Properties of some non-conventional plant fibres [Reddy 2005]
\r\n\tFourth, the effects of digitalization on economic and sustainable development and the benefits of digitization for public services, including e-governance, e-payments, e-democracy, e-health, e-learning, e-payments, and so on, are also presented.
\r\n\r\n\tAt the fifth stage, we will try to highlight the imperative role of blockchain technology, artificial intelligence, and machine learning in the digitization process.
\r\n\r\n\tLast but not least, the main threats of a digital economy are presented under the form of cybercrime and “surveillance capitalism”, including the impact of financial crimes referring to card frauds, online frauds, digital frauds, digital shadow economy, black market, money laundering, etc.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"45ca4a969c50d02d2bab6894218c7ef8",bookSignature:"Prof. Monica Violeta Achim and Dr. Nawazish Mirza",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10918.jpg",keywords:"Definition, Digital Transactions, Innovative Financial Services, Cryptocurrency, E-governance, E-payments, Spiral Transformation of Knowledge, Financial Education, Artificial Intelligence, Machine Learning, Money Laundering Surveillance Capitalism Economy, the General Data Protection Regulation (GDPR)",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 25th 2021",dateEndSecondStepPublish:"September 17th 2021",dateEndThirdStepPublish:"November 16th 2021",dateEndFourthStepPublish:"February 4th 2022",dateEndFifthStepPublish:"April 5th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"9 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"In February 2020, Ph.D. Achim won the Prize for Excellence in Scientific Research, at Babeș-Bolyai University, Cluj-Napoca, Romania. Since 2020, she became a member of the Romanian Ministery of Education and Research, as a representative in the panel of Economic Sciences.",coeditorOneBiosketch:"Prof.Mirza obtained a Ph.D. from the University of Paris Dauphine and has over 18 years of research, teaching, and consulting experience across Western Europe, Middle East, Asia Pacific, and Australia.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"236659",title:"Prof.",name:"Monica Violeta",middleName:null,surname:"Achim",slug:"monica-violeta-achim",fullName:"Monica Violeta Achim",profilePictureURL:"https://mts.intechopen.com/storage/users/236659/images/system/236659.jpg",biography:"Monica Violeta Achim is is currently full professor and doctoral supervisor in the field of Finance at the Faculty of Economic Sciences and Business Administration, Babeş-Bolyai University, Cluj-Napoca. She teaches the disciplines 'Diagnosis and Financial Analysis”, 'Financial analysis in banks” and 'Economic and financial crime” at the same faculty. She has many research concerns in the area of financial analysis, business performances, corporate governance, economic and financial crimes and public finance. With over 22 years of experience in academia, she has published as author and co-author, over 130 scientific articles and 25 books. Among the main targeted top journals, the following can be mentioned: The European Journal of Health Economics, Technological and Economic Development of Economy, Population Health Management, Social Indicators Research, Apply Research in Quality Life, Journal of Business Economics and Management, E+M Ekonomie and Management, Economic Research-Ekonomska Istraživanja, Sustainability, Entrepreneurship Research Journal, Singapore Economic Review. Her most recent reference work is the book Economic and financial crime. Corruption, Shadow economy and Money laundering, published as co-authored at Springer. She is also reviewer and board member for many international journals.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Babeș-Bolyai University",institutionURL:null,country:{name:"Romania"}}}],coeditorOne:{id:"420517",title:"Dr.",name:"Nawazish",middleName:null,surname:"Mirza",slug:"nawazish-mirza",fullName:"Nawazish Mirza",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000039UrYIQA0/Profile_Picture_1622035121865",biography:"Nawazish Mirza is a professor of finance at the Excelia Business School, La Rochelle, France. He obtained a Ph.D. from the University of Paris Dauphine and has over 18 years of research, teaching, and consulting experience across Western Europe, Middle East, Asia Pacific, and Australia. His research interests include financial technology, credit ratings, risk management, financial intermediation, and valuations. He has extensive professional and consulting experience in credit ratings, investment banking, and the valuation of new technologies. His recent research has been published in the Resources Policy, Journal of Environmental Management, International Review of Economics and Finance, Economic Modelling, Pacific-Basin Finance, Technology, and Social Forecasting, Finance Research Letters, among others. He is associate editor of the Journal of Economic and Administrative Sciences and Economic Research. He is guest editor of Climate Change Economics.",institutionString:"Excelia Business School",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"7",title:"Business, Management and Economics",slug:"business-management-and-economics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"418641",firstName:"Iva",lastName:"Ribic",middleName:null,title:"M.Sc.",imageUrl:"https://mts.intechopen.com/storage/users/418641/images/16830_n.png",email:"iva.r@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"44744",title:"Plant Fibres for Textile and Technical Applications",doi:"10.5772/52372",slug:"plant-fibres-for-textile-and-technical-applications",body:'Recently natural and made-man polymer fibres are used for preparation of functionalised textiles to achieve smart and intelligent properties. There are numerous application possibilities of these modified materials. Main pathways for functionalizaton of fibres are: inclusion of functional additives (inorganic particles, polymers, organic compounds); chemical grafting of additives on the surface of fibres and coating of fibres with layers of functional coatings. A new approach to produce new materials is by nanotechnology, which offers a wide variety of possibilities for development of materials with improved properties. Composites of cellulose fibres with nano-particles combine numerous advantageous properties of cellulose with functionality of inorganic particles, hence yielding new, intelligent materials. For preparing cellulose composite materials profound knowledge about fibres properties is needed. Besides, new fibre qualities are demanded to guaranty the modification efficiency. Therefore non-standard methods are involved to determine physical properties of fibres.
In addition to, manufacture, use and removal of traditional textile materials are now considered more critically because of increasing environmental consciousness and the demands of legislative authorities. Natural cellulose fibres have successfully proven their qualities when also taking into account an ecological view of fibre materials. Different cellulose fibres can be used for textile and technical applications, e.g. bast or stem fibres, which form fibrous bundles in the inner bark (phloem or bast) of stems of dicotyledenous plants, leaf fibres which run lengthwise through the leaves of monocotyledenous plants and fibres of seeds and fruits. Flax, hemp, jute, ramie, sisal and coir are mainly used for technical purposes. Recently, the interest for renewable resources for fibres particularly of plant origin is increasing. Therefore several non-traditional plants are being studied with the aim to isolate fibres from plant leaves or stems.
A review of different conventional and non-conventional fibres is presented. For extraction of fibres different isolation procedures are possible, e.g. using bacteria and fungi, chemical and mechanical methods. The procedure used influences fibres surface morphology. By fibre isolation procedures mainly technical fibres are obtained, which means that cellulose fibres are multicellular structures with individual cells bound into fibre bundles.
Many useful fibres have been obtained from various parts of plants including leaves, stems (bast fibres), fruits and seeds. Geometrical dimensions of these fibres, especially the fibre length depends mainly on fibre location within the plant. Fibres from fruits and seeds are few centimetres long, whereas fibres from stems and leaves are much longer (longer than one meter) [Blackburn 2005].
With an exception of seeds’ and fruits’ fibres, plant fibres are sclerenchyma elongated cells which occur in different parts of plants, mainly in the stems and leaves. These are elongated cells with tapering ends and very thick, usually heavily lignified cell walls. Sclerenchyma gives mechanical strength and rigidity to the plant, since it is usually a supporting tissue in plants. Fibres are also associated with the xylem and phloem tissue of monocotyledonous and dicotyledonous plant stems and leaves.
All plant cells have a primary wall. During cell growth and after it has stopped, the cytoplasm in sclerenchyma cells dries while the cell wall becomes thickened by addition of a thick and rigid secondary cell wall which is formed inwards of the primary cell wall and constructed of cellulose fibrils. The secondary cell wall is formed by successive deposition of cellulose layers, which are divided in three sub-layers (S1, S2 and S3), of which the middle layer is the most important for fibres mechanical properties. It consists of helically arranged microfibrils. The diameter of microfibrils is between 10-30nm [John 2008]. An important parameter of the structure of the secondary wall is the angle that the cellulose microfibrils are making with the main fibre direction. Actually each of three fibres sub-layers has a different microfibrillar orientation [ Krässig 1992, John 2008, Cuissinat 2008] which is specific for the fibre type. Due to the formation of a thick secondary wall, the lumen becomes smaller.
The cell wall in a fibre is not a homogeneous layer. The walls of plant cells (the primary and the secondary cell wall) can be considered as a composite consisting of cellulose fibrils embedded within a matrix of lignin and hemicellulosic polysaccharides [Krässig 1992].
Vegetable fibres are generally composed of three structural polymers (the polysaccharides cellulose, and hemicelluloses and the aromatic polymer lignin) as well as by some minor non-structural components (i.e. proteins, extractives, minerals) [Marques 2010]. Cellulose forms a crystalline structure with regions of high order i.e. crystalline regions and regions of low order i.e. amorphous regions. Middle lamellas composed of pectic polysaccharides are connecting individual cells in bundles [Caffall 2009].
Retting which is the process of separating fibres from non-fibre tissues in plants, involves bacteria and fungi treatments and mechanical and chemical processes for fibres extraction. Despite good quality of fibres, dew retting is usually replaced by other more economic methods because the process is very time consuming and weather dependent. Instead of atmospheric retting chemical methods and enzyme retting with pectinases, hemicellulases and cellulases is used, however fibre properties depend on extraction conditions significantly.
Sclerenchyma cells possess fibre like form and are arranged longitudinally. The cells are long and narrowed at the cell ends and surrounded and protected by a cell wall which is a complex macromolecular structure. During cells growth the wall is thickened and further strengthened by addition of a secondary wall. Usually fibre cells are occurring in strands or bundles which are called technical fibres [Caffall 2009]. The cells are polygonal in transverse section and connected between themselves by sclerenchyma middle lamellas. The lumen or cavity inside mature, dead fibre cells is usually very small when viewed in cross section [ Lewin 1998, Cook, 1993].
The cellulose, hemicellulose and lignin content in plant fibres vary depending on the plant species, origin, quality and conditioning [ Blackburn 2005].
Chemically unmodified cellulose is generally recognised to occur in four polymorphic forms. There is some evidence for the existence of others [Krässig1992, Lewin 1998]. The monoclinic spatial model for the unit cell of native cellulose is cellulose I crystal modification. The unit cell houses the cellobiose segments of two cellulose molecules, one being part of the 002 corner plane and the second being part of the 002 centre plane [Lewin 1998, Hu 1996]. The monoclinic unit cell has dimensions of 0.835 nm for the a – axis, 1.03 nm for the b-axis or fibre period, 0.79 nm for the c-axis, and 840 for the ß angle according to Meyer, Mark and Misch [Krässig 1992]. For natural cellulose a typical x-ray diffraction diagram is observed, that is, three equatorial diffraction peaks at the angles of about 14°, 16° and the strongest diffraction peak at an angle of 22° [Yueping 2010].
However, the crystalline dimorphism of cellulose and the existence of two families of native cellulose were confirmed lately. The crystalline phases Iα and Iβ can occur in variable proportions according to the source of the cellulose. Phase Iβ is a monoclinic unit cell having space group P21 and dimensions a = 0.801nm, b = 0.817nm, c = 1.036 nm, ß = 97.3º and very close to the cell proposed by Meyer, Mark and Misch. Phase Iα corresponds to a triclinic unit cell with space group P1 and dimensions
Regenerated cellulose II is obtained when native cellulose is treated with strongly alkaline solutions or precipitated from solutions, such as when producing man-made cellulose fibres. The cellulose III crystal structure is formed after treating the cellulose with liquid ammonia and cellulose IV lattice structure is obtained by treating regenerated cellulose fibres in a hot bath under stretch.
Furthermore, cellulose molecules are, during the course of biosynthesis, arranged in morphological units elementary fibrils. The fibrillar structure model is accepted for cellulose native and man made fibres however, there are some differences in the structural arrangement between different types of these fibres [Krässig 1992]. Elementary fibrils are strings of elementary crystallites which are associated in a more or less random fashion into aggregations. Isolated segments of the fibrils fringing from aggregations are forming a fibrillar network. By transition of cellulose molecules from crystallite to crystallite the longitudinal connections are achieved and coherence of the fibrils by hydrogen bonds at close contact points or by diverging molecules [Krässig 1992].
Microfibrillar orientation is different for different types of cellulose native fibres. It is a very important influence factor for fibres mechanical properties. Microfibrillar angle MFA of bamboo is 20-100, of coir 410-450, of flax 100, of jute 80, of ramie 7.50, of sisal fibres 200 [Blackburn 2005] and of cotton 20-300 [Morton 1993]. Besides microfibrillar orientation, fibres strength and stiffness depend on fibres constitution, cellulose content, crystallinity and degree of polymerisation. In addition to, fibres maturity and part of the plant from which fibres are obtained plays an important role.
Due to the imperfect axial orientation of the fibrillar aggregates, interfibrillar and intrafibrilar voids and less ordered interlinking regions between the crystallites inside the elementary fibrils the pore system of cellulose fibres is formed.
Textile fibres are broadly classified as natural fibres and man-made fibres, as shown in Figure 1. Natural fibres refer to fibres that occur within nature, and are found in vegetables respectively plants (cellulose fibres), animals (protein fibres) and minerals (asbestos). Man-made fibres are those that are not present in nature, although they may be composed of naturally-occurring materials. They are classified into three main groups: those made by transformation of natural polymers (regenerated fibres), those made from synthetic polymers (synthetic fibres), and those made from inorganic materials (fibres made of metal, ceramics, and carbon or glass) [BISFA.2006].
Nature in its abundance offers us a lot of materials that can be called fibrous. Plant fibres are obtained from various parts of plants, such as the seeds (cotton, kapok, milkweed), stems (flax, jute, hemp, ramie, kenaf, nettle, bamboo), and leaves (sisal, manila, abaca), fruit (coir) and other grass fibres. Fibres from these plants can be considered to be totally renewable and biodegradable. Plant fibres, which have a long history in human civilisation, have gained economic importance and are now cultivated on a large scale globally [Blackburn 2005, Mather 2011, Hearle 1963, Mwaikambo 2006].
Fibres that are produced on the seeds of various plants have been called seed hair or seed fibres. The most important fibre of this class is cotton. Other fibres of this group (kapok, floss from milkweed, dandelion, and thistle fibres) are not generally spun into yarns, but are utilized mainly as staffing in pillows and mattresses, and for life belts [Hearle1963].
Classification of textile fibres
Due to fibres properties and low cost, cotton represents the most used textile fibre in the world. Fibres are obtained from seeds of the plant species
a) Longitudinal view (5000× magnification) and b) cross-section of cotton fibre
Cotton is hydrophilic and the fibres swell considerably in water. Fibres are stable in water and its wet tenacity is up to 20% higher then its dry tenacity (25-40cN/tex). The toughness and initial modulus of cotton are lower compared to hemp fibres, whereas its elongation at break (5-10%) and its elastic recovery are higher. The fibres are resistant to alkali but degraded by acids. The microbial resistance of cotton is low, it burns readily and quickly, can be boiled and sterilized, and does not cause skin irritation or other allergies [Lewin 1998, Cook 1993].
Kapok
Due to its wide lumen, kapok has an exceptional capability of liquids retention. Its excellent thermal and acoustic insulating properties, high buoyancy, and good oil and other non-polar liquids absorbency distinguish kapok from other cellulosic fibres. Kapok is mainly used in the form of stuffing and nonwovens; it is rarely used in yarns, mostly due to low cohesivity of its fibres and their resilience, brittleness, and low strength. New potentials of kapok are in the field of technical textiles, yachts and boats furnishing, insulating materials in refrigeration systems, acoustic insulation, industrial wastewaters filtration, removal of spilled oil from water surfaces, and reinforcement components in polymer composites [Rijavec 2008].
SEM image of longitudinal view (a) and cross section (b) of kapok (2000× magnification) [Rijavec 2008].
Bast fibres i.e. flax, jute, hemp, ramie, kenaf, and abaca are soft woody fibres, which are obtained from stems or stalks of dicotyledonous plants. The fibres occur in bundles or aggregates [Hearle 1963]. The bundles consist of 10 to 25 elementary fibres, with the length of 2 to 5 mm and a diameter of 10 to 50 μm. The bundles are connected by lateral ramification, which forms a three dimensional network. The elementary fibrils and bundles are cemented by lignin and pectin intercellular substances, which must be removed during the processing of fibres extraction [Mohanty 2005]. Bast fibres have a long utilization tradition. They have been used for more than 8000 years. Currently bast fibres are raw materials not only used for the textile industry but also for modern environmentally friendly composites used in different areas of applications like building materials, particle boards, insulation boards, food, cosmetics, medicine and source for other biopolymers etc.
Flax fibres are obtained from the stems of the plant
The process of retting tends to separate the bundles of flax fibres into individual fibres, although many fibres remaining together in bundles [Hearle 1963]. Flax fibres are not as pure as cotton in terms cellulose content; indeed they contain only about 60 - 70% of cellulose. In addition they contain other substances such as hemicelluloses 17% and lignin 2-3%, as well as waxes 2%, pectins 10% and natural colouring matters [Mather 2011, Mohanty 2005]. Flax fibres have a soft handle and have fairly lustrous appearance. The length of fibres varies between 6 – 65 mm, but on average they are about 20 mm long. Their diameter is about 20 μm. Flax fibres are not as twisted as cotton fibres, but both have a lumen in the centre. Several dislocations that are areas of the cell wall in natural fibres where the direction of the microfibrils (the microfibril angle) differs from the microfibril angle of the surrounding cell wall, are observed on longitudinal images of fibres (Figure 4). These deformations are due to extraction procedures [Thygesen 2006]. The shape of fibres varies from polygonal to oval and irregular. Fibres cross-section form depends on variety, plant growth conditions and maturity. Flax fibres are amongst the strongest in the group of naturally occurring fibres (55 cN/tex and about 20% stronger in wet state), but they do not stretch much. Flax fibres elongation at break is only 1.8% and their moisture regain is 12% [ Lewin 1998, Cook 1993].
a) Longitudinal view (10000× magnification) and b) cross-section (30× magnification) of flax fibre
Jute is a natural fibre obtained as an extract from the bark of the white jute plant
a) Longitudinal view (5000× magnification) and b) cross-section (180× magnification) of jute fibre
Hemp is the bast fibre obtained from stems of
Therefore the processing of those fibres requires different technology [Blackburn 2005]. The diameter of the cell varies considerably from 16 to 50 μm, with broad flat lumen. The length of the individual or elementary fibres is ranging from 2 to 90 mm (average length is 15 mm). Elementary fibres are thick walled and the cross-section of fibres is polygonal with rounded edges (Figure 6). In longitudinal view, the fibre is roughly cylindrical, with surface irregularities and lengthwise deformations caused by dislocations. The ends of fibres are slightly tapered and blunt [Hearle 1963]. Hemp fibres are coarser when compared to flax and rather difficult to bleach. The fibres have an excellent moisture resistance and rot only very slowly in water. Hemp fibres have high tenacity (53-62 cN/tex); about 20% higher than flax, but low elongation at break (only 1.5%) [Mohanty 2005].
a) Longitudinal view (10000× magnification) and b) cross-section (200× magnification) of hemp fibre
In recent years because of the interest for alternative renewable resources, hemp gained again relevance. Beside the traditional textile application of hemp numerous new directions emerge: building and isolation materials, composite materials, special cellulose materials (papers), technical textile, geotextiles and agricultural textile, oil based products, items for agriculture and horticulture etc. [Blackburn 2005].
Ramie is a herbaceous perennial plant in the nettle family
a) Longitudinal view and b) cross-section (100× magnification) of ramie fibre
Kenaf fibres are obtained from
Leaf fibres are often referred to as hard fibres, and have limited commercial value, mainly because they are generally stiffer and coarser texture than the bast fibres. The fibres are usually obtained from the leaves by mechanically scraping away the non fibrous material. Above all the leaves fibres are used for production of cordage and ropes. The most important fibres of this group are sisal, henequen and abaca.
The sisal fibre is a “hard” fibre extracted from fresh leaves of sisal plant
a) Longitudinal view (2500× magnification) and b) cross-section of sisal fibre
Abaca or Manila hemp is extracted from the leaf sheath around the trunk of the abaca plant (
Henequen (
Lignocellulosic agricultural by-products are a promising and beneficial source for cellulose fibres. Due to the chemical and physical properties, composition and sustainability agro-based biofibres represent a potential for use in textile and paper industry for fibres, chemicals, enzymes and other industrial products. Annually renewable resources, e.g. corn, wheat, rice, sorghum, barley, sugarcane, pineapple, banana and coconut, etc. by-products are utilized as agro-based biofibres [Reddy 2005].
Also in non-conventional fibre plants elongated sclerenchyma cells are organized in a similar manner than traditional fibre cells like flax, hemp etc. These cells provide strength and support and are located next to the outer bark in the bast or phloem and serve to strengthen the stems. The fibres are in strands running the length of the stem.
To extract the fibre strands from other plant tissues the natural gum binding them must be removed by retting. The most common way is a biological treatment by an enzymatic or bacterial action on the pectinous matter of the stem.
Several techniques are used for extraction of conventional bast fibres: (i) Dew retting by the action of dew, sun, and fungi on the plants spread out on the ground, (ii) Water retting is conducted in rivers or pools through bacterial action and takes 2–4 weeks, (iii) For chemical retting solutions of different chemicals are used, e.g. sodium hydroxide, sodium carbonate, soaps, or mineral acids. The process takes only a few hours, (iiii) controlled biological or bio-chemical retting by addition of enzymes. The differences between the procedures are not only in expenses and process duration but the most important the quality and uniformity of retted fibres.
Ultimate fibres extracted from agricultural by-products are round, polygonal or elliptical in cross section and have a lumen in the centre. Their geometrical properties are conditioned by fibres origin and are different.
Reddy and Yang have collected structural characteristics and biofibres properties (Table1) [Reddy 2005]. Fibres obtained from pineapple leaves are the longest in this group and because of high crystallinity and high content of cellulose (70-82%) they express good mechanical properties (Young’s modulus 400–627 MPa) [John 2008].
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
cornhusk | \n\t\t\t0.5-1.5 | \n\t\t\t10-20 | \n\t\t\t48-50 | \n\t\t
pineapple leaf fibre | \n\t\t\t3-9 | \n\t\t\t20-80 | \n\t\t\t44-60 | \n\t\t
coir | \n\t\t\t0.3-1.0 | \n\t\t\t100-450 | \n\t\t\t27-33 | \n\t\t
bagasse | \n\t\t\t0.8-2.8 | \n\t\t\t10-34 | \n\t\t\t- | \n\t\t
banana | \n\t\t\t0.9-4.0 | \n\t\t\t80-250 | \n\t\t\t45 | \n\t\t
wheat straw | \n\t\t\t0.4-3.2 | \n\t\t\t8-34 | \n\t\t\t55-65 | \n\t\t
rice straw | \n\t\t\t0.4-3.4 | \n\t\t\t4-16 | \n\t\t\t40 | \n\t\t
sorghum stalks | \n\t\t\t0.8-1.2 | \n\t\t\t30-80 | \n\t\t\t- | \n\t\t
barley straw | \n\t\t\t0.7-3.1 | \n\t\t\t7-24 | \n\t\t\t- | \n\t\t
Properties of some non-conventional plant fibres [Reddy 2005]
As a kind of abundant and renewable agricultural residue, corn (Zea mays L.) stover, that refers a combination of corn stalk (stem) and leaf, could be a low-cost and sustainable source for energy and chemicals in future. For a long time (since 1929) fibres obtained from corn waste materials have been studied and utilized for pulp and papermaking [Li 2012].
Cornstalks as a potential for fibres extraction were studied by Reddy and Yang [Reddy 2005/2]. They have found, that natural cellulose fibres obtained from cornstalks have the structure and properties required for textile and other industrial applications.
The fibres obtained from cornstalks are composed of single cells bound together in cell bundles. Stronger fibres extraction conditions remove most of the binding substances resulting in single cells that are too small to be used for high value fibrous applications. Elementary fibres with the length of 0.7 -1.5mm and cell diameter of 15 – 35 μm which is comparable to rice and wheat straw fibres were extracted and analysed. Fibres contain about 80% cellulose, 8% lignin and 8% moisture. The rest are minerals and pectin. The most important parameters for fibres properties, i.e. crystallinity and microfibrillar angle MFA condition fibres properties. The typical cellulose I structure is observed with the crystallinity of 52% and MFA of about 110. MFA is lower than that of cotton which has MFA in the range of 20–300 depending on the maturity and cotton species. Due to high fibrils orientation tensile properties of fibres are good, i.e. they have high strength but low elongation. Elementary fibres form bundles with mechanical properties similar to that of kenaf and with moisture regain of about 7.9%, which is similar to that of cotton but lower than flax (12%) and kenaf (17%), respectively, are suitable for blending and processing with other common textile fibres to produce various products [Reddy 2005/2].
Although fibre properties of corn stover have been studied for decades, the first systematic investigation of cell morphology and fibre quality of different corn stover fractions was performed by Li et al. [Li 2012]. Individual fibres were connected in bundles by middle lamella with the highest lignin concentration. Obvious differences in cell morphologies and chemical compositions between four different plant fractions, i.e. stalk rind and stalk pith, and leaf blade and leaf sheath were observed. Fibres were shorter and finer in stalk pith and parenchyma and vessel content was the highest in this part of the plant. Therefore it was not suitable for papermaking, while morphological characteristics of fibres from corn stalk rind were appropriate as papermaking materials. There were also differences in lignification and hemicellulose content. Sclerenchyma cells in stalk rind were more lignified than those in other tissues. The lowest hemicellulose content was observed in stalk rind [Li 2012].
The microstructure, thermal and mechanical properties of wheat straw fibres have been examined and compared to flax straw fibres with an idea of using these natural fibres as reinforcing additives for thermoplastics [Hornsby 1997]. Of crucial importance in this regard is the manner by which their inherent mechanical properties alter on exposure to elevated temperatures, which are encountered during melt processing of the polymer. Under all test conditions flax straw was significantly stronger and stiffer than wheat straw. The tensile strength and elastic modulus decreased with increasing temperature up to 2000C. This effect was minor for wheat straw than flax straw. The differences are due to fibres structural form. The form of wheat straw is much more cellular than flax. Due to different lignin content the thermal stability of flax fibres was significantly higher than it was for wheat straw [Hornsby 1997].
Hop (
The single sclerenchyma cells in hop stem fibres are small. Their length is 2.0 ± 1.0 mm and width 16.5 ± 5.5μm. Fibres extracted from hop stems contain 84% of cellulose, 6% of lignin in 2% of ash. From the diffraction patterns of cellulose in hop stem fibres cellulose crystalline structure was determined. The crystallinity index is 44 ± 5% (65–70% for cotton and 81–89% for hemp cellulose) and microfibrillar angle of cellulose fibrils 8 ± 0.70. The diffraction pattern is very similar to the diffraction pattern of hemp. Cellulose crystallites in hop and hemp fibres are regularly distributed and are also parallel to the fibre axis and to each other.
Mechanical properties of hop stem fibres are close to that of hemp fibres. Shorter single cells and low crystallinity of cellulose in the fibres should be the major reasons for the lower breaking tenacity of hop fibres compared to hemp. Sorption properties of hop fibres are comparable to cotton properties and slightly lower than that of hemp [Reddy 2009].
Fibres from
An important amount of vascular bundles that were formed by conducting tissues and fibre bundles was observed on rachis cross sections. Researchers are suggesting two groups of fibrous structures: the first at the microscopic level formed by conducting tissues, fibre bundles and their elementary fibres, and the second at nanoscopic or ultrastructural level where cellulose microfibrils are grouped in microfibril bundles. In addition to, on fibre surface calcium oxalates crystal structures were observed. Their occurrence on residue surfaces is related to the maturate state of samples.
The diameter of elementary fibres was 10-20μm and diameter of macrofibrils with helicoidal arrangement inside the secondary cell wall was less than 1μm. In addition to microfibril bundles with the diameter 40 – 60nm and cellulose microfibrils with the diameter 5-10nm were identified [Gañán 2008].
Three types of fibres, namely banana fibres (
The chemical structure of extracted fibres was determined. The cellulose content is the highest in Sponge gourd (66.59%±0.61%), Bagasse follows (54.87%±0.53%) and the lowest cellulose content was determined for Banana fibres (50.15%±1.09%). Cellulose crystallinity degree was between 39% and 50% for the analysed fibres. The most crystalline structure was observed in Sponge gourd fibres (50%), cellulose in Bagase was 48% crystalline and in banana fibres only 39%.
A high content of lignin was observed for all types of fibres (17.44%±0.19% Banana, 23.33%±0.02% Bagasse and 15.46%±0.02% Sponge gourd). Sorption properties of these fibres (banana and bagasse: 8.57±0.19 and 9.21±0.01, respectively ) are very similar as cotton fibres, however moisture content in Sponge gourd fibres at standard climate conditions is significantly lower ( 4.79±0.02) [Guimarăes 2009].
Bamboo is an abundant resource and it has always been used in agriculture, handicraft, paper-making, furniture and architecture. Recently attempts have been made to produce textile fibre from bamboo. Since a single bamboo fibre is 2 mm in length, it is used in textile production in the form of a fibre bundle. Bamboo is a very-fast growing grass. Environmental friendly fibres extracted from bamboo, which is renewable, fast growing, degradable, and does not occupy cultivated land are economically efficient and especially useful to grow in hilly areas.
After degumming through a chemical treatment, the cellulose content in the bamboo fibre reached more than 70%. Comparing chemical structure of hemp, jute and bamboo, lignin and hemicellulose contents in bamboo are far higher than that of the flax fibres, and almost as much as that of the jute fibres (Hemicellulose content: bamboo 12.49%, jute 13.53%, flax 11.62; lignin content: bamboo: 10.15%, jute 13.30%, flax 2.78%). Lignin in bamboo fibre bundles is reason for yellow colour of fibres and coarse fibre fineness [Yueping 2010].
Cross section of single bamboo fibre is round with a small round lumen. The bamboo single fibre width is 6–12 μm and the length 2–3 mm and it is smaller than that of flax (12–20 μm, 17–20 mm, respectively) [Yueping 2010].
By the x-ray analysis of bamboo fibres a similar x-ray diffraction pattern is obtained as it is of jute fibres. Two diffraction peaks are observed at the angles of 15–16° and 22° for the bamboo fibre and jute fibre. It is known that the crystalline structure of natural cellulose from various plants belongs to cellulose I with typical diffraction maxima at scattering angles 14°, 16° and 22°, respectively. Due to a high content of amorphous hemicellulose and lignin in the bamboo fibre and jute fibre an overlapping of the two peaks at angles of 14° and 16° on the diffraction pattern is observed [Yueping 2010].
The fine structure and mechanical properties of fibres within a maturing vascular bundle of moso bamboo Phyllostachys pubescens was studied by Wang with co-workers [Wang 2012].
Almost axially oriented cellulose fibrils were found in the fibre cell walls. This fibrilar arrangement maximizes the longitudinal elastic modulus of the fibres and their lignification increases the transverse rigidity [Wang 2012].
Because of high and different content of non-cellulose substances in various plant fibres the fibres\' crystallinity is different. When comparing crystallinities of some plant fibres, the crystallinity of ramie is the highest, follows flax and cotton and the lowest crystallinity is observed for bamboo fibres and jute fibres. These structural differences are reflected on fibre properties, i.e. density, moisture regain, tenacity, dyeing and thermal properties, etc. [Yueping 2010].
Quinoa originates from Andes in South America and it belongs to the family Chenopodiaceae (Chenopodium quinoa Willd). It is a grain-like crop grown primarily for its edible seeds and it has become highly appreciated for its nutritional value. It has been recognized as a complete food due to its protein quality. It has remarkable nutritional properties; not only from its protein content (15%) but also from its great amino acid balance. It is an important source of minerals and vitamins, and has also been found to contain compounds like polyphenols, phytosterols, and flavonoids with possible nutraceutical benefits [Abugoch 2009]. The plant is not problematic and it can be cultivated everywhere. Quinoa has a high nutritional value and has recently been used as a novel functional food because of all these properties; it is a promising alternative cultivar.
The elementary fibres can be isolated from Quinoa stems. It is possible to use different processes for fibre isolation. Sfiligoj et al. reported about fibres which were obtained from untreated stems by mechanical isolation. Besides, stems were subjected to chemical treatment in alkaline medium (1%NaOH; different treatment times and temperatures were used; sample A – 1day treatment, room temperature; sample B – 11days treatment, room temperature; sample C – 1 hour T = 1000C). In addition to they were water treated, respectively. Thereby the pectin structures connecting fibres with other plant tissues were loosed and the mechanical separation of the elementary fibres or fibre bundles was performed [Sfiligoj-Smole 2011].
Quinoa – ripe plant and the stem
Cross – section of the quinoa stem
Morphological characteristics of fibres were microscopically observed. Light microscopy tests were performed on whole stems and on ultimate fibres and fibre bundles. Different structures were observed on cross- sections and on longitudinal views of stems. Quinoa plant and its stem are shown on Figure 9. In addition to, stem’s cross-section is demonstrated on Figure 10. Quinoa technical fibres, i.e. bundles of elementary cells were isolated from untreated and differently treated stems.
SEM image of surface morphology of isolated fibres from quinoa (fibres obtained by decortication from untreated stems)
The fibre bundles were mainly inhomogeneous and sclerenchyma cells were often accompanied by tracheary elements. Fibres surface morphology was strongly dependent on isolation process (Fig. 11, 12, 13 and 14). Fibres obtained by decortication, i.e. by only mechanical isolation show totally different surface morphology when compared to the fibres obtained from water and alkaline treated stems. In addition to, thermal conditions of the treatment influenced the surface morphology (cf. Fig. 13 and Fig.14).
SEM images of surface morphology of differently isolated fibres from quinoa (fibres from water treated stems)
SEM images of surface morphology of differently isolated fibres from quinoa (fibres from NaOH treated stems)
Fibre dimensions were measured on microscopy images. Fibres’ diameters are dependent on the procedure of fibres isolation. When untreated stems were processed fibre bundles were formed from a bigger number of cells and a mean diameter of 164μm was determined for these fibres. Pre-treatment of stems facilitates sclerenchyma cells separation from other plant tissues, and fibres’ diameter for fibres isolated from pre-treated stems was 42.61μm. The variation of fibres’ diameter is very high (variation coefficient is 43.76%).
In addition to, geometrical and mechanical properties of isolated fibres and fibre bundles were determined. The measurements were performed on Lenzing apparatus Vibrodyn and Vibroskop according to standard test methods. Ten parallel samples were measured. Fineness of fibre bundles was between 24.66 and 96.84 dtex depending on the isolation method used for fibres extraction. The fineness variation is related to different number of cells in the bundle and quality of fibre extraction process which is connected with the presence of different non-cellulose compounds on fibres.
It was important to obtain a representative sample for testing due to the inherent variability of most biological materials and extensive mechanical damage due to the isolation process. As mechanical and geometrical properties vary considerably according to temperature and humidity, all samples for testing were conditioned and prepared in the ISO standard atmosphere for textile testing of 65 ±2% relative humidity and 20 ±2ºC according to ISO 5079 was used [ISO 5079 (1995)].
SEM images of surface morphology of differently isolated fibres from quinoa (fibres from stems, treated in NaOH at T = 1000C)
Fibres’ elongation is low and breaking strength high. The elongations vary between 1.41 % to 2.11 % and tenacities from 13.78 to 32.19cN/tex. The obtained values are comparable with the mechanical properties of some textile bast fibres, e.g. jute, hemp or coir. Ultimate fibre cell in hemp is 13 – 26 mm long; its diameter is between 5 and 32 μm, tenacity 29 – 47 cN/tex and elongation 1.8% [Sfiligoj-Smole in press].
In addition to, the powder X-ray diffraction spectra of quinoa fibres, which were obtained by the fibres extraction by water treatment and mechanical isolation, exhibit a diffraction pattern typical of cellulose I, with a diffraction peak of the 2θ angle at about 220, which can be assigned to the 002 reflection. However, the two diffraction maxima of 101, 10-1 reflections at diffraction angles 14 and 160, respectively, typical for native cellulose are not pronounced. The diffraction pattern is very similar to the pattern obtained by x-ray scattering of bamboo and jute fibres [Yueping 2010]. It is assumed that accompanying substances were not removed sufficiently and therefore the remaining amorphous hemicellulose and lignin are origin of overlapping of these two peaks [Sfiligoj-Smole in press].
Grass because of its huge available amounts represents a great potential. It is an annual plant with bundles of elementary fibre cells bound by pectin middle lamellae. Parenchyma cells separate fibre bundles from each other.
The most important representatives in the group of grasses are: Perennial Ryegrass (
The elementary grass fibres were studied. They were isolated from different grass and legumes sorts, i.e. Ryegrass (
Cross section of a Trefoil stem [Sfiligoj-Smole 2005].
On the microscopy images of grasses cross sections stem area, lumen area, fibre area and fibre content was determined. A high content of fibres was detected in stems regardless the fibres origin. The highest fibre content was determined in Ryegrasses (39.5%), Lucerne followed (34.5%) and the lowest content of fibres was observed in the cross-section of Trefoil (20.2%) [Sfiligoj-Smole 2005, Sfiligoj-Smole 2004].
Esparto fibres, esparto grass or Alfa are cellulose based fibres extracted from esparto
Researchers report about different new cellulose sources, however mainly from terrestrial plant origin. But fibres from marine sources offer addition options when appropriate species are identified. Sea grasses belong to angiosperm and are found in most of the oceans. Among sixty different species
P.Davis et al. reported about Baltic species of
In
Due to sea-grass fibres mechanical properties and its low density fibres present an attractive reinforcement for composite materials, especially when bio-degradability is required.
Depending on their physical properties and cellulose content lingocellulose fibres can be used for various applications. The typical fibre morphology with a lumen in the centre, reduces the bulk density, thereby acoustic and thermal insulation properties of biofibres are increased and therefore these fibres are preferable for lightweight composites for noise and thermal automobile insulators.
In addition to insulation, these materials are used in Civil Engineering as building materials. From industrial hemp Cannabis Sativa L useful cellulose fibres to manufacture fibre cement products for roofing are obtained. The disadvantages of some cellulose fibres are: lower modulus of elasticity, high moisture absorption, decomposition in alkaline environments, they are susceptible to biological attack, variable mechanical and physical properties. Hemp fibres with a higher durability than traditional cellulose fibres are more suited for this kind of application, and therefore a lot of research was performed about the use of hemp fibres as reinforcement for building materials based on cement. In addition to, hemp core fibres from agricultural waste industrial hemp straw with the length between 5-10 mm were studied by Jarabo et al. [Jarabo 2012].
An important aspect of natural fibres is associated with their hierarchically built anatomies developed and optimized in a long term evolution process. A variety of non-wood plants offer multiple possibilities in dimensions, composition and morphology of fibrous structures that can be useful for pulp and paper making industries [Gañán 2008]. Therefore based on high cellulose content they are replacing wood pulp in paper and fibres production. Grass stems and leafs fibres could be utilized for this purpose [Saijonkari – Pahkala 2001].
Natural fibres are currently attracting a lot of attention for reinforcement. Fibre reinforced composites consists of fibre as reinforcement and a polymer as a matrix. Their special advantage is their low cost, low density, good mechanical properties, biodegradability, etc. The advantage of natural fibre composites includes lack of health hazards and non-abrasive nature [Sreenivasan 2012]. Natural fibres provide stiffness and strength to the composite and are easily recyclable. Hemp fibres represent a good potential for this utilization. The use of hemp fibres as reinforcement in composite materials has increased in recent years as a response to the increasing demand for developing biodegradable, sustainable and recyclable materials [Shahzad 2012]. Hemp fibres are used for reinforced thermoplastics (composites hemp fibres - polypropylene PP, polyethylene PE, polystyrene PS, hemp fibres - maleated polypropylene MAPP, kenaf-hemp nonwoven impregnated with acrylic matrix., etc.), thermosets ( polyester, epoxy resin, vinylester, phenolics) [Shahzad 2012] and biodegradable polymers (thermoplastic starch, polyhydroalkanoates (PHA), polyactides (PLA), lignin based epoxy, soy based resin, etc [Shahzad 2012].
Also other natural cellulose fibres have been used for composite preparation. Polymers including high density polyethylene (HDPE), low density polyethylene (LDPE) polypropylene (PP) polyether ether ketone (PEEK), have been reported as matrices [Li 2007].
A major disadvantage of cellulose fibres is their highly polar nature which makes them incompatible with non-polar polymers. These fibres therefore are inherently incompatible with hydrophobic thermoplastics, such as polyolefins [John 2008]. This characteristic results in compounding difficulties leading to non-uniform dispersion of fibres within the matrix which influences composite properties. To achieve strong adhesion at the interfaces which is needed for an effective transfer of stress and load distribution through out the interface, sometimes surface modification is needed. Surface modifications include (i) physical treatments, such as solvent extraction; (ii) physico-chemical treatments, like the use of corona and plasma discharges or laser, and UV bombardment; and (iii) chemical modifications, both by direct condensation of the coupling agents onto the cellulose surface and by its grafting by free-radical or ionic polymerizations [John 2008].Therefore different coupling agents which introduce chemical bonds between the matrix and fibre are involved (e.g. silane, isocyanate and titanate based products, alkaline treatment, acetylation, benzoylation, acrylation, maleated coupling agents, permanganate, etc) [51]. or methods of physical fibre treatments (e.g. surface fibrillation, plasma treatment) are used [George 2001]. An additional possibility is to impregnate cellulose fibres in monomer solution, follows the in-situ catalyst, heat or UV polymerisation [George 2001].
Different natural fibres species have been used for preparation of composites. Some examples are: aspen fibre, abaca fibre, bagasse fibres, bamboo fibre (BF), banana fibre, etc.
Unidirectional isora fibre reinforced polyester composites were prepared by compression moulding. Isora is a natural bast fibre separated from the
Green composites were prepared from pineapple leaf fibres and soy-based resin. The addition of polyester amide grafted glycidyl methacrylate (PEA-g-GMA) as compatibilizer increased the mechanical properties of composites. For preparing composites from pineapple leaf fibres in natural rubber fibres were pre-treated in NaOH solutions and benzoyl peroxide (BPO) of different concentrations. It was found that all surface modifications enhanced adhesion and tensile properties [Joshy 2007].
Elephant grass (
This property is a good base for designing lightweight material from these fibres. The diameter of fibers is between 70 lm to 400 μm. Fibres mechanical properties are: tensile strengh is 185 MPA, tensile modulus is 7.40 GPa and elongation at break 2.50% [55]. The positive impact of elephant grass fibres on tensile strength of fiber reinforced
composites was determined and it was found that composite mechanical properies increase with percentage volume of fibers. Whereas the fibre extraction is simple, fibres are cheap and of appropriate properties elephant grass is also suitable for composites used for lightweight structures preparation [55].
Cellulose nanofibres and crystals have gained a large interest, not only in the academic research society but also in industries, during the last few years [Oksman 2012].
It is well known that isolation of nanocrystals from cellulose is possible by strong acid hydrolysis. Under controlled conditions, acid hydrolysis allows removal of the amorphous regions of cellulose fibres whilst keeping the crystalline domains intact in the form of crystalline nanoparticles [Sheltami 2012].
The diamensons of nanofibres are usually around 20–30 nm in diameter with the length of few μm. Nanocrystals are much smaller. Their length is about 200nm and diameter about 3–5 nm [Oksman 2012]. Cellulosic nanomaterials are obtained form different resources, i.e. wood, bioresidues and annual plants, e.g. wood fibres, sisal, pineapple leaves, coconut husk fibres and bananas, mengkuang leaves (
Lignocellulosic natural fibres have a very long tradition for textile materials manufacturing. Especially are these fibres important for technical textiles production. The series of plants yielding conventional textile fibres, e.g. flax, hemp, etc. has been recently extended by several abundant plant species traditionally not-connected with fibres extraction. Of huge interest are especially agricultural wastes from cultures which are primary grown for food industry, and their plant wastes additionally containing fibres. Different fibres have been studied by several authors; their properties were determined and compared to the properties of conventional fibres. Regardless of the origin fibre cells are elongated sclerenchyma cells of different geometrical characteristics, associated in fibre bundles with adequate mechanical properties. Several plant species were suggested for utilization from different geographic areas.
Natural fibres from conventional and unconventional source are considered as potential replacement for man-made fibres in composite materials for their reinforcement. Natural fibres from annual plants have advantages of being low cost and low density and therefore they are light. They are a renewable material. In addition to, an important advantage of these materials is their biodegradability and low toxicity. It was confirmed by many researchers that properties of natural fibres of different origin improve composites properties, e.g. the mechanical properties of natural fibres - polymer composites are superior to those of the unreinforced materials.
Cancer as a complicated and heterogeneous disorder is the major threat to human beings and is still the significant leading cause of mortality around the world. According to the world health organization report, cancer is the second leading cause of death around the world with 9.6 million deaths in 2018. That is nearly 1 in 6 of all global deaths [1, 2]. The incidence of cancer is expected to rise approximately 70% within the next two decades around the world, from 14 million new cases in 2012 to 25 million new cases a year [3, 4, 5]. Cancer development comprises of a multiple steps happening progressively and beginning with initial mutations that promote tumorigenesis and, eventually, metastasis. The genetic alterations ultimately cause to a disturbance in the balance between cell proliferation and programmed cell death or apoptosis [6].
Apoptosis is a process of the cell’s natural mechanism for death which occurred in multicellular organisms to maintain tissue homeostasis and act as a defensive strategy to remove infected, damaged or mutated cells. Apoptosis can be triggered through two major pathways, either mitochondrial- or death receptor-mediated pathways resulting from the intracellular (e.g. stress, DNA damage) and extracellular signals (death-inducing signals by other cells), respectively. This machinery mainly depends on caspases cascades for executing cell death that eventually cause proteolytic cleavage of thousands of target proteins within the cells that are essential for normal cellular function such as cytoskeletal and nuclear proteins. Consequently, the apoptotic cells undergo a series of morphological and biochemical alterations leading to recognition by macrophages and cell phagocytosis. Moreover, B-cell lymphoma-2 (Bcl-2) family of proteins has long been identified for their significant involvement in regulating the cellular program of apoptosis through mitochondrial outer membrane permeabilization, as the critical decision-point at which cells commit to death, representing their vital role in protecting against cancer [7, 8, 9].
Deficiencies at any point along apoptotic pathways and dysfunction of the controlling mechanisms may result in impaired apoptosis that cause to carcinogenesis, allowing cancer cells to survive over intended lifespans and eventually uncontrolled cell proliferation, tumor development and progression. Tumor cells evade apoptosis through a variety of mechanisms. Understanding these molecular mechanisms not only provide insight into the cancer pathogenesis, but also provide clues on cancer treatment [7, 10]. Besides, genomic instability, nutrient deficiency, cellular hypoxia and oncogenic stress may cause to continuous stress within cancer cells which make them more sensitive to apoptotic stimulation. Hence, the ability to target the molecular components of this machinery and restore an apoptotic pathway has long been considered as an intriguing approach in cancer drug discovery. Consequently, being as a double-edged sword, apoptosis plays a critical role in both tumorigenesis and cancer therapy [6, 11, 12]. Therefore, as evasion of apoptosis is well known as the hallmark of all types of cancers, this chapter will be mainly emphasizing the role of apoptosis in cancer, from pathogenesis and cancer development to cancer therapy and treatment with primarily focus on two key mediators of apoptosis, caspases and Bcl-2 family of proteins, which have been receiving great attention in targeted cancer therapies.
The term “apoptosis” is derived from Greek, meaning “dropping off” or “falling off” as leaves from a tree, was first used in 1972 to describe a morphologically distinct form of cell death. Apoptosis also known as programmed cell death is a highly regulated energy-dependent process that occurs normally during development and aging. It plays an important role as a homeostatic mechanism to maintain cell populations in the tissue of multicellular organisms. In addition to its importance in biological process, defects in apoptosis mechanism has been implicated in the pathophysiology of diseases including cancer [13, 14]. There are many factors, mostly proteins, involved in the activation and regulation of apoptotic mechanism. This highly complicated and regulated process involves an energy-dependent cascade of molecular events and includes the mitochondria-dependent (intrinsic) and death receptor-dependent (extrinsic) pathway. Caspases play a vital role in initiation and execution of both intrinsic and extrinsic pathways which is mediated through the cleavage of hundreds of proteins essential for normal cellular function [15].
Caspases are a family of cysteine protease enzymes that are able to selectively cleave proteins at aspartic acid residues using the sulfur atom of cysteine in their catalytic site, hence, named as
Caspases are initially synthesized as an inactive monomeric proenzyme, named zymogens or procaspases, containing a large subunit, small subunit, and prodomain that is only activated through proteolytic cleavage and dimerization following an appropriate stimulus. Therefore, this post-translational level of control provides rapid and tight regulation of the caspase enzyme activities [19, 20]. Initiator caspases have prodomains containing one of the two specific protein–protein interaction domain including caspase recruitment domain (CARD) and death effector domain (DED) that promote caspase dimerization through binding to adapter proteins. Two examples of activating multiprotein complexes include death-inducing signaling complex (DISC) and the apoptosome, which are formed during extrinsic and intrinsic pathway of apoptosis, respectively [19].
Once properly assembled into dimers, pro-caspases undergo cleavage by autocatalysis resulting in the removal of pro-domain and cleavage at the linker region between the large and small subunit resulting in the heterotetramer formation and provides the active-site loops to get a proper conformation for enzymatic activity [17, 19].
Although, initiator caspases are capable of autocatalytic cleavage and activation, effector caspases are cleaved by initiator caspases resulting in the formation of active heterotetramer. Each active caspase is a tetramer consists of two identical big subunits and two identical small subunits. Accordingly, activation of apoptotic caspases leads to the inactivation or activation of substrates, and therefore initiation of a protease cascade events in the apoptotic signaling pathway resulting in rapid cell death. Activated caspases trigger cytoplasmic endonuclease, cleave many vital cellular proteins and break up the nuclear scaffold and cytoskeleton as well as activate DNase, which further degrade nuclear DNA into 180 to 200 base pair. Collectively, caspase activity results in various morphological and biochemical changes in apoptotic cells [19, 21, 22].
Apoptotic cells are differentiated from healthy and necrotic cells based on certain cellular morphological changes. Characteristic features of apoptosis in the nucleus are chromatin condensation and nuclear fragmentation which are accompanied by cell shrinkage, membrane blebbing and formation of apoptotic bodies in the final stage of apoptosis which are rapidly engulfed by phagocytosis that avoids an inflammatory response in surrounding tissues [23, 24, 25]. The shrinkage of the cell is one of the most common morphological changes in apoptotic cell death resulted from the extreme alteration in intracellular water. Intracellular water plays a critical role in apoptotic and necrotic cell death. Although necrotic cells absorb the water resulting in enlarging the size and finally burst, apoptotic cells lose water leads to reduction in cellular volume. Therefore, the apoptotic cells become smaller in size, the cytoplasm is dense and the organelles are more tightly packed. Consequently, due to the occurrence of cell shrinkage, the cell will lose its contact with neighboring cells, or the extracellular matrix and acquire more rounded morphology. Although the plasma membrane is intact during the entire process, at later stage of apoptosis, loss of membrane integrity and formation of the blebs at the cell surface due to the separation of the plasma membrane from cytoskeleton occur in apoptotic cells [26, 27, 28].
Apart from structural alterations, several biochemical changes also play key events in apoptosis. Apoptotic cells generally display major types of biochemical modifications such as caspase activation, protein and DNA cleavage, and plasma membrane alterations, which lead to phagocytic recognition [13]. Disruption of plasma membrane asymmetry is a common feature of apoptotic cells, independent of the form of apoptotic stimulus. The maintenance of lipid asymmetry of plasma membrane is regulated through transporters named flippases and floppases. In addition, the activated scramblase enzymes have an important role in the loss of lipid asymmetry and enhanced phosphatidylserine (PS) exposure to the outer leaflet of plasma membrane [13, 29].
Therefore, in a healthy cell, PS is limited to the inner layer of the plasma membrane. However, during apoptosis, effector caspases cleave and activate scramblase, as well as cleave and inactivate flippase, responsible for transmitting PS from the outer to the inner leaflet that lead to externalization of PS. Therefore, phosphatidylserine, which is normally localized in the inner membrane layer of cells is flipped out and externalized on the outer layer of the plasma membrane. This PS externalization not only is the indicator of loss of membrane asymmetry during apoptosis, but also allows early recognition by phagocytes and prevents the release of proinflammatory cellular components [29, 30, 31].
As mentioned earlier, the mechanism of apoptosis involves an energy-dependent cascade of molecular events. Apoptotic cell death machinery includes the mitochondria-dependent (intrinsic) pathway and death receptor-dependent (extrinsic) pathway. The intrinsic pathway arises from intracellular signals like cellular stress and DNA damage and relies on the release of proteins from the intermembrane space of mitochondria. However, the extrinsic pathway is activated through the binding of extracellular ligands to death receptors at the cell surface that trigger the multiprotein complex formation known as death-inducing signaling complex (DISC). These two mitochondria- and death receptor-mediated pathways are interconnected and the molecules in one pathway can affect another pathway [32, 33].
As its name implies, the intrinsic pathway is activated in response to internal stimuli such as hypoxia, severe DNA damage and oxidative stress and mitochondria play a critical role throughout this apoptosis signaling pathway [34, 35]. The intrinsic pathway is mainly controlled by the members of Bcl-2 family proteins, which regulate the permeabilization of mitochondrial outer membrane (MOM) and are structurally and functionally classified into three groups. BH3-only proteins, like Bim and Bik, that sense cellular stress and directly or indirectly activate the executioner proteins, like Bax, Bak, Bid, that are able to oligomerize in and permeabilize the MOM. The oligomerization of these pro-apoptotic proteins leads to component release form the intermembrane space to the cytoplasm and activation of effector caspases of apoptosis. The first two groups are known as the pro-apoptotic proteins of Bcl-2 family. The third group is the anti-apoptotic proteins, like Bcl-2 and Bcl-xL that hinder the overall process by inhibiting pro-apoptotic proteins. However, not the absolute quantity but rather the relative levels and balance between the pro- and anti-apoptotic proteins regulates whether the apoptosis event would be initiated. Although the excess of pro-apoptotic proteins makes the cells sensitive to apoptosis, excess of anti-apoptotic proteins makes the cells resistant and prevents the occurrence of apoptosis [36, 37, 38]. However, in the presence of apoptotic stimuli, the death signal is sensed initially by the BH3-only protein, which then interacts with the downstream mediators of apoptosis such as Bax. As the intrinsic mitochondrial pathway is initiated, Bax is translocated from cytosol to the outer mitochondrial membrane. The assembly of Bax proteins in mitochondrial outer membrane results in protein-lined channels or pore formation and intensely increase its permeability that cause a dramatic loss of electrical potential in mitochondria and cytochrome c release to cytoplasm. Subsequently, released cytochrome c binds to APAF-1 to facilitate the formation of the apoptosome, a wheel shaped heptametrical complex, which can then recruit and activate pro-caspase-9. Consequently, caspase-9 activates effector caspases (caspase-3/-7) that eventually lead to apoptosis (Figure 1) [39, 40, 41].
Apoptosis signaling pathways. Abbreviations: TRADD, TNF receptor-associated death domain protein; FADD, Fas-associated death domain protein; Bid, BH3 interacting-domain death agonist; Bak, Bcl-2 homologous antagonist/killer; tBid, truncated BID; Bax, Bcl-2 associated X protein; APAF-1, apoptotic protease activating factor-1; Bcl-2, B-cell lymphoma 2, Bcl-xL; B-cell lymphoma-extra large.
The extrinsic pathway is activated through the interactions between the transmembrane death receptors of the tumor necrosis factor (TNF) superfamily and their related ligands. The TNF receptor family has common cysteine-rich extracellular domains and cytoplasmic death domains that involve in transmitting the death signal from the cell surface to the intracellular signaling pathways. Ligation of death receptors with death ligands causes conformational change in death domain and consequently recruits apoptosis-related adaptor proteins that associate with procaspase-8/-10. At this point, a death-inducing signaling complex (DISC) consisting of the death receptor, an adaptor molecule, and pro-caspase-8/−10 is formed, resulting in the auto-catalytic activation of procaspases (Figure 1). The activated form of the caspase-8/-10 enzyme, as an initiator caspase, subsequently cleaves and activates other downstream or executioner caspases [42, 43]. Finally, both apoptotic pathways result in the activation of effector caspases (caspase-3/-7) causing the cleavage of key cellular macromolecules which are required for normal cellular function. They cleave the structural proteins in the cytoskeleton and nuclear proteins such as DNA repair enzymes and activate degradative enzymes such as DNases, which together contribute to the typical morphological changes and promote cell death [44, 45].
The pathogenesis of many diseases is most closely related to inappropriate apoptosis (either too little or too much) and cancer is one of the situations where too little apoptosis happens, leading to malignant cells that highly proliferate. Defects at any points along apoptotic pathways may lead to malignant transformation of the affected cells, tumor metastasis, and resistance to anti-cancer drugs [12, 46]. Defects in Bcl-2 family of proteins and caspases are well-known chief factors to be involved in the evasion of apoptosis by tumor cells.
The Bcl-2 family of proteins consist of pro-apoptotic and anti-apoptotic proteins that act as a master regulator of initiation of apoptosis through intrinsic pathway and function chiefly at the mitochondrial level. The first protein of this family, B-cell lymphoma 2 (Bcl-2), was recognized almost 30 years ago. Currently 25 members of the Bcl-2 family have been determined and based on the presence of conserved Bcl-2 homology (BH) domains and their role in mitochondrial-mediated apoptosis, they are categorized into the following three subfamilies [47, 48]. Anti-apoptotic subgroup consisting of Bcl-2, Bcl-w, Bcl-xL, A1/Bfl-1, Mcl-1and Bcl-B/Bcl2L10 proteins contain four BH domains designated as 1–4 and inhibit the apoptosis occurrence so named pro-survival proteins. However, second group, known as apoptosis effectors, belongs to pro-apoptotic members of this family containing BH 1–3 and missing the BH4 domain. Some example of this group are Bak, Bax, and Bok/Mtd. The last group that can be considered as subdivision of pro-apoptotic proteins including Bik, Bid, Bim, Bmf, Puma, Bad, Hrk and Noxa are named “BH3-only”’ proteins as they contain only the BH3 domain. The members of this group function as initiators of apoptosis and the major mediators of the interaction with anti-apoptotic proteins [47, 49, 50]. Structural studies have determined that BH1, BH2 and BH3 areas together form a hydrophobic pocket that can be filled by the amphipathic a-helical BH3 domain of pro-apoptotic Bcl-2 proteins. Consequently, Bcl-2 family interactions regulate mitochondrial outer membrane (MOM) integrity and function and eventually onset of mitochondrial-mediate apoptosis [37, 51].
The balance disturbance of anti-apoptotic and pro-apoptotic proteins cause to dysregulated apoptosis in the affected cells. Altered expression of these proteins frequently occurs in cancers. Overexpression of anti-apoptotic proteins such as Bcl-2 or Bcl-xL occurs in a huge number of human cancers [52, 53, 54, 55]. In one study, targeted proteomic analysis have revealed the contribution of Bcl-2 overexpression to cell survival of laryngeal carcinoma (LC) though its interaction with Hsp90β and formation of Bcl-2 Hsp90β complex involving in the anti-apoptotic progression of LC [56]. In cervical cancer SiHa cells, overexpressing Bcl-2 gene, the suppression of down-regulation of HPV16 E7 and c-myc gene expression may inhibit the induction of apoptosis [57]. Besides, high levels of Bcl-2 have been reported in hematological malignancies. Various mechanisms such as gene amplification, chromosomal translocations and dysregulation of miRNAs involved in Bcl-2 RNA degradation may cause to Bcl-2 upregulation [58, 59, 60]. Furthermore, there have been a number of studies reporting the involvement of Bcl-xL anti-apoptotic protein in tumorigenesis. The increased level of Bcl-xL gene expression determined in human cancers such as colorectal cancer, breast cancer, gastric adenomas and carcinomas, hepatocellular carcinoma and prostate cancer promotes cancer cell survival [61, 62, 63, 64, 65]. In addition, several attempts have revealed the association of enhanced levels of Bcl-xL and MCL1 with the malfunction of miRNAs that usually diminish their expression such as miR-29, miR-125b, miR-193 [66, 67, 68]. Furthermore, overexpression of anti-apoptotic Bcl-2 and its close relatives have been recognized as chief components of chemoresistance [69, 70, 71, 72].
Deficiency in pro-apoptotic members of the Bcl-2 family has also been extensively studied in tumorigenesis and cancers. Pro-apoptotic gene Bim is frequently silenced in human Burkitt’s lymphoma [73, 74]. Homozygous deletion and the loss of mRNA and protein expression have also been determined in mantle cell lymphoma and renal cell carcinoma. Hence, blocking Bim expression caused by gene deletion or epigenetic silencing is mainly contributed to pathogenesis of these tumors [75, 76]. Furthermore, a number of researchers have reported that down-regulation and mutation of Bax plays a significant role in tumor resistance to apoptosis. Reduced Bax expression was reported to be correlated with acquiring resistance to 5-FU in colorectal cancer cell line and cisplatin in ovarian carcinoma [77, 78]. Sensitivity of non-small cell lung cancer to Zoledronic was also found to be Bax dependent [79]. Suppressed Bax activity is one of the major reasons of TRAIL resistance in melanoma [80, 81, 82]. Besides, inactivated mutation in gene Bax such as frameshift mutations, loss of function mutations and point mutations has been reported in colon cancers, certain hematopoietic malignancies and acquired resistance to antineoplastic drugs [83, 84, 85]. Additionally, cells lacking both Bax and Bak have confirmed to be completely resistant to truncated Bid (t-Bid)-induced cytochrome c release and apoptosis [86]. Therefore, all these abnormalities regarding Bcl-2 family protein members affect the ratio and equilibrium of pro-apoptotic to anti-apoptotic proteins which result in apoptosis dysfunction and resistance to cell death.
Caspases are a family of cysteine proteases that play crucial role in initiation and execution of apoptosis signaling pathway. During tumorigenesis, altered caspase activity or deficiency in their functions may lead to impairing apoptosis induction resulting in intense misbalance in the growth dynamics that eventually cause to decreased apoptosis, irregular growth of cancer cells and carcinogenesis [17, 87]. Human cancer cells dysregulate caspase activity through a different mechanism such as inactivated mutation, down-regulation and epigenetic alteration blocking their apoptotic activity [88, 89, 90].
Caspase-3/-7 is a critical executioner molecule in apoptotic mechanism through cleaving a variety of key cellular proteins. Many studies have demonstrated the close association of altered caspase-3 expression and various cancers such as cervical adenocarcinoma, colon cancer, glioma and breast cancer [91, 92, 93, 94, 95, 96, 97]. However, the role of caspase-3 in breast cancer patients has been an area of controversy. Meta-analysis study of 3091 cases have revealed that enhanced expression of caspase 3 is related to poor overall survival in patients [98].
As mentioned earlier, the activation of executioner caspases involves their proteolytic cleavage through mature and functioning initiator caspases. Therefore, deficiency in initiator caspases activity has been determined in cancer development and progression [99, 100]. Caspase-9 plays a critical role in the initiation phase of the intrinsic apoptosis pathway. Decreased levels of caspase-9 was reported in patients with stage II colorectal cancer associated with poor clinical outcome [90, 101]. Inhibition of caspase 9 activity has been reported to be involved in acquired cisplatin resistance in head and neck squamous cell carcinoma cells [102]. Several functional polymorphism of caspase-9 has also been determined which may influence its expression or activity and therefore alter susceptibility to cancer [103, 104, 105, 106].
Since extrinsic signaling of apoptosis mechanism after external stimulation of the death receptors is mediated through initiators caspase-8 and caspase-10, their deregulated expression or function can block death receptor signaling pathway contributing to cancer development. Expression of caspase-10 was found to be reduced in rectal cancer [107]. The cDNA array analysis has also detected the reduced co-expression of initiator caspases of extrinsic pathway, caspase 8 and 10, that might contribute to the pathogenesis of choriocarcinoma [108]. In previous investigations, expression analysis of caspase-8 has shown its down regulation in breast cancer cell lines and tumor tissues of breast cancer and revealed significant association between altered caspase-8 expression and status of HR in breast cancer patients [109]. Some studies also revealed that loss of caspase-8 expression not only cause to reduced apoptosis, but also involved in enhanced cell migration, tumor microenvironment and amplification of MYCN oncogene which highlight its contribution in carcinogenesis. The lack of caspase-8 expression happens very commonly in neuroendocrine cancers such as glioblastoma, medulloblastoma, neuroblastoma [110, 111, 112]. Furthermore, the correlation between caspase-8 with cancer prognosis, cancer stage and therapy resistance has been reported [109, 110]. Loss of initiator caspase-8 protein expression has been shown to be related with undesirable survival outcome in medulloblastoma and gynecological tumors such as ovarian and breast cancers and stage of head and neck squamous cell carcinoma (HNSCC) [113, 114].
Since inhibition of apoptosis lies at the heart of all abnormal malignant growth, metastasis and conferring therapeutic failure, targeting the apoptosis mechanism players is of vital importance in cancer therapy. In this regard, Bcl-2 family of proteins as gate-keepers of intrinsic apoptotic pathway mediating the pro- and anti-apoptotic function at the mitochondrial level and caspases as the central player in the initiation and execution of apoptotic cell death have been the center of attraction for drug discovery studies and development of anticancer agents [10, 115, 116]. Here, various therapeutic strategies designed to target them have been reviewed.
In view of the critical role of Bcl-2 proteins in regulation of mitochondrial pathway of apoptosis, targeting various members of this family have been considered amongst the most promising therapeutic strategies in cancer, a well-known dysfunctional apoptosis disorder [117]. Numerous attempts have been carried out to target the modifications in Bim expression and therefore regulate tumor cell response to apoptosis. Histone deacetylase inhibitors have been shown not only cause to up regulation of Bim in transformed cells, but also they are able to reverse silencing of Bim in cancer cells and consequently restored their sensitivity to various anticancer-agents reported in leukemia and Burkitt’s lymphoma cells [118]. The proteasome inhibitors are also recognized to promote accumulation of Bim and enhance the lethality of cancer cells [119, 120]. Another approach is through diminishing its degradation by blocking its phosphorylation. Ras/Raf/MEK/ERK pathway have a key role in regulating the expression and function of Bim through its phosphorylation and triggering its proteasomal degradation. MEK1/2 Inhibitors has been applied to disrupt this process leading to accumulation of Bim and consequently apoptosis. MEK1/2 Inhibitors are also able to modify the interaction between BIM and other Bcl-2 family members contributing to cell death [118, 121, 122].
Furthermore, structure-based drug design can be applied to discover anti-cancer agents which are able to effectively activate a pro-apoptotic Bcl-2 protein through changing its conformation promoting cell death. Bax as a unique entry point for intrinsic apoptotic signaling is another major pro-apoptotic member of the Bcl-2 family proteins which has been greatly getting attention to be targeted in order to control apoptosis. Recent studies have revealed that direct binding and activation of Bax can be a promising approach for cancer treatment. Discovery of small-molecule functioning as a Bax activators may result in selective induction of tumor cell apoptosis and overcome chemoresistance which has been proved through invitro and invivo studies [117, 123]. Besides, some studies targeting a regulatory site in Ser184 of Bax protein have determined that its agonists SMBA1–SMBA3 can effectively bind to and trigger its oligomerization through the suppression of its phosphorylation that eventually lead to cyrochrome c release and induction of apoptosis in mouse lung cancer xenografts [124]. Similar results were also reported with other Bax agonists as promising Bax direct activators in breast cancer, glioblastoma and acute myeloid leukemia cells. These drug candidates demonstrated noteworthy in vivo efficiency inhibiting xenograft tumor growth though induction of apoptotic cell death [125, 126, 127].
The next emerging strategy in cancer drug discovery was the BH3 mimetics which are able to antagonize the function of Bcl-2 and selectively kill cancer cells. In this approach, BH3 mimetics are antagonists of the anti-apoptotic Bcl-2 proteins. These small molecules acting as the competitive inhibitors induce apoptosis though binding to their hydrophobic cleft and therefore affect the interactions between anti- and pro-apoptotic proteins [128]. Various BH3 mimetics with different level of specificity and efficiency have been reported. For instance, TW-37 derived from phenolic aldehyde gossypol has been showing high affinity to bind MCL-1, Bcl-2 and Bcl-xL anti-apoptotic proteins and induce apoptosis in B-cell lymphomas and pancreatic cell lines along with decreasing tumor size in xenograft models [129, 130, 131]. As ABT-737 mimicked the BH3 domain of Bad protein, it was able to bind selectively to Bcl-2, Bcl-xL and Bcl-W. It also demonstrated poor affinity to other member of ani-apoptic proteins including MCL-1 and BFL-1. ABT-737 has shown efficacy in the killing of several cancer cell lines including leukemia, lymphoma, multiple myeloma, glioma and small cell lung cancer cell lines as well as primary samples. Also, these two inhibitors of Bcl-2 families are currently in clinical trials [132, 133, 134].
Another approach to antagonize the function of Bcl-2 anti-apoptotic proteins is focusing on the protein interaction among members of Bcl-2 family through their essential death domain. In this regard, peptide-based inhibitors have been significant achievements in targeting and regulating intracellular protein–protein interaction. Stapled peptides are synthetic, bioactive α-helical peptides locked into their bioactive structure that have brought new hope to target drug discovery [135, 136]. For instance, stabilized alpha-helix of Bcl-2 domains, SAHBs, is the peptide having the ability to penetrate leukaemia cells and trigger induction of apoptosis through its binding to the Bcl-xL which its function has been further confirmed though invivo mouse xenograft models of leukaemia [137]. Another research study has also revealed that exclusive MCL-1 stapled peptide inhibitor (MCL-1 SAHBD) can effectively resensitize cancer cells to caspase-mediated apoptosis through directly targeting of MCL-1 and suppress its inhibitory interaction with Bak protein [138].
Given the vital role of caspases in the regulation of apoptosis, it is not surprising that numerous therapeutic opportunities targeting caspase activity demonstrate great promise for the cancer treatment. Different strategies have been investigated to upregulate caspase-8 expression to restore its function in tumors. As hypermethylation of its promotor has been recognized as the main mechanism of silencing, one approach for its reactivation is using demethylation agents. Azacytidine, decitabine and nucleoside analogs promoting the demethylation of caspase-8 promotor have been successfully applied in neuroblastoma, medulloblastoma, breast cancer and lung carcinoma [139, 140]. Another interesting strategy is designing the small molecules that selectively and directly target and trigger caspase-8 activation. These small molecules has been reported to potentiate TRAIL-induced cell death [141]. Proteosomal inhibitors such as bortezomib has been also reported to increase total cellular caspase-8 levels apparently by blocking its degradation [111, 142]. Some studies have also reported that the use of interferons can elevate the caspase-8 expression through modification at transcriptional level. This strategy targeting interferon-sensitive response elements within the caspase-8 promoter leading to sensitize cancer cell to apoptotic cell death in cancer chemotherapy or irradiation therapy [139, 143, 144].
Besides, developing molecules that are able to directly activates caspase 3 have been of research interests as well. For this purpose, particular sequence of inactive procaspase-3 consisting of the triplet of aspartic acid residues has been targeted. In vitro studies have exhibited that PETCM, gambonic acid and its derivatives have the potential to effectively activate caspase 3 leading to apoptotic cell death in cancer cell lines [145, 146, 147]. Furthermore, procaspase-activating compound1 (PAC-1) has been shown to induce anticancer activity through promoting the procaspase-3 activation. PAC-1 exerted its effect by chelation of inhibitory labile zinc ions and currently is in phase I clinical trial for cancer treatment [148].
In order to sensitize tumor cells to apoptotic stimuli, caspase −9 can be also regarded as a potential target in cancer therapy. There are a wide range of molecules such as protein kinase, microRNAs and heat shock protein that have been identified to modulate caspase-9 expression and hence have been getting interest as candidates for new drug development though regulating intrinsic apoptosis in cancer cells [149, 150]. Targeting caspase-9 have been also initiated in clinical trials (phase I) against several cancer including Chronic Myeloid Leukemia, non-Hodgkin’s lymphoma, Acute Lymphoblastic Leukemia, [151, 152].
In addition, several attempts have also been conducted on cancer gene therapy focusing on apoptotic caspases. Gene transfer technologies may restore caspase gene expression resulting in selectively induction of apoptosis in various tumor types [153, 154, 155]. In this regard, caspase-9 and caspase-3 has been suggested for being used in gene therapy strategies. A main benefit of involving these caspases is that they start apoptosis at the downstream of the mitochondrial outer membrane potential and they will not be affected with the enhanced expression of anti-apoptotic of Bcl-2 proteins. The researchers conducted on inducible version of these caspases have shown encouraging results related to remarkable reduction in size of lung and gastric tumors, respectively [156, 157, 158].
Other than directly targeting of caspases, another area of research has focused on discovery of anticancer agents that trigger the caspases activity indirectly. In this approach, certain members of the inhibitors of apoptosis proteins (IAP) are targeted. IAPs are functioning as the endogenous caspase inhibitors and prevent apoptosis event by binding and inhibiting caspases through the degradation of active caspases or keeping them away from their substrate. In this regard, numerous researches have investigated various IAP inhibiting agents, accomplishing a breakthrough in cancer treatment [159, 160]. Some of these agents are acting as the IAP antagonist and exert their effect via suppression of their activity, while others are analogs of the endogenous IAP inhibitor Smac. Several Smac mimetics such as LCL161 and birinapant IAP inhibitors have currently being tested in phaseI/II in clinical trials, with promising outcomes [161, 162, 163, 164]. Besides, IAP inhibitors have been reported to exert the synergistic effect in combination chemotherapy and sensitize the cancer cells to radiotherapy which is of particular interest in malignant gliomas [165, 166, 167].
It is well established that the apoptosis dysfunction promotes the malignant transformation and renders the cancer cell resistant to treatment. Targeting apoptotic pathways in tumor cells has been a main clinical interest as the evasion of apoptosis is a hallmark of all cancers regardless of their causes or types. There are numerous defects found in apoptotic mechanism contributing to inhibition of cancer cell death. As demonstrated in this chapter, impaired activation of caspases and disturbance in the balance between anti-apoptotic and pro-apoptotic members of Bcl-2 family proteins are remarkably involved in tumorgenesis. The enhanced knowledge about their critical roles in apoptosis and cell fate in recent years has eventually made them promising therapeutic targets. This also has facilitated the generation of more specific anticancer agents and led to shifting in anticancer therapy form typical cytotoxic approaches to the designing and development of apoptosis-inducing drugs that particularly target the cancer cells. An exciting development in successful eradication of cancer cells involves structure-based drug design of small molecules such as BH3 mimetics, specifically targeting Bcl-2 proteins, that is currently being tested in clinical trials with promising effects of selective induction of tumor cell apoptosis and overcoming chemoresistance as well. These inhibitor molecules are in continuous development and a great deal of effort is required to discover the most efficient ones having more specificity for individual Bcl-2 proteins and offer maximal clinical efficacy. Besides, new therapeutic applications targeting apoptotic caspases including gene therapy approaches and small molecules suppressing inhibitors of caspases are beginning to show some promise through selectively and directly targeting of individual caspases and eventually triggering their activity. Caspase-targeted approaches, epigenetic modulators and their combinations with established therapies may have the potential to overcome the limitation of previous strategies through exerting synergistic pro-apoptotic activity and may enhance the effectiveness of conventional cancer therapy, worthy of further investigation in preclinical advanced models and clinical trial. Apoptosis-targeted therapies are now remarkably advancing and remain a promising approaches in future clinical practice of oncology.
I would like to thank Prof. Mahmood Ameen Abdulla and Dr. Jayakumar Rajarajeswaran for their valuable guidance.
There is no conflict of interest.
We believe financial barriers should not prevent researchers from publishing their findings. With the need to make scientific research more publicly available and support the benefits of Open Access, more and more institutions and funders are dedicating resources to assist faculty members and researchers cover Open Access Publishing Fees (OAPFs). In addition, IntechOpen provides several further options presented below, all of which are available to researchers, and could secure the financing of your Open Access publication.
",metaTitle:"Waiver Policy",metaDescription:"We feel that financial barriers should never prevent researchers from publishing their research. With the need to make scientific research more publically available and support the benefits of Open Access, more institutions and funders have dedicated funds to assist their faculty members and researchers cover the APCs associated with publishing in Open Access. Below we have outlined several options available to secure financing for your Open Access publication.",metaKeywords:null,canonicalURL:"/page/waiver-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\\n\\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\\n\\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\\n\\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\\n\\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\\n\\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\\n\\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\\n\\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\\n\\nDownload Waiver Request Form
\\n\\nFeel free to contact us at funders@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\\n\\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\n\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\n\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\n\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\n\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\n\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\n\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\n\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\n\nDownload Waiver Request Form
\n\nFeel free to contact us at funders@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\n\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6654},{group:"region",caption:"Middle and South America",value:2,count:5945},{group:"region",caption:"Africa",value:3,count:2452},{group:"region",caption:"Asia",value:4,count:12681},{group:"region",caption:"Australia and Oceania",value:5,count:1014},{group:"region",caption:"Europe",value:6,count:17701}],offset:12,limit:12,total:133951},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"13"},books:[{type:"book",id:"11369",title:"RNA Viruses",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11630",title:"Life in Extreme Environments - Diversity, Adaptability and Valuable Resources of Bioactive Molecules",subtitle:null,isOpenForSubmission:!0,hash:"9c39aa5fd22296ba53d87df6d761a5fc",slug:null,bookSignature:"Dr. Afef Najjari",coverURL:"https://cdn.intechopen.com/books/images_new/11630.jpg",editedByType:null,editors:[{id:"196823",title:"Dr.",name:"Afef",surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11633",title:"Pseudomonas aeruginosa - New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"a7cd19791397a27a80526be0dc54bd8a",slug:null,bookSignature:"Associate Prof. Osama Darwesh and Dr. Ibrahim Matter",coverURL:"https://cdn.intechopen.com/books/images_new/11633.jpg",editedByType:null,editors:[{id:"298076",title:"Associate Prof.",name:"Osama",surname:"Darwesh",slug:"osama-darwesh",fullName:"Osama Darwesh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11634",title:"Mycobacterium - Epidemiology, Prevention, Diagnostic, and Management",subtitle:null,isOpenForSubmission:!0,hash:"aa972af90c14eb4ef39b6dc71911f623",slug:null,bookSignature:"Dr. Awelani Mutshembele",coverURL:"https://cdn.intechopen.com/books/images_new/11634.jpg",editedByType:null,editors:[{id:"468847",title:"Dr.",name:"Awelani",surname:"Mutshembele",slug:"awelani-mutshembele",fullName:"Awelani Mutshembele"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11635",title:"Towards New Perspectives on Toxoplasma gondii",subtitle:null,isOpenForSubmission:!0,hash:"2d409a285bea682efb34a817b0651aba",slug:null,bookSignature:"Dr. Saeed El-Ashram, Dr. Guillermo Téllez and Dr. Firas Alali",coverURL:"https://cdn.intechopen.com/books/images_new/11635.jpg",editedByType:null,editors:[{id:"209746",title:"Dr.",name:"Saeed",surname:"El-Ashram",slug:"saeed-el-ashram",fullName:"Saeed El-Ashram"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11796",title:"Cytomegalovirus - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"4e442adc2808f68ccc1aeac17e6ae746",slug:null,bookSignature:"Dr. Seyyed Shamsadin Athari and Dr. Entezar Mehrabi Nasab",coverURL:"https://cdn.intechopen.com/books/images_new/11796.jpg",editedByType:null,editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11797",title:"Clostridium",subtitle:null,isOpenForSubmission:!0,hash:"4cb066b44bb8d4a8b93a627de26e3ebf",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11797.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11798",title:"Listeria monocytogenes",subtitle:null,isOpenForSubmission:!0,hash:"678ca4185133438014939804bf8a05e6",slug:null,bookSignature:"Prof. Cristina Saraiva, Dr. Sónia Saraiva and Prof. Alexandra Esteves",coverURL:"https://cdn.intechopen.com/books/images_new/11798.jpg",editedByType:null,editors:[{id:"226197",title:"Prof.",name:"Cristina",surname:"Saraiva",slug:"cristina-saraiva",fullName:"Cristina Saraiva"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11799",title:"Salmonella - Past, Present and Future",subtitle:null,isOpenForSubmission:!0,hash:"6ddb13c31fb19c6f79d19f11ceeb860e",slug:null,bookSignature:"Ph.D. Hongsheng Huang and Dr. Sohail Naushad",coverURL:"https://cdn.intechopen.com/books/images_new/11799.jpg",editedByType:null,editors:[{id:"342722",title:"Ph.D.",name:"Hongsheng",surname:"Huang",slug:"hongsheng-huang",fullName:"Hongsheng Huang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11800",title:"Cyanobacteria - Recent Advances and New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"645b037b086ec8c36af614326dce9804",slug:null,bookSignature:"Dr. Archana Tiwari",coverURL:"https://cdn.intechopen.com/books/images_new/11800.jpg",editedByType:null,editors:[{id:"186791",title:"Dr.",name:"Archana",surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11801",title:"Roundworms - A Survey From Past to Present",subtitle:null,isOpenForSubmission:!0,hash:"5edc96349630be8bb4e67170be677d8c",slug:null,bookSignature:"Dr. Nihal Dogan",coverURL:"https://cdn.intechopen.com/books/images_new/11801.jpg",editedByType:null,editors:[{id:"169552",title:"Dr.",name:"Nihal",surname:"Dogan",slug:"nihal-dogan",fullName:"Nihal Dogan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:39},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:66},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:26},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:7},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:23},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4422},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10774",title:"Model Organisms in Plant Genetics",subtitle:null,isOpenForSubmission:!1,hash:"f6624b58571ac10c9b636c5d85ec5e54",slug:"model-organisms-in-plant-genetics",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/10774.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!1,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:"protein-detection",bookSignature:"Yusuf Tutar and Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Applications of Calorimetry",subtitle:null,isOpenForSubmission:!1,hash:"8c87f7e2199db33b5dd7181f56973a97",slug:"applications-of-calorimetry",bookSignature:"José Luis Rivera Armenta and Cynthia Graciela Flores Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"2",title:"Life Sciences",slug:"life-sciences",parent:null,numberOfBooks:1081,numberOfSeries:3,numberOfAuthorsAndEditors:29045,numberOfWosCitations:42663,numberOfCrossrefCitations:25771,numberOfDimensionsCitations:62721,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"2",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editedByType:"Edited by",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editedByType:"Edited by",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10774",title:"Model Organisms in Plant Genetics",subtitle:null,isOpenForSubmission:!1,hash:"f6624b58571ac10c9b636c5d85ec5e54",slug:"model-organisms-in-plant-genetics",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/10774.jpg",editedByType:"Edited by",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!1,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:"protein-detection",bookSignature:"Yusuf Tutar and Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",isOpenForSubmission:!1,hash:"2c628f4757f9639a4450728d839a7842",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",bookSignature:"Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",editedByType:"Edited by",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,isOpenForSubmission:!1,hash:"4e868cde273d65a7ff54b1817d640629",slug:"hydrolases",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",editedByType:"Edited by",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10983",title:"Conifers",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"3e524d29fc3f95c3389efbd41463dab6",slug:"conifers-recent-advances",bookSignature:"Ana Cristina Gonçalves and Teresa Fonseca",coverURL:"https://cdn.intechopen.com/books/images_new/10983.jpg",editedByType:"Edited by",editors:[{id:"194484",title:"Prof.",name:"Ana Cristina",middleName:null,surname:"Gonçalves",slug:"ana-cristina-goncalves",fullName:"Ana Cristina Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editedByType:"Edited by",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11354",title:"Pseudocereals",subtitle:null,isOpenForSubmission:!1,hash:"3cc4fe8120cec1dd33a3cbf656231b96",slug:"pseudocereals",bookSignature:"Viduranga Y. Waisundara",coverURL:"https://cdn.intechopen.com/books/images_new/11354.jpg",editedByType:"Edited by",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11175",title:"Nearly Zero Energy Building (NZEB)",subtitle:"Materials, Design and New Approaches",isOpenForSubmission:!1,hash:"7e4718f36725ff9ce60b349b7681d7cc",slug:"nearly-zero-energy-building-nzeb-materials-design-and-new-approaches",bookSignature:"David Bienvenido-Huertas",coverURL:"https://cdn.intechopen.com/books/images_new/11175.jpg",editedByType:"Edited by",editors:[{id:"320815",title:"Dr.",name:"David",middleName:null,surname:"Bienvenido Huertas",slug:"david-bienvenido-huertas",fullName:"David Bienvenido Huertas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11360",title:"Milk Protein",subtitle:"New Research Approaches",isOpenForSubmission:!1,hash:"f40a6194bc1f209dff3846fe6e34f45b",slug:"milk-protein-new-research-approaches",bookSignature:"Narongsak Chaiyabutr",coverURL:"https://cdn.intechopen.com/books/images_new/11360.jpg",editedByType:"Edited by",editors:[{id:"76047",title:"Prof.",name:"Narongsak",middleName:null,surname:"Chaiyabutr",slug:"narongsak-chaiyabutr",fullName:"Narongsak Chaiyabutr"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10682",title:"Pathways and Challenges for Efficient Desalination",subtitle:null,isOpenForSubmission:!1,hash:"ca25e9eca70d54deb503d2663f75218c",slug:"pathways-and-challenges-for-efficient-desalination",bookSignature:"Muhammad Wakil Shahzad, Mike Dixon, Giancarlo Barassi, Ben Bin Xu and Yinzhu Jiang",coverURL:"https://cdn.intechopen.com/books/images_new/10682.jpg",editedByType:"Edited by",editors:[{id:"174208",title:"Dr.",name:"Muhammad Wakil",middleName:null,surname:"Shahzad",slug:"muhammad-wakil-shahzad",fullName:"Muhammad Wakil Shahzad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1081,seriesByTopicCollection:[{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0},{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0}],seriesByTopicTotal:3,mostCitedChapters:[{id:"29369",doi:"10.5772/32373",title:"Textile Organic Dyes – Characteristics, Polluting Effects and Separation/Elimination Procedures from Industrial Effluents – A Critical Overview",slug:"textile-organic-dyes-characteristics-polluting-effects-and-separation-elimination-procedures-from-in",totalDownloads:29434,totalCrossrefCites:125,totalDimensionsCites:312,abstract:null,book:{id:"872",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",title:"Organic Pollutants Ten Years After the Stockholm Convention",fullTitle:"Organic Pollutants Ten Years After the Stockholm Convention - Environmental and Analytical Update"},signatures:"Zaharia Carmen and Suteu Daniela",authors:[{id:"91196",title:"Prof.",name:"Carmen",middleName:null,surname:"Zaharia",slug:"carmen-zaharia",fullName:"Carmen Zaharia"},{id:"92084",title:"Dr.",name:"Daniela",middleName:null,surname:"Suteu",slug:"daniela-suteu",fullName:"Daniela Suteu"}]},{id:"35141",doi:"10.5772/28157",title:"Antibiotics in Aquaculture – Use, Abuse and Alternatives",slug:"antibiotics-in-aquaculture-use-abuse-and-alternatives",totalDownloads:19288,totalCrossrefCites:136,totalDimensionsCites:288,abstract:null,book:{id:"2052",slug:"health-and-environment-in-aquaculture",title:"Health and Environment in Aquaculture",fullTitle:"Health and Environment in Aquaculture"},signatures:"Jaime Romero, Carmen Gloria Feijoo and Paola Navarrete",authors:[{id:"72898",title:"Dr.",name:"Jaime",middleName:null,surname:"Romero",slug:"jaime-romero",fullName:"Jaime Romero"},{id:"79684",title:"Dr.",name:"Paola",middleName:null,surname:"Navarrete",slug:"paola-navarrete",fullName:"Paola Navarrete"},{id:"83411",title:"Dr.",name:"Carmen",middleName:null,surname:"Feijoo",slug:"carmen-feijoo",fullName:"Carmen Feijoo"}]},{id:"38477",doi:"10.5772/45943",title:"Lipid Peroxidation: Chemical Mechanism, Biological Implications and Analytical Determination",slug:"lipid-peroxidation-chemical-mechanism-biological-implications-and-analytical-determination",totalDownloads:13442,totalCrossrefCites:79,totalDimensionsCites:217,abstract:null,book:{id:"2553",slug:"lipid-peroxidation",title:"Lipid Peroxidation",fullTitle:"Lipid Peroxidation"},signatures:"Marisa Repetto, Jimena Semprine and Alberto Boveris",authors:[{id:"36452",title:"Dr.",name:"Marisa",middleName:"Gabriela",surname:"Repetto",slug:"marisa-repetto",fullName:"Marisa Repetto"}]},{id:"42059",doi:"10.5772/54048",title:"Adsorption Technique for the Removal of Organic Pollutants from Water and Wastewater",slug:"adsorption-technique-for-the-removal-of-organic-pollutants-from-water-and-wastewater",totalDownloads:29962,totalCrossrefCites:51,totalDimensionsCites:210,abstract:null,book:{id:"3426",slug:"organic-pollutants-monitoring-risk-and-treatment",title:"Organic Pollutants",fullTitle:"Organic Pollutants - Monitoring, Risk and Treatment"},signatures:"Mohamed Nageeb Rashed",authors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}]},{id:"41116",doi:"10.5772/51572",title:"Algal Polysaccharides, Novel Applications and Outlook",slug:"algal-polysaccharides-novel-applications-and-outlook",totalDownloads:14037,totalCrossrefCites:70,totalDimensionsCites:184,abstract:null,book:{id:"2323",slug:"carbohydrates-comprehensive-studies-on-glycobiology-and-glycotechnology",title:"Carbohydrates",fullTitle:"Carbohydrates - Comprehensive Studies on Glycobiology and Glycotechnology"},signatures:"Stefan Kraan",authors:[{id:"142720",title:"Dr.",name:"Stefan",middleName:null,surname:"Kraan",slug:"stefan-kraan",fullName:"Stefan Kraan"}]}],mostDownloadedChaptersLast30Days:[{id:"64570",title:"Banana Pseudo-Stem Fiber: Preparation, Characteristics, and Applications",slug:"banana-pseudo-stem-fiber-preparation-characteristics-and-applications",totalDownloads:9428,totalCrossrefCites:15,totalDimensionsCites:18,abstract:"Banana is one of the most well-known and useful plants in the world. Almost all the parts of this plant, that are, fruit, leaves, flower bud, trunk, and pseudo-stem, can be utilized. This chapter deals with the fiber extracted from the pseudo-stem of the banana plant. It discusses the production of banana pseudo-stem fiber, which includes plantation and harvesting; extraction of banana pseudo-stem fiber; retting; and degumming of the fiber. It also deals with the characteristics of the banana pseudo-stem fiber, such as morphological, physical and mechanical, durability, degradability, thermal, chemical, and antibacterial properties. Several potential applications of this fiber are also mentioned, such as the use of this fiber to fabricate rope, place mats, paper cardboard, string thread, tea bags, high-quality textile materials, absorbent, polymer/fiber composites, etc.",book:{id:"7544",slug:"banana-nutrition-function-and-processing-kinetics",title:"Banana Nutrition",fullTitle:"Banana Nutrition - Function and Processing Kinetics"},signatures:"Asmanto Subagyo and Achmad Chafidz",authors:[{id:"257742",title:"M.Sc.",name:"Achmad",middleName:null,surname:"Chafidz",slug:"achmad-chafidz",fullName:"Achmad Chafidz"},{id:"268400",title:"Mr.",name:"Asmanto",middleName:null,surname:"Subagyo",slug:"asmanto-subagyo",fullName:"Asmanto Subagyo"}]},{id:"69568",title:"Water Quality Parameters",slug:"water-quality-parameters",totalDownloads:9909,totalCrossrefCites:12,totalDimensionsCites:32,abstract:"Since the industrial revolution in the late eighteenth century, the world has discovered new sources of pollution nearly every day. So, air and water can potentially become polluted everywhere. Little is known about changes in pollution rates. The increase in water-related diseases provides a real assessment of the degree of pollution in the environment. This chapter summarizes water quality parameters from an ecological perspective not only for humans but also for other living things. According to its quality, water can be classified into four types. Those four water quality types are discussed through an extensive review of their important common attributes including physical, chemical, and biological parameters. These water quality parameters are reviewed in terms of definition, sources, impacts, effects, and measuring methods.",book:{id:"7718",slug:"water-quality-science-assessments-and-policy",title:"Water Quality",fullTitle:"Water Quality - Science, Assessments and Policy"},signatures:"Nayla Hassan Omer",authors:null},{id:"40180",title:"Plant Tissue Culture: Current Status and Opportunities",slug:"plant-tissue-culture-current-status-and-opportunities",totalDownloads:66452,totalCrossrefCites:43,totalDimensionsCites:89,abstract:null,book:{id:"3568",slug:"recent-advances-in-plant-in-vitro-culture",title:"Recent Advances in Plant in vitro Culture",fullTitle:"Recent Advances in Plant in vitro Culture"},signatures:"Altaf Hussain, Iqbal Ahmed Qarshi, Hummera Nazir and Ikram Ullah",authors:[{id:"147617",title:"Dr.",name:"Altaf",middleName:null,surname:"Hussain",slug:"altaf-hussain",fullName:"Altaf Hussain"}]},{id:"66996",title:"Ethiopian Common Medicinal Plants: Their Parts and Uses in Traditional Medicine - Ecology and Quality Control",slug:"ethiopian-common-medicinal-plants-their-parts-and-uses-in-traditional-medicine-ecology-and-quality-c",totalDownloads:4059,totalCrossrefCites:6,totalDimensionsCites:10,abstract:"The main purpose of this review is to document medicinal plants used for traditional treatments with their parts, use, ecology, and quality control. Accordingly, 80 medicinal plant species were reviewed; leaves and roots are the main parts of the plants used for preparation of traditional medicines. The local practitioners provided various traditional medications to their patients’ diseases such as stomachaches, asthma, dysentery, malaria, evil eyes, cancer, skin diseases, and headaches. The uses of medicinal plants for human and animal treatments are practiced from time immemorial. Stream/riverbanks, cultivated lands, disturbed sites, bushlands, forested areas and their margins, woodlands, grasslands, and home gardens are major habitats of medicinal plants. Generally, medicinal plants used for traditional medicine play a significant role in the healthcare of the majority of the people in Ethiopia. The major threats to medicinal plants are habitat destruction, urbanization, agricultural expansion, investment, road construction, and deforestation. Because of these, medicinal plants are being declined and lost with their habitats. Community- and research-based conservation mechanisms could be an appropriate approach for mitigating the problems pertinent to the loss of medicinal plants and their habitats and for documenting medicinal plants. Chromatography; electrophoretic, macroscopic, and microscopic techniques; and pharmaceutical practice are mainly used for quality control of herbal medicines.",book:{id:"8502",slug:"plant-science-structure-anatomy-and-physiology-in-plants-cultured-in-vivo-and-in-vitro",title:"Plant Science",fullTitle:"Plant Science - Structure, Anatomy and Physiology in Plants Cultured in Vivo and in Vitro"},signatures:"Admasu Moges and Yohannes Moges",authors:[{id:"249746",title:"Ph.D.",name:"Admasu",middleName:null,surname:"Moges",slug:"admasu-moges",fullName:"Admasu Moges"},{id:"297761",title:"MSc.",name:"Yohannes",middleName:null,surname:"Moges",slug:"yohannes-moges",fullName:"Yohannes Moges"}]},{id:"29764",title:"Underlying Causes of Paresthesia",slug:"underlying-causes-of-paresthesia",totalDownloads:192987,totalCrossrefCites:3,totalDimensionsCites:7,abstract:null,book:{id:"1069",slug:"paresthesia",title:"Paresthesia",fullTitle:"Paresthesia"},signatures:"Mahdi Sharif-Alhoseini, Vafa Rahimi-Movaghar and Alexander R. Vaccaro",authors:[{id:"91165",title:"Prof.",name:"Vafa",middleName:null,surname:"Rahimi-Movaghar",slug:"vafa-rahimi-movaghar",fullName:"Vafa Rahimi-Movaghar"}]}],onlineFirstChaptersFilter:{topicId:"2",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"82370",title:"Heat Shock Proteins (HSP70) Gene: Plant Transcriptomic Oven in the Hot Desert",slug:"heat-shock-proteins-hsp70-gene-plant-transcriptomic-oven-in-the-hot-desert",totalDownloads:2,totalDimensionsCites:null,doi:"10.5772/intechopen.105391",abstract:"Heat stress is considered to induce a wide range of physiological and biochemical changes that cause severe damage to plant cell membrane, disrupt protein synthesis, and affect the efficiency of photosynthetic system by reducing the transpiration due to stomata closure. A brief and mild heat shock is known to induce acquired thermo tolerance in plants that is associated with concomitant production of heat shock proteins’ (HSPs) gene family including HSP70. The findings from different studies by use of technologies have thrown light on the importance of HSP70 to heat, other abiotic stresses and environmental challenges in desserts. There is clear evidence that under heat stress, HSP70 gene stabilized the membrane structure, chlorophyll and water breakdown. It was also found that under heat stress, HSP70 decreased the malondialdehyde (MDA) content and increased the production of superoxide dismutase (SOD) and peroxidase (POD) in transgenic plants as compared to non-transgenic plants. Some reactive oxygen species (ROS) such as superoxide, hydrogen peroxide and hydroxyl radical are also synthesized and accumulated when plants are stressed by heat. Hence HSP70 can confidently be used for transforming a number of heat tolerant crop species.",book:{id:"11330",title:"Plant Response Mechanisms to Abiotic Stresses",coverURL:"https://cdn.intechopen.com/books/images_new/11330.jpg"},signatures:"Batool Fatima, Anicet Agossa Batcho, Zainab Y. Sandhu, Muhammad Bilal Sarwar, Sameera Hassan and Bushra Rashid"},{id:"82403",title:"Use of Plant Secondary Metabolites to Reduce Crop Biotic and Abiotic Stresses: A Review",slug:"use-of-plant-secondary-metabolites-to-reduce-crop-biotic-and-abiotic-stresses-a-review",totalDownloads:2,totalDimensionsCites:null,doi:"10.5772/intechopen.104553",abstract:"Plant secondary metabolites (PSM) are small molecules of organic compounds produced in plant metabolism that have various ecological functions, such as defense against pathogens, herbivores, and neighboring plants. They can also help to reduce abiotic stresses, such as drought, salinity, temperature, and UV. This chapter reviewed the ecological functions of the PSM and how people utilize these metabolites to reduce crop biotic and abiotic stresses in agriculture. Specific topics covered in this review are (1) extraction of PSM from plant parts and its application on crops; (2) screening of crop/cover crop germplasms for high PSM content and with resistance to pathogens, herbivores, and/or neighboring plants; (3) regulation of PSM biosynthesis (including plant hormones and defense activators) to increase plant readiness for defense; (4) transcriptome and genome technology improvements in the last decade leading to valuable tools to characterize differential gene expression and gene composition in a genome, and lineage-specific gene family expansion and contraction. In addition, there is a critical need to understand how the biosynthesis and release of allelochemicals occur. Filling this knowledge gap will help us to improve and encourage sustainable weed control practices in agriculture.",book:{id:"11331",title:"Secondary Metabolites - Trends and Reviews",coverURL:"https://cdn.intechopen.com/books/images_new/11331.jpg"},signatures:"Ziming Yue, Varsha Singh, Josiane Argenta, Worlanyo Segbefia, Alyssa Miller and Te Ming Tseng"},{id:"82404",title:"Nutrition of Corals and Their Trophic Plasticity under Future Environmental Conditions",slug:"nutrition-of-corals-and-their-trophic-plasticity-under-future-environmental-conditions",totalDownloads:2,totalDimensionsCites:null,doi:"10.5772/intechopen.104612",abstract:"Scleractinian corals obtain metabolic energy from their endosymbiotic autotrophic microalgae, and from remineralization of organic matter by bacteria and viruses, along with the heterotrophic food sources. The mutualistic symbiosis is generally stable but can be disrupted when environmental conditions surrounding the corals, such as increasing seawater temperature, become unfavorable to sustain each component of the holobiont. In this connection, the effects of global stressors such as climate change, and local stressors such as pollution, and their combination, are posing serious threats to the metabolic resistance of corals. However, some more resilient coral species have developed specific mechanisms to cope with fluctuating environmental conditions according to the trophic strategy (autotrophy, heterotrophy, or mixotrophy), and by modulating their energy expenditure. In this chapter, the role of nutrition in the coral symbiosis as the energetic budget for metabolic performance will be discussed, with a focus on the role of acquisition of nutrients through feeding, regulation of energy reserves (lipids, proteins, and carbohydrates), and adaptation capability in the natural environment, including the expression of heat-shock proteins (Hsps). Future environmental conditions under a combination of global changes and local impacts will also be discussed, with the aim of identifying the trophic niches of corals and geographical areas as possible refugia.",book:{id:"11342",title:"Corals - Habitat Formers From the Shallow to the Deep",coverURL:"https://cdn.intechopen.com/books/images_new/11342.jpg"},signatures:"Walter Dellisanti, Davide Seveso and James Kar-Hei Fang"},{id:"82397",title:"Gut Microbiota Potential in Type 2 Diabetes",slug:"gut-microbiota-potential-in-type-2-diabetes",totalDownloads:2,totalDimensionsCites:null,doi:"10.5772/intechopen.105616",abstract:"Appropriate metabolic regulation is vital for health. Multiple factors play important roles in maintaining the metabolic system in different physiological conditions. These factors range from intestinal metabolism of food and absorption of nutrients, pancreatic hormones and their interplay under feeding and fasting, hepatic regulation of macronutrient formation and metabolism storage of macronutrients in skeletal muscles. Intestinal metabolism of ingested food and subsequent nutrient absorption depends on the symbiotic microbial community residing in the gut. The specific ratio of different microbial phyla in the gut has proved to be extremely important for the beneficial role of the gut microbiome. The importance of gut microbiome in the regulation of metabolism has been highlighted with reports of the abnormal ratio of gut microbial community resulting in different metabolic disturbances ranging from obesity to the development of diabetes mellitus. The physiological impact of insulin on the metabolic regulation of macronutrients has recently been shown to be augmented by the secondary metabolites produced by anaerobic fermentation. The current chapter aims to highlight recent findings in the regulation of extraintestinal metabolism by gut microbiome with a specific emphasis on the physiology and pathophysiology of the pancreas in health and disease.",book:{id:"11631",title:"Gut Microbiota - Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11631.jpg"},signatures:"Shahzad Irfan, Humaira Muzaffar, Haseeb Anwar and Farhat Jabeen"},{id:"81668",title:"Biological and Molecular Effects of Pesticides on Human Health",slug:"biological-and-molecular-effects-of-pesticides-on-human-health",totalDownloads:5,totalDimensionsCites:0,doi:"10.5772/intechopen.104811",abstract:"Pesticides are widely used in agriculture and are practical and economical to improve the quality of food safety for the permanent population around the world. Even though insecticides are beneficial to cropping views, their extensive use may result in severe consequences due to their biocompatible and permanent nature. Various pesticides can cause serious health risks of direct or indirectly contaminated air, water, soil, and the general ecosystem. The effect of pesticides on blood in the mammalian cell is significant because blood can act as a target and carrier for pesticides. However, the mechanism by which they bind to biopolymers, particularly blood proteins, is not clearly understood yet. This chapter investigates the molecular effects of pesticides on biomacromolecules, especially hemoglobin.",book:{id:"11318",title:"Pesticides",coverURL:"https://cdn.intechopen.com/books/images_new/11318.jpg"},signatures:"Aida Doroudian, Mahdieh Emadi, Reza Hosseinzadeh and Parvaneh Maghami"},{id:"81209",title:"Phylogeny and Population Genetic Structure of Minke Whales Worldwide: A Review of Recent Studies",slug:"phylogeny-and-population-genetic-structure-of-minke-whales-worldwide-a-review-of-recent-studies",totalDownloads:3,totalDimensionsCites:0,doi:"10.5772/intechopen.102675",abstract:"In 1998, two species of minke whales were recognized based on the review of the morphological and genetic information available at that time: the Antarctic minke whale (Balaenoptera bonaerensis), which is restricted to the Southern Hemisphere, and the cosmopolitan common minke whale (Balaenoptera acutorostrata). Furthermore, three sub-species of the common minke whale were recognized: the North Atlantic (B. a. acutorostrata), North Pacific (B. a. scammoni) and Southern Hemisphere (B. a. subsp.). This chapter reviews the genetic studies on minke whales conducted after 1998. The review is organized by topic, e.g., those studies focused on phylogeny and other matters most relevant for taxonomy, and those focused on population genetic structure within oceanic basins most relevant for conservation and management. On the former topic, the new genetic information, whilst strongly supporting the minke whale taxonomic classification recognized in 1998, also reveals substantial genetic differentiation within the Southern Hemisphere common minke whales, with subsequent taxonomic implications. On the latter topic, results from different analytical procedures have provided information on population identification and structure in the Indo-Pacific sector of the Antarctic and western North Pacific, but they have failed to identify unequivocally any population within the North Atlantic common minke whales.",book:{id:"11335",title:"Marine Mammals",coverURL:"https://cdn.intechopen.com/books/images_new/11335.jpg"},signatures:"Luis A. Pastene, Mutsuo Goto, Mioko Taguchi and Yoshihiro Fujise"}],onlineFirstChaptersTotal:552},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:18,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 24th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:31,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:43,paginationItems:[{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82212",title:"Protein Prenylation and Their Applications",doi:"10.5772/intechopen.104700",signatures:"Khemchand R. Surana, Ritesh B. Pawar, Ritesh A. Khairnar and Sunil K. Mahajan",slug:"protein-prenylation-and-their-applications",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},overviewPagePublishedBooks:{paginationCount:31,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science\nand Technology from the Department of Chemistry, National\nUniversity of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013.\nShe relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the\nNational Institute of Fundamental Studies from April 2013 to\nOctober 2016. She was a senior lecturer on a temporary basis at the Department of\nFood Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is\ncurrently Deputy Principal of the Australian College of Business and Technology –\nKandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI)",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11669",title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",hash:"9117bd12dc904ced43404e3383b6591a",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 3rd 2022",isOpenForSubmission:!0,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11672",title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",hash:"c00855833476a514d37abf7c846e16e9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11674",title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",hash:"5d7d49bd80f53dad3761f78de4a862c6",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",hash:"69f009be08998711eecfb200adc7deca",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 26th 2022",isOpenForSubmission:!0,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12215",title:"Cell Death and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",hash:"dfd456a29478fccf4ebd3294137eb1e3",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 24th 2022",isOpenForSubmission:!0,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:43,paginationItems:[{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82212",title:"Protein Prenylation and Their Applications",doi:"10.5772/intechopen.104700",signatures:"Khemchand R. Surana, Ritesh B. Pawar, Ritesh A. Khairnar and Sunil K. Mahajan",slug:"protein-prenylation-and-their-applications",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82096",title:"An Important Component of Tumor Progression: Fatty Acids",doi:"10.5772/intechopen.105087",signatures:"Jin Wang, Qifei Wang and Guangzhen Wu",slug:"an-important-component-of-tumor-progression-fatty-acids",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82029",title:"Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety",doi:"10.5772/intechopen.104908",signatures:"Vinayak Adimule, Pravin Kendrekar and Sheetal Batakurki",slug:"synthesis-characterization-and-antimicrobial-properties-of-novel-benzimidazole-amide-derivatives-bea",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:37,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:1,group:"subseries"},{caption:"Metabolism",value:17,count:12,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:14,group:"subseries"},{caption:"Chemical Biology",value:15,count:14,group:"subseries"}],publishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"10795",title:"Plant Stress Physiology",subtitle:"Perspectives in Agriculture",coverURL:"https://cdn.intechopen.com/books/images_new/10795.jpg",slug:"plant-stress-physiology-perspectives-in-agriculture",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Mirza Hasanuzzaman and Kamran Nahar",hash:"c5a7932b74fe612b256bf95d0709756e",volumeInSeries:11,fullTitle:"Plant Stress Physiology - Perspectives in Agriculture",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",institutionURL:null,country:{name:"Bangladesh"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7999",title:"Free Radical Medicine and Biology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7999.jpg",slug:"free-radical-medicine-and-biology",publishedDate:"July 15th 2020",editedByType:"Edited by",bookSignature:"Kusal Das, Swastika Das, Mallanagouda Shivanagouda Biradar, Varaprasad Bobbarala and S. Subba Tata",hash:"083e5d427097d368a3f8a02bd6c76bf8",volumeInSeries:10,fullTitle:"Free Radical Medicine and Biology",editors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",institutionString:"BLDE (Deemed to be University), India",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8762",title:"Melatonin",subtitle:"The Hormone of Darkness and its Therapeutic Potential and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/8762.jpg",slug:"melatonin-the-hormone-of-darkness-and-its-therapeutic-potential-and-perspectives",publishedDate:"June 24th 2020",editedByType:"Edited by",bookSignature:"Marilena Vlachou",hash:"bfbc5538173f11acb0f9549a85b70489",volumeInSeries:9,fullTitle:"Melatonin - The Hormone of Darkness and its Therapeutic Potential and Perspectives",editors:[{id:"246279",title:"Associate Prof.",name:"Marilena",middleName:null,surname:"Vlachou",slug:"marilena-vlachou",fullName:"Marilena Vlachou",profilePictureURL:"https://mts.intechopen.com/storage/users/246279/images/system/246279.jpg",institutionString:"National and Kapodistrian University of Athens",institution:{name:"National and Kapodistrian University of Athens",institutionURL:null,country:{name:"Greece"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8002",title:"Tumor Progression and Metastasis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8002.jpg",slug:"tumor-progression-and-metastasis",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Ahmed Lasfar and Karine Cohen-Solal",hash:"db17b0fe0a9b6e80ff02b81a93bafa4e",volumeInSeries:8,fullTitle:"Tumor Progression and Metastasis",editors:[{id:"32546",title:"Dr.",name:"Ahmed",middleName:null,surname:"Lasfar",slug:"ahmed-lasfar",fullName:"Ahmed Lasfar",profilePictureURL:"https://mts.intechopen.com/storage/users/32546/images/system/32546.png",institutionString:"Rutgers, The State University of New Jersey",institution:{name:"Rutgers, The State University of New Jersey",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6897",title:"Biophysical Chemistry",subtitle:"Advance Applications",coverURL:"https://cdn.intechopen.com/books/images_new/6897.jpg",slug:"biophysical-chemistry-advance-applications",publishedDate:"February 19th 2020",editedByType:"Edited by",bookSignature:"Mohammed A. A. Khalid",hash:"0ad18ab382e2ffb9ff202d15282297eb",volumeInSeries:7,fullTitle:"Biophysical Chemistry - Advance Applications",editors:[{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",institutionString:"Taif University",institution:{name:"Taif University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8430",title:"Neurodevelopment and Neurodevelopmental Disorder",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8430.jpg",slug:"neurodevelopment-and-neurodevelopmental-disorder",publishedDate:"November 27th 2019",editedByType:"Edited by",bookSignature:"Michael Fitzgerald",hash:"696c96d038de473216e48b199613c111",volumeInSeries:6,fullTitle:"Neurodevelopment and Neurodevelopmental Disorder",editors:[{id:"205005",title:"Dr.",name:"Michael",middleName:null,surname:"Fitzgerald",slug:"michael-fitzgerald",fullName:"Michael Fitzgerald",profilePictureURL:"https://mts.intechopen.com/storage/users/205005/images/system/205005.jpg",institutionString:"Independant Researcher",institution:{name:"Trinity College Dublin",institutionURL:null,country:{name:"Ireland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",slug:"antioxidants",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Emad Shalaby",hash:"76361b4061e830906267933c1c670027",volumeInSeries:5,fullTitle:"Antioxidants",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby",profilePictureURL:"https://mts.intechopen.com/storage/users/63600/images/system/63600.png",institutionString:"Cairo University",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8797",title:"Adipose Tissue",subtitle:"An Update",coverURL:"https://cdn.intechopen.com/books/images_new/8797.jpg",slug:"adipose-tissue-an-update",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Leszek Szablewski",hash:"34880b7b450ef96fa5063c867c028b02",volumeInSeries:4,fullTitle:"Adipose Tissue - An Update",editors:[{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6924",title:"Adenosine Triphosphate in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6924.jpg",slug:"adenosine-triphosphate-in-health-and-disease",publishedDate:"April 24th 2019",editedByType:"Edited by",bookSignature:"Gyula Mozsik",hash:"04106c232a3c68fec07ba7cf00d2522d",volumeInSeries:3,fullTitle:"Adenosine Triphosphate in Health and Disease",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",institutionString:"University of Pécs",institution:{name:"University of Pecs",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",slug:"endoplasmic-reticulum",publishedDate:"April 17th 2019",editedByType:"Edited by",bookSignature:"Angel Català",hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",volumeInSeries:2,fullTitle:"Endoplasmic Reticulum",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7264",title:"Calcium and Signal Transduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7264.jpg",slug:"calcium-and-signal-transduction",publishedDate:"October 24th 2018",editedByType:"Edited by",bookSignature:"John N. Buchholz and Erik J. Behringer",hash:"e373a3d1123dbd45fddf75d90e3e7c38",volumeInSeries:1,fullTitle:"Calcium and Signal Transduction",editors:[{id:"89438",title:"Dr.",name:"John N.",middleName:null,surname:"Buchholz",slug:"john-n.-buchholz",fullName:"John N. Buchholz",profilePictureURL:"https://mts.intechopen.com/storage/users/89438/images/6463_n.jpg",institutionString:null,institution:{name:"Loma Linda University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Plant Physiology",value:13,count:1},{group:"subseries",caption:"Human Physiology",value:12,count:2},{group:"subseries",caption:"Cell Physiology",value:11,count:8}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1},{group:"publicationYear",caption:"2020",value:2020,count:4},{group:"publicationYear",caption:"2019",value:2019,count:5},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:301,paginationItems:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}},{id:"338856",title:"Mrs.",name:"Nur Alvira",middleName:null,surname:"Pascawati",slug:"nur-alvira-pascawati",fullName:"Nur Alvira Pascawati",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universitas Respati Yogyakarta",country:{name:"Indonesia"}}},{id:"441116",title:"Dr.",name:"Jovanka M.",middleName:null,surname:"Voyich",slug:"jovanka-m.-voyich",fullName:"Jovanka M. Voyich",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Montana State University",country:{name:"United States of America"}}},{id:"330412",title:"Dr.",name:"Muhammad",middleName:null,surname:"Farhab",slug:"muhammad-farhab",fullName:"Muhammad Farhab",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"349495",title:"Dr.",name:"Muhammad",middleName:null,surname:"Ijaz",slug:"muhammad-ijaz",fullName:"Muhammad Ijaz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Veterinary and Animal Sciences",country:{name:"Pakistan"}}}]}},subseries:{item:{id:"93",type:"subseries",title:"Inclusivity and Social Equity",keywords:"Social contract, SDG, Human rights, Inclusiveness, Equity, Democracy, Personal learning, Collaboration, Glocalization",scope:"\r\n\tThe environment is subject to severe anthropic effects. Among them are those associated with pollution, resource extraction and overexploitation, loss of biodiversity, soil degradation, disorderly land occupation and planning, and many others. These anthropic effects could potentially be caused by any inadequate management of the environment. However, ecosystems have a resilience that makes them react to disturbances which mitigate the negative effects. It is critical to understand how ecosystems, natural and anthropized, including urban environments, respond to actions that have a negative influence and how they are managed. It is also important to establish when the limits marked by the resilience and the breaking point are achieved and when no return is possible. The main focus for the chapters is to cover the subjects such as understanding how the environment resilience works, the mechanisms involved, and how to manage them in order to improve our interactions with the environment and promote the use of adequate management practices such as those outlined in the United Nations’ Sustainable Development Goals.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/39.jpg",keywords:"Anthropic effects, Overexploitation, Biodiversity loss, Degradation, Inadequate Management, SDGs adequate practices"},{id:"38",title:"Pollution",scope:"\r\n\tPollution is caused by a wide variety of human activities and occurs in diverse forms, for example biological, chemical, et cetera. In recent years, significant efforts have been made to ensure that the environment is clean, that rigorous rules are implemented, and old laws are updated to reduce the risks towards humans and ecosystems. However, rapid industrialization and the need for more cultivable sources or habitable lands, for an increasing population, as well as fewer alternatives for waste disposal, make the pollution control tasks more challenging. Therefore, this topic will focus on assessing and managing environmental pollution. It will cover various subjects, including risk assessment due to the pollution of ecosystems, transport and fate of pollutants, restoration or remediation of polluted matrices, and efforts towards sustainable solutions to minimize environmental pollution.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",keywords:"Human activity, Pollutants, Reduced risks, Population growth, Waste disposal, Remediation, Clean environment"},{id:"41",title:"Water Science",scope:"