The most famous industrial accidents worldwide – An overview [9, 10].
\r\n\tWithin this scenario, special attention needs to be devoted to financial implications, due to their pervasiveness. Nobody would question the key role that finance plays to complement the real sphere of the economy and that has increasingly attracted both academics and practitioners. As a result, traditional pillars – such as financial markets, products, and institutions – have evolved significantly, with financial innovation fueling further progress over time. The global side of the coin features – among others – financially connected markets, international financial exchanges, and financial conglomerates that provide valuable opportunities in terms of international corporate finance. On the other side, recent advances have involved a wider recourse to ESG factors, allowed forward steps towards a more inclusive financial system, and have made digital finance a must, rather than an option, even though much remains to be accomplished, for instance, to facilitate access to formal financial channels in many underdeveloped regions.
\r\n\r\n\t
\r\n\tThis book aims to examine emerging trends, new perspectives, and empirical applications that deal with globalization and sustainability. The goal is to provide a comprehensive overview of these important concepts as valuable support to successfully meet the challenges and take on the opportunities ahead. At the same time, drawing upon empirical evidence can contribute to bridging the gap between theory and practice, which also fits within the scope of this book.
The major industrial accidents are phenomena whose effects threaten the human lives, property and environment. The EU decided to solve this problem in 1982 through the legal tool known as SEVESO I that has been amended three times so far. Currently the SEVESO III Directive is valid and in 2015 Slovakia issued a law about the major industrial accident prevention as amended. These legal regulations determine the rules for handling with hazardous substances and fulfilling procedures connected with their handling procedures in the companies exceeding the amounts defined by the law. The transposition of the new SEVESO III Directive has created the necessary space for modifying the problem areas – also the risk management of the industrial processes.
The major industrial accident (MIA) prevention is a specific topic for preventing, planning and solving the crisis phenomena not only in Slovakia but also on the international level. In spite of the fact that in most EU countries, in the years 2008–2018 there was a decrease in the number of people injured in accidents at work and in fatal accidents in industrial processes, it is necessary to pay attention to this area [1, 2].
The risk management that consists of the risk assessment and risk treatment is one of the most important pillars of preventing the accident development [3]. The great amount of approaches, methods and techniques in this area make it often chaotic, however, the most substantial assumption is to understand the philosophy of assessing and managing the risks the how to implement it. The calculation mechanisms and formulae serve only as an aid for defining the risk and determining its acceptability or unacceptability. The objective of this chapter was the clarification of the procedures that will be understandable and usable [4, 5, 6].
This chapter deals with MIA prevention concerning only the SEVESO III companies. The under-threshold establishments are not taken into account.
The following information was taken into consideration for analysing the accidents:
The number of injured/dead people and damages of the property,
The accident during the validity of the SEVESO I, II and III.
The data collection process also utilised the semi-structured interviews with the employees of the Ministry of Environment of the Slovak Republic and the Slovak Environment Agency. The databases collecting the data about the MIAs according to the classification life/health, property and environment were analysed for identifying the causes and effects.
In the framework of the case study, we utilised the on-site observations and subsequently the software for simulating the consequences and impacts.
The constant increasing of the technological progress brings also development of the industrial accidents more and more frequently. The industrial accidents belong to the anthropogenic phenomena whose occurrence can be determined with a certain probability. The need of its legal adaptation became inevitable in the 1980s.
Bahr says that the accident is an unplanned development of events that lead to undesirable injuries, losses of lives, to damaging the property and environment. He also declares that it is necessary to differentiate the so called near-miss – the nuclear accident Three Mile Island can serve here as an example. During this crisis phenomenon not that big amount of radioactivity penetrated to the environment that would have threatened the lives of the citizens, however, the investigation showed a lot of shortages that drew lessons from this near-miss [7].
Marvin Rausand says that during the recent decades a lot of large accidents have drawn attention of the general public to the need of increasing the awareness about the risks that are connected with the technological systems and activities. The industrial accidents also affected the stance of the competent authorities concerning the safety in this area. The companies themselves are also aware of the need of implementing the principles of an effective prevention in the enterprises especially in connection with the high financial costs and losses of lives in the case an accident develops. The Table 1 brings examples of major accidents with hazardous substances (HS) [8].
Place of the accident | Year | Effects | Impacts |
---|---|---|---|
Seveso, Italy | 1976 | Leakage of dioxin to atmosphere | 2,000 poisoned people, environment pollution, mass evacuation |
The North Sea, Norway | 1977 | Leakage of crude oil from oil platform | Significant sea pollution |
Three Mile Island, USA | 1979 | Near-miss, a potential for leaking a larger amount of radioactivity | Without any serious impacts |
Bhopal, India | 1984 | Leakage of toxic methyl isocyanate | 3,800 dead people, 20,000 injured people, 200,000 evacuated people |
Mexico City, Mexico | 1984 | Explosion and fire of LPG container with subsequent pressure wave, | 500 dead people, material damages |
Basel, Switzerland | 1986 | Leakage of chemicals from the Sandoz plant to the Rhein river | River contamination, serious environmental damage, cross-border impacts |
Zeebrugge, Belgium | 1987 | Accident of the British tanker Herald of Free Enterprise | 209 dead people, material damages |
The North Sea, UK | 1988 | Explosion and fire on the oil platform “Piper Alpha” | 167 dead people, extensive damage |
Pasadena, USA | 1989 | Explosion and fire with subsequent pressure wave and heat radiation | 23 dead and 100 injured people |
The Baltic Sea | 1994 | Overturning the ferry Estonia | 853 dead people, serious environmental damage |
Longford, Australia | 1998 | Explosion and fire with subsequent pressure wave and heat radiation | 2 dead people, Melbourne without gas for 19days |
Brittany, France | 1999 | Sinking the tanker Erika with extensive leakage of HS to the sea | Extensive leakage of oil substances to the sea and its pollution |
Enschede, the Netherlands | 2000 | Explosion and pressure wave in the company for pyrotechnic production | 22 dead people, 1,000 injured people, more than 300 destroyed houses |
Toulouse, France | 2001 | Explosion and fire with subsequent pressure wave and heat radiation | 30 people dead, 2,000 injured people, 600 destroyed houses |
Galicia, Spain | 2002 | Sinking the tanker Prestige with extensive leakage of HS to the sea | Extensive leakage of oil substances to the sea and its pollution |
Texas, USA | 2005 | Explosion and fire with subsequent pressure wave and heat radiation | 15 dead people, 180 injured people |
Hertfordshire, Great Britain | 2005 | Explosion and fire with subsequent pressure wave and heat radiation | 43 injured people, extensive damage |
Gulf of Mexico | 2010 | Explosion of the oil rig Deepwater Horizon | 11 dead people, 17 injured people, destroyed equipment, leakage of oil slick to the sea |
Great Britain | 2013 | Explosions and a fire on a slab casting machine in a steel works | Damage to property more than 2 mil.Euros, 12 injuries |
Germany, Eltmann plant | 2017 | Explosion resulting in fire in a rolling element manufacturing plant | 1 dead, 3 critically injured, 21 at risk, 150 000 Euros damage. |
Spain | 2020 | Ammonia release in chemical establishment (upper tier) | the death of a worker, another one was critically injured, 15 workers were mildly injured |
In spite of the negative effects and impacts, these accidents give us precious information for improving the prevention effectiveness in this area.
The overview in the Table 1 was created from a file including the accidents and it should serve as a reminder that safety must never be on the second place and also the risks with a low probability bring frequently serious impacts. Macza analyses some of these accidents and the responses and perception of the society to each of them in connection with the changes of the legal regulations and other interactions [11].
In the further text we will deal only with accidents in the chemical enterprises that utilise hazardous substances in their processes.
Ostrom says in his book that several types of the primary and secondary crisis phenomena can develop in the industrial operations working with hazardous substances. They can cause an accident with the following consequence:
the leakage of a hazardous substance outside the plant (small or large),
the leakage of a hazardous substance in the plant (small or large),
the fire or explosion (small or large),
the injuries of the employees (acute, chronic),
the traffic accident in the company,
the terrorist activity,
the secondary ones (e.g. damaging the company’s reputation) [12].
The industrial accidents are connected especially with the uncontrolled leakage and spreading the hazardous substances that threat the life and health of people, damage the property and pollute the environment [13]. The hazardous substances causing the industrial accidents are of the chemical or radioactive origin and can come either from disrupting the stability of the stationary source of the hazardous substance (production of the equipment, warehouses, equipment using the hazardous substance in the process) or the mobile sources (cars or railway carriages determined for transporting the hazardous substances) [14].
In the EU framework there are different legal regulations for the nuclear and chemical premises that are subsequently transposed to the legal system of the member states. Just the development of the industrial accidents and investigating their causes aroused the efforts to adapt the given area through the legal regulations and thorough inspection in this field (see the Table 2).
Accident | Accident cause | Accident consequences | Measures |
---|---|---|---|
Bhopal (1984) Union Carbide for production of the insecticide SEVIN |
|
|
|
Seveso (1976) Chemical plant ICMESA |
|
|
|
Baia Mare (2000) Golden Mine Aurul |
|
|
|
Buncefield (2005) oils warehouse terminal |
|
|
|
The aforementioned accidents were the principal milestones for creating the safety standards of the industrial processes and application of the changes in the SEVESO Directive framework.
The afore-mentioned industrial accidents as well as a whole range of others showed the failure of the technology and operators that caused the death of a lot of people or the accident effects caused them durable consequences for their health and losses of the material values and the environment that can be of a long-term character but also irreversible. Therefore the number one issue is the prevention of such events and the implementation of the preventive measures in the industrial environment. The EU tries to regulate this environment and to determine the rules for the companies that are the most dangerous ones from the point of view of the hazardous substances concentration. The SEVESO Directive is such a tool – it has been amended several times and currently the SEVESO III Directive is valid.
The SEVESO III Directive creates the basic framework dealing with the prevention of and preparedness for overcoming the major industrial accidents of hazardous substances. Due to the rapid technological development and globalisation the updating process of this directive is under way in certain time intervals – from the SEVESO I to SEVESO III Directives. The overview of the most important updating of this directive is as follows:
Council Directive 82/501/EEC of 24 June 1982 on the major-accident hazards of certain industrial activities (known as SEVESO I Directive),
Council Directive 96/82/EC of 9 December 1996 on the control of major-accident hazards involving dangerous substances (known as SEVESO II Directive). This directive that became effective on 3rd February 1997 cancelled the SEVESO I Directive,
Directive 2012/18/EU of the European Parliament and of the Council of 4 July 2012 on the control of major-accident hazards involving dangerous substances, amending and subsequently repealing Council Directive 96/82/EC.
The unified implementation and thorough fulfilment of the SEVESO III Directive provisions in the whole EU requires a close collaboration between the corresponding bodies of all member states and the European Commission. The competent bodies responsible for the major industrial accident prevention in the EU are:
The competent institutions in the area of the major industrial accident prevention (CCA)
The UN agency – the environmental section (UNEP)
The UN economic commission (UNECE)
The office for major industrial accidents (MAHB)
The information systems of the industrial accidents are a useful tool for supporting the decision-making process of prevention and also the solution of the major industrial accident prevention. Currently these information systems contain databases that concentrate data about the emergencies and participate in preventing similar crisis phenomena. The Major Accident Hazards Bureau (MAHB) ensures the summarisation of the data form analysing the major industrial accidents in the EU. The MAHB provides the basic research and scientific support to the EU in the area of formulating, realising and monitoring the EU policies with the goal to check the risks of developing major industrial accidents.
The industrial accidents are gathered in the national and multinational databases. The most useful databases concentrating the data about the accidents are:
MARS (Major Accidents Reporting System) [15].
SPIRS (Seveso Plants Information Retrieval System) [17].
ARIA (Analyse, Recherche et Information sur les Accidents) [16].
FACTS (Failure and Accidents Technical Information System) [18].
ZEMA (Enterprise Data Management) [19].
The MARS database collects data about the major industrial accidents and near misses in the SEVESO III companies in the EU. The purpose of the database is to provide data for the statistic assessment with the goal to avoid development of such events and it also serves as a source of lessons from the accidents. Based on the in advance defined rules of the responsible institutions in the EU the EU member states provide information about the major industrial accidents and near-misses to the Joint Research Centre of EC in Ispra through the electronic database MARS. The report of the event to the MARS database is obligatory for the EU member states in the case of an event that fulfils the criteria of a major industrial accident presented in the Appendix IV of the SEVESO III Directive.
The MARS database can be utilised by the bodies of the state administration of the EU member states, the industrial and trade associations, Trade Unions, etc. Currently there is at disposal also the interactive version of the database, the so-called eMARS version that is available at the internet.
The Table 3 brings the classification according to the types of the accident and the year when the given type of accident developed during 2010–2019. As we can see the largest amount of the most serious accidents developed in 2010–2030 accidents. The lowest number of the major accidents was registered in 2019 – only one accident. However, during the last three years, not all accidents have been recorded and therefore the amount of the accidents can increase. The near-miss is another type of the accident. The highest number of the near misses was in 2012–9 accidents. The lowest amount of the near misses is registered in 2011 and 2019–0. However, the number can be changed in 2019 – similarly as in the case of the major accident. The last accident type is the so called another event. The highest number is recorded in the years 2012 and 2013–5, on the other hand there was none in 2014. In 2012 we registered the highest amount of all the aforementioned types – 42 accidents, on the contrary the lowest amount was in 2019 – only two of them. Also in the case of the year 2019, the number of the accidents can be changed due to registering other accidents.
Another directive directly connected with the SEVESO III Directive is the SPIRS database (SEVESO Plants Information Retrieval System). This database gathers especially the data identifying the SEVESO establishments (their name, address, location in the framework of the country’s territory, hazardous substances in the company and their volume, number of employees, number of citizens in the circle of 5 and 10 kilometres, the distance from the nearest water course, the company activity, etc.).
There are several other databases worldwide gathering the data about the industrial accidents. One of them is also the ARIA database formed by the Bureau for Analysis of Industrial Risks and Pollutions (BARPI) in 1992 by the French Ministry of Ecology, Sustainable Development and Energy [16].
The database FACTS is a functional one in the Netherlands and includes data about more than 23,000 industrial accidents with hazardous substances globally during the recent 90 years. It contains not only the accidents that happened but also the near-misses from the point of view of their seriousness and consequences. The most serious ones are processed in the form of reports that are available and provide a data flow for assessing the risk and preventing the failures [18].
Germany has a database for the industrial accidents called ZEMA. It comprises data about small accidents but also about serious ones affecting seriously the population, environment and property [20].
The Slovak Republic is a small country; however, the industrial accidents occurred also in its territory. The legal framework for the major industrial accidents in the SEVESO III context began to be solved after the Slovak Republic had entered the EU in 2004. In Slovakia, there are about 80 SEVESO establishment and they are divided to the categories A and B [21]. Their number can be changed due to re-categorising of the companies.
The legal regulations controlling the area of protection against the consequences of industrial accidents have an important place in the Slovak legal system. Their goal is to protect people, the environment and material values against the negative impacts of the industrial accidents but also other crisis phenomena connected with leaking hazardous substances to the air, soil or water.
The Ministry of Environment of the Slovak Republic is responsible for the preparation of the legal regulations in the area of preventing and removing the consequences of the industrial accidents, however, partial tasks in this area are also fulfilled by the Ministry of Interior of the Slovak Republic or the Ministry of Economy of the Slovak Republic. Besides the legal regulations that are generally obligatory, there are also technical standards that are only recommended.
The following legal regulations solve the area of the major industrial accident prevention:
the law No. 128/2015 Coll. about major industrial accident prevention as amended and the implementing regulations that complete this law (further the law about the Major industrial accidents (MIA) prevention),
the decree of the Ministry of Environment of the Slovak Republic No. 198/2015 Coll. that realises some provisions of the law No. 128/2015 about major industrial accident prevention as amended.
There are several subjects in the area of the MIA prevention that are mutually interactive:
State administration in the MIA prevention area,
SEVESO establishments,
Evaluators [21].
In the further text, we will characterise the individual competencies of all represented subjects that participate in the major industrial prevention in practice.
The most intensive collaboration takes place between the Ministry of Environment of the Slovak Republic, Slovak Agency of Environment and district offices in the seat of the regions.
According to the law about MIA prevention the companies are divided into two categories – the A category (the upper tier) And B category (the lower tier). The number is equal, it can change regarding to the re-categorisation of the companies from the A to the B group or including a new enterprise under the law about MIA prevention. The companies differ from each other especially in the area of the defined obligations that have to be fulfilled and the categorisation itself is realised according to the total number of the hazardous substances in the enterprise (according to the Appendix 1 in the law of MIA prevention) [21].
The threshold quantities defined in the tables in the first and second part of the law about MIA prevention relate to each enterprise. The quantities that are to be taken into account are the maximal amounts that are present or can probably be present at any moment. The hazardous substances present in the company amounting 2% or less than 2% of the corresponding threshold quantity are not taken into consideration for calculating the total present volume if their location in the company cannot cause any major industrial accident in another part of the enterprise [21].
If the company has no hazardous substance in an amount that is greater or equals the corresponding threshold quantity the following rule for defining the fact whether the company is under the law about MIA prevention is used.
The law relates to the companies of the B category, if the sum:
N = is the sum of the relative quantities of two or several hazardous substances present in the company,
qx = is the amount of the hazardous substance x (or the present hazardous substances of the same class/category) according to the part 1 or 2,
QBX = is the corresponding threshold quantity for the hazardous substances or the class/category “x” from the column 3 – part 1 or from the column 3 – part 2.
The law relates to the companies of the B category, if the sum:
N = is the sum of the relative quantities of two or several hazardous substances present in the company,
qx = is the amount of the hazardous substance x (or the present hazardous substances of the same class/category) according to the part 1 or 2,
QAX = is the corresponding threshold quantity for the hazardous substance or the class/category “x” from the column 2 – part 1 or from the column 2 – part 2 [21].
Currently there are two information systems serving for registering the industrial accidents in Slovakia – the Information System of MIA Prevention and the Information System of the Industrial Accidents. Both information systems serve for gathering, recording, listing, searching, utilising, saving and transferring information about the industrial accidents in Slovakia [14].
The risk assessment and risk management are problematic areas in the area of the MIA prevention. The existence of a whole range of the systematic procedures, methods, techniques and software means increases the uncertainty rate for comparing the results of various companies in the framework of processing the safety documentation. Therefore the scientific and research activities in this area should bring new knowledge and approaches that will bring optimal solutions.
The risk assessment and management is an interdisciplinary filed that is used in a lot of areas of the social life. Every company has to fulfil both the strategic and operational objectives in the individual sectors of its activity. The manufacturing process management, HR, management of the financial processes, quality and safety and a whole range of others belong here. The safety management as one of the non-profit company activities seems to be superfluous if there are no crisis phenomena until anything happens. The safety management is realised with an emphasis on the area of Safety and Protection of Health at Work, on the environment but also the accident prevention if we work with the hazardous substances in our processes. The risk assessment and management is the basis for implementing the preventive measures and reducing the risk of developing the crisis phenomena.
The risk assessment and management is of the key importance from the point of view of minimising the damages and losses of our interests. The protection of life, property and environment cannot be ensured without identifying the risk sources, their analysis and assessment from the point of view of undesirable effects of the hazardous substance.
In general we can say that the risk management process consisting of assessing and managing the risks can be implemented in every area of the social life. The unbinding standards in the form of the ISO standards are transposed to the legal standards of several countries worldwide. ISO 31 000 Risk Management was issued in 2019 and was implemented to the individual EU member states. This process can be implemented for the whole organisation and all processes that are realised in its framework. Sometimes the organisations evaluate and manage the risks only up to a certain level. This standard defines several principles that are to be fulfilled for the process to be effective. Its main aim is the development, implementation and continual improvement of the framework whose purpose is to integrate the risk management process to the company management, to its strategy and planning processes, management and also to the process of reporting, policies and other activities.
According to STN ISO 31 000, the risk management process represents a systematic implementation of the policies, procedures and implementation of practice for these specific activities (see the Figure 1) [23].
Risk management process [
The Figure 1 depicts the overall risk management process. In practice the organisations manage the risks through identifying, analysing and assessing them and subsequently they evaluate which means to use to reduce the unacceptable risks to an acceptable level. During the whole process they communicate and consult with the interested parties and monitor the risks and then the measures that were implemented. The standard used the term risk treatment; however, the MIA prevention area uses the term risk management.
The risk management of the industrial processes is realised especially in connection with fulfilling the legal requirements. The most frequent reason for its realisation is the employees’ protection in the framework of the safety and protection of health at work. It is more complicated to assess and manage the risks in the case of the accident development prevention, especially in those conditions that have to fulfil the requirements of the law about MIA prevention.
The risk assessment process in the industrial enterprises (according to the law about MIA prevention) consists of:
identifying the dangers (risk sources) and events that can arouse a major industrial accident,
quantifying the probability or frequency of the MIA development,
estimating the extent and seriousness of the consequences on the MIA for people’s health, environment and property, assessing the risk and evaluating the risk acceptability [21].
The risk assessment as an independent phase is part of the operator’s documentation in compliance with the law and therefore it is important for the company representatives to understand this process and to be able to realise it appropriately. The risk assessment and management can be realised by a whole range of approaches, however, the idea algorithm has certain parallels. The logic of the overall procedure is the same almost in any environment; it is different only in the points that are specific for the given area. If the person (expert) that carries it out will understand its essence and usability, he/she is able to implement this process and to choose the optimal methods and techniques of the individual steps of this approach.
The following items can be utilised for the risk assessment:
the systematic procedure,
the method or a set of techniques,
the mathematical calculation.
There are several problems that create a space for the scientific and research activity in the area of the MIA prevention. The improvement of the safety level of the SEVESO establishments in Slovakia by creating a complex model of the risk assessment of the industrial processes using the quantitative methods, with its harmonisation with the EU standards and subsequent implementation in the Slovak conditions has been the basic aim of the scientific and research activity at the FSE UNIZA during the recent years.
Based on the currently valid documents and approaches that are utilised in practice the risk management can be divided into two basic phases as follows:
the risk assessment,
the risk treatment.
These both phases of the risk management are in the mutual interaction. From the point of view of the sequence the risk assessment has to be realised first, then it is necessary to reduce the unacceptable risks and subsequently to monitor the reduced risks and all of that represents their treatment/management.
The risk assessment can be characterised as a systematic activity of an individual or a group of people (experts) whose main goal is to state the acceptability or unacceptability of the risks on the basis of criteria defined in advance. From the functional viewpoint we divide the risk assessment process to two phases:
the preparatory phase,
the realisation phase.
The preparatory phase of the risk assessment has a character of realising the decisions and preparatory activities connected with this phase whose selected outputs are connected with the individual steps of the realisation phase of the risk assessment. The realisation phase of the risk assessment is an implementation activity into which the data from the preparatory phase enter and then we implement the selected procedures, methods and techniques in the individual steps by the working group (evaluators) for assessing the risks of a particular process. A list of the acceptable and unacceptable risks that are subsequently reduced and as the residual risks they enter the process of monitoring the risk is created. Every phase has its steps that are logically interconnected. The Figure 2 depicts the whole risk assessment process.
Basic phases and steps of the risk assessment.
The quality of the preparatory phase is closely connected with the quality of the outputs that are obtained at the end of the realisation phase. It depends especially on the professionalism and assumptions of the human factor (working group) that participates both in making decisions in individual phases or steps and realising the analysis itself (expert evaluation) of the given system. The human factor is also connected with the rate of uncertainty that enters the process and can affect the analysis results and cause deviations. The highest rate of uncertainty influences the results in the risk assessment phase due to the calculations that are part of the implemented methods. These deviations are connected with the rate of knowledge of the evaluators and the information that is available at the time of the analysis.
The complex model was one of the main outputs of the FSE UNIZA’s research activity. It was created on the basis of several sequential steps using methods, approaches and tools from other projects solved at our faculty. During its creation it was necessary to define the main risk management phases of the complex model (the risk assessment and management) and then to determine the individual steps. The solution process was aimed at the risk assessment phase that was then analysed and developed. The existing systematic procedures, methods and techniques for the risk assessment in the industrial environment of the Slovak Republic and worldwide were evaluated for the necessary identification, analysis and assessment of the risk.
Based on several assessment criteria we chose some parts and calculations of the systematic approach ARAMIS, QRA method, Boolean algebra, failure tree, event tree, etc. We utilised also the results of the tasks solved in the project framework for defining the input and output parameters of the model:
analysing and synthesising the conclusions of the research of the SEVESO establishments in the form of the research report – Statistical Research of SEVESO Establishments.
the working meetings.
We selected the methods and calculation mechanisms that were then implemented in the model. The project team’s key procedure was the ARAMIS method that consists of two key methods – the Methodology for the Identification of Major Accident Hazards (MIMA) that identifies the risk sources of the major accidents and defines the highest risk potential of the equipment. The second method is called the Methodology for the Identification of Reference Accident Scenarios (MIRAS) that is a methodology for identifying the safety measures and procedures for scenarios identified by MIMAH.
The output of the whole analysis is the determination of the risk, designing suitable measures followed by an investment or organisational aim in the area of improving the operation safety.
The current software tools used for modelling the effects and impacts are on a very good level. Their main task is to simulate (based on the models) the formation and development of the accident. These simulated accidents are subsequently included to the map material which can show us the impact of the accident in dependence on time and quantity. Thanks to these software means it is possible to identify the negative effects of the accidents and take the necessary preventive measures. These simulation programmes work with various databases thanks to which we can simulate the accidents as realistically as possible.
However, it is necessary to say this software cannot create a fully accurate model of the real world and define all parameters, e.g. the structure of the terrain, location of the buildings and equipment, etc.
Today there are a lot of simulation programmes determined for simulating the accidents, e.g. ALOHA, EFFECTS, BREEZE, TEREX, ROZEX, SAVE II, etc. They can be used for various types of accidents – the simulation of explosions, fires, leakages of hazardous substances to the air, evaporation of the hazardous substances, etc. [28, 29].
In the Czech Republic they most frequently utilise the simulation programme EFFECTS but the programmes ALOHA and SAVE II are also used. Only exceptionally they make use of the programmes TEREX and ROZEX. On the contrary, in Slovakia we often utilise ALOHA.
For simulating the type scenario in the emergency plan framework we chose the software ALOHA, particularly the version 5.4.7. The faculty student Lukáš Dančo participated in realising this simulation. The software simulated a leakage of a hazardous substance from a storage container. The software MARPLOT that is directly connected with ALOHA was subsequently used as a map basis for transferring the graphical outputs from ALOHA and thus for depicting the expansion of the hazardous substance fumes.
The particular company deals with manufacturing the basic chemicals and chemical products and its basic products are the essential amino-acids. Based on exceeding the threshold value of the hazardous substance present in the company, it belongs to the B SEVESO category.
Particularly, it is the hazardous substance ammonium hydroxide – the ammonia.
The ammonia stored in this company has a concentration higher than 25%. It presents a risk for the life and health of people only in the case of leaking from the storage containers or pipelines due to releasing the gaseous ammonia bound in water. The gaseous ammonia or the anhydrous ammonia (according to the law about MIA prevention) is the hazardous substance mentioned in the law in the Appendix 1, part 2. The substance is dangerous based on its classification as the toxic and ecotoxic material.
It is a caustic liquid with bad smell. Its colour range is from colourless to yellow or slightly turbid. This substance causes failures of the central nervous system and irritates mainly the respiratory system. The gaseous ammonia released from this liquid can be easily recognised already in a low concentration thanks to its strong odour. The exposure to a high concentration of the gaseous ammonia can cause the respiratory arrests.
The leakage of this hazardous substance can develop either in the storage containers or during pumping the hazardous substance from the tank truck. We aim at the storage containers, particularly at one of the containers, during the simulation of the hazardous substance.
We chose this device due to the fact it is the only storaging object in the company with a larger amount of the hazardous substance and it is the most dangerous equipment in the enterprise.
For us to be able to simulate the type scenarios we needed to define the input data in the software. The data about the territory were defined on the basis of the approximate position of the hazardous equipment. It is a locality in the Banská Bystrica region with an altitude of 370 metres above the sea level. The time and date of the emergency was fictitious only for the needs of the simulation – 14th May 2020 at 11:00 am (Table 4).
Type of Accident | ||||
---|---|---|---|---|
Year | Major Accident | Near Miss | Other Event | Total |
2010 | 30 | 7 | 1 | 38 |
2011 | 22 | 0 | 3 | 25 |
2012 | 28 | 9 | 5 | 42 |
2013 | 21 | 7 | 5 | 33 |
2014 | 23 | 2 | 0 | 25 |
2015 | 22 | 4 | 2 | 28 |
2016 | 13 | 3 | 1 | 17 |
2017 | 12 | 1 | 1 | 14 |
2018 | 11 | 2 | 3 | 16 |
2019 | 1 | 0 | 1 | 2 |
Total | 183 | 35 | 22 | 240 |
Contingency table of accidents according to type and year [15].
Input Data | |
---|---|
Locality | Banská Bystrica region |
Altitude | 370 m above sea level |
North latitude | 48°44´ N |
East latitude | 19°14′ E |
Date of accident | 14th May 2020 |
Time of accident | 11:00 |
Hazardous substance | Ammonium hydroxide |
Concentration | 30% |
Wind speed | 4.5 m/s |
Wind direction | North-west |
Height of measuring the wind speed | 10 m |
Cloudiness | 5 – semi-cloudy |
Air temperature | 19°C |
Stability class | C |
Inversion | None |
Air humidity | 70% |
Source | Spill |
Size of the spill | 280 m2 |
Volume of the spill | 63 m3 |
Input data.
Our simulation of the emergency scenario took into account the formation of a crack on the surface of one of the containers causing a leakage of the whole volume of the ammonium hydroxide (63 m3) to the emergency tank (280 m3) during two minutes. Therefore we simulated the emergency scenario as the spill evaporation from the emergency tank (280 m3) on the basis of the defined atmospheric data.
However, it is necessary to say it was not possible to define the atmospheric data accurately as the emergency tank is located under the terrain level and this fact can affect the spreading of the gaseous ammonia. The surrounding buildings and terrain are not accurately defined in the simulation and it can also affect the spreading of the gaseous ammonia [30].
Based on the defined input data from the Table 3 the software ALOHA graphically assessed the safe zones with a different concentration of the hazardous substance – see the Figure 3.
A graphical depiction of the dangerous zones with the given concentration of the hazardous substance [
For us to understand the designations better, the following text describes the individual effects in the case of exposures to the hazardous substance to one of the zones.
ERPG 1 – Under this concentration the exposed persons can expect a low, insignificant and temporarily fugitive effect to their health within one hour or to perceive a clearly defined odour.
ERPG2 - Under this concentration the exposed persons can expect an irreversible effect to their health within one hour or less or any symptom that would reduce their ability to realise their personal protection.
ERPG 3 - Under this concentration the exposed persons can expect life-threatening effects to their health within one hour [3].
The abbreviation ppm means the amount of the volume parts of the given hazardous substance per million volume parts of the air.
Subsequently these graphical ALOHA outputs were transferred to the map material through the programme MARPLOT for the direction and reach of spreading the hazardous substance from the leakage source to be depicted. This depiction can be seen in the Figure 4.
The reach of the toxic fumes in the map [
The Figure 4 shows the zone of the direct threat in the framework of which the persons can be exposed to the life-threatening effects can be found only in the operator’s premises or it can partially hit the areas of the surrounding area. The next threat-zone covers several buildings with the services for the citizens. They are especially the bus stop, public road and staff quarters - here we can assume the occurrence of people. The last yellow zone covers only the uninhabited area where no people’s occurrence is assumed. The Table 5 shows the assumed distance of the reach of the threat-zones.
Threat-zones | |||
---|---|---|---|
Red | ERPG – 3 | 1500 ppm | 144 metres |
Orange | ERPG – 2 | 150 ppm | 487 metres |
Yellow | ERPG – 1 | 25 ppm | 1,300 metres |
The distances of the threat zones.
Our model example processed in the software ALOHA presents our attempt to show the risk of the leakage of ammonium hydroxide from the storaging premises in the company. Based on the assigned parameters we worked out a type scenario of leaking the toxic fumes of this hazardous substance. However, as it has been already mentioned, the software is not able to model certain parameters that would affect the spreading of the toxic fume – e.g. the terrain or the building layout. Certain safety systems in the company are to be taken into account, e.g. detecting the hazardous substance leakage, warning the employees in the case of the leakage and their subsequent immediate evacuation from the threatened surroundings, etc. Besides these facts there are also the emergency units that are able to affect the spreading process by their immediate response.
Based on the emergency scenario and the aforementioned facts which are not involved in the type scenario we can assume that the leaked toxic fume of the ammonium hydroxide should not exceed the company premises and to threaten the persons in the plant surroundings. We do not assume any impacts on the health of the persons and employees in the company due to their preparedness for such a scenario.
This type scenario was worked out for the needs of depicting the simulation possibilities in the software ALOHA.
Based on the analysis of the risk assessment approaches and type scenarios in the selected EU countries it is possible to say:
The idea that on the basis of the identified risks in the industrial processes it is necessary to determine the protection zone for the population, its property and the environment for the case of the MIA is essentially the same in the whole EU. However, the approach of determining these zones is different.
The analysis identified the selected member countries utilised various approaches to this area. Particularly they are the approaches based on the consequences/impacts, the approaches based more on the probability or on a combination of these two approaches.
Each country has different criteria for the risk assessment and for determining the threat zones. It would be suitable to compare these approaches and to assess them on the EU level and subsequently to choose one approach which would be compulsory and the countries would implement it to their legal environment.
We would like to recommend utilising one type of software for modelling and simulating the type scenarios in all EU member states. Although the majority of the software process is based on the basic physical dispersion models, their outputs and thus the distances of the threat zones are frequently not identical. The ALOHA software is a complex tool.
The MIA prevention is one of the assumptions of ensuring the civil safety in the framework of the expanding technological development. The number and effects of the hazardous substances change permanently and therefore the risk assessment and the subsequent risk treatment/management in the industrial processes is the basic prevention principle. The MIA prevention is a complex and interdisciplinary area that is involved both in the European directives and in the regulations of the EU member states that transpose these requirements to their legal environment. In fact it is a tool that is an important attribute during processing the safety documentation of the SEVESO establishment.
Our complex model is based on the routine procedures and provides a broader interface for its implementation. Its verification confirmed the possibility to utilise the methodology especially in the SEVESO establishment by the specialist for the MIA prevention [32, 33]. In spite of the fact, the new law does not define a unified methodology of the risk assessment; the effort of the EU is oriented on creating a unified approach. The advantage of such a procedure would be the possibility of comparing the results of the SEVESO establishments if the same methodology was used.
The main benefit of this article is a complex analysis of the MIA prevention that is created by the legal environment (regulations and technical standards), by the participating parties (the state administration bodies, SEVESO establishments, etc.). The processes that are under way (the managerial and technical ones) and the methods and tools that are utilised (the information systems, methods and techniques of the risk assessment, etc.) both from the EU and the Slovak Republic’s point of view. The area of the MIA prevention system is analysed and summarised in this work for the first time since the adoption of the new SEVESO III Directive and the subsequent adoption of the new law about the MIA prevention (2015) in the Slovak Republic.
Our main aim in this study was to show the importance of the MIA prevention. In spite of the fact the preventive measures are increased, its amount does not decrease and it can be caused mainly by the increasing number of the enterprises and the hazardous substances (the new ones) used. The prevention improvement has a direct impact on making the occupational safety of the company but also the public in its close surroundings more effective [31, 32, 33]. The company is able to process the risk assessment and subsequently to model it into the visual form better by using the structured procedures and utilising the available software (e.g. ALOHA).
The insufficient information occurring in individual database systems is the possible limitation. The identified causes of the accident and its consequences are often processed insufficiently and it is impossible to identify them. The limitation of the ALOHA system is the extent of its utilisation in the area of spreading the hazardous substances and it is a problem to model the fires and explosions.
Regarding to the created procedures for the risk assessment it would be suitable to integrate the calculation mechanisms to individual steps of the risk assessment. It would be also suitable to aim at utilising the tree methods for determining the causes and effects, especially by using the bow-tie diagrams. Another opportunity is also to create the corresponding methods of the risk assessment for the domino effects or zoning and permission activities.
This article was created as a one of research project outcomes VEGA 1/0581/19 Stating the Social and Individual Risk of Employees and Public Resulting from Impacts of the Domino Effects Caused by Industrial Accidents and Methods of Reducing their Possible Escalation.
High-performance photodetectors (PDs) are key components in optical systems and microwave photonics applications. Examples include radio telescope arrays, optical fiber communication systems and optically controlled phased array radar. Over the past several decades, the design principles of PDs and their technologies have become well developed, as various structures and fabrication/processing strategies have been established. Overall, the main types of PDs include
The VPD comprises either the
Due to broad and significant military and civilian applications, research on infrared detection and infrared photodetectors has intensified. In past decades, work on developing the operating temperature and spectral sensitivity capabilities of infrared photodetectors have become significant with the rapid development of photoelectric materials, for example, mercury cadmium telluride (HgCdTe) ternary alloys. Since the first synthesis of HgCdTe materials [14], HgCdTe infrared detectors with variable wavelength response have been manufactured by varying the alloy composition [15]. The amount of cadmium in the alloy can be selected in order to tune the bandgap which in turn determines the optical absorption of the material in the desired infrared range spanning the shortwave infrared to the very long wave infrared. As reported in [16, 17], HgCdTe infrared detectors with low frequency noise and high R0A product in the long wavelength spectral region were demonstrated at liquid nitrogen temperatures. As a result of large optical coefficients, more than 70% quantum efficiency has been achieved in HgCdTe infrared photodetectors [18].
\nAlthough HgCdTe is considered as an ideal material providing high degrees of freedom in infrared detector design, the difficulty in the fabrication and integration of such narrow bandgap materials (0–1.5 eV) is one practical limitation toward developing large-scale array applications [15]. Alternatively, photodetectors employing quantum wells in wide bandgap semiconductors (e.g., III-nitrides) were studied, such as, the so-called quantum well infrared photodetectors (QWIPs). Taking advantage of the artificial quantum well structure, the photocurrent is derived from optical absorption due to intersubband transitions involving many interacting and quantum-confined electrons. Based on previous theoretical and experimental investigations [19, 20, 21, 22], Levine et al. [23] demonstrated the first QWIP, achieving a high peak responsivity at a wavelength of 10.8 μm. Thereafter, QWIPs were extensively explored [24, 25, 26, 27, 28] and related applications were developed [29, 30, 31].
\nHowever,
Although various structures have been proposed and experimentally characterized, the bandwidth-efficiency product of conventional VPDs are limited due to the trade-off between quantum efficiency and bandwidth, which imposes a limit on the speed and sensitivity for photonic applications. For VPDs, increasing the thickness of the PD absorption layer offers the advantages of high quantum efficiency but suffers from a narrow bandwidth. Fortunately, the edge-coupled WGPD has been widely investigated as a promising approach to overcome the bandwidth-efficiency trade-off found in the VPD. The structure of the WGPD permits the bandwidth and efficiency to be specified almost independently because the quantum efficiency is determined by the waveguide length instead of the absorption layer thickness. However, the optical waveguide structure of the WGPD results in a low optical coupling efficiency [38], which is mainly caused by the mode mismatch between waveguide and optical fiber. In practice, efficient coupling is usually enhanced by a mode field converter [39]. Accordingly, depending on the structural configuration, WGPDs can be divided into mushroom-WGPDs and TWPDs.
\nAs reported in [40], a bandwidth of 28 GHz and an efficiency of 25% have been achieved by the first ever high-speed edge-coupled WGPD. In 1991, WGPDs with double-core multimode waveguide structures were proposed to address the coupling problem [41, 42]. The calculated coupling efficiency of the WGPD having such a structure can exceed 80% [43], which is regarded as a breakthrough in WGPDs for practical applications. By combining the structures of the waveguide and photodiode, the waveguide-fed photodiode (WG-fed-PD) is another design innovation to boost the coupling efficiency of the edge-coupled WGPD. Besides, the WG-fed-PD is ideal for implementation in optoelectronic integrated circuits. Previously, 70-GHz and 100-GHz photodetectors based on WG-fed-PD have been reported in [44, 45], respectively. Since WGPDs are categorically lumped devices, their bandwidths are limited by the RC time introduced by the parasitic capacitances and resistances. Kato et al proposed a new structure, which is the so-called the mushroom-WGPD having cladding layers that are wider than the core layer [46]. In such a structure, the capacitance as well as contact resistance can be reduced to obtain a larger bandwidth. In [47], a mushroom-WGPD with a bandwidth-efficiency product of 55 GHz was demonstrated. Furthermore, the distributed-element TWPD was proposed to overcome the RC bandwidth limitation of the WGPD. Although the structures of TWPD and WGPD are similar, the electrical properties of these two photodetectors are essentially different. Therefore, the TWPD bandwidth is mainly limited by the mismatch of the optical wave and microwave propagation velocities rather than the RC time delay.
\nAs early as 1990, the design concept of the TWPD was reported by Taylor et al. [48], and a velocity-matched
As stated earlier, it is possible to mitigate the limited bandwidth-efficiency product in VPDs by means of increasing the length of the optical paths while retaining the thickness of the absorption layer. Thus, the resonant-cavity-enhanced photodetector (RCE-PD) was put forth as an alternative method to solve the trade-off conundrum between efficiency and bandwidth. Since the 1990s, a family of RCE-PDs was proposed, in which the photophysical performance was enhanced by placing the VPD within a Fabry-Perot resonator [55]. Since the photodiode elements incorporated inside the resonator are conventional VPDs, it should be noted that the electrical parameters of the RCE-PD, such as, the bandwidth, and dark and saturation currents, will not be enhanced. Based on microring resonators, Abaeiani et al. presented a new structure called the RCE-WGPD or microring PD (MRPD) [56], taking advantage of both the RCE-PDs and WGPDs. With such a structure, selective wavelength detection as well as a high efficiency-bandwidth product can be achieved. Without the mirrors used in traditional RCE-PDs, the MRPDs are suitable for planar lightwave circuit integration. Various photo-sensitive devices based on MRPDs were reported in [57, 58, 59]. Moreover, the RCE-PDs based on grating were also presented in [60, 61, 62]. Due to the advantage of ultimate sensitivity combined with excellent timing accuracy, single-photon detectors, especially the single-photon avalanche diodes (SPADs), are important [63, 64]. As reported in [65, 66], the first RCE-SPAD was fabricated on a reflecting silicon-on-insulator (SOI) substrate.
\nBy adopting micro/nanostructures, photon-material interactions can be enhanced to address the trade-off between speed (bandwidth) and efficiency [67, 68]. The low-dimensional structures are able to control light for further interaction with the absorbing materials, excite the lateral propagation mode, and reduce surface reflection. Recently, silicon SPADs incorporating photon-trapping nanostructures were demonstrated [69]. Through diffraction of the vertically incident photons into the horizontal waveguide mode, the photons are trapped in the inverted pyramidal thin-film, and the absorption length is significantly increased to enhance the photon detection efficiency while retaining a low timing jitter. Similarly, a photon-trapping photodiode with micron- and nanoscale holes has demonstrated high-speed/high-efficiency performance [70], achieving an ultrafast impulse response of 30 ps FWHM (full-width at half-maximum), and a high efficiency of more than 50%. Another alternative technology being exploited to realize light-trapping in thin-film PDs is plasmonic nanostructures [71, 72, 73, 74]. Unlike the photon-trapping mechanism enabled by micro/nanoholes, the metallic nanoparticles in plasmonic nanostructures act as sub-wavelength scattering centers, which allow coupling of the incident light into the semiconductor.
\nWith the development of advanced nanofabrication technologies, photodetectors with integrated nanowires, i.e., nanowire PDs, have been realized and studied extensively [75, 76, 77, 78, 79]. In particular, several demonstrations of high-speed nanowire PDs were reported. In [80], a photoconductor with intersecting InP nanowires was demonstrated to obtain a pulse response of 14 ps FWHM at 780-nm wavelength irradiation. Compared with using bare core nanowires, higher response was achieved in MSM PDs using Schottky-contacted GaAs/AlGaAs core/shell nanowires [81]. In [82], nanopillar-based APDs have exhibited a 200-GHz gain bandwidth product at 1060-nm illumination.
\nThis chapter introduces the main types of PD structures including the Schottky and PIN PDs, APDs, MSM PDs, and heterojunction phototransistors. Vertically-illuminated PDs have inherently low bandwidth-efficiency products but have been mitigated by new innovations in QWIP, edge-coupled, RCE and nanostructure, designs. Since the 1990s, RCE and WG PDs have been explored to address the bandwidth-quantum efficiency trade-off. RCE-SPADs have been recently developed for the ultimate in sensitivity while maintaining a low timing jitter. CMOS- and lithography-compatible processes have been adopted in the design of SOI-based SPADs. Photons can be diffracted, guided and absorbed in different pixels, especially for tightly-patterned silicon photomultipliers. Nanostructured materials and nanoplasmonics have been exploited for enhanced photon trapping, coupling and absorption in MSM PDs and APDs, for the highest bandwidth-efficiency product.
\nOur books are published online and are accessible for free. However, if you are interested in ordering your hardcover copy, you can do so by contacting our Print Sales Department at orders@intechopen.com. All IntechOpen books are printed on demand in full-colour and delivered in signature packaging through free DHL Express delivery. A selection of our books in soft cover is also available through Amazon.
',metaTitle:"Order Print Copies",metaDescription:"Our books are published online and are accessible for free. However, if you are interested in ordering your printed copy, you can do so by contacting our Print Sales Department at orders@intechopen.com.\n\nOur hardcover books are carefully designed and printed on wood-free premium quality paper.\n\nThe paper size is 155 mm x 225 mm (6.1 X 8.8 inches).",metaKeywords:null,canonicalURL:"/page/order-print-copies",contentRaw:'[{"type":"htmlEditorComponent","content":"InTechOpen contributors can order print books at a special price ranging from:
\\n\\nFor a quote please contact us directly at orders@intechopen.com The quote will be sent to you within 1-2 business days.
\\n\\nAll of the books and chapters can be browsed online. To obtain InTechOpen's full book catalogue in PDF, please contact us.
\\n\\n\\n\\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\\n\\nPrint copies of our publications are most often purchased as individual purchases by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions. Our books are available at our direct Print Sales Department and through selected representatives throughout the world.
\\n\\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\\n\\nASEAN - Books International
\\n\\nChina Publishers Services Ltd - CPS
\\n\\nMallory International Ltd
\\n\\nFor partnership opportunities, please contact orders@intechopen.com.
\\n\\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add a Book Value-Added Tax of 5%. Institutions and companies registered as VAT taxable entities in their own EU member state, will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'InTechOpen contributors can order print books at a special price ranging from:
\n\nFor a quote please contact us directly at orders@intechopen.com The quote will be sent to you within 1-2 business days.
\n\nAll of the books and chapters can be browsed online. To obtain InTechOpen's full book catalogue in PDF, please contact us.
\n\n\n\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\n\nPrint copies of our publications are most often purchased as individual purchases by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions. Our books are available at our direct Print Sales Department and through selected representatives throughout the world.
\n\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\n\nASEAN - Books International
\n\nChina Publishers Services Ltd - CPS
\n\nMallory International Ltd
\n\nFor partnership opportunities, please contact orders@intechopen.com.
\n\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add a Book Value-Added Tax of 5%. Institutions and companies registered as VAT taxable entities in their own EU member state, will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{regionId:"4",sort:"featured,name"},profiles:[{id:"58592",title:"Dr.",name:"Arun",middleName:null,surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58592/images/1664_n.jpg",biography:"Arun K. Shanker is serving as a Principal Scientist (Plant Physiology) with the Indian Council of Agricultural Research (ICAR) at the Central Research Institute for Dryland Agriculture in Hyderabad, India. He is working with the ICAR as a full time researcher since 1993 and has since earned his Advanced degree in Crop Physiology while in service. He has been awarded the prestigious Member of the Royal Society of Chemistry (MRSC), by the Royal Society of Chemistry, London in 2015. Presently he is working on systems biology approach to study the mechanism of abiotic stress tolerance in crops. His main focus now is to unravel the mechanism of drought and heat stress response in plants to tackle climate change related threats in agriculture.",institutionString:null,institution:{name:"Indian Council of Agricultural Research",country:{name:"India"}}},{id:"4782",title:"Prof.",name:"Bishnu",middleName:"P",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4782/images/system/4782.jpg",biography:"Bishnu P. Pal is Professor of Physics at Mahindra École\nCentrale Hyderabad India since July 1st 2014 after retirement\nas Professor of Physics from IIT Delhi; Ph.D.’1975 from IIT\nDelhi; Fellow of OSA and SPIE; Senior Member IEEE;\nHonorary Foreign Member Royal Norwegian Society for\nScience and Arts; Member OSA Board of Directors (2009-\n11); Distinguished Lecturer IEEE Photonics Society (2005-\n07).",institutionString:null,institution:{name:"Indian Institute of Technology Delhi",country:{name:"India"}}},{id:"69653",title:"Dr.",name:"Chusak",middleName:null,surname:"Limsakul",slug:"chusak-limsakul",fullName:"Chusak Limsakul",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Prince of Songkla University",country:{name:"Thailand"}}},{id:"23804",title:"Dr.",name:"Hamzah",middleName:null,surname:"Arof",slug:"hamzah-arof",fullName:"Hamzah Arof",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/23804/images/5492_n.jpg",biography:"Hamzah Arof received his BSc from Michigan State University, and PhD from the University of Wales. Both degrees were in electrical engineering. His current research interests include signal processing and photonics. Currently he is affiliated with the Department of Electrical Engineering, University of Malaya, Malaysia.",institutionString:null,institution:{name:"University of Malaya",country:{name:"Malaysia"}}},{id:"41989",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"East China University of Science and Technology",country:{name:"China"}}},{id:"33351",title:null,name:"Hendra",middleName:null,surname:"Hermawan",slug:"hendra-hermawan",fullName:"Hendra Hermawan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/33351/images/168_n.jpg",biography:null,institutionString:null,institution:{name:"Institut Teknologi Bandung",country:{name:"Indonesia"}}},{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRglaQAC/Profile_Picture_1626411846553",biography:"Hiroshi Ishiguro is an award-winning roboticist and innovator. As the Director of the Intelligent Robotics Laboratory, which is part of the Department of Systems Innovation in the Graduate School of Engineering Science at Osaka University, Japan, Ishiguro concentrates on making robots that are similar as possible to humans to understand the human species. A notable project of his laboratory is the Actroid, a humanoid robot with a lifelike appearance and observable behavior such as facial movements. (Sources: http://www.geminoid.jp/en/index.html, https://en.wikipedia.org/wiki/Hiroshi_Ishiguro)",institutionString:null,institution:{name:"Osaka University",country:{name:"Japan"}}},{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Chiayi University",country:{name:"Taiwan"}}},{id:"61581",title:"Dr.",name:"Joy Rizki Pangestu",middleName:null,surname:"Djuansjah",slug:"joy-rizki-pangestu-djuansjah",fullName:"Joy Rizki Pangestu Djuansjah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61581/images/237_n.jpg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"94249",title:"Prof.",name:"Junji",middleName:null,surname:"Kido",slug:"junji-kido",fullName:"Junji Kido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yamagata University",country:{name:"Japan"}}},{id:"12009",title:"Dr.",name:"Ki Young",middleName:null,surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12009/images/system/12009.jpg",biography:"Http://m80.knu.ac.kr/~doors",institutionString:null,institution:{name:"National Cheng Kung University",country:{name:"Taiwan"}}},{id:"132595",title:"Prof.",name:"Long",middleName:null,surname:"Wang",slug:"long-wang",fullName:"Long Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Peking University",country:{name:"China"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6630},{group:"region",caption:"Middle and South America",value:2,count:5913},{group:"region",caption:"Africa",value:3,count:2404},{group:"region",caption:"Asia",value:4,count:12563},{group:"region",caption:"Australia and Oceania",value:5,count:1009},{group:"region",caption:"Europe",value:6,count:17574}],offset:12,limit:12,total:12563},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"5,6,12,13,18"},books:[{type:"book",id:"11645",title:"Neural Tube Defects",subtitle:null,isOpenForSubmission:!0,hash:"08d6ba70d97767769a97cfeeb52dac78",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11645.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11605",title:"Bamboo",subtitle:null,isOpenForSubmission:!0,hash:"378d957561b27c86b750a9c7841a5d18",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11605.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11649",title:"Carnivora",subtitle:null,isOpenForSubmission:!0,hash:"cfe96fa2ecf64b22057163f9896dc476",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11649.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11616",title:"Foraging",subtitle:null,isOpenForSubmission:!0,hash:"955b60bb658c8d1a09dd4efc9bf6674b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11616.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11650",title:"Aquifers",subtitle:null,isOpenForSubmission:!0,hash:"2a7acb5c7fbf3f244aefa79513407b5e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11650.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11369",title:"RNA Viruses",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11794",title:"Coconut Cultivation",subtitle:null,isOpenForSubmission:!0,hash:"48e1cb42a4162f64cae3a2e777472f21",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11794.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11809",title:"Lagomorpha",subtitle:null,isOpenForSubmission:!0,hash:"1e8fd5779205c16e5797b05455dc5be0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11809.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11797",title:"Clostridium",subtitle:null,isOpenForSubmission:!0,hash:"4cb066b44bb8d4a8b93a627de26e3ebf",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11797.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11792",title:"Insects as Food",subtitle:null,isOpenForSubmission:!0,hash:"4f553a9813d17305dcd47eb334670001",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11792.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12150",title:"Postharvest Technology",subtitle:null,isOpenForSubmission:!0,hash:"12b94a90c515bee6061c08c62c40b29d",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12150.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:25},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:19},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:12},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:128},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:3},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:148},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4387},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"821",title:"Power Engineering",slug:"mechanical-engineering-power-engineering",parent:{id:"121",title:"Mechanical Engineering",slug:"mechanical-engineering"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:13,numberOfWosCitations:1,numberOfCrossrefCitations:5,numberOfDimensionsCitations:8,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"821",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7766",title:"Rotating Machinery",subtitle:null,isOpenForSubmission:!1,hash:"4a5842ccd2018c329ea55e152e1545fc",slug:"rotating-machinery",bookSignature:"Getu Hailu",coverURL:"https://cdn.intechopen.com/books/images_new/7766.jpg",editedByType:"Edited by",editors:[{id:"250634",title:"Ph.D.",name:"Getu",middleName:null,surname:"Hailu",slug:"getu-hailu",fullName:"Getu Hailu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"65843",doi:"10.5772/intechopen.84761",title:"Straight-Bladed Vertical Axis Wind Turbines: History, Performance, and Applications",slug:"straight-bladed-vertical-axis-wind-turbines-history-performance-and-applications",totalDownloads:2743,totalCrossrefCites:4,totalDimensionsCites:6,abstract:"Wind turbine is a kind of rotating machinery. Although the horizontal axis wind turbine (HAWT) is the most popular wind turbine, the vertical axis wind turbine (VAWT) with the main advantages of smart design, novel structure, and wind direction independence receives more and more attention in small-scale wind power market. The straight-bladed VAWT (SB-VAWT) is one of the most researched and studied VAWTs. In this chapter, the historical development of the SB-VAWT will be briefly reviewed firstly. Then the aerodynamic models for the turbine design and performance analysis will be introduced. Finally, the types of traditional and new SB-VAWT and their characteristics and main utilizations will be introduced.",book:{id:"7766",slug:"rotating-machinery",title:"Rotating Machinery",fullTitle:"Rotating Machinery"},signatures:"Yan Li",authors:[{id:"277795",title:"Prof.",name:"Yan",middleName:null,surname:"Li",slug:"yan-li",fullName:"Yan Li"}]},{id:"67029",doi:"10.5772/intechopen.83794",title:"Methodology for Abrasive Wear Evaluation in Elevator Stage Centrifugal Pump Impellers",slug:"methodology-for-abrasive-wear-evaluation-in-elevator-stage-centrifugal-pump-impellers",totalDownloads:752,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"The abrasion resistance of the impellers depends on the characteristics of the materials used in their manufacture. In this work, a methodology is proposed for the evaluation of the abrasive wear of the plates of the centrifugal pump impellers, used in the gross water infrastructure station (GWIS) of sedimentary rivers, due to the sediment load variation and the river fluviometric dimension. In order to determine the wear mode and the relationship of the material-specific wear coefficient (K), due to the sediment concentration, a rotating ball abrasometer test was performed on SAE 8620, gray cast iron (GCI), and nodular cast iron (NCI), used in the manufacture of impellers. As an abrasive suspension, the concentrations of 1, 2, 3, 5, and 10 g L−1 of sediment were used in distilled water. The wear volume as a function of the relative velocity of the mixture in relation to the impeller blades was estimated mathematically. The results show that: i) The abrasive capacity of the sediments in different concentrations; ii) SAE 8620 steel was more resistant to abrasive wear; and iii) the rotational control of the pump as a function of sediment concentration and river level showed the possibility of reducing wear by 30%.",book:{id:"7766",slug:"rotating-machinery",title:"Rotating Machinery",fullTitle:"Rotating Machinery"},signatures:"Rodrigo O.P. Serrano, José G. do V. Moreira, Ana L.P. de Castro, Maria A. Pinto, Edna M. de F. Viana and Carlos B. Martinez",authors:[{id:"275910",title:"Ph.D.",name:"Rodrigo",middleName:null,surname:"Serrano",slug:"rodrigo-serrano",fullName:"Rodrigo Serrano"},{id:"281555",title:"Dr.",name:"José",middleName:null,surname:"Moreira",slug:"jose-moreira",fullName:"José Moreira"},{id:"281557",title:"Dr.",name:"Ana",middleName:"Letícia Pilz",surname:"Castro",slug:"ana-castro",fullName:"Ana Castro"},{id:"281558",title:"Dr.",name:"Edna",middleName:null,surname:"Viana",slug:"edna-viana",fullName:"Edna Viana"},{id:"281559",title:"Dr.",name:"Maria",middleName:null,surname:"Pinto",slug:"maria-pinto",fullName:"Maria Pinto"},{id:"281560",title:"Dr.",name:"Calos",middleName:null,surname:"Martinez",slug:"calos-martinez",fullName:"Calos Martinez"}]},{id:"69828",doi:"10.5772/intechopen.83828",title:"Uncertainty Analysis Techniques Applied to Rotating Machines",slug:"uncertainty-analysis-techniques-applied-to-rotating-machines",totalDownloads:746,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"This chapter presents the modeling procedure, numerical application, and experimental validation of uncertain quantification techniques applied to flexible rotor systems. The uncertainty modeling is based both on the stochastic and fuzzy approaches. The stochastic approach creates a representative model for the flexible rotor system by using the stochastic finite element method. In this case, the uncertain parameters of the rotating machine are characterized by homogeneous Gaussian random fields expressed in a spectral form by using the Karhunen-Loève (KL) expansion. The fuzzy approach uses the fuzzy finite element method, which is based on the α-level optimization. A comparative study regarding the numerical and experimental results obtained from a flexible rotor test rig is analyzed for the stochastic and fuzzy approaches.",book:{id:"7766",slug:"rotating-machinery",title:"Rotating Machinery",fullTitle:"Rotating Machinery"},signatures:"Fabian Andres Lara-Molina, Arinan De Piemonte Dourado, Aldemir Ap. Cavalini and Valder Steffen",authors:[{id:"274498",title:"Prof.",name:"Valder",middleName:null,surname:"Steffen Jr",slug:"valder-steffen-jr",fullName:"Valder Steffen Jr"},{id:"274503",title:"Dr.",name:"Aldemir Ap.",middleName:null,surname:"Cavalini Jr",slug:"aldemir-ap.-cavalini-jr",fullName:"Aldemir Ap. Cavalini Jr"}]},{id:"66712",doi:"10.5772/intechopen.85877",title:"Development and Control of Generator-Converter Topology for Direct-Drive Wind Turbines",slug:"development-and-control-of-generator-converter-topology-for-direct-drive-wind-turbines",totalDownloads:812,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"In this chapter, a new topology for Direct-Drive Wind Turbines (DDWTs) with a low-voltage generator design is presented in order to eliminate the required dc-bus capacitors or dc-link inductors. In the presented topology, the grid-side converter is replaced by a boost Current Source Inverter (CSI) therefore removing the need for the dc-bus electrolytic capacitors which results in increasing the system lifetime. In the developed topology, the synchronous inductance of the generator is utilized. This facilitates the elimination of the intrinsically required dc-link inductor in the CSI which further contributes to a reduction in the overall system weight and size. The boost CSI is capable of converting a low dc voltage to a higher line-to-line voltage. This results in the implementation of a low-voltage generator for DDWTs. The feasibility of the presented low-voltage generator is investigated through Finite Element (FE) computations. In this chapter, a modified 1.5 MW low-voltage generator for the proposed topology is compared with an existing 1.5 MW Permanent Magnet (PM) synchronous generator for DDWTs. The feasibility of the presented topology of generator-converter for DDWTs is verified through simulations and laboratory tests. Furthermore, the controls developed for the developed wind turbine topology is also presented in this chapter.",book:{id:"7766",slug:"rotating-machinery",title:"Rotating Machinery",fullTitle:"Rotating Machinery"},signatures:"Akanksha Singh",authors:[{id:"276799",title:"Dr.",name:"Akanksha",middleName:null,surname:"Singh",slug:"akanksha-singh",fullName:"Akanksha Singh"}]},{id:"66758",doi:"10.5772/intechopen.85910",title:"Advance Measurement Techniques in Turbomachines",slug:"advance-measurement-techniques-in-turbomachines",totalDownloads:686,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"This chapter focuses on advanced measurement techniques that have been used in applications of turbomachines including temperature measurements, pressure measurements, velocity measurements, and strain/stress measurements. Though the measurement techniques are fundamentally the same as those used in other applications, the unique features associated with turbomachines place challenges in implementing these techniques. This chapter covers the fundamental working principles of individual measurement technique as well as the highlights of its application in turbomachines.",book:{id:"7766",slug:"rotating-machinery",title:"Rotating Machinery",fullTitle:"Rotating Machinery"},signatures:"Fangyuan Lou",authors:[{id:"275580",title:"Dr.",name:"Fangyuan",middleName:null,surname:"Lou",slug:"fangyuan-lou",fullName:"Fangyuan Lou"}]}],mostDownloadedChaptersLast30Days:[{id:"65843",title:"Straight-Bladed Vertical Axis Wind Turbines: History, Performance, and Applications",slug:"straight-bladed-vertical-axis-wind-turbines-history-performance-and-applications",totalDownloads:2743,totalCrossrefCites:4,totalDimensionsCites:6,abstract:"Wind turbine is a kind of rotating machinery. Although the horizontal axis wind turbine (HAWT) is the most popular wind turbine, the vertical axis wind turbine (VAWT) with the main advantages of smart design, novel structure, and wind direction independence receives more and more attention in small-scale wind power market. The straight-bladed VAWT (SB-VAWT) is one of the most researched and studied VAWTs. In this chapter, the historical development of the SB-VAWT will be briefly reviewed firstly. Then the aerodynamic models for the turbine design and performance analysis will be introduced. Finally, the types of traditional and new SB-VAWT and their characteristics and main utilizations will be introduced.",book:{id:"7766",slug:"rotating-machinery",title:"Rotating Machinery",fullTitle:"Rotating Machinery"},signatures:"Yan Li",authors:[{id:"277795",title:"Prof.",name:"Yan",middleName:null,surname:"Li",slug:"yan-li",fullName:"Yan Li"}]},{id:"67029",title:"Methodology for Abrasive Wear Evaluation in Elevator Stage Centrifugal Pump Impellers",slug:"methodology-for-abrasive-wear-evaluation-in-elevator-stage-centrifugal-pump-impellers",totalDownloads:752,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"The abrasion resistance of the impellers depends on the characteristics of the materials used in their manufacture. In this work, a methodology is proposed for the evaluation of the abrasive wear of the plates of the centrifugal pump impellers, used in the gross water infrastructure station (GWIS) of sedimentary rivers, due to the sediment load variation and the river fluviometric dimension. In order to determine the wear mode and the relationship of the material-specific wear coefficient (K), due to the sediment concentration, a rotating ball abrasometer test was performed on SAE 8620, gray cast iron (GCI), and nodular cast iron (NCI), used in the manufacture of impellers. As an abrasive suspension, the concentrations of 1, 2, 3, 5, and 10 g L−1 of sediment were used in distilled water. The wear volume as a function of the relative velocity of the mixture in relation to the impeller blades was estimated mathematically. The results show that: i) The abrasive capacity of the sediments in different concentrations; ii) SAE 8620 steel was more resistant to abrasive wear; and iii) the rotational control of the pump as a function of sediment concentration and river level showed the possibility of reducing wear by 30%.",book:{id:"7766",slug:"rotating-machinery",title:"Rotating Machinery",fullTitle:"Rotating Machinery"},signatures:"Rodrigo O.P. Serrano, José G. do V. Moreira, Ana L.P. de Castro, Maria A. Pinto, Edna M. de F. Viana and Carlos B. Martinez",authors:[{id:"275910",title:"Ph.D.",name:"Rodrigo",middleName:null,surname:"Serrano",slug:"rodrigo-serrano",fullName:"Rodrigo Serrano"},{id:"281555",title:"Dr.",name:"José",middleName:null,surname:"Moreira",slug:"jose-moreira",fullName:"José Moreira"},{id:"281557",title:"Dr.",name:"Ana",middleName:"Letícia Pilz",surname:"Castro",slug:"ana-castro",fullName:"Ana Castro"},{id:"281558",title:"Dr.",name:"Edna",middleName:null,surname:"Viana",slug:"edna-viana",fullName:"Edna Viana"},{id:"281559",title:"Dr.",name:"Maria",middleName:null,surname:"Pinto",slug:"maria-pinto",fullName:"Maria Pinto"},{id:"281560",title:"Dr.",name:"Calos",middleName:null,surname:"Martinez",slug:"calos-martinez",fullName:"Calos Martinez"}]},{id:"69167",title:"Introductory Chapter: Rotating Machinery",slug:"introductory-chapter-rotating-machinery",totalDownloads:776,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"7766",slug:"rotating-machinery",title:"Rotating Machinery",fullTitle:"Rotating Machinery"},signatures:"Getu Hailu",authors:[{id:"250634",title:"Ph.D.",name:"Getu",middleName:null,surname:"Hailu",slug:"getu-hailu",fullName:"Getu Hailu"}]},{id:"66712",title:"Development and Control of Generator-Converter Topology for Direct-Drive Wind Turbines",slug:"development-and-control-of-generator-converter-topology-for-direct-drive-wind-turbines",totalDownloads:812,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"In this chapter, a new topology for Direct-Drive Wind Turbines (DDWTs) with a low-voltage generator design is presented in order to eliminate the required dc-bus capacitors or dc-link inductors. In the presented topology, the grid-side converter is replaced by a boost Current Source Inverter (CSI) therefore removing the need for the dc-bus electrolytic capacitors which results in increasing the system lifetime. In the developed topology, the synchronous inductance of the generator is utilized. This facilitates the elimination of the intrinsically required dc-link inductor in the CSI which further contributes to a reduction in the overall system weight and size. The boost CSI is capable of converting a low dc voltage to a higher line-to-line voltage. This results in the implementation of a low-voltage generator for DDWTs. The feasibility of the presented low-voltage generator is investigated through Finite Element (FE) computations. In this chapter, a modified 1.5 MW low-voltage generator for the proposed topology is compared with an existing 1.5 MW Permanent Magnet (PM) synchronous generator for DDWTs. The feasibility of the presented topology of generator-converter for DDWTs is verified through simulations and laboratory tests. Furthermore, the controls developed for the developed wind turbine topology is also presented in this chapter.",book:{id:"7766",slug:"rotating-machinery",title:"Rotating Machinery",fullTitle:"Rotating Machinery"},signatures:"Akanksha Singh",authors:[{id:"276799",title:"Dr.",name:"Akanksha",middleName:null,surname:"Singh",slug:"akanksha-singh",fullName:"Akanksha Singh"}]},{id:"66758",title:"Advance Measurement Techniques in Turbomachines",slug:"advance-measurement-techniques-in-turbomachines",totalDownloads:686,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"This chapter focuses on advanced measurement techniques that have been used in applications of turbomachines including temperature measurements, pressure measurements, velocity measurements, and strain/stress measurements. Though the measurement techniques are fundamentally the same as those used in other applications, the unique features associated with turbomachines place challenges in implementing these techniques. This chapter covers the fundamental working principles of individual measurement technique as well as the highlights of its application in turbomachines.",book:{id:"7766",slug:"rotating-machinery",title:"Rotating Machinery",fullTitle:"Rotating Machinery"},signatures:"Fangyuan Lou",authors:[{id:"275580",title:"Dr.",name:"Fangyuan",middleName:null,surname:"Lou",slug:"fangyuan-lou",fullName:"Fangyuan Lou"}]}],onlineFirstChaptersFilter:{topicId:"821",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],testimonialsList:[]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 26th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:10,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",slug:"ana-isabel-flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",slug:"christian-palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",slug:"azhar-rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",slug:"anca-pantea-stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",slug:"attilio-rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",slug:"yanfei-(jacob)-qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",slug:"arli-aditya-parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",slug:"cesar-lopez-camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",slug:"shymaa-enany",fullName:"Shymaa Enany",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRqB9QAK/Profile_Picture_1626163237970",institutionString:null,institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]},overviewPageOFChapters:{paginationCount:1,paginationItems:[{id:"81831",title:"Deep Network Model and Regression Analysis using OLS Method for Predicting Lung Vital Capacity",doi:"10.5772/intechopen.104737",signatures:"Harun Sümbül",slug:"deep-network-model-and-regression-analysis-using-ols-method-for-predicting-lung-vital-capacity",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Decision Science - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11604.jpg",subseries:{id:"86",title:"Business and Management"}}}]},overviewPagePublishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:"Université Laval",institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"11579",title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",hash:"12e4f41264cbe99028655e5463fa941a",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"51520",title:"Dr.",name:"Shao-Wen",surname:"Hung",slug:"shao-wen-hung",fullName:"Shao-Wen Hung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11578",title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",hash:"3731c009f474c6ed4293f348ca7b27ac",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"225390",title:"Dr.",name:"Asghar Ali",surname:"Kamboh",slug:"asghar-ali-kamboh",fullName:"Asghar Ali Kamboh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:0,paginationItems:[]},subseriesFiltersForOFChapters:[],publishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",slug:"animal-reproduction",publishedDate:"May 25th 2022",editedByType:"Edited by",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",hash:"2d66af42fb17d0a6556bb9ef28e273c7",volumeInSeries:11,fullTitle:"Animal Reproduction",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt",profilePictureURL:"https://mts.intechopen.com/storage/users/90846/images/system/90846.jpg",institutionString:"İskenderun Technical University",institution:{name:"İskenderun Technical University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",slug:"animal-feed-science-and-nutrition-production-health-and-environment",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Amlan Kumar Patra",hash:"79944fc8fbbaa329aed6fde388154832",volumeInSeries:10,fullTitle:"Animal Feed Science and Nutrition - Production, Health and Environment",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Sergey Tkachev",hash:"49cce3f548da548c718c865feb343509",volumeInSeries:9,fullTitle:"Rabies Virus at the Beginning of 21st Century",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10496",title:"Advanced Studies in the 21st Century Animal Nutrition",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",slug:"advanced-studies-in-the-21st-century-animal-nutrition",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"László Babinszky, Juliana Oliveira and Edson Mauro Santos",hash:"8ffe43a82ac48b309abc3632bbf3efd0",volumeInSeries:8,fullTitle:"Advanced Studies in the 21st Century Animal Nutrition",editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",slug:"canine-genetics-health-and-medicine",publishedDate:"June 2nd 2021",editedByType:"Edited by",bookSignature:"Catrin Rutland",hash:"b91512e31ce34032e560362e6cbccc1c",volumeInSeries:7,fullTitle:"Canine Genetics, Health and Medicine",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9081",title:"Equine Science",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",slug:"equine-science",publishedDate:"September 23rd 2020",editedByType:"Edited by",bookSignature:"Catrin Rutland and Albert Rizvanov",hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",volumeInSeries:5,fullTitle:"Equine Science",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",institutionString:null,institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Animal Nutrition",value:20,count:2},{group:"subseries",caption:"Animal Reproductive Biology and Technology",value:28,count:4},{group:"subseries",caption:"Animal Science",value:19,count:5}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:1},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{}},subseries:{item:{id:"10",type:"subseries",title:"Animal Physiology",keywords:"Physiology, Comparative, Evolution, Biomolecules, Organ, Homeostasis, Anatomy, Pathology, Medical, Cell Division, Cell Signaling, Cell Growth, Cell Metabolism, Endocrine, Neuroscience, Cardiovascular, Development, Aging, Development",scope:"Physiology, the scientific study of functions and mechanisms of living systems, is an essential area of research in its own right, but also in relation to medicine and health sciences. The scope of this topic will range from molecular, biochemical, cellular, and physiological processes in all animal species. Work pertaining to the whole organism, organ systems, individual organs and tissues, cells, and biomolecules will be included. Medical, animal, cell, and comparative physiology and allied fields such as anatomy, histology, and pathology with physiology links will be covered in this topic. Physiology research may be linked to development, aging, environment, regular and pathological processes, adaptation and evolution, exercise, or several other factors affecting, or involved with, animal physiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",hasOnlineFirst:!1,hasPublishedBooks:!1,annualVolume:11406,editor:{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null,series:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261"},editorialBoard:[{id:"306970",title:"Mr.",name:"Amin",middleName:null,surname:"Tamadon",slug:"amin-tamadon",fullName:"Amin Tamadon",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002oHR5wQAG/Profile_Picture_1623910304139",institutionString:null,institution:{name:"Bushehr University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}},{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null},{id:"245306",title:"Dr.",name:"María Luz",middleName:null,surname:"Garcia Pardo",slug:"maria-luz-garcia-pardo",fullName:"María Luz Garcia Pardo",profilePictureURL:"https://mts.intechopen.com/storage/users/245306/images/system/245306.png",institutionString:null,institution:{name:"Miguel Hernandez University",institutionURL:null,country:{name:"Spain"}}},{id:"283315",title:"Prof.",name:"Samir",middleName:null,surname:"El-Gendy",slug:"samir-el-gendy",fullName:"Samir El-Gendy",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRduYQAS/Profile_Picture_1606215849748",institutionString:null,institution:{name:"Alexandria University",institutionURL:null,country:{name:"Egypt"}}}]},onlineFirstChapters:{paginationCount:0,paginationItems:[]},publishedBooks:{paginationCount:4,paginationItems:[{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",slug:"animal-reproduction",publishedDate:"May 25th 2022",editedByType:"Edited by",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",hash:"2d66af42fb17d0a6556bb9ef28e273c7",volumeInSeries:11,fullTitle:"Animal Reproduction",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt",profilePictureURL:"https://mts.intechopen.com/storage/users/90846/images/system/90846.jpg",institutionString:"İskenderun Technical University",institution:{name:"İskenderun Technical University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[{id:"22",title:"Applied Intelligence",scope:"This field is the key in the current industrial revolution (Industry 4.0), where the new models and developments are based on the knowledge generation on applied intelligence. The motor of the society is the industry and the research of this topic has to be empowered in order to increase and improve the quality of our lives.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",keywords:"Machine Learning, Intelligence Algorithms, Data Science, Artificial Intelligence, Applications on Applied Intelligence"},{id:"23",title:"Computational Neuroscience",scope:"Computational neuroscience focuses on biologically realistic abstractions and models validated and solved through computational simulations to understand principles for the development, structure, physiology, and ability of the nervous system. This topic is dedicated to biologically plausible descriptions and computational models - at various abstraction levels - of neurons and neural systems. This includes, but is not limited to: single-neuron modeling, sensory processing, motor control, memory, and synaptic plasticity, attention, identification, categorization, discrimination, learning, development, axonal patterning, guidance, neural architecture, behaviors, and dynamics of networks, cognition and the neuroscientific basis of consciousness. Particularly interesting are models of various types of more compound functions and abilities, various and more general fundamental principles (e.g., regarding architecture, organization, learning, development, etc.) found at various spatial and temporal levels.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",keywords:"Single-Neuron Modeling, Sensory Processing, Motor Control, Memory and Synaptic Pasticity, Attention, Identification, Categorization, Discrimination, Learning, Development, Axonal Patterning and Guidance, Neural Architecture, Behaviours and Dynamics of Networks, Cognition and the Neuroscientific Basis of Consciousness"},{id:"24",title:"Computer Vision",scope:"The scope of this topic is to disseminate the recent advances in the rapidly growing field of computer vision from both the theoretical and practical points of view. Novel computational algorithms for image analysis, scene understanding, biometrics, deep learning and their software or hardware implementations for natural and medical images, robotics, VR/AR, applications are some research directions relevant to this topic.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",keywords:"Image Analysis, Scene Understanding, Biometrics, Deep Learning, Software Implementation, Hardware Implementation, Natural Images, Medical Images, Robotics, VR/AR"},{id:"25",title:"Evolutionary Computation",scope:"Evolutionary computing is a paradigm that has grown dramatically in recent years. This group of bio-inspired metaheuristics solves multiple optimization problems by applying the metaphor of natural selection. It so far has solved problems such as resource allocation, routing, schedule planning, and engineering design. Moreover, in the field of machine learning, evolutionary computation has carved out a significant niche both in the generation of learning models and in the automatic design and optimization of hyperparameters in deep learning models. This collection aims to include quality volumes on various topics related to evolutionary algorithms and, alternatively, other metaheuristics of interest inspired by nature. For example, some of the issues of interest could be the following: Advances in evolutionary computation (Genetic algorithms, Genetic programming, Bio-inspired metaheuristics, Hybrid metaheuristics, Parallel ECs); Applications of evolutionary algorithms (Machine learning and Data Mining with EAs, Search-Based Software Engineering, Scheduling, and Planning Applications, Smart Transport Applications, Applications to Games, Image Analysis, Signal Processing and Pattern Recognition, Applications to Sustainability).",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",keywords:"Genetic Algorithms, Genetic Programming, Evolutionary Programming, Evolution Strategies, Hybrid Algorithms, Bioinspired Metaheuristics, Ant Colony Optimization, Evolutionary Learning, Hyperparameter Optimization"},{id:"26",title:"Machine Learning and Data Mining",scope:"The scope of machine learning and data mining is immense and is growing every day. It has become a massive part of our daily lives, making predictions based on experience, making this a fascinating area that solves problems that otherwise would not be possible or easy to solve. This topic aims to encompass algorithms that learn from experience (supervised and unsupervised), improve their performance over time and enable machines to make data-driven decisions. It is not limited to any particular applications, but contributions are encouraged from all disciplines.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",keywords:"Intelligent Systems, Machine Learning, Data Science, Data Mining, Artificial Intelligence"},{id:"27",title:"Multi-Agent Systems",scope:"Multi-agent systems are recognised as a state of the art field in Artificial Intelligence studies, which is popular due to the usefulness in facilitation capabilities to handle real-world problem-solving in a distributed fashion. The area covers many techniques that offer solutions to emerging problems in robotics and enterprise-level software systems. Collaborative intelligence is highly and effectively achieved with multi-agent systems. Areas of application include swarms of robots, flocks of UAVs, collaborative software management. Given the level of technological enhancements, the popularity of machine learning in use has opened a new chapter in multi-agent studies alongside the practical challenges and long-lasting collaboration issues in the field. It has increased the urgency and the need for further studies in this field. We welcome chapters presenting research on the many applications of multi-agent studies including, but not limited to, the following key areas: machine learning for multi-agent systems; modeling swarms robots and flocks of UAVs with multi-agent systems; decision science and multi-agent systems; software engineering for and with multi-agent systems; tools and technologies of multi-agent systems.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",keywords:"Collaborative Intelligence, Learning, Distributed Control System, Swarm Robotics, Decision Science, Software Engineering"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:{title:"Artificial Intelligence",id:"14"},selectedSubseries:null},seriesLanding:{item:{id:"25",title:"Environmental Sciences",doi:"10.5772/intechopen.100362",issn:"2754-6713",scope:"\r\n\tScientists have long researched to understand the environment and man’s place in it. The search for this knowledge grows in importance as rapid increases in population and economic development intensify humans’ stresses on ecosystems. Fortunately, rapid increases in multiple scientific areas are advancing our understanding of environmental sciences. Breakthroughs in computing, molecular biology, ecology, and sustainability science are enhancing our ability to utilize environmental sciences to address real-world problems.
\r\n\tThe four topics of this book series - Pollution; Environmental Resilience and Management; Ecosystems and Biodiversity; and Water Science - will address important areas of advancement in the environmental sciences. They will represent an excellent initial grouping of published works on these critical topics.
\r\n\tPollution is caused by a wide variety of human activities and occurs in diverse forms, for example biological, chemical, et cetera. In recent years, significant efforts have been made to ensure that the environment is clean, that rigorous rules are implemented, and old laws are updated to reduce the risks towards humans and ecosystems. However, rapid industrialization and the need for more cultivable sources or habitable lands, for an increasing population, as well as fewer alternatives for waste disposal, make the pollution control tasks more challenging. Therefore, this topic will focus on assessing and managing environmental pollution. It will cover various subjects, including risk assessment due to the pollution of ecosystems, transport and fate of pollutants, restoration or remediation of polluted matrices, and efforts towards sustainable solutions to minimize environmental pollution.
",annualVolume:11966,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",editor:{id:"110740",title:"Dr.",name:"Ismail M.M.",middleName:null,surname:"Rahman",fullName:"Ismail M.M. Rahman",profilePictureURL:"https://mts.intechopen.com/storage/users/110740/images/2319_n.jpg",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"201020",title:"Dr.",name:"Zinnat Ara",middleName:null,surname:"Begum",fullName:"Zinnat Ara Begum",profilePictureURL:"https://mts.intechopen.com/storage/users/201020/images/system/201020.jpeg",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorThree:null,editorialBoard:[{id:"252368",title:"Dr.",name:"Meng-Chuan",middleName:null,surname:"Ong",fullName:"Meng-Chuan Ong",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRVotQAG/Profile_Picture_2022-05-20T12:04:28.jpg",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",institutionURL:null,country:{name:"Malaysia"}}},{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}},{id:"187907",title:"Dr.",name:"Olga",middleName:null,surname:"Anne",fullName:"Olga Anne",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBE5QAO/Profile_Picture_2022-04-07T09:42:13.png",institutionString:null,institution:{name:"Klaipeda State University of Applied Sciences",institutionURL:null,country:{name:"Lithuania"}}}]},{id:"39",title:"Environmental Resilience and Management",keywords:"Anthropic effects, Overexploitation, Biodiversity loss, Degradation, Inadequate Management, SDGs adequate practices",scope:"\r\n\tThe environment is subject to severe anthropic effects. Among them are those associated with pollution, resource extraction and overexploitation, loss of biodiversity, soil degradation, disorderly land occupation and planning, and many others. These anthropic effects could potentially be caused by any inadequate management of the environment. However, ecosystems have a resilience that makes them react to disturbances which mitigate the negative effects. It is critical to understand how ecosystems, natural and anthropized, including urban environments, respond to actions that have a negative influence and how they are managed. It is also important to establish when the limits marked by the resilience and the breaking point are achieved and when no return is possible. The main focus for the chapters is to cover the subjects such as understanding how the environment resilience works, the mechanisms involved, and how to manage them in order to improve our interactions with the environment and promote the use of adequate management practices such as those outlined in the United Nations’ Sustainable Development Goals.
",annualVolume:11967,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/39.jpg",editor:{id:"137040",title:"Prof.",name:"Jose",middleName:null,surname:"Navarro-Pedreño",fullName:"Jose Navarro-Pedreño",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRAXrQAO/Profile_Picture_2022-03-09T15:50:19.jpg",institutionString:"Miguel Hernández University of Elche, Spain",institution:null},editorTwo:null,editorThree:null,editorialBoard:[{id:"177015",title:"Prof.",name:"Elke Jurandy",middleName:null,surname:"Bran Nogueira Cardoso",fullName:"Elke Jurandy Bran Nogueira Cardoso",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGxzQAG/Profile_Picture_2022-03-25T08:32:33.jpg",institutionString:"Universidade de São Paulo, Brazil",institution:null},{id:"211260",title:"Dr.",name:"Sandra",middleName:null,surname:"Ricart",fullName:"Sandra Ricart",profilePictureURL:"https://mts.intechopen.com/storage/users/211260/images/system/211260.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}}]},{id:"40",title:"Ecosystems and Biodiversity",keywords:"Ecosystems, Biodiversity, Fauna, Taxonomy, Invasive species, Destruction of habitats, Overexploitation of natural resources, Pollution, Global warming, Conservation of natural spaces, Bioremediation",scope:"