavior of environmental pollutants in the biosphere; design of low energy and low burden environmental improvement (remediation) technology; implementation of sustainable waste management practices for treatment, handling, reuse, and ultimate residual disposition of solid wastes; nature and type of interactions in organic liquid mixtures for process engineering design applications.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"201020",title:"Dr.",name:"Zinnat Ara",middleName:null,surname:"Begum",slug:"zinnat-ara-begum",fullName:"Zinnat Ara Begum",profilePictureURL:"https://mts.intechopen.com/storage/users/201020/images/system/201020.jpeg",biography:"Zinnat A. Begum received her Ph.D. in Environmental Analytical Chemistry from Kanazawa University in 2012. She achieved her Master of Science (M.Sc.) degree with a major in Applied Chemistry and a Bachelor of Science (B.Sc.) in Chemistry, all from the University of Chittagong, Bangladesh. Her work affiliations include Fukushima University, Japan (Visiting Research Fellow, Institute of Environmental Radioactivity: Mar 2016 to present), Southern University Bangladesh (Assistant Professor, Department of Civil Engineering: Jan 2015 to present), and Kanazawa University, Japan (Postdoctoral Fellow, Institute of Science and Engineering: Oct 2012 to Mar 2014; Research fellow, Venture Business Laboratory, Advanced Science and Social Co-Creation Promotion Organization: Apr 2018 to Mar 2021). The research focus of Dr. Zinnat includes the effect of the relative stability of metal-chelator complexes in the environmental remediation process designs and the development of eco-friendly soil washing techniques using biodegradable chelators.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorThree:null,editorialBoard:[{id:"252368",title:"Dr.",name:"Meng-Chuan",middleName:null,surname:"Ong",slug:"meng-chuan-ong",fullName:"Meng-Chuan Ong",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRVotQAG/Profile_Picture_2022-05-20T12:04:28.jpg",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",institutionURL:null,country:{name:"Malaysia"}}},{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}},{id:"187907",title:"Dr.",name:"Olga",middleName:null,surname:"Anne",slug:"olga-anne",fullName:"Olga Anne",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBE5QAO/Profile_Picture_2022-04-07T09:42:13.png",institutionString:null,institution:{name:"Klaipeda State University of Applied Sciences",institutionURL:null,country:{name:"Lithuania"}}}]},{id:"39",title:"Environmental Resilience and Management",coverUrl:"https://cdn.intechopen.com/series_topics/covers/39.jpg",editor:{id:"137040",title:"Prof.",name:"Jose",middleName:null,surname:"Navarro-Pedreño",slug:"jose-navarro-pedreno",fullName:"Jose Navarro-Pedreño",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRAXrQAO/Profile_Picture_2022-03-09T15:50:19.jpg",biography:"Full professor at University Miguel Hernández of Elche, Spain, previously working at the University of Alicante, Autonomous University of Madrid and Polytechnic University of Valencia. Graduate in Sciences (Chemist), graduate in Geography and History (Geography), master in Water Management, Treatment, master in Fertilizers and Environment and master in Environmental Management; Ph.D. in Environmental Sciences. His research is focused on soil-water and waste-environment relations, mainly on soil-water and soil-waste interactions under different management and waste reuse. His work is reflected in more than 230 communications presented in national and international conferences and congresses, 29 invited lectures from universities, associations and government agencies. Prof. Navarro-Pedreño is also a director of the Ph.D. Program Environment and Sustainability (2012-present) and a member of several societies among which are the Spanish Society of Soil Science, International Union of Soil Sciences, European Society for Soil Conservation, DessertNet and the Spanish Royal Society of Chemistry.",institutionString:"Miguel Hernández University of Elche, Spain",institution:null},editorTwo:null,editorThree:null,editorialBoard:[{id:"177015",title:"Prof.",name:"Elke Jurandy",middleName:null,surname:"Bran Nogueira Cardoso",slug:"elke-jurandy-bran-nogueira-cardoso",fullName:"Elke Jurandy Bran Nogueira Cardoso",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGxzQAG/Profile_Picture_2022-03-25T08:32:33.jpg",institutionString:"Universidade de São Paulo, Brazil",institution:null},{id:"147289",title:"Prof.",name:"Francisco",middleName:null,surname:"Guevara-Hernández",slug:"francisco-guevara-hernandez",fullName:"Francisco Guevara-Hernández",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRCgVQAW/Profile_Picture_2022-06-27T11:25:21.png",institutionString:null,institution:{name:"Autonomous University of Chiapas",institutionURL:null,country:{name:"Mexico"}}},{id:"211260",title:"Dr.",name:"Sandra",middleName:null,surname:"Ricart",slug:"sandra-ricart",fullName:"Sandra Ricart",profilePictureURL:"https://mts.intechopen.com/storage/users/211260/images/system/211260.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}}]},{id:"40",title:"Ecosystems and Biodiversity",coverUrl:"https://cdn.intechopen.com/series_topics/covers/40.jpg",editor:{id:"209149",title:"Prof.",name:"Salustiano",middleName:null,surname:"Mato",slug:"salustiano-mato",fullName:"Salustiano Mato",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLREQA4/Profile_Picture_2022-03-31T10:23:50.png",biography:"Salustiano Mato de la Iglesia (Santiago de Compostela, 1960) is a doctor in biology from the University of Santiago and a Professor of zoology at the Department of Ecology and Animal Biology at the University of Vigo. He has developed his research activity in the fields of fauna and soil ecology, and in the treatment of organic waste, having been the founder and principal investigator of the Environmental Biotechnology Group of the University of Vigo.\r\nHis research activity in the field of Environmental Biotechnology has been focused on the development of novel organic waste treatment systems through composting. The result of this line of work are three invention patents and various scientific and technical publications in prestigious international journals.",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}},editorTwo:{id:"60498",title:"Prof.",name:"Josefina",middleName:null,surname:"Garrido",slug:"josefina-garrido",fullName:"Josefina Garrido",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRj1VQAS/Profile_Picture_2022-03-31T10:06:51.jpg",biography:"Josefina Garrido González (Paradela de Abeleda, Ourense 1959), is a doctor in biology from the University of León and a Professor of Zoology at the Department of Ecology and Animal Biology at the University of Vigo. She has focused her research activity on the taxonomy, fauna and ecology of aquatic beetles, in addition to other lines of research such as the conservation of biodiversity in freshwater ecosystems; conservation of protected areas (Red Natura 2000) and assessment of the effectiveness of wetlands as priority areas for the conservation of aquatic invertebrates; studies of water quality in freshwater ecosystems through biological indicators and physicochemical parameters; surveillance and research of vector arthropods and invasive alien species.",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}},editorThree:{id:"464288",title:"Dr.",name:"Francisco",middleName:null,surname:"Ramil",slug:"francisco-ramil",fullName:"Francisco Ramil",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003RI7lHQAT/Profile_Picture_2022-03-31T10:15:35.png",biography:"Fran Ramil Blanco (Porto de Espasante, A Coruña, 1960), is a doctor in biology from the University of Santiago de Compostela and a Professor of Zoology at the Department of Ecology and Animal Biology at the University of Vigo. His research activity is linked to the taxonomy, fauna and ecology of marine benthic invertebrates and especially the Cnidarian group. Since 2004, he has been part of the EcoAfrik project, aimed at the study, protection and conservation of biodiversity and benthic habitats in West Africa. He also participated in the study of vulnerable marine ecosystems associated with seamounts in the South Atlantic and is involved in training young African researchers in the field of marine research.",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}},editorialBoard:[{id:"220987",title:"Dr.",name:"António",middleName:"Onofre",surname:"Soares",slug:"antonio-soares",fullName:"António Soares",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNtzQAG/Profile_Picture_1644499672340",institutionString:null,institution:{name:"University of the Azores",institutionURL:null,country:{name:"Portugal"}}}]},{id:"41",title:"Water Science",coverUrl:"https://cdn.intechopen.com/series_topics/covers/41.jpg",editor:{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang",profilePictureURL:"https://mts.intechopen.com/storage/users/349630/images/system/349630.jpg",biography:"Prof. Dr. Yizi Shang is a pioneering researcher in hydrology and water resources who has devoted his research career to promoting the conservation and protection of water resources for sustainable development. He is presently associate editor of Water International (official journal of the International Water Resources Association). He was also invited to serve as an associate editor for special issues of the Journal of the American Water Resources Association. He has served as an editorial member for international journals such as Hydrology, Journal of Ecology & Natural Resources, and Hydro Science & Marine Engineering, among others. He has chaired or acted as a technical committee member for twenty-five international forums (conferences). Dr. Shang graduated from Tsinghua University, China, in 2010 with a Ph.D. in Engineering. Prior to that, he worked as a research fellow at Harvard University from 2008 to 2009. Dr. Shang serves as a senior research engineer at the China Institute of Water Resources and Hydropower Research (IWHR) and was awarded as a distinguished researcher at National Taiwan University in 2017.",institutionString:"China Institute of Water Resources and Hydropower Research",institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"216491",title:"Dr.",name:"Charalampos",middleName:null,surname:"Skoulikaris",slug:"charalampos-skoulikaris",fullName:"Charalampos Skoulikaris",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRMsbQAG/Profile_Picture_2022-04-21T09:31:55.jpg",institutionString:null,institution:{name:"Aristotle University of Thessaloniki",institutionURL:null,country:{name:"Greece"}}},{id:"300124",title:"Prof.",name:"Thomas",middleName:null,surname:"Shahady",slug:"thomas-shahady",fullName:"Thomas Shahady",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002kuIgmQAE/Profile_Picture_2022-03-18T07:32:10.jpg",institutionString:null,institution:{name:"Lynchburg College",institutionURL:null,country:{name:"United States of America"}}}]}]},overviewPageOFChapters:{paginationCount:23,paginationItems:[{id:"82392",title:"Nanomaterials as Novel Biomarkers for Cancer Nanotheranostics: State of the Art",doi:"10.5772/intechopen.105700",signatures:"Hao Yu, Zhihai Han, Cunrong Chen and Leisheng Zhang",slug:"nanomaterials-as-novel-biomarkers-for-cancer-nanotheranostics-state-of-the-art",totalDownloads:21,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"82184",title:"Biological Sensing Using Infrared SPR Devices Based on ZnO",doi:"10.5772/intechopen.104562",signatures:"Hiroaki Matsui",slug:"biological-sensing-using-infrared-spr-devices-based-on-zno",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hiroaki",surname:"Matsui"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82122",title:"Recent Advances in Biosensing in Tissue Engineering and Regenerative Medicine",doi:"10.5772/intechopen.104922",signatures:"Alma T. Banigo, Chigozie A. Nnadiekwe and Emmanuel M. Beasi",slug:"recent-advances-in-biosensing-in-tissue-engineering-and-regenerative-medicine",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82080",title:"The Clinical Usefulness of Prostate Cancer Biomarkers: Current and Future Directions",doi:"10.5772/intechopen.103172",signatures:"Donovan McGrowder, Lennox Anderson-Jackson, Lowell Dilworth, Shada Mohansingh, Melisa Anderson Cross, Sophia Bryan, Fabian Miller, Cameil Wilson-Clarke, Chukwuemeka Nwokocha, Ruby Alexander-Lindo and Shelly McFarlane",slug:"the-clinical-usefulness-of-prostate-cancer-biomarkers-current-and-future-directions",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11601",title:"Econometrics - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11601.jpg",hash:"bc8ab49e2cf436c217a49ca8c12a22eb",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 13th 2022",isOpenForSubmission:!0,editors:[{id:"452331",title:"Dr.",name:"Brian",surname:"Sloboda",slug:"brian-sloboda",fullName:"Brian Sloboda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12141",title:"Leadership - Advancing Great Leadership Practices and Good Leaders",coverURL:"https://cdn.intechopen.com/books/images_new/12141.jpg",hash:"85f77453916f1d80d80d88ee4fd2f2d1",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 1st 2022",isOpenForSubmission:!0,editors:[{id:"420133",title:"Dr.",name:"Joseph",surname:"Crawford",slug:"joseph-crawford",fullName:"Joseph Crawford"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12139",title:"Global Market and Trade",coverURL:"https://cdn.intechopen.com/books/images_new/12139.jpg",hash:"fa34af07c3a9657fa670404202f8cba5",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 21st 2022",isOpenForSubmission:!0,editors:[{id:"243649",title:"Dr.Ing.",name:"Ireneusz",surname:"Miciuła",slug:"ireneusz-miciula",fullName:"Ireneusz Miciuła"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:10,paginationItems:[{id:"82380",title:"Evolution of Parasitism and Pathogenic Adaptations in Certain Medically Important Fungi",doi:"10.5772/intechopen.105206",signatures:"Gokul Shankar Sabesan, Ranjit Singh AJA, Ranjith Mehenderkar and Basanta Kumar Mohanty",slug:"evolution-of-parasitism-and-pathogenic-adaptations-in-certain-medically-important-fungi",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fungal Infectious Diseases - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11400.jpg",subseries:{id:"4",title:"Fungal Infectious Diseases"}}},{id:"82367",title:"Spatial Variation and Factors Associated with Unsuppressed HIV Viral Load among Women in an HIV Hyperendemic Area of KwaZulu-Natal, South Africa",doi:"10.5772/intechopen.105547",signatures:"Adenike O. Soogun, Ayesha B.M. Kharsany, Temesgen Zewotir and Delia North",slug:"spatial-variation-and-factors-associated-with-unsuppressed-hiv-viral-load-among-women-in-an-hiv-hype",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"HIV-AIDS - Updates, Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82193",title:"Enterococcal Infections: Recent Nomenclature and emerging trends",doi:"10.5772/intechopen.104792",signatures:"Kavita Raja",slug:"enterococcal-infections-recent-nomenclature-and-emerging-trends",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82207",title:"Management Strategies in Perinatal HIV",doi:"10.5772/intechopen.105451",signatures:"Kayla Aleshire and Rima Bazzi",slug:"management-strategies-in-perinatal-hiv",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"HIV-AIDS - Updates, Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82013",title:"Streamlining Laboratory Tests for HIV Detection",doi:"10.5772/intechopen.105096",signatures:"Ramakrishna Prakash and Mysore Krishnamurthy Yashaswini",slug:"streamlining-laboratory-tests-for-hiv-detection",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"HIV-AIDS - Updates, Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"81972",title:"The Submicroscopic Plasmodium falciparum Malaria in Sub-Saharan Africa; Current Understanding of the Host Immune System and New Perspectives",doi:"10.5772/intechopen.105086",signatures:"Kwame Kumi Asare",slug:"the-submicroscopic-plasmodium-falciparum-malaria-in-sub-saharan-africa-current-understanding-of-the-",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"81821",title:"Pneumococcal Carriage in Jordanian Children and the Importance of Vaccination",doi:"10.5772/intechopen.104999",signatures:"Adnan Al-Lahham",slug:"pneumococcal-carriage-in-jordanian-children-and-the-importance-of-vaccination",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"81813",title:"Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development",doi:"10.5772/intechopen.104738",signatures:"Andressa Barban do Patrocinio",slug:"schistosomiasis-discovery-of-new-molecules-for-disease-treatment-and-vaccine-development",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"81644",title:"Perspective Chapter: Ethics of Using Placebo Controlled Trials for Covid-19 Vaccine Development in Vulnerable Populations",doi:"10.5772/intechopen.104776",signatures:"Lesley Burgess, Jurie Jordaan and Matthew Wilson",slug:"perspective-chapter-ethics-of-using-placebo-controlled-trials-for-covid-19-vaccine-development-in-vu",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"80546",title:"Streptococcal Skin and Skin-Structure Infections",doi:"10.5772/intechopen.102894",signatures:"Alwyn Rapose",slug:"streptococcal-skin-and-skin-structure-infections",totalDownloads:64,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},subseriesFiltersForOFChapters:[{caption:"Fungal Infectious Diseases",value:4,count:1,group:"subseries"},{caption:"Parasitic Infectious Diseases",value:5,count:2,group:"subseries"},{caption:"Bacterial Infectious Diseases",value:3,count:3,group:"subseries"},{caption:"Viral Infectious Diseases",value:6,count:4,group:"subseries"}],publishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:4},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:9},{group:"subseries",caption:"Chemical Biology",value:15,count:13}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:8},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:301,paginationItems:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}},{id:"338856",title:"Mrs.",name:"Nur Alvira",middleName:null,surname:"Pascawati",slug:"nur-alvira-pascawati",fullName:"Nur Alvira Pascawati",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universitas Respati Yogyakarta",country:{name:"Indonesia"}}},{id:"441116",title:"Dr.",name:"Jovanka M.",middleName:null,surname:"Voyich",slug:"jovanka-m.-voyich",fullName:"Jovanka M. Voyich",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Montana State University",country:{name:"United States of America"}}},{id:"330412",title:"Dr.",name:"Muhammad",middleName:null,surname:"Farhab",slug:"muhammad-farhab",fullName:"Muhammad Farhab",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"349495",title:"Dr.",name:"Muhammad",middleName:null,surname:"Ijaz",slug:"muhammad-ijaz",fullName:"Muhammad Ijaz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Veterinary and Animal Sciences",country:{name:"Pakistan"}}}]}},subseries:{item:{id:"14",type:"subseries",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11410,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",slug:"ana-isabel-flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",slug:"christian-palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},onlineFirstChapters:{paginationCount:6,paginationItems:[{id:"82135",title:"Carotenoids in Cassava (Manihot esculenta Crantz)",doi:"10.5772/intechopen.105210",signatures:"Lovina I. Udoh, Josephine U. Agogbua, Eberechi R. Keyagha and Itorobong I. Nkanga",slug:"carotenoids-in-cassava-manihot-esculenta-crantz",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81576",title:"Carotenoids in Thermal Adaptation of Plants and Animals",doi:"10.5772/intechopen.104537",signatures:"Ivan M. Petyaev",slug:"carotenoids-in-thermal-adaptation-of-plants-and-animals",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Ivan",surname:"Petyaev"}],book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81358",title:"New Insights on Carotenoid Production by Gordonia alkanivorans Strain 1B",doi:"10.5772/intechopen.103919",signatures:"Tiago P. Silva, Susana M. Paixão, Ana S. Fernandes, José C. Roseiro and Luís Alves",slug:"new-insights-on-carotenoid-production-by-gordonia-alkanivorans-strain-1b",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81246",title:"Role of Carotenoids in Cardiovascular Disease",doi:"10.5772/intechopen.102750",signatures:"Arslan Ahmad, Sakhawat Riaz, Muhammad Shahzaib Nadeem, Umber Mubeen and Khadija Maham",slug:"role-of-carotenoids-in-cardiovascular-disease",totalDownloads:34,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81159",title:"Potential of Carotenoids from Fresh Tomatoes and Their Availability in Processed Tomato-Based Products",doi:"10.5772/intechopen.103933",signatures:"Rose Daphnee Ngameni Tchonkouang, Maria Dulce Carlos Antunes and Maria Margarida Cortês Vieira",slug:"potential-of-carotenoids-from-fresh-tomatoes-and-their-availability-in-processed-tomato-based-produc",totalDownloads:30,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"80902",title:"Computational Chemistry Study of Natural Apocarotenoids and Their Synthetic Glycopeptide Conjugates as Therapeutic Drugs",doi:"10.5772/intechopen.103130",signatures:"Norma Flores-Holguín, Juan Frau and Daniel Glossman-Mitnik",slug:"computational-chemistry-study-of-natural-apocarotenoids-and-their-synthetic-glycopeptide-conjugates-",totalDownloads:33,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Norma",surname:"Flores-Holguín"},{name:"Daniel",surname:"Glossman-Mitnik"},{name:"Juan",surname:"Frau"}],book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}}]},publishedBooks:{paginationCount:4,paginationItems:[{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",slug:"ubiquitin-proteasome-pathway",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"af6880d3a5571da1377ac8f6373b9e82",volumeInSeries:18,fullTitle:"Ubiquitin - Proteasome Pathway",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"14",title:"Cell and Molecular Biology",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression"},{id:"15",title:"Chemical Biology",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors"},{id:"17",title:"Metabolism",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation"},{id:"18",title:"Proteomics",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"bookSubject",path:"/subjects/452",hash:"",query:{},params:{id:"452"},fullPath:"/subjects/452",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()