\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"10795",leadTitle:null,fullTitle:"Plant Stress Physiology - Perspectives in Agriculture",title:"Plant Stress Physiology",subtitle:"Perspectives in Agriculture",reviewType:"peer-reviewed",abstract:"This book includes ten chapters addressing various aspects of plant stress physiology, including plant responses and tolerance to abiotic and biotic stress. These chapters summarize recent findings on the physiological and molecular mechanisms of stress tolerance. They also discuss approaches to enhancing plant productivity via stress tolerance mechanisms. This book is useful for undergraduate and graduate students, teachers, and researchers in the field of plant physiology and crop science.",isbn:"978-1-83969-867-5",printIsbn:"978-1-83969-866-8",pdfIsbn:"978-1-83969-868-2",doi:"10.5772/intechopen.94821",price:119,priceEur:129,priceUsd:155,slug:"plant-stress-physiology-perspectives-in-agriculture",numberOfPages:218,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"c5a7932b74fe612b256bf95d0709756e",bookSignature:"Mirza Hasanuzzaman and Kamran Nahar",publishedDate:"April 28th 2022",coverURL:"https://cdn.intechopen.com/books/images_new/10795.jpg",numberOfDownloads:1465,numberOfWosCitations:0,numberOfCrossrefCitations:8,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:10,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:18,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 1st 2021",dateEndSecondStepPublish:"June 29th 2021",dateEndThirdStepPublish:"August 28th 2021",dateEndFourthStepPublish:"November 16th 2021",dateEndFifthStepPublish:"January 15th 2022",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",biography:"Dr. Mirza Hasanuzzaman is a Professor of Agronomy at Sher-e-Bangla Agricultural University, Bangladesh. He received his Ph.D. in Plant Stress Physiology and Antioxidant Metabolism from Ehime University, Japan, with a scholarship from the Japanese Government (MEXT). Later, he completed his postdoctoral research at the Center of Molecular Biosciences, University of the Ryukyus, Japan, as a recipient of the Japan Society for the Promotion of Science (JSPS) postdoctoral fellowship. He was also the recipient of the Australian Government Endeavour Research Fellowship for postdoctoral research as an adjunct senior researcher at the University of Tasmania, Australia. Dr. Hasanuzzaman’s current work is focused on the physiological and molecular mechanisms of environmental stress tolerance. Dr. Hasanuzzaman has published more than 150 articles in peer-reviewed journals. He has edited ten books and written more than forty book chapters on important aspects of plant physiology, plant stress tolerance, and crop production. According to Scopus, Dr. Hasanuzzaman’s publications have received more than 10,500 citations with an h-index of 53. He has been named a Highly Cited Researcher by Clarivate. He is an editor and reviewer for more than fifty peer-reviewed international journals and was a recipient of the “Publons Peer Review Award” in 2017, 2018, and 2019. He has been honored by different authorities for his outstanding performance in various fields like research and education, and he has received the World Academy of Science Young Scientist Award (2014) and the University Grants Commission (UGC) Award 2018. He is a fellow of the Bangladesh Academy of Sciences (BAS) and the Royal Society of Biology.",institutionString:"Sher-e-Bangla Agricultural University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"Sher-e-Bangla Agricultural University",institutionURL:null,country:{name:"Bangladesh"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"166818",title:"MSc.",name:"Kamrun",middleName:null,surname:"Nahar",slug:"kamrun-nahar",fullName:"Kamrun Nahar",profilePictureURL:"https://mts.intechopen.com/storage/users/166818/images/system/166818.png",biography:"Dr. Kamrun Nahar is a Professor of Agricultural Botany at Sher-e-Bangla Agricultural University, Bangladesh. She received her Ph.D. in Environmental Stress Physiology of Plants from the United Graduate School of Agricultural Sciences, Ehime University, Japan, with a scholarship from the Japanese Government (MEXT). Dr. Nahar has been involved in research with field crops emphasizing stress physiology since 2006. She has completed several research works and is currently working on a research project funded by Sher-eBangla Agricultural University Research System and the Ministry of Science and Technology, Bangladesh. She is also supervising MS students. Dr. Nahar has published more than 100 articles and book chapters related to plant physiology and environmental stresses. Her publications have received about 9,500 citations with an h-index of 51. She is involved in editorial activities and is a reviewer of international journals. She is an active member of about twenty professional societies. Dr. Nahar has attended numerous international conferences and presented twenty papers and posters at these conferences.",institutionString:"Sher-e-Bangla Agricultural University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Sher-e-Bangla Agricultural University",institutionURL:null,country:{name:"Bangladesh"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"375",title:"Plant Physiology",slug:"agricultural-and-biological-sciences-plant-biology-plant-physiology"}],chapters:[{id:"79403",title:"The Biochemical Mechanisms of Salt Tolerance in Plants",doi:"10.5772/intechopen.101048",slug:"the-biochemical-mechanisms-of-salt-tolerance-in-plants",totalDownloads:211,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Salinity is one of the most severe environmental problems worldwide and affects plant growth, reproduction, and crop yields by inducing physiological and biochemical changes due to osmotic and ionic shifts in plant cells. One of the principal modifications caused by osmotic stress is the accumulation of reactive oxygen species (ROS), which cause membrane damage and alter proteins, DNA structures, and photosynthetic processes. In response, plants increase their arsenal of antioxidant compounds, such as ROS scavenging enzymes and nonenzymatic elements like ascorbate, glutathione, flavonoids, tocopherols, and carotenoids, and their rates of osmolyte synthesis to conserve ion homeostasis and manage salt stress. This chapter describes the principal biochemical mechanisms that are employed by plants to survive under salt-stress conditions, including the most recent research regarding plant tolerance, and suggests strategies to produce valuable crops that are able to deal with soil salinity.",signatures:"Julio Armando Massange-Sánchez, Carla Vanessa Sánchez-Hernández, Rosalba Mireya Hernández-Herrera and Paola Andrea Palmeros-Suárez",downloadPdfUrl:"/chapter/pdf-download/79403",previewPdfUrl:"/chapter/pdf-preview/79403",authors:[{id:"422262",title:"Ph.D.",name:"Paola Andrea",surname:"Palmeros-Suárez",slug:"paola-andrea-palmeros-suarez",fullName:"Paola Andrea Palmeros-Suárez"},{id:"422841",title:"Dr.",name:"Julio Armando",surname:"Massange-Sánchez",slug:"julio-armando-massange-sanchez",fullName:"Julio Armando Massange-Sánchez"},{id:"422843",title:"Dr.",name:"Carla Vanessa",surname:"Sánchez-Hernández",slug:"carla-vanessa-sanchez-hernandez",fullName:"Carla Vanessa Sánchez-Hernández"},{id:"429711",title:"Dr.",name:"Rosalba Mireya",surname:"Hernández-Herrera",slug:"rosalba-mireya-hernandez-herrera",fullName:"Rosalba Mireya Hernández-Herrera"}],corrections:null},{id:"79405",title:"Salt and Water Stress Responses in Plants",doi:"10.5772/intechopen.101072",slug:"salt-and-water-stress-responses-in-plants",totalDownloads:228,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Climate change-driven ecological disturbances have a great impact on freshwater availability which hampers agricultural production. Currently, drought and salinity are the two major abiotic stress factors responsible for the reduction of crop yields worldwide. Increasing soil salt concentration decreases plant water uptake leading to an apparent water limitation and later to the accumulation of toxic ions in various plant organs which negatively affect plant growth. Plants are autotrophic organisms that function with simple inorganic molecules, but the underlying pathways of defense mechanisms are much more complex and harder to unravel. However, the most promising strategy to achieve sustainable agriculture and to meet the future global food demand, is the enhancement of crop stress tolerance through traditional breeding techniques and genetic engineering. Therefore, it is very important to better understand the tolerance mechanisms of the plants, including signaling pathways, biochemical and physiological responses. Although, these mechanisms are based on a well-defined set of basic responses, they can vary among different plant species.",signatures:"Mirela Irina Cordea and Orsolya Borsai",downloadPdfUrl:"/chapter/pdf-download/79405",previewPdfUrl:"/chapter/pdf-preview/79405",authors:[{id:"424620",title:"Prof.",name:"Mirela Irina",surname:"Cordea",slug:"mirela-irina-cordea",fullName:"Mirela Irina Cordea"},{id:"424836",title:"Dr.",name:"Orsolya",surname:"Borsai",slug:"orsolya-borsai",fullName:"Orsolya Borsai"}],corrections:null},{id:"80766",title:"Salt Stress Responses and Tolerance in Soybean",doi:"10.5772/intechopen.102835",slug:"salt-stress-responses-and-tolerance-in-soybean",totalDownloads:135,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Soybean is one of the major oil crops with multiple uses which is gaining popularity worldwide. Apart from the edible oil, this crop provides various food materials for humans as well as feeds and fodder for animals. Although soybean is suitable for a wide range of soils and climates, it is sensitive to different abiotic stress such as salinity, drought, metal/metalloid toxicity, and extreme temperatures. Among them, soil salinity is one of the major threats to soybean production and the higher yield of soybean is often limited by salt stress. Salt stress negatively affects soybean seedling establishment, growth, physiology, metabolism, and the ultimate yield and quality of crops. At cellular level, salt stress results in the excess generation of reactive oxygen species and creates oxidative stress. However, these responses are greatly varied among the genotypes. Therefore, finding the precise plant responses and appropriate adaptive features is very important to develop salt tolerant soybean varieties. In this connection, researchers have reported many physiological, molecular, and agronomic approaches in enhancing salt tolerance in soybean. However, these endeavors are still in the primary stage and need to be fine-tuned. In this chapter, we summarized the recent reports on the soybean responses to salt stress and the different mechanisms to confer stress tolerance.",signatures:"Mirza Hasanuzzaman, Khursheda Parvin, Taufika Islam Anee, Abdul Awal Chowdhury Masud and Farzana Nowroz",downloadPdfUrl:"/chapter/pdf-download/80766",previewPdfUrl:"/chapter/pdf-preview/80766",authors:[{id:"76477",title:"Prof.",name:"Mirza",surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman"},{id:"198603",title:"Dr.",name:"Taufika Islam",surname:"Anee",slug:"taufika-islam-anee",fullName:"Taufika Islam Anee"},{id:"348606",title:"Dr.",name:"Abdul",surname:"Awal Chowdhury Masud",slug:"abdul-awal-chowdhury-masud",fullName:"Abdul Awal Chowdhury Masud"},{id:"459237",title:"Dr.",name:"Khursheda",surname:"Parvin",slug:"khursheda-parvin",fullName:"Khursheda Parvin"},{id:"459238",title:"Dr.",name:"Farzana",surname:"Nowroz",slug:"farzana-nowroz",fullName:"Farzana Nowroz"}],corrections:null},{id:"79694",title:"Accelerated Methods of Determining Wheat Genotypes Primary Resistance to Extreme Temperatures",doi:"10.5772/intechopen.101341",slug:"accelerated-methods-of-determining-wheat-genotypes-primary-resistance-to-extreme-temperatures",totalDownloads:110,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Several morphological and functional mechanisms determine the resistance of plants to extreme temperatures. Depending on the specificity of mechanisms of action, we divided them into two groups: (1) the mechanisms that ensure the avoidance/reduction of the exposure dose; (2) functional mechanisms which increase plant resistance and ability to recover damages caused by stress through regulation metabolic and genes expression activity. We developed theoretical and practical methods to appreciate the contribution of parameters from both groups on the primary and adaptive resistance of different wheat genotypes. This problem became more complicated because some properties are epigenetically inherited and can influence genotypes’ primary (initial) resistance to stressors. The article describes results obtained by the accelerated determination of the initial resistance of wheat (Triticum aestivum L.) genotypes to temperature stress and the prospects for their implementation in the selection and development of methods for rational choosing wheat varieties for cultivation under specific environmental conditions.",signatures:"Alexandru Dascaliuc",downloadPdfUrl:"/chapter/pdf-download/79694",previewPdfUrl:"/chapter/pdf-preview/79694",authors:[{id:"424155",title:"Prof.",name:"Alexandru",surname:"Dascaliuc",slug:"alexandru-dascaliuc",fullName:"Alexandru Dascaliuc"}],corrections:null},{id:"80127",title:"Abiotic Stress Response in Brachypodium",doi:"10.5772/intechopen.102000",slug:"abiotic-stress-response-in-em-brachypodium-em-",totalDownloads:66,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Understanding the mechanisms of physiological response in plants is crucial to building sustainable agriculture, especially under the current worldwide climate and environmental crises. Thus, plants that successfully acclimate to stress can decrease growth under stressful conditions. Brachypodium, an undomesticated grass species with close evolutionary relationships to wheat and barley, is a promising model organism of crop research. It can grow under various conditions and possess specific adaptations or tolerance mechanisms. Hence, it promises to greatly accelerate the process of gene discovery in the grasses and to serve as bridges in the exploration of panicoid and pooid grasses, arguably two of the most important clades of plants from a food security perspective. Brachypodium could hence efficaciously acclimate to the drought, salinity, cold, heat, and nutrient stress variations by reversible hypo (hyper)-activation of specific genes or sustaining transcription states as well as by reducing growth and osmotic adjustment. Nonetheless, B. stacei and B. hybridum have more plasticity and more adaptiveness than B. distachyon to abiotic stress. This review will describe advancements in knowledge of the physiological and metabolic adjustments that are needed for abiotic stress tolerance.",signatures:"Mhemmed Gandour",downloadPdfUrl:"/chapter/pdf-download/80127",previewPdfUrl:"/chapter/pdf-preview/80127",authors:[{id:"424230",title:"Prof.",name:"Mhemmed",surname:"Gandour",slug:"mhemmed-gandour",fullName:"Mhemmed Gandour"}],corrections:null},{id:"79235",title:"Mechanistic Role of Reactive Oxygen Species and Its Regulation via the Antioxidant System under Environmental Stress",doi:"10.5772/intechopen.101045",slug:"mechanistic-role-of-reactive-oxygen-species-and-its-regulation-em-via-em-the-antioxidant-system-unde",totalDownloads:161,totalCrossrefCites:3,totalDimensionsCites:3,hasAltmetrics:0,abstract:"The antioxidant potential is referred to as compounds that are capable of protecting the biological system against the deleterious effect of reactions involving reactive oxygen species (ROS). ROS are toxic byproducts of oxygen metabolism. ROS have a significant role in plant signaling, growth, development, and majorly in response to environmental fluctuations. The ROS family plays a double role under various environmental stress conditions. In various key physiological phenomena, they act as secondary messengers and induce oxidative damage. ROS led to cellular damages that manifest themselves in degradation of biomolecules, which eventually amalgamate to cellular death in plants. To assure survival, plants have developed efficient antioxidant machinery having two branches, that is, an enzymatic and a nonenzymatic antioxidant. This chapter will emphasize the various types of ROS, their sites of cellular production, targets, and scavenging mechanisms mediated by antioxidants in abiotic stress. Such profound knowledge will let us build strategies against environmental stress.",signatures:"Ambreen Bano, Anmol Gupta, Smita Rai, Touseef Fatima, Swati Sharma and Neelam Pathak",downloadPdfUrl:"/chapter/pdf-download/79235",previewPdfUrl:"/chapter/pdf-preview/79235",authors:[{id:"423323",title:"Ms.",name:"Ambreen",surname:"Bano",slug:"ambreen-bano",fullName:"Ambreen Bano"},{id:"423365",title:"Mr.",name:"Anmol",surname:"Gupta",slug:"anmol-gupta",fullName:"Anmol Gupta"},{id:"423817",title:"Prof.",name:"Neelam",surname:"Pathak",slug:"neelam-pathak",fullName:"Neelam Pathak"},{id:"423869",title:"Ms.",name:"Smita",surname:"Rai",slug:"smita-rai",fullName:"Smita Rai"},{id:"424024",title:"Prof.",name:"Swati",surname:"Sharma",slug:"swati-sharma",fullName:"Swati Sharma"},{id:"439112",title:"MSc.",name:"Touseef",surname:"Fatima",slug:"touseef-fatima",fullName:"Touseef Fatima"}],corrections:null},{id:"80846",title:"Phenolic Compounds in the Plant Development and Defense: An Overview",doi:"10.5772/intechopen.102873",slug:"phenolic-compounds-in-the-plant-development-and-defense-an-overview",totalDownloads:206,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Phenolic compounds are produced by the plants mainly for their growth, development, and protection. These aromatic benzene ring compounds are very much essential during the plant’s biotic and abiotic stress interactions. They constitute an essential part of plant’s secondary metabolites and play a vital role in various physiological and mechanical activities. These diverse plant phenolic compounds act both as attractants and repellents toward various organisms in the environment. They could act as attractants toward the beneficial organisms and as toxicants against the invading pests and pathogens. These metabolite compounds often enhance during a plethora of stress conditions and act as the first line of defense to provide plant disease resistance. They are also known to influence the other plant metabolic pathways, namely phytoalexin biosynthesis and reactive oxygen species generation. These phenolic compounds participate both in the above- and below-ground plant defense systems. They are produced as root exudates and influence the soil diversity and the neighboring plants. The present review provides an overview of the roles of plant phenolic compounds in the plant kingdom as signaling compounds, pigment compounds, antimicrobials, and defense compounds.",signatures:"Sambangi Pratyusha",downloadPdfUrl:"/chapter/pdf-download/80846",previewPdfUrl:"/chapter/pdf-preview/80846",authors:[{id:"428313",title:"Dr.",name:"Sambangi",surname:"Pratyusha",slug:"sambangi-pratyusha",fullName:"Sambangi Pratyusha"}],corrections:null},{id:"80060",title:"Glucosinolates and Its Role in Mitigating Abiotic and Biotic Stress in Brassicaceae",doi:"10.5772/intechopen.102367",slug:"glucosinolates-and-its-role-in-mitigating-abiotic-and-biotic-stress-in-em-brassicaceae-em-",totalDownloads:120,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:1,abstract:"Abiotic stresses such as increase in daily mean temperature, changed patterns of precipitation, increase in episodes of drought and floods in future are faced by the plants and pose threats to crop production and food security. Induction of secondary metabolites by several abiotic stress conditions can be helpful in the crop protection against biotic stress and can be a major link between biotic and biotic stress. Plants also face threats by injury caused by herbivores and insects that chew on plants. Plant develops, coordinates and combines defence mechanism to cope with the challenges caused by the injuries. The plant family Brassicaceae (or Cruciferae) includes some of the world’s most economically important crops; especially members of the genera Brassica L. Brassicaceae vegetables are a good source of secondary metabolite that is Glucosinolates. Which are responsible for characteristic flavour and odour, when degraded. Glucosinolates and their degradation products play important roles in stress tolerance, plants respond to abiotic and abiotic stress by systematically accumulating higher levels primary and secondary metabolites for increasing their resistance. Glucosinolates play important role and have a relation with biotic and abiotic stress in Brassica plant family, as they can act as a signalling molecules and affect the physiology of plant.",signatures:"Parul Chowdhury",downloadPdfUrl:"/chapter/pdf-download/80060",previewPdfUrl:"/chapter/pdf-preview/80060",authors:[{id:"429168",title:"Assistant Prof.",name:"Parul",surname:"Chowdhury",slug:"parul-chowdhury",fullName:"Parul Chowdhury"}],corrections:null},{id:"80830",title:"Plant Proteome in Response to Abiotic Stress",doi:"10.5772/intechopen.102875",slug:"plant-proteome-in-response-to-abiotic-stress",totalDownloads:75,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Due to their sessile nature, plants have to confront the stresses and develop potent adaptive tactics to survive and thrive or tolerate their adverse effects. Abiotic stresses, pose a severe threat and multiple morphologies, biochemistry, and physiology procedures to agriculture and the ecosystem. On the other hand, reductions in crop yields brought about by abiotic stress are expected to increase as climate change restricts the worldwide utilization of arable lands and indirectly affects crop productivity. Therefore, understanding how plants perceive stress signals and adapt to unfavorable environmental conditions is crucial for future global food safety and security. In this chapter, we summarize the latest findings of the effects of abiotic stresses on molecular changes in plant organisms, cells, and tissues, focusing on the stress-specific sensing biomolecules and mechanisms at the proteome level.",signatures:"Fatemeh Habibpourmehraban",downloadPdfUrl:"/chapter/pdf-download/80830",previewPdfUrl:"/chapter/pdf-preview/80830",authors:[{id:"426465",title:"Ph.D.",name:"Fatemeh",surname:"Habibpourmehraban",slug:"fatemeh-habibpourmehraban",fullName:"Fatemeh Habibpourmehraban"}],corrections:null},{id:"80579",title:"Seed Priming: The Way Forward to Mitigate Abiotic Stress in Crops",doi:"10.5772/intechopen.102033",slug:"seed-priming-the-way-forward-to-mitigate-abiotic-stress-in-crops",totalDownloads:156,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Abiotic stress is a major threat to the farming community, biasing the crop productivity in arid and semi-arid regions of the world. The seed is an important component of agriculture, contributing significantly to the booming production of food and feed crops across the different agro-ecological regions of the world with constant challenges with reference to production, storage, and quality control. Germination, plant growth, and development via non-normal physiological processes are detrimentally affected by stress. Seed priming is an alternative, low cost, and feasible technique, which can improve various abiotic stress tolerances through enhanced and advanced seed production. Seed priming is a process that involves imbibing seed with a restricted amount of water to allow sufficient hydration and advancement of metabolic processes but preventing germination. The beneficial influence of priming on the germination performance of diverse species is attributed to the induction of biochemical mechanisms of cell repair: the resumption of metabolic activity that can re-impose cellular integrity, through the synthesis of nucleic acids (DNA and RNA) and proteins and the improvement of the antioxidant defense system metabolic damage incurred by dry seed and thus fortifying the metabolic machinery of the seed. With this background, this chapter highlights the morphological, physiological, biochemical, and molecular responses of seed priming and recent advances in priming methods as a tool to combat abiotic stress in crop plants.",signatures:"Melekote Nagabhushan Arun, Shibara Shankara Hebbar, Bhanuprakash, Thulasiram Senthivel, Anil Kumar Nair, Guntupalli Padmavathi, Pratima Pandey and Aarti Singh",downloadPdfUrl:"/chapter/pdf-download/80579",previewPdfUrl:"/chapter/pdf-preview/80579",authors:[{id:"245605",title:"Dr.",name:"Melekote Nagabhushan",surname:"Arun",slug:"melekote-nagabhushan-arun",fullName:"Melekote Nagabhushan Arun"},{id:"427426",title:"Dr.",name:"Guntupalli",surname:"Padmavathi",slug:"guntupalli-padmavathi",fullName:"Guntupalli Padmavathi"},{id:"427432",title:"Dr.",name:"Shibara",surname:"Shankara Hebbar",slug:"shibara-shankara-hebbar",fullName:"Shibara Shankara Hebbar"},{id:"427535",title:"Dr.",name:"Bhanuprakash",surname:null,slug:"bhanuprakash",fullName:"Bhanuprakash null"},{id:"427536",title:"Dr.",name:"Thulasiram",surname:"Senthivel",slug:"thulasiram-senthivel",fullName:"Thulasiram Senthivel"},{id:"427537",title:"Dr.",name:"Anil",surname:"Kumar Nair",slug:"anil-kumar-nair",fullName:"Anil Kumar Nair"},{id:"427538",title:"Dr.",name:"Pratima",surname:"Pandey",slug:"pratima-pandey",fullName:"Pratima Pandey"},{id:"427539",title:"Dr.",name:"Aarti",surname:"Singh",slug:"aarti-singh",fullName:"Aarti Singh"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:{id:"13",series:{id:"10",title:"Physiology",issn:"2631-8261",editor:{id:"35854",title:"Prof.",name:"Tomasz",middleName:null,surname:"Brzozowski",slug:"tomasz-brzozowski",fullName:"Tomasz Brzozowski",profilePictureURL:"https://mts.intechopen.com/storage/users/35854/images/system/35854.jpg",biography:"Prof. Dr. Thomas Brzozowski works as a professor of Human Physiology and is currently Chairman at the Department of Physiology and is V-Dean of the Medical Faculty at Jagiellonian University Medical College, Cracow, Poland. His primary area of interest is physiology and pathophysiology of the gastrointestinal (GI) tract, with the major focus on the mechanism of GI mucosal defense, protection, and ulcer healing. He was a postdoctoral NIH fellow at the University of California and the Gastroenterology VA Medical Center, Irvine, Long Beach, CA, USA, and at the Gastroenterology Clinics Erlangen-Nuremberg and Munster in Germany. He has published 290 original articles in some of the most prestigious scientific journals and seven book chapters on the pathophysiology of the GI tract, gastroprotection, ulcer healing, drug therapy of peptic ulcers, hormonal regulation of the gut, and inflammatory bowel disease.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Jagiellonian University",institutionURL:null,country:{name:"Poland"}}}}},tags:null},relatedBooks:[{type:"book",id:"9345",title:"Sustainable Crop Production",subtitle:null,isOpenForSubmission:!1,hash:"5135c48a58f18229b288f2c690257bcb",slug:"sustainable-crop-production",bookSignature:"Mirza Hasanuzzaman, Marcelo Carvalho Minhoto Teixeira Filho, Masayuki Fujita and Thiago Assis Rodrigues Nogueira",coverURL:"https://cdn.intechopen.com/books/images_new/9345.jpg",editedByType:"Edited by",editors:[{id:"76477",title:"Prof.",name:"Mirza",surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10165",title:"Legume Crops",subtitle:"Prospects, Production and Uses",isOpenForSubmission:!1,hash:"5ce648cbd64755df57dd7c67c9b17f18",slug:"legume-crops-prospects-production-and-uses",bookSignature:"Mirza Hasanuzzaman",coverURL:"https://cdn.intechopen.com/books/images_new/10165.jpg",editedByType:"Edited by",editors:[{id:"76477",title:"Prof.",name:"Mirza",surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1413",title:"Advances in Selected Plant Physiology Aspects",subtitle:null,isOpenForSubmission:!1,hash:"8ad5dfdda92a664aa7c06396e9e42a3f",slug:"advances-in-selected-plant-physiology-aspects",bookSignature:"Giuseppe Montanaro\t and\tBartolomeo Dichio",coverURL:"https://cdn.intechopen.com/books/images_new/1413.jpg",editedByType:"Edited by",editors:[{id:"42991",title:"Dr.",name:"Giuseppe",surname:"Montanaro",slug:"giuseppe-montanaro",fullName:"Giuseppe Montanaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4528",title:"Phytochemicals",subtitle:"Isolation, Characterisation and Role in Human Health",isOpenForSubmission:!1,hash:"2d32f26b4936bc0cdca01c74bce1a6ec",slug:"phytochemicals-isolation-characterisation-and-role-in-human-health",bookSignature:"A. Venket Rao and Leticia G. Rao",coverURL:"https://cdn.intechopen.com/books/images_new/4528.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3402",title:"Photosynthesis",subtitle:null,isOpenForSubmission:!1,hash:"e06baf97d9e8378aa9f5e6832de91066",slug:"photosynthesis",bookSignature:"Zvy Dubinsky",coverURL:"https://cdn.intechopen.com/books/images_new/3402.jpg",editedByType:"Edited by",editors:[{id:"125798",title:"Prof.",name:"Zvy",surname:"Dubinsky",slug:"zvy-dubinsky",fullName:"Zvy Dubinsky"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5120",title:"Applied Photosynthesis",subtitle:"New Progress",isOpenForSubmission:!1,hash:"e9a8c7fd99af6c34ba3783a95698c538",slug:"applied-photosynthesis-new-progress",bookSignature:"Mohammad Mahdi Najafpour",coverURL:"https://cdn.intechopen.com/books/images_new/5120.jpg",editedByType:"Edited by",editors:[{id:"65280",title:"Dr.",name:"Mohammad",surname:"Najafpour",slug:"mohammad-najafpour",fullName:"Mohammad Najafpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5363",title:"Plant Growth",subtitle:null,isOpenForSubmission:!1,hash:"80ea578eeb387cbdcb2cae7df4fa3fe7",slug:"plant-growth",bookSignature:"Everlon Cid Rigobelo",coverURL:"https://cdn.intechopen.com/books/images_new/5363.jpg",editedByType:"Edited by",editors:[{id:"39553",title:"Prof.",name:"Everlon",surname:"Rigobelo",slug:"everlon-rigobelo",fullName:"Everlon Rigobelo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7246",title:"Plant Growth and Regulation",subtitle:"Alterations to Sustain Unfavorable Conditions",isOpenForSubmission:!1,hash:"191631fdd6bce08b2b156572d2907567",slug:"plant-growth-and-regulation-alterations-to-sustain-unfavorable-conditions",bookSignature:"Diah Ratnadewi and Hamim",coverURL:"https://cdn.intechopen.com/books/images_new/7246.jpg",editedByType:"Edited by",editors:[{id:"193531",title:"Prof.",name:"Diah",surname:"Ratnadewi",slug:"diah-ratnadewi",fullName:"Diah Ratnadewi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6641",title:"Photosynthesis",subtitle:"From Its Evolution to Future Improvements in Photosynthetic Efficiency Using Nanomaterials",isOpenForSubmission:!1,hash:"a971df87e09f69a876c4f694108fc930",slug:"photosynthesis-from-its-evolution-to-future-improvements-in-photosynthetic-efficiency-using-nanomaterials",bookSignature:"Juan Cristóbal García Cañedo and Gema Lorena López Lizárraga",coverURL:"https://cdn.intechopen.com/books/images_new/6641.jpg",editedByType:"Edited by",editors:[{id:"293413",title:"Dr.",name:"Juan Cristóbal",surname:"García Cañedo",slug:"juan-cristobal-garcia-canedo",fullName:"Juan Cristóbal García Cañedo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"corrigendum-to-risk-assessment-and-health-safety-and-environmental-management-of-carbon-nanomaterial",title:"Corrigendum to: Risk Assessment and Health, Safety, and Environmental Management of Carbon Nanomaterials",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/80612.pdf",downloadPdfUrl:"/chapter/pdf-download/80612",previewPdfUrl:"/chapter/pdf-preview/80612",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/80612",risUrl:"/chapter/ris/80612",chapter:{id:"66689",slug:"risk-assessment-and-health-safety-and-environmental-management-of-carbon-nanomaterials",signatures:"Guilherme Lenz e Silva, Camila Viana, Danieli Domingues and Fernanda Vieira",dateSubmitted:null,dateReviewed:"February 26th 2019",datePrePublished:"April 11th 2019",datePublished:"February 19th 2020",book:{id:"8137",title:"Nanomaterials",subtitle:"Toxicity, Human Health and Environment",fullTitle:"Nanomaterials - Toxicity, Human Health and Environment",slug:"nanomaterials-toxicity-human-health-and-environment",publishedDate:"February 19th 2020",bookSignature:"Simona Clichici, Adriana Filip and Gustavo M. do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/8137.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"64160",title:"Prof.",name:"Simona",middleName:null,surname:"Clichici",slug:"simona-clichici",fullName:"Simona Clichici"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"251730",title:"Dr.",name:"Guilherme",middleName:"Fredeico Bernardo",surname:"Lenz E Silva",fullName:"Guilherme Lenz E Silva",slug:"guilherme-lenz-e-silva",email:"guilhermelenz@usp.br",position:null,institution:null},{id:"286148",title:"Dr.",name:"Camila",middleName:null,surname:"Viana",fullName:"Camila Viana",slug:"camila-viana",email:"camilaoviana@gmail.com",position:null,institution:{name:"Centro de Desenvolvimento da Tecnologia Nuclear",institutionURL:null,country:{name:"Brazil"}}},{id:"286149",title:"Dr.",name:"Fernanda",middleName:null,surname:"Vieira",fullName:"Fernanda Vieira",slug:"fernanda-vieira",email:"fevieira2001@gmail.com",position:null,institution:{name:"Centro de Desenvolvimento da Tecnologia Nuclear",institutionURL:null,country:{name:"Brazil"}}},{id:"286151",title:"M.Sc.",name:"Danieli",middleName:"Silva",surname:"Domingues",fullName:"Danieli Domingues",slug:"danieli-domingues",email:"danielisilva@ymail.com",position:null,institution:{name:"Centro de Desenvolvimento da Tecnologia Nuclear",institutionURL:null,country:{name:"Brazil"}}}]}},chapter:{id:"66689",slug:"risk-assessment-and-health-safety-and-environmental-management-of-carbon-nanomaterials",signatures:"Guilherme Lenz e Silva, Camila Viana, Danieli Domingues and Fernanda Vieira",dateSubmitted:null,dateReviewed:"February 26th 2019",datePrePublished:"April 11th 2019",datePublished:"February 19th 2020",book:{id:"8137",title:"Nanomaterials",subtitle:"Toxicity, Human Health and Environment",fullTitle:"Nanomaterials - Toxicity, Human Health and Environment",slug:"nanomaterials-toxicity-human-health-and-environment",publishedDate:"February 19th 2020",bookSignature:"Simona Clichici, Adriana Filip and Gustavo M. do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/8137.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"64160",title:"Prof.",name:"Simona",middleName:null,surname:"Clichici",slug:"simona-clichici",fullName:"Simona Clichici"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"251730",title:"Dr.",name:"Guilherme",middleName:"Fredeico Bernardo",surname:"Lenz E Silva",fullName:"Guilherme Lenz E Silva",slug:"guilherme-lenz-e-silva",email:"guilhermelenz@usp.br",position:null,institution:null},{id:"286148",title:"Dr.",name:"Camila",middleName:null,surname:"Viana",fullName:"Camila Viana",slug:"camila-viana",email:"camilaoviana@gmail.com",position:null,institution:{name:"Centro de Desenvolvimento da Tecnologia Nuclear",institutionURL:null,country:{name:"Brazil"}}},{id:"286149",title:"Dr.",name:"Fernanda",middleName:null,surname:"Vieira",fullName:"Fernanda Vieira",slug:"fernanda-vieira",email:"fevieira2001@gmail.com",position:null,institution:{name:"Centro de Desenvolvimento da Tecnologia Nuclear",institutionURL:null,country:{name:"Brazil"}}},{id:"286151",title:"M.Sc.",name:"Danieli",middleName:"Silva",surname:"Domingues",fullName:"Danieli Domingues",slug:"danieli-domingues",email:"danielisilva@ymail.com",position:null,institution:{name:"Centro de Desenvolvimento da Tecnologia Nuclear",institutionURL:null,country:{name:"Brazil"}}}]},book:{id:"8137",title:"Nanomaterials",subtitle:"Toxicity, Human Health and Environment",fullTitle:"Nanomaterials - Toxicity, Human Health and Environment",slug:"nanomaterials-toxicity-human-health-and-environment",publishedDate:"February 19th 2020",bookSignature:"Simona Clichici, Adriana Filip and Gustavo M. do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/8137.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"64160",title:"Prof.",name:"Simona",middleName:null,surname:"Clichici",slug:"simona-clichici",fullName:"Simona Clichici"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12162",leadTitle:null,title:"Helicobacter pylori Infection - An Up to Date on the Pathogenic Mechanisms, Diagnosis and Clinical Management",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tInfection with H. pylori represents a major pathogenic factor involved in developing peptic ulcer disease and gastric cancer. The aim of this book is to present to the readers the current epidemiology of H. pylori infection and a novel understanding of its pathogenic mechanisms, including virulence factors, genetics/epigenetics of the infection, as well as host immunity. The manuscript will focus on the currently used diagnostic tests for H. pylori infection, especially on the accessibility, disadvantages, and advantages, and furthermore, the cost-efficiency of different tests. An important topic will be the H. pylori oncogenicity, including the prevention, risk factors, and mechanisms of carcinogenesis, as well as the follow-up and management of the premalignant gastric lesions. The book will highlight the interplay between H. pylori infection and the development of extragastric diseases - dermatological, cardiovascular, hematologic, metabolic, allergic, ocular, and others; moreover, it will include the impact of both H. pylori infection and its eradication treatment on gut microbiota. One of the most important goals of the book consists in helping clinicians in gaining information on the current indications for H. pylori infection eradication and continuously changing antibiotic resistance patterns and, especially, on the therapeutic implications of the current resistance spectrum.
",isbn:"978-1-83768-171-6",printIsbn:"978-1-83768-170-9",pdfIsbn:"978-1-83768-172-3",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"03c019e4753a62191c6b0c84cde99283",bookSignature:"Dr. Daniela Cornelia Lazar",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12162.jpg",keywords:"Epidemiology and Pathogenesis, Prevalence, Virulence Factors, Genetics, Epigenetics, Host Immunity, Current Diagnostic Methods, Prevention, Risk Factors, Mechanisms of Carcinogenesis, Gut Microbiota Homeostasis, Novel Antibiotic Strategies",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 25th 2022",dateEndSecondStepPublish:"June 22nd 2022",dateEndThirdStepPublish:"August 21st 2022",dateEndFourthStepPublish:"November 9th 2022",dateEndFifthStepPublish:"January 8th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:'MD, P.h.D., Associate Professor, Department of Internal Medicine, University of Medicine and Pharmacy "Victor Babeș," Timișoara, Romania, serving as an editorial member and reviewer of several international reputed journals, and member of the Romanian Society of Gastroenterology and Hepatology.',coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"26188",title:"Dr.",name:"Daniela Cornelia",middleName:null,surname:"Lazar",slug:"daniela-cornelia-lazar",fullName:"Daniela Cornelia Lazar",profilePictureURL:"https://mts.intechopen.com/storage/users/26188/images/system/26188.jpeg",biography:"Dr. Daniela Lazar began her career in the Department of Gastroenterology and Hepatology, University of Medicine and Pharmacy Timisoara, Romania, where she has acquired clinical skills in gastroenterology, learned the techniques of endoscopy and abdominal ultrasonography and began her research activity.\r\nCurrently, she is activating as an Associated Professor in the Department of Internal Medicine of the same university.\r\nShe is specialized in Gastroenterology, Internal Medicine and Medical Oncology and underwent her Ph.D. thesis in the field of gastric cancer.\r\nThe research interests of Dr. Daniela Lazar are concerned mainly with the neoplasms of the gastrointestinal tract, especially gastric cancer. Dr. Lazar has participated at many national and international congresses with research studies in the field of gastroenterology and digestive oncology. Her research work materialized in many articles published in prestigious journals and numerous citations.\r\nShe published many studies regarding angiogenesis, premalignant lesions, prognostic factors and novel therapies in gastric cancer.\r\nShe is interested also in aspects regarding the epidemiology, phenotypes, and treatment of inflammatory bowel diseases, being part of the national and international working groups in this domain. Dr. Lazar is a reviewer in many international journals.",institutionString:"Victor Babeș University of Medicine and Pharmacy Timișoara",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Victor Babeș University of Medicine and Pharmacy Timișoara",institutionURL:null,country:{name:"Romania"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"13",title:"Immunology and Microbiology",slug:"immunology-and-microbiology"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"453622",firstName:"Tea",lastName:"Jurcic",middleName:null,title:"Ms.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"tea@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"3252",title:"Gastric Carcinoma",subtitle:"New Insights into Current Management",isOpenForSubmission:!1,hash:"7bdbed3527b9a876f56e109c8401af05",slug:"gastric-carcinoma-new-insights-into-current-management",bookSignature:"Daniela Laz?r",coverURL:"https://cdn.intechopen.com/books/images_new/3252.jpg",editedByType:"Edited by",editors:[{id:"26188",title:"Dr.",name:"Daniela Cornelia",surname:"Lazar",slug:"daniela-cornelia-lazar",fullName:"Daniela Cornelia Lazar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3569",title:"Biodegradation",subtitle:"Life of Science",isOpenForSubmission:!1,hash:"bb737eb528a53e5106c7e218d5f12ec6",slug:"biodegradation-life-of-science",bookSignature:"Rolando Chamy and Francisca Rosenkranz",coverURL:"https://cdn.intechopen.com/books/images_new/3569.jpg",editedByType:"Edited by",editors:[{id:"165784",title:"Dr.",name:"Rolando",surname:"Chamy",slug:"rolando-chamy",fullName:"Rolando Chamy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"16391",title:"Simulation of Three Dimensional Flows in Industrial Components using CFD Techniques",doi:"10.5772/19909",slug:"simulation-of-three-dimensional-flows-in-industrial-components-using-cfd-techniques",body:'The schematic of coal fired power plant for electricity generation is shown in Fig-1, wherein fuel preparation is being made in grinding mills. The fuel from the mill outlet tubes will be transported to corner fired furnace as shown in Fig-2. The coal combustion in the furnace will takes place at 1500 deg C, wherein the tubes carrying water convert to saturated steam and enters in steam-drum. This steam in turn subjected turbine cylinders at different pressures through reheater/superheater, will generate electric power. Due to presence of high ash content in Indian coals, fluid transport devices often fail to perform with expected efficiencies. To troubleshoot these failures, industries are expected to integrate key technologies for design process through CAE-PLM concepts as suggested by Efim Korytnyi (1988). The traditional approach of taking a product from laboratory scales to pilot plants and then to develop the better efficient product is no longer attractive. While measurement probes provide point data, field information at multiple locations are often required to diagnose a problem fully. Success in this challenging environment hinges on leveraging the latest technology system based on CAE and multi-disciplinary coupled simulations as indicated by Pordal, et.al (2001) and Tylor B Thompson, et.al (1999).
Today’s design processes must be more accurate, while minimizing development costs to compete in a world economy. This forecast engineering companies to take advantage of design tools, which augment existing experience with empirical data. While minimizing cost, one tool which excels under these conditions are through CFD as discussed in technology road map towards chemical industries by Christopher Riff (2004). In general, CFD methods are used to understand the overall flow behavior of single/multi-component assemblies involves several steps like geometry modeling, computational mesh generation, and description of flow physics with turbulence, incorporating two-phase flow effects and visualization besides extending to multi-disciplinary areas like FSI and aero acoustics. CFD simulations are highly dependent on CAD model, which can be generated from programming/assembly drawings, are expected to be error free for evaluation of meaningful flow characteristics. Creation of component from simple to complex parts are generated using several commercial CAD software or programming is illustrated in Fig-3.
Schematic of Coal fired Power Plant
Arrangement of fuel from mills to the furnace
Approach for creation of component geometries
The geometric shapes like cylinders, aerofoil and straight ducts can be generated through high level programming languages while linking its output to grid generation/flow simulation as discussed by C.Bhasker (2000). The disadvantage of this approach is of limited use and lacks graphic user interfaces for visualization of the component. If the geometries are complex assemblies involving complicated surface irregularities, solid modeling software provides effective tools for generation of three dimensional models accounting every detail of the component. The CAD software has powerful geometric engine provide variety of definition tools including fillet, shell, draft and feature based primitive icons to generate part modeling interactively were comprehensively discussed by Delli P (2007). CAD softwares includes powerful tools for capturing design intent in part features, which are easily edited and updated to support real-time modification processes. Using solid modeller softwares SDRC – I-DEAS and UG NX, several three dimensional component assemblies are created and exported to third party softwares for extraction of fluid portion for computational mesh generation.
At the core of CFD, computational grid is central element, which often considered as most important and time consuming part in simulation projects. The quality of the grid plays a direct role on the quantification of flow results, regardless of the flow solver used for simulation. The mesh generation concepts were comprehensively discussed by Thomson, JF (1985) and reviewed by Mazumdar. S (1994) has resulted to several commercial softwares which are being extensively used for several industrial components by Bhasker, C (2010a) was shown in Fig-4. The quality of mesh interms of size and density influences the accuracy, convergence and speed of the numerical solution of fluid flow equations. As described in Fig-4 the computational mesh for component volume can be generated through unstructured, structured and hybrid method.
Schematic of computational mesh generation
Unstructured grid methods utilize an arbitrary collection of elements to fill the domain automatically requires the volume bounded by error free surfaces. The unstructured mesh with tetra-hedral elements will have problems associated with large memories and lacks mesh refinement tools at desired locations in the computational domain is still preferred technique for the complex geometries. Using this type of mesh, parametric mesh generation for check valve has been developed by Iyer VK (2009) to estimate pressure drop under different opening conditions. In structured grid methods the grid is laid out in a regular repeating pattern called a block. These types of blocks utilize quadrilateral elements in 2D and hexahedral elements in 3D. Depending upon geometrical shape of the object, hexahedral elements with the combination of tetrahedral elements are generated in two different blocks of topologically connected boundaries. The accomplishment of computational meshes through high level programming requires numerical solutions to differential equation using interpolation or discretization using Finite volume/difference methods. To this effect, among several commercial grid generators, provides 2D/3D single and multiblock structured and unstructured meshing tools with the direct interface to popular flow solvers and applications are discussed in subsequent sections.
The block grids using quadrilateral elements in 2D and hexahedral elements in 3D volume are generated through numerical solution to differential equations. If the geometries are not irregular, generation of body fitted coordinate grids are extensively discussed by Schuh (1990) using the transformations from physical to computational domain as shown in the Fig-5.
Transformation of physical domain to computational domain
In the two-dimensions, the transformations in the mathematical form are represented as -
Substitution of these derivatives in the Poisson equation, the transformed equation will results to -
and the control functions
Where a,b,c,d are positive integers which control the magnitude of attraction towards line and point. Negative value of a and b result in the repulsion from the lines and points. Boundaries of cylinder and aerofoil are seen in the Fig-6. To account curvature and spacing, the derivatives of control functions are written as –
The effect of control functions P, Q with attraction of points (fine grid points) towards the boundaries. Such types of grids close to solid boundaries are essential in CFD simulation for accurate estimation of viscous losses. In order to generate body fitted computational mesh, elliptic partial differential equations with control functions are solved numerically using finite volume techniques. The control functions clusters the mesh points towards solid boundaries very closely to account viscous losses. An interactive program has been developed for generation of body fitted coordinated grid for cylinder and aerofoil whose output has been visualised in the graphic software Tecplot3D. The body fitted computational mesh data from the program for a rod-aerofoil with boundary layer thickness towards solid boundaries are shown in Fig-6 and the detailed derivations and program code structure is available in the presentation material by Bhasker (2010b).
Body fitted CFD mesh for rod-aerofoil using programming approach
When the geometries are irregular and multi-connected, the programming approach is limited usage and algorithms for multiblock structured grid generation schemes were developed by Spekreijse (1966) are implemented in commercial software, which provides more user friendly under Graphic User Interface – GUI environment with powerful geometric engine for CAD repair and multi-block grid generation, with choice of elements and different distribution laws for mesh density.
The geometry of fuel preparation device called beater wheel mill used for power generation has been considered from the experimental investigation by Founti (1995) for flow simulation using multiblock structured grid generation. The geometrical details and block decomposition around solid objects like impeller vanes baffle plates in the classifier, wherein flow is subjected to impeller blades for crushing the coals into fine particles. The flow from the impeller outlet enters mill chamber travels upwards through convergent duct and enters in the classifier region from baffle plates. In order to carry out flow simulation, mill geometry in 2D plane has been created and decomposed for mesh generation using commercial grid generator as shown in Fig 7(a).
a-b) Multiblock structured grid for industrial component
In order to generate computational mesh for the mill geometry shown, the component has grouped into three parts impeller, converging duct and classifier which can be toggled through blank and unblank options. In the computational domain, 2d mesh generation has been started from the small cell using quad elements. To avoid mixed elements, mesh style algorithms are properly chosen to map rectangular mesh. In order to have uniform mesh at neighboring cell, mesh density is varied in the flow direction. In this process, the mesh densities at mating edge across two cells are equivalenced. In this process, 2d quad elements at all the cells present in the computational domain are filled and equivalenced the edges so that no duplicate nodes are present across mating edges of cells. After checking the mesh quality, computational mesh was dragged in z direction for specified distance to generate three dimensional meshes as shown in the Fig 7(b). The flow simulation through CFD coarse grid was extensively discussed by Anagnotopoulos J (1997) for partial geometry of the mill, which in turn was extended for detailed investigation by Bhasker (2008) to simulate the air flow from mill inlet to classifier outlet location.
Structured grid forms through building blocks, which will have six neighbor cells possess excellent numerical properties, when the flow is aligned with the grid. Hexahedral elements, which are efficient at filling space, support a high amount of skewness and stretching before the solution is significantly effected. Alternatively, computational mesh can be generated for complex shaped object through automatically using tetrahedral element, which has four neighbor cells. But, the triangle and tetrahedral elements have the problem that they do not stretch or twist well, therefore, the grid is limited to be isotropic, i.e. all the elements have the same size and shape. Ideally, flow should be perpendicular to the element surfaces. Hence, tetrahedrons are the least ideal computational cell and they are inefficient at filling space. Though volume mesh with tetra-hedral elements generates faster, but the simulation of flow equations require more memory and have longer execution times than structured grid solvers. Hexahedra elements are an improvement, but they are difficult and expensive to generate for complex geometries.
Polyhedral Mesh for the valve (a) geometry (b) Mesh
To overcome these difficulties, CFD solvers have developed new type of element is called polyhedral as discussed by Stephen Fergusen (2005). Polyhedral cells possess excellent numerical properties including good accuracy using finite volume discretizations and well connections with neighboring cells. Polyhedral mesh cell counts are much smaller than tetrahedral meshes with equivalent accuracy. The flow solvers Star-CCM and Fluent use polyhedral meshes for flow simulation. In order to generate polyhedral meshes for CFD flow simulation, the geometry of control valve is shown in Fig.8 (a) was imported. On visualization, it is observed that surface representation of geometry through triangle definition was coarsely faceted.
In order to improve surface quality, the solid boundary surfaces are need to be broken so that mesh refinements/clustering can be created at desired locations. Using this option, geometry of component was split at an angle of 450 to obtain several boundary surfaces. These boundaries are carefully visualized and grouped into the regions like inlet, exit, valve body and symmetry surfaces. In order to improve/generate the surface/volume mesh quality, the suitable inputs related to surface curvature, growth rate, proximity, base size, number of prism layers, prism layer stretching and relative thickness values are defined. For the provided flow conditions, flow simulation has been carried out on this polyhedral mesh shown in Fig-8(b) for several flow characteristics and estimation of pressure drop evaluation across control valve inlet/exit locations by Bhasker (2010c).
The transport of fluid comprises gases/liquid from one component to other in power/process equipment are described through mass, moment and energy conservation principles. The Navier Stokes (transport) equations are derived from these principles are discussed by Hoffman, K.A [1993) are represented mathematically as-
The terms on Left Hand Side – LHS defines acceleration of flow over time with inertia depends on the sum of the external forces, diffusion and sources acting on the fluid element. If the value of is 1, the eqn. (11) results to continuity equation. The value of is either u or v or w, the above eqn. describes momentum equation in x, y, z directions. The value of is h then the above eqn. yields to energy equation. Two important material properties of fluid i.e., density and viscosity, whose ratio times characteristic flow velocity and length are defined as Reynolds number. This non-dimensional quantity is the ratio of inertial forces to viscous forces, whose magnitude depends upon flow disturbances can changes from laminar to turbulent. In other words, if the Reynolds Number is small, then the flow will be laminar and the flow progresses in layers. If the Reynolds Number is large flow then the flow will be turbulent and there will be a mixing of flow layers with large eddies are illustrated through cigarette smoke in Fig-9 by Sodja, J (2007).
Illustration of turbulent flow from cigarette smoke
The flow consists of a spectrum of different scales in turbulent flow, largest eddies are the order of geometry scales and breaks into smaller as time progress. At the other end of the spectra, the smallest eddies by viscous forces are dissipated into internal energy. Even though turbulence is chaotic, its characteristics are determined through Navier-Stokes equations. The turbulent is dissipative, which means that kinetic energy in the small eddies are transformed into internal energy. The small eddies receive the kinetic energy from slightly larger eddies. The slightly larger eddies receive their energy from even larger eddies and so on. In order to resolve wide spectrum of scales in turbulent eddies, normally two approaches are employed and are discussed in detail by Zhiqiang Z (2007). The first approach is Direct Numerical simulation – DNS, wherein the range of eddy size varies as small as the Kolmogorov scale in turbulent flow. This requires dense mesh points for proper resolution and its solution depends on heavy computational resources, expensive, time consuming process and very rarely used simulation technique. The other approach generally used for most of the applications are Reynolds’ averaging process described by Shao (2009), wherein flow variables are decomposed into mean and fluctuating components as -
Where i=1.2,3 denotes in x, y, z direction. Like wise the pressure and other scalars can be expressed as
Substituting flow variables in the form into the instantaneous continuity and momentum equations and taking a time (or ensemble) average (and dropping the overbar on the mean velocity) yields to
Eqn (14-15) are called (RANS) equations. The term
Where
As discussed in the previous section, whether working fluid is a compressible or incompressible and laminar or turbulent, its dynamics are described by mass, momentum and energy equations. However its complexities depends upon consideration of the external forces due to presence of discrete particles, fluid-solid interactions and aero acoustics besides incorporating thermal phenomena involving different modes of heat transfer mechanism in the simulation. FVM is used to discretize Navier Stokes equations (11) numerically to solve for several flow variables on high speed digital devices as discussed by Petersburg (2004). The integration of transport equation over the control volume, after applying Gauss divergence theorem can be written as
The control volume of typical cuboids with P as its center are surrounded by six faces defined as n – North, s – South, e-East, w-West, t-Top and b-Bottom. The face centers n, s, e, w, t and b are located at the intersection of the lines joining the midpoint of the opposite edges. All variables are stored either in collocated or staggered nodes in the finite volume cell to address pressure-velocity coupling. If the flow is steady, in the LHS of eqn (17) first term vanishes. On RHS of above eqn. if q is constant in the source term and linear, then the volume integral can be approximated about p as
Now to approximate surface integral on LHS of eqn (17), the net flux through CV boundary is the sum of integrals over the faces implies
Considering east face, assuming dependent variables like velocity/density (
To determine f with the unknown , interpolations like, unwind – (UDS), central differencing–(CDS) and quadratic upwind interpolation–(QUICK) techniques are shown in Fig-10 are used to develop the algorithms. In the case of upwind difference, the value of at location e will be
this scheme is of first order, the solution is numerically diffusive and generally not recommended. The approximation of at location e in the case of central difference scheme is.
Which is a second order, still produce oscillations.
Illustration of UDS, CDS and QUICK Interpolation Schemes
The approximation using QUICK
Where g is coefficients in terms of nodal coordinates and the scheme is third order and aimed to provide accurate estimates. In the QUICK scheme, one adds one point in each direction and calculates the derivative using the cubic polynomial drawn through the four involved points. The approximation to surface and volume integrals in eqn (24) generates algebraic system of equations for control volume as –
which in matrix form are represented as
Where [A] is sparse matrix and the coefficient matrix values are updated which depends upon boundary conditions and initial guess and above equality will not hold. The imbalance called residual R defined as -
Will reduce over the increase in iteration is called convergence. The target value for Root Mean Square - RMS or maximum RMS of the order 1.0e-04 is generally used for convergence criteria based on discretization schemes used for flow equations. Acceleration of convergence also depends on the scheme of matrix inversion techniques employed. It may be noted that level maximum RMS error are always lower than RMS errors and it will take more execution time.
Many engineering problems involves the study of multiphase flow mixtures with the combination of gas-solid, liquid-solid phases and its effects were extensively reviewed by Humphrey JAC (1990). Prediction of flows with dispersed phase involves the separate calculation of each phase with source terms to account the interaction between two phases. The flow of the continuous phase is predicted using a discretized form of the Navier Stoke’s equations. The particles motion as a function flow velocities/temperatures are predicted using the discrete approach, wherein each individual particle is treated on Lagrangian scale. The most widely applied method available to determine the behavior of the dispersed phase is to track several individual particles through the flow field. Acceleration of particle in the flowing fluid under the assumptions a) Particle/particle interactions are not included in the model. b) Particle interactions may be important in flows, where the discrete phase volumetric concentration is greater than 1% c) there are no particle source terms to the turbulence equations, and therefore turbulence is not modulated by the discrete phase and d) Only inert, spherical particles are considered, are described mathematically as--
Detailed derivation of for acceleration of particle and its simplification was discussed by Routhiainen, P.O (1970). The terms on the left-hand side is acceleration of particle motion is the summation of all forces acting on it describes in above equation. The first term indicates viscous drag of fluid over the particle surface according to Stokes law. The second term is the force applied on the particle due to the pressure gradient in the fluid surrounding the particle caused by fluid acceleration. The third term is the force to accelerate the virtual mass of the fluid in the volume occupied by the particle. This term is important, when the displaced fluid mass exceeds the particle mass, such as in the motion of bubbles. The fourth term is an external force which may directly affect the particle such as gravity or an electric field. The fifth term is the Basset force or history term, which accounts for the deviation in flow pattern from steady state. This term increases the instantaneous flow resistance, when the particle is accelerated at a high rate by an external force and can be significant only when the fluid density is equal or exceeds the particle density. The last two terms are the centrifugal and coriolis forces, present only in a rotating frame of reference. In the eqn (28) third and fifth terms are insignificant, as particle density is higher than fluid density. As a result, the eqn (28) further reduces to
The drag coefficient
The magnitude and direction of the impact velocity relative to the wall surface, for a large number of particles constitute the essential data for the evaluation of erosive wear. To this effect the velocity of a rebounding particle is calculated using the restitution coefficients, which are measured by experiments. When the particle impact/rebound from the wall surfaces, normal/tangential velocity before/after impact of the wall relating to coefficients of restitution, are calculated by using following relations:
The restitution ratios are determined experimentally based on flow velocity, particle and target material. The coefficient restitutions are calculated using
Where is impact angle in radian. With the values of coefficient restitution, impact angle and velocity, the erosive wear can be estimated with the following relation:
E = AV
User need to specify the inputs for particle resident times, coefficient of restitution, particle material, density etc to calculate erosive wear by particle impacts. In turbo machinery applications, these particles under two phase flow conditions, experience different degrees of turning, as they flow through blade channels. The damage due to particle impacts are manifested by pitting and cutting of the blade leading and trailing edges are compressively discussed by Tabbakoff (1983). The overall effect of the phenomena from the aerodynamic point of view is an increase in total pressure loss across the blade row. However, the particulate laden flow simulation and its effect in the recyclic cyclone used in power generation are discussed at length under the case study-3.
The mathematical formulations to simulate structural deformations and stresses on the component surfaces are extensively discussed by Mustafa (2006). To determine the deformations, governing equations are mathematically represented as –
Where
The finite volume form and after integration by parts, the eqn (36) can be written as
For all cells
Dropping intertial terms and considering some of the forces acting on the body is zero for a static case, the eqn (39) can be re-written as –
In order to compute the stress tensor
With the help of Newton method to correct displacement Eqn (40) further simplifies to
To obtain structural deformations, pressure/heat flux loads are normally obtained from CFD solver using finite volume approximations and deformations/stresses are obtained through finite element techniques. However, in the current versions of few flow solvers, flow and thermal stress based on finite volume techniques can provide FSI characteristics of industrial components. A detailed discussion of a case related to transition duct used in gas-turbine application is presented under the case study-4.
Aerodynamic noise results from the propagation of disturbances through the fluid flows at some point in time and space. Whether the disturbance is caused by an object or the fluid itself, fluctuations in fluid pressure propagate outwards from the source at the speed of sound relative to the fluid. Theory associated to noise as function of flow pressure was discussed by Alan Powel (1994) and the size of the pressure fluctuation relative to the pressure is called the sound pressure level. The sound intensity
where p’ is fluctuating pressure, - density of fluid and c - is speed of sound. Pressure and velocity fluctuations are simulated from CFD simulations in the near field noise. The near field will likely include the locations, where the maximum noise levels occur. For most CFD simulations the extent of the computational domain is usually such that near field/far field noise can be estimated.
The near field pressure and velocity fluctuations play a key role in determining far field noise, which occurs at some distance by acting as a localized source of noise. The influence of turbulence modeling on the broad band noise simulation for complex flow simulation by Greshchner (2004) has provided valuable insights to predict overall sound pressure and power for an application to rod-aerofoil. In many practical applications involving turbulent flows, noise does not have any distinct tones, and the sound energy is continuously distributed over a broad range of frequencies. Assuming that the fluid is a perfect gas, homogeneous wave equation is solved using noise sources taken from CFD are defined as –
Where
Where the first term Reynolds stresses and
In terms of noise sources, the eqn (44-45) can be re-rewritten as –
Where
Illustration of aerodynamic noise sources
In the right hand side of the eqn (45), first, second and third terms indicates mono/dipole/quadro poles noise sources respectively. The eqns (44-45) are called aero acoustic formulation by Ffowcs Williams and Hawkins. In CFD software, the noise resulting from unsteady pressure fluctuations can be computed in several ways. Transient LES predictions for surface pressure can be converted to a frequency spectrum using the built-in Fast Fourier transform (FFT) tool in most of the flow solvers. The Ffowcs Williams–Hawkings acoustics whose derivation was extensively discussed by Ffowcs W J E and Hawkings D L (1969) are used to model the propagation of acoustic sources for objects ranging from exposed bluff bodies to rotating fan blades. Broadband noise source models allow acoustic sources to be estimated based on the results of steady-state simulations provides practical tools for interpretations of noise sources. More comprehensive analysis for predicting sound directivity, reflections and radiations can be analyzed through CFD commercial software like CFX, Fluent and Star-CD even though simulation needs special purpose commercial software like Sysnoise/Actron for comprehensive investigations for far field noise. The typical simulation has attempted to compute different noise source strengths and frequency analysis for an axial fan using RANS equations are discussed under case study-5.
Fuel preparation for the boilers through grinding the coal has been made in the pulverizers. The grinding mills can be different types like ball, impact and the roller mill is also called bowl mill is extensively used in Indian coal fired power station. The need to design more efficient grinding elements are necessary to increase thermal efficiency of boiler auxiliaries. If the coal fails to burn as required, the alternatives available to pulverize operators are limited and results in combustion inefficiency in the boiler, was reported in the technical paper by Mandechthild Angleys et.al (1998). The Electric Power Research Institute has reported that 1% of plant availability is lost on average due to malfunctioning of pulverizer internals.
a) Isometric view of the mill (b) Computational grid
To understand the flow pattern inside the different types of pulverizers, numerical simulations were described by Mandechthild Angleys (1998) and CAJ Fletcher (1993). Based on these works, CFD analysis in the roller mill was discussed by C.Bhasker (2001) whose isometric view in three dimensions are shown in Fig-12(a). This mill is used to separate coal particles based on centrifugal forces due to spinning motion of bowl. However, due to bowl rotation, particles are moved away to clearance, where rollers crush them into fine powder with the pressure forces by the springs attached to it. The air flow enters tangentially through inlet duct vanes lift these particles towards classifier vanes and exit pipes connected to boiler. The coarse particles, which are not separated will fall back to bowl for re-grinding. Flow around different internals present inside the pulverizer is complex and are prone to secondary and tertiary swirl motion.
The flow travels in the mill around stationary and rotating internals crosses bowl rim, rollers, vanes at inlet, classifier vanes and exit coal outlets have geometrical complexities involving steep curvatures and steps. CAD modeling from the assembly of manufacturing drawings with all internals has been carried out and extracted the flow passage. The flow passage around the solid objects is further decomposed to generate high quality structured computational meshes in different parts. The computational mesh shown in Fig-12(b) in different parts are imported in the flow solver for flow simulation. The grid-interfaces between parts of the meshes are created to remove duplicate elements at mating surfaces. The computational mesh of 120,000 point data has been generated in 307 grid blocks with several connections between blocks to avoid the prevention of flow due to presence of artificial walls. The CFD software TASCflow from AEA Technology/Canada based on finite volume method has been employed to solve 3-dimensional RANS equations for incompressible flow. Turbulent effects are accounted through
The convergence of equation residuals for simulation of flow in the pulverizer along its internals depends on proper initial guess and under-relaxation factors. The optimum value of time step, which is based on trial and error method was provided to accelerate the convergence for flow simulation. Besides time step, dropping of error in the equation residuals also requires proper inputs for turbulence intensity and length scales at inlet location. With suitable initial guess values for flow momentum, pressure and turbulence quantities and under-relaxation factors in control parameters, the simulation took about 300 iterations for completion of flow simulation on 256 MB RAM Compaq Pentium-III 450 MHz work station. After completion of simulation, with the help of result files, several planes across the mill height and horizontal directions are created from the grid block nodes using region manager available in solver post processor. The flow visualization in terms of velocity vectors/contours different cross-section of device and streak lines from the inlet of mill chamber are generated to understand the flow distribution. The velocity vectors in the planes over the height of the mill are described in Fig-13(a) wherein the flow path is highly non-uniform and exhibits recirculating flow especially in the inlet region. As a result, flow in the mill exit locations are leaving with unequal velocity as seen in Fig -13(b). The air flow in terms streak lines drawn from the inlet of mill indicates that its paths are not reaching to classifier with required intensities due to flow recirculation observed at several locations in the mill. The observations from the simulation have shown significant impact on existing designs for improving the flow distribution by small changes in the geometries.
Velocity vectors in the mill (a) over height (b) horizontal plane
Electrostatic precipitators are extensively used to collect particulate emissions from the power production units. Although the performance of the precipitators are high, their collection efficiency is strongly dependent on the electro hydrodynamic behavior of two-phase flow inside the chamber. The problems faced in the operation of ESPs depend on many factors such as gas volume, particle size distribution, gas-temperature, mechanical conditions, etc., Indian coals have high ash content, can effect electrical resistivity and particle size distribution besides disturbing uniform flow pattern, as discussed by Srinivasan (1996).\n\t\t\t\t
The gas velocity characteristics with an electrostatic precipitator play an important role in overall ESP performance. If local gas velocities are too high, then the aerodynamic factors depends upon the particles can overwhelm the electrostatic forces generated by the collecting surfaces and electrodes. This leads to degradation in collection efficiency and techniques to improve its performance was outlined in the paper by Dumont (2001). If the local velocities are too low, the collecting surfaces are not being utilized and the potential of particulate deposition. In view of these problems, proper design of flow control devices within ESPs are critical. Construction of physical model includes turning vanes, baffles and perforated plates in several combinations are complex task for development of ESP. The analysis of ESP flow characteristics through physical scale model was only the choice until now are expensive and time consuming process, as the change in configuration will limit to use of existing models.
Many CFD studies as an alternative have been made to understand the flow distribution in ESP especially using skew gas flow technologies by Schmitz (2001). The multi-disciplinary flow simulation influencing the flow distribution towards emitting electrode by Gallimberti (1998) and Varonos (2002) are the major contributions for improving the efficiency. However, still there is a need to understand the following parameters, which influences performance degradation in ESP.
Resistivity | Gas temperature | Electro-static forces | |||
Ash quality | Gas distribution | Electrode geometry | |||
Ash distribution | Duct geometry | Collection plate geometry | |||
Gas composition | Inlet geometry | Rapping |
Depending upon power station rating, the configuration of ESP varies in terms of fields and length, height, width of chambers. The ESP chamber also can be single or multiple pass connecting to one or two chimneys varies based on power plant layout. The entrainment of flue gases in the ESP chamber from the air-preheater is subjected to several internals like inlet funnels, gas distribution screens, outlet funnels and induced draft fans to stack. The prediction of uniform flow from the air-pre heater to ESP chamber through several flow control devices placed in the ducts, splitter vanes, gas distribution screens involves complicated process, as modeling the gas distribution screens placed in the ESP inlet and exit location will an important issue.
Isometric view of four pass ten field ESP configuration
As suggested by Nielsen (2001) gas distribution screens are simulated by two different methods a) that of porous baffle computational cells, which are effectively zero thickness may be placed between any two fluid cells b) use of source term model which requires experimental input. Both the models implement the forces from the screens acting on the flow without modeling the geometrical details of the screens. Accurate modeling of the gas distribution screen geometries comprises several thousands of holes are time consuming process with even large and fast computers. To overcome this, the momentum equations with the lift and drag sources are introduced, wherein its coefficients depends on angle of attack and screen design. Using above approaches, flow through four fields single pass ESP as part of retrofit for the power producing unit was analyzed by Bhasker (2005) and estimated the pressure drop across this cleaning device. This work has renewed the interest to know the flow uniformity at inlet duct outlet of higher rating ESP, whose isometric view is shown in Fig: 14.
In order to study the flow distribution in the inlet duct portion of four pass two ESP configuration connected to two ID fans, IGES file from CAD model has been imported in CFD pre-processor. The geometry of inlet duct with flow control devices shown in Fig-15(a) is considered to develop the flow pattern inside the duct around flow control devices. Accordingly the computational domain was discretized into number of blocks past the turning vanes present in the duct. The computational domain is divided through number of blocks in such way that grid points are captured on turning vane surfaces. In the process at several places, triangular shape portion forms in the domain and computational mesh from upstream blocks disturbs element node connectivity. To over come this, triangular shape blocks present in the domain are further divided into Y type blocks to make uniform topological connections between grid blocks. After checking the edges discontinuity between grid blocks in the computational domain using solid mesh options available in grid generator, mesh has been filled firstly in smallest volume. In order to ensure topological connection between grid points in neighboring volumes, hex elements are filled in the smallest block while varying the node distribution in flow direction. The computational grid for the ESP inlet duct with turning vanes comprises 445071 nodes generated is shown in Fig-15(b). After generation of grids, duplicate elements are removed through check edge option, adjusting the default tolerance values. Software has several other quality checks especially Jacobeans and face checks. Any negative Jacobeans will indicate distortion of elements leads to negative volumes and such grid data cannot be accepted by flow solvers. Face check indicates computational grid inside the flow volume is free from duplicate/distorted elements. Using this face grid collector, several boundary conditions regions are created and exported to several flow solvers like, TASCflow, Fluent, CFX and Star-CD for benchmarking the simulation.
ESP Duct (a) Geometry (b) Computational Mesh
Velocity in the middle plane a) TASCflow b) Fluent flow solvers
The flow pattern in the middle plane of the duct using TASCflow and Fluent solvers is shown in Fig-16(a-b). It is observed that flow separation in the case of fluent solver is better than the same obtained using TASCflow solver. However, CFX and Star-CD solvers comprises robust multi-grid algorithms along with advanced post-processing features provides excellent visualizations and estimation of averaged flow quantities at duct outlet. The velocity pattern in form of streamlines are better predicted separation regions near corners using CFX and Star-CD. All the solvers have predicted that that flow at eight ducts outlet are not uniform and required to be improved by adding more flow control devices. This bench mark study with more details available in the paper by C.Bhsker (2011) also reveals that fluent-3D can be best choice for feel of results quickly. CFX and Fluent along with several pre/post processors all merged with Ansys are available under current version through workbench to study multi-disciplinary simulations including fluid-solid interactions even with electro fluid dynamic effects. The Cd-Adapco’s current version or star-ccm solver with similar features provides another alternative on polyhedral cells for flow visualization and quantification of results. The cross comparison presented in this work proves that the basic numerical techniques through multiple flow solvers are reliable and deliver the expected performance in terms of accuracy and convergence.
The cross sectional view of cyclone separator along with other components used in Circulating Fluidized Bed Combustion - CFBC plant for supply of electricity to paper manufacturing unit is shown in Fig-17. Flue gas produced out of the solids used in the combustor enters to refractory lined cyclone. The cyclone collects more than 99% of the incoming solids, which travel down the conical bottom to the sealpot blower and are eventually siphoned back into the combustor as detailed by Rajaram (1999).
The flue gas leaves the cyclone top flows on to a convective pass containing three stages of super-heater and economizer. A tubular air heater forms the last heat recovery surface and preheats the primary/secondary air streams separately with the air flowing inside the tubes and gas flowing outside them. The flue gas is then enters in an electrostatic precipitator and leaves towards stack through induced draft fans. Although the operation of the plant with varied load is successful, there were problems related to flue gases, which are coming from the cyclone outlet are settling on the super-heater tubes, concern the plant efficiency.
Location of Recycle cyclone in CFBC power plant
The flow in cyclone separator is highly turbulent due to swirl motion and several investigations are carried out by Slack (2000) and Fraser (1997) using advanced numerical techniques. The geometry of cyclone separator used in paper manufacturing industry considered for flow and particle trajectories are different from the conventional cyclone separator, as it is placed between boiler and tube banks of power plant. However, its basic geometry resembles with conventional one, the orientation of inlet and exit duct attached to it are different. The cyclone collector considered consists of an upper cylindrical part, with a tangential inlet and lower part with an exit at the apex. They are used to separate dispersed heavy substance from a fluid of lower density, the suspension to be separated being injected with high velocity tangentially into the cyclone. These results in high spin velocities within the cyclone, which produce a large centrifugal force field. The separated material leaves the cyclone at its apex, while clean fluid is discharged at the top through the overflow pipe.
The geometrical model of cyclone has been created from assembly drawing using CAD modeler I-DEAS and its output is exported to CFD pre-processor for extraction of flow passage. ICEM CFD pre-processer has flexible tools for mesh generation with several surface repair options. In order to proceed for mesh generation, initialized block is placed on the computational domain and the same has been divided through horizontal and vertical directions using splitting options, according to geometry shape and internals. The resulting block edges are aligned to geometrical edges using project/associate commands. With this referenced block, using its face selection, topologically connected blocks are constructed for rest of the geometrical part. To obtain the computational mesh in three dimensions, nodes to master linking to slave edges are to be specified. Software provides several distribution laws for clustering the nodes on boundary surfaces. The pre-view of the nodes on the master and slave edges with direction arrows provides the first insight for the proper mesh distribution on the geometrical part. The activation of volume mesh, under mesh generation option provides three dimensional meshes for the specified solver format. After completion of mesh generation in different parts, the assembled mesh has been imported in flow solver is shown in the Fig-18(a) with grid interfaces between parts so that no artificial walls present in the volume grid.
Cyclone Collector (a) Computational Mesh b) Velocity Contours
After description of fluid properties in flow solver, boundary conditions for the velocity and pressure are prescribed at inlet and exit locations. In order to capture the viscous effects, two equation turbulence model based on intensity and length scale with standard wall functions are employed. Since the flow inside the cyclone collector is highly rotational and the option of covariant velocity in normal direction has been used as an initial guess for flow simulation. From the simulation results it is observed that the velocity distribution from inlet of cyclone leaves through one side of the outlet duct indicating that flue gas comprises particles settles on super heater tube bank surfaces. Simulation of flow in the existing configuration of cyclone separator also indicates that particles are unable to reach with required velocity magnitude in the outlet duct region due to large flow recirculation.
Improved geometry (a) Velocity pattern b) Particle trajectories
To improve the velocity distribution, geometrical changes with two baffle plates in the outlet duct of the cyclone separator are provided in the CAD model. Multi-block hexahedral element mesh has been re-generated and imported in the flow solver. After obtaining successful flow simulation, discrete phase of particulate media has been added to working fluid to track the particle trajectories in the cyclone collector. The inputs like particle resident times, particle material and particle sizes according to distribution laws are defined for two-phase gas-solid particle flow simulation. The velocity contour plots over height of the modified cyclone separator is shown in the Fig-19 (a), wherein it is noticed that presence of partition plates reduces the flow recirculation in the outlet duct and thus decreases the settling of particles on super heater tubes. From the particle trajectories plot Fig-19(b), it is observed that the particle size 10 microns follows air flow along the wall of vortex tube finder to gas exit. Bigger size particle of 100 micron released from the inlet of cyclone separator moves along the outer conical wall. This is because the particles have low inertia and associated drag force decelerates the fluid motion. It also follows the recirculation gas flow back into the cyclone body, where it is captured into the vortex core and moves upward to the outlet gas. The larger particle of 1000 micron size captured in a particle rope and later follows the recirculating flow to the vortex finder and separated from the fluid stream towards cyclone bottom outlet. The detailed simulation of flow in cyclone collector with formulations are comprehensively discussed in the paper by C.Bhasker (2010).
In order to achieve higher net power outputs and thermal efficiencies, turbine inlet temperatures (TITs) have to be as high as possible in compliance with technological limits. As a consequence, hot gas path parts (HGPPs) are exposed to severe thermal conditions leading to high metal temperature, which are responsible for the deterioration of hot gas carrying parts. They include all components associated with the combustion process liners, fuel nozzles, transition pieces, buckets, shrouds, etc. In a gas turbine combustion chamber, the transition piece carries the hot gases from its outlet to turbine first stage, as shown in Figs 20(a-b) to the turbine.
a) Transition Duct (b) Location of Transition duct in Gas-Turbine
The gas turbine field engineering team has reported that unscheduled engine outages can occur as a result of premature part failure in the gas turbine flow path. As a consequence, initiatives were launched to address these fleet-wide combustion and turbine hardware field issues. The efforts were initiated at user request after a large number of 501F machines began exhibiting chronic transition duct failures across the fleet, causing forced outages, which significantly affect the revenue generation as reported in the publication by Jeff Benoit (2007). The duct in which cross sectional shape often follows a circle to rectangular transition with stream wise curvature and combined effects of viscosity/geometry produce a secondary flow in the form of stream wise vortices. These vortices significantly affect the overall performance of the system, for instance, the pressure drop and flow uniformity. Due to presence of steep curvature in stream wise direction, prediction of turbulent structure at near wall region is very critical.
In design context geometric constraints will often dictate the use of possible shortest possible duct for the given cross sectional shapes at inlet and outlet. In this case, the level of separation and severity of flow distortion at the duct exit due to transverse vertical motion are function of aspect/length ratio and cross sectional variation in the transition portion. The design of this duct contains an inlet was subjected to laboratory model for measurements by Davies (1991) later several flow simulations was carried out by Richard Cavicchi H (1999) and Sugiyama H (1999). Based on these investigations, Bhasker (2009) has undertaken comprehensive fluid solid interaction studies on transition duct, which has a sharp transition from circular to rectangular arcs over a short axial and radial distance. The circular to rectangular duct based on inlet dia, exit aspect ratio, length of the transition duct was constructed. At each stream wise location, the cross-sectional shape is defined by the elliptic equation –
The parameters a, b and n are functions of stream wise coordinate x. The cross-sectional shape of these transition ducts constructed in six sections becomes more rectangular as the value of the exponent n increases, but they never truly rectangular. In the Fig-21(a), section-1 is inlet diameter upstream of the start of transition (section-2), section-3 and 4 are in the mid-region of transition, section-5 is at the end of transition and section-6 is 2 times of inlet diameters downstream of the duct, with a flanged juncture between station 5 and 6. The ratio of major to minor axis lengths at the duct exit is referred as aspect ratio. For fixed x/D, using the polynomial coefficients for a, b and n, the profile for the duct are generated through a computer program and decomposed into several blocks for computational mesh generation shown in 21(b).
Transition Duct (a) Geometry b) Computational grid
The grid shown above comprises 127623 nodes along with face grid was created using commercial grid generator. It has been ensured that elements present between block to block at mating surfaces are one-one so that volume grid is free from any artificial walls. Simulations were carried out using commercial flow solver fluent and the flow pattern obtained in the horizontal planes are shown in the Fig-22(a). The velocity magnitude reduces along the stream wise direction towards the duct exit. This is more pronounced in the flow downstream close to exit location. This is because of the flow expansion due to the enlargement of the duct.
Moreover, the deceleration of the flow in the radial direction is more significant close to the outer casing. Consequently, fluid close to outer casing attains lower velocity with turbulent eddies. This is because of the axial momentum is considerably higher than that occurring in the radial direction. The flow in stream wise direction near wall planes at central portion is smooth. In view of secondary flow pattern prevailing in the duct, it is observed that the flow distribution at its exit location exhibits highly non-uniform. Fig-22(b) shows the pressure distribution on transition duct surface. In general, the wall static pressure is a function of cross sectional area, wall curvature and viscous forces in the flow. Concave curvature along the upper wall induces positive pressure gradient which influences maximum pressure near exit wall surfaces. Conversely convex curvature along the side walls induces negative pressure gradient resulting minimum pressure. Also the radius of curvature of walls at changes signs between stations 3 and 4, which causes maximum and minimum pressure along the side and upper walls respectively. It is also noticed from the figure that undulations exit in the distribution due to vortex flow in close proximity.
a) Velocity in duct planes (b) Pressure on wall surface
a) Displacement (b) Von-Mises Stresses
From the physical point of view fluid structure interactions are a two field problem; one is related to flow simulation, and another is related to structural stress determination. These fields are coupled via the so-called wet surface where the pressure and friction forces caused by the fluid are acting on the structure. Due to these loads the component structure is subjected to deformations and these changes can affect the equivalent stresses.
In order to understand the component deformations due to influence of pressure gradients of transition duct inner profile, static structural analysis has been carried out using the Ansys Mechanical Solver. Computational mesh for transition duct was created using solid element. After specifying material and elastic properties, displacement and pressure loads are transferred from CFD solvers to obtain the displacement and equivalent stresses on the transition duct. The magnitude of maximum displacement is observed in Fig-23(a) at station 4 of transition duct and high stresses are noticed at transition edges as shown in Fig 23(b) are not high enough to produce severe material damages.
Fans are extensively used to transport the air from one device to other in coal fired power station. Outages of these components due to operational problems are concern the efficiency of critical equipment. Two kinds of fans are normally employed i.e., centrifugal/axial fans; in the former one air accelerates radially outward in a rotor blades in the scroll casing. The fluid is accelerated to parallel to the fan axis in the case of axial fan. Fan performance is best expressed in the form of fan curves between static pressure, horsepower, and efficiency as a function of volumetric flow rate. Axial fans are employed in Induced Draft – ID fans which will have unique characteristics called stall. Stall is the aerodynamic phenomena, which occurs when it is operated beyond its performance limits and flow separation occurs around the blade. If this happens, the fan becomes unstable and no longer operates on its normal performance curve. Extended operation in the stall region should be avoided for excessive noise levels as reported by Subramnian (1984). The poorly designed inlet or a sharp turn just upstream can affect the performance of fan.
a) Axial Fan model b) Computational grid
Dozolme (2006) has reported rotating components like fans and blowers contribute to the tonal component, which is very unpleasant. The tonal noise is influenced by the rotational speed of the fan, the number of blades, fan size and mass flow rate through the fan. Tight tolerances between the blades and casing improve overall efficiency. This improved efficiency in turn reduces the overall sound levels; the asymmetrical blade locations reduce the blade passing frequency tones, while generating a smoother sound spectrum. The choice of different hub diameters, hub/tip ratios along with variations in blade span, ensures the economical performance. Focusing on noise analysis, Shao-Yi Hsia (2009) has suggested that there are several paths through which noise may be radiated from the fluid machine require to be controlled.
a) Velocity b) Sound power
a) Dipole b) Quadrupole noise source strength
The methodology used is applicable to low Mach number in unsteady flows, where the radiated noise is a small byproduct of the flow that is not altered by it. This assumption is central to Lighthill’s formulation of aerodynamic sound generation, which implies that sound characteristics are obtained in two stages. Turbulent flow fields are predicted at CFD stage followed by sound post-processing stage. One of the objectives of this study is to select turbulence modeling technique that is computationally affordable and yet capable in producing appropriate data for acoustic characteristics.
In order to predict flow and far field noise for the enclosed fan assembly with six blades shown in Fig 24(a) is rotating with 2000 rpm. In order to simulate the flow, a computational grid has been generated for the fan shown in fig 24(b) with boundary condition regions inlet, exit, hub, shroud, blade surfaces, and periodic surfaces in the pre-processor Hypermesh.
The flow simulation has been carried out with defined flow conditions and blade rotations to predict the efficiency of fan. The velocity pattern and sound power on blade surfaces obtained are shown in the Fig-25(a-b). Due to presence of turbulent flow field and blade rotations the dipole and quadruple noise strength variations on the blade surfaces are shown in Fig 26(a-b) using F-W wave equation as a function of flow pressure. From the frequency analysis, it is estimated that overall sound level pressure and sound power are 54.68 dB at 200 Hz respectively are measured at one meter distance from the component. The fan efficiency the ratio between the power transferred to the airflow (outlet – inlet) and the mechanical power consumed by the rotating blades for defined flow conditions are calculated is about 76%. Fan efficiency can be further improved using shape optimization of blades in conjunction with CFD.
Turbo machinery design is a complex task that involves many objectives and constraints coming from different disciplines. Many optimization algorithms have been reported to date with varying degree of success. One of the approaches used for optimization of puffer valve was extensively discussed by C.Srikanth (2009) through unsteady flow simulation with mesh morphing techniques. This technique involves good skills for scripting the moving boundaries in computational model and expensive to perform unsteady state simulations for complex components. In the recent developments more automated methods of shape optimization along with CFD solvers are providing robust tools are discussed by Sheldon Imaoka (2006) through design of experiments using Response Surface Method - RSM. RSM attempts to substitute for the optimizations using iterative flow simulations for variations in geometries by Design of Experiments - DOEs using response surfaces. RSM basically works with linear and non-linear coefficients uses Monte-Carlo simulations for global approximations. Global approximations are very beneficial in case of multi-objective problems; they are built and reformulated based on shapes and constraints. In order to increase marginal efficiency of axial fan, an investigation has been undertaken to simulate the flow inside the fan using mesh morphing, shape optimization and DOE on RSM is under progress based on approach discussed by Naixing Chen (2007). Once the user determines that the generated response surface provide a useful representation of the input-output relationship, goal driven optimization, six sigma analysis or robust design studies then can be performed instead of running time consuming flow simulations for every changed geometry.
The failures of power plant components used in terms of flow losses, erosive wear by particle impacts, cleaning devices performance due to non-uniform flows and effect of turbulence in rotating machinery for excessive noise generation are extensively discussed. The alternative approaches are explored to understand the flow behavior involving multiphysics are through CAE for virtual product development. State of art approaches are covered for modeling and grid generation in simple/complex situations with help of programming and commercially available software. Mathematical descriptions for body fitted coordinates, presence of Reynolds’s stress due to turbulent flow for development of pressure based algorithms to simulate incompressible fluid flows are briefly outlined. The formulations related to coupled fluid-solid stress and aerodynamic noise is also highlighted to predict structural stresses and far field noise. The case study related to grinding mill has been discussed and also suggested as how the flow recirculation pattern observed in air housing can be minimized by adding two inlet ducts. Complex multiblock grid generation to simulate the turbulent flow through inlet duct with turning vanes of ESP was detailed for flow uniformity using several CFD solvers in second case study. The simulation of fluid-particles present in the cleaning device is outlined in third case study to provide remedies for preventing the flow from one side of the outlet towards convective pass of CFBC power plant used in paper manufacturing unit. A case study of transition duct used in gas turbine is highlighted for flow pattern and its pressure loads on structural stresses/displacements. Pressure fluctuations in turbo machinery components generates excessive noise and the methodology to predict far field noise from an axial fan is described in final case study. RSM with DOE through mesh morphing techniques in conjunction with CFD are suggested as alternatives for optimization to obtain high efficient devices used in power and process equipment.
Structure and function are two vital aspects to determine and measure the stability of forests community [1]. Population structure, which reflects the distribution of individuals within a population, may provide insights into past and present regeneration [2, 3]. Life table and survival curve are the main methods when analyzing population structure. By using life table analysis, it was discovered that
Plantation has been applied in ecological restoration worldwide [7]. A key issue for plantation is that population regeneration is often challenged by seedling establishment in many plantation ecosystems, which is critical to the stability of plantation species as well as to the plantation sustainability [8]. For
The wind prevention and sand fixation forest ecosystem, which is a kind of relatively heterogeneous open system, and flow of the material, energy and information constantly happens among the subsystems, thereinto, the two major subsystems, vegetation and soil formed an interdependent and mutually restrictive relationship between them [11]. Exploring the relationship between vegetation and soil has significant meaning in understanding the process and effect of sand fixation vegetation, and further putting forward corresponding optimal management measures [12]. In the ecological process of settlement, growth and succession of artificial
The Gurbantunggut Desert in northwestern China, the third largest desert in the world, is sensitive to climate change and human activities [14]. The desert vegetation is dominated by the
This chapter, the change characteristics of the canopy storey and the regeneration storey structures of
In Mosuowan Reclamation Area, Corps 150, southern edge of the Gurbantunggut Desert,
Chronosequence Stage (yr) | Location (N, E) | Altitude (m) | Planting space (m) | Preserving rate (%) |
---|---|---|---|---|
7 | 45°05′4.4″, 85°59′26.9″ | 330 | 1.5 × 2 | 99.3 |
12 | 45°01′56.8″, 86°08′22.2″ | 332 | 2 × 3 | 98.2 |
15 | 44°39′35.4″, 86°20′12.4″ | 344 | 2 × 2 | 91.4 |
17 | 45°08′5.4″, 85°59′26.0″ | 319 | 1 × 5 | 100 |
20 | 45°02′48.8″, 86°08′48.7″ | 328 | 3 × 3 | 97.2 |
23 | 44°34′29.1″, 83°18′49.4″ | 310 | 2 × 2 | 81.9 |
28 | 45°07′48.8″, 85°58′35.0″ | 314 | 3 × 4 | 95.4 |
33 | 45°10′33.5″, 85°55′35.1″ | 309 | 1 × 5 | 93.4 |
42 | 44°01′56.8″, 86°08′22.3″ | 320 | 1 × 5 | 91.7 |
The sample plots information of
The original appearance (A), land preparation (B), the
In August, when soil water content of the study site was relatively stable and close to the average level in a year [21], vegetation survey was carried out in nine
Vegetation survey was carried out in six
As shown in Figures 2 and 3, in the growth process of
Dynamitic distribution of
Dynamitic distribution of
Following the method of the Blackman [26] and Forest resources planning survey [27], seedlings in regeneration storey were divided into three grades, namely grade I seedling was HT ≤30 cm, grade II seedling was 31 ≤ HT <50 cm, and grade III seedling was HT ≥50 cm. respectively. The survival numbers of each grade seedlings were recorded respectively according to the following criteria. The grade I seedling status was considered ‘Good’, ‘Medium’ and ‘Bad’, if their number was >5000, 3000 ∼ 4999 and < 2999. Grade II seedling status was considered ‘Good’, ‘Medium’ and ‘Bad’, if their number was >3000, 1000 ∼ 2999 and < 999. Grade III seedling status was considered ‘Good’, ‘Medium’ and ‘Bad’, if their number was ≥5000, 500 ∼ 4990 and < 500.
It can be seen from Table 2 and 7-yr-old plantation already had the weaker ability of regeneration. In the plantation age of 7, 12, 17, 28, and 33, grade I seedlings all accounted greater proportion. Especially in 28-yr-old plantation, 67.3% of the total regenerated individuals (36,383 No.hm−2) was grade I seedling, and grade III only accounted for 1.9%. Grade I seedlings were presented “bad” in 20-yr-old plantation. Grade II seedlings were “good” in the plantations with the age of 17 to 28. Grade III seedlings were “good” only in 17 and 33 yrs. old plantation. In contrast, there were not only abundant grade I seedlings but also larger proportion of grade III individuals (29.3%) in 17-yr-old plantation. For 33-yr-old plantation, although seedling density was only 9,433 No.hm−2, the ratio of grade III reached 40.3%. The growth quality of grade III seedling was better than others apparently in 12-yr-old and 17-yr-old plantations. Especially in the 17-yr-old one, the average height and basal stem diameter of grade III seedling even reached 1.2 m and 1.9 cm, respectively (Table 2).
Grade | Chronosequence stage (yr) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
7 | 12 | 17 | 20 | 28 | 33 | |||||||
Density | Rank | Density | Rank | Density | Rank | Density | Rank | Density | Rank | Density | Rank | |
I | 100 | B | 4300 | G | 8733 | G | 783 | M | 24483 | G | 4117 | G |
II | 683 | B | 1983 | M | 7200 | G | 3150 | G | 11200 | G | 1517 | M |
III | 33 | B | 583 | B | 6600 | G | 1000 | B | 700 | B | 3800 | M |
Quality and quantity of seedlings with three grades in
Grade I: HT < 30 cm, Grade II: 31 ≤ HT < 50 cm, Grade III: HT ≥ 50 cm. The unite of density is No.hm−2. ‘G, M and B’ in the table stand for ‘good, medium and bad’ respectively.
The quantity and growth quality of older seedlings is more important for the sustainable development of population [7]. As shown in Figure 4, the best growth status of grade III seedlings was in 17-yr-old plantation, average height and basal stem diameter reached 1.10 m and 1.91 cm respectively, and the maximum were 2.19 m and 3.89 cm, respectively. Height of grade III seedlings was more evenly in 28-yr-old plantation, which was mainly distributed between 0.51 ∼ 1.02 m. For 33-yr-old plantation, the density and growth of the grade III seedlings were similar with the 28 yrs. old one.
Height and Basal Stem Diameter of grade III seedling (HT ≥ 50 cm) in
Results of the relational degree (Rd) between natural regeneration and its influencing factors shown in Table 3. Among six vegetation factors, above-ground biomass of the
Rd | X1j | X2j | X3j | X4j | X5j | X6j | X7j | X8j | X9j | X10j | X11j | X12j | X13j |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X1i | 0.68 | 0.72 | 0.62 | 0.68 | 0.72 | 0.77 | 0.79 | 0.75 | 0.76 | 0.66 | 0.87 | 0.84 | 0.73 |
X2i | 0.70 | 0.71 | 0.62 | 0.64 | 0.65 | 0.68 | 0.73 | 0.65 | 0.63 | 0.78 | 0.77 | 0.72 | 0.64 |
X3i | 0.69 | 0.70 | 0.75 | 0.70 | 0.69 | 0.63 | 0.82 | 0.74 | 0.81 | 0.87 | 0.72 | 0.67 | 0.72 |
X4i | 0.74 | 0.67 | 0.71 | 0.78 | 0.71 | 0.66 | 0.76 | 0.65 | 0.76 | 0.94 | 0.71 | 0.70 | 0.77 |
The relational degree (Rd) between characteristic of seedling and its related influencing factors.
X1i: density of seedling (No·hm−2), X2i: density of grade III seedling (No·hm−2), X3i: height of grade III seedling (m), X4i: basal stem diameter of grade III seedling (cm), X1j: plantation age (yr), X2j: planting density (No·hm−2), X3j: density of canopy storey (%), X4j: height of regeneration storey (m), X5j: crown projected area of canopy storey (m2·tree−1), X6j: Above-ground biomass of canopy storey (kg·tree−1), X7j: SWC(%), X8j: pH, X9j: EC (ms·cm−1), X10j: SOM (g·kg−1), X11j: SHN (mg·kg−1), X12j: SEP (mg·kg−1), X13j: SAP (mg·kg−1).
Static Life Table was made according to relevant parameters calculated by actual measurment data of survival individual (ax) in canopy storey and regeneration storey, the mutual relationship of parameters were as follow: lx = ax/a0 × 1000, dx = lx-lx + 1, qx = dx/lx × 100%, Lx = (lx + lx + 1)/2, Tx=
Tree height class | 7 yr | 12 yr | 17 yr | 20 yr | 28 yr | 33 yr | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ax | qx | ex | ax | qx | ex | ax | qx | ex | ax | qx | ex | ax | qx | ex | ax | qx | ex | |
I (0–0.5 m) | 61 | −180.3 | 2 | 375 | 960 | 0.7 | 943 | 814.4 | 1 | 236 | 830.5 | 0.9 | 2142 | 981.3 | 0.5 | 338 | 468.5 | 1.3 |
II (0.5-1 m) | 72 | 777.8 | 0.8 | 15 | 133.3 | 5.6 | 175 | 57.1 | 2 | 40 | 625 | 1.9 | 40 | 975 | 1.2 | 180 | 758.1 | 1 |
III (1–1.5 m) | 16 | 937.5 | 0.6 | 13 | 230.8 | 5.4 | 165 | 739.4 | 1.1 | 15 | 666.7 | 3.2 | 1 | 1000 | 26.5 | 43 | 702.9 | 1.5 |
IV (1.5-2 m) | 1 | 0 | 1.5 | 10 | −800 | 5.9 | 43 | 534.9 | 1.6 | 5 | 1000 | 7.7 | 0 | 0 | 0 | 13 | −471.8 | 2.7 |
V (2–2.5 m) | 1 | 0 | 0.5 | 18 | 166.7 | 2.5 | 20 | 200 | 1.9 | 0 | 0 | 0 | 0 | 0 | 0 | 19 | 789.5 | 1 |
VI (2.5-3 m) | / | / | / | 15 | 200 | 1.9 | 16 | 562.5 | 1.3 | 1 | −2000 | 35.5 | 1 | −7000 | 25.5 | 4 | 250 | 2 |
VII (3–3.5 m) | / | / | / | 12 | 250 | 1.3 | 7 | 428.6 | 1.2 | 3 | −333.3 | 11.2 | 8 | −250 | 2.6 | 3 | 0 | 1.5 |
VIII (3.5-4 m) | / | / | / | 9 | 0 | 0.5 | 4 | 750 | 0.8 | 4 | −3000 | 7.5 | 10 | 400 | 1.2 | 3 | 0 | 0.3 |
IX (4–4.5 m) | / | / | / | / | / | 1 | 0 | 0.5 | 16 | 625 | 1.3 | 6 | 833.3 | 0.7 | / | / | / | |
X (4.5-5 m) | / | / | / | / | / | / | / | / | 6 | 500 | 1.5 | 1 | 0 | 0.5 | / | / | / | |
XI (5–5.5 m) | / | / | / | / | / | / | / | / | 3 | 0 | 1.5 | / | / | / | / | / | / | |
XII (5.5-6 m) | / | / | / | / | / | / | / | / | 3 | 0 | 0.5 | / | / | / | / | / | / |
Life table of six
Variation tendency of survival and death curves were similar in the same plantation, and discrepancy still existed among six
Standard survival and death curves of
The growth of
Chronosequence stage(yr) | Vegetation comprehensive index f(x) | Soil comprehensive index g(y) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X10 | Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 | |
7 | 0.60 | 0.89 | 0.12 | 0.05 | 43.3 | 0.28 | 49.41 | 0.53 | 1.25 | 0.17 | 2.14 | 0.93 | 0.84 | 2.97 | 1.80 | 58.93 | 8.38 | 0.09 |
12 | 2.81 | 5.69 | 4.37 | 3.82 | 63.71 | 0.26 | 52.56 | 0.58 | 1.59 | 0.09 | 1.26 | 6.15 | 3.06 | 4.02 | 2.04 | 173.5 | 9.31 | 1.62 |
15 | 2.84 | 6.08 | 5.93 | 4.88 | 65.66 | 0.25 | 40.04 | 0.94 | 1.22 | 0.11 | 1.5 | 5.49 | 0.91 | 6.72 | 1.86 | 64.4 | 8.03 | 0.16 |
17 | 2.64 | 7.22 | 3.05 | 5.57 | 61.61 | 0.36 | 43.86 | 0.61 | 1.43 | 0.087 | 2.69 | 5.14 | 4.08 | 15.9 | 3.68 | 163.6 | 7.93 | 0.76 |
20 | 4.29 | 10.67 | 11.09 | 16.17 | 64.3 | 0.23 | 36.60 | 0.82 | 1.79 | 0.11 | 2.75 | 1.52 | 2.74 | 10.79 | 3.99 | 254.8 | 8.86 | 0.89 |
23 | 2.15 | 5.59 | 3.50 | 3.57 | 61.67 | 0.27 | 27.55 | 1.06 | 1.34 | 0.09 | 1.27 | 3.05 | 1.22 | 6.88 | 1.83 | 84.3 | 9.67 | 0.6 |
28 | 3.68 | 9.59 | 9.24 | 11.00 | 62.12 | 0.23 | 36.60 | 0.82 | 1.79 | 0.11 | 2.74 | 4.33 | 2.91 | 31.52 | 6.85 | 275.5 | 8.49 | 2.09 |
33 | 2.37 | 5.48 | 3.04 | 3.59 | 60.73 | 0.23 | 36.60 | 0.82 | 1.79 | 0.11 | 2.74 | 3.36 | 3.94 | 7.46 | 3.14 | 152.6 | 7.88 | 0.33 |
42 | 2.55 | 8.70 | 6.41 | 8.52 | 68.75 | 0.50 | 33.23 | 1.06 | 1.83 | 0.18 | 1.92 | 1.48 | 1.46 | 45.32 | 2.74 | 124 | 8.84 | 1.24 |
The basal characteristic of vegetation and soil in
X1: Height (m), X2: Basal stem diameter (cm), X3: Crown projected area of canopy storey (m2·tree−1), X4: Above-ground biomass of canopy storey (kg·tree−1), X5: Tissue water content (%), X6: Proline mass fraction (ug·g−1), X7: Cell damage rate(%), X8: Chlorophyll mass fraction (mg·g−1), X9: Nitrogen mass fraction(%), X10: Phosphorus mass fraction(%), X11: Potassium mass fraction(%). Y1: SWC(%), Y2: SOM (g·kg−1), Y3: SHN (mg·kg−1), Y4: SEP (mg·kg−1), Y5: SAP (mg·kg−1), Y6: pH value, Y7: EC (ms·cm−1).
According to the coupling coordination degree (D), combined with the comprehensive evaluation function of vegetation f(x) and soil environment g(y) calculated based on the classification method of Peng [29], the vegetation-soil coupling coordination type and evaluation criteria of
Coupling coordination degree (D) | Type level | f(x)/g(y) | Coupling coordination type |
---|---|---|---|
0<D ≤ 0.1 | Extreme imbalance of recession | >1.2 | Highly disordered and declining class vegetation profit and loss type |
0.8 ∼ 1.2 | Highly disordered and declining class vegetation-soil co-loss type | ||
<0.8 | Highly disordered and declining class soil profit and loss type | ||
0.1<D ≤ 0.2 | Serious imbalance of recession | >1.2 | Seriously disordered and declining class vegetation profit and loss type |
0.8 ∼ 1.2 | Seriously disordered and declining class vegetation-soil co-loss type | ||
<0.8 | Seriously disordered and declining class soil profit and loss type | ||
0.2<D ≤ 0.3 | Moderate imbalance of recession | >1.2 | Moderately disordered and declining class vegetation profit and loss type |
0.8 ∼ 1.2 | Moderately disordered and declining class vegetation-soil co-loss type | ||
<0.8 | Seriously disordered and declining class soil profit and loss type | ||
0.3<D ≤ 0.4 | Mild imbalance of recession | >1.2 | Slightly disordered and declining class vegetation profit and loss type |
0.8 ∼ 1.2 | Slightly disordered and declining class vegetation-soil co-loss type | ||
<0.8 | Slightly disordered and declining class soil profit and loss type | ||
0.4<D ≤ 0.5 | Brink imbalance of recession | >1.2 | Nearly disordered and declining class vegetation profit and loss type |
0.8 ∼ 1.2 | Nearly disordered and declining class vegetation-soil co-loss type | ||
<0.8 | Nearly disordered and declining class soil profit and loss type |
Types of vegetation and soil coupling coordinated development.
According to the data of Table 7, vegetation-soil coupling degree (C) of plantation was arranged on the order of 33 > 23 > 42 > 20 > 17 > 28 > 12 > 15 > 7. When
Chronosequence stage (yr) | f(x) | g(y) | C | D | f(x)/g(y) | Coupling coordination type |
---|---|---|---|---|---|---|
7 | 0.083 | 0.043 | 0.575 | 0.190 | 1.958 | Seriously disordered and declining class vegetation profit and loss type |
12 | 0.098 | 0.146 | 0.817 | 0.316 | 0.668 | Slightly disordered and declining class soil profit and loss type |
15 | 0.104 | 0.064 | 0.749 | 0.251 | 1.620 | Moderately disordered and declining class vegetation profit and loss type |
17 | 0.108 | 0.141 | 0.917 | 0.338 | 0.768 | Slightly disordered and declining class soil profit and loss type |
20 | 0.146 | 0.113 | 0.919 | 0.345 | 1.297 | Slightly disordered and declining class vegetation profit and loss type |
23 | 0.091 | 0.080 | 0.978 | 0.289 | 1.143 | Moderately disordered and declining class vegetation-soil co-loss type |
28 | 0.134 | 0.187 | 0.871 | 0.374 | 0.717 | Slightly disordered and declining class soil profit and loss type |
33 | 0.106 | 0.109 | 0.999 | 0.328 | 0.973 | Slightly disordered and declining class vegetation - soil co-loss type |
42 | 0.137 | 0.118 | 0.972 | 0.351 | 1.164 | Slightly disordered and declining class vegetation - soil co-loss type |
The comprehensive evaluation on coupling coordination of vegetation and soil system of
On the whole, the C and D of nine plantations showed a fluctuating and increasing trend along with the age increasing.
Through principal component analysis, the overall information of the original 18 variables were replaced by the first 5 principal components, contribution rate was 90.91% (Table 8). Among them, the Eigen Value of the first principal component was 7.531, which accounted for 41.84% of the total variation and formed a correlation with above-ground biomass (0.900), crown projected area (0.874), basal stem diameter (0.831), and tree height (0.830) etc. Therefore this principal component could represent the growth characteristic index of vegetation. The Eigen Value of the second principal component was 3.486, which accounted for 19.37% of the total variables. The chlorophyll mass fraction (0.918) had a greater positive effect on it, and the cell damage rate (−0.858) had a strong negative correlation, so this principal component mainly could reflect the physiological characteristics of the vegetation. The SMC (0.947) had the greatest positive effect on the third principal component, so the principal component could mainly reflect the physical characteristics of soil. The variable related to the fourth principal component was sHN (0.808), so this principal component could represented the nutrient characteristics of soil. The variable which had the greatest negative effect on the fifth principal component was potassium mass fraction of vegetation (−0.805), so this principal component could represent the nutrient characteristics of vegetation. The extracted five principal components could represent the variables including the growth, physiological and nutrient characteristics of vegetation, physical and chemical characteristics of soil. So these five principal components could be used to replace the comprehensive evaluation score of the identification and evaluation index system of
Factor | Component | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Tissue water content (%) | 0.389 | 0.651 | 0.49 | 0.275 | −0.169 |
Proline mass fraction (ug·g−1) | −0.155 | 0.167 | −0.111 | 0.907 | −0.027 |
Cell damage rate (%) | −0.184 | −0.858 | 0.162 | −0.067 | −0.005 |
Chlorophyll mass fraction (mg·g−1) | 0.074 | 0.918 | −0.142 | 0.188 | −0.201 |
Nitrogen mass fraction (%) | 0.766 | 0.093 | 0.044 | 0.345 | 0.156 |
Phosphorus mass fraction (%) | −0.089 | −0.147 | −0.821 | 0.495 | 0.068 |
Potassium mass fraction (%) | 0.533 | −0.128 | −0.143 | −0.019 | −0.805 |
Height(m) | 0.830 | 0.356 | 0.319 | −0.152 | −0.022 |
Basal stem diameter (cm) | 0.831 | 0.457 | 0.198 | 0.155 | 0.017 |
Crown projected area (m2·tree−1) | 0.874 | 0.378 | −0.034 | −0.082 | −0.127 |
Above-ground biomass (kg·tree−1) | 0.900 | 0.325 | −0.094 | −0.03 | 0.02 |
SWC(%) | 0.071 | −0.238 | 0.947 | −0.02 | −0.076 |
SHN (mg·kg−1) | 0.469 | 0.247 | −0.14 | 0.808 | 0.036 |
SEP (mg·kg−1) | 0.83 | −0.64 | 0.084 | 0.056 | 0.331 |
SAP (mg·kg−1) | 0.949 | −0.123 | 0.231 | −0.068 | 0.129 |
SOM(g·kg−1) | 0.402 | −0.216 | 0.647 | 0.001 | 0.515 |
EC (ms·cm−1) | 0.742 | −0.203 | 0.325 | 0.352 | −0.348 |
pH value | 0.121 | 0.087 | −0.007 | −0.17 | −0.898 |
Eeigen value | 7.531 | 3.486 | 2.469 | 1.619 | 1.259 |
Relative variance contribution (%) | 41.840 | 19.369 | 13.715 | 8.996 | 6.994 |
Accumulated Variance Contribution Rate (%) | 41.840 | 61.208 | 74.923 | 83.918 | 90.912 |
The Eigen values and contribution rate of the principal constituent.
Through the comprehensive evaluation scores of
Chronosequence stage (yr) | F1 | F2 | F3 | F4 | F5 | Comprehensive Evaluation score | Ranking |
---|---|---|---|---|---|---|---|
7 | −1.869 | −0.133 | 1.422 | −0.135 | 1.209 | 0.210 | 9 |
12 | −0.160 | −1.092 | −1.365 | 1.401 | 0.935 | 0.723 | 5 |
15 | −0.563 | 0.430 | −0.724 | −0.883 | −0.701 | 0.601 | 6 |
17 | 0.051 | −1.046 | 0.324 | 0.679 | −1.415 | 0.471 | 7 |
20 | 1.239 | 0.009 | 0.181 | −1.465 | 0.923 | 0.815 | 3 |
23 | −0.549 | 0.924 | −1.561 | −0.541 | −0.009 | 0.739 | 4 |
28 | 1.440 | −0.474 | 0.449 | 0.148 | 0.662 | 0.897 | 2 |
33 | −0.085 | −0.627 | 0.589 | −0.602 | −1.345 | 0.425 | 8 |
42 | 0.496 | 2.010 | 0.683 | 1.398 | −0.261 | 0.918 | 1 |
Comprehensive evaluation of
The constructive species could regenerate successfully, which is the basic premise of sustainable development of artificial forest. The 7-yr-old
The
IntechOpen books and journals are available online by accessing all published content on a chapter/article level.
",metaTitle:"Access policy",metaDescription:"IntechOpen books are available online by accessing all published content on a chapter level",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"All IntechOpen published chapters and articles are available OPEN ACCESS and can be read without the requirement for registration of any kind, immediately upon publication, without any barrier.
\\n\\nThe HTML version, as well as the PDF version of publications dated before 2012 that are accessible through a reader, are available to readers with no restriction.
\\n\\nThe full content of chapters and articles can be read, copied and printed from the link location of the chapter/article and these actions are not limited or restricted in any way.
\\n\\nRegistration is requested only to download the PDF of the chapter/article. There are no subscription fees and there is no charge to user groups.
\\n\\nIntechOpen chapters and articles are distributed under CC BY 3.0 licences allowing users to “copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship...” and there is no non-commercial restriction.
\\n\\nAuthors may post published works to any repository or website with no delay, and Authors and Editors of IntechOpen books have direct access to the PDF of the full book.
\\n\\nAll published content can be crawled for indexing. Full text and metadata may be accessed with instructions publicly posted.
\\n\\nAll IntechOpen books and Journal articles are indexed in CLOCKSS and preservation of access to published content is clearly indicated.
\\n\\nPolicy last updated: 2022-04-14
\\n"}]'},components:[{type:"htmlEditorComponent",content:"All IntechOpen published chapters and articles are available OPEN ACCESS and can be read without the requirement for registration of any kind, immediately upon publication, without any barrier.
\n\nThe HTML version, as well as the PDF version of publications dated before 2012 that are accessible through a reader, are available to readers with no restriction.
\n\nThe full content of chapters and articles can be read, copied and printed from the link location of the chapter/article and these actions are not limited or restricted in any way.
\n\nRegistration is requested only to download the PDF of the chapter/article. There are no subscription fees and there is no charge to user groups.
\n\nIntechOpen chapters and articles are distributed under CC BY 3.0 licences allowing users to “copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship...” and there is no non-commercial restriction.
\n\nAuthors may post published works to any repository or website with no delay, and Authors and Editors of IntechOpen books have direct access to the PDF of the full book.
\n\nAll published content can be crawled for indexing. Full text and metadata may be accessed with instructions publicly posted.
\n\nAll IntechOpen books and Journal articles are indexed in CLOCKSS and preservation of access to published content is clearly indicated.
\n\nPolicy last updated: 2022-04-14
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11661},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135275},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11369",title:"RNA Viruses Infection",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11610",title:"New Insights in Herbicide Science",subtitle:null,isOpenForSubmission:!0,hash:"eb3830b8176caf3d1fd52c32313c5168",slug:null,bookSignature:"Ph.D. Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/11610.jpg",editedByType:null,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11709",title:"Type 1 Diabetes Mellitus",subtitle:null,isOpenForSubmission:!0,hash:"cc0e61f864a2a8a9595f4975ce301f70",slug:null,bookSignature:"Dr. Shilpa Mehta and Dr. Resmy Palliyil Gopi",coverURL:"https://cdn.intechopen.com/books/images_new/11709.jpg",editedByType:null,editors:[{id:"342545",title:"Dr.",name:"Shilpa",surname:"Mehta",slug:"shilpa-mehta",fullName:"Shilpa Mehta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11778",title:"Correctional Facilities and Correctional Treatment - International Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"a933550a6966a04e4677a4c0aea8f5b2",slug:null,bookSignature:"Prof. Rui Abrunhosa Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11778.jpg",editedByType:null,editors:[{id:"198691",title:"Prof.",name:"Rui",surname:"Abrunhosa Gonçalves",slug:"rui-abrunhosa-goncalves",fullName:"Rui Abrunhosa Gonçalves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11814",title:"Liposomes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"62d8542d18b8cddcf507f7948b2ae74b",slug:null,bookSignature:"Dr. Rajeev K. Tyagi",coverURL:"https://cdn.intechopen.com/books/images_new/11814.jpg",editedByType:null,editors:[{id:"269120",title:"Dr.",name:"Rajeev",surname:"Tyagi",slug:"rajeev-tyagi",fullName:"Rajeev Tyagi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11889",title:"Sexual Disorders and Dysfunctions",subtitle:null,isOpenForSubmission:!0,hash:"b988fda30a4e2364ee9d47e417bd0ba9",slug:null,bookSignature:"Dr. Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/11889.jpg",editedByType:null,editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11867",title:"Echocardiography",subtitle:null,isOpenForSubmission:!0,hash:"d9159ce31733bf78cc2a79b18c225994",slug:null,bookSignature:"Dr. Gabriel Cismaru",coverURL:"https://cdn.intechopen.com/books/images_new/11867.jpg",editedByType:null,editors:[{id:"191888",title:"Dr.",name:"Gabriel",surname:"Cismaru",slug:"gabriel-cismaru",fullName:"Gabriel Cismaru"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11698",title:"Pigmentation Disorders",subtitle:null,isOpenForSubmission:!0,hash:"2ac6c9f424eec37ed85232c2c97ef6f6",slug:null,bookSignature:"Associate Prof. Shahin Aghaei",coverURL:"https://cdn.intechopen.com/books/images_new/11698.jpg",editedByType:null,editors:[{id:"64024",title:"Associate Prof.",name:"Shahin",surname:"Aghaei",slug:"shahin-aghaei",fullName:"Shahin Aghaei"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11701",title:"Magnetic Resonance Spectroscopy",subtitle:null,isOpenForSubmission:!0,hash:"ba8e8f4710bed414568846f8162a4942",slug:null,bookSignature:"Prof. Ahmet Mesrur Halefoğlu",coverURL:"https://cdn.intechopen.com/books/images_new/11701.jpg",editedByType:null,editors:[{id:"51736",title:"Prof.",name:"Ahmet Mesrur",surname:"Halefoğlu",slug:"ahmet-mesrur-halefoglu",fullName:"Ahmet Mesrur Halefoğlu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:27},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:42},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:17},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:68},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:3},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:265},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4797},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"506",title:"Environmental Chemistry",slug:"chemistry-physical-chemistry-environmental-chemistry",parent:{id:"86",title:"Physical Chemistry",slug:"chemistry-physical-chemistry"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:42,numberOfWosCitations:191,numberOfCrossrefCitations:77,numberOfDimensionsCitations:221,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"506",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"2351",title:"Hydrocarbon",subtitle:null,isOpenForSubmission:!1,hash:"3c36253544ea6a0c636f352cd71eb746",slug:"hydrocarbon",bookSignature:"Vladimir Kutcherov and Anton Kolesnikov",coverURL:"https://cdn.intechopen.com/books/images_new/2351.jpg",editedByType:"Edited by",editors:[{id:"134096",title:"Prof.",name:"Vladimir",middleName:null,surname:"Kutcherov",slug:"vladimir-kutcherov",fullName:"Vladimir Kutcherov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1529",title:"Green Chemistry",subtitle:"Environmentally Benign Approaches",isOpenForSubmission:!1,hash:"399f5102c2934a2ea8484fe4fd6313dc",slug:"green-chemistry-environmentally-benign-approaches",bookSignature:"Mazaahir Kidwai and Neeraj Kumar Mishra",coverURL:"https://cdn.intechopen.com/books/images_new/1529.jpg",editedByType:"Edited by",editors:[{id:"105309",title:"Dr.",name:"Neeraj Kumar",middleName:null,surname:"Mishra",slug:"neeraj-kumar-mishra",fullName:"Neeraj Kumar Mishra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"41885",doi:"10.5772/48176",title:"Polycyclic Aromatic Hydrocarbons a Constituent of Petroleum: Presence and Influence in the Aquatic Environment",slug:"polycyclic-aromatic-hydrocarbons-a-constituent-of-petroleum-presence-and-influence-in-the-aquatic-en",totalDownloads:9582,totalCrossrefCites:26,totalDimensionsCites:107,abstract:null,book:{id:"2351",slug:"hydrocarbon",title:"Hydrocarbon",fullTitle:"Hydrocarbon"},signatures:"Daniela M. Pampanin and Magne O. Sydnes",authors:[{id:"139987",title:"Dr.",name:null,middleName:null,surname:"Sydnes",slug:"sydnes",fullName:"Sydnes"},{id:"143899",title:"Dr.",name:"Daniela",middleName:null,surname:"Pampanin",slug:"daniela-pampanin",fullName:"Daniela Pampanin"}]},{id:"41886",doi:"10.5772/50108",title:"Petroleum Hydrocarbon Biodegradability in Soil – Implications for Bioremediation",slug:"petroleum-hydrocarbon-biodegradability-in-soil-implications-for-bioremediation",totalDownloads:10697,totalCrossrefCites:11,totalDimensionsCites:29,abstract:null,book:{id:"2351",slug:"hydrocarbon",title:"Hydrocarbon",fullTitle:"Hydrocarbon"},signatures:"Snežana Maletić, Božo Dalmacija and Srđan Rončevic",authors:[{id:"139471",title:"Dr.",name:"Snežana",middleName:null,surname:"Maletić",slug:"snezana-maletic",fullName:"Snežana Maletić"},{id:"143525",title:"Prof.",name:"Božo",middleName:null,surname:"Dalmacija",slug:"bozo-dalmacija",fullName:"Božo Dalmacija"},{id:"143527",title:"Dr.",name:"Srđan",middleName:null,surname:"Rončević",slug:"srdjan-roncevic",fullName:"Srđan Rončević"}]},{id:"41890",doi:"10.5772/51591",title:"Remediation of Contaminated Sites",slug:"remediation-of-contaminated-sites",totalDownloads:7559,totalCrossrefCites:6,totalDimensionsCites:19,abstract:null,book:{id:"2351",slug:"hydrocarbon",title:"Hydrocarbon",fullTitle:"Hydrocarbon"},signatures:"Arezoo Dadrasnia, N. Shahsavari and C. U. Emenike",authors:[{id:"139848",title:"Dr.",name:"Arezoo",middleName:null,surname:"Dadrasnia",slug:"arezoo-dadrasnia",fullName:"Arezoo Dadrasnia"}]},{id:"33323",doi:"10.5772/35171",title:"Recent Advances in the Ultrasound-Assisted Synthesis of Azoles",slug:"recent-advances-in-the-ultrasound-assisted-synthesis-of-azoles",totalDownloads:6316,totalCrossrefCites:14,totalDimensionsCites:19,abstract:null,book:{id:"1529",slug:"green-chemistry-environmentally-benign-approaches",title:"Green Chemistry",fullTitle:"Green Chemistry - Environmentally Benign Approaches"},signatures:"Lucas Pizzuti, Márcia S.F. Franco, Alex F.C. Flores, Frank H. Quina and Claudio M.P. Pereira",authors:[{id:"103282",title:"Prof.",name:"Lucas",middleName:null,surname:"Pizzuti",slug:"lucas-pizzuti",fullName:"Lucas Pizzuti"},{id:"108625",title:"Prof.",name:"Claudio M. P.",middleName:null,surname:"Pereira",slug:"claudio-m.-p.-pereira",fullName:"Claudio M. P. Pereira"},{id:"108823",title:"Ms.",name:"Márcia S. F.",middleName:null,surname:"Franco",slug:"marcia-s.-f.-franco",fullName:"Márcia S. F. Franco"},{id:"108858",title:"Prof.",name:"Alex F. C.",middleName:null,surname:"Flores",slug:"alex-f.-c.-flores",fullName:"Alex F. C. Flores"},{id:"108860",title:"Prof.",name:"Frank H.",middleName:null,surname:"Quina",slug:"frank-h.-quina",fullName:"Frank H. Quina"}]},{id:"41888",doi:"10.5772/50480",title:"Characterizing Microbial Activity and Diversity of Hydrocarbon-Contaminated Sites",slug:"characterizing-microbial-activity-and-diversity-of-hydrocarbon-contaminated-sites",totalDownloads:3318,totalCrossrefCites:7,totalDimensionsCites:9,abstract:null,book:{id:"2351",slug:"hydrocarbon",title:"Hydrocarbon",fullTitle:"Hydrocarbon"},signatures:"Aizhong Ding, Yujiao Sun, Junfeng Dou, Lirong Cheng, Lin Jiang, Dan Zhang and Xiaohui Zhao",authors:[{id:"141653",title:"Prof.",name:"Aizhong",middleName:null,surname:"Ding",slug:"aizhong-ding",fullName:"Aizhong Ding"}]}],mostDownloadedChaptersLast30Days:[{id:"41887",title:"Microbial Techniques for Hydrocarbon Exploration",slug:"microbial-techniques-for-hydrocarbon-exploration",totalDownloads:6618,totalCrossrefCites:3,totalDimensionsCites:6,abstract:null,book:{id:"2351",slug:"hydrocarbon",title:"Hydrocarbon",fullTitle:"Hydrocarbon"},signatures:"M.A. Rasheed, D.J. Patil and A.M. Dayal",authors:[{id:"143475",title:"Dr",name:"Mohammed Abdul",middleName:null,surname:"Rasheed",slug:"mohammed-abdul-rasheed",fullName:"Mohammed Abdul Rasheed"},{id:"144630",title:"Dr.",name:"Dayal",middleName:null,surname:"Anurodh",slug:"dayal-anurodh",fullName:"Dayal Anurodh"}]},{id:"41889",title:"Abiogenic Deep Origin of Hydrocarbons and Oil and Gas Deposits Formation",slug:"abiogenic-deep-origin-of-hydrocarbons-and-oil-and-gas-deposits-formation",totalDownloads:8045,totalCrossrefCites:3,totalDimensionsCites:7,abstract:null,book:{id:"2351",slug:"hydrocarbon",title:"Hydrocarbon",fullTitle:"Hydrocarbon"},signatures:"Vladimir G. Kutcherov",authors:[{id:"134096",title:"Prof.",name:"Vladimir",middleName:null,surname:"Kutcherov",slug:"vladimir-kutcherov",fullName:"Vladimir Kutcherov"}]},{id:"41885",title:"Polycyclic Aromatic Hydrocarbons a Constituent of Petroleum: Presence and Influence in the Aquatic Environment",slug:"polycyclic-aromatic-hydrocarbons-a-constituent-of-petroleum-presence-and-influence-in-the-aquatic-en",totalDownloads:9581,totalCrossrefCites:26,totalDimensionsCites:107,abstract:null,book:{id:"2351",slug:"hydrocarbon",title:"Hydrocarbon",fullTitle:"Hydrocarbon"},signatures:"Daniela M. Pampanin and Magne O. Sydnes",authors:[{id:"139987",title:"Dr.",name:null,middleName:null,surname:"Sydnes",slug:"sydnes",fullName:"Sydnes"},{id:"143899",title:"Dr.",name:"Daniela",middleName:null,surname:"Pampanin",slug:"daniela-pampanin",fullName:"Daniela Pampanin"}]},{id:"41890",title:"Remediation of Contaminated Sites",slug:"remediation-of-contaminated-sites",totalDownloads:7559,totalCrossrefCites:6,totalDimensionsCites:19,abstract:null,book:{id:"2351",slug:"hydrocarbon",title:"Hydrocarbon",fullTitle:"Hydrocarbon"},signatures:"Arezoo Dadrasnia, N. Shahsavari and C. U. Emenike",authors:[{id:"139848",title:"Dr.",name:"Arezoo",middleName:null,surname:"Dadrasnia",slug:"arezoo-dadrasnia",fullName:"Arezoo Dadrasnia"}]},{id:"33325",title:"New Green Oil-Field Agents",slug:"new-green-oil-field-agents",totalDownloads:4312,totalCrossrefCites:0,totalDimensionsCites:1,abstract:null,book:{id:"1529",slug:"green-chemistry-environmentally-benign-approaches",title:"Green Chemistry",fullTitle:"Green Chemistry - Environmentally Benign Approaches"},signatures:"Arkadiy Zhukov and Salavat Zaripov",authors:[{id:"97889",title:"Mr.",name:"Arkadiy",middleName:null,surname:"Zhukov",slug:"arkadiy-zhukov",fullName:"Arkadiy Zhukov"}]}],onlineFirstChaptersFilter:{topicId:"506",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:140,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:123,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"3",title:"Dentistry",doi:"10.5772/intechopen.71199",issn:"2631-6218",scope:"\r\n\tThis book series will offer a comprehensive overview of recent research trends as well as clinical applications within different specialties of dentistry. Topics will include overviews of the health of the oral cavity, from prevention and care to different treatments for the rehabilitation of problems that may affect the organs and/or tissues present. The different areas of dentistry will be explored, with the aim of disseminating knowledge and providing readers with new tools for the comprehensive treatment of their patients with greater safety and with current techniques. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This series of books will focus on various aspects of the properties and results obtained by the various treatments available, whether preventive or curative.
",coverUrl:"https://cdn.intechopen.com/series/covers/3.jpg",latestPublicationDate:"August 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"419588",title:"Ph.D.",name:"Sergio",middleName:"Alexandre",surname:"Gehrke",slug:"sergio-gehrke",fullName:"Sergio Gehrke",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038WgMKQA0/Profile_Picture_2022-06-02T11:44:20.jpg",biography:"Dr. Sergio Alexandre Gehrke is a doctorate holder in two fields. The first is a Ph.D. in Cellular and Molecular Biology from the Pontificia Catholic University, Porto Alegre, Brazil, in 2010 and the other is an International Ph.D. in Bioengineering from the Universidad Miguel Hernandez, Elche/Alicante, Spain, obtained in 2020. In 2018, he completed a postdoctoral fellowship in Materials Engineering in the NUCLEMAT of the Pontificia Catholic University, Porto Alegre, Brazil. He is currently the Director of the Postgraduate Program in Implantology of the Bioface/UCAM/PgO (Montevideo, Uruguay), Director of the Cathedra of Biotechnology of the Catholic University of Murcia (Murcia, Spain), an Extraordinary Full Professor of the Catholic University of Murcia (Murcia, Spain) as well as the Director of the private center of research Biotecnos – Technology and Science (Montevideo, Uruguay). Applied biomaterials, cellular and molecular biology, and dental implants are among his research interests. He has published several original papers in renowned journals. In addition, he is also a Collaborating Professor in several Postgraduate programs at different universities all over the world.",institutionString:null,institution:{name:"Universidad Católica San Antonio de Murcia",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"3",title:"Bacterial Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/3.jpg",isOpenForSubmission:!0,editor:{id:"205604",title:"Dr.",name:"Tomas",middleName:null,surname:"Jarzembowski",slug:"tomas-jarzembowski",fullName:"Tomas Jarzembowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKriQAG/Profile_Picture_2022-06-16T11:01:31.jpg",biography:"Tomasz Jarzembowski was born in 1968 in Gdansk, Poland. He obtained his Ph.D. degree in 2000 from the Medical University of Gdańsk (UG). After specialization in clinical microbiology in 2003, he started studying biofilm formation and antibiotic resistance at the single-cell level. In 2015, he obtained his D.Sc. degree. His later study in cooperation with experts in nephrology and immunology resulted in the designation of the new diagnostic method of UTI, patented in 2017. He is currently working at the Department of Microbiology, Medical University of Gdańsk (GUMed), Poland. Since many years, he is a member of steering committee of Gdańsk branch of Polish Society of Microbiologists, a member of ESCMID. He is also a reviewer and a member of editorial boards of a number of international journals.",institutionString:"Medical University of Gdańsk, Poland",institution:null},editorTwo:{id:"484980",title:"Dr.",name:"Katarzyna",middleName:null,surname:"Garbacz",slug:"katarzyna-garbacz",fullName:"Katarzyna Garbacz",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003St8TAQAZ/Profile_Picture_2022-07-07T09:45:16.jpg",biography:"Katarzyna Maria Garbacz, MD, is an Associate Professor at the Medical University of Gdańsk, Poland and she is head of the Department of Oral Microbiology of the Medical University of Gdańsk. She has published more than 50 scientific publications in peer-reviewed journals. She has been a project leader funded by the National Science Centre of Poland. Prof. Garbacz is a microbiologist working on applied and fundamental questions in microbial epidemiology and pathogenesis. Her research interest is in antibiotic resistance, host-pathogen interaction, and therapeutics development for staphylococcal pathogens, mainly Staphylococcus aureus, which causes hospital-acquired infections. Currently, her research is mostly focused on the study of oral pathogens, particularly Staphylococcus spp.",institutionString:"Medical University of Gdańsk, Poland",institution:null},editorThree:null},{id:"4",title:"Fungal Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",isOpenForSubmission:!0,editor:{id:"174134",title:"Dr.",name:"Yuping",middleName:null,surname:"Ran",slug:"yuping-ran",fullName:"Yuping Ran",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9d6QAC/Profile_Picture_1630330675373",biography:"Dr. Yuping Ran, Professor, Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China. Completed the Course Medical Mycology, the Centraalbureau voor Schimmelcultures (CBS), Fungal Biodiversity Centre, Netherlands (2006). International Union of Microbiological Societies (IUMS) Fellow, and International Emerging Infectious Diseases (IEID) Fellow, Centers for Diseases Control and Prevention (CDC), Atlanta, USA. Diploma of Dermatological Scientist, Japanese Society for Investigative Dermatology. Ph.D. of Juntendo University, Japan. Bachelor’s and Master’s degree, Medicine, West China University of Medical Sciences. Chair of Sichuan Medical Association Dermatology Committee. General Secretary of The 19th Annual Meeting of Chinese Society of Dermatology and the Asia Pacific Society for Medical Mycology (2013). In charge of the Annual Medical Mycology Course over 20-years authorized by National Continue Medical Education Committee of China. Member of the board of directors of the Asia-Pacific Society for Medical Mycology (APSMM). Associate editor of Mycopathologia. Vice-chief of the editorial board of Chinses Journal of Mycology, China. Board Member and Chair of Mycology Group of Chinese Society of Dermatology.",institutionString:null,institution:{name:"Sichuan University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null},{id:"5",title:"Parasitic Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",isOpenForSubmission:!0,editor:{id:"67907",title:"Dr.",name:"Amidou",middleName:null,surname:"Samie",slug:"amidou-samie",fullName:"Amidou Samie",profilePictureURL:"https://mts.intechopen.com/storage/users/67907/images/system/67907.jpg",biography:"Dr. Amidou Samie is an Associate Professor of Microbiology at the University of Venda, in South Africa, where he graduated for his PhD in May 2008. He joined the Department of Microbiology the same year and has been giving lectures on topics covering parasitology, immunology, molecular biology and industrial microbiology. He is currently a rated researcher by the National Research Foundation of South Africa at category C2. He has published widely in the field of infectious diseases and has overseen several MSc’s and PhDs. His research activities mostly cover topics on infectious diseases from epidemiology to control. His particular interest lies in the study of intestinal protozoan parasites and opportunistic infections among HIV patients as well as the potential impact of childhood diarrhoea on growth and child development. He also conducts research on water-borne diseases and water quality and is involved in the evaluation of point-of-use water treatment technologies using silver and copper nanoparticles in collaboration with the University of Virginia, USA. He also studies the use of medicinal plants for the control of infectious diseases as well as antimicrobial drug resistance.",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},{id:"6",title:"Viral Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",isOpenForSubmission:!0,editor:{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:20,paginationItems:[{id:"83065",title:"Interventions and Practical Approaches to Reduce the Burden of Malaria on School-Aged Children",doi:"10.5772/intechopen.106469",signatures:"Andrew Macnab",slug:"interventions-and-practical-approaches-to-reduce-the-burden-of-malaria-on-school-aged-children",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Andrew",surname:"Macnab"}],book:{title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82804",title:"Psychiatric Problems in HIV Care",doi:"10.5772/intechopen.106077",signatures:"Seggane Musisi and Noeline Nakasujja",slug:"psychiatric-problems-in-hiv-care",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82827",title:"Epidemiology and Control of Schistosomiasis",doi:"10.5772/intechopen.105170",signatures:"Célestin Kyambikwa Bisangamo",slug:"epidemiology-and-control-of-schistosomiasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82817",title:"Perspective Chapter: Microfluidic Technologies for On-Site Detection and Quantification of Infectious Diseases - The Experience with SARS-CoV-2/COVID-19",doi:"10.5772/intechopen.105950",signatures:"Andres Escobar and Chang-qing Xu",slug:"perspective-chapter-microfluidic-technologies-for-on-site-detection-and-quantification-of-infectious",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}}]},overviewPagePublishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}]},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",biography:"Dr. Kasenga is a graduate of Tumaini University, Kilimanjaro Christian Medical College, Moshi, Tanzania and Umeå University, Sweden. He obtained a Master’s degree in Public Health and PhD in Public Health and Epidemiology. He has a background in Clinical Medicine and has taken courses at higher diploma levels in public health from University of Transkei, Republic of South Africa, and African Medical and Research Foundation (AMREF) in Nairobi, Kenya. Dr. Kasenga worked in different places in and outside Malawi, and has held various positions, such as Licensed Medical Officer, HIV/AIDS Programme Officer, HIV/AIDS resource person in the International Department of Diakonhjemet College, Oslo, Norway. He also managed an Integrated HIV/AIDS Prevention programme for over 5 years. He is currently working as a Director for the Health Ministries Department of Malawi Union of the Seventh Day Adventist Church. Dr. Kasenga has published over 5 articles on HIV/AIDS issues focusing on Prevention of Mother to Child Transmission of HIV (PMTCT), including a book chapter on HIV testing counseling (currently in press). Dr. Kasenga is married to Grace and blessed with three children, a son and two daughters: Happy, Lettice and Sungani.",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12215",title:"Cell Death and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",hash:"dfd456a29478fccf4ebd3294137eb1e3",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 29th 2022",isOpenForSubmission:!0,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:42,paginationItems:[{id:"82914",title:"Glance on the Critical Role of IL-23 Receptor Gene Variations in Inflammation-Induced Carcinogenesis",doi:"10.5772/intechopen.105049",signatures:"Mohammed El-Gedamy",slug:"glance-on-the-critical-role-of-il-23-receptor-gene-variations-in-inflammation-induced-carcinogenesis",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"82875",title:"Lipidomics as a Tool in the Diagnosis and Clinical Therapy",doi:"10.5772/intechopen.105857",signatures:"María Elizbeth Alvarez Sánchez, Erick Nolasco Ontiveros, Rodrigo Arreola, Adriana Montserrat Espinosa González, Ana María García Bores, Roberto Eduardo López Urrutia, Ignacio Peñalosa Castro, María del Socorro Sánchez Correa and Edgar Antonio Estrella Parra",slug:"lipidomics-as-a-tool-in-the-diagnosis-and-clinical-therapy",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82440",title:"Lipid Metabolism and Associated Molecular Signaling Events in Autoimmune Disease",doi:"10.5772/intechopen.105746",signatures:"Mohan Vanditha, Sonu Das and Mathew John",slug:"lipid-metabolism-and-associated-molecular-signaling-events-in-autoimmune-disease",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82483",title:"Oxidative Stress in Cardiovascular Diseases",doi:"10.5772/intechopen.105891",signatures:"Laura Mourino-Alvarez, Tamara Sastre-Oliva, Nerea Corbacho-Alonso and Maria G. Barderas",slug:"oxidative-stress-in-cardiovascular-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"82751",title:"Mitochondria-Endoplasmic Reticulum Interaction in Central Neurons",doi:"10.5772/intechopen.105738",signatures:"Liliya Kushnireva and Eduard Korkotian",slug:"mitochondria-endoplasmic-reticulum-interaction-in-central-neurons",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82709",title:"Fatty Acid Metabolism as a Tumor Marker",doi:"10.5772/intechopen.106072",signatures:"Gatot Nyarumenteng Adhipurnawan Winarno",slug:"fatty-acid-metabolism-as-a-tumor-marker",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82716",title:"Advanced glycation end product induced endothelial dysfunction through ER stress: Unravelling the role of Paraoxonase 2",doi:"10.5772/intechopen.106018",signatures:"Ramya Ravi and Bharathidevi Subramaniam Rajesh",slug:"advanced-glycation-end-product-induced-endothelial-dysfunction-through-er-stress-unravelling-the-rol",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82388",title:"Epigenetics: Science of Changes without Change in DNA Sequences",doi:"10.5772/intechopen.105039",signatures:"Jayisha Dhargawe, Rita Lakkakul and Pradip Hirapure",slug:"epigenetics-science-of-changes-without-change-in-dna-sequences",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"82583",title:"Leukaemia: The Purinergic System and Small Extracellular Vesicles",doi:"10.5772/intechopen.104326",signatures:"Arinzechukwu Ude and Kelechi Okeke",slug:"leukaemia-the-purinergic-system-and-small-extracellular-vesicles",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82531",title:"Abnormal Iron Metabolism and Its Effect on Dentistry",doi:"10.5772/intechopen.104502",signatures:"Chinmayee Dahihandekar and Sweta Kale Pisulkar",slug:"abnormal-iron-metabolism-and-its-effect-on-dentistry",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - A Double-Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Chemical Biology",value:15,count:2,group:"subseries"},{caption:"Proteomics",value:18,count:2,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:17,group:"subseries"},{caption:"Metabolism",value:17,count:18,group:"subseries"}],publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",publishedDate:"July 27th 2022",editedByType:"Edited by",bookSignature:"Dragana Gabrić and Marko Vuletić",hash:"4af8830e463f89c57515c2da2b9777b0",volumeInSeries:11,fullTitle:"Current Concepts in Dental Implantology - From Science to Clinical Research",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić",profilePictureURL:"https://mts.intechopen.com/storage/users/26946/images/system/26946.png",institutionString:"University of Zagreb",institution:{name:"University of Zagreb",institutionURL:null,country:{name:"Croatia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9493",title:"Periodontology",subtitle:"Fundamentals and Clinical Features",coverURL:"https://cdn.intechopen.com/books/images_new/9493.jpg",slug:"periodontology-fundamentals-and-clinical-features",publishedDate:"February 16th 2022",editedByType:"Edited by",bookSignature:"Petra Surlin",hash:"dfe986c764d6c82ae820c2df5843a866",volumeInSeries:8,fullTitle:"Periodontology - Fundamentals and Clinical Features",editors:[{id:"171921",title:"Prof.",name:"Petra",middleName:null,surname:"Surlin",slug:"petra-surlin",fullName:"Petra Surlin",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:"University of Medicine and Pharmacy of Craiova",institution:{name:"University of Medicine and Pharmacy of Craiova",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9588",title:"Clinical Concepts and Practical Management Techniques in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9588.jpg",slug:"clinical-concepts-and-practical-management-techniques-in-dentistry",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Aneesa Moolla",hash:"42deab8d3bcf3edf64d1d9028d42efd1",volumeInSeries:7,fullTitle:"Clinical Concepts and Practical Management Techniques in Dentistry",editors:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",institutionURL:null,country:{name:"South Africa"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8202",title:"Periodontal Disease",subtitle:"Diagnostic and Adjunctive Non-surgical Considerations",coverURL:"https://cdn.intechopen.com/books/images_new/8202.jpg",slug:"periodontal-disease-diagnostic-and-adjunctive-non-surgical-considerations",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Nermin Mohammed Ahmed Yussif",hash:"0aee9799da7db2c732be44dd8fed16d8",volumeInSeries:6,fullTitle:"Periodontal Disease - Diagnostic and Adjunctive Non-surgical Considerations",editors:[{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",institutionString:"MSA University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8837",title:"Human Teeth",subtitle:"Key Skills and Clinical Illustrations",coverURL:"https://cdn.intechopen.com/books/images_new/8837.jpg",slug:"human-teeth-key-skills-and-clinical-illustrations",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Zühre Akarslan and Farid Bourzgui",hash:"ac055c5801032970123e0a196c2e1d32",volumeInSeries:5,fullTitle:"Human Teeth - Key Skills and Clinical Illustrations",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui",profilePictureURL:"https://mts.intechopen.com/storage/users/52177/images/system/52177.png",biography:"Prof. Farid Bourzgui obtained his DMD and his DNSO option in Orthodontics at the School of Dental Medicine, Casablanca Hassan II University, Morocco, in 1995 and 2000, respectively. Currently, he is a professor of Orthodontics. He holds a Certificate of Advanced Study type A in Technology of Biomaterials used in Dentistry (1995); Certificate of Advanced Study type B in Dento-Facial Orthopaedics (1997) from the Faculty of Dental Surgery, University Denis Diderot-Paris VII, France; Diploma of Advanced Study (DESA) in Biocompatibility of Biomaterials from the Faculty of Medicine and Pharmacy of Casablanca (2002); Certificate of Clinical Occlusodontics from the Faculty of Dentistry of Casablanca (2004); University Diploma of Biostatistics and Perceptual Health Measurement from the Faculty of Medicine and Pharmacy of Casablanca (2011); and a University Diploma of Pedagogy of Odontological Sciences from the Faculty of Dentistry of Casablanca (2013). He is the author of several scientific articles, book chapters, and books.",institutionString:"University of Hassan II Casablanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Hassan II Casablanca",institutionURL:null,country:{name:"Morocco"}}},equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7060",title:"Gingival Disease",subtitle:"A Professional Approach for Treatment and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/7060.jpg",slug:"gingival-disease-a-professional-approach-for-treatment-and-prevention",publishedDate:"October 23rd 2019",editedByType:"Edited by",bookSignature:"Alaa Eddin Omar Al Ostwani",hash:"b81d39988cba3a3cf746c1616912cf41",volumeInSeries:4,fullTitle:"Gingival Disease - A Professional Approach for Treatment and Prevention",editors:[{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7572",title:"Trauma in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7572.jpg",slug:"trauma-in-dentistry",publishedDate:"July 3rd 2019",editedByType:"Edited by",bookSignature:"Serdar Gözler",hash:"7cb94732cfb315f8d1e70ebf500eb8a9",volumeInSeries:3,fullTitle:"Trauma in Dentistry",editors:[{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7139",title:"Current Approaches in Orthodontics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7139.jpg",slug:"current-approaches-in-orthodontics",publishedDate:"April 10th 2019",editedByType:"Edited by",bookSignature:"Belma Işık Aslan and Fatma Deniz Uzuner",hash:"2c77384eeb748cf05a898d65b9dcb48a",volumeInSeries:2,fullTitle:"Current Approaches in Orthodontics",editors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6668",title:"Dental Caries",subtitle:"Diagnosis, Prevention and Management",coverURL:"https://cdn.intechopen.com/books/images_new/6668.jpg",slug:"dental-caries-diagnosis-prevention-and-management",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Zühre Akarslan",hash:"b0f7667770a391f772726c3013c1b9ba",volumeInSeries:1,fullTitle:"Dental Caries - Diagnosis, Prevention and Management",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Prosthodontics and Implant Dentistry",value:2,count:3},{group:"subseries",caption:"Oral Health",value:1,count:6}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2020",value:2020,count:2},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:35,paginationItems:[{id:"248645",title:"Dr.",name:"Sérgio",middleName:null,surname:"Lousada",slug:"sergio-lousada",fullName:"Sérgio Lousada",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248645/images/system/248645.jpg",biography:"Sérgio António Neves Lousada has an international Ph.D. in Civil Engineering (Hydraulics). He teaches Hydraulics, Environment, and Water Resources and Construction at the University of Madeira, Portugal. He has published articles and books and participated in events mainly in the areas of hydraulics, urban planning, and land management. Furthermore, he collaborates with the Environmental Resources Analysis Research Group (ARAM), University of Extremadura (UEx); VALORIZA - Research Center for the Enhancement of Endogenous Resources, Polytechnic Institute of Portalegre (IPP), Portugal; CITUR - Madeira - Centre for Tourism Research, Development and Innovation, Madeira, Portugal; and Institute of Research on Territorial Governance and Inter-Organizational Cooperation, Dąbrowa Górnicza, Poland. Moreover, he holds an International master\\'s degree in Ports and Coasts Engineering.",institutionString:"University of Madeira",institution:{name:"University of Madeira",country:{name:"Portugal"}}},{id:"424419",title:"Dr.",name:"Matthew",middleName:"Ayorinde",surname:"Ayorinde Adebayo",slug:"matthew-ayorinde-adebayo",fullName:"Matthew Ayorinde Adebayo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/424419/images/17356_n.jpg",biography:null,institutionString:null,institution:null},{id:"215342",title:"Prof.",name:"José Manuel",middleName:null,surname:"Naranjo Gómez",slug:"jose-manuel-naranjo-gomez",fullName:"José Manuel Naranjo Gómez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Extremadura",country:{name:"Spain"}}},{id:"354033",title:"Dr.",name:"Ahmed",middleName:null,surname:"Nasri",slug:"ahmed-nasri",fullName:"Ahmed Nasri",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"435702",title:"Dr.",name:"Amel",middleName:null,surname:"Hannachi",slug:"amel-hannachi",fullName:"Amel Hannachi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"420857",title:"Prof.",name:"Ezzeddine",middleName:null,surname:"Mahmoudi",slug:"ezzeddine-mahmoudi",fullName:"Ezzeddine Mahmoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"420856",title:"Prof.",name:"Hamouda",middleName:null,surname:"Beyrem",slug:"hamouda-beyrem",fullName:"Hamouda Beyrem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"435703",title:"Dr.",name:"Hary",middleName:null,surname:"Demey",slug:"hary-demey",fullName:"Hary Demey",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Polytechnic University of Cartagena",country:{name:"Spain"}}},{id:"425026",title:"Mr.",name:"Kholofelo",middleName:null,surname:"Clifford Malematja",slug:"kholofelo-clifford-malematja",fullName:"Kholofelo Clifford Malematja",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Tshwane University of Technology",country:{name:"South Africa"}}},{id:"435701",title:"Dr.",name:"Mohamed",middleName:null,surname:"Allouche",slug:"mohamed-allouche",fullName:"Mohamed Allouche",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"420855",title:"Prof.",name:"Patricia",middleName:null,surname:"Aïssa",slug:"patricia-aissa",fullName:"Patricia Aïssa",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"435699",title:"Dr.",name:"Takoua",middleName:null,surname:"Mhadhbi",slug:"takoua-mhadhbi",fullName:"Takoua Mhadhbi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"442300",title:"Prof.",name:"Véronique",middleName:null,surname:"Perrier",slug:"veronique-perrier",fullName:"Véronique Perrier",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Montpellier",country:{name:"France"}}},{id:"445179",title:"Mr.",name:"Aman",middleName:null,surname:"Jaiswal",slug:"aman-jaiswal",fullName:"Aman Jaiswal",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Science Education and Research Mohali",country:{name:"India"}}},{id:"445178",title:"Mr.",name:"Dhiraj",middleName:null,surname:"Dutta",slug:"dhiraj-dutta",fullName:"Dhiraj Dutta",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Defence Research Laboratory",country:{name:"India"}}},{id:"445180",title:"Dr.",name:"Rama",middleName:null,surname:"Dubey",slug:"rama-dubey",fullName:"Rama Dubey",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Defence Research Laboratory",country:{name:"India"}}},{id:"424992",title:"Dr.",name:"Mohamed",middleName:null,surname:"Helal",slug:"mohamed-helal",fullName:"Mohamed Helal",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Institute of Oceanography and Fisheries",country:{name:"Egypt"}}},{id:"426808",title:"Associate Prof.",name:"Yesim",middleName:null,surname:"Gucbilmez",slug:"yesim-gucbilmez",fullName:"Yesim Gucbilmez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Eskisehir Technical University",country:{name:"Turkey"}}},{id:"428329",title:"Mr.",name:"Collet",middleName:null,surname:"Maswanganyi",slug:"collet-maswanganyi",fullName:"Collet Maswanganyi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Limpopo",country:{name:"South Africa"}}},{id:"428546",title:"MSc.",name:"Ndivhuwo",middleName:null,surname:"Shumbula",slug:"ndivhuwo-shumbula",fullName:"Ndivhuwo Shumbula",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"352155",title:"Dr.",name:"Poslet",middleName:"Morgan",surname:"Shumbula",slug:"poslet-shumbula",fullName:"Poslet Shumbula",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Limpopo",country:{name:"South Africa"}}},{id:"435064",title:"Dr.",name:"Mohammadtaghi",middleName:null,surname:"Vakili",slug:"mohammadtaghi-vakili",fullName:"Mohammadtaghi Vakili",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yangtze Normal University",country:{name:"China"}}},{id:"437268",title:"Dr.",name:"Linda Lunga",middleName:null,surname:"Sibali",slug:"linda-lunga-sibali",fullName:"Linda Lunga Sibali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437269",title:"Dr.",name:"Peter P.",middleName:null,surname:"Ndibewu",slug:"peter-p.-ndibewu",fullName:"Peter P. Ndibewu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"424106",title:"Ph.D. Student",name:"Siyabonga",middleName:null,surname:"Aubrey Mhlongo",slug:"siyabonga-aubrey-mhlongo",fullName:"Siyabonga Aubrey Mhlongo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"424233",title:"Ph.D. Student",name:"Ifeoluwa Oluwafunmilayo",middleName:null,surname:"Daramola",slug:"ifeoluwa-oluwafunmilayo-daramola",fullName:"Ifeoluwa Oluwafunmilayo Daramola",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446429",title:"Dr.",name:"Dev Vrat",middleName:null,surname:"Kamboj",slug:"dev-vrat-kamboj",fullName:"Dev Vrat Kamboj",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"425585",title:"Dr.",name:"NISHA",middleName:null,surname:"GAUR",slug:"nisha-gaur",fullName:"NISHA GAUR",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"226635",title:"Prof.",name:"Amany",middleName:null,surname:"El-Sikaily",slug:"amany-el-sikaily",fullName:"Amany El-Sikaily",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"435668",title:"Dr.",name:"Sara",middleName:null,surname:"Ghanem",slug:"sara-ghanem",fullName:"Sara Ghanem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"90",type:"subseries",title:"Human Development",keywords:"Neuroscientific Research, Brain Functions, Human Development, UN’s Human Development Index, Self-Awareness, Self-development",scope:"