Studies reported in the literature on the analysis of formaldehyde in various types of matrices, using derivatization procedures.
\r\n\t
",isbn:"978-1-83880-060-4",printIsbn:"978-1-83880-059-8",pdfIsbn:"978-1-83880-540-1",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"d44f176ab7139d4d3d6fc65309c77c69",bookSignature:"Dr. Eduardo Quevedo",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9221.jpg",keywords:"Information-Retrieval, Metadata, Content-Based Image, Content-Based Video, Audio, Music, Video Browsing, Skimming, Bionformatics, Biosignal, Social Interaction, Collaborative Filtering",numberOfDownloads:291,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 22nd 2020",dateEndSecondStepPublish:"May 13th 2020",dateEndThirdStepPublish:"July 12th 2020",dateEndFourthStepPublish:"September 30th 2020",dateEndFifthStepPublish:"November 29th 2020",remainingDaysToSecondStep:"8 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"With broad industry experience, Dr. Quevedo is an expert in image and video enhancement and has received several awards, including the Outstanding Doctoral Thesis Award at the University of Las Palmas de Gran Canaria.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"186525",title:"Dr.",name:"Eduardo",middleName:null,surname:"Quevedo",slug:"eduardo-quevedo",fullName:"Eduardo Quevedo",profilePictureURL:"https://mts.intechopen.com/storage/users/186525/images/system/186525.jpg",biography:"Eduardo Quevedo is Ph.D. Assistant Professor at the University of Las Palmas de Gran Canaria (ULPGC) in the area of Biostatistics and Research Methodology at the Mathematics Department. Eduardo received his PhD from the Institute for Applied Microelectronics (IUMA) at the University of Las Palmas de Gran Canaria (ULPGC) in 2015, being awarded in the ULPGC Outstanding Doctoral Thesis Awards in 2016. He holds a degree in Communications Engineering (2007) and a degree in Electronics Engineering (2009) from the ULPGC and was granted with a national award to the best Master Thesis in the Official National Telecommunications Engineering Association annual awards (2008). His research interests are in the areas of image and video enhancement and their related statistics in a wide range of applications. Eduardo has combined his professional career among private sector, public sector and at the university, working for four years as a Technical Project Manager for the installation of Air Traffic Control systems in the company Indra (2007-11), from 2011 to 2015 as a Project Manager (PRINCE2® Practitioner accredited, MSP® Foundation accredited and ITIL 2011® accredited), and from 2016 to 2018 as a Dissemination and Training Coordinator at the Oceanic Platform of the Canary Islands (PLOCAN) and Anova IT Consulting, an SME. Moreover, he has also worked as an Associate Professor at the ULPGC from 2015 to 2019.",institutionString:"University of Las Palmas de Gran Canaria",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"9",title:"Computer and Information Science",slug:"computer-and-information-science"}],chapters:[{id:"74555",title:"Towards Large Scale Image Retrieval System Using Parallel Frameworks",slug:"towards-large-scale-image-retrieval-system-using-parallel-frameworks",totalDownloads:61,totalCrossrefCites:0,authors:[null]},{id:"72329",title:"Multiple-Image Fusion Encryption (MIFE) Using Discrete Cosine Transformation (DCT) and Pseudo Random Number Generators",slug:"multiple-image-fusion-encryption-mife-using-discrete-cosine-transformation-dct-and-pseudo-random-num",totalDownloads:88,totalCrossrefCites:0,authors:[null]},{id:"74430",title:"Classification and Separation of Audio and Music Signals",slug:"classification-and-separation-of-audio-and-music-signals",totalDownloads:22,totalCrossrefCites:0,authors:[null]},{id:"74139",title:"The Role of Penetration Testing in Forensic Multimedia Retrieval Process",slug:"the-role-of-penetration-testing-in-forensic-multimedia-retrieval-process",totalDownloads:49,totalCrossrefCites:0,authors:[null]},{id:"73534",title:"Information Extraction Techniques in Hyperspectral Imaging Biomedical Applications",slug:"information-extraction-techniques-in-hyperspectral-imaging-biomedical-applications",totalDownloads:71,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"259492",firstName:"Sara",lastName:"Gojević-Zrnić",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/259492/images/7469_n.png",email:"sara.p@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"55396",title:"Use of Mass Spectrometry for the Determination of Formaldehyde in Samples Potentially Toxic to Humans: A Brief Review",doi:"10.5772/intechopen.68922",slug:"use-of-mass-spectrometry-for-the-determination-of-formaldehyde-in-samples-potentially-toxic-to-human",body:'Formaldehyde (FA), the simplest aldehyde, is a carbonyl compound with the molecular formula H2CO, density of 1.081 g.cm−3, and molecular mass of 30.03 g mol−1. At standard temperature and pressure (STP), it is found in the gaseous state and is colourless and inflammable [1, 2]. It has an irritating odour, is soluble in most organic solvents, and is fairly soluble in water [1]. Formaldehyde is globally one of the top 25 most widely produced chemical substances, due mainly to its high reactivity, absence of colour, commercial purity, and low cost [3].
Commercially available in the solid phase (paraformaldehyde) and as the trioxide [(CH2O)3], formaldehyde is typically used and stored in 30–50% v/v aqueous solutions, which usually contain methanol as a stabilizing agent (to avoid polymerization) at concentrations that may exceed 15% v/v. Formaldehyde is known by several names, depending on the area of activity where it is used, including formaldehyde, formic aldehyde, formalin, methanal, and methylene oxide, among others [4].
The chemical characteristics of this compound, especially its germicidal activity, make it a product of widespread applicability and important for the global economy [5]. It has uses in the health area (in medical laboratories and hospitals) and in various industrial sectors including civil construction, timber, and paper manufacturing and is employed as a preservative in foods and cosmetics, among other uses [5, 6].
In hospital pathology and anatomical laboratories, formaldehyde is used as a fixative or preservative, in which the biological material is dipped in order to conserve it, and it is also considered a good disinfectant that does not cause excessive hardening of the tissues. Formaldehyde is an excellent medium for the preservation and storage of biopsy and surgical specimens [7].
In civil construction, formaldehyde is employed in the form of urea‐methanal coating foams, which are among the most widely used systems for coating buildings [4, 7].
In the timber industry, formaldehyde is used in the production of agglomerates, plywood, laminates, furniture, and adhesives [8]. In the textile finishing industry, it is a constituent of most of the resins used to provide the degree of stiffness and elasticity required to maintain permanent folds while helping to avoid the formation of wrinkles during washing and use of garments [8].
In agriculture, formaldehyde is used as a seed preservative and in the preservation of tubers and fruits. It is employed in the form of disinfectants to eliminate or limit microbiological degradation in the sugar, beer, and leather industries [9].
In the perfume and cosmetics sector, formaldehyde is employed in shampoos, hair creams, deodorants, bath products, creams, and lotions for the skin and can also be found in masks and as makeup for the eyes, in mouth refreshers, cuticle removers, nail polish, and nail hardener, among other products [10, 11].
At the same time, formaldehyde is considered a highly toxic substance and can be characterized as a persistent organic pollutant causing human carcinogenicity and toxicity to aerobic and anaerobic microorganisms [4]. Exposure to this substance increases the risk of cancers of the pharynx, nasopharynx, and brain, as well as dermatitis and allergic reactions. Formaldehyde is absorbed through the skin and mucous membranes and is rapidly metabolized by reaction with hydrochloric acid or other inorganic chlorides present in the body, forming bis(chloromethyl)ether, a substance that has carcinogenic effects in humans [12]. Therefore, direct and prolonged contact with formaldehyde causes serious damage to the body and can even lead to death [4, 13].
For these reasons, several agencies have classified this compound as a human carcinogen that may be mutagenic/teratogenic to the endocrine system of humans [1, 4, 10]. These organizations include the Brazilian National Health Surveillance Agency (ANVISA) [14], the International Agency for Research on Cancer (IARC) [12], the National Cancer Institute José Alencar Gomes da Silva (INCA) [6], the United States Occupational Safety and Health Administration (OSHA) [15], and the National Toxicology Program (NTP) [16].
Given the problems caused by the presence of formaldehyde in the human body, it is necessary to develop procedures for the determination of this compound in different sample types, since many matrices can contain formaldehyde at concentrations higher than the levels permitted by global health regulatory agencies. To this end, the mass spectrometry (MS) technique is a very useful tool that enables the detection and quantification of formaldehyde in a wide range of sample types.
Mass spectrometry is an analytical technique that can be used for the structural characterization and quantification of a wide range of molecules [17]. The technique is extensively used by chemists for the analysis of small and volatile organic compounds. It is highly sensitive and can be used to determine substances present at low concentrations, as in the case of doping, food control, environmental contamination, and many other areas of application [18, 19].
In the early stages of the development of mass spectrometry, the sample was introduced into the system by direct vaporization, but with the evolution of chromatographic techniques, the use of a chromatograph to introduce the sample into the mass spectrometer became commonplace (showed in Figure 1). In these techniques, the components of the sample are separated and individually introduced into the MS ionization source, generating ions that are then transferred to the analyser for detection and quantification [20]. In the mass spectrometer, the gas phase ions are separated according to their mass to charge ratio (m/z). These ratios are presented in the form of a mass spectrum, which is a graph showing the relative abundance (intensity) of each ion appearing in the form of a peak with defined m/z [21].
An illustrative figure for mass spectrometer components. Source: Own authors.
This detection technique, when coupled to a chromatograph, enables the construction of a chromatogram of the most important ion fragments, with the elimination of interfering ions, hence increasing the reliability of identification of the components of a sample. Gas chromatography coupled with mass spectrometry (GC‐MS) is a powerful analytical tool that is usually used in the analysis of complex gas phase mixtures. However, this limits the technique to the analysis of volatile and semi‐volatile compounds of low polarity and low molecular weight. In the case of compounds of higher molecular weight and/or greater polarity and lower volatility, the most suitable technique is the coupling of high‐performance liquid chromatography and mass spectrometry (HPLC‐MS) [20].
Mass spectrometry used as a detection method coupled with gas chromatography offers advantages for the analysis of formaldehyde in different types of samples. These advantages lie in the fact that this technique not only considers the retention time of this compound but also the mass of each of the main fragments generated and the ratio between their intensities, which ensure that the signal is related to the analyte [22].
One of the crucial steps in the analysis of formaldehyde using the mass spectrometry technique involves the use of derivatization reactions. These reactions modify the functional groups of the compound, improving its stability and enabling its detection [9, 10]. The main derivatization agents currently employed in aldehyde analyses include 2,4‐dinitrophenylhydrazine (2,4‐DNPH) (Figure 2a), O‐(2,3,4,5,6‐pentafluorobenzyl)‐hydroxylamine (PFBHA) (Figure 2b), and pentafluorophenyl hydrazine (PFPH) (Figure 2c) [23–29].
(a) A reaction of formaldehyde with 2,4‐dinitrophenylhydrazine to form 2,4 dinitrophenylhydrazone. (b) A reaction of formaldehyde with O‐(2,3,4,5,6‐pentafluorobenzyl)‐hydroxylamine to form the oxime. (c) A reaction of formaldehyde with pentafluorophenyl hydrazine to form pentafluorophenyl hydrazone. Source: Own authors, 2017.
In the particular case of formaldehyde, preference has been given to the use of 2,4‐DNPH as the derivatization reagent, followed by analysis of the resulting hydrazones (FA‐DNPHo) by mass spectrometry [30]. This procedure increases the sensitivity and selectivity of the method. In most DNPH derivatization methods, analysis by HPLC‐MS is generally preferred rather than GC‐MS. However, in the analysis of FA‐DNPHo, the GC‐MS system provides greater sensitivity and selectivity, compared to HPLC‐MS [30], with gas chromatography providing the benefits of precision and operational simplicity. Figure 3 shows an illustrative scheme of the identification of formaldehyde in possible sources of contamination and the mass spectral for its identification in the form of Fo‐DNPH, using GC‐MS, and Table 1 summarizes some important derivatization studies using mass spectrometry.
An example mass spectrum for FA‐DNPHo [spectrum obtained using a gas chromatograph with mass spectrometric detection (CGMS‐QP2010 Plus, Shimadzu)]. Source: Own authors, 2017. Google Images [31].
Sample type | Sample analysis | Main results | References |
---|---|---|---|
Hair creams | Solubilisation of straightener cream samples, addition of 2,4‐dinitrophenylhydrazine in acetonitrile, and direct injection of the prepared samples | All samples had formaldehyde levels above the concentration permitted by Brazilian law. | [32] |
Foods | Derivatization with 2,4‐dinitrophenylhydrazine | Analysis of free and reversibly bound formaldehyde in 10 squid and squid products. | [33] |
Foods | Derivatization with 2,2,2‐trifluoroethylene hydrazine | All food samples analysed contained formaldehyde. | [34] |
Bio‐oil | Derivatization with (2,3,4,5,6‐pentafluorobenzyl) hydroxylamine hydrochloride | Contained ∼2% formaldehyde | [35] |
Terpenes α‐ and β‐pinene/limonene/Δ3–carene | Derivatization with 2,4‐dinitrophenylhydrazine and subsequent analysis by high‐performance liquid chromatography | Low limits of detection and quantification improved the technique | [36] |
Air affected by incense burning | Derivatization on a solid sorbent containing O‐(2,3,4,5,6‐pentafluorobenzyl)‐hydroxylamine | The concentration of formaldehyde in a closed room was higher than the concentration in an open place | [37] |
Blood | Gas chromatography with mass spectrometry following derivatization with pentafluorophenyl hydrazine | Detection of formaldehyde in rat blood samples | [12] |
Studies reported in the literature on the analysis of formaldehyde in various types of matrices, using derivatization procedures.
The following discussion describes some of the techniques involving chromatography coupled to MS employed for the analysis (detection and quantification) of formaldehyde in different types of samples.
Several studies have investigated the levels of formaldehyde in samples of air, diesel, water, and other media. The monitoring of formaldehyde in these sample types is very important, due to the likelihood of exposure to part of the population.
Tessini et al. [35] determined aldehydes in bio‐oil using HPLC‐UV and GC‐MS techniques. For analysis using HPLC‐UV, the aldehydes were derivatized with 2,4‐DNPH in solution, followed by headspace analysis. For analysis by GC‐MS, the aldehydes were extracted using a solid‐phase microextraction (SPME) fibre, and the following derivatization in solution with pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) was analysed. Optimization was performed of the reaction between low molecular mass aldehydes and 2,4‐DNPH, forming hydrazones, as well as the HPLC‐UV analysis. The best condition found was use of 0.15 μmol of DNPH at 40°C for 30 min. The separation of formaldehyde‐DNPH was achieved under the optimized separation conditions, although the presence of interferences was observed. Optimization of the derivatization in solution with PFBHA and analysis by GC‐MS resulted in the best conditions being derivatized at 85°C for 60 min, with agitation at 350 rpm. The formation of isomers was observed, except in the case of the derivatization reaction producing the formaldehyde‐PFBHA oxime. The selectivity was evaluated by comparison of the mass spectra obtained for the bio‐oil sample chromatographic signals with those for a standard solution.
In the study of aldehydes derivatization and extraction on an SPME fibre, evaluation was required of the fibre coating and the optimal HS‐SPME conditions for the on‐fibre modification. The use of a selective fibre was necessary due to the complexity of the bio‐oil matrix, which contains a large quantity of volatile compounds that could interfere in the aldehyde analysis by HS‐SPME. The fibres studied were polyacrylate (PA), carboxen/polydimethylsiloxane (CAR/PDMS), and divinylbenzene/polydimethylsiloxane (DVB/PDMS), used for 30 min at temperatures of 30, 40, and 60°C of the aqueous fraction of bio‐oil. The best option was found to be DVB/PDMS because at all the temperatures tested, the extraction efficiency was lower for interfering aromatic compounds. The optimization of aldehyde extraction from bio‐oil samples, with on‐fibre derivatization, was studied using five extraction parameters: PFBHA concentration (mg.L−1), temperature for sorption of PFBHA by the fibre (°C), agitation time for sorption of PFBHA by the fibre (min), agitation time for the derivatization reaction (min), and temperature for the derivatization reaction (°C). The best conditions for the extraction of formaldehyde were 1.0 mg L−1, 27°C, 10 min, 20 min, and 35°C, respectively.
No statistical significant difference was observed between the concentrations of formaldehyde, acetaldehyde, and propionaldehyde found in bio‐oil samples (n = 5) using either on‐fibre derivatization and analysis by GC‐MS or derivatization in solution and analysis by GC‐MS. The concentration of formaldehyde found in bio‐oil is of interest, considering its possible use in industrial production of phenol/formaldehyde resin.
The most commonly used methods for the analysis of airborne carbonyls involve the collection of analytes on solid sorbents coated with a suitable derivatization agent, typically 2,4‐DNPH, followed by desorption using solvents.
Pang et al. [25] studied the determination of formaldehyde in airborne samples by GC‐MS in comparison with an HPLC method. A novel GC‐MS method was described for the analysis of airborne carbonyls based on their PFPH derivatives. The method involved sampling using simple tubes packed with PFPH‐coated Tenax TA, followed by GC‐MS analysis with liquid injection. The method was considered appropriate for the determination of 23 carbonyl compounds in the range C1–C9 and was applied for the determination of these carbonyls in ambient air and from a strong emission source (cigarette smoke). The technique was subsequently compared with the HPLC‐MS method.
In this study, one brand of cigarettes consumed in the UK was tested, with the smoke drawn into a Tedlar bag and diluted to 100 L with nitrogen. The carbonyls in the cigarette smoke were identified and their diluted concentrations in the Tedlar bag were determined. The concentrations of formaldehyde obtained by PFPH‐GC‐MS were significantly different from those found using DNPH‐HPLC‐MS, with a mean difference of 2.6% between the two methods. The concentrations of formaldehyde (in ppb) in the diluted cigarette smoke sample were 42.3 ± 2.5 and 45.7 ± 4.3 for the PFPH and DNPH methods, respectively, considering three sampling periods. The mean weight of each cigarette was 0.82 ± 0.02 g, with combustion producing 10 mg of tar, 0.9 mg of nicotine, and 10 mg of carbon monoxide. Only formaldehyde, acetaldehyde, butyraldehyde and valeraldehyde were detected in the ambient air samples, using both PFPH and DNPH methods. In comparative field tests with the classical DNPH–HPLC method, it was concluded that there were similarities between the two methods for the same carbonyls, although more carbonyl species were detected by the PFPH‐GC‐MS method. The PFPH‐GC‐MS method provides better separation for carbonyls with similar molecular structures, is highly sensitive, and provides mass spectrometric identity confirmation by the acquisition of structural information.
In recent years, there has been increasing attention given to the presence of aldehydes as disinfection and oxidation by‐products formed during drinking water treatment processes. Studies show that formaldehyde, acetaldehyde, glyoxal and methylglyoxal are the major organic by‐products produced during the ozonation of natural water.
Tsai and Chang [28] analysed aldehydes in three different types of samples (double distilled water, well water, and chlorinated tap water) using the SPME technique with on‐fibre derivatization. Poly(dimethylsiloxane)/divinylbenzene fibres were used, with O‐2,3,4,5,6‐(pentafluorobenzyl)hydroxylamine hydrochloride being first loaded onto the fibre. The aldehydes present in the samples were transferred into the headspace by agitation and extracted (the extraction was conducted for 10 min) by SPME with on‐fibre derivatization. GC‐MS was used for analysis of the oximes formed and the adsorption‐time profiles were examined. It was observed that the equilibrium times (10 min) were similar for most of the oximes formed on the fibre, with the exception of the formaldehyde oxime. The reason for the different adsorption time profile of formaldehyde was not clear. It was also observed that there were syn‐ and anti‐isomers of the oximes because aldehydes are asymmetrical carbonyl compounds (except formaldehyde). Investigation was made of the effects of salt additions (0, 10, and 20% NaCl) to samples of double distilled water, with only formaldehyde showing increased extraction as the concentration of salt added was increased. Similar results were observed for the addition of salt to well water and chlorinated tap water. The influence of different extraction temperatures (without heating, 40 and 60°C) was also investigated. The formaldehyde peak area increased in line with the temperature. It was concluded that the analysis of aldehydes in water by SPME with on‐fibre derivatization provided acceptable precision and sensitivity, with simple and fast procedures. The proposed method was suitable for the routine analysis of water samples.
Ho and Yu [37] determined formaldehyde and other carbonyl compounds in environments affected by incense burning in Chinese homes and temples. The sample air was trapped on a solid sorbent containing O‐(2,3,4,5,6‐pentafluorobenzyl)‐hydroxylamine for the derivatization of formaldehyde and other compounds, followed by thermal desorption and GC/MS analysis. The concentration of formaldehyde in a worship room (at a range of 340–346 ppbv) was higher that the concentrations in a temple yard (at a range of 154–247 ppbv) and outside the temple (11.1 ppbv). These results were correlated with the intensity of incense burning in the environment. The lowest concentration outside the temple could be explained by faster dispersion in the air of this environment. In the home, the sample was collected during and after incense burning (1 and 2 h). The level of formaldehyde decreased once the burning ended, proving that burning incense emits carbonyl species. In this work, formaldehyde was the most abundant carbonyl compound emitted from incense burning. The study showed that it is necessary to quantify the emission rates of toxic aldehyde species from various brands of incense.
Figure 4 illustrates environmental samples as sources of formaldehyde.
Environmental samples as sources of formaldehyde. Own authors, 2017, Deposit Photos [38], and Info Escola [39].
Chemical contamination is one of the leading causes of foodborne illnesses. Research involving food safety is necessary to preserve the health of the human population and ensure safe food production, distribution, and preparation. The development of new methods of risk analysis needs to include consideration of potentially susceptible populations as well as the combined low‐level exposure to several different chemicals. The US Environmental Protection Agency [40] has established an acceptable daily intake (ADI) for formaldehyde of 0.2 mg.kg−1 body weight, with the potential adverse health effects increasing at intakes higher than the ADI.
In 2012, Shin and Lim [34] developed a headspace solid‐phase micro‐extraction gas chromatography‐mass spectrometry (HS‐SPME GC‐MS) method for the detection of formaldehyde in traditional Korean fermented foods and applied the new method to real sample analysis. The focus of the research was the validation of a robotic sample preparation and detection methodology. Derivatization was performed by the reaction of FA with TFEH (2,2,2‐trifluoroethylhydrazine), a highly volatile hydrazine, using food samples contained in headspace vials. The volatile formaldehyde‐TFEH formed was vaporized, simultaneously adsorbed on a fibre, and then desorbed into the GC‐MS system. The limits of detection (LOD) and quantification (LOQ) for FA were 0.1 and 0.3 μg.kg−1, respectively. The accuracy and precision of this method were very good, with relative standard deviation less than 10%. The standard curve obtained by computing a least squares regression between the FA concentration and the peak area ratio of FA‐TFEH to acetone‐d6‐TFEH (as internal standard) demonstrated a linear relationship, with a correlation coefficient value of 0.999. The developed method was employed to analyse the concentrations of formaldehyde in 20 samples of traditional Korean foods including kimchi, water radish kimchi, soya bean paste, red pepper paste, soya sauce, and bean‐paste soup. All the samples presented detectable levels of formaldehyde in the range from 0.104 to 13.048 mg.kg−1. The Korean traditional fermented foods generally contained low levels of formaldehyde, although a red pepper paste sample exceeded the 10 mg.kg−1 limit for crustaceans established by the Italian Ministry of Health.
Bianchi et al. [26] determined the formaldehyde contents of different fish and shellfish maintained under different conditions. Validation was performed of an SPME‐GC–selective ion monitoring (SIM)‐MS method using a CAR‐PDMS fibre, based on in‐situ on‐fibre derivatization with PFBHA, and 12 species of fresh, frozen, stored‐on‐ice, boiled, roasted, and canned fish were analysed. The fibre was exposed to the headspace of a vial containing an aqueous solution of PFBHA. Fish and fish products fulfil an important role in human nutrition as a source of biologically‐valuable proteins, fats, and fat‐soluble vitamins, with frozen and fresh fish being the most widely sold products. In fish and crustaceans, formaldehyde is known to form post mortem from the enzymatic reduction of trimethylamine‐N‐oxide (TMAO) to formaldehyde and dimethylamine [41, 42]. It accumulates during frozen storage, reacts with proteins, and consequently causes protein denaturation and muscle toughness [41].
The performance of the SPME‐GC‐MS method developed by Bianchi et al. [26] was demonstrated in the determination of formaldehyde at trace levels, with LOD and LOQ values at 17 and 28 μg.kg−1, respectively, obtained using a blank trout sample. The precision of the method was evaluated in terms of repeatability and between‐day precision, with CV% values lower than 3.2% and 9.7% obtained, respectively. No significant differences, at the 95% confidence interval, were found among the mean values for data obtained over 3 days (p = 0.127). An extraction recovery of 94.8 ± 1.7% (n = 3) was obtained after spiking blank fish samples with formaldehyde at 2.5 mg.kg−1. The data obtained for the various samples generally indicated that no adverse effects on human health would be expected due to consumption of the fish and shellfish. However, higher formaldehyde levels were found in species belonging to the Gadidae family, while the freshwater fish and crustaceans generally presented lower values. Evaluation was also made in the influence of cooking, which acted to reduce the formaldehyde contents of the samples analysed.
Wang and co‐authors [24] applied HS‐SPME analysis of low molecular mass (C1–C10) aldehydes to aqueous solutions of dry white wine, fish, and particle board samples, using PFPH and PFBHA for on‐fibre derivatization using fibres coated with PDMS‐DVB. Background contamination peaks were observed, most notably for formaldehyde, as found previously in a number of other studies. Using PFBHA, typical formaldehyde concentrations observed were in the region of 25 μg.L−1. The concentrations obtained using PFPH were significantly higher, at approximately 65 μg.L−1, indicating a higher level of impurity in the derivatization reagent. Further precautions would be necessary in order to improve the sensitivity and accuracy of the methods for the determination of formaldehyde at low concentrations. Of all the aldehydes studied, formaldehyde showed a steadier increase in derivative formation with extraction time, in the range tested, using both derivatization reagents. This could be explained by the greater affinity of formaldehyde towards the aqueous phase, compared to the other aldehydes studied. Another observation was that formaldehyde presented by far the lowest extraction efficiency, compared to the other aldehydes, with approximately 50% remaining for the second extraction. This was also probably linked to the affinity of this substance for the aqueous phase, which reduced the rate at which it was transferred from the sample to the fibre. The detection limit, linear range, and reproducibility for formaldehyde using the PFPH method were 65, 65–250 μg.L−1 (R2 = 0.9910), and 10.7%, respectively. The corresponding values for the PFBHA method were 25, 25–250 μg.L−1 (R2 = 0.9955), and 10.5%, respectively.
The developed PFBHA method was applied to the three different sample matrices (particle board, white wine, and fish). In the case of the particle board sample, it was no surprise to find that the predominant aldehyde was formaldehyde, due to its use as an adhesive in the material. The formaldehyde could not be quantified because the concentration was significantly above the linear range of the method. No formaldehyde was detected in the wine samples. In the raw fish sample, the formaldehyde concentration was again too high for quantification.
The authors concluded that in aldehyde headspace analysis by SPME‐GC‐FID, use of the PFBHA reagent provided superior on‐fibre derivatization, compared to PFPH, under the conditions employed, with detection limits from the low‐ to sub‐microgram level per litre. The automated method was successfully applied to a variety of sample types and could handle samples containing elevated levels (10,000 μg.L−1) of formaldehyde. GC‐MS analyses were performed and compound identifications were made using spectral libraries supplied with the software.
Formaldehyde can occur naturally (endogenously) in many foods and is sometimes used illegally as a food preservative in aquatic products. Due to this, many countries have investigated the form and content of formaldehyde, especially in seafood [34]. For example, the European Commission released an alert notification after finding that shiitake mushrooms from China contained 300 mg/kg of formaldehyde and suggested the possibility that the aldehyde had been added deliberately [33 apud 43]. Yeh and co‐authors [33] analysed free and bound formaldehyde in squid and squid products by GC‐MS and performed comparative studies with HPC‐UV. A comparison was made of free formaldehyde with free and reversibly bound formaldehyde, and similar results were obtained using HPLC‐UV and GC‐MS.
The GC‐MS method provides additional information on the structure of the compound, for example, using mass fragmentation data for identity confirmation. The HPLC‐UV method is not specific to the compound studied and is more liable to matrix effects. In the study by Yeh et al. [33], exposure to formaldehyde due to the consumption of squid and squid products was found to be less than 0.2 mg/kg/d, which is the oral reference dose suggested by the United States EPA.
Figure 5 illustrates foods as source of formaldehyde.
Foods as sources of formaldehyde. Source: Own authors, 2017, Sabor Saudável [44], Info Escola [39].
Excipients are substances added to pharmaceuticals in order to ensure the stability and biopharmaceutical properties of the products as well as to improve the organoleptic characteristics and hence increase the patients’ acceptance of the formulations. Excipients can be variously classified as follows: preservatives, colourants, flavourings, sweeteners, thickeners, emulsifiers, stabilizers, antioxidants, diluents, humectants, solvents, absorption promoters, and extended release matrices [43].
In 2004, Riveiro and Topiwala [45] developed and optimized an analytical methodology for the extraction of formaldehyde present in cosmetics (shampoos and liquid soaps), using in situ derivatization followed by solid‐phase headspace microextraction. The headspace derivatization process was carried out on a PDMS‐DVB‐coated fibre, followed by extraction for 15 min at 35°C, resulting in an efficiency of around 80%. Sodium chloride was identified as the best salt for the salting‐out process. The best analyte desorption time was 5 min, giving an efficiency of 99.8%. The precision, recovery, and detection limit were determined for all the samples. The relative standard deviations were less than 10% for all the cosmetics samples, with recoveries between 89.00 and 101.23%, and the limit of detection was 0.39 μg.L−1. The proposed method was considered suitable for use in the routine analysis of cosmetics products, offering the advantages of speed and no requirements for the use of large volumes of solvents.
Del Barrio et al. [46] reported that formaldehyde is a common impurity in many excipients, such as polysorbate, povidone, and polyethylene glycol 300 and that it can form crosslinks with gelatin, leading to incomplete capsule shell dissolution and subsequent drug release problems. Due to oxidation on contact with air, formaldehyde is partially converted to formic acid. Hence, these impurities can coexist in many excipients and can react with active drugs, affecting their stability, so for this reason, it is very important to develop rapid, sensitive, and reliable analytical methods to simultaneously determine formaldehyde, formic acid, and formic acid esters.
Del Barrio et al. [47] developed and validated a GC‐MS method for the simultaneous determination of formic acid and formaldehyde in pharmaceutical excipients. An alcohol was selected as the reagent, because both formic acid and formaldehyde can readily react with alcohols, in the presence of an acidic catalyst, to give the corresponding ester and acetyl compounds, respectively, which are volatile and suitable for GC determination. Besides that, the alcohol was used as a solvent to dissolve or disperse the excipients and assist completion of the derivatization reactions. Following evaluation trials, ethanol was selected as the derivatization reagent and solvent, while p‐toluenesulfonic acid was used as the catalyst.
Using the SIM mode, the performance of the GC‐MS method was evaluated in terms of linearity, range, detection limit, precision, and accuracy, and this mode was subsequently used in the screening of pharmaceutical excipients. Using this method, it was found that almost all the excipients contained varying levels of formic acid and formaldehyde. The good recoveries of both analytes (within the range of 80–120%) indicated that matrix effects were insignificant for the excipients tested. A total of 28 excipients were screened, covering a range of formulations varying in grade, batch, and/or vendor.
Hair products are among the most widely used cosmetics, and the market is growing in Brazil. With an average annual growth of 11% over the last 10 years, Brazil has achieved third place in the world ranking for consumption of cosmetics. Formaldehyde is the chemical compound most widely used in hair products to alter the protein structure of the hair and provide smoothing. In 2001, the National Health Surveillance Agency, which is a branch of the Brazilian Ministry of Health, issued a decree to control the use of formaldehyde, restricting it to a maximum concentration of 0.2% in cosmetics.
Lobo et al. [32] developed a method for the quantification of formaldehyde in hair straightening creams collected at various salons of a city in Brazil, using 2,4‐DNPH as a derivatization reagent and analysis by GC‐MS. The pH is an important factor in this reaction, due to competition between the nucleophilicity and basicity of 2,4‐DNPH. The compound formed is formaldehyde‐2,4‐dinitrophenylhydrazone, and the mass spectrum for a well‐defined peak identified in the chromatogram corresponded to the reference spectrum available in the National Institute of Standards and Technology (NIST) database. Identification of formaldehyde‐DNPH was confirmed by the presence of the molecular ion (m/z = 210) and its characteristic fragmentation pattern.
In this work, the optimization studies included comparison of the sensitivities of two different procedures, with either external calibration or the use of standard additions. Significant interference from the sample matrix was observed (with decreased sensitivity) so the standard additions method was selected for quantification of formaldehyde in the hair cream samples. As expected, the sensitivity values were significantly different for the two calibration procedures adopted.
The LOD and LOQ values were calculated for each analytical curve of each sample. The values obtained were less than or equal to 0.0165 and 0.055 mg.L−1, respectively. The standard deviation and relative standard deviation obtained were lower than or equal to 81.36 and 18.67%, respectively. The recoveries of known amounts of standards from blank cream samples were in the range from 88 to 115%. Satisfactory results were obtained for formaldehyde‐2,4 DNPH standard solutions, enabling the determination of formaldehyde in the real samples. The levels of formaldehyde found in some hair cream samples exceeded the limit permitted according to Brazilian law, giving rise to health concerns, especially for users of these products in hair salons.
Use of dental prostheses on a daily basis can, in some individuals, lead to allergies associated with certain chemicals used in the production of the devices, including methyl methacrylate, ethylene glycol dimethacrylate, hydroquinone, and especially formaldehyde. Mikai and Fuji (2006) [47] carried out a study to evaluate the presence of these substances in several types of denture samples. The materials were prepared by washing, using appropriate agents, and were then sliced into 10‐mm‐wide portions that were completely immersed in 10 mL of methanol in borosilicate tubes. The tubes were shaken 80 times for 1 min. The procedure was repeated over 4 weeks, with the samples kept in the dark at 37°C. Finally, the eluate was removed, filtered through a 0.2‐μm pore size membrane and analysed using GC‐MS and HPLC. The results showed that all the samples contained formaldehyde in their compositions, and it was concluded that this substance was a strong candidate for causing allergies.
Figure 6 illustrates cosmetics as source of formaldehyde.
Cosmetics as source of formaldehyde Source: Own authors, 2017; Dreamstime, 2017 [48], Clip Art, 2017 [49], and Info Escola, 2017 [39].
Formaldehyde is a substance widely used for many purposes worldwide. However, it is considered carcinogenic by international agencies. The present chapter describes some important work on the determination of formaldehyde in different sample types using mass spectrometry. This brief discussion demonstrates that mass spectrometry can make a valuable contribution to the determination of commonly encountered toxic compounds such as formaldehyde.
An acknowledgement is given to the Brazilian National Council for Scientific and Technological Development [Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (projects 479273/2013‐8 and 420266/2013‐5)], the Research Support Foundation of Minas Gerais [Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG) (projects CEX‐APQ‐01850‐14 and SICONV 793988/2013)], the Minas Gerais Chemical Network [Rede Mineira de Química (RQ‐MG) (FAPEMIG CEX‐RED‐00010‐14)], and the Pro‐Vice Chancellor’s Office for Research and Graduate Studies [Pró‐Reitoria de Pesquisa e Pós‐Graduação (PROPP)] of the Federal University of Ouro Preto [Universidade Federal de Ouro Preto (UFOP)] for their scholarships and financial support.
Technical Vocational Education and Training (TVET) is a globally recognized process for preparing people for dynamic engagement in occupations of functional value. It is an effective source of skilled workforce. It is an effective tool for employment generation, wealth creation and crime reduction. UNESCO [1] defined TVET as all forms and aspects of education that are technical or vocational in nature and skill oriented, provided either in educational institutions or under their authority, by public authorities and private sectors or through other forms of organised education, formal, informal or non-formal, aiming to ensure that all members of the community have access to the pathways of lifelong learning. TVET is defined as an integral part of general education which prepares its recipients for occupational fields and effective participation in the world of work. It is an aspect of lifelong learning and a preparation for responsible citizenship, which helps to promote environmentally sound sustainable development and facilitate poverty alleviation. The goal of TVET is to fight indolence, develop skills, provide knowledge and build attitudes required for entry and progressing in any chosen occupation.
However, TVET today faces huge demands globally due to high level of unemployment. Access to skill acquisition is low in relation to the potential trade. High educational entry requirements exclude the majority of youths and young adults. Female participation is relatively low in TVET and concentrated in female-dominated occupations. Geographical imbalances also exist—with low enrolments in rural and low-income areas [2]. The quality of TVET graduates has been portrayed as extremely low, as the majority graduate without employable skills. They lacked the applied technical skills necessary for solving problems and enhancing business productivity and knowledge required by industry. Therefore, they cannot take advantage of available employment opportunities; neither can they create employment, due to gross skill deficiency [3]. Low performance of candidates on terminal examinations is symptomatic of low quality. And symptoms of faulty TVET training include mismatches between supply and demand, employer complaints and low employment rates for graduates. For TVET to achieve its envisaged objectives, it must be properly strengthened (UNESCO, [4]; United Nations, [5]).
The infrastructure needed to deliver quality and practical oriented TVET courses requires huge investment in capital. Both hard and soft infrastructure is needed to prop up the system. Challenges of attaining quality TVET programmes have been discovered to include lack of required TVET facilities, poor funding of TVET programmes and the use of obsolete facilities. Inadequate funding may have been indicted in the poor infrastructural support needed to drive quality delivery of TVET courses [3]. This limitation frustrates the integration of entrepreneurship and practical skills in TVET programmes especially in developing countries. The lack of support infrastructure and infrastructural failures results to high transaction costs which makes delivery very expensive, and since economy has not been friendly, inefficiency has prevailed.
Puyate [6] pointed out that the present state of vocational and technical education facilities is very poor; there is no planned means of maintenance of the already broken-down equipment or means of purchasing new ones, and there is little or no concern on the part of government, teachers and students for the improvement of the present state of teaching facilities. This limits effective skill acquisition by students leading to production of unskilled TVET graduates who cannot fit into gainful employment. Surveys show that only about 40% of TVET institutions of higher learning have laboratory or workshop space for technical education programmes and that the other 60% do not have laboratory or workshop space and that this reflects the low quality of technology programmes in higher institutions. He further noted that these few universities that have laboratories experience acute shortage of laboratory equipment and supplies. Puyate (4) concluded that this situation is partly responsible for the reason why it has been increasingly difficult to run experiments effectively for students and made the teaching and research in science and technology difficult, and therefore the country was producing insufficient and ill-prepared technical education graduates necessary for driving the technological and socio-economic development of this nation. Uwaifo [7] lamented that due to inadequacy of instructional facilities, only a small proportion of the students benefit from the current pedagogical system used in developing countries like Nigeria, especially in technical and vocational education. Unavailability of facilities has caused the use of ineffective methods of teaching and learning. There is dearth of ICT facilities for the training of students. Access to affordable and reliable Internet connectivity is only available in a few institutions, faculties and offices, and power fluctuations and deficient bandwidth have considerably reduced reliability of the access and made things difficult [7].
There are basically two branches of TVET: the technical and vocational areas. Effective teaching and learning of any branch of technical and vocational education can be made easier and interesting through the use of appropriate and adequately provided learning facilities as well as the adoption of the right teaching and learning methods. Inadequacies in teaching, as well as laboratory and workshop facilities, have contributed in no small measure to the diminution of the quality of technical education graduates. Uwaifo [7] lamented that only a small proportion of the students benefit from the current system used in technical and vocational education, proving that only those who learn easily if information is in written or spoken form (verbalizers) can learn in the present situation. This calls for a more effective method in an encouraging environment. Virtual reality has been found effective for learning in different fields and for different types of learners.
Virtual reality is a computer-generated, three-dimensional, multimedia environment. Virtual reality is an environment produced by a computer that looks and seems real to the person experiencing it [8]. It means experiencing things through computers when such things did not really exist [9]. It is a simulation of a real or imagined environment that can be experienced visually in the three dimensions of width, height and depth and that may additionally provide an interactive experience visually in full real-time motion with sound and feedback [10]. Virtual reality, therefore, is a computer-simulated, game-based learning environment, which appears real and gives learners the opportunity to interact with the learning materials and share learning experiences with both their teachers and other learners. In virtual reality, human participants can engage and manipulate simulated physical elements in the environment and interact with fictional or simulated components. Virtual reality allows the user to perform actions and observe their consequences but without penalties as experienced in real situations.
Virtual reality can be traced back to the nineteenth century. The term “virtual reality” was first used in the mid-1980s when Jaron Lanier, founder of VPL Research, began to develop the gear, including goggles and gloves, needed to experience what he called “virtual reality.” But before then, some technologists were developing simulated environments. A major landmark was made in 1956 when the Sensorama was built. Morton Heilig was interested in using it for the Hollywood motion picture industry. He wanted people to get the feeling of being in the movie. The Sensorama experience simulated a real city environment, which one could ride through on a motorcycle. The rider experiences a multisensory stimulation, which provides the opportunity to see the road, hear the engine, feel the vibration and smell the motor’s exhaust in the designed virtual world. In 1960, Heilig patented a head-mounted display device, called the Telesphere Mask.
In 1965, another inventor, Ivan Sutherland, built upon the foundational work of Heilig to achieve “the Ultimate Display,” a head-mounted device that he suggested would serve as a “window into a virtual world.” The 1970s and 1980s were a heady time in the field. Optical advances in the 1970s and 1980s produced haptic devices and other instruments that would allow you to move around in the virtual space. For example, in the mid-1980s, the Virtual Interface Environment Workstation (VIEW) system was built by NASA to combine a head-mounted device with gloves to enable the haptic interaction.
The evolution of virtual reality has provided means of carrying out experiments which would not otherwise be possible owing to availability, accessibility and cost of equipment, tools and materials, as well as safety of human and material resources. Although virtual reality does not replace real objects, it helps to carry out experiments before it is done in the real world. It has been proven to contain a feature which appeals to every faculty of learning. Virtual reality can be used to simulate a real environment for training, education and an imagined environment for interaction [9]. Virtual reality proved effective when used to augment physical facilities for learning in many fields, like teaching architecture [11]; teaching physics [12]; welder training [13]; teaching painting [14]; teaching physical education [15, 16, 17, 18]; training in fire safety [19]; teaching safety rules [20, 21, 22]; teaching electric power supply systems [23]; teaching biology [24]; and teaching electronic circuit construction [3], among many others. In virtual reality, students can work at their own pace to master the skills needed, get periodic feedback and have the opportunity to correct their mistakes without loss of materials, damage to equipment and injury to human beings and materials [25]. Virtual reality provides an opportunity to accurately and realistically simulate dangerous or risky situations and make them safe for learning before engaging in the real situation. Virtual reality can deconstruct complex procedures into convenient actions with each student learning at a different pace [26]. It helps in visualisation of complex concepts and theories as well as exploration of virtual scenarios in the form of real-world settings. It stimulates interaction, ensures that learning is fun and enjoyable and permits cost-effectiveness [27]. Virtual reality encourages students’ participation, reduces distractions and increases attention span of students. By doing so, learning of technology education may become a more interactive process, playful and experimental—like the action-oriented approach of learning. The fondness of young people on computer games gave credence to the adoption of virtual reality as an educational tool [3, 28, 29] for teaching and learning of technology education.
There are two principal ways of using virtual reality in the classroom. The first way involves a traditional desktop set-up. This form of virtual reality is called desktop, fish tank [30, 31] or simply non-immersive virtual reality [3] and used interchangeably in this study. Desktop virtual reality is presented on an ordinary computer screen and is usually explored by keyboard, mouse, wand, joystick or touch screen [32, 33]. The second way is the immersive system. Immersive virtual reality is presented on multiple, room-size screens or through a stereoscopic, head-mounted display unit [34]. Additional specialized equipment such as a data glove enables the participant to interact with the virtual environment through normal body movements. Sensors on the head unit and data glove track the viewer’s movements during exploration and provide feedback. This environment may take the form of a series of large screens or a complete cave automatic virtual reality system [35].
Desktop virtual reality is quite affordable as compared to immersive virtual reality, thereby making the choice suitable for studies in medium-income economies as experienced in developing countries. Besides, there is no overwhelmingly conclusive evidence that immersive systems are more effective in educational applications than their non-immersive counterparts [34]. Rather, the non-immersive virtual reality is much more mature and widely used in different educational areas as compared to the immersive virtual reality which is cumbersome, expensive and occupies much space [36]. Studies have shown that desktop virtual reality technology can enhance academic achievement [3, 37, 38, 39, 40]. Moreover, there are unresolved questions relating to health and safety issues, such as motion sickness, simulator sickness and perceptual shift that arise in the use of immersive virtual reality systems [41, 42, 43]. Literature revealed headaches, nausea, balance upsets and other physical effects of head-mounted device systems. One other concern is the potential side effects and after effects of virtual reality exposure. Some other effects could include cybersickness, a type of motion sickness caused by the virtual reality experience, perceptual-motor disturbances, flashbacks and generally lowered arousal [44]. Desktop virtual reality is user friendly. Woodford [9] emphasised that desktop virtual reality is collaborative, unlike its immersive counterparts. Collaboration is a vital aspect of effective learning in skill-related fields like technology education.
Youngblut [36] conducted an extensive survey research on educational uses of virtual reality technology. Youngblut’s study found unique capabilities of virtual reality in boosting academic achievement. This study showed potential educational effectiveness even for students with special needs. The role of the teacher changed from director of learning activities to facilitator. It was reported that students enjoyed using predeveloped applications and developing their own virtual worlds. The majority of the teachers in the studies reviewed said they would use virtual reality technology if it were affordable, available and easy to use for students and teachers. Chen [45] carried out an experimental study titled “Virtual Space and Its Effects on Learning.” The aim of the study was to find out how virtual reality can influence the learning of technology skills. The study showed that virtual reality is an effective tool for teaching and learning skills. However, Chen [45] asserts that although virtual reality is recognized as an impressive learning tool, there are still many issues that need further investigation including identifying the appropriate theories and/or models to guide its design and development, finding out whether its use can improve the intended performance and understanding and investigating ways to reach more effective learning when using this technology and its impact on learners with different aptitudes. Lee et al. [24] researched on learning effectiveness in a desktop virtual reality-based learning environment. The learning effectiveness was measured through three specific purposes: academic performance, perceived learning and satisfaction. There was a significant difference in the academic performance, perceived learning and satisfaction between the two groups. It was concluded that the virtual reality instructional programme positively affected the students’ academic achievement and their perceived learning quality and satisfaction. The study of Lee et al. [24] helped to justify the desktop virtual reality for this study.
Onele [46] carried out a study on effects of teaching methods in virtual reality on the interest and academic achievement of electronic technology education students in Nigerian universities. It adopted a pretest-posttest quasi-experimental design. ElectricVLab designed and supplied by Quality Assurance International LLC, Massachusetts, in the USA, was used to provide the virtual learning setting for students to learn electronic technology education. The study found that student achieved high with virtual reality; there was no significant difference between the achievement of male students in demonstration and their counterparts in peer tutoring class. However, female students in peer tutoring class achieved significantly higher than their counterparts in the demonstration class. Moreover, students from both classes indicated high interest in the study of electronic technology education using virtual reality. The research identified a significant interaction effect between teaching methods.
It is true that virtual reality has existed for decades; its use is new to education, especially in developing countries. Research on applications of virtual reality technology to education is in its infancy, especially in Africa [47], and for teaching and learning in industrial-related training like technology education [3]. Such a situation presents both challenges and opportunities for instructors and researchers interested in virtual reality technology. One of those challenges is the selection of right teaching methods when virtual reality is involved. Some of the studies were on how to arrange lessons, how these arrangements affect students’ behaviour, and in the long term, how they affect students’ academic achievement. Yet, there does not seem to be a sufficiently conclusive and prescriptive body of research to guide the instructional method and classroom facilitation of virtual reality technologies [3, 48, 49, 50, 51]. Researchers lamented dearth of empirical evidences to help instructors make the right choice of teaching methods in virtual reality [52, 53, 54]. Thus, researchers and educators interested in classroom uses and methods in virtual reality technologies do not yet have either a sound theoretical framework or a strong body of empirical data from controlled experiments with which to work. Anderson [55] believes that the use of virtual reality as a learning environment will require a thorough pedagogical consideration by educators in order to choose the most appropriate and suitable teaching methods, especially for teaching and learning of technology education.
IntechOpen aims to ensure that original material is published while at the same time giving significant freedom to our Authors. To that end we maintain a flexible Copyright Policy guaranteeing that there is no transfer of copyright to the publisher and Authors retain exclusive copyright to their Work.
',metaTitle:"Publication Agreement - Chapters",metaDescription:"IN TECH aims to guarantee that original material is published while at the same time giving significant freedom to our authors. For that matter, we uphold a flexible copyright policy meaning that there is no transfer of copyright to the publisher and authors retain exclusive copyright to their work.\n\nWhen submitting a manuscript the Corresponding Author is required to accept the terms and conditions set forth in our Publication Agreement as follows:",metaKeywords:null,canonicalURL:"/page/publication-agreement-chapters",contentRaw:'[{"type":"htmlEditorComponent","content":"The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\\n\\n1. DEFINITIONS
\\n\\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\\n\\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\\n\\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\\n\\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\\n\\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\\n\\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\\n\\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\\n\\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\\n\\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\\n\\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\\n\\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\\n\\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\\n\\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\\n\\n3. CORRESPONDING AUTHOR'S DUTIES
\\n\\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\\n\\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\\n\\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\\n\\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\\n\\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\\n\\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\\n\\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\\n\\n4. CORRESPONDING AUTHOR'S WARRANTY
\\n\\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\\n\\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\\n\\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\\n\\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\\n\\n5. TERMINATION
\\n\\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\\n\\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\\n\\n6. INTECHOPEN’S DUTIES AND RIGHTS
\\n\\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\\n\\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\\n\\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\\n\\n7. MISCELLANEOUS
\\n\\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\\n\\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\\n\\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\\n\\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\\n\\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\\n\\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\\n\\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\\n\\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\\n\\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\\n\\nLast updated: 2020-11-27
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:"
The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\n\n1. DEFINITIONS
\n\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\n\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\n\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\n\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\n\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\n\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\n\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\n\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\n\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\n\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\n\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\n\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\n\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\n\n3. CORRESPONDING AUTHOR'S DUTIES
\n\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\n\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\n\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\n\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\n\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\n\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\n\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\n\n4. CORRESPONDING AUTHOR'S WARRANTY
\n\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\n\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\n\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\n\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\n\n5. TERMINATION
\n\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\n\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\n\n6. INTECHOPEN’S DUTIES AND RIGHTS
\n\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\n\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\n\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\n\n7. MISCELLANEOUS
\n\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\n\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\n\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\n\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\n\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\n\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\n\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\n\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\n\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\n\nLast updated: 2020-11-27
\n\n\n\n
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5699},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10244},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15650}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"20"},books:[{type:"book",id:"10206",title:"Terahertz Technology",subtitle:null,isOpenForSubmission:!0,hash:"2cdb79bf6297623f1d6202ef11f099c4",slug:null,bookSignature:"Dr. Borwen You and Dr. Ja-Yu Lu",coverURL:"https://cdn.intechopen.com/books/images_new/10206.jpg",editedByType:null,editors:[{id:"191131",title:"Dr.",name:"Borwen",surname:"You",slug:"borwen-you",fullName:"Borwen You"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10575",title:"Magnetic Skyrmions",subtitle:null,isOpenForSubmission:!0,hash:"d93d7485e8a6a30d9e069aed78fdb355",slug:null,bookSignature:"Prof. Dipti Ranjan Sahu",coverURL:"https://cdn.intechopen.com/books/images_new/10575.jpg",editedByType:null,editors:[{id:"251855",title:"Prof.",name:"Dipti Ranjan",surname:"Sahu",slug:"dipti-ranjan-sahu",fullName:"Dipti Ranjan Sahu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10957",title:"Liquid Crystals",subtitle:null,isOpenForSubmission:!0,hash:"b8dac1788dc54d12f8fc3d94a7e3e338",slug:null,bookSignature:"",coverURL:"//cdnintech.com/web/frontend/www/assets/cover.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:15},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:4},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:56},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:5},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:4},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5145},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"106",title:"Natural Disaster",slug:"natural-disaster",parent:{title:"Earth and Planetary Sciences",slug:"earth-and-planetary-sciences"},numberOfBooks:10,numberOfAuthorsAndEditors:190,numberOfWosCitations:212,numberOfCrossrefCitations:188,numberOfDimensionsCitations:419,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"natural-disaster",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8979",title:"Tsunami",subtitle:"Damage Assessment and Medical Triage",isOpenForSubmission:!1,hash:"6c1406cbfe8404151d13f3d7236d38fa",slug:"tsunami-damage-assessment-and-medical-triage",bookSignature:"Mohammad Mokhtari",coverURL:"https://cdn.intechopen.com/books/images_new/8979.jpg",editedByType:"Edited by",editors:[{id:"52451",title:"Dr.",name:"Mohammad",middleName:null,surname:"Mokhtari",slug:"mohammad-mokhtari",fullName:"Mohammad Mokhtari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9983",title:"Flood Impact Mitigation and Resilience Enhancement",subtitle:null,isOpenForSubmission:!1,hash:"ce1f62165377d01892a7c7f1b17e43c9",slug:"flood-impact-mitigation-and-resilience-enhancement",bookSignature:"Guangwei Huang",coverURL:"https://cdn.intechopen.com/books/images_new/9983.jpg",editedByType:"Edited by",editors:[{id:"262657",title:"Prof.",name:"Guangwei",middleName:null,surname:"Huang",slug:"guangwei-huang",fullName:"Guangwei Huang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8011",title:"Natural Hazards",subtitle:"Risk, Exposure, Response, and Resilience",isOpenForSubmission:!1,hash:"43ca8c43ab0963f6c43350764f696b63",slug:"natural-hazards-risk-exposure-response-and-resilience",bookSignature:"John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/8011.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",middleName:null,surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6821",title:"Natural Hazards",subtitle:"Risk Assessment and Vulnerability Reduction",isOpenForSubmission:!1,hash:"855e55f0cd51410f7013bb47181d3321",slug:"natural-hazards-risk-assessment-and-vulnerability-reduction",bookSignature:"José Simão Antunes do Carmo",coverURL:"https://cdn.intechopen.com/books/images_new/6821.jpg",editedByType:"Edited by",editors:[{id:"67904",title:"Prof.",name:"José Simão",middleName:null,surname:"Antunes Do Carmo",slug:"jose-simao-antunes-do-carmo",fullName:"José Simão Antunes Do Carmo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6018",title:"Flood Risk Management",subtitle:null,isOpenForSubmission:!1,hash:"e1c40b989aeffdd119ee3876621fa35d",slug:"flood-risk-management",bookSignature:"Theodore Hromadka and Prasada Rao",coverURL:"https://cdn.intechopen.com/books/images_new/6018.jpg",editedByType:"Edited by",editors:[{id:"181008",title:"Dr.",name:"Theodore",middleName:null,surname:"Hromadka",slug:"theodore-hromadka",fullName:"Theodore Hromadka"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5499",title:"Earthquakes",subtitle:"Tectonics, Hazard and Risk Mitigation",isOpenForSubmission:!1,hash:"a02b8c4079277fc2301b3fac46856ca4",slug:"earthquakes-tectonics-hazard-and-risk-mitigation",bookSignature:"Taher Zouaghi",coverURL:"https://cdn.intechopen.com/books/images_new/5499.jpg",editedByType:"Edited by",editors:[{id:"39860",title:"Dr.",name:"Taher",middleName:null,surname:"Zouaghi",slug:"taher-zouaghi",fullName:"Taher Zouaghi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3507",title:"Natural Disasters",subtitle:"Multifaceted Aspects in Management and Impact Assessment",isOpenForSubmission:!1,hash:"3608e266119f43880a9067fc25deaa4c",slug:"natural-disasters-multifaceted-aspects-in-management-and-impact-assessment",bookSignature:"Olga Petrucci",coverURL:"https://cdn.intechopen.com/books/images_new/3507.jpg",editedByType:"Edited by",editors:[{id:"76678",title:"Dr.",name:"Olga",middleName:null,surname:"Petrucci",slug:"olga-petrucci",fullName:"Olga Petrucci"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3088",title:"Updates in Volcanology",subtitle:"New Advances in Understanding Volcanic Systems",isOpenForSubmission:!1,hash:"16d9b1a78c646969f6405d7e17039df5",slug:"updates-in-volcanology-new-advances-in-understanding-volcanic-systems",bookSignature:"Karoly Nemeth",coverURL:"https://cdn.intechopen.com/books/images_new/3088.jpg",editedByType:"Edited by",editors:[{id:"51162",title:"Dr.",name:"Karoly",middleName:null,surname:"Nemeth",slug:"karoly-nemeth",fullName:"Karoly Nemeth"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"600",title:"Approaches to Managing Disaster",subtitle:"Assessing Hazards, Emergencies and Disaster Impacts",isOpenForSubmission:!1,hash:"e97caba8487382025a1e70eb85e4e390",slug:"approaches-to-managing-disaster-assessing-hazards-emergencies-and-disaster-impacts",bookSignature:"John Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/600.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",middleName:null,surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"863",title:"Natural Disasters",subtitle:null,isOpenForSubmission:!1,hash:"7d03632c95c81e3de1eba473b9975204",slug:"natural-disasters",bookSignature:"Sorin Cheval",coverURL:"https://cdn.intechopen.com/books/images_new/863.jpg",editedByType:"Edited by",editors:[{id:"123456",title:"Dr.",name:"Sorin",middleName:null,surname:"Cheval",slug:"sorin-cheval",fullName:"Sorin Cheval"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:10,mostCitedChapters:[{id:"31818",doi:"10.5772/28441",title:"Comprehensive Monitoring of Wildfires in Europe: The European Forest Fire Information System (EFFIS)",slug:"comprehensive-monitoring-of-wildfires-in-europe-the-european-forest-fire-information-system-effis-",totalDownloads:3826,totalCrossrefCites:52,totalDimensionsCites:115,book:{slug:"approaches-to-managing-disaster-assessing-hazards-emergencies-and-disaster-impacts",title:"Approaches to Managing Disaster",fullTitle:"Approaches to Managing Disaster - Assessing Hazards, Emergencies and Disaster Impacts"},signatures:"Jesús San-Miguel-Ayanz, Ernst Schulte, Guido Schmuck, Andrea Camia, Peter Strobl, Giorgio Liberta, Cristiano Giovando, Roberto Boca, Fernando Sedano, Pieter Kempeneers, Daniel McInerney, Ceri Withmore, Sandra Santos de Oliveira, Marcos Rodrigues, Tracy Durrant, Paolo Corti, Friderike Oehler, Lara Vilar and Giuseppe Amatulli",authors:[{id:"73894",title:"Dr.",name:"Jesús",middleName:null,surname:"San-Miguel-Ayanz",slug:"jesus-san-miguel-ayanz",fullName:"Jesús San-Miguel-Ayanz"},{id:"126055",title:"MSc.",name:"Ernst",middleName:null,surname:"Schulte",slug:"ernst-schulte",fullName:"Ernst Schulte"},{id:"126056",title:"Dr.",name:"Guido",middleName:null,surname:"Schmuck",slug:"guido-schmuck",fullName:"Guido Schmuck"},{id:"126057",title:"Dr.",name:"Andrea",middleName:null,surname:"Camia",slug:"andrea-camia",fullName:"Andrea Camia"},{id:"126058",title:"Dr.",name:"Peter",middleName:null,surname:"Strobl",slug:"peter-strobl",fullName:"Peter Strobl"},{id:"126059",title:"Mr.",name:"Giorgio",middleName:null,surname:"Liberta",slug:"giorgio-liberta",fullName:"Giorgio Liberta"},{id:"126060",title:"MSc.",name:"Cristiano",middleName:null,surname:"Giovando",slug:"cristiano-giovando",fullName:"Cristiano Giovando"},{id:"126061",title:"BSc.",name:"Roberto",middleName:null,surname:"Boca",slug:"roberto-boca",fullName:"Roberto Boca"},{id:"126062",title:"Dr.",name:"Fernando",middleName:null,surname:"Sedano",slug:"fernando-sedano",fullName:"Fernando Sedano"},{id:"126063",title:"Dr.",name:"Pieter",middleName:null,surname:"Kempeners",slug:"pieter-kempeners",fullName:"Pieter Kempeners"},{id:"126064",title:"Dr.",name:"Daniel",middleName:null,surname:"McInerney",slug:"daniel-mcinerney",fullName:"Daniel McInerney"},{id:"126066",title:"BSc.",name:"Ceri",middleName:null,surname:"Whitmore",slug:"ceri-whitmore",fullName:"Ceri Whitmore"},{id:"126068",title:"MSc.",name:"Sandra",middleName:null,surname:"Santos De Oliveira",slug:"sandra-santos-de-oliveira",fullName:"Sandra Santos De Oliveira"},{id:"126070",title:"MSc.",name:"Marcos",middleName:null,surname:"Rodrigues",slug:"marcos-rodrigues",fullName:"Marcos Rodrigues"},{id:"126072",title:"MSc.",name:"Tracy",middleName:null,surname:"Durrant",slug:"tracy-durrant",fullName:"Tracy Durrant"},{id:"126073",title:"MSc.",name:"Paolo",middleName:null,surname:"Corti",slug:"paolo-corti",fullName:"Paolo Corti"},{id:"126074",title:"MSc.",name:"Friderike",middleName:null,surname:"Oehler",slug:"friderike-oehler",fullName:"Friderike Oehler"},{id:"126075",title:"Dr.",name:"Lara",middleName:null,surname:"Vilar",slug:"lara-vilar",fullName:"Lara Vilar"},{id:"126076",title:"Dr.",name:"Giuseppe",middleName:null,surname:"Amatulli",slug:"giuseppe-amatulli",fullName:"Giuseppe Amatulli"}]},{id:"41478",doi:"10.5772/51387",title:"Monogenetic Basaltic Volcanoes: Genetic Classification, Growth, Geomorphology and Degradation",slug:"monogenetic-basaltic-volcanoes-genetic-classification-growth-geomorphology-and-degradation",totalDownloads:5266,totalCrossrefCites:53,totalDimensionsCites:107,book:{slug:"updates-in-volcanology-new-advances-in-understanding-volcanic-systems",title:"Updates in Volcanology",fullTitle:"Updates in Volcanology - New Advances in Understanding Volcanic Systems"},signatures:"Gábor Kereszturi and Károly Németh",authors:[{id:"51162",title:"Dr.",name:"Karoly",middleName:null,surname:"Nemeth",slug:"karoly-nemeth",fullName:"Karoly Nemeth"},{id:"62029",title:"Dr.",name:"Gabor",middleName:null,surname:"Kereszturi",slug:"gabor-kereszturi",fullName:"Gabor Kereszturi"}]},{id:"31820",doi:"10.5772/28402",title:"A Diagnostic Method for the Study of Disaster Management: A Review of Fundamentals and Practices",slug:"diagnosis-method-for-the-study-of-disaster-management-a-review-of-fundamentals-and-practices",totalDownloads:2799,totalCrossrefCites:0,totalDimensionsCites:18,book:{slug:"approaches-to-managing-disaster-assessing-hazards-emergencies-and-disaster-impacts",title:"Approaches to Managing Disaster",fullTitle:"Approaches to Managing Disaster - Assessing Hazards, Emergencies and Disaster Impacts"},signatures:"Carole Lalonde",authors:[{id:"73765",title:"Prof.",name:"Carole",middleName:null,surname:"Lalonde",slug:"carole-lalonde",fullName:"Carole Lalonde"}]}],mostDownloadedChaptersLast30Days:[{id:"74250",title:"Introductory Chapter: The Lessons Learned from Past Tsunamis and Todays Practice",slug:"introductory-chapter-the-lessons-learned-from-past-tsunamis-and-todays-practice",totalDownloads:116,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"tsunami-damage-assessment-and-medical-triage",title:"Tsunami",fullTitle:"Tsunami - Damage Assessment and Medical Triage"},signatures:"Mohammad Mokhtari",authors:[{id:"52451",title:"Dr.",name:"Mohammad",middleName:null,surname:"Mokhtari",slug:"mohammad-mokhtari",fullName:"Mohammad Mokhtari"}]},{id:"41478",title:"Monogenetic Basaltic Volcanoes: Genetic Classification, Growth, Geomorphology and Degradation",slug:"monogenetic-basaltic-volcanoes-genetic-classification-growth-geomorphology-and-degradation",totalDownloads:5266,totalCrossrefCites:53,totalDimensionsCites:107,book:{slug:"updates-in-volcanology-new-advances-in-understanding-volcanic-systems",title:"Updates in Volcanology",fullTitle:"Updates in Volcanology - New Advances in Understanding Volcanic Systems"},signatures:"Gábor Kereszturi and Károly Németh",authors:[{id:"51162",title:"Dr.",name:"Karoly",middleName:null,surname:"Nemeth",slug:"karoly-nemeth",fullName:"Karoly Nemeth"},{id:"62029",title:"Dr.",name:"Gabor",middleName:null,surname:"Kereszturi",slug:"gabor-kereszturi",fullName:"Gabor Kereszturi"}]},{id:"55369",title:"One- and Two-Dimensional Hydrological Modelling and Their Uncertainties",slug:"one-and-two-dimensional-hydrological-modelling-and-their-uncertainties",totalDownloads:1899,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"flood-risk-management",title:"Flood Risk Management",fullTitle:"Flood Risk Management"},signatures:"Mohd Talha Anees, Khiruddin Abdullah, Mohd Nawawi Mohd\nNordin, Nik Norulaini Nik Ab Rahman, Muhammad Izzuddin Syakir\nand Mohd. Omar Abdul Kadir",authors:[{id:"11196",title:"Dr.",name:"Khiruddin",middleName:null,surname:"Abdullah",slug:"khiruddin-abdullah",fullName:"Khiruddin Abdullah"},{id:"151303",title:"Prof.",name:"Nik Norulaini",middleName:null,surname:"Ab Rahman",slug:"nik-norulaini-ab-rahman",fullName:"Nik Norulaini Ab Rahman"},{id:"151344",title:"Prof.",name:"Mohd Omar",middleName:null,surname:"Ab Kadir",slug:"mohd-omar-ab-kadir",fullName:"Mohd Omar Ab Kadir"},{id:"201647",title:"Mr.",name:"Mohd Talha",middleName:null,surname:"Anees",slug:"mohd-talha-anees",fullName:"Mohd Talha Anees"},{id:"203217",title:"Prof.",name:"Mohd Nawawi",middleName:null,surname:"Mohd Nordin",slug:"mohd-nawawi-mohd-nordin",fullName:"Mohd Nawawi Mohd Nordin"},{id:"203218",title:"Dr.",name:"Muhammad Izzuddin",middleName:null,surname:"Syakir Ishak",slug:"muhammad-izzuddin-syakir-ishak",fullName:"Muhammad Izzuddin Syakir Ishak"}]},{id:"55645",title:"Strategies for Testing the Impact of Natural Flood Risk Management Measures",slug:"strategies-for-testing-the-impact-of-natural-flood-risk-management-measures",totalDownloads:1278,totalCrossrefCites:1,totalDimensionsCites:8,book:{slug:"flood-risk-management",title:"Flood Risk Management",fullTitle:"Flood Risk Management"},signatures:"Barry Hankin, Peter Metcalfe, David Johnson, Nick A. Chappell,\nTrevor Page, Iain Craigen, Rob Lamb and Keith Beven",authors:[{id:"203276",title:"Dr.",name:"Barry",middleName:null,surname:"Hankin",slug:"barry-hankin",fullName:"Barry Hankin"}]},{id:"31814",title:"Landslide Inventory and Susceptibility Assessment for the Ntchenachena Area, Northern Malawi (East Africa)",slug:"landslide-inventory-and-susceptibility-assessment-for-the-ntchenachena-area-northern-malawi-east-afr",totalDownloads:3594,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"approaches-to-managing-disaster-assessing-hazards-emergencies-and-disaster-impacts",title:"Approaches to Managing Disaster",fullTitle:"Approaches to Managing Disaster - Assessing Hazards, Emergencies and Disaster Impacts"},signatures:"Golden Msilimba",authors:[{id:"72722",title:"Prof.",name:"Golden",middleName:null,surname:"Msilimba",slug:"golden-msilimba",fullName:"Golden Msilimba"}]},{id:"55139",title:"Estimating Flood Quantiles on the Basis of Multi-Event Rainfall Simulation",slug:"estimating-flood-quantiles-on-the-basis-of-multi-event-rainfall-simulation",totalDownloads:764,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"flood-risk-management",title:"Flood Risk Management",fullTitle:"Flood Risk Management"},signatures:"Elżbieta Jarosińska and Katarzyna Pierzga",authors:[{id:"202772",title:"Ph.D.",name:"Elżbieta",middleName:null,surname:"Jarosińska",slug:"elzbieta-jarosinska",fullName:"Elżbieta Jarosińska"},{id:"202833",title:"MSc.",name:"Katarzyna",middleName:null,surname:"Pierzga",slug:"katarzyna-pierzga",fullName:"Katarzyna Pierzga"}]},{id:"71247",title:"Dealing with Local Tsunami on Pakistan Coast",slug:"dealing-with-local-tsunami-on-pakistan-coast",totalDownloads:121,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"tsunami-damage-assessment-and-medical-triage",title:"Tsunami",fullTitle:"Tsunami - Damage Assessment and Medical Triage"},signatures:"Ghazala Naeem",authors:[{id:"193736",title:"Ms.",name:"Ghazala",middleName:null,surname:"Naeem",slug:"ghazala-naeem",fullName:"Ghazala Naeem"}]},{id:"56346",title:"An Additive Statistical Modeling Approach to the Analysis of Transport Infrastructure Flood Risk-Based Resilience",slug:"an-additive-statistical-modeling-approach-to-the-analysis-of-transport-infrastructure-flood-risk-bas",totalDownloads:856,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"flood-risk-management",title:"Flood Risk Management",fullTitle:"Flood Risk Management"},signatures:"Mohammad Mojtahedi, Sidney Newton and Faham Tahmasebinia",authors:[{id:"193947",title:"Dr.",name:"Mohammad",middleName:null,surname:"Mojtahedi",slug:"mohammad-mojtahedi",fullName:"Mohammad Mojtahedi"},{id:"200222",title:"Dr.",name:"Sidney",middleName:null,surname:"Newton",slug:"sidney-newton",fullName:"Sidney Newton"},{id:"200223",title:"Dr.",name:"Faham",middleName:null,surname:"Tahmasebinia",slug:"faham-tahmasebinia",fullName:"Faham Tahmasebinia"}]},{id:"56590",title:"Geodesign a Tool for Redefining Flood Risk Disaster in Developing Countries: A Case Study of Southern Catchment of Ankobra Basin, Ghana",slug:"geodesign-a-tool-for-redefining-flood-risk-disaster-in-developing-countries-a-case-study-of-southern",totalDownloads:728,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"flood-risk-management",title:"Flood Risk Management",fullTitle:"Flood Risk Management"},signatures:"Adams Osman and Benjamin Nyarko",authors:[{id:"179927",title:"Dr.",name:"Benjamin Kofi",middleName:"Kofi",surname:"Nyarko",slug:"benjamin-kofi-nyarko",fullName:"Benjamin Kofi Nyarko"},{id:"206149",title:"Mr.",name:"Adams",middleName:null,surname:"Osman",slug:"adams-osman",fullName:"Adams Osman"}]},{id:"52524",title:"Earthquakes and Structural Damages",slug:"earthquakes-and-structural-damages",totalDownloads:2164,totalCrossrefCites:5,totalDimensionsCites:7,book:{slug:"earthquakes-tectonics-hazard-and-risk-mitigation",title:"Earthquakes",fullTitle:"Earthquakes - Tectonics, Hazard and Risk Mitigation"},signatures:"Burak Yön, Erkut Sayın and Onur Onat",authors:[{id:"192483",title:"Dr.",name:"Burak",middleName:null,surname:"Yön",slug:"burak-yon",fullName:"Burak Yön"},{id:"192486",title:"Dr.",name:"Erkut",middleName:null,surname:"Sayın",slug:"erkut-sayin",fullName:"Erkut Sayın"},{id:"192487",title:"Dr.",name:"Onur",middleName:null,surname:"Onat",slug:"onur-onat",fullName:"Onur Onat"}]}],onlineFirstChaptersFilter:{topicSlug:"natural-disaster",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/98637/eric-lehne",hash:"",query:{},params:{id:"98637",slug:"eric-lehne"},fullPath:"/profiles/98637/eric-lehne",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()