\r\n\tTo sum up, there are numerous engineering applications of diamond which are yet to be realized and this book will address some of the mentioned and hopefully open some new topics.
\r\n\t
Channel holding time (CHT) is of paramount importance for the analysis and performance evaluation of mobile cellular networks. This time variable allows one to derive other key system parameters such as channel occupancy time, new call blocking probability, and handoff call dropping probability. CHT depends on cellular shape, cell size, user’s mobility patterns, used handoff scheme, and traffic flow characteristics. Traffic flow characteristics are associated with unencumbered service time (UST), while the overall effects of cellular shape, users’ mobility, and handoff scheme are related to cell dwell time (CDT).
For convenience and analytical/computational tractability, the teletraffic analysis of mobile cellular networks has been commonly performed under the unrealistic assumption that CDT and/or CHT follow the negative exponential distribution (Lin et al., 1994; Hong & Rappaport, 1986). However, a plenty of evidences showed that these assumptions are not longer valid (Wang & Fan, 2007; Christensen et al., 2004, Fang, 2001, 2005; Orlik & Rappaport, 1998; Fang & Chlamtac, 1999; Fang et al., 1999; Alfa & Li, 2002; Rahman & Alfa, 2009; Soong & Barria, 2000; Yeo & Jun, 2002; Pattaramalai, et al., 2007). Recent papers have concluded that in order to capture the overall effects of users’ mobility, one needs suitable models for CDT distribution (Lin, 1994; Hong & Rappaport, 1986). In specific, the use of general distributions for modeling this time variable has been highlighted. In this research direction, some authors have used Erlang, gamma, uniform, deterministic, hyper-Erlang, sum of hyper-exponentials, log-normal, Pareto, and Weibull distributions to model the pdf of CDT; see (Wang & Fan, 2007; Fang, 2001, 2005; Orlik & Rappaport, 1998; Fang & Chlamtac, 1999; Fang et al., 1997, 1999; Rahman & Alfa, 2009; Pattaramalai et al., 2007, 2009; Hidata et al., 2002; Thajchayapong & Toguz, 2005; Khan & Zeghlache, 1997; Zeng et al. 2002; Kim & Choi, 2009) and the references therein. Fang in (Fang, 2001)) emphasizes the use of phase-type (PH) distributions for modeling CDT. The reason is twofold. First, PH distributions provide accurate description of the distributions of different time variables in wireless cellular networks, while retaining the underlying Markovian properties of the distribution. Markovian properties are essential in generating tractable queuing models for cellular networks. Second, there have been major advances in fitting PH distributions to real data. Among the PH probability distributions, the use of either Coxian or Hyper-Erlang distributions are of particular interest because their universality property (i.e, they can be used to approximate any non negative distribution arbitrarily close) (Soong & Barria, 2000; Fang, 2001).
Due to the discrepancy and the wide variety of proposed models, it appears mandatory to investigate the implications of the cell dwell time distribution on channel holding time characteristicsin mobile wireless networks. This is the topic of research of the present chapter. Let us describe the related work reported in this research direction.
In (Fang, 2001; Zeng et al. 2002), it is observed that, depending on the variance of CDT, the mean channel holding time for new calls (CHTn) can be greater than the mean channel holding time for handoff calls (CHTh). However, in these works, it is neither explained nor discussed the physical reasons for this observed behavior. This phenomenon (which is addressed in Section 3.1) and the lack of related published numerical results have motivated the present chapter.
Most of the previously published papers that have developed mathematical models for the performance analysis of mobile cellular systems considering general probability distribution for cell dwell time have either only presented numerical results for the Erlang (Wang & Fan, 2007; Fang et al., 1999; Rahman & Alfa, 2009; Kim & Choi, 2009) or Gamma distributions with shape parameter greater than one[1] - (Yeo & Jun, 2002; Fang, 2005), and/or only for the CHTh[1] - (Fang, 2001; Fang & Chlamtac, 1999), or have not presented numerical results at all (Fang, 2005; Alfa & Li, 2002; Soong & Barria, 2000). Thus, numerical results both for values of the coefficient of variation (CoV) of CDT greater than one and/or for the CHTn have been largely ignored. Exceptions of this are the papers (Orlik & Rappaport, 1998; Fang et al., b, 1997; Pattaramalai, et al., 2009).
On the other hand, probability distribution of CHT has been determined under the assumption of the staged distributions sum of hyper-exponentials, Erlang, and hyper-Erlang for the CDT (Orlik & Rappaport, 1998; Soong & Barria, 2000). However, to the best of the authors’ knowledge, probability distribution of CHT in mobile cellular networks with neither hyper-exponential nor Coxian distributed CDT has been previously reported in the literature.
In this Chapter, the statistical relationships among residual cell dwell time (CDTr), CDT, and CHT for new and handoff calls are revisited and discussed. In particular, under the assumption that UST is exponentially distributed and CDT is phase-type distributed, a novel algebraic set of general equations that examine the relationships both between CDT and CDTr and between CDT and channel holding times are obtained. Also, the condition upon which the mean CHTn is greater than the mean CHTh is derived. Additionally, novel mathematical expressions for determining the parameters of the resulting CHT distribution as functions of the parameters of the CDT distribution are derived for hyper-exponentially or Coxian distributed CDT.
A homogeneous multi-cellular system with omni-directional antennas located at the centre of each cell is assumed; that is, the underlying processes and parameters for all cells within the cellular network are the same, so that all cells are statistically identical.As mobile user moves through the coverage area of a cellular network, several variables can be defined: cell dwell time, residual cell dwell time, channel holding time, among others. These time variables are defined in the next section.
In this section the different time interval variables involved in the analytical model of a mobile cellular network are defined.
First, the unencumbered service time per call xs (also known as the requested call holding time (Alfa and Li, 2002) or call holding duration (Rahman & Alfa, 2009)) is the amount of time that the call would remain in progress if it experiences no forced termination. It has been widely accepted in the literature that the unencumbered service time can adequately be modeled by a negative exponentially distributed random variable (RV) (Lin et al., 1994; Hong & Rappaport, 1986). The RV used to represent this time is Xs and its mean value is
Now, cell dwell time or cellresidence timexd(j) is defined as the time interval that a mobile station (MS) spends in the j-th (for j = 0, 1, …) handed off cell irrespective of whether it is engaged in a call (or session) or not. The random variables (RVs) used to represent this time are Xd(j) (for j = 0, 1, …) and are assumed to be independent and identically generally phase-type distributed. For homogeneous cellular systems, this assumption has been widely accepted in the literature (Lin et al., 1994; Hong & Rappaport, 1986; Orlik & Rappaport, 1998; Fang & Chlamtac, 1999; Alfa & Li, 2002; Rahman & Alfa, 2009).
In this Chapter, cell dwell time is modeled as a general phase-type distributed RVwith the probability distribution function (pdf)
The residual cell dwell timexr is defined as the time interval between the instant that a new call is initiated and the instant that the user is handed off to another cell. Notice that residual cell dwell time is only defined for new calls. The RV used to represent this time is Xr. Thus, the probability density function (pdf) of Xr,
where E[Xd] and
Finally, we define channel holding time as the amount of time that a call holds a channel in a particular cell.In this Chapter we distinguish between channel holding times for handed off (CHTh) and channel holding time for new calls (CHTn). CHTh (CHTn) is represented by the random variable
The relationship between the probability distributions of CDT and CDTr is determined by the residual life theorem. In Table I some particular typically considered CDT distributions and the corresponding CDTr distributions obtained by applying the residual life theorem are shown.
Examples of corresponding distribution for Xr given the distribution of Xd.
The functional relationship between the moments of the residual cell dwell time and the cell residual time was obtained in (Kleinrock, 1975) applying the Laplace transform to the residual life theorem. That is,
This equation can be rewritten as
The n-th moment of the residual cell dwell time in terms of the moments of the cell dwell time can be obtained by deriving n times (equation 3) with negative argument and substituting s=0. Then (Kleinrock, 1975),
The mean residual cell dwell time as function of the moments of cell dwell time can be obtained as (Kleinrock, 1975)
In this way, the relationship between mean CDT and mean CDTr only depends on the value of the CoV of CDT. Thus, the mean CDTr is greater than the mean CDT (i.e., E{Xr} > E{Xd}) when the CoV of CDT is greater than one. This behavior (i.e., E{Xr} > E{Xd}) may seem to be counterintuitive due to the fact that, for a particular realization and by definition, CDTr cannot be greater than CDT[1] -. This occurs because in such conditions there is a high variability on the cell dwell times in different cells and it is more probable to start new calls on cells where users spent more time. Then, residual cell dwell times tend to be greater than the mean CDT. This phenomenon that may seem to be counterintuitive is now explained and mathematically formulated in this Chapter.
Channel holding times for handed off and new calls (denoted by XC(h) and XC(N), respectively) are given by the minimum between UST and CDT or CDTr, respectively. The CDF of the CHTh and CHTn are, respectively, given by
Due to the fact that the Laplace transform of the pdf of both UST and CDTr are rational functions, the Laplace transform of the pdf of CHTn can be obtained using the Residue Theorem as follows (Wang & Fan, 2007)
where
Under the condition that UST is general phase type (PH) distributed, the authors of (Alfa & Li, 2002) prove that the CDT is PH distributed if and only if the CHTn is PH distributed or the CHTh is PH distributed.
The probability distributions of CHTn and CHTh for different staged probability distributions of CDT assuming that the UST is exponentially distributed are shown in Table II. The first entry of this table is a well known result[1] -. In (Soong & Barria, 2000), it was shown that when CDT has Erlang or hyper-Erlang distribution, channel holding times have the uniform Coxian and hyper-uniform Coxian distribution, respectively.Uniform Coxian is a special case of the Coxian distribution where all the phases have the same parameter (Perros & Khoshgoftaar, 1989). The hyper-uniform Coxian distribution is a mixture of uniform Coxian distributions.
Examples of corresponding distributions for Xc(N) and Xc(h)
Next, it is shown that when the UST is exponentially distributed and CDT has hyper-exponential distribution of order n, the distribution of CHTh has also a hyper-exponential distribution of order n. Similarly, when CDT has Coxian distribution of order n, the distribution of CHTn has also a Coxian distribution of order n.
Considering that CDT has a hyper-exponential pdf of order n given by
For exponentially distributed UST and using (4), the CDF of the CHTh can be expressed as follows
This expression corresponds to a hyper-exponential distribution of order n with phase parameters μ + ηi and probabilities Pi of choosing stage i (for i = 1, …, n).
As the CDTr is hyper-exponentially distributed when CDT has hyper-exponential distribution, the CHTn is also hyper-exponentially distributed. In this case, the probability of choosing stage i (for i = 1, …, n) is given by
Considering that cell dwell time has an m-th order Coxian distribution (which diagram of phases is shown in Fig. 1) with Laplace transform of its pdf given by
where
(1- αi) represents the probability of passing from the i-th phase to the (i+1)-th one.
Diagram of phases of the considered Coxian distribution of order m for modeling cell dwell time.
For exponentially distributed UST and using (9), the Laplace transforms of the pdf of CHTh and CHTn are given by
Replacing (13) into (15), it can be written as
where
for i = 1, …, m. Then, CHTh has also a Coxian distribution of order m but with parameters (μ + ηi), for i = 1, …, m.
On the other hand, the Laplace transform of the residual cell dwell time can be shown to be given by
where
for j = 1, …, m(m+1)/2. Substituting (19) into (16), Laplace transform of CHTn can be written as
where
Equation (23) corresponds to the Laplace transform of a generalized Coxian pdf.
The above analytical results show that CHTh (CHTn) has the same probability distribution as CDT (CDTr) but with different parameters of the phases, probabilities of reaching the absorbing state after each phase, and probabilities of choosing each stage. The detailed derivation of the last entry of Tables I and II (i.e., when cell dwell time has generalized Coxian distribution) is addressed in (Corral-Ruiz et al., a, 2010).
Using (15) and (16) it is straightforward to show that the mean values of CHTn and CHTh are, respectively, given by
At this point, it is important to mention that authors in (Fang, 2001; Zeng et al., 2002) stated that, depending on the variance of CDT, the mean CHTn can be greater than the mean CHTh. However, it was neither explained nor discussed the physical reasons for this observed behavior. This behavior occurs because the residual cell dwell times tend to increase as the variance of cell dwell time increases, as it was explained above.
Using (25) and (26), the condition for which the mean CHTn is greater that the mean CHTh, that is,
can be easily found. This condition is given by
Thus, the relationship between the mean new and handoff call channel holding times is determined by the mean values of both CDT and UST and by the Laplace transform of the pdf of CDT evaluated at the inverse of the mean UST.
Finally, in a similar way, the squared coefficient of variation for CHTn and CHTh can be shown to be given, respectively, by
It can be shown that the n-th moments for new and handoff call channel holding times are given, respectively, by
In this section, numerical results on how the distribution of cell dwell time (CDT) affects the characteristics of channel holding time (CHT) are presented. We use different distributions to model CDT, say, negative-exponential, constant (deterministic), Pareto with shape parameter α in the range (1, 2] (i.e., when infinite variance is considered), Pareto with α>2 (i.e., when finite variance is considered), log-normal, gamma, hyper-Erlang of order (2,2), hyper-exponential of order 2, and Coxian of order 2. Three different mobility scenarios for the numerical evaluation are assumed: E{Xd}=5E{Xs} (low mobility), E{Xd}=E{Xs} (moderate mobility), and E{Xd}=0.2E{Xs} (high mobility). In the plots of this section we use E{Xs}=180 s. In our numerical results, the effect of CoV and skewness of CDT on CHT characteristics is investigated. In the plots presented in this section, “HC” and “NC” stand for channel holding time for handoff calls (CHTh) and channel holding time for new calls (CHTn), respectively.
Fig. 2 plots the mean value of both CHTn and CHTh versus the mean value of CDT when it is modeled by negative-exponential (EX), constant, and Pareto with 1<2 distributions. It is important to remark that all of these distributions are completely characterized by their respective mean values. As expected, Fig. 2 shows that, for the case when CDT is exponentially distributed, mean CHTn is equal to mean CHTh. An interesting observation on the results shown in Fig. 2 is that, irrespective of the mean value of CDT, there exists a significant difference between the mean value of CHTn when CDT is modeled as exponential distributed RV and the corresponding case when it is modeled by a heavy-tailed Pareto distributed RV (this behavior is especially true for the case when α=1.1). Notice, however, that this difference is negligible for the case when α=2 and high mobility scenarios (say, E{Xd}<50 s) are considered. Similar behaviors are observed if mean CHTh is considered. Consequently, for high mobility scenarios where CDT can be statistical characterized by a Pareto distribution with shape parameter close to 2, the exponential distribution represents a suitable model for the CDT distribution. Fig. 2 also shows that, for
Mean new and handoff call channel holding time for deterministic, negative exponentially, and Pareto distributed CDT against the mean CDT.
a given value of the mean CDT and considering the case when CDT is Pareto distributed with α=1.1 (α=2), mean CHTn always is greater (lower) than mean CHTh. This behavior can be explained by the combined effect of the following two facts. First, as α comes closer to 1 (2), the probability that CDT takes higher values increases (decreases). This fact contributes to increase (reduce) the mean CHTh. Second, in general, new calls are more probable to start on cells where users spent more time and, as α comes closer to 1, this probability increases. This fact contributes to increase mean CHTn relative to the mean CHTh. Then, the combined effect is dominated by the first (second) fact as α comes closer to 2 (1). This leads us to the behavior explained above and illustrated in Fig.2. It may be interesting to derive the condition upon which the mean CHTn is greater than the mean CHTh when CDT is heavy-tailed Pareto distributed. This represents a topic of our current research.
Fig. 3 plots the mean value of both CHTn and CHTh versus the CoV of CDT when it is modeled by Pareto with shape parameter α>2, lognormal, and Gamma distributions; all of them with mean value equal to 180 s. It is important to remark that all of these distributions are completely characterized by their respective first two moments. Fig. 3 shows that both mean CHTn and mean CHTh are highly sensitive to the type of distribution of CDT; this fact is especially true for CoV>2. Notice that, for the particular case when CoV=0, the mean values of both CHTn and CHTh are identical to the corresponding values for the case when CDT is deterministic with mean value equals 180 s, as expected. Fig. 3 also shows that, for values of CoV of CDT greater than 1 (1.2), mean CHTn is greater that mean CHTh when CDT is Gamma (log-normal) distributed. On the other hand, when CDT is Pareto distributed and irrespective of the value of its CoV, CHTh always is greater that mean CHTn. This behavior is mainly due to the heavy-tailed characteristics of the Pareto distribution.
Mean new and handoff call channel holding time for gamma, log-normal, and Pareto distributed cell dwell time versus CoV of cell dwell time.
Figs. 4, 5, and 6 (7, 8, and 9) plot the mean value (CoV) of both CHTn and CHTh versus both the CoV and skewness of CDT when it is modeled by hyper-Erlang (2,2), hyper-exponential of order 2, and Coxian of order 2 distributions, respectively. It is important to remark that all of these distributions are completely characterized by their respective first three moments. Results of (Johnson & Taaffe, 1989; Telek & Heindl, 2003) are used to calculate the parameters of these distributions as function of their first three moments. In Figs. 4 to 9, two different values for the mean CDT are considered: 36 s (high mobility scenario) and 900 s (low mobility scenario). From Figs. 2, 5 and 6 the following interesting observation can be extracted. Notice that, for the case when CDT is modeled by either hyper-exponential or Coxian distributions and irrespective of the mean value of CDT, the particular scenario where skewness and CoV of CDT are, respectively, equal to 2 and 1, corresponds to the case when CDT is exponential distributed (in the exponential case mean CHTn and mean CHTh are identical).
Mean CHTn and mean CHTh for hyper-Erlang distributed CDT versus CoV and skewness of CDT, with the mean CDT as parameter.
Mean CHTn and mean CHTh for hyper-exponentially distributed CDT versus CoV and skewness of CDT, with the mean CDT as parameter.
Mean CHTn and mean CHTh for Coxian distributed cell dwell time versus CoV and skewness of cell dwell time, with the mean CDT as parameter.
CoV of CHTn and CHTh for hyper-Erlang distributed CDT versus CoV and skewness of CDT, with the mean CDT as parameter.
CoV of CHTn and CHTh for hyper-exponential distributed CDT versus CoV and skewness of CDT, with the mean CDT as parameter.
CoV of CHTn and CHTh for Coxian distributed CDT versus CoV and skewness of cell dwell time, with the mean cell dwell time as parameter.
On the other hand, Fig. 4 shows that the case when hyper-Erlang distribution with skewness equals 2 and CoV equals 1 is used to model CDT does not strictly correspond to the exponential distribution; however, the exponential model represents a suitable approximation for CDT in this particular case. From Figs. 4 to 9, it is observed that the qualitative behavior of mean and CoV of both CHTn and CHTh is very similar for all the phase-type distributions under study. The small quantitative difference among them is due to moments higher than the third one. Analyzing the impact of moments of CDT higher than the third one on channel holding time characteristics represents a topic of our current research.
From Fig. 10 is observed that the difference among the mean values of CHTn and CHTh is strongly sensitive to the CoV of the CDT, while it is practically insensitive to the skewness of the CDT. This difference is higher for the case when the CDT is modeled as hyper-exponential distributed RV compared with the case when it is modeled as hyper-Erlang distributed RV. Also, it is observed that this difference remains almost constant for the entire range of values of the CoV of the CDT.
Difference among the mean values of new and handoff call channel holding times for hyper-Erlang and hyper-exponential distributed cell dwell time versus CoV and skewness of cell dwell time, for the moderate-mobility scenario.
Finally, in Fig. 11 the mean channel holding time for new and handoff calls considering the gamma, hyper-Erlang (2,2), hyper-exponential of order 2, and Coxian of order 2 distributions for the cell dwell time are shown for different values of the coefficient of variation. The numerical results shown in Fig. 11 are obtained by equaling the first three moments of the different distributions to those of the gamma distribution. From Fig. 11, it is observed that for the hyper-exponentialand Coxian distributions practically the same results are obtained for the mean channel holding time for both new and handoff calls. The differences among the other distributions are due to the fact that they differ on the higher order moments. To show this, the forth standardized moment (i.e., excess kurtosis) of the different distributions is shown in Fig. 12 for different values of the coefficient of variation, equaling the first three moments of the different distributions to those of the gamma distribution. From Fig. 12, it is observed that the hyper-exponentialand Coxian distributions practically have the same value of excess kurtosis but this differs for that of the gamma and hyper-Erlang distributions. The gamma distribution shows the more different value of the excess kurtosis and, therefore, for this distribution the more different values of the mean channel holding times in Fig. 11 are obtained. Then, it could be necessary tocapture more than three moments, even though the lower ordermoments dominate in importance. Similar conclusion was drawn in (Gross &Juttijudata, 1997).
Mean new and handoff call channel holding time for gamma, hyper-exponential (2), hyper-Erlang (2,2) and Coxian (2) distributed cell dwell time versus CoV of cell dwell time.
Kurtosis of cell dwell time for gamma, hyper-exponential (2), Coxian (2) and hyper-Erlang (2,2) distributed cell dwell time versus CoV of cell dwell time.
In this Chapter, under the assumption that unencumbered service time is exponentially distributed, a set of novel general-algebraic equations that examines the relationships between cell dwell time and residual cell dwell time as well as between cell dwell time and new and handoff channel holding times was derived. This work includes relevant new analytical results and insights into the dependence of channel holding time characteristics on the cell dwell time probability distribution. For instance, we found that when cell dwell time is Coxian or hyper-exponentially distributed, channel holding times are also Coxian or hyper-exponentially distributed, respectively. Also, our analytical results showed that the mean and coefficient of variation of the new and handoff call channel times depend on Laplace transform and first derivative of the Laplace transform of the probability density function of cell dwell time evaluated at the inverse of the mean unencumbered service time as well as on the mean of both cell dwell time and unencumbered service time. Additionally, we derive the condition upon which the mean new call channel holding time is greater than the mean handoff call channel holding time. Similarly, the condition upon which the mean residual cell dwell time is greater than the mean cell dwell time was also derived. To the best authors’ knowledge, this phenomenon that may seem to be counterintuitive has been explained and mathematically formulated in this Chapter. We believe that the study presented here is important for planning, designing, dimensioning, and optimizing of mobile cellular networks.
The oral-gastro-intestinal-sex-skin can be classified as unique large and heterogeneous apparatus populated by a huge variety of microorganisms, bacteria, virus, fungi, and other single-celled creatures, that compose the totality of human microbiota that contributes together with bone/skeleton system, to maintain the body energy homeostasis. The human body hosts something like 10–100 trillion microbial cells that coexist in a strict fruitful symbiotic relationship that persists as long as the body is kept in a balanced healthy state [1, 2]. The gut plays an important role in regulating metabolic immune activities. The gut’s essential task is the absorption of nutrients and the synthesis of important micromolecules obtained from food that cannot be assimilated by the stomach and small intestine [1, 2, 3]. Xyloglucans and fructo-oligosaccharides from vegetables and fruits, protein, and lipids; the assimilation of essential vitamins like vitamins B-12, D, and K; and the synthesis of hormones like serotonin from tryptophan amino acid take place right in the gut, thanks to the constant activity of its entire microbiota. The microbiota are able to produce 50–100 mmol·L—1 per day of extremely important short-chain fatty acids (SCFAs), such as acetic, propionic, and butyric acids—and serve as an energy source to the host intestinal epithelium and skeleton [1, 2, 3, 4].
The importance of SCFAs has been well described by several studies during the last decade; the activity of acetic acid, for instance, has been found to be essential against infections, in blood pressure regulation and against sclerotic plaque deposition in arterial walls. The presence of butyric acid is an essential anti-IBS agent due to its immune-modulator properties and anti-inflammatory action, while propionic acid has been found to be important in preventing obesity and diabetes 2 [1, 2, 3, 4].
Although bacteria, viruses, and fungi might be very harmful and dangerous, they are indispensable for life as well. This symbiotic coexistence throughout the millennia made a deep crucial biological impact on human species, and it has become essential not only for survival but for evolution as well. Accumulating evidences have clearly demonstrated how part of these specific microorganisms can resume specific immunomodulatory roles and the way they affect either composition function or migration of various immune cell subpopulations from one site to a different location. For instance, oral macrophages may migrate under the influence of specific signal induction of local microbiota from oral either to the lungs or even the brain passing through the blood brain barrier (BBB) [5, 6, 7, 8, 9, 10].
The outcomes from experiments performed on germ-free (GF) mice confirmed the great role of gut microbiota in the upsurge of immune system deficiencies. GF animals were shown to have compromised Paneth cells and low levels of natural killer (NK) cells, dendritic cells (DCs), and α/β + and γ/δ + T cell populations that play an important role in defense and pathogenesis during inflammation and infection, especially against certain types of malignancies. In addition, GF animals were highly susceptible to frequent infections due to a decline in angiogenin-4 (Ang4), a powerful antimicrobial part of the class of microbicide proteins in Paneth cells [5, 6, 7, 8, 9, 10].
The alteration of the gut microbiota may contribute to open up the invasion of exogenous pathogens that may destabilize the whole intestinal mucosa. The pathogen systematic overgrowth will trigger a cascade of strong inflammatory responses making intestinal mucosa highly susceptible and motile. The chronic inflammation will weaken the endothelial tide junction to the point that the walls become highly relaxed and permeable causing the phenomenon known as “leaky gut” that allows the free, uncontrolled passage of microorganism into the system via the bloodstream and tissues where they start allocating. In fact, the presence of these typical gut residents could be found in eroded, inflamed, and degenerated joints and organs such as the lungs, heart, brain, and liver [11, 12, 13].
The high and uncontrolled levels of pathogenic microorganism colonizing the gut contribute to a condition known as dysbiosis [14]. Since few years the dysbiosis has been associated with a variety of degenerative patterns that tend to subvert the metabolic/neuro/hormonal/immune axis contributing to a variety of disorders that round to different body systems ranging from skeleton, cardiovascular, to neuro system. There are several mechanisms proposed that are able to trigger this state of systemic disorders; one of the possibilities is linked to bacterial metabolites and immune-modulating mediators that contribute to the high permeability of intestinal mucosa allowing local pathogens to get through the mucosal barriers triggering a huge variety of immune responses. A second and though related mechanism is the sabotage of SCFAs’ production; the consequences of this mechanism are the abrupt breakdown of energy balance mechanism, a reduction of cell-bacteria signaling pathway, and the worsening of epithelial cell layer integrity due to the decreased production of tight junction proteins which allows the translocation of LPS into the submucosa as well. The significant presence of pro-inflammatory cytokines and interleukins such as TNFα, IFN-γ, IL-1β, IL-2, IL-4, IL-5, and IL-6 is the peculiar trait of a dysbiotic gut (Figure 1) [14, 15, 16]. A third way of dysbiosis transmission is through the vagus nerve (VN), the main component of parasympathetic nervous system (PSN) which also constitutes an effective bridge of the gut/CNS axis. This hypothesis, today supported by a concrete line of evidences, proposes the existence of a reciprocal interference way between the CNS and gut through the VN. In this view the VN is able to perceive microbiota movement, grade of activity, and therefore degradation; on the other hand, pathogens once out from the gut mucosa barrier are able to communicate and move to the CNS through the VN pathway [14, 15, 16, 17, 18].
The gut microbiota is a very dynamic ecosystem. The entire gut microbiota is composed of different sub-environments with unique features like niches with specific microbes and tissue interactions. The large intestine represents the more populated area and performs the highest variety of biotransformation under the guide of specific gene expression in charge of enzymes necessary for highly specific biotransformation necessary of the SCFAs. The local flora is crucial for the local microbiome homeostasis, and the whole chain of bio-reaction takes place in spaces with a specific mean pH of 6.5–7. The changes in local balance homeostasis and in pH negatively impact on the mucosa shield that repair the outside and inside permeability gradient. Once the stability and the equilibrium between all the components are broken, the gut walls become fragile under the constant attack of local immune cells that start to deteriorate the integrity of both endothelial wall and mucosa shield that induce on medium long term and accumulation of pro-inflammatory endotoxins, bacteria free passage into the system, and low antimicrobial peptide production with a consequent high gastrointestinal motility.
These essential structural alterations are at the base of neurodegenerative pathologies. Though it is a unique pathological aspect, we may see the presence of a common configuration indeed, which is a shared neurological chronic inflammatory pattern. In all these cases, the chronic neuro-inflammatory condition is characterized by an abnormal hyperactive behavior of neural immune cells, the microglia, known as macrophages of the brain [18, 19]. The chronic inflammatory state that from the gut opens up the pathway of pathogenic microbiota invasion all the way through oral and brain compartment, which is the hallmark of neurodegenerative disorders’ dynamic pathogenesis. Patients with Parkinson’s disease (PD), Alzheimer’s (AD), multiple sclerosis (MS), or amyotrophic lateral sclerosis all present a variety of disturbances in intestinal microbial compared to healthy individuals. Neurodegenerative-affected patients’ intestinal and fecal analysis showed a clear clinical picture of microbiota dysbiosis. The test outcomes showed high level of coliform and gram-negative bacteria from Ralstonia genus concomitantly with low critical level of anti-inflammatory strains related to Blautia, Coprococcus, and Roseburia genera. Another indicator was also noted; it was the low presence of Prevotella generally seen as beneficial bacteria, involved in the metabolism of plant polysaccharides and vitamins strictly associated with the production of neuroactive SCFAs, such as GABA [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. The Prevotella spp. is associated with mucin-type O-glycan production which is extremely important in the integrity of gut epithelial barrier; the absence of this mucin type (mucin-2 specifically) tends to compromise the correct homeostatic balance of the local microbiota, increasing intestinal permeability, a clinical feature associated with both microbial dysbiosis and neurodegenerative diseases [32, 33, 34].
Disruption of the BBB is a hallmark in individuals with neurodegenerative diseases that contributes to a steady and progressive death of dopaminergic neurons in the CNS. The BBB is a part of a systemic condition that eventually allows the invasion of pathogens and immune agents from a dysbiotic gut into the CNS. However, damages are also due to a series of changes that weaken the integrity of microvasculature and blood vessels; these modifications are mainly due to nutritional impairment as a consequence of gut microbiota disturbances that cause low-level intake of important nutrients. Deficiencies in vitamins like C, K, D, and folates responsible for low hydroxylation for the formation of chondro-sulfate necessary for healthy microvessel endothelial walls, the augmentation of free radicals, and depletion in oxygen contents and nitrogen, matrix metalloproteinases (MMPs), cyclooxygenases (COXs), and hypoxia-inducible factor-1α (HIF-1α) are all linked with BBB disruption as neuro-inflammatory responses tend to increase and evolve [35].
Thus the scenario existing in the great majority of neurodegenerative pathologies presents a combination of higher permeability of the intestinal barriers and the BBB, inducing a greater access between gut microbiota and the CNS compartment. Experiments conducted with the use of high dose of minocycline antibiotic are well known to have an impact on specific gut and oral invasive bacteria; the post-administration results showed significant protection on LPS-induced PD in mice data confirmed by a significant amelioration of neuro-inflammatory markers such as TNF-α expression, IL-1α expression, and microglia activation and a substantial amelioration of astrocyte loss with an increased number of surviving dopaminergic neurons compared to control LPS only-injected mice [36, 37]. It follows that a correct use of antibiotics generally known to alter gut microbial diversity may disclose a positive immune protective side effect on inflammatory mechanism existent in PD patients [36, 37, 38]. Several other outcomes have shown the beneficial effects of oral antibiotic, minocycline, and tetracycline, in CNS degenerative condition like the experimental autoimmune encephalopathy (EAE) disease and MS. It was found a significant increase of IL-10 expression concomitant with a favorable increase of a subset of invariant NK T cells and in patients with MS, and there was a substantial reduction of CNS deteriorations [38, 39, 40, 41, 42].
Aging brings generally substantial physiological alterations—hormonal, humoral, and physical—that involves the entire homeostatic organization of the human body. Of course the GI tract and its microbiota as well undergo through profound changes that under the variations of dietary influences bring to a general decline of cognitive and immune activities. With aging, the gut microbiota lost bacterial balanced diversity with an increase of “pathogenic Proteobacteria” vs. a continuing, steady, and progressive lower level of “friend bacteria” such as Firmicutes, Faecalibacterium prausnitzii, and Actinobacteria (mainly bifidobacteria) [42, 43, 44, 45].
Another important feature of gut microbiota is the ability to modulate genes that can be seen either on regulation or variation; this is one of the main factors that may explain the influences that gut microbiota eventually exert on bone development and on bone-related diseases such as osteoporosis, osteopenia, or the different types of arthritis. The delicate homeostatic balance that regulates bone formation and resorption is partly played by the activity of intestinal microorganisms. This activity is basically performed through the interaction with endocrine/nervous system axis; thereby the hormonal activity such as serotonin, cortisol, and sex hormones and several growth factors affect bone mass in mice and humans. In addition, bone marrow stem cells, circulatory stem cells, and stem cells from bone marrow niche are highly sensitive to gut microenvironment condition which eventually affects the differentiation process toward either osteoblasts or osteoclasts. In this case it has been proven that the metabolic pathway compartment which involves the ribosome activity, glycolysis, oxidative phosphorylation, carbon metabolism, and mitochondria ATP are fully responsible of regulating MSCs’ functionality, growth, proliferation, and differentiation [45, 46].
This important connection has also been confirmed by Xiao and colleagues; they were able to highlight through the single-cell RNA-sequencing analysis the existing connection between the gut microbiota, BM-MSCs, and bone metabolic functionality. The presence of several factors such as the HIF-1 together with the expression of infection/inflammatory signaling pathways could be the scattering patterns that influence MSC mobility and immunomodulation. These outcomes showed how HIF-1 signaling is involved in BM-MSC immunomodulation. In fact, the HIF-1 is notoriously known as a triggering factor of inflammatory transcription factor NFκB and an active regulator of specific cytokine and chemokine recruitment in inflammation and infection situations. The chronic presence of an inflammatory response under the triggering activity of pro-inflammatory cytokines such as the TNF superfamily IL-1β, IL-2, IL-4, IL-6, and IL-17 can deeply disturb the osteoclast and osteoblast balance, typically resulting in a net hyper-osteoclast activity and thus bone loss. While there is an evident mechanical effect on the bone where these cytokines stimulate osteoclast differentiation with a consequent upregulation of RANKL expression in progenitor osteoblasts together with a higher RANKL expression, a concomitant nonmechanical effect under the downregulation of specific deficit due to a metabolic inability of vitamin K and vitamin D synthesis in the intestinal lumen should be mentioned (Figure 2) [47, 48, 49, 50, 51, 52, 53, 54].
The gut dysbiosis is one of the main contributors in osteo-degenerative conditions. The dysbiotic microenvironment increase the viability of systemic pro-inflammatory cytokines and interleukins generating three main anti-regenerative patterns, the increase of pH acidic level, decrease of the differentiating pathway from MSCs and SCs toward osteoblasts, and hyper-expression of osteoclast activity. The dysbiosis generates a defective absorption mechanism of important nutrients for bone homeostasis like vitamins, among them K and D, and hormones such as serotonin, testosterone, and estrogen. The prerogative of this condition is a cascade of events that will involve systemically and progressively the whole vital activity of cells, tissues, and systems of the organism.
The potential impact of the therapeutic effect of probiotic on a dysbiotic situation could not be seen without taking in consideration a change of lifestyle. Diet habits, stress, poor healthy conditions, and lack of exercise can significantly impact the gut microbiota stability [55, 56, 57]. There are many evidences that nutritional habits based on “Western diet” composed of huge additive and animal fats, processed glucose and excessive quantities of hypercaloric nutritional facts, low contents of fresh food, and low level of vitamins and minerals, essential for our body, all negatively affect the correct balance of gut microbiota, which eventually lead to the insurgence of metabolic dysfunctions. It is also well known that these bad behaviors are associated with an increased risk of developing several chronic diseases that may attack oral microbiota and vaginal microbiota that recent study findings have indicated as an independent risk factor for severe neurodegenerative conditions [9, 58, 59, 60].
By definition, probiotic refers to large and diverse types of microbes both commensal that normally reside in the gut and exogenous that may migrate through the intestine following food or diet and supplement consumption. Probiotics might be composed of different microbial strains, the most common include species of Lactobacillus, Bifidobacterium, Streptococcus, and yeast Saccharomyces species [61].
As previously mentioned, currently there is a great interest on the use of specific probiotics as therapeutic tool to be associated as clinical approach toward immune system pathologies that may include autoimmune conditions that may attack nerves, bone, and bowel. Given the prevalence of probiotic use, the effects of probiotics on bone health is of significant interest.
Significant positive clinical outcomes have been obtained in numerous studies conducted on CNS inflammatory condition that have therapeutically used different types of probiotic strains. The results showed a reduction of CNS inflammatory level and progression; these outcomes were eventually explained by the capacity of certain strains (Lactobacillus species including bacteria like the Pediococcus acidilactici, Bifidobacterium bifidum, Bifidobacterium animalis, Streptococcus thermophiles, and Bifidobacterium infantis 35,624) to modulate the expression of T-regs, B-regs, and IL-10 production such as [62, 63, 64].
In addition, an experiment with genetically engineered microbial strains such as Lactococcus lactis capable of expressing heat shock protein 65 obtained from another strain like the Mycobacterium leprae was seen highly efficient in reducing EAE symptoms and disease progression [63, 64]. The beneficial outcomes in this study were associated with a decrease in IL-17 pro-inflammatory interleukin with a parallel growth of IL-10 evaluated in the mesenteric lymph node and spleen cell cultures. Furthermore, mice showed a significant higher level of endogenous CD4 + Foxp3+ regulatory T-regs and CD4 + LAP+ (latency-associated peptide). These results might be also sustained by a higher production of SCFAs that, as stated by Opazo and colleagues, were seen to induce either a decrease in RORγt, a biomarker of IL-17, or IL-23 with a higher production of IL-10 and IL-12 with a similar beneficial effect on both EAE and IBS [61, 62, 63, 64, 65, 66].
Therefore beneficial homeostatic-metabolic effect of specific probiotic strains can be seen on different systems such as the cardiovascular, immune, and CNS. For instance, few strains conserve a natural ability of inhibiting the insurgence of hypercholesteremia in both mice and human. In fact the use of Lactobacillaceae strains such as L. acidophilus, Bifidobacterium bifidum, and L. plantarum Lp9 strain showed a significant role in lowering the cholesterol level under in vivo conditions thanks to their ability of secreting functional bile salt hydrolase (BSH), an enzyme crucial in the protection against the insurgence of bad cholesterol in the host. Genomic analysis has indicated that Lactobacillaceae especially L. plantarum contain the highest presence of BSH genes. Intriguingly, milk fermented by L. plantarum NTU 102 revealed to have a high significant efficacy on total cholesterol and LDL cholesterol levels though in presence of individuals undergone a cholesterol-rich diet [67, 68, 69, 70].
Major depressive disorders have been seen even today as a consequence of decreased serotonin level; therefore, the therapeutic strategy has mainly concentrated on producing medication, which focused on serotonin only. The major treatments are based on a class of drugs known as selective serotonin reuptake inhibitors (SSRIs). These SSRIs stimulate the serotonin uptake between neurons, and, though it has been seen some improvements, the medium long-term use has produced serious side effects on gut homeostatic balance with severe metabolic disturbances. Nowadays, as above mentioned, following the fact that current researches have established associations between gut microbes, digestive function, and mental well-being especially under the fact that serotonin is synthesized in the gut by the combined activity of different microbiota strain such as Lactobacillus. The connection was firstly seen in IBS patient who also manifests clear clinical signs of depressive disorders; the analysis of gut microbiota from these patients showed a very low level of Lactobacillus strains versus healthy subjects that might be explained by the increased expression of serotonin transporter (SERT) [71, 72, 73, 74].
Overall the data on this specific topic all have evidenced the positive effects of probiotics in CNS health. These effects are explained by the ability of probiotics to directly interact with fundamental metabolic agents either within the gut or outside that eventually explain the Gut-CNS axis. The use of probiotics and in specific the Lactobacillus strains showed that mice fed with these probiotics revealed a better capacity of reabsorbing tryptophan amino acid the precursor or serotonin, the re-established normal level of those hormones strictly related to stress deviances and depression such as the adrenocorticotropic hormone (ACTH), corticosterone, adrenaline, noradrenaline and the re-increase expression of brain-derived neurotrophic factor (BDNF) a marker that indicate a neuronal health and memory functionality [74, 75, 76, 77, 78, 79].
To conclude, the higher permeability of gut or “leaky gut” intensifies the fee passage of endotoxins such as the LPS and other forms of molecules and pathogens to leak into the bloodstream and thus in the entire system. The upsurge of these endotoxins, pathogens, and waste molecules eventually trigger the activation of a cascade of immune responses through switching on the Toll-like receptor 4 (TLR4) that mediates the recruitment of T and B lymphocytes together with a huge number of pro-inflammatory cytokines, interleukins, and IgA (Figure 3) [80, 81]. The current position therefore considers the use of probiotics as a therapeutic tool that may exert beneficial effects on the CNS by improving the stability homeostasis and integrity of gut microbiota, decreasing systemic inflammation.
There is a strict connection between CNS and gut system. The connection takes place through the afferent and efferent pathways of vagus nerve that physically connects both CNS and gut. Both CNS and gut may undergo leaky phenomena; in both cases, the barriers of either CNS or gut become extremely permeable under the chronic attack of both pathogens and immune agents overexpressed on the site. This event may eventually explain degenerative condition of both systems including IBS, ulcerative colitis, depression, PD, AD, and MS.
The skin represents another system where an immense variegation of microbiota environment can be found. Skin diseases caused by disturbances at the level of local microbiota that also showed to have strict connection with gut dysbiosis are quite exhaustive in explaining these malevolence patterns. Psoriatic lesions show a very specific histopathological conformation which present highly infiltrated immune cells like the CD3+ T cells and dendritic cells (DCs). Psoriasis showed to have a genetic family trait prevalent in twins; researchers have spotted 36 genetic loci associated with PS susceptibility 1 (PSORS1) locus on chromosome 6p21.3 [82, 83]. Data confirmed that most of them are directly involved in the overexpression of those genes that regulate part of pro-inflammatory innate immune responses such as the NFkB activation and interleukin (IL)-23 signaling pathway. Intriguingly a 2018 study performed on mice proved the use of two specific probiotic Lactobacillus strains, the L. salivarius L305 and L. rhamnosus L307, in alleviating the clinical symptoms of psoriasis through inhibiting the aggressive effect of pro-inflammatory cytokines and interleukins like TNF-α, IL-1β, IL-6, IL-17, and IL-22 and promoting the anti-inflammatory/modulatory activity of IL-4 and IL-10 [84].
In oral dysbiosis, we are facing a similar inflammatory arrangement; oral diseases manifest with high-grade inflammatory patterns that spread from the gums to the adjacent structures gradually destroying the supporting tissues of the teeth, both ligaments and alveolar bones, causing early loss. Similarly to psoriasis in periodontitis, we may encounter multifactorial condition due to a combination of genetic variants triggered by the initial subgingival dysbiosis and then become highly susceptible to wider disease progression [85].
The gram-negative bacteria such as Porphyromonas gingivalis, Tannerella forsythia, and Aggregatibacter actinomycetemcomitans are be able to migrate into the system either down to the heart, lungs, and sex apparatus or are capable to enter into the brain via the bloodstream or via infected periodontal sites. Histopathological analysis has confirmed these bacteria almost everywhere in atheromatous plaques, the vagina, amniotic fluid, rheumatoid arthritis bioptic samples, and brain plaques typical of neurodegenerative diseases AD, PD, and MS [86, 87, 88, 89, 90].
As can be seen from published studies, different strains of probiotics have been used for the treatment of periodontitis. Lactobacillus strains are the commonest used in the majority of high-grade inflammatory disease. The use of L. salivarius in combination with L. rhamnosus and B. subtilis together with L. reuteri and L. brevis probiotics has shown the most promising results. High-positive results were also obtained by Laleman and colleagues in using Streptococcus oralis KJ3, Streptococcus uberis KJ2, and Streptococcus ratti JH145 [91, 92].
Therefore an associated altered gut microbiota may lead to chronic gut dysbiosis and propagation of systemic injuries that involve cells, tissues, system, and the intrinsic dysfunction of the regenerative mechanism.
In summary, the present chapter reveals that gut microbiota and a correct use of probiotic may play important pleiotropic functions on several levels and systems. It is now clear that there is a bidirectional interaction between microbiota and nervous system, microbiota and immunity, microbiota and bones, and eventually microbiota and mitochondria. Probiotics are getting more and more attention due to the increase of evidence of their benefits in many degenerative disorders. It shows the capacity of microbiota to restore gut and vaginal and oral microbiota, thus attenuating various severe inflammatory responses. All these findings suggest that probiotics could play a role in clinical procedure and therapy approaches to decrease the risk of morbidity and mortality related to CNS diseases, cardiovascular diseases, and bone degenerations. The shared information presented on this chapter may also demonstrate that the traditional view on gut microbiota and microbiome has changed and may be eventually useful as a prospective medium for the delivery of superior, more precise, and personalized treatments in the achievement of better protective health benefits for a more and more aging society.
The authors declare no conflicts of interest.
The authors contributed equally to this work.
IntechOpen aims to ensure that original material is published while at the same time giving significant freedom to our Authors. To that end we maintain a flexible Copyright Policy guaranteeing that there is no transfer of copyright to the publisher and Authors retain exclusive copyright to their Work.
',metaTitle:"Publication Agreement - Chapters",metaDescription:"IN TECH aims to guarantee that original material is published while at the same time giving significant freedom to our authors. For that matter, we uphold a flexible copyright policy meaning that there is no transfer of copyright to the publisher and authors retain exclusive copyright to their work.\n\nWhen submitting a manuscript the Corresponding Author is required to accept the terms and conditions set forth in our Publication Agreement as follows:",metaKeywords:null,canonicalURL:"/page/publication-agreement-chapters",contentRaw:'[{"type":"htmlEditorComponent","content":"The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\\n\\n1. DEFINITIONS
\\n\\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\\n\\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\\n\\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\\n\\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\\n\\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\\n\\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\\n\\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\\n\\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\\n\\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\\n\\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\\n\\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\\n\\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\\n\\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\\n\\n3. CORRESPONDING AUTHOR'S DUTIES
\\n\\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\\n\\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\\n\\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\\n\\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\\n\\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\\n\\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\\n\\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\\n\\n4. CORRESPONDING AUTHOR'S WARRANTY
\\n\\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\\n\\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\\n\\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\\n\\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\\n\\n5. TERMINATION
\\n\\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\\n\\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\\n\\n6. INTECHOPEN’S DUTIES AND RIGHTS
\\n\\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\\n\\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\\n\\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\\n\\n7. MISCELLANEOUS
\\n\\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\\n\\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\\n\\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\\n\\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\\n\\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\\n\\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\\n\\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\\n\\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\\n\\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\\n\\nLast updated: 2020-11-27
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:"
The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\n\n1. DEFINITIONS
\n\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\n\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\n\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\n\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\n\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\n\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\n\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\n\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\n\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\n\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\n\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\n\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\n\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\n\n3. CORRESPONDING AUTHOR'S DUTIES
\n\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\n\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\n\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\n\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\n\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\n\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\n\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\n\n4. CORRESPONDING AUTHOR'S WARRANTY
\n\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\n\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\n\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\n\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\n\n5. TERMINATION
\n\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\n\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\n\n6. INTECHOPEN’S DUTIES AND RIGHTS
\n\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\n\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\n\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\n\n7. MISCELLANEOUS
\n\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\n\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\n\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\n\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\n\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\n\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\n\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\n\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\n\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\n\nLast updated: 2020-11-27
\n\n\n\n
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5699},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10244},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15650}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:15},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:4},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:56},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:5},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5145},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"90",title:"Computer Science and Engineering",slug:"computer-science-and-engineering",parent:{title:"Computer and Information Science",slug:"computer-and-information-science"},numberOfBooks:33,numberOfAuthorsAndEditors:771,numberOfWosCitations:720,numberOfCrossrefCitations:637,numberOfDimensionsCitations:1179,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"computer-science-and-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8423",title:"Security and Privacy From a Legal, Ethical, and Technical Perspective",subtitle:null,isOpenForSubmission:!1,hash:"dc4f0b68a2f903e7bf1ec7fbe042dbf2",slug:"security-and-privacy-from-a-legal-ethical-and-technical-perspective",bookSignature:"Christos Kalloniatis and Carlos Travieso-Gonzalez",coverURL:"https://cdn.intechopen.com/books/images_new/8423.jpg",editedByType:"Edited by",editors:[{id:"219671",title:"Associate Prof.",name:"Christos",middleName:null,surname:"Kalloniatis",slug:"christos-kalloniatis",fullName:"Christos Kalloniatis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editedByType:"Edited by",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6958",title:"High Performance Parallel Computing",subtitle:null,isOpenForSubmission:!1,hash:"dd811128360e48c520a91871f0279659",slug:"high-performance-parallel-computing",bookSignature:"Satyadhyan Chickerur",coverURL:"https://cdn.intechopen.com/books/images_new/6958.jpg",editedByType:"Edited by",editors:[{id:"239076",title:"Dr.",name:"Satyadhyan",middleName:null,surname:"Chickerur",slug:"satyadhyan-chickerur",fullName:"Satyadhyan Chickerur"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6715",title:"Petri Nets in Science and Engineering",subtitle:null,isOpenForSubmission:!1,hash:"b0b98cd043ed2dc582d8365630929d33",slug:"petri-nets-in-science-and-engineering",bookSignature:"Raul Campos-Rodriguez and Mildreth Alcaraz-Mejia",coverURL:"https://cdn.intechopen.com/books/images_new/6715.jpg",editedByType:"Edited by",editors:[{id:"178524",title:"Dr.",name:"Raul",middleName:null,surname:"Campos-Rodriguez",slug:"raul-campos-rodriguez",fullName:"Raul Campos-Rodriguez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5368",title:"Radio Frequency Identification",subtitle:null,isOpenForSubmission:!1,hash:"c86dd0c6a48afce125a9f8f2363fd4b8",slug:"radio-frequency-identification",bookSignature:"Paulo Cesar Crepaldi and Tales Cleber Pimenta",coverURL:"https://cdn.intechopen.com/books/images_new/5368.jpg",editedByType:"Edited by",editors:[{id:"38288",title:"Prof.",name:"Paulo",middleName:"Cesar",surname:"Crepaldi",slug:"paulo-crepaldi",fullName:"Paulo Crepaldi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6038",title:"Wireless Sensor Networks",subtitle:"Insights and Innovations",isOpenForSubmission:!1,hash:"e63cb7f71bc1fed54902b371cbe21a2a",slug:"wireless-sensor-networks-insights-and-innovations",bookSignature:"Philip Sallis",coverURL:"https://cdn.intechopen.com/books/images_new/6038.jpg",editedByType:"Edited by",editors:[{id:"10893",title:"Prof.",name:"Philip John",middleName:null,surname:"Sallis",slug:"philip-john-sallis",fullName:"Philip John Sallis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5966",title:"Heuristics and Hyper-Heuristics",subtitle:"Principles and Applications",isOpenForSubmission:!1,hash:"da699185a8b84a430d96d54bc35acdb2",slug:"heuristics-and-hyper-heuristics-principles-and-applications",bookSignature:"Javier Del Ser Lorente",coverURL:"https://cdn.intechopen.com/books/images_new/5966.jpg",editedByType:"Edited by",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5745",title:"Recent Progress in Parallel and Distributed Computing",subtitle:null,isOpenForSubmission:!1,hash:"dba64b23d703d16339860ebf4a13f022",slug:"recent-progress-in-parallel-and-distributed-computing",bookSignature:"Wen-Jyi Hwang",coverURL:"https://cdn.intechopen.com/books/images_new/5745.jpg",editedByType:"Edited by",editors:[{id:"108614",title:"Prof.",name:"Wen-Jyi",middleName:null,surname:"Hwang",slug:"wen-jyi-hwang",fullName:"Wen-Jyi Hwang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5707",title:"Computer Simulation",subtitle:null,isOpenForSubmission:!1,hash:"9eec1723d4d4775dc9755db55aa387a6",slug:"computer-simulation",bookSignature:"Dragan Cvetkovic",coverURL:"https://cdn.intechopen.com/books/images_new/5707.jpg",editedByType:"Edited by",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5183",title:"Face Recognition",subtitle:"Semisupervised Classification, Subspace Projection and Evaluation Methods",isOpenForSubmission:!1,hash:"d693acce19fca9cbf40d8f3f759e491d",slug:"face-recognition-semisupervised-classification-subspace-projection-and-evaluation-methods",bookSignature:"S. Ramakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/5183.jpg",editedByType:"Edited by",editors:[{id:"116136",title:"Dr.",name:"Srinivasan",middleName:null,surname:"Ramakrishnan",slug:"srinivasan-ramakrishnan",fullName:"Srinivasan Ramakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5150",title:"Electronics Cooling",subtitle:null,isOpenForSubmission:!1,hash:"b95856cfcc87ef3cb7d7c7c7bac4010d",slug:"electronics-cooling",bookSignature:"S M Sohel Murshed",coverURL:"https://cdn.intechopen.com/books/images_new/5150.jpg",editedByType:"Edited by",editors:[{id:"24904",title:"Prof.",name:"S. M. Sohel",middleName:null,surname:"Murshed",slug:"s.-m.-sohel-murshed",fullName:"S. M. Sohel Murshed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4655",title:"Applications of Digital Signal Processing through Practical Approach",subtitle:null,isOpenForSubmission:!1,hash:"b20308efd28e8a487949997c8d673fb8",slug:"applications-of-digital-signal-processing-through-practical-approach",bookSignature:"Sudhakar Radhakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/4655.jpg",editedByType:"Edited by",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:33,mostCitedChapters:[{id:"50801",doi:"10.5772/62898",title:"Performance Evaluation of Nanofluids in an Inclined Ribbed Microchannel for Electronic Cooling Applications",slug:"performance-evaluation-of-nanofluids-in-an-inclined-ribbed-microchannel-for-electronic-cooling-appli",totalDownloads:1949,totalCrossrefCites:44,totalDimensionsCites:78,book:{slug:"electronics-cooling",title:"Electronics Cooling",fullTitle:"Electronics Cooling"},signatures:"Mohammad Reza Safaei, Marjan Gooarzi, Omid Ali Akbari, Mostafa\nSafdari Shadloo and Mahidzal Dahari",authors:[{id:"178854",title:"Dr.",name:"Mohammad Reza",middleName:null,surname:"Safaei",slug:"mohammad-reza-safaei",fullName:"Mohammad Reza Safaei"},{id:"179807",title:"Dr.",name:"Mostafa",middleName:null,surname:"Safdari Shadloo",slug:"mostafa-safdari-shadloo",fullName:"Mostafa Safdari Shadloo"},{id:"179809",title:"Dr.",name:"Mahidzal",middleName:null,surname:"Dahari",slug:"mahidzal-dahari",fullName:"Mahidzal Dahari"},{id:"179813",title:"MSc.",name:"Marjan",middleName:null,surname:"Goodarzi",slug:"marjan-goodarzi",fullName:"Marjan Goodarzi"},{id:"185093",title:"MSc.",name:"Omid",middleName:null,surname:"Ali Akbari",slug:"omid-ali-akbari",fullName:"Omid Ali Akbari"}]},{id:"5184",doi:"10.5772/6180",title:"From the Lab to the Real World: Affect Recognition Using Multiple Cues and Modalities",slug:"from_the_lab_to_the_real_world__affect_recognition_using_multiple_cues_and_modalities",totalDownloads:3132,totalCrossrefCites:34,totalDimensionsCites:51,book:{slug:"affective_computing",title:"Affective Computing",fullTitle:"Affective Computing"},signatures:"Hatice Gunes, Massimo Piccardi and Maja Pantic",authors:null},{id:"5197",doi:"10.5772/6167",title:"Generating Facial Expressions with Deep Belief Nets",slug:"generating_facial_expressions_with_deep_belief_nets",totalDownloads:3140,totalCrossrefCites:1,totalDimensionsCites:46,book:{slug:"affective_computing",title:"Affective Computing",fullTitle:"Affective Computing"},signatures:"Joshua M. Susskind, Geoffrey E. Hinton, Javier R. Movellan and Adam K. Anderson",authors:null}],mostDownloadedChaptersLast30Days:[{id:"68505",title:"Research Design and Methodology",slug:"research-design-and-methodology",totalDownloads:16004,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"cyberspace",title:"Cyberspace",fullTitle:"Cyberspace"},signatures:"Kassu Jilcha Sileyew",authors:null},{id:"15946",title:"Wake-Up-Word Speech Recognition",slug:"wake-up-word-speech-recognition",totalDownloads:4003,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"speech-technologies",title:"Speech Technologies",fullTitle:"Speech Technologies"},signatures:"Veton Kepuska",authors:[{id:"24379",title:"Prof.",name:"Veton",middleName:null,surname:"Kepuska",slug:"veton-kepuska",fullName:"Veton Kepuska"}]},{id:"51031",title:"Face Recognition: Issues, Methods and Alternative Applications",slug:"face-recognition-issues-methods-and-alternative-applications",totalDownloads:10292,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"face-recognition-semisupervised-classification-subspace-projection-and-evaluation-methods",title:"Face Recognition",fullTitle:"Face Recognition - Semisupervised Classification, Subspace Projection and Evaluation Methods"},signatures:"Waldemar Wójcik, Konrad Gromaszek and Muhtar Junisbekov",authors:[{id:"24059",title:"Dr.Ing.",name:"Konrad",middleName:null,surname:"Gromaszek",slug:"konrad-gromaszek",fullName:"Konrad Gromaszek"}]},{id:"56541",title:"Routing Protocols for Wireless Sensor Networks (WSNs)",slug:"routing-protocols-for-wireless-sensor-networks-wsns-",totalDownloads:4344,totalCrossrefCites:9,totalDimensionsCites:11,book:{slug:"wireless-sensor-networks-insights-and-innovations",title:"Wireless Sensor Networks",fullTitle:"Wireless Sensor Networks - Insights and Innovations"},signatures:"Noman Shabbir and Syed Rizwan Hassan",authors:[{id:"206600",title:"Mr.",name:"Noman",middleName:null,surname:"Shabbir",slug:"noman-shabbir",fullName:"Noman Shabbir"},{id:"206601",title:"Mr.",name:"Syed Rizwan",middleName:null,surname:"Hassan",slug:"syed-rizwan-hassan",fullName:"Syed Rizwan Hassan"}]},{id:"62639",title:"Reliability Evaluation for Mechanical Systems by Petri Nets",slug:"reliability-evaluation-for-mechanical-systems-by-petri-nets",totalDownloads:514,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"petri-nets-in-science-and-engineering",title:"Petri Nets in Science and Engineering",fullTitle:"Petri Nets in Science and Engineering"},signatures:"Jianing Wu and Shaoze Yan",authors:[{id:"238979",title:"Dr.",name:"Jianing",middleName:null,surname:"Wu",slug:"jianing-wu",fullName:"Jianing Wu"}]},{id:"70973",title:"Social Media, Ethics and the Privacy Paradox",slug:"social-media-ethics-and-the-privacy-paradox",totalDownloads:850,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"security-and-privacy-from-a-legal-ethical-and-technical-perspective",title:"Security and Privacy From a Legal, Ethical, and Technical Perspective",fullTitle:"Security and Privacy From a Legal, Ethical, and Technical Perspective"},signatures:"Nadine Barrett-Maitland and Jenice Lynch",authors:[{id:"311821",title:"Ph.D. Student",name:"Nadine",middleName:null,surname:"Barrett-Maitland",slug:"nadine-barrett-maitland",fullName:"Nadine Barrett-Maitland"},{id:"311822",title:"Ms.",name:"Jenice",middleName:null,surname:"Lynch",slug:"jenice-lynch",fullName:"Jenice Lynch"}]},{id:"50437",title:"Face Recognition: Demystification of Multifarious Aspect in Evaluation Metrics",slug:"face-recognition-demystification-of-multifarious-aspect-in-evaluation-metrics",totalDownloads:2343,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"face-recognition-semisupervised-classification-subspace-projection-and-evaluation-methods",title:"Face Recognition",fullTitle:"Face Recognition - Semisupervised Classification, Subspace Projection and Evaluation Methods"},signatures:"Mala Sundaram and Ambika Mani",authors:[{id:"180904",title:"Mrs.",name:"Mala",middleName:null,surname:"Sundaram",slug:"mala-sundaram",fullName:"Mala Sundaram"},{id:"180905",title:"Mrs.",name:"Ambika",middleName:null,surname:"Mani",slug:"ambika-mani",fullName:"Ambika Mani"}]},{id:"50065",title:"Heat Pipes for Computer Cooling Applications",slug:"heat-pipes-for-computer-cooling-applications",totalDownloads:4038,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"electronics-cooling",title:"Electronics Cooling",fullTitle:"Electronics Cooling"},signatures:"Mohamed H.A. Elnaggar and Ezzaldeen Edwan",authors:[{id:"178453",title:"Dr.",name:"Mohamed",middleName:null,surname:"Elnaggar",slug:"mohamed-elnaggar",fullName:"Mohamed Elnaggar"},{id:"184278",title:"Dr.",name:"Ezzaldeen",middleName:null,surname:"Edwan",slug:"ezzaldeen-edwan",fullName:"Ezzaldeen Edwan"}]},{id:"5175",title:"Facial Expression Recognition Using 3D Facial Feature Distances",slug:"facial_expression_recognition_using_3d_facial_feature_distances",totalDownloads:3825,totalCrossrefCites:5,totalDimensionsCites:10,book:{slug:"affective_computing",title:"Affective Computing",fullTitle:"Affective Computing"},signatures:"Hamit Soyel and Hasan Demirel",authors:null},{id:"68561",title:"Cyberspace and Artificial Intelligence: The New Face of Cyber-Enhanced Hybrid Threats",slug:"cyberspace-and-artificial-intelligence-the-new-face-of-cyber-enhanced-hybrid-threats",totalDownloads:527,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"cyberspace",title:"Cyberspace",fullTitle:"Cyberspace"},signatures:"Carlos Pedro Gonçalves",authors:[{id:"278948",title:"Prof.",name:"Carlos Pedro",middleName:null,surname:"Gonçalves",slug:"carlos-pedro-goncalves",fullName:"Carlos Pedro Gonçalves"}]}],onlineFirstChaptersFilter:{topicSlug:"computer-science-and-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/73152/yang-sun",hash:"",query:{},params:{id:"73152",slug:"yang-sun"},fullPath:"/profiles/73152/yang-sun",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()