Studies that involved the use of bioreactors in bioremediation.
\r\n\t
",isbn:"978-1-80356-336-7",printIsbn:"978-1-80356-335-0",pdfIsbn:"978-1-80356-337-4",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"c13b60a29b20349f816a6ab71ba35e42",bookSignature:"Prof. Mingzhou Yu",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11497.jpg",keywords:"Lab-on-a-Chip, Microfluidics and Nanofluidic Platforms, Micro and Nanoscale Phenomena, Mass and Heat Transport, Multiphase Flow, Nanoparticle-Laden Flows, New Unit-Operation, Theoretical Model, Numerical Method, Experiment, Application, Engineering",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 17th 2022",dateEndSecondStepPublish:"April 21st 2022",dateEndThirdStepPublish:"June 20th 2022",dateEndFourthStepPublish:"September 8th 2022",dateEndFifthStepPublish:"November 7th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"A pioneering researcher selected for the Alexander von Humboldt research fellowship and previously affiliated with the Karlsruhe Institute of Technology as a postdoc researcher. Dr. Yu is a holder of 90 journal papers, with an h index of 21, is a member of A& WA (USA) and AAAR (USA), and is the holder of 24 registered patents.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"188972",title:"Prof.",name:"Mingzhou",middleName:null,surname:"Yu",slug:"mingzhou-yu",fullName:"Mingzhou Yu",profilePictureURL:"https://mts.intechopen.com/storage/users/188972/images/system/188972.jpg",biography:"Mingzhou Yu is now a Professor at China Jiliang University and a Guest Professor at Key Laboratory of Aerosol Chemistry and Physics, Chinese Academy of Science. He received his PhD degree from Zhejiang University in 2008 with the major fluid mechanism. During the time period between 2009 and 2012, he moved to Karlsruhe Institute of Technology, Germany, as a Alexander von Humboldt researcher where he worked with Prof. Gerhard Kasper and Dr. Martin Seipenbusch. Since 2013, he joined Prof. Junji Cao's research group as a guest Professor at Key Laboratory of Aerosol Chemistry and Physics, Chinese Academy of Science. During the time period between 2013 and 2016, he worked in The Hongkong Polytechnic University and Universidad Autónoma de Madrid, Spain, as a research associate or postdoc researcher. He is now leading a Aerosol Science and Technology Laboratory supported by Zhejiang Special Provincial Support in CJLU. He has published more than 90 cited articles and five books (or chapters).",institutionString:"China Jiliang University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"China Jiliang University",institutionURL:null,country:{name:"China"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"20",title:"Physics",slug:"physics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"444315",firstName:"Karla",lastName:"Skuliber",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/444315/images/20013_n.jpg",email:"karla@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"8356",title:"Metastable, Spintronics Materials and Mechanics of Deformable Bodies",subtitle:"Recent Progress",isOpenForSubmission:!1,hash:"1550f1986ce9bcc0db87d407a8b47078",slug:"solid-state-physics-metastable-spintronics-materials-and-mechanics-of-deformable-bodies-recent-progress",bookSignature:"Subbarayan Sivasankaran, Pramoda Kumar Nayak and Ezgi Günay",coverURL:"https://cdn.intechopen.com/books/images_new/8356.jpg",editedByType:"Edited by",editors:[{id:"190989",title:"Dr.",name:"Subbarayan",surname:"Sivasankaran",slug:"subbarayan-sivasankaran",fullName:"Subbarayan Sivasankaran"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"65140",title:"Microbial Bioremediation and Different Bioreactors Designs Applied",doi:"10.5772/intechopen.83661",slug:"microbial-bioremediation-and-different-bioreactors-designs-applied",body:'\nBioremediation is a natural process that relies on microorganisms and plants and/or their derivatives (enzymes or spent biomass) to degrade or alter environmental contaminants as these organisms carry out their normal life functions [1, 2]. Bioremediation is considered an economical, versatile, efficient and eco-friendly way of dealing with environmental pollutants as compared to the physico-chemical methods [1, 2, 3]. The use of well-designed microbial bioreactors is acknowledged as an efficient way to ensure that microbial growth and processes occur in a controlled environment that provides the necessary optimum conditions [3, 4, 5]. This chapter focuses on microbial remediation in bioreactors so phytoremediation as facilitated by plants is not discussed. Several studies describe microbial remediation in designed bioreactors ranging from batch, continuous, and fed-batch operated mode which can be in different designs such as suspended carrier, slurry and fixed bed, membrane and fluidized bed reactors [4, 5, 6, 7, 8].
\nThe use of microbial bioreactors in remediation is very attractive in that the bioreactors offer the advantages of providing a controlled environment where it is possible to control critical process parameters to optimize the microbial bioremediation process. Another advantage is that there is flexibility in design of the bioreactor (size and configuration) to suit application or intended purpose of the reactor [6, 7, 8, 9]. However, bioremediation in bioreactors if operated
As defined, microbial bioremediation makes use of microorganisms and/or their derivatives (enzymes or spent biomass) to clean-up environmental contaminants [7, 9, 10]. With microorganisms, it is important to note that microorganisms are everywhere and as such pollutants in the different environmental compartments always come into contact with microorganisms [1, 2]. Microbes break down/transform pollutants via their inherent metabolic processes with or without slight pathway modifications to allow the pollutant to be channeled into the normal microbial metabolic pathway for degradation/and biotransformation. Applied bioremediation methods therefore focus on tapping the naturally occurring microbial catabolic capabilities to degrade, transform or accumulate most of the synthetic compounds such as hydrocarbons (e.g., oil), polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs), radionuclides and metals [4, 6, 7, 8]. The natural existence of a large diversity of microbial species expands the variety of chemical pollutants that are degraded or detoxified.
\nThe advantages of microbial bioremediation are that it has public acceptance, as it is a natural process [8]. It is a low cost technology in most cases when compared to other clean-up methods for hazardous waste [2]. It can be done
Bioremediation using microbial bioreactors finds application in soil, air and water environments including:
Waste water and industrial effluent treatment
Microorganisms are the primary agents of any biological wastewater treatment. Microorganisms are already present in waste water systems and feed on complex substances in the wastewater converting them to simpler substances thus assisting in achieving the treatment. Trickling filters, membrane bioreactors, slurry phase reactors and upflow anaerobic sludge blanket bioreactors (UASB) are some of the reactors that are used in waste water and industrial effluent treatment.
Soil and land treatment
Contaminants successfully treated include diesel fuel, fuel oils, oily sludge, wood-preserving wastes (PCP, PAHs, and creosote), coke wastes, and certain pesticides [6, 8, 9]. Soil bioremediation has proven most successful in treating petroleum hydrocarbons and other less volatile, biodegradable contaminants. Slurry phase, stirred tanks, biofilters, partitioning phase and packed microbial reactors find application in contaminated soil remediation.
Control of air pollution
Microorganisms are used in the bioremediation of organic and inorganic air pollutants in spent gases before release or escape into the atmosphere [5, 9]. Microorganisms oxidize pollutants such as H2S, SO2, VOCs, and reduce pollutants such as NOx to nitrate and this assist to prevent likely environmental, health hazards and nuisances [5]. Bioscrubbers and biofilters are some of the bioreactor types often used in control of air pollution.
Solid waste management
Microorganisms are chiefly responsible for the biodegradation of organic wastes in nature and they drive the decomposition processes that occur in landfills and composts. Anaerobic digesters are often applied mostly in the biotreatment solid waste.
A number of issues are at play in all bioremediation technologies including when bioreactors are used. These are those that concern the contaminant, microbial community and the design, optimization and monitoring of the process [6, 8, 9]. The microbial science of bioremediation is therefore approached from many scientific frontiers: abiotic interactions (solubility, transport, sorption and photolysis), biotic interactions (taxonomic diversity, physiological, genetic and ecological interactions). In the design and operation of bioreactors in remediation, many of these factors have to be optimized and controlled for best reactor performance [5, 10, 11, 12].
\nVariables that affect the operation and efficiency of a microbial bioreactor relate to biotic and abiotic factors that affect microbial growth and those factors that relate to the reactor design and configuration. Factors that affect microbial growth and activities in bioreactors include; environmental factors (temperature, pH, moisture), pollutant mix, pollutant concentration, macronutrient [5, 10, 11, 12]. Factors on reactor design include; size, configuration and mode of operation.
Environmental related factors
Environmental conditions (temperature, pH, oxygen availability/electron, and salinity) affect growth; the metabolic activities of microorganisms and to some extent the behavior of the pollutant such as solubility and volatility [11]. In any process optimization for biodegradation, it is always necessary to investigate the effects of the environmental conditions and optimize the process in relationship to all the relevant environmental conditions. Tekere et al. [13], established the optimum growth conditions with respect to pH, aeration and nutrients in the growth and degradation of pollutants by white rot fungi and found that optimized conditions result in high enzyme and degradation activities.
Temperature
There is always a temperature range at which microorganisms grow and survive (i.e., minimum, optimum and maximum survival temperature). In addition, there is always a temperature optimum at which biochemical processes take place to achieve required bio treatment by each microorganism [13]. Extremes of temperature (too low or too high) affect both microbial growth and microbial enzyme catalyzed reactions [2]. With an increase in temperature within appropriate range, microbial metabolism increases and thus the rate of the bioremediation processes.
Increased temperatures lead to higher solubility of many chemicals, and increased fluidity and diffusion rates. For example with pollutants, such as PAHs and heavy metals, their solubility and in turn bioavailability increases with temperature [2, 7]. Temperature is thus a critical factor in the optimum operating efficiency of bioreactors to achieve best biotreatment results. Often specialized bioreactors are designed with provision for temperature control.
pH
Similar to temperature, pH affects microbial growth and metabolic processes. pH influences microbial cell ionic properties thus microbial growth. Microorganisms have minimum, optimum and maximum pH of growth with most bacteria for example growing optimally at pH 6–7.5, though there are some which thrive best at acidic pHs (acidophiles) or at alkaline pH (alkaliphiles). Fungi generally grow at pHs lower than that of bacteria. Reactor operating pH has to be set to provide the best pH conditions for growth and enzyme activities. Behavior of pollutants is also influenced by pH thus affecting their bioremediation. For example with metals, pH affects the redox and solubility of metals, different forms and valence have different effects on microorganisms [14]. Metal solubility increases with a decrease in medium pH and alkaline pH favor metal ion precipitation. Often lower pH values are required for metal attachment to the microbial cell surface [7, 14]. Microorganisms that produce acids result in increased solubility of the metal ions [10]. To provide for best pH conditions, buffers are used in media formulations, acids and bases can be added during the bioreactor process [13].
Nutrients
Nutrients are required for growth and metabolism of the microorganisms. Several elements are required in biosynthesis and energy production. Carbon is the most basic element of living forms and is needed in greater quantities than other elements. Other elements that are important in ensuring a balanced nutritional bioreactor environment depending on the type of microorganism include hydrogen, oxygen, nitrogen, sulfur, phosphorus, iron, calcium and magnesium [10, 11]. All necessary macro- and micro- nutrients requirements are provided in reactor media. Microorganisms can use the pollutants they are degrading as primary energy sources or a primary source of energy is provided to the microorganism in the case of co metabolism of the pollutants.
Moisture
Water is required to support microbial growth and catalysis. Cellular chemical reactions occur in aqueous conditions and water is required to ensure the correct osmotic pressure is maintained for microbial growth. The amount of water available for microbial growth is called (aW). Most microorganisms grow at water activities of 0.98 or higher, osmotolerant species can however grow at a range of low aW [11].
Electron acceptors
The presence of electron acceptors, e.g., oxygen in aerobic microbes and NO31−, SO42− and Fe (III) oxides in case of anaerobic microbes, also affects the biodegradation processes.
Reactor design related factors
Bioreactors have to provide for the best conditions for microbial growth and biochemical process to occur. The reactor size, configuration and mode of operation are key reactor design factors. The reactor should provide favorable physical, biological and the combined physical-chemical conditions for the best biological remediation processes to be achieved. In designing the bioreactor, favorable physical conditions for transport of gases and liquids and solids over time that ensure that the physical entity of the bioreactor is favorably adapted to the biological system that performs the bioreactions are required [12, 15]. On the other hand there is need to ensure that the biophysical and biochemical events taking operate at optimum levels under real situation application.
Polluted samples for remediation can be fed into the reactor either as dry or slurry matter [9]. Pollutants with hydrophobic properties are often unavailable for microbial degradation, particularly if they are bound to soil matrix [7]. Their degradation is therefore limited by their transfer to liquid [4]. Minimizing mass transfer resistance was found to be a key factor in the degradation of hexachlorocyclohexane (HCH) in slurry batch bioreactors [4].
Despite the rapid development of bioreactors due to their widespread use in biotechnology, the aspects of maintaining stability and rates of bioprocesses are still areas to be addressed. Poor bioreactor construction and design, leading to inadequate mixing, may jeopardize the stability and performance of the process [15]. Mixing prevents thermal stratification, help maintain uniform conditions in the reactor, ensure good contact between microbial culture and media reactants. The importance of mixing in bioreactor cannot be over emphasized, poor mixing affect microbial process efficiency.
Hydraulic retention times (HRT) required to achieve the necessary remediation goals in the bioreactor have to be determined and optimized. Longer HRTs result in poor substrate loading which diminishes the microbial population, whereas shorter ones do not allow microorganisms to effectively degrade the pollutant and can result in microbial wash out from the system [16].
Organism related factors
Organism related factors include population density, composition, inter and intraspecific interaction. Microbes are the most diverse forms of life and have developed a wide range of metabolic pathways that enable them to cope under the varying ecological conditions including exposure to xenobiotics. A whole range of environments ranging from aerobic, anaerobic, acidic, alkaline, and low to high temperature have been utilized as sources of microorganisms for bioremediation [13]. Only certain species of bacteria and fungi have proven their ability as potent pollutant degraders [13]. In the natural environment degradation of pollutants is often achieved through complex microbial population interactions. Single or mixed microbial cultures are used for pollutant remediation in bioreactors. In the event where bioagumentation is applied the introduced organisms need to be able to co-exist with indigenous residents.
Different microorganisms often have different metabolic capabilities, to this extend the evaluation of several strains of different microbial players have to be investigated in order to come up with the best degraders [13]. In screening and comparison of the bio-degradation of PAHs by white rot fungi [17], found out that newly screened white rot fungi strains had higher or comparable degradation capacity to the model well applauded
Polluted environments provide sources of microorganisms resistant or acclimatized to the pollutant [18]. However microorganisms that are known to have certain inherent physiological characteristic, e.g., metabolism of known substrate with structural similarity to xenobiotics of interest and/or adaptation to certain environmental conditions can be selected. This is the case in several studies that used microorganisms for pollutant degradation [11, 17, 18, 19].
Pollutant related factors
Factors that affect bioremediation in bioreactors that are related to the pollutant include: nature of pollutant, i.e., the physical and chemical properties including solubility, volatility, molecular complexity, concentration and toxicity. Investigations for most pollutant biodegradation have centered on how different concentrations, mixed pollutants, solubility and molecular structure can affect microbial bioremediation [17, 20]. In the case of PAHs, degradation decreases in the order alkane> branched chain alkanes>low molecular weight aromatics> cycloalkanes [17]. It should be noted however that some pollutants are resistant to biodegradation (recalcitrant, i.e., resistant to degradation) they are degraded at very low pace even if the right microbial population and conditions are present.
Several laboratory, and pilot bioremediation studies have been done using microbial (fungi and bacteria) bioreactors [6, 8, 17, 18, 20]. Bioreactor technologies may offer effective means for treatment of many contaminants in groundwater, soil and air [4, 5, 7, 12]. The bioreactor type of choice for any application should be easy to operate and maintain for the selected purpose and application. Table 1 presents some of the studies that involved the use of bioreactors in bioremediation. Flexibility to design bioreactor tailor made for different processes and remediation applications makes the use of bioreactors in bioremediation attractive [9]. The design should accommodate high biomass from cell growth, supply of necessary nutrients and also removal of waste components from the system. A description of some bioreactor types and their application is given in Sections 3.1–3.7.
\nSlurry phase bioreactors, as the name implies treats polluted media that is within a slurry phase. Alternative names are bio-slurry reactors and slurry phase biological treatment. Slurry bioreactors offer an
Operation of the slurry reactor can be in batch, semi-continuous and continuous mode, with the batch process being the most common one [6, 26]. Figure 1 shows an illustration of a simplified slurry reactor. Water is mixed with the contaminated solid matrix in suitable ratios and this enhances contact between microorganisms, pollutant, media and oxygen. Pollutants that are solubilized become more bioavailable. Table 2 shows some of the studies that have involved the use of slurry phase bioreactors in bioremediation.
\nSimplified slurry reactor [
Bioreactor type | \nApplication details | \nReference(s) | \n
---|---|---|
Packed bed | \nDifferent fungi and bacteria used for remediation of organochlorine pesticides, PAHs, pharmaceuticals, amines, and textile dyes. Packing material varied from organic material (sawdust, wood chips) to inert solid materials (polyurethane foam, poraver stones); chlorinated aliphatic compounds | \n[14, 17, 21, 22, 23] | \n
Fluidised bed | \nTreatment of pharmaceuticals using fungi | \n[20, 22] | \n
Two-phase partitioning | \nBenzene biodegradation by cow dung microflora | \n[24] | \n
Slurry phase | \nBacterial and fungal remediation of soil from VOC, organochlorines, PAHs, 2,4-dichlorophenoxyacetic acid | \n[4, 6, 25, 26] | \n
Suspended carrier | \nFungi used for remediation of organochlorine pesticides, PAHs, textile dyes. | \n[21] | \n
Up-flow anaerobic stage reactor (UASR) | \nBacterial degradation of tylosin | \n[16] | \n
Membrane bioreactor | \nTextile dye in waste water; pharmaceuticals, 1,2-dichloroethane, 1,2-dichlorobenzene and 2-chlorophenol groundwater; metal recovery | \n[27, 28, 29, 30, 31] | \n
Air lift | \nTextile dye effluent decolorization by fungi, olive mill effluent, cellulose industry bleaching effluent | \n[15, 32, 33] | \n
Biotrickling filter | \nMunicipal waste water, brewery waste, olive oil mill waste water, VOC contaminated air | \n[32, 34] | \n
Upflow Anaerobic Sludge Blanket | \nPotato waste water, BTEX | \n[9, 35] | \n
Sequence batch reactor | \nNanosilver, Nanofullerenes | \n[36] | \n
Continuous flow Bioreactor | \nPCP and creosote by some Pseudomonas species | \n[37] | \n
Nonisothermal bioreactors | \nDegradation of phenol by fungal laccase | \n[38] | \n
Continuously stirred tank bioreactor (CSTR) | \nFor hydrocarbon-rich industrial wastewater effluents by mixed microbial cultures, petroleum hydrocarbon | \n[7, 8] | \n
Studies that involved the use of bioreactors in bioremediation.
Pollutant | \nMicroorganism(s) | \nBioremediation details | \nReference(s) | \n
---|---|---|---|
Petroleum hydrocarbons in oil sludge | \nIndigenous microbial consortium | \n24% biodegradation of Total Petroleum Hydrocarbon in oily waste | \n[39] | \n
2,4,6-trinitrotoluene (TNT) | \nMixed soil bacteria under anoxic/microaerophilic conditions | \n99% of 10,000 mg kg−1 was degraded in 82 days under co-metabolism with molasses | \n[40] | \n
PAHs in creosote | \nDegradation by | \n93.4% of creosote degraded in 12 weeks | \n[41] | \n
Explosives 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrobenzene (TNB) | \nSelected Gram positive bacterial isolates | \nComplete removal of the explosive after 80 days | \n[42] | \n
Hexachlorocyclohexane (HCH) | \nWhite rot fungi | \nMaximal degradations of 94.5, 78.5 and 66.1% were attained after 30 days for the-HCH isomers, respectively | \n[4] | \n
High molecular weight PAH in soil | \nPAH-degrading consortium | \nPyrene degraded at 19 mg L−1 day−1, chrysene and benzo[ | \n[43] | \n
Chlorpyrifos | \nEnriched indigenous soil microorganism | \nDegradation of 48% in aerobic and 31% in anaerobic soil slurries | \n[44] | \n
Some examples of remediation studies in slurry phase bioreactor.
Partitioning bioreactors are used in bioremediation when two phases need to be achieved, e.g., such as for organic solvents or water immiscible compounds in aqueous solutions. Reactors are designed with the aqueous and organic phase, and can be single or multiphased [24]. With toxic hazardous waste, toxicity to degrading microorganisms is a problem. In partitioning bioreactors, there is a two-phase system where a water immiscible and biocompatible organic solvent is allowed to float on the surface of a cell containing aqueous phase [45]. This means that high amounts of hazardous waste dissolved in a solvent can be added to the reactor without the microorganism experiencing inhibitory concentrations of the pollutant [24, 45, 46]. A rigorous process involving selection of the solvent, taking into consideration the biological, physical, operational, environmental and economic factors is necessary in developing an efficient partitioning biotreatment system. Partitioning reactors find application in the remediation of toxic compounds from petrochemical industry such as benzene as well as VOC in waste gases of many industrial processes [45, 47, 48]. Angelucci et al. [49], successfully tested a continuous two-phase-partitioning reactor in the treatment of tannery wastewater. Several other studies involving phase partitioning bioreactors are described [24, 45, 46, 47, 48, 49, 50].
\nA continuous stirred tank bioreactor consists of a cylindrical vessel with motor driven central shaft that supports one or more agitators (impellers). Stirred tank bioreactors are the predominantly used design for submerged cultures. Stirred tank bioreactors are mechanically agitated where the stirrers are the main gas-dispersing tools and provide high values of mass transfer rates coupled with excellent mixing. Advantages of the STR include the efficient gas transfer to growing cells, good mixing of the contents and flexible operating conditions, besides the commercial availability of the bioreactors. The main shortcoming of the stirred tank bioreactor is its mechanical agitation which requires energy and stirring can cause shear strain on microbial cells.
\nGargouri et al. [7] evaluated the use of a continuously stirred tank bioreactor (CSTR) in the treatment of hydrocarbon-rich industrial wastewaters and achieved successful bioremediation using an acclimatized microbial consortium. The residual total petroleum hydrocarbon (TPH) decreased from 320 –8 mg TPH l−1. The reactor used is shown in Figure 2. Bi [51], applied a continuously stirred tank reactor for bioremediation of ethanol, toluene and benzyl alcohol by
Schematic diagram of the aerobic continuously stirred tank bioreactor (CSTR) used for continuous experiments [
A basic biofilter bioreactor consist of a large media bed where pollutants are passed through and get degraded by the microorganisms. Biofilters are amongst the oldest environmental bioremediation techniques. Biofilters are used mostly in waste water treatment as well as in the control of air pollution [34, 52, 53]. A number of materials are used for bed media such as peat, composted yard waste, bark, coarse soil, gravel or plastic shapes. A typical example of a biofilter is the trickling filter which finds extensive application in the treatment of different liquid effluents or waste waters or waste that is constituted into liquid. A trickling filter is usually a round, vertical tank that contains a support rack and is filled with aggregate, ceramic or plastic media and in the middle of the tank is a vertical pipe that has a rotary connection with spray nozzles on the top end [34]. A spray arm is attached to the rotary connection and has spray nozzles installed along its length for distribution of the waste water. Microorganisms grow in biofilm forms on the packing material surface and are responsible for the degradation of the pollutants from the effluent. Schmidt and Anderson [34] described the use of a trickling biofilter in the removal of high concentrations of 1-butanol from contaminated air. The potential application of the biotrickling filter in industrial off gas treatment was evaluated in the removal of high concentrations of 1-butanol from contaminated air with efficiency exceeding 80% for butanol concentrations of 0.4–1.2 g m−3 [34]. The laboratory-scale perlite-packed biotrickling filter was operated for 60 days and demonstrated effective and efficient removal of butanol concentrations up to 4.65 g m−3 with a maximum elimination capacity of 100 g m−3 h−1 [34].
\nPacked bed bioreactor systems provide for microbial growth on fixed film substrata. In order to obtain compact reactors and ensure greater treatment reliability, fixed film reactors are used. They offer the advantage that dilute aqueous solutions can be remediated at high biomass without the need to separate biomass and the treated effluent [13, 54]. In packed bed biofilm biotreatment processes, unlike suspension cultures there is no need to incorporate special measures such as centrifugation and membrane filters to retain the biomass. This feature makes the use of packed bed reactors particularly appropriate in bioreactors systems where large substrate—flow through is required. The concentration of cells in a given volume may be increased, a factor that leads to enhanced efficiency/productivity of the bioreactor and decreased volume of bioreactors [55]. While high biomass concentrations can be easily maintained, the medium to biofilm mass transfer of substrate is the rate limiting process in packed bed bioreactors [54, 56]. Within the biofilm there are considerable differences in the microorganisms’ microenvironment, depending on the distance from the surface of the biofilm [54]. Substrates such as oxygen, carbon and nitrogen sources have to cross the biofilm—liquid interface by diffusion, thus a diffusion gradient occurs. To calculate the kinetics of conversion in the biofilm processes, two important processes that occur in the system are considered and these are (i) transport of solutes over the biofilm and (ii) combined reactions and diffusion inside the biofilm [54]. In the packed bed reactors, development of excess microbial biomass also occurs leading to hydraulic channeling or loss of interstitial fluid volume. To overcome the severe constraints of hydraulic hold up within the interior of the reactor extra-capillary space transverse flow bioreactors were developed [57].
\nSelection of suitable substances as packing materials is an important consideration. Materials that have been used include nylon web, polyurethane foam, silicone tubing, sintered glass, porous ceramics, propylene, stainless steel, agarose and agar gel beads [58, 59, 60, 61, 62, 63, 64, 65, 66, 67]. The ideal support should be chemically inert in physiological growth medium, rigid and porous to facilitate mycelial attachment and re-usable after removal of the fungus. Figure 4 shows a Simplified diagram of a laboratory based packed bed bioreactor. Examples of remediation studies in packed bed reactors are given in Table 3.
\nSupport | \nExperimental study details | \nReferences | \n
---|---|---|
Polyurethane foam | \nAnaerobic fixed film horizontal flow bench scale reactor. Benzene, toluene, ethylbenzene, and xylene, BTEX removal with efficiency of 75–99% in 11.4 hrs | \n[58] | \n
Laterite stones | \nMicrobial consortium anaerobic degradation of textile azo dyes, 61.7% degradation of 55 μg mL−1 of simulated effluent dye. | \n[59] | \n
Coconut shell bio-char | \nCongo red dye degradation in batch and continuous packed bed bioreactors by | \n[60] | \n
Polyurethane foam | \nBacterial degradation of malathion in batch and continuous packed bed bioreactors, removal at 89% for up to 145.4 mg L−1 day−1 | \n[61] | \n
Wire Mesh | \nFungal degradation of textile effluent | \n[62] | \n
Wood chips | \nChlorophenol degradation by | \n[63] | \n
Sugarcane bagasse | \nDegradation of dyes and industrial effluents by | \n[64] | \n
Celite | \nPerchlorate-Contaminated groundwater 800 μg L−l reduced to less than 4 μ−1 at 0.3 h retention time | \n[66] | \n
Polyurethane foam | \nBiodegradation of an actual petroleum wastewater by an immobilized biomass of | \n[66] | \n
Polyurethane foam and alginate beads | \nBenzene biodegradation Bacillus sp. M3 at 84 in alginate beads and 90% on polyurethane foam within 9 days | \n[67] | \n
Some examples of remediation studies in packed bed reactors.
Airlift bioreactors can provide an attractive treatment alternative for treatment of gaseous or volatile air pollutants. Frequently, the most limiting factor in the performance of these reactors is that they are susceptible to being limited by gas-liquid mass transfer and by poor mixing of the liquid phase, particularly when they are operating at high cell densities [68, 69]. The bioreactor performance is dependent on the pumping (injection) of air and the liquid circulation. The airlift bioreactor can have a forced flow in an internal or external loop as shown in Figure 5. Specific volatile organic chemicals may be completely degraded by a microorganism at normal temperature and pressure without producing a second polluted byproduct [70]. Nikakhtari and Hill [68], applied and External Loop Airlift Bioreactor with a small amount (99% porosity) of a stainless steel mesh packing inserted in the riser section for bioremediation of a phenol polluted air stream. Phenol removal of 100% was achieved using the bacterium
Schematic diagram of biotrickling filter [
Simplified diagram of a laboratory based packed bed bioreactor [
Schematic diagram of airlift bioreactor with (a) external recirculation and (b) internal recirculation [
Membrane bioreactors (MBR) combine the use of a membrane that forms a filtration system and the biological process. The membrane provides a physical barrier that separates the liquid from the solid and ensures retention of the solids and good quality effluent. The quality of the treated effluent from the membrane bioreactor is of high quality than that achieved by employing other techniques, enabling optimal functioning of the secondary treatment system [72, 73]. MBR offer the advantages that often smaller tank size is used and filtration function of the membrane ensures that solids are separated from treated effluent. Membrane fouling has been recognized however as a major drawback in the application of membrane bioreactors in bioremediation. Also membranes are often expensive thus making the process costly. Development of low cost membrane filters is an ongoing feature in the science of MBR [72]. MBR reactors have been used in the biological treatment of domestic and industrial waste water. MBR have been evaluated in the remediation of pentachlorophenol in concentration ranges that occur in waste water [73], textile waste water [27], 1,2-dichloroethane, 1,2-dichlorobenzene and 2-chlorophenol [30].
\nDue to flexibility in bioreactor designs, the configuration of reactors is numerous. While an effort has been made here to describe some of the common bioreactors used for different bioremediation applications, several other bioreactor types have not been discussed. These include the UASB which find major application in anaerobic digestion of waste waters as well as solid wastes, bio-scrubbers which are applied in off gas air pollution control, continuous stirred tank reactors as well as rotating contactor reactors.
\nIt is evident that a wide range of microbial bioreactors have been developed and evaluated in the bioremediation of a wide range of pollutants in water, air and soil. Also a wide range of pollutants in physical and chemical properties are amenable to microbial degradation. Very diverse microbial species have the capability of pollutant degradation naturally and the use of well-developed optimized microbial bioreactors ensure improved rates of degradation when compared to degradation that happens
No conflict of interest is declared.
The word ethnobotany was first announced by American botanist John Harshberger in 1896 as “the study of interaction of human beings with flora.” Ethnobotany is a life science which studies the interaction between human beings and flora in particular and broadly deals with the investigations, observations, and identifications of botanical diversity used for the prevention and treatment of human and livestock ailments [1]. It also studies about the indigenous people knowledge, beliefs, and practices (i.e. it may be cultural and religious practices) related with medicinal plants. Also it includes how human beings categorize, isolate, and associate with floras besides with joint relationships of floras and human beings. The ethnobotanists should have to discuss with native community to share their routine life and to respect their cultures in order to obtain valuable information about the plants used for the medicinal purpose. Ethnobotanists have an obligation both to the scientific civic and the native principles. The field of ethnobotany is a much comprehensive discipline which is concerned in all studies about the interaction between human and floras. In addition to medicinal plants, ethnobotany also give emphasis on other natural products including food, plants used in rituals, coloring agents, fiber plants, poisons, fertilizers, building materials for houses, household items, boat, etc. [2].
Ethnobotany covers various disciplines, including botany, biochemistry, pharmacognosy, toxicology, medicine, nutrition, agriculture, ecology, evolution, comparative religion, sociology, anthropology, linguistics, cognitive studies, history, and archeology, due to the fact that plants have significant purpose in day-to-day activity of human beings. The multidisciplinary habit of ethnobotany permits a widespread range of methods and uses and leads to the investigation of plants in various ways by the researchers [9]. But plants with medicinal importance are usually the focus area for the investigator under the field of ethnobotany, and the study of these medicinal plants has essential role for the development of ethnobotany field [2]. It is obvious that interdisciplinary and multidisciplinary methods can lead to further productive, comprehensive, and systemic guesstimates in the investigation of the relationship between the plants and humans. Regardless of its various bottlenecks, ethnobotany becomes an attractive and hopeful area of research [9].
In addition to developing quantitative approach for the ethnobotanical assessment, ethnobotany has progressed along with broader method, including additional features of the natural environment. Ethnobotanists somewhat frequently categorize themselves more and more as ethnobiologists or ethnoecologists for the reason that these fields bargain more prospects to evaluate the relationship between the people and the whole surroundings in addition to the societies’ interaction with the external environment including the effect of global trade on domestic economy and individual life. Since 1992, the interaction of human beings with plants has created a new term known as “applied ethnobotany” which in fact relates to studies and approaches which allow to work together with the indigenous people and traditional practitioners in an actual way, to investigate the knowledge of native people and develop a better management structures which shape specific use practices and social dynamics [10]. Applied ethnobotanies also made every effort to fill the gap between indigenous knowledge and modern practice and to recognize the association between indigenous practices and knowledge schemes and procedures, directions, and financial fashions at the nationwide and worldwide level [10]. In recent times, the term ethnoecology has been invented. Martine defines ethnoecology as a discipline which integrates many diverse academic fields. The term ethnoecology is used to incorporate all fields which designate the relationship between indigenous people and the ecosystem, including subdisciplines such as ethnobiology, ethnobotany, ethnoentomology, and ethnozoology [11]. In fact, ethnoecology is the discipline of how individuals comprehend the interaction between human beings and the living things, including animals, plants, and physical elements of a place [12].
Human being has been consuming floras meanwhile beforehand documented history. Our most primitive ancestors collected floras for foodstuff, medication, fibers, and construction supplies, momentary on their knowledge through oral customs. Farming, the exercise of generating yields and rising livestock, came about autonomously in diverse areas of the universe 10,000–15,000 years ago. Plant knowledge was an unlimited benefit in ancient societies, as it conversed a bigger opportunities of survival. Many ancient researchers took an extreme concern in botany, publishing herbals that enclosed plant information, and in addition also contained botanical importance. By using this baseline, an individual can identify and collect medicinal plants from the traditional healers own garden or from the forest and also can easily understand the method of preparations and applications. The term ethnobotany did not coin out as a discipline during the ancient civilization until earlier modern period. Despite the fact that individuals historically had a nearby relationship with the plants and various intellectuals investigated botany, rare scholars investigated the plant knowledge of an ethnic group till the twentieth century. The following are the rare leading ethnobotanical researchers and texts that aided disperse botanical knowledge all the way through the ages [8].
Out of the several plants biodiversity found on the earth surface, the plants which are used for the prevention and treatment of human and livestock disease are the significant ones due to the fact that those medicinal plants have secondary metabolites known as specialized metabolites [13]. Specialized metabolites with therapeutic possessions are dispersed throughout some plants genera, and these floras act as processing house for the natural products which are responsible for specialized metabolites [14]. The specialized metabolites have the potential biological activity that in turn used to protect the health and well-being of people and are the essential lead compounds for the modern medicines [15]. Study reported that medicinally important plants are the major source of treatment for up to 80% of the population until now, especially for underprivileged nations [16]. Also, the rest 20% of population living in higher-income countries still depends on complementary and alternative medicines which are especially plant origin and natural products [17]. Fascinatingly, out of the 25 dispensed drugs, about 12 of them are products which are plants origin [18, 19]. The role of ethnobotanists and researchers are incredible in the innovation of different present-day drugs, including artemisinin, aspirin, ephedrine, codeine and papaverine, colchicine, taxol, digoxin and digitoxin, capsaicin, tetrahydrocannabinol, and cannabidiol which are derived from Artemisia annua L., Filipendula ulmaria (L.) Maxim., Ephedra spp., Papaver somniferum L., Colchicum autumnale L., Taxus brevifolia Nutt., Digitalis purpurea L., Capsicum spp., and Cannabis sativa L., respectively [13, 20, 21, 22]. The uses of artemisinin in the modern medicine become acknowledged after a Chinese scientist (Tu Youyou) wins Nobel Prize in a year 2015 [23]. The results from the search of “medicinal plants” term on Google Scholar become more than 200,000 starting from the year 2000 until now.
Native people and ethnic groups use more than thousands of wild plants for the prevention and treatment of different human and livestock ailments, and even some of them are not identified and scientifically named still now, and hope several conventional medicines will be discovered from the plants and natural products in the future by the scientific community [24, 25, 26]. The well-known anthropologist David Maybury-Lewis had given emphasis to the role of indigenous people in supporting the invention of several plants which are medicinally important and used by this indigenous people for the treatment of different diseases [27]. Ethnobotanists can accelerate the proof of identity of plants which are medicinally important, and it is recommended that instead of conducting ethnobotanical assessment only, bioactive and lead compound can be extracted by mimicking the ethnobotanical information obtained from the indigenous people or traditional healers that can simplify the activity of bioprospecting of the plants [28]. Garnatje et al. [29, 13] advocated the term “ethnobotanical convergence” for the similar uses of plants included in the same node of a phylogeny. Although the term “ethnobotanical convergence” was condemned by Hawkins and Teixidor-Toneu [30], it is however assumed that connecting new technologies with the indigenous ethnobotanical information can accelerate the development of new modern drugs from the natural products and plants. Connecting ethnobotany with other fields such as phytochemistry, pharmacology, pharmacognosy, and molecular biology can support the botanical diversity identification and analysis of chemical constituents of medicinal plants which have the ability to prevent and treat human and livestock ailments [31]. Furthermore, approaches such as genomics and omics can also be employed to identify the genes underlying the (specialized) metabolites present in the plants characterized by high-throughput metabolomics approaches such as gas chromatography–mass spectrometry (GCMS), liquid chromatography-mass spectrometry (LCMS), and nuclear magnetic resonance (NMR) spectroscopy [32, 33]. The proper identification, utilization, and conservation of medicinal plants can assist in providing better alternative health care services in rural areas, especially in developing countries [34, 35]. Moreover, several medicinal plants collected from the traditional healers own garden or from the forest are majorly important, and high percent of individuals relay on these medicinal plants in order to get cure from their diseases [36]. The shortage of quality health care provisions that safeguard healthy lives and encourage safety of the individuals at all ages groups especially in the third-world nations of Asia and Africa strengthens the significance of medicinal plants used by the specific ethnic groups [34, 35]. In the past more than 10 years, the majority of population in the world depends on products derived from the plants which in turn shows the increasing demands of products derived from the natural resources, and it may lead to the over-increment of the need of medicinal plants. So, the scientific community and ethnobotanists should fasten the investigation related with the development of products from the plants by working together with the indigenous people and traditional healers who have the ability to collect those plants which are medicinally useful by considering the emerging number of both communicable and noncommunicable and population growth and global climate change.
A
The person who collects the medicinal plant specimens are not allowed collecting endangered plant species or rare plants in a specific territory. And also, the individuals should respect the local regulations and need to obtain permission from the responsible bodies/officers. Incase if the medicinal plants were found only on individuals or traditional healers own gardens, verbal informed consent or permission should be obtained from the owner of plants to collect the specimens. After the plant specimens were collected from the traditional healers own garden or from the forest, the specimens should be put into the plastic bags, labeled, pressed, and transported to the national biodiversity centers. Then, the plant materials should be dried using the appropriate drying system and prepared for the botanical diversity identification using standard herbarium procedures. The identification mechanism is taken place by the botanists or taxonomists in the laboratory. But some botanical diversity identification processes can be taken place directly in the traditional healers own garden or in the forest if the owner or laws are not permitted to collect the plant specimens. The plant specimens should be deposited in the national herbarium or biodiversity laboratory by collecting them and immediately pressing between papers using a field press. Sticky specimens may be pressed between waxed paper. The pressing procedure in between newspaper should be carried out simultaneously by collecting the specimens due to the reason that once the specimens dried, they are difficult to press and arrange. The plant specimen should be arranged to show all the significant structures including lower and upper leaf, flower heads, and so on. Large specimens can be folded or cut into sections. Bulky fruit can be cut in half; large cones can be tagged to be stored in a box. Plant specimens should be dried as rapidly after it was collected and transported to the laboratory [38].
Sticks with good plants need to be gathered for the sample. The parts of the plants collected as sample should have to encompass pure phyllotaxy and the forking scheme. For small herb, collection of more specimens as could fix on the herbarium sheet is desirable. In common, cutters are used to cut the stems, whereas for a while tallness, pruner is used, and for spiny samples, such as
Details about the plant specimens geographic area with the help of Geographic Information Systems (GIS), specimen collection date, and collection number should be noted down at the period of the specimen collection in a field notebook or electronically. This information is necessary to arrange the label for the herbarium specimen sheet. The collection number should be written on the edge of the sheet of paper. After the exact botanical diversity of the specimen becomes identified, the scientific name of their plant can be written together with the collection number. Herbarium specimen labels are organized in several means, but they usually hold a heading with state or region, province or district, country, and name of institution related with the sample, followed by the scientific name (genus, species, and author), details about the area such as geographic types or distance from adjacent town or landmark, and locale specifics (soil, altitude, humidity, etc.), Collection date, name of the specimen collector, and collection number are also significant information. The label is located at the bottommost-right-hand corner of a herbarium mounting sheet and attached immediately. Glue is also applied to the back of the plant sample, and it is organized on the mounting sheet. Lesser weight may be located on the top of the specimen till the glue is dry. Fragments of plant material such as seeds or pollen can be located in a small folded pocket, which is also glued immediately to the sheet. Once dried, the herbarium stamps the sheet with its name and assigns it an accession number. It is then filed in the herbarium cabinets that are usually ordered alphabetically as per plant family, genus, and species. Some herbaria use numerical arrangement as per the Adolf Engler method of arrangement [37].
Knowledge of plant anatomy is essential for classifying plant species. Deprived of it, a plant may be not identified correctly, with possibly severe consequences. Botanical diversity identification keys are valuable tools if you have adequate information of plant anatomy to appropriately use them. A dichotomous key offers the user with two alternatives at each stage, while a polyclave key may offer quite a lot of choices at each stage. Electronic polyclaves usually let the user to effort some well-known features of the specimen, thus removing various species in the key. It may, moreover, offer the possibility or chance that the left behind species are the right choice and may quick the user to say other features to remove further species. There are little elementary rules to make a dichotomous key. The entries should initiate with a couplet that has same first words (e.g. Leaves opposite or Leaves alternate) but are opposing statements. A leaf cannot be both alternate and opposite so that the decision is perfect. To avoid misunderstanding, they should not have several entries in a row that start with the identical word and should not use overlying ranges of measurement. Negative statements (e.g. Leaves not opposite) should also be avoided. Couplets can be numbered, lettered, or a combination of both. Occasionally indented keys use no numbers or letters at all [38].
Even though this key is only a rare line, it comprises terms that need specialized knowledge of plant anatomy. If you do not know what “samaroid wings” or “perianth” are, the key is unusable. Field guides frequently enclose keys and illustrations to support the plant identification. They usually emphasize a restricted geographic area and compressed adequate to carry in the field. A field guide lets the user to compare the unidentified plant with identified plants that cultivate in the area. Even with a good field guide and key, it is often hard to identify a plant down to the species level, specifically if it is not flowering or fruiting. If possible, a botanist will gather a specimen to take back to the laboratory for an additional systematic investigation [40].
Even though many new chemical constituents have been derived and identified from medicinal plants used by the multicultural ethnic group, there are no conventional drugs synthesized from these plants using ethnobotanical knowledge and regulated as pharmaceutical products in the United States in at least in the past 40 years [41]. This may look like astonishing, considering the amount of resources and materials invested during the investigation of ethnobotanical knowledge for the past 40 years. On the other hand, indigenous knowledge about the medicinal plant is still used by the scholars and researchers for the identification of new chemical constituents and structures [42] that can be used as the main points for the development of new chemicals that have biological activity. Nowadays, the jobs for scholars and researchers have become more difficult than the past. They did not focus on finding new cultures, rather they focused on previously invented more than 4000 cultures and knowledge. An essential problem challenged by researchers on medicinal plant is that the study on medicinal plant may not all the time result in perfect separation of mechanisms of action, rather they only show “in-vitro pharmacological activity” or “in-vivo pharmacological activity on different organ or “identification chemical constituents and suggesting that it may have such activity due to the presence of this functional groups,” etc. A close relationship between ethnobotanists who conduct research for the assessment of medicinal plant use practices by the indigenous people and traditional healers and experimental pharmacologists who conduct study on the pharmacological activity of traditional medicinal plants claimed by the traditional healers is very important in order to add values on present health care system by discovering novel drugs from the natural products and plants [43].
Most of the scholars have related the current use of medicinal plants to their ancient civilization of ethnic groups by investigating the local names of the medicinal plants and uses in archival material and literature, but also more in recent times through past linguistic analysis of popular names [44, 45]. Investigation of the history of the use practices of
Many scholars give emphasis on the present uses of higher plants collected from the forest or wild not only due to the continuous historical use practices by the indigenous people or recurrence in new markets but also due to the their significance nutritional values. Generally, wild plants are nutritive because of their high content of minerals and vitamins [48, 49]. Study show that the consumption of common golden thistle (
Around 679 ethnobotanical surveys were accompanied in Latin America until 2012. Out of these surveys, 41% of ethnobotanical studies were carried out in Brazil, 22% of these studies were conducted in Mexico, 9% of these surveys were carried out in Peru, 8% were conducted in Argentina, 6% were conducted in Bolivia, and 14% of the studies were conducted in the rest of the countries of Latin American continent [52]. Apart from the infamous development of ethnobiology as a field in Latin America, the amount of ethnobotanical research conveyed for the scientific community look like to delay in various countries. From the results of research conducted on ethnobatanical information in Latin America especially in Brazil, Mexico, and Argentina, it is true that there is rapid increment of scientific studies on the ethnobotany fields in the continent. This condition could be improved by the integration of better funds for ethnobotanical studies by investing in human resources and economic capitals and through the formation of thematic areas and ethnobotanical cultures (as observed in Brazil and Mexico). The overall objective of these thematic areas are to promote and enlarge debates on the disciplines, build protocols, and create knowledge that may fulfill the existing gaps in various areas of ethnobotany. Ethnobotanical study may also be encouraged by an escalation in the number of scientific proceedings and journals to distribute the results obtained from the researches and by the design of undergraduate courses and master programs to teach scholars who will conduct quality researches on this field. These methods can fufill the existing gaps and intervals in ethnobotanical study and also lead to the alliance of ethnobotanical knowledge throughout the Latin America continent [52].
Ethnobotany seems to have appealed its correct place among the scientific field getting finance studies, but much task yet to be conducted. There is still a lot of ethnobotanical information yet to be recorded, especially in different parts of Africa like ethnobotanical knowledge of the Khoi, Ndebele, and Swazi, as well as the relationship of this ethnic group with traditional medicinal plants, wealth of unrecorded information, especially relating to the ethnobotany of the Khoi, Ndebele, and Swazi, as well as the interaction between plants and people, folk taxonomies, historical use practices of plants, uses of plants for the treatment of livestock ailments, and medicinal plant uses before the colonial period. In addition to these, medicinal plants used for the treatment of dental disease, plant parts used for the perfumes, cosmetics, insect repellents, colorant flowers, yeast plants, thatching plants, textile plants, musical instruments, as well as hunting, fishing, and other technologies. It is very important to isolate market-based research from indigenous knowledge-based research. Hence, market-based research may depend on the profit obtained from the study within reasonable time, but the former may be of more direct value in the short term, but indigenous knowledge-based research may be more urgent and important, as a consequence of their long period role on the way to a deeper identification of medicinal plants use practices by the traditional healers and native societies, especially in Africa. Study shows that urbanization and solid traditional effects from other parts of the globe are prominent to an extraordinary loss of indigenous knowledge in South Africa. Scholars and researchers should be stimulated to grasp the chances offered by ethnobotanical study and to document the aspects of their own historical-linguistic information and indigenous medicinal plant use practices by the different ethnic groups for the sake of future generations. It is obvious that once the traditional knowledge is documented well systematically, it is not adulterated for life time. It is truly accepted that each individuals and generations can understand and interpret indigenous knowledge in different angle. The sources of present-day technologies and discoveries by the scientists are the traditional and indigenous knowledge of our illiterate ancestors. However, the investigation of native knowledge concerning medicinal plants uses for the prevention and treatment of human and livestock diseases should be given emphasis especially in Africa. Hence, it is not feasible to give oral indigenous knowledge information for the scientific community without tangible and well-documented traditional knowledge about medicinal plants use practices in Africa [53].
Study conducted on ethnobotanical study in northern Angola showed that about 2390 medicinal plants were reported to be used by the traditional healers and community. Those medicinal plants were categorized under 358 species in 96 plant families, while just 3 out of 358 stated species are endemic to Angola and about one-fifth are neophytes. As the distance from where the medicinal plants collected increased, the number of use citations also higher. According to this study, large proportion of women (83%) was involved in the collection and preparation of medicinal plants from the forest and garden. The authors of this study discover new medicinal plants used for the treatment of different ailments by the indigenous people in the study, including Gardenia ternifolia which is claimed to have anti-measles, and ethnobotanical knowledge and the chemical constituents of Annona stenophylla subsp. cuneata medicinal plant have never been identified and documented elsewhere especially in the study area. Regardless of the long-term fighting in Angola, indigenous use practices of medicinal plants for the prevention and treatment of human and livestock disease remain a crucial part of traditional heritage. For that reason, plants are critical components in all parts of livelihood, particularly in the health care system. This condition is compounded by the still low-quality medical sectors in the Angola, particularly in countryside of the countries [54].
Another study conducted on hierarchies of knowledge; ethnobotanical knowledge, practices, and beliefs of the Vhavenda in South Africa for biodiversity conservation showed that 84 medicinal plant species were stated by the respondents which are categorized under 44 families. The majority of the stated medicinal plants were categorized under the fabaceae. The authors were identified 6 new species which are not reported before in Vhavenda ethnobotanical documents, also 68 medicinal plants claimed to have new indications and another 14 species have the similar uses with previously record. In this survey, high percent of plants reported were consumed as dietary supplements (36.0%) and used for the treatment of different human and livestock diseases (26.1%) and comprised mostly indigenous plants (73.8%) paralleled to nonnative plants (26.2%). The Vhavenda takes a variety of activities for the management of plant diversity that can be endorsed to taboos avoiding the usage of endangered and rare species, advertisement of sustainable collecting activities, and the proliferation of plant species for environmental refurbishment. Also, the authors reported about 48.4% of indigenous plant knowledge was transferred to generations through family/relatives, followed by studying about plants cultivation, collecting information by individual itself, through traineeships with traditional practitioners, and through learning in the schools and clan gatherings which constituted 16.1%, 9.7% 6.4%, and 19.4%, respectively. The reasons behind the difficulty in transferring knowledge about traditional plants use practices of Vhavenda are alterations in traditional knowledge platforms for information exchange, destruction of traditional organizations, and shifting value structures. The Vhavenda ethnic groups preserve a complex “knowledge-practice-belief” structure nearby for the use, control, and protection of plant biodiversity. The documentations of indication of new medicinal plants for the different purpose in this research and the expansion of the previously invented plants for the treatment of different human and livestock disease are valuable for providing an additional complete understanding into the indigenous plants use practices by this ethic groups in South Africa. The indigenous knowledge of medicinal plants use practices of this ethnic group is widespread comprising a variety of indigenous, exotic, wild, and cultivated plants. The indigenous people and traditional healers cultivate and gather a diversity of plants from the own garden, and from the wild and deciduous woodlands representing an all-embracing knowledge base conceivably imitating the sociocultural perspective of comparative separation and long-term settlement of the Vhavenda in the area. The domination of native plant diversity signified in ethnobotanical survey proposes that plant knowledge acclimatization may initiate with common and readily existing plants; conversely, the new popularity of nonnative plant diversity also reveals a form of adaptation to new acquired plant variety that has become integrated into the Vhavenda depository of valuable plant diversity. Native practices and organizations are also inserted in traditional settings and coded in cosmologies and belief systems that have safeguarded the sustainable utilization of plant biodiversity. Plant managing plans aim is to sustain consistent and continual supply of plant biodiversity for dietary purposes, medicinal use practices, and other uses through selective practices such as the prohibition of endangered and rare plants from use, the advertisement of sustainable collecting practices, and the proliferation of plant biodiversity [55].
A study review on medicinal plant use practices in Ethiopia showed that the country is rich in biodiversity and believed to have about 6000 higher plants diversity with about 10% of native higher plant species. This amount of biodiversity of plants species also includes most of the lower plant species. The genetic variety enclosed in the many biotic makeup is also great, consequently making the country a serious biodiversity homeland for plants. As one of the 12 Vavilovian midpoints of origin for home grown crops and their wild relatives, it is the country of various native crops and genetic stocks. Ethiopia is considered as the richest country in biodiversity since 5000 years ago when ancient Egyptians, Greeks, and Romans used it as a basis of exclusive merchandises like Frankincense, Myrrh, and other plant products, which are also used for the production of different drugs. Among the largest biodiversity of plant species found in Ethiopia, highest percent has medicinal purposes. With similar fashion with the rest of the world, most of the people of Ethiopia rely on medicinal plants for the treatment of human and livestock ailments. Accordingly, about 95% of traditional therapeutic synthesis are the products of plant source. It is not ambitious to say medicinal plants have been used as a basis for the traditional remedies in order to prevent and treat different human and livestock diseases in Ethiopia. Medicine preparation from the medicinal plants is an essential part of the tradition of Ethiopian people. Most Ethiopian indigenous healing knowledge is retained in stringent mystery; conversely, it is dynamic in that the traditional healers create every struggle to broaden their range by reciprocal transferring of traditional medicinal knowledge to each generations or by reading the traditional pharmacopeias. It is difficult to acquire indigenous healing information of the traditional practitioners for the reason that they claim that the knowledge is their own and only like to transfer their knowledge to their relatives, especially to the eldest son [56].
Traditional practitioners in Ethiopia use the medicinal plant existing in the biodiversity for the prevention and treatments of various human and livestock ailments. A study showed that around 800 plants diversity which is medicinally important in Ethiopia is used for treating around 300 diseases. As stated by several researchers, there are diverse kinds of plant diversity with their parts used for the treatment purposes, the place where they grow, and the type of conditions treated by using these medicinal plants. There are about 18 medicinal plant diversity with 63 genera, and they are used by the indigenous society for the prevention and treatment of different human diseases. According to the literature, the common medicinal plants used for the prevention and treatments of human conditions are
A study conducted on ethnobotanical assessment and physicochemical properties of Commonly Used Medicinal Plants in Southwest Ethiopia showed that a total of 72 plants species were stated by the respondents for the treatment of different human and livestock ailments and classified under 61 genera and 39 families. Herbs constituted the predominant plant growth parts followed by shrubs, tree, and climbers. Leaves were the most frequently used medicinal plant parts by the traditional healers in the study followed by roots and seeds. Regarding the method of preparation of the medicinal plants, crushing, powdering, pounding, and pressing were used sequentially by the traditional healers [58].
Conservation of medicinal plants should have an objective of conserving biodiversity within specified place like by preparing botanical garden to confirm that all the plant species will be ready to use by the future generations [59]. Sustainable managing of indigenous medicinal plant diversity is very significant not only for the reason that their potential benefit as lead compound for new drug discoveries but also because of the large percent of people around the world still depends on traditional medicinal plants [60]. There is certain protection activities that have been carried out everywhere in the globe intended to keep endangered medicinal plants from additional harm [61]. This includes in situ and ex situ protection actions. Both in situ and ex situ protection efforts are applied to protect medicinal plant genetic biodiversity. In situ conservation is the protection of plant biodiversity in their natural territories. Certain indigenous medicinal plants have to be well kept in situ because of the difficulty for domestication and managing [62]. Medicinal plants can also be protected by confirming and inspiring their growth in different spaces, as they have been used traditionally [62]. This can be promising in the place of churches, mosques, graveyards, farm margin, river bank, and so on. An interpretation that has been made by the researcher showed that medicinal plant diversity grown around the religious sites is prohibited from collecting [60]. The second one is ex-situ conservations means conservation outside their natural habitats. This comprises gen bank, herbal gardens, and others. As it was stated, home gardens have an abundant influence for the protection of medicinal plant species in broad, and at the same time the biodiversity can also be well kept; thus, home gardens are strategic and best agricultural systems for the protection, production, and development of species that are medicinally important [62, 63]. Various efforts have been made to safeguard and encourage sustainable use of plants that are medicinally important in different country. In the field, biodiversity protection goes alongside with the protection of ethnobotanical and ethnopharmacological information. Ethnobotanical investigation can point out managing difficulties of biodiversity through interviews and market studies; moreover, it provides resolutions by encouraging indigenous knowledge and customs that had protection advantages [64, 65]. A study reported that the wise utilization of species that are medicinally useful wants the participation of diverse sectors and larger community support and for this, awareness formation is suggested [66].
Ethnobotany is a life science which studies the interaction between human beings and flora in particular and broadly deals with the investigations, observations, and identifications of botanical diversity used for the prevention and treatment of human and livestock ailments. It also studies about the indigenous people knowledge, beliefs, and practices (i.e. it may be cultural and religious practices) related with medicinal plants. Also, it includes how human beings categorize, isolate, and associate floras beside with joint relationships of floras and human beings. The ethnobotanists should have to discuss with native community to share their routine life and to respect their cultures in order to obtain valuable information about the plants used for the medicinal purpose. Ethnobotany might be considered as a particular subdivision of ethnobiology. Ethnobotanists use different methods and materials for their ethnobotanical studies including ancient writings, surveys, discussions with key informants, and field investigations of the relationship between the plants and human beings. They typically work together with native people or traditional healers who have knowledge about the plants to record the indigenous biodiversity including plants and also for the identification of botanical diversity, parts used for the treatment of human and livestock diseases, and method of preparations and applications.
Ethnobotanists somewhat frequently categorize themselves more and more as ethnobiologists or ethnoecologists for the reason that these fields bargain more prospects to evaluate the relationship between the people and the whole surroundings in addition to the societies’ interaction with the external environment including the effect of global trade on domestic economy and individual life. Since 1992, the interaction of human beings with plants has created a new term known as “applied ethnobotany” which in fact relates to studies and approaches which allow to work together with the indigenous people and traditional practitioners in an actual way, to investigate the knowledge of native people and develop better management structures which shape specific use practices and social dynamics. Applied ethnobotanies also make every effort to fill the gap between indigenous knowledge and modern practice and to recognize the association between indigenous practices and knowledge schemes and procedures, and directions and financial fashions at the nationwide and worldwide level. In recent times, the term ethnoecology has been invented. Martine defines ethnoecology as a discipline which integrates many diverse academic fields. The term ethnoecology is used to incorporate all fields which designate the relationship between indigenous people and the ecosystem, including subdisciplines such as ethnobiology, ethnobotany, ethnoentomology, and ethnozoology. In fact, ethnoecology is the discipline of how individuals comprehend the interaction between human beings and the living things including animals, plants, and physical elements of a place.
Human being has been consuming floras meanwhile beforehand documented history. Our most primitive ancestors collected floras for foodstuff, medication, fibers, and construction supplies, momentary on their knowledge through oral customs. Farming, the exercise of generating yields and rising livestock, came about autonomously in diverse areas of the universe 10,000–15,000 years ago. Plant knowledge was an unlimited benefit in ancient societies, as it conversed a bigger opportunities of survival. Many ancient researchers took an extreme concern in botany, publishing herbals that enclosed plant information, and in addition also contained botanical importance. By using this baseline, an individual can identify and collect medicinal plants from the traditional healers own garden or from the forest and also can easily understand the method of preparations and applications. The term ethnobotany did not coin out as a discipline during the ancient civilization until earlier modern period. Despite the fact that individuals historically had a nearby relationship with the plants and various intellectuals investigated botany, rare scholars investigated the plant knowledge of an ethnic group till the twentieth century. The following are the rare leading ethnobotanical researchers and texts that aided disperse botanical knowledge all the way through the ages.
Even though many new chemical constituents have been derived and identified from medicinal plants used by the multicultural ethnic group, there are no conventional drugs synthesized from these plants using ethnobotanical knowledge and regulated as pharmaceutical products in the United States in at least in the past 40 years. This may look like astonishing, considering the amount of resources and materials invested during the investigation of ethnobotanical knowledge for the past 40 years. On the other hand, indigenous knowledge about the medicinal plant is still used by the scholars and researchers for the identification of new chemical constituents and structures that can be used as the main points for the development of new chemicals that have biological activity. Nowadays, the jobs for scholars and researchers have become more difficult than the past. They did not focus on finding new cultures, rather they focused on previously invented more than 4000 cultures and knowledge. An essential problem challenged by researchers on medicinal plant is that the study on medicinal plant may not all the time result in perfect separation of mechanisms of action, rather they only show “in-vitro pharmacological activity” or “in-vivo pharmacological activity on different organ” or “identification chemical constituents and suggesting that it may have such activity due to the presence of this functional groups,” etc. A close relationship between ethnobotanists who conduct research for the assessment of medicinal plant use practices by the indigenous people and traditional healers and experimental pharmacologists who conduct study on the pharmacological activity of traditional medicinal plants claimed by the traditional healers is very important in order to add values on present health care system by discovering novel drugs from the natural products and plants. On the assumption that there is a necessity for original, cautious, systematic, and cooperative records of the relationship of human beings with plant nature, for joining societal and environmental systems, for sustaining and improving biodiversity, and for recoupling health and well-being with traditional and ecological integrity, ethnobotany will be a discipline of significance and prominence in the globe.
Customer Satisfaction is of paramount importance at IntechOpen and we take all complaints very seriously. Our Authors, their institutions, and other purchasers, if dissatisfied with the service provided, or the product purchased, can file a written complaint to IntechOpen, 5 Princes Gate Court, London, SW7 2QJ, UK or via the following e-mail address: info@intechopen.com.
',metaTitle:"Customer Complaints",metaDescription:"Our authors, their institutions and other purchasers, if unsatisfied with the service provided or the product purchased, can file a written complaint at IN TECH d.o.o offices at Janeza Trdine 9, 51000 Rijeka, Croatia, or via the following e-mail address: info@intechopen.com.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\\n\\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\\n\\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\\n\\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\\n\\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\n\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\n\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\n\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\n\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6654},{group:"region",caption:"Middle and South America",value:2,count:5945},{group:"region",caption:"Africa",value:3,count:2452},{group:"region",caption:"Asia",value:4,count:12681},{group:"region",caption:"Australia and Oceania",value:5,count:1014},{group:"region",caption:"Europe",value:6,count:17701}],offset:12,limit:12,total:133951},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"161925"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:39},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:66},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:26},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:7},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:0},popularBooks:{featuredBooks:[{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10787",title:"Hepatocellular Carcinoma",subtitle:"Challenges and Opportunities of a Multidisciplinary Approach",isOpenForSubmission:!1,hash:"bc00a66513e51003e5dbbc0294e0fc3d",slug:"hepatocellular-carcinoma-challenges-and-opportunities-of-a-multidisciplinary-approach",bookSignature:"Georgios Tsoulfas",coverURL:"https://cdn.intechopen.com/books/images_new/10787.jpg",editors:[{id:"57412",title:"Prof.",name:"Georgios",middleName:null,surname:"Tsoulfas",slug:"georgios-tsoulfas",fullName:"Georgios Tsoulfas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,isOpenForSubmission:!1,hash:"4e868cde273d65a7ff54b1817d640629",slug:"hydrolases",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",isOpenForSubmission:!1,hash:"2c628f4757f9639a4450728d839a7842",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",bookSignature:"Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10193",title:"Multidisciplinary Experiences in Renal Replacement Therapy",subtitle:null,isOpenForSubmission:!1,hash:"3c4738671bb3e815744d1e04df7ba879",slug:"multidisciplinary-experiences-in-renal-replacement-therapy",bookSignature:"Ane C.F. Nunes",coverURL:"https://cdn.intechopen.com/books/images_new/10193.jpg",editors:[{id:"55270",title:"Prof.",name:"Ane",middleName:null,surname:"Claudia Fernandes Nunes",slug:"ane-claudia-fernandes-nunes",fullName:"Ane Claudia Fernandes Nunes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10983",title:"Conifers",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"3e524d29fc3f95c3389efbd41463dab6",slug:"conifers-recent-advances",bookSignature:"Ana Cristina Gonçalves and Teresa Fonseca",coverURL:"https://cdn.intechopen.com/books/images_new/10983.jpg",editors:[{id:"194484",title:"Prof.",name:"Ana Cristina",middleName:null,surname:"Gonçalves",slug:"ana-cristina-goncalves",fullName:"Ana Cristina Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10539",title:"Ginseng",subtitle:"Modern Aspects of the Famed Traditional Medicine",isOpenForSubmission:!1,hash:"5f388543a066b617d2c52bd4c027c272",slug:"ginseng-modern-aspects-of-the-famed-traditional-medicine",bookSignature:"Christophe Hano and Jen-Tsung Chen",coverURL:"https://cdn.intechopen.com/books/images_new/10539.jpg",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10881",title:"Drug Repurposing",subtitle:"Molecular Aspects and Therapeutic Applications",isOpenForSubmission:!1,hash:"eca3f2d5ca97b457d38a2442b36d3ac7",slug:"drug-repurposing-molecular-aspects-and-therapeutic-applications",bookSignature:"Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/10881.jpg",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4423},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2204,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",publishedDate:"June 15th 2022",numberOfDownloads:1182,editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10787",title:"Hepatocellular Carcinoma",subtitle:"Challenges and Opportunities of a Multidisciplinary Approach",isOpenForSubmission:!1,hash:"bc00a66513e51003e5dbbc0294e0fc3d",slug:"hepatocellular-carcinoma-challenges-and-opportunities-of-a-multidisciplinary-approach",bookSignature:"Georgios Tsoulfas",coverURL:"https://cdn.intechopen.com/books/images_new/10787.jpg",publishedDate:"June 15th 2022",numberOfDownloads:1006,editors:[{id:"57412",title:"Prof.",name:"Georgios",middleName:null,surname:"Tsoulfas",slug:"georgios-tsoulfas",fullName:"Georgios Tsoulfas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,isOpenForSubmission:!1,hash:"4e868cde273d65a7ff54b1817d640629",slug:"hydrolases",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",publishedDate:"June 15th 2022",numberOfDownloads:863,editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",isOpenForSubmission:!1,hash:"2c628f4757f9639a4450728d839a7842",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",bookSignature:"Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",publishedDate:"June 15th 2022",numberOfDownloads:793,editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10193",title:"Multidisciplinary Experiences in Renal Replacement Therapy",subtitle:null,isOpenForSubmission:!1,hash:"3c4738671bb3e815744d1e04df7ba879",slug:"multidisciplinary-experiences-in-renal-replacement-therapy",bookSignature:"Ane C.F. Nunes",coverURL:"https://cdn.intechopen.com/books/images_new/10193.jpg",publishedDate:"June 15th 2022",numberOfDownloads:730,editors:[{id:"55270",title:"Prof.",name:"Ane",middleName:null,surname:"Claudia Fernandes Nunes",slug:"ane-claudia-fernandes-nunes",fullName:"Ane Claudia Fernandes Nunes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2167,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10983",title:"Conifers",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"3e524d29fc3f95c3389efbd41463dab6",slug:"conifers-recent-advances",bookSignature:"Ana Cristina Gonçalves and Teresa Fonseca",coverURL:"https://cdn.intechopen.com/books/images_new/10983.jpg",publishedDate:"June 15th 2022",numberOfDownloads:600,editors:[{id:"194484",title:"Prof.",name:"Ana Cristina",middleName:null,surname:"Gonçalves",slug:"ana-cristina-goncalves",fullName:"Ana Cristina Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10539",title:"Ginseng",subtitle:"Modern Aspects of the Famed Traditional Medicine",isOpenForSubmission:!1,hash:"5f388543a066b617d2c52bd4c027c272",slug:"ginseng-modern-aspects-of-the-famed-traditional-medicine",bookSignature:"Christophe Hano and Jen-Tsung Chen",coverURL:"https://cdn.intechopen.com/books/images_new/10539.jpg",publishedDate:"June 15th 2022",numberOfDownloads:583,editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10881",title:"Drug Repurposing",subtitle:"Molecular Aspects and Therapeutic Applications",isOpenForSubmission:!1,hash:"eca3f2d5ca97b457d38a2442b36d3ac7",slug:"drug-repurposing-molecular-aspects-and-therapeutic-applications",bookSignature:"Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/10881.jpg",publishedDate:"June 1st 2022",numberOfDownloads:2231,editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10774",title:"Model Organisms in Plant Genetics",subtitle:null,isOpenForSubmission:!1,hash:"f6624b58571ac10c9b636c5d85ec5e54",slug:"model-organisms-in-plant-genetics",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/10774.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!1,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:"protein-detection",bookSignature:"Yusuf Tutar and Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Applications of Calorimetry",subtitle:null,isOpenForSubmission:!1,hash:"8c87f7e2199db33b5dd7181f56973a97",slug:"applications-of-calorimetry",bookSignature:"José Luis Rivera Armenta and Cynthia Graciela Flores Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"340",title:"Hydroponics",slug:"hydroponics",parent:{id:"38",title:"Horticulture",slug:"horticulture"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:28,numberOfWosCitations:45,numberOfCrossrefCitations:38,numberOfDimensionsCitations:80,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"340",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6203",title:"Potassium",subtitle:"Improvement of Quality in Fruits and Vegetables Through Hydroponic Nutrient Management",isOpenForSubmission:!1,hash:"b4208bd87e8d6c2569ebdda0e4868ad2",slug:"potassium-improvement-of-quality-in-fruits-and-vegetables-through-hydroponic-nutrient-management",bookSignature:"Md Asaduzzaman and Toshiki Asao",coverURL:"https://cdn.intechopen.com/books/images_new/6203.jpg",editedByType:"Edited by",editors:[{id:"171564",title:"Dr.",name:"Md",middleName:null,surname:"Asaduzzaman",slug:"md-asaduzzaman",fullName:"Md Asaduzzaman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4552",title:"Soilless Culture",subtitle:"Use of Substrates for the Production of Quality Horticultural Crops",isOpenForSubmission:!1,hash:"0db90197795ffda070bec7ed97064c74",slug:"soilless-culture-use-of-substrates-for-the-production-of-quality-horticultural-crops",bookSignature:"Md. Asaduzzaman",coverURL:"https://cdn.intechopen.com/books/images_new/4552.jpg",editedByType:"Edited by",editors:[{id:"171564",title:"Dr.",name:"Md",middleName:null,surname:"Asaduzzaman",slug:"md-asaduzzaman",fullName:"Md Asaduzzaman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"47996",doi:"10.5772/59596",title:"Growing Substrates Alternative to Peat for Ornamental Plants",slug:"growing-substrates-alternative-to-peat-for-ornamental-plants",totalDownloads:3469,totalCrossrefCites:19,totalDimensionsCites:39,abstract:null,book:{id:"4552",slug:"soilless-culture-use-of-substrates-for-the-production-of-quality-horticultural-crops",title:"Soilless Culture",fullTitle:"Soilless Culture - Use of Substrates for the Production of Quality Horticultural Crops"},signatures:"Giancarlo Fascella",authors:[{id:"171718",title:"Dr.",name:"Giancarlo",middleName:null,surname:"Fascella",slug:"giancarlo-fascella",fullName:"Giancarlo Fascella"}]},{id:"48098",doi:"10.5772/59708",title:"Influence of Soilless Culture Substrate on Improvement of Yield and Produce Quality of Horticultural Crops",slug:"influence-of-soilless-culture-substrate-on-improvement-of-yield-and-produce-quality-of-horticultural",totalDownloads:4637,totalCrossrefCites:9,totalDimensionsCites:18,abstract:null,book:{id:"4552",slug:"soilless-culture-use-of-substrates-for-the-production-of-quality-horticultural-crops",title:"Soilless Culture",fullTitle:"Soilless Culture - Use of Substrates for the Production of Quality Horticultural Crops"},signatures:"Md. Asaduzzaman, Md. Saifullah, AKM Salim Reza Mollick, Md.\nMokter Hossain, GMA Halim and Toshiki Asao",authors:[{id:"106510",title:"Dr.",name:"Toshiki",middleName:null,surname:"Asao",slug:"toshiki-asao",fullName:"Toshiki Asao"},{id:"171564",title:"Dr.",name:"Md",middleName:null,surname:"Asaduzzaman",slug:"md-asaduzzaman",fullName:"Md Asaduzzaman"},{id:"172948",title:"Dr.",name:"Md.",middleName:null,surname:"Saifullah",slug:"md.-saifullah",fullName:"Md. Saifullah"},{id:"172949",title:"Prof.",name:"Md.",middleName:null,surname:"Mokter Hossain",slug:"md.-mokter-hossain",fullName:"Md. Mokter Hossain"},{id:"173219",title:"Mr.",name:"Akm Salim Reza",middleName:null,surname:"Mollik",slug:"akm-salim-reza-mollik",fullName:"Akm Salim Reza Mollik"},{id:"173220",title:"Dr.",name:"Golam Morshed Abdul",middleName:null,surname:"Halim",slug:"golam-morshed-abdul-halim",fullName:"Golam Morshed Abdul Halim"}]},{id:"57874",doi:"10.5772/intechopen.71951",title:"Potassium Nutrition in Plants and Its Interactions with Other Nutrients in Hydroponic Culture",slug:"potassium-nutrition-in-plants-and-its-interactions-with-other-nutrients-in-hydroponic-culture",totalDownloads:1441,totalCrossrefCites:3,totalDimensionsCites:8,abstract:"Potassium is an essential major nutrient for plant growth and development. Plants absorb more K (potassium) than any other element, with the exception of N. Most plant-available forms of essential plant nutrients are ionic. Among the many plant mineral nutrients, K stands out as a cation having the strongest influence on quality attributes. Potassium ions are involved in many processes that result from ionic activity in the hydroponic nutrient solution and often provide positive contributions. Due to the presence of potassium cation ions, some elements increase in nutrient solution, whereas others decrease.",book:{id:"6203",slug:"potassium-improvement-of-quality-in-fruits-and-vegetables-through-hydroponic-nutrient-management",title:"Potassium",fullTitle:"Potassium - Improvement of Quality in Fruits and Vegetables Through Hydroponic Nutrient Management"},signatures:"Betül Çalişkan and Ali Cengiz Çalişkan",authors:[{id:"199110",title:"Dr.",name:"Betül",middleName:null,surname:"Çalişkan",slug:"betul-caliskan",fullName:"Betül Çalişkan"},{id:"208732",title:"Dr.",name:"Ali Cengiz",middleName:null,surname:"Çalişkan",slug:"ali-cengiz-caliskan",fullName:"Ali Cengiz Çalişkan"}]},{id:"48099",doi:"10.5772/59547",title:"Effect of Different Growing Substrates on Physiological Processes, Productivity and Quality of Tomato in Soilless Culture",slug:"effect-of-different-growing-substrates-on-physiological-processes-productivity-and-quality-of-tomato",totalDownloads:3191,totalCrossrefCites:2,totalDimensionsCites:5,abstract:null,book:{id:"4552",slug:"soilless-culture-use-of-substrates-for-the-production-of-quality-horticultural-crops",title:"Soilless Culture",fullTitle:"Soilless Culture - Use of Substrates for the Production of Quality Horticultural Crops"},signatures:"Julė Jankauskienė, Aušra Brazaitytė and Pranas Viškelis",authors:[{id:"172637",title:"Dr.",name:"Jule",middleName:null,surname:"Jankauskiene",slug:"jule-jankauskiene",fullName:"Jule Jankauskiene"}]},{id:"58340",doi:"10.5772/intechopen.71742",title:"Potassium Nutrition in Fruits and Vegetables and Food Safety through Hydroponic System",slug:"potassium-nutrition-in-fruits-and-vegetables-and-food-safety-through-hydroponic-system",totalDownloads:1564,totalCrossrefCites:0,totalDimensionsCites:3,abstract:"Although it is not an element with structural function in plants, potassium (K) is demanded in considerable quantities by plants due to multifunctional role in plant physiology and metabolism. Nevertheless, the interface of plant mineral nutrition and food safety evidences needs for a better understanding of functional mechanisms of this nutrient in plants, taking into account its management in hydroponic cultivation and food production with nutritional quality. Thus, the nutritional content of K in vegetables is indicative of post-harvest and nutritional quality. This fact is important considering that modern life has induced increased consumption of processed foods whose preparation implies reduction of K levels and increase of Na levels, with the consequent low K intake and appearance of diseases related to insufficient intake. Therefore, the present chapter aimed to address main nutritional, physiological, and biochemical aspects of K in a context of hydroponic plant production and importance of potassium nutrition to human health.",book:{id:"6203",slug:"potassium-improvement-of-quality-in-fruits-and-vegetables-through-hydroponic-nutrient-management",title:"Potassium",fullTitle:"Potassium - Improvement of Quality in Fruits and Vegetables Through Hydroponic Nutrient Management"},signatures:"Flávio José Rodrigues Cruz, Renato de Mello Prado, Guilherme\nFelisberto, Águila Silva Santos and Rafael Ferreira Barreto",authors:[{id:"158043",title:"Dr.",name:"Renato",middleName:"De Mello",surname:"de Mello Prado",slug:"renato-de-mello-prado",fullName:"Renato de Mello Prado"},{id:"190961",title:"Dr.",name:"Flávio José Rodrigues",middleName:"José Rodrigues",surname:"Cruz",slug:"flavio-jose-rodrigues-cruz",fullName:"Flávio José Rodrigues Cruz"},{id:"209518",title:"MSc.",name:"Rafael Ferreira",middleName:null,surname:"Barreto",slug:"rafael-ferreira-barreto",fullName:"Rafael Ferreira Barreto"},{id:"209520",title:"BSc.",name:"Águila Silva",middleName:null,surname:"Santos",slug:"aguila-silva-santos",fullName:"Águila Silva Santos"},{id:"213635",title:"M.Sc.",name:"Guilherme",middleName:null,surname:"Felisberto",slug:"guilherme-felisberto",fullName:"Guilherme Felisberto"}]}],mostDownloadedChaptersLast30Days:[{id:"58261",title:"Software for Calculation of Nutrient Solution for Fruits and Leafy Vegetables in NFT Hydroponic System",slug:"software-for-calculation-of-nutrient-solution-for-fruits-and-leafy-vegetables-in-nft-hydroponic-syst",totalDownloads:5468,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"Information technology is present in virtually all areas of science as a productivity tool, assisting professionals in these areas in their daily work. In this sense, the objective of the research was the development of a free software for use over the Internet, with a friendly interface and intuitive navigation, for calculation of nutrient solution for fruit vegetables and leaves in hydroponic NFT system. To develop the software, we used the technologies PHP5 (Programming Language), MYSQL (Database), CSS5 (Style Language), HTML5 (Markup Language) and CodeIgniter (Framework). The software has among its functions the user registration, calculation of the nutrient solution and the issuance of reports in PDF format. Calculation of the nutrient solution is available for various crops. The calculation proposes the quantity of different fertilizers needed to prepare the nutrient solution for the chosen hydroponic crops. Two software known as Hidrosolun and Hidrosical (registration number BR 51201400613–1 and BR 51201400614–0) were created and registered at the National Institute of Industrial Property (INPI), a federal agency responsible for the registration of intellectual property rights for the industry. The software developed is easy to use, without the need to install hardware with high configurations.",book:{id:"6203",slug:"potassium-improvement-of-quality-in-fruits-and-vegetables-through-hydroponic-nutrient-management",title:"Potassium",fullTitle:"Potassium - Improvement of Quality in Fruits and Vegetables Through Hydroponic Nutrient Management"},signatures:"Douglas José Marques, Francisco Donizeti Vieira Luz, Rogério\nWilliam Fernandes Barroso and Hudson Carvalho Bianchini",authors:[{id:"208047",title:"Prof.",name:"Hudson Carvalho",middleName:null,surname:"Bianchini",slug:"hudson-carvalho-bianchini",fullName:"Hudson Carvalho Bianchini"},{id:"215944",title:"Dr.",name:"Douglas José",middleName:"José",surname:"Marques",slug:"douglas-jose-marques",fullName:"Douglas José Marques"},{id:"215945",title:"MSc.",name:"Francisco Donizete Vieira",middleName:null,surname:"Luz",slug:"francisco-donizete-vieira-luz",fullName:"Francisco Donizete Vieira Luz"},{id:"215946",title:"MSc.",name:"Rogério William Fernandes",middleName:null,surname:"Barroso",slug:"rogerio-william-fernandes-barroso",fullName:"Rogério William Fernandes Barroso"}]},{id:"48099",title:"Effect of Different Growing Substrates on Physiological Processes, Productivity and Quality of Tomato in Soilless Culture",slug:"effect-of-different-growing-substrates-on-physiological-processes-productivity-and-quality-of-tomato",totalDownloads:3191,totalCrossrefCites:2,totalDimensionsCites:5,abstract:null,book:{id:"4552",slug:"soilless-culture-use-of-substrates-for-the-production-of-quality-horticultural-crops",title:"Soilless Culture",fullTitle:"Soilless Culture - Use of Substrates for the Production of Quality Horticultural Crops"},signatures:"Julė Jankauskienė, Aušra Brazaitytė and Pranas Viškelis",authors:[{id:"172637",title:"Dr.",name:"Jule",middleName:null,surname:"Jankauskiene",slug:"jule-jankauskiene",fullName:"Jule Jankauskiene"}]},{id:"58340",title:"Potassium Nutrition in Fruits and Vegetables and Food Safety through Hydroponic System",slug:"potassium-nutrition-in-fruits-and-vegetables-and-food-safety-through-hydroponic-system",totalDownloads:1564,totalCrossrefCites:0,totalDimensionsCites:3,abstract:"Although it is not an element with structural function in plants, potassium (K) is demanded in considerable quantities by plants due to multifunctional role in plant physiology and metabolism. Nevertheless, the interface of plant mineral nutrition and food safety evidences needs for a better understanding of functional mechanisms of this nutrient in plants, taking into account its management in hydroponic cultivation and food production with nutritional quality. Thus, the nutritional content of K in vegetables is indicative of post-harvest and nutritional quality. This fact is important considering that modern life has induced increased consumption of processed foods whose preparation implies reduction of K levels and increase of Na levels, with the consequent low K intake and appearance of diseases related to insufficient intake. Therefore, the present chapter aimed to address main nutritional, physiological, and biochemical aspects of K in a context of hydroponic plant production and importance of potassium nutrition to human health.",book:{id:"6203",slug:"potassium-improvement-of-quality-in-fruits-and-vegetables-through-hydroponic-nutrient-management",title:"Potassium",fullTitle:"Potassium - Improvement of Quality in Fruits and Vegetables Through Hydroponic Nutrient Management"},signatures:"Flávio José Rodrigues Cruz, Renato de Mello Prado, Guilherme\nFelisberto, Águila Silva Santos and Rafael Ferreira Barreto",authors:[{id:"158043",title:"Dr.",name:"Renato",middleName:"De Mello",surname:"de Mello Prado",slug:"renato-de-mello-prado",fullName:"Renato de Mello Prado"},{id:"190961",title:"Dr.",name:"Flávio José Rodrigues",middleName:"José Rodrigues",surname:"Cruz",slug:"flavio-jose-rodrigues-cruz",fullName:"Flávio José Rodrigues Cruz"},{id:"209518",title:"MSc.",name:"Rafael Ferreira",middleName:null,surname:"Barreto",slug:"rafael-ferreira-barreto",fullName:"Rafael Ferreira Barreto"},{id:"209520",title:"BSc.",name:"Águila Silva",middleName:null,surname:"Santos",slug:"aguila-silva-santos",fullName:"Águila Silva Santos"},{id:"213635",title:"M.Sc.",name:"Guilherme",middleName:null,surname:"Felisberto",slug:"guilherme-felisberto",fullName:"Guilherme Felisberto"}]},{id:"48098",title:"Influence of Soilless Culture Substrate on Improvement of Yield and Produce Quality of Horticultural Crops",slug:"influence-of-soilless-culture-substrate-on-improvement-of-yield-and-produce-quality-of-horticultural",totalDownloads:4637,totalCrossrefCites:9,totalDimensionsCites:18,abstract:null,book:{id:"4552",slug:"soilless-culture-use-of-substrates-for-the-production-of-quality-horticultural-crops",title:"Soilless Culture",fullTitle:"Soilless Culture - Use of Substrates for the Production of Quality Horticultural Crops"},signatures:"Md. Asaduzzaman, Md. Saifullah, AKM Salim Reza Mollick, Md.\nMokter Hossain, GMA Halim and Toshiki Asao",authors:[{id:"106510",title:"Dr.",name:"Toshiki",middleName:null,surname:"Asao",slug:"toshiki-asao",fullName:"Toshiki Asao"},{id:"171564",title:"Dr.",name:"Md",middleName:null,surname:"Asaduzzaman",slug:"md-asaduzzaman",fullName:"Md Asaduzzaman"},{id:"172948",title:"Dr.",name:"Md.",middleName:null,surname:"Saifullah",slug:"md.-saifullah",fullName:"Md. Saifullah"},{id:"172949",title:"Prof.",name:"Md.",middleName:null,surname:"Mokter Hossain",slug:"md.-mokter-hossain",fullName:"Md. Mokter Hossain"},{id:"173219",title:"Mr.",name:"Akm Salim Reza",middleName:null,surname:"Mollik",slug:"akm-salim-reza-mollik",fullName:"Akm Salim Reza Mollik"},{id:"173220",title:"Dr.",name:"Golam Morshed Abdul",middleName:null,surname:"Halim",slug:"golam-morshed-abdul-halim",fullName:"Golam Morshed Abdul Halim"}]},{id:"48223",title:"Simple Substrate Culture in Arid Lands",slug:"simple-substrate-culture-in-arid-lands",totalDownloads:2828,totalCrossrefCites:0,totalDimensionsCites:1,abstract:null,book:{id:"4552",slug:"soilless-culture-use-of-substrates-for-the-production-of-quality-horticultural-crops",title:"Soilless Culture",fullTitle:"Soilless Culture - Use of Substrates for the Production of Quality Horticultural Crops"},signatures:"Usama Ahmed Aly El-Behairy",authors:[{id:"172715",title:"Prof.",name:"Usama",middleName:null,surname:"El Behairy",slug:"usama-el-behairy",fullName:"Usama El Behairy"}]}],onlineFirstChaptersFilter:{topicId:"340",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:18,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"June 25th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",isOpenForSubmission:!0,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",isOpenForSubmission:!0,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",isOpenForSubmission:!0,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:23,paginationItems:[{id:"82392",title:"Nanomaterials as Novel Biomarkers for Cancer Nanotheranostics: State of the Art",doi:"10.5772/intechopen.105700",signatures:"Hao Yu, Zhihai Han, Cunrong Chen and Leisheng Zhang",slug:"nanomaterials-as-novel-biomarkers-for-cancer-nanotheranostics-state-of-the-art",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"82184",title:"Biological Sensing Using Infrared SPR Devices Based on ZnO",doi:"10.5772/intechopen.104562",signatures:"Hiroaki Matsui",slug:"biological-sensing-using-infrared-spr-devices-based-on-zno",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hiroaki",surname:"Matsui"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82122",title:"Recent Advances in Biosensing in Tissue Engineering and Regenerative Medicine",doi:"10.5772/intechopen.104922",signatures:"Alma T. Banigo, Chigozie A. Nnadiekwe and Emmanuel M. Beasi",slug:"recent-advances-in-biosensing-in-tissue-engineering-and-regenerative-medicine",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82080",title:"The Clinical Usefulness of Prostate Cancer Biomarkers: Current and Future Directions",doi:"10.5772/intechopen.103172",signatures:"Donovan McGrowder, Lennox Anderson-Jackson, Lowell Dilworth, Shada Mohansingh, Melisa Anderson Cross, Sophia Bryan, Fabian Miller, Cameil Wilson-Clarke, Chukwuemeka Nwokocha, Ruby Alexander-Lindo and Shelly McFarlane",slug:"the-clinical-usefulness-of-prostate-cancer-biomarkers-current-and-future-directions",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11475",title:"Food Security Challenges and Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11475.jpg",hash:"090302a30e461cee643ec49675c811ec",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"292145",title:"Dr.",name:"Muhammad",surname:"Haseeb Ahmad",slug:"muhammad-haseeb-ahmad",fullName:"Muhammad Haseeb Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",hash:"a58c7b02d07903004be70f744f2e1835",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11477",title:"Public Economics - New Perspectives and Uncertainty",coverURL:"https://cdn.intechopen.com/books/images_new/11477.jpg",hash:"a8e6c515dc924146fbd2712eb4e7d118",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 27th 2022",isOpenForSubmission:!0,editors:[{id:"414400",title:"Dr.",name:"Habtamu",surname:"Alem",slug:"habtamu-alem",fullName:"Habtamu Alem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11457",title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",hash:"8df7150b01ae754024c65d1a62f190d9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"317087",title:"Dr.",name:"Pavel",surname:"Samec",slug:"pavel-samec",fullName:"Pavel Samec"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 7th 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11473",title:"Social Inequality - Structure and Social Processes",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",hash:"cefab077e403fd1695fb2946e7914942",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"313341",title:"Ph.D.",name:"Yaroslava",surname:"Robles-Bykbaev",slug:"yaroslava-robles-bykbaev",fullName:"Yaroslava Robles-Bykbaev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:43,paginationItems:[{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82212",title:"Protein Prenylation and Their Applications",doi:"10.5772/intechopen.104700",signatures:"Khemchand R. Surana, Ritesh B. Pawar, Ritesh A. Khairnar and Sunil K. Mahajan",slug:"protein-prenylation-and-their-applications",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82096",title:"An Important Component of Tumor Progression: Fatty Acids",doi:"10.5772/intechopen.105087",signatures:"Jin Wang, Qifei Wang and Guangzhen Wu",slug:"an-important-component-of-tumor-progression-fatty-acids",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82029",title:"Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety",doi:"10.5772/intechopen.104908",signatures:"Vinayak Adimule, Pravin Kendrekar and Sheetal Batakurki",slug:"synthesis-characterization-and-antimicrobial-properties-of-novel-benzimidazole-amide-derivatives-bea",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:37,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:1,group:"subseries"},{caption:"Metabolism",value:17,count:12,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:14,group:"subseries"},{caption:"Chemical Biology",value:15,count:14,group:"subseries"}],publishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"9883",title:"Biosensors",subtitle:"Current and Novel Strategies for Biosensing",coverURL:"https://cdn.intechopen.com/books/images_new/9883.jpg",slug:"biosensors-current-and-novel-strategies-for-biosensing",publishedDate:"May 5th 2021",editedByType:"Edited by",bookSignature:"Luis Jesús Villarreal-Gómez and Ana Leticia Iglesias",hash:"028f3e5dbf9c32590183ac4b4f0a2825",volumeInSeries:11,fullTitle:"Biosensors - Current and Novel Strategies for Biosensing",editors:[{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",slug:"biomedical-signal-and-image-processing",publishedDate:"April 14th 2021",editedByType:"Edited by",bookSignature:"Yongxia Zhou",hash:"22b87a09bd6df065d78c175235d367c8",volumeInSeries:10,fullTitle:"Biomedical Signal and Image Processing",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",institutionString:"University of Southern California",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9973",title:"Data Acquisition",subtitle:"Recent Advances and Applications in Biomedical Engineering",coverURL:"https://cdn.intechopen.com/books/images_new/9973.jpg",slug:"data-acquisition-recent-advances-and-applications-in-biomedical-engineering",publishedDate:"March 17th 2021",editedByType:"Edited by",bookSignature:"Bartłomiej Płaczek",hash:"75ea6cdd241216c9db28aa734ab34446",volumeInSeries:9,fullTitle:"Data Acquisition - Recent Advances and Applications in Biomedical Engineering",editors:[{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9905",title:"Biometric Systems",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9905.jpg",slug:"biometric-systems",publishedDate:"February 10th 2021",editedByType:"Edited by",bookSignature:"Muhammad Sarfraz",hash:"c730560dd2e3837a03407b3a86b0ef2a",volumeInSeries:8,fullTitle:"Biometric Systems",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",institutionString:"Kuwait University",institution:{name:"Kuwait University",institutionURL:null,country:{name:"Kuwait"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8622",title:"Peptide Synthesis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8622.jpg",slug:"peptide-synthesis",publishedDate:"December 18th 2019",editedByType:"Edited by",bookSignature:"Jaya T. Varkey",hash:"de9fa48c5248dbfb581825b8c74f5623",volumeInSeries:0,fullTitle:"Peptide Synthesis",editors:[{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",institutionString:"St. Teresa’s College",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7497",title:"Computer Vision in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7497.jpg",slug:"computer-vision-in-dentistry",publishedDate:"September 18th 2019",editedByType:"Edited by",bookSignature:"Monika Elzbieta Machoy",hash:"1e9812cebd46ef9e28257f3e96547f6a",volumeInSeries:7,fullTitle:"Computer Vision in Dentistry",editors:[{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",editedByType:"Edited by",bookSignature:"Anna Nowinska",hash:"da2c90e8db647ead30504defce3fb5d3",volumeInSeries:6,fullTitle:"Novel Diagnostic Methods in Ophthalmology",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska",profilePictureURL:"https://mts.intechopen.com/storage/users/261466/images/system/261466.jpeg",institutionString:"Medical University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7437",title:"Nanomedicines",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7437.jpg",slug:"nanomedicines",publishedDate:"February 13th 2019",editedByType:"Edited by",bookSignature:"Muhammad Akhyar Farrukh",hash:"0e1f5f6258f074c533976c4f4d248568",volumeInSeries:5,fullTitle:"Nanomedicines",editors:[{id:"63182",title:"Dr.",name:"Muhammad Akhyar",middleName:null,surname:"Farrukh",slug:"muhammad-akhyar-farrukh",fullName:"Muhammad Akhyar Farrukh",profilePictureURL:"https://mts.intechopen.com/storage/users/63182/images/system/63182.png",institutionString:"Forman Christian College",institution:{name:"Forman Christian College",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",institutionString:"University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",value:9,count:1},{group:"subseries",caption:"Bioinspired Technology and Biomechanics",value:8,count:2},{group:"subseries",caption:"Bioinformatics and Medical Informatics",value:7,count:9}],publicationYearFilters:[{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2019",value:2019,count:5},{group:"publicationYear",caption:"2018",value:2018,count:3}],authors:{paginationCount:228,paginationItems:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",biography:"Dr. Aneesa Moolla has extensive experience in the diverse fields of health care having previously worked in dental private practice, at the Red Cross Flying Doctors association, and in healthcare corporate settings. She is now a lecturer at the University of Witwatersrand, South Africa, and a principal researcher at the Health Economics and Epidemiology Research Office (HE2RO), South Africa. Dr. Moolla holds a Ph.D. in Psychology with her research being focused on mental health and resilience. In her professional work capacity, her research has further expanded into the fields of early childhood development, mental health, the HIV and TB care cascades, as well as COVID. She is also a UNESCO-trained International Bioethics Facilitator.",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"342152",title:"Dr.",name:"Santo",middleName:null,surname:"Grace Umesh",slug:"santo-grace-umesh",fullName:"Santo Grace Umesh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/342152/images/16311_n.jpg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"333647",title:"Dr.",name:"Shreya",middleName:null,surname:"Kishore",slug:"shreya-kishore",fullName:"Shreya Kishore",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333647/images/14701_n.jpg",biography:"Dr. Shreya Kishore completed her Bachelor in Dental Surgery in Chettinad Dental College and Research Institute, Chennai, and her Master of Dental Surgery (Orthodontics) in Saveetha Dental College, Chennai. She is also Invisalign certified. She’s working as a Senior Lecturer in the Department of Orthodontics, SRM Dental College since November 2019. She is actively involved in teaching orthodontics to the undergraduates and the postgraduates. Her clinical research topics include new orthodontic brackets, fixed appliances and TADs. She’s published 4 articles in well renowned indexed journals and has a published patency of her own. Her private practice is currently limited to orthodontics and works as a consultant in various clinics.",institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"323731",title:"Prof.",name:"Deepak M.",middleName:"Macchindra",surname:"Vikhe",slug:"deepak-m.-vikhe",fullName:"Deepak M. Vikhe",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/323731/images/13613_n.jpg",biography:"Dr Deepak M.Vikhe .\n\n\t\n\tDr Deepak M.Vikhe , completed his Masters & PhD in Prosthodontics from Rural Dental College, Loni securing third rank in the Pravara Institute of Medical Sciences Deemed University. He was awarded Dr.G.C.DAS Memorial Award for Research on Implants at 39th IPS conference Dubai (U A E).He has two patents under his name. He has received Dr.Saraswati medal award for best research for implant study in 2017.He has received Fully funded scholarship to Spain ,university of Santiago de Compostela. He has completed fellowship in Implantlogy from Noble Biocare. \nHe has attended various conferences and CDE programmes and has national publications to his credit. His field of interest is in Implant supported prosthesis. Presently he is working as a associate professor in the Dept of Prosthodontics, Rural Dental College, Loni and maintains a successful private practice specialising in Implantology at Rahata.\n\nEmail: drdeepak_mvikhe@yahoo.com..................",institutionString:null,institution:{name:"Pravara Institute of Medical Sciences",country:{name:"India"}}},{id:"204110",title:"Dr.",name:"Ahmed A.",middleName:null,surname:"Madfa",slug:"ahmed-a.-madfa",fullName:"Ahmed A. Madfa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204110/images/system/204110.jpg",biography:"Dr. Madfa is currently Associate Professor of Endodontics at Thamar University and a visiting lecturer at Sana'a University and University of Sciences and Technology. He has more than 6 years of experience in teaching. His research interests include root canal morphology, functionally graded concept, dental biomaterials, epidemiology and dental education, biomimetic restoration, finite element analysis and endodontic regeneration. Dr. Madfa has numerous international publications, full articles, two patents, a book and a book chapter. Furthermore, he won 14 international scientific awards. Furthermore, he is involved in many academic activities ranging from editorial board member, reviewer for many international journals and postgraduate students' supervisor. Besides, I deliver many courses and training workshops at various scientific events. Dr. Madfa also regularly attends international conferences and holds administrative positions (Deputy Dean of the Faculty for Students’ & Academic Affairs and Deputy Head of Research Unit).",institutionString:"Thamar University",institution:null},{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",biography:"Dr. Nermin Mohammed Ahmed Yussif is working at the Faculty of dentistry, University for October university for modern sciences and arts (MSA). Her areas of expertise include: periodontology, dental laserology, oral implantology, periodontal plastic surgeries, oral mesotherapy, nutrition, dental pharmacology. She is an editor and reviewer in numerous international journals.",institutionString:"MSA University",institution:null},{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",biography:"Dr. Serdar Gözler has completed his undergraduate studies at the Marmara University Faculty of Dentistry in 1978, followed by an assistantship in the Prosthesis Department of Dicle University Faculty of Dentistry. Starting his PhD work on non-resilient overdentures with Assoc. Prof. Hüsnü Yavuzyılmaz, he continued his studies with Prof. Dr. Gürbüz Öztürk of Istanbul University Faculty of Dentistry Department of Prosthodontics, this time on Gnatology. He attended training programs on occlusion, neurology, neurophysiology, EMG, radiology and biostatistics. In 1982, he presented his PhD thesis \\Gerber and Lauritzen Occlusion Analysis Techniques: Diagnosis Values,\\ at Istanbul University School of Dentistry, Department of Prosthodontics. As he was also working with Prof. Senih Çalıkkocaoğlu on The Physiology of Chewing at the same time, Gözler has written a chapter in Çalıkkocaoğlu\\'s book \\Complete Prostheses\\ entitled \\The Place of Neuromuscular Mechanism in Prosthetic Dentistry.\\ The book was published five times since by the Istanbul University Publications. Having presented in various conferences about occlusion analysis until 1998, Dr. Gözler has also decided to use the T-Scan II occlusion analysis method. Having been personally trained by Dr. Robert Kerstein on this method, Dr. Gözler has been lecturing on the T-Scan Occlusion Analysis Method in conferences both in Turkey and abroad. Dr. Gözler has various articles and presentations on Digital Occlusion Analysis methods. He is now Head of the TMD Clinic at Prosthodontic Department of Faculty of Dentistry , Istanbul Aydın University , Turkey.",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",country:{name:"Turkey"}}},{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",biography:"Dr. Al Ostwani Alaa Eddin Omar received his Master in dentistry from Damascus University in 2010, and his Ph.D. in Pediatric Dentistry from Damascus University in 2014. Dr. Al Ostwani is an assistant professor and faculty member at IUST University since 2014. \nDuring his academic experience, he has received several awards including the scientific research award from the Union of Arab Universities, the Syrian gold medal and the international gold medal for invention and creativity. Dr. Al Ostwani is a Member of the International Association of Dental Traumatology and the Syrian Society for Research and Preventive Dentistry since 2017. He is also a Member of the Reviewer Board of International Journal of Dental Medicine (IJDM), and the Indian Journal of Conservative and Endodontics since 2016.",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",country:{name:"India"}}},{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",biography:"Dr. Belma IşIk Aslan was born in 1976 in Ankara-TURKEY. After graduating from TED Ankara College in 1994, she attended to Gazi University, Faculty of Dentistry in Ankara. She completed her PhD in orthodontic education at Gazi University between 1999-2005. Dr. Işık Aslan stayed at the Providence Hospital Craniofacial Institude and Reconstructive Surgery in Michigan, USA for three months as an observer. She worked as a specialist doctor at Gazi University, Dentistry Faculty, Department of Orthodontics between 2005-2014. She was appointed as associate professor in January, 2014 and as professor in 2021. Dr. Işık Aslan still works as an instructor at the same faculty. She has published a total of 35 articles, 10 book chapters, 39 conference proceedings both internationally and nationally. Also she was the academic editor of the international book 'Current Advances in Orthodontics'. She is a member of the Turkish Orthodontic Society and Turkish Cleft Lip and Palate Society. She is married and has 2 children. Her knowledge of English is at an advanced level.",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null},{id:"178412",title:"Associate Prof.",name:"Guhan",middleName:null,surname:"Dergin",slug:"guhan-dergin",fullName:"Guhan Dergin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178412/images/6954_n.jpg",biography:"Assoc. Prof. Dr. Gühan Dergin was born in 1973 in Izmit. He graduated from Marmara University Faculty of Dentistry in 1999. He completed his specialty of OMFS surgery in Marmara University Faculty of Dentistry and obtained his PhD degree in 2006. In 2005, he was invited as a visiting doctor in the Oral and Maxillofacial Surgery Department of the University of North Carolina, USA, where he went on a scholarship. Dr. Dergin still continues his academic career as an associate professor in Marmara University Faculty of Dentistry. He has many articles in international and national scientific journals and chapters in books.",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"178414",title:"Prof.",name:"Yusuf",middleName:null,surname:"Emes",slug:"yusuf-emes",fullName:"Yusuf Emes",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178414/images/6953_n.jpg",biography:"Born in Istanbul in 1974, Dr. Emes graduated from Istanbul University Faculty of Dentistry in 1997 and completed his PhD degree in Istanbul University faculty of Dentistry Department of Oral and Maxillofacial Surgery in 2005. He has papers published in international and national scientific journals, including research articles on implantology, oroantral fistulas, odontogenic cysts, and temporomandibular disorders. Dr. Emes is currently working as a full-time academic staff in Istanbul University faculty of Dentistry Department of Oral and Maxillofacial Surgery.",institutionString:null,institution:{name:"Istanbul University",country:{name:"Turkey"}}},{id:"192229",title:"Ph.D.",name:"Ana Luiza",middleName:null,surname:"De Carvalho Felippini",slug:"ana-luiza-de-carvalho-felippini",fullName:"Ana Luiza De Carvalho Felippini",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192229/images/system/192229.jpg",biography:null,institutionString:"University of São Paulo",institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"256851",title:"Prof.",name:"Ayşe",middleName:null,surname:"Gülşen",slug:"ayse-gulsen",fullName:"Ayşe Gülşen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/256851/images/9696_n.jpg",biography:"Dr. Ayşe Gülşen graduated in 1990 from Faculty of Dentistry, University of Ankara and did a postgraduate program at University of Gazi. \nShe worked as an observer and research assistant in Craniofacial Surgery Departments in New York, Providence Hospital in Michigan and Chang Gung Memorial Hospital in Taiwan. \nShe works as Craniofacial Orthodontist in Department of Aesthetic, Plastic and Reconstructive Surgery, Faculty of Medicine, University of Gazi, Ankara Turkey since 2004.",institutionString:"Univeristy of Gazi",institution:null},{id:"255366",title:"Prof.",name:"Tosun",middleName:null,surname:"Tosun",slug:"tosun-tosun",fullName:"Tosun Tosun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255366/images/7347_n.jpg",biography:"Graduated at the Faculty of Dentistry, University of Istanbul, Turkey in 1989;\nVisitor Assistant at the University of Padua, Italy and Branemark Osseointegration Center of Treviso, Italy between 1993-94;\nPhD thesis on oral implantology in University of Istanbul and was awarded the academic title “Dr.med.dent.”, 1997;\nHe was awarded the academic title “Doç.Dr.” (Associated Professor) in 2003;\nProficiency in Botulinum Toxin Applications, Reading-UK in 2009;\nMastership, RWTH Certificate in Laser Therapy in Dentistry, AALZ-Aachen University, Germany 2009-11;\nMaster of Science (MSc) in Laser Dentistry, University of Genoa, Italy 2013-14.\n\nDr.Tosun worked as Research Assistant in the Department of Oral Implantology, Faculty of Dentistry, University of Istanbul between 1990-2002. \nHe worked part-time as Consultant surgeon in Harvard Medical International Hospitals and John Hopkins Medicine, Istanbul between years 2007-09.\u2028He was contract Professor in the Department of Surgical and Diagnostic Sciences (DI.S.C.), Medical School, University of Genova, Italy between years 2011-16. \nSince 2015 he is visiting Professor at Medical School, University of Plovdiv, Bulgaria. \nCurrently he is Associated Prof.Dr. at the Dental School, Oral Surgery Dept., Istanbul Aydin University and since 2003 he works in his own private clinic in Istanbul, Turkey.\u2028\nDr.Tosun is reviewer in journal ‘Laser in Medical Sciences’, reviewer in journal ‘Folia Medica\\', a Fellow of the International Team for Implantology, Clinical Lecturer of DGZI German Association of Oral Implantology, Expert Lecturer of Laser&Health Academy, Country Representative of World Federation for Laser Dentistry, member of European Federation of Periodontology, member of Academy of Laser Dentistry. Dr.Tosun presents papers in international and national congresses and has scientific publications in international and national journals. He speaks english, spanish, italian and french.",institutionString:null,institution:{name:"Istanbul Aydın University",country:{name:"Turkey"}}},{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",biography:"Zühre Akarslan was born in 1977 in Cyprus. She graduated from Gazi University Faculty of Dentistry, Ankara, Turkey in 2000. \r\nLater she received her Ph.D. degree from the Oral Diagnosis and Radiology Department; which was recently renamed as Oral and Dentomaxillofacial Radiology, from the same university. \r\nShe is working as a full-time Associate Professor and is a lecturer and an academic researcher. \r\nHer expertise areas are dental caries, cancer, dental fear and anxiety, gag reflex in dentistry, oral medicine, and dentomaxillofacial radiology.",institutionString:"Gazi University",institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"256417",title:"Associate Prof.",name:"Sanaz",middleName:null,surname:"Sadry",slug:"sanaz-sadry",fullName:"Sanaz Sadry",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/256417/images/8106_n.jpg",biography:null,institutionString:null,institution:null},{id:"272237",title:"Dr.",name:"Pinar",middleName:"Kiymet",surname:"Karataban",slug:"pinar-karataban",fullName:"Pinar Karataban",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/272237/images/8911_n.png",biography:"Assist.Prof.Dr.Pınar Kıymet Karataban, DDS PhD \n\nDr.Pınar Kıymet Karataban was born in Istanbul in 1975. After her graduation from Marmara University Faculty of Dentistry in 1998 she started her PhD in Paediatric Dentistry focused on children with special needs; mainly children with Cerebral Palsy. She finished her pHD thesis entitled \\'Investigation of occlusion via cast analysis and evaluation of dental caries prevalance, periodontal status and muscle dysfunctions in children with cerebral palsy” in 2008. She got her Assist. Proffessor degree in Istanbul Aydın University Paediatric Dentistry Department in 2015-2018. ın 2019 she started her new career in Bahcesehir University, Istanbul as Head of Department of Pediatric Dentistry. In 2020 she was accepted to BAU International University, Batumi as Professor of Pediatric Dentistry. She’s a lecturer in the same university meanwhile working part-time in private practice in Ege Dental Studio (https://www.egedisklinigi.com/) a multidisciplinary dental clinic in Istanbul. Her main interests are paleodontology, ancient and contemporary dentistry, oral microbiology, cerebral palsy and special care dentistry. She has national and international publications, scientific reports and is a member of IAPO (International Association for Paleodontology), IADH (International Association of Disability and Oral Health) and EAPD (European Association of Pediatric Dentistry).",institutionString:null,institution:null},{id:"202198",title:"Dr.",name:"Buket",middleName:null,surname:"Aybar",slug:"buket-aybar",fullName:"Buket Aybar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202198/images/6955_n.jpg",biography:"Buket Aybar, DDS, PhD, was born in 1971. She graduated from Istanbul University, Faculty of Dentistry, in 1992 and completed her PhD degree on Oral and Maxillofacial Surgery in Istanbul University in 1997.\nDr. Aybar is currently a full-time professor in Istanbul University, Faculty of Dentistry Department of Oral and Maxillofacial Surgery. She has teaching responsibilities in graduate and postgraduate programs. Her clinical practice includes mainly dentoalveolar surgery.\nHer topics of interest are biomaterials science and cell culture studies. She has many articles in international and national scientific journals and chapters in books; she also has participated in several scientific projects supported by Istanbul University Research fund.",institutionString:null,institution:null},{id:"260116",title:"Dr.",name:"Mehmet",middleName:null,surname:"Yaltirik",slug:"mehmet-yaltirik",fullName:"Mehmet Yaltirik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/260116/images/7413_n.jpg",biography:"Birth Date 25.09.1965\r\nBirth Place Adana- Turkey\r\nSex Male\r\nMarrial Status Bachelor\r\nDriving License Acquired\r\nMother Tongue Turkish\r\n\r\nAddress:\r\nWork:University of Istanbul,Faculty of Dentistry, Department of Oral Surgery and Oral Medicine 34093 Capa,Istanbul- TURKIYE",institutionString:null,institution:null},{id:"172009",title:"Dr.",name:"Fatma Deniz",middleName:null,surname:"Uzuner",slug:"fatma-deniz-uzuner",fullName:"Fatma Deniz Uzuner",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/172009/images/7122_n.jpg",biography:"Dr. Deniz Uzuner was born in 1969 in Kocaeli-TURKEY. After graduating from TED Ankara College in 1986, she attended the Hacettepe University, Faculty of Dentistry in Ankara. \nIn 1993 she attended the Gazi University, Faculty of Dentistry, Department of Orthodontics for her PhD education. After finishing the PhD education, she worked as orthodontist in Ankara Dental Hospital under the Turkish Government, Ministry of Health and in a special Orthodontic Clinic till 2011. Between 2011 and 2016, Dr. Deniz Uzuner worked as a specialist in the Department of Orthodontics, Faculty of Dentistry, Gazi University in Ankara/Turkey. In 2016, she was appointed associate professor. Dr. Deniz Uzuner has authored 23 Journal Papers, 3 Book Chapters and has had 39 oral/poster presentations. She is a member of the Turkish Orthodontic Society. Her knowledge of English is at an advanced level.",institutionString:null,institution:null},{id:"332914",title:"Dr.",name:"Muhammad Saad",middleName:null,surname:"Shaikh",slug:"muhammad-saad-shaikh",fullName:"Muhammad Saad Shaikh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jinnah Sindh Medical University",country:{name:"Pakistan"}}},{id:"315775",title:"Dr.",name:"Feng",middleName:null,surname:"Luo",slug:"feng-luo",fullName:"Feng Luo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Sichuan University",country:{name:"China"}}},{id:"423519",title:"Dr.",name:"Sizakele",middleName:null,surname:"Ngwenya",slug:"sizakele-ngwenya",fullName:"Sizakele Ngwenya",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"419270",title:"Dr.",name:"Ann",middleName:null,surname:"Chianchitlert",slug:"ann-chianchitlert",fullName:"Ann Chianchitlert",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"419271",title:"Dr.",name:"Diane",middleName:null,surname:"Selvido",slug:"diane-selvido",fullName:"Diane Selvido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"419272",title:"Dr.",name:"Irin",middleName:null,surname:"Sirisoontorn",slug:"irin-sirisoontorn",fullName:"Irin Sirisoontorn",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"355660",title:"Dr.",name:"Anitha",middleName:null,surname:"Mani",slug:"anitha-mani",fullName:"Anitha Mani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"355612",title:"Dr.",name:"Janani",middleName:null,surname:"Karthikeyan",slug:"janani-karthikeyan",fullName:"Janani Karthikeyan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"334400",title:"Dr.",name:"Suvetha",middleName:null,surname:"Siva",slug:"suvetha-siva",fullName:"Suvetha Siva",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"334239",title:"Prof.",name:"Leung",middleName:null,surname:"Wai Keung",slug:"leung-wai-keung",fullName:"Leung Wai Keung",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Hong Kong",country:{name:"China"}}}]}},subseries:{item:{id:"27",type:"subseries",title:"Multi-Agent Systems",keywords:"Collaborative Intelligence, Learning, Distributed Control System, Swarm Robotics, Decision Science, Software Engineering",scope:"Multi-agent systems are recognised as a state of the art field in Artificial Intelligence studies, which is popular due to the usefulness in facilitation capabilities to handle real-world problem-solving in a distributed fashion. The area covers many techniques that offer solutions to emerging problems in robotics and enterprise-level software systems. Collaborative intelligence is highly and effectively achieved with multi-agent systems. Areas of application include swarms of robots, flocks of UAVs, collaborative software management. Given the level of technological enhancements, the popularity of machine learning in use has opened a new chapter in multi-agent studies alongside the practical challenges and long-lasting collaboration issues in the field. It has increased the urgency and the need for further studies in this field. We welcome chapters presenting research on the many applications of multi-agent studies including, but not limited to, the following key areas: machine learning for multi-agent systems; modeling swarms robots and flocks of UAVs with multi-agent systems; decision science and multi-agent systems; software engineering for and with multi-agent systems; tools and technologies of multi-agent systems.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",hasOnlineFirst:!1,hasPublishedBooks:!1,annualVolume:11423,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"275140",title:"Dr.",name:"Dinh Hoa",middleName:null,surname:"Nguyen",slug:"dinh-hoa-nguyen",fullName:"Dinh Hoa Nguyen",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRbnKQAS/Profile_Picture_1622204093453",institutionString:null,institution:{name:"Kyushu University",institutionURL:null,country:{name:"Japan"}}},{id:"20259",title:"Dr.",name:"Hongbin",middleName:null,surname:"Ma",slug:"hongbin-ma",fullName:"Hongbin Ma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRhDJQA0/Profile_Picture_2022-05-02T08:25:21.jpg",institutionString:null,institution:{name:"Beijing Institute of Technology",institutionURL:null,country:{name:"China"}}},{id:"28640",title:"Prof.",name:"Yasushi",middleName:null,surname:"Kambayashi",slug:"yasushi-kambayashi",fullName:"Yasushi Kambayashi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYOQxQAO/Profile_Picture_1625660525470",institutionString:null,institution:{name:"Nippon Institute of Technology",institutionURL:null,country:{name:"Japan"}}}]},onlineFirstChapters:{paginationCount:14,paginationItems:[{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:26,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81099",title:"SK Channels and Heart Disease",doi:"10.5772/intechopen.104115",signatures:"Katherine Zhong, Shawn Kant, Frank Sellke and Jun Feng",slug:"sk-channels-and-heart-disease",totalDownloads:21,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80967",title:"Hot on the Trail of Skin Inflammation: Focus on TRPV1/TRPV3 Channels in Psoriasis",doi:"10.5772/intechopen.103792",signatures:"Lisa S. Martin, Emma Fraillon, Fabien P. Chevalier and Bérengère Fromy",slug:"hot-on-the-trail-of-skin-inflammation-focus-on-trpv1-trpv3-channels-in-psoriasis",totalDownloads:36,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80952",title:"TRPV Family Ion Channels in the Mammary Epithelium: Role in Normal Tissue Homeostasis and along Breast Cancer Progression",doi:"10.5772/intechopen.103665",signatures:"Sari Susanna Tojkander",slug:"trpv-family-ion-channels-in-the-mammary-epithelium-role-in-normal-tissue-homeostasis-and-along-breas",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80157",title:"Structural Determinants for Ligand Accommodation in Voltage Sensors",doi:"10.5772/intechopen.102094",signatures:"Abigail García-Morales, Aylin López-Palestino and Daniel Balleza",slug:"structural-determinants-for-ligand-accommodation-in-voltage-sensors",totalDownloads:100,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"79690",title:"Mitochondrial Channels and their Role in Cardioprotection",doi:"10.5772/intechopen.101127",signatures:"Keerti Mishra and Min Luo",slug:"mitochondrial-channels-and-their-role-in-cardioprotection",totalDownloads:100,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"78415",title:"Epigenetic",doi:"10.5772/intechopen.99964",signatures:"Mehmet Ünal",slug:"epigenetic",totalDownloads:149,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"77443",title:"Cyanobacterial Phytochromes in Optogenetics",doi:"10.5772/intechopen.97522",signatures:"Sivasankari Sivaprakasam, Vinoth Mani, Nagalakshmi Balasubramaniyan and David Ravindran Abraham",slug:"cyanobacterial-phytochromes-in-optogenetics",totalDownloads:197,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"75979",title:"Spatiotemporal Regulation of Cell–Cell Adhesions",doi:"10.5772/intechopen.97009",signatures:"Brent M. Bijonowski",slug:"spatiotemporal-regulation-of-cell-cell-adhesions",totalDownloads:180,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"76646",title:"Functional Mechanism of Proton Pump-Type Rhodopsins Found in Various Microorganisms as a Potential Effective Tool in Optogenetics",doi:"10.5772/intechopen.97589",signatures:"Jun Tamogami and Takashi Kikukawa",slug:"functional-mechanism-of-proton-pump-type-rhodopsins-found-in-various-microorganisms-as-a-potential-e",totalDownloads:216,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"76510",title:"Evolution of Epigenome as the Blueprint for Carcinogenesis",doi:"10.5772/intechopen.97379",signatures:"Zeenat Farooq, Ambreen Shah, Mohammad Tauseef, Riyaz A. Rather and Mumtaz Anwar",slug:"evolution-of-epigenome-as-the-blueprint-for-carcinogenesis",totalDownloads:196,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"74615",title:"Diet-Epigenome Interactions: Epi-Drugs Modulating the Epigenetic Machinery During Cancer Prevention",doi:"10.5772/intechopen.95374",signatures:"Fadime Eryılmaz Pehlivan",slug:"diet-epigenome-interactions-epi-drugs-modulating-the-epigenetic-machinery-during-cancer-prevention",totalDownloads:376,totalCrossrefCites:0,totalDimensionsCites:1,authors:[{name:"Fadime",surname:"Eryılmaz Pehlivan"}],book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9403",title:"Human Microbiome",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9403.jpg",slug:"human-microbiome",publishedDate:"June 16th 2021",editedByType:"Edited by",bookSignature:"Natalia V. Beloborodova and Andrey V. Grechko",hash:"c31366ba82585ba3ac91d21eb1cf0a4d",volumeInSeries:20,fullTitle:"Human Microbiome",editors:[{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9002",title:"Glutathione System and Oxidative Stress in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9002.jpg",slug:"glutathione-system-and-oxidative-stress-in-health-and-disease",publishedDate:"August 26th 2020",editedByType:"Edited by",bookSignature:"Margarete Dulce Bagatini",hash:"127defed0a50ad5ed92338dc96e1e10e",volumeInSeries:17,fullTitle:"Glutathione System and Oxidative Stress in Health and Disease",editors:[{id:"217850",title:"Dr.",name:"Margarete Dulce",middleName:null,surname:"Bagatini",slug:"margarete-dulce-bagatini",fullName:"Margarete Dulce Bagatini",profilePictureURL:"https://mts.intechopen.com/storage/users/217850/images/system/217850.jpeg",institutionString:"Universidade Federal da Fronteira Sul",institution:{name:"Universidade Federal da Fronteira Sul",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8176",title:"DNA Methylation Mechanism",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8176.jpg",slug:"dna-methylation-mechanism",publishedDate:"July 1st 2020",editedByType:"Edited by",bookSignature:"Metin Budak and Mustafa Yıldız",hash:"1de018af20c3e9916b5a9b4fed13a4ff",volumeInSeries:15,fullTitle:"DNA Methylation Mechanism",editors:[{id:"226275",title:"Ph.D.",name:"Metin",middleName:null,surname:"Budak",slug:"metin-budak",fullName:"Metin Budak",profilePictureURL:"https://mts.intechopen.com/storage/users/226275/images/system/226275.jfif",institutionString:"Trakya University",institution:{name:"Trakya University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7012",title:"Biochemical Testing",subtitle:"Clinical Correlation and Diagnosis",coverURL:"https://cdn.intechopen.com/books/images_new/7012.jpg",slug:"biochemical-testing-clinical-correlation-and-diagnosis",publishedDate:"April 29th 2020",editedByType:"Edited by",bookSignature:"Varaprasad Bobbarala, Gaffar Sarwar Zaman, Mohd Nasir Mohd Desa and Abdah Md Akim",hash:"1aa28a784b136633d827933ad91fe621",volumeInSeries:12,fullTitle:"Biochemical Testing - Clinical Correlation and Diagnosis",editors:[{id:"207119",title:"Dr.",name:"Varaprasad",middleName:null,surname:"Bobbarala PhD",slug:"varaprasad-bobbarala-phd",fullName:"Varaprasad Bobbarala PhD",profilePictureURL:"https://mts.intechopen.com/storage/users/207119/images/system/207119.jpg",institutionString:"Adhya Biosciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",institutionString:"Australian College of Business & Technology",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:18,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"7",title:"Bioinformatics and Medical Informatics",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine"},{id:"8",title:"Bioinspired Technology and Biomechanics",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation"},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 24th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:314,numberOfPublishedBooks:31,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/88109",hash:"",query:{},params:{id:"88109"},fullPath:"/profiles/88109",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()