\r\n\tIn sum, the book presents a reflective analysis of the pedagogical hubs for a changing world, considering the most fundamental areas of the current contingencies in education.
",isbn:"978-1-83968-793-8",printIsbn:"978-1-83968-792-1",pdfIsbn:"978-1-83968-794-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"b01f9136149277b7e4cbc1e52bce78ec",bookSignature:"Dr. María Jose Hernandez-Serrano",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10229.jpg",keywords:"Teacher Digital Competences, Flipped Learning, Online Resources Design, Neuroscientific Literacy (Myths), Emotions and Learning, Multisensory Stimulation, Citizen Skills, Violence Prevention, Moral Development, Universal Design for Learning, Sensitizing on Diversity, Supportive Strategies",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 14th 2020",dateEndSecondStepPublish:"October 12th 2020",dateEndThirdStepPublish:"December 11th 2020",dateEndFourthStepPublish:"March 1st 2021",dateEndFifthStepPublish:"April 30th 2021",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Phil. Maria Jose Hernandez Serrano is a tenured lecturer in the Department of Theory and History of Education at the University of Salamanca, where she currently teaches on Teacher Education. She graduated in Social Education (2000) and Psycho-Pedagogy (2003) at the University of Salamanca. Then, she obtained her European Ph.D. in Education and Training in Virtual Environments by research with the University of Manchester, UK (2009).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"187893",title:"Dr.",name:"María Jose",middleName:null,surname:"Hernandez-Serrano",slug:"maria-jose-hernandez-serrano",fullName:"María Jose Hernandez-Serrano",profilePictureURL:"https://mts.intechopen.com/storage/users/187893/images/system/187893.jpg",biography:"DPhil Maria Jose Hernandez Serrano is a tenured Lecturer in the Department of Theory and History of Education at the University of Salamanca (Spain), where she currently teaches on Teacher Education. She graduated in Social Education (2000) and Psycho-Pedagogy (2003) at the University of Salamanca. Then, she obtained her European Ph.D. on Education and Training in Virtual Environments by research with the University of Manchester, UK (2009). She obtained a Visiting Scholar Postdoctoral Grant (of the British Academy, UK) at the Oxford Internet Institute of the University of Oxford (2011) and was granted with a postdoctoral research (in 2021) at London Birbeck University.\n \nShe is author of more than 20 research papers, and more than 35 book chapters (H Index 10). She is interested in the study of the educational process and the analysis of cognitive and affective processes in the context of neuroeducation and neurotechnologies, along with the study of social contingencies affecting the educational institutions and requiring new skills for educators.\n\nHer publications are mainly of the educational process mediated by technologies and digital competences. Currently, her new research interests are: the transdisciplinary application of the brain-based research to the educational context and virtual environments, and the neuropedagogical implications of the technologies on the development of the brain in younger students. Also, she is interested in the promotion of creative and critical uses of digital technologies, the emerging uses of social media and transmedia, and the informal learning through technologies.\n\nShe is a member of several research Networks and Scientific Committees in international journals on Educational Technologies and Educommunication, and collaborates as a reviewer in several prestigious journals (see public profile in Publons).\n\nUntil March 2010 she was in charge of the Adult University of Salamanca, by coordinating teaching activities of more than a thousand adult students. She currently is, since 2014, the Secretary of the Department of Theory and History of Education. Since 2015 she collaborates with the Council Educational Program by training teachers and families in the translation of advances from educational neuroscience.",institutionString:"University of Salamanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Salamanca",institutionURL:null,country:{name:"Spain"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"23",title:"Social Sciences",slug:"social-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"301331",firstName:"Mia",lastName:"Vulovic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/301331/images/8498_n.jpg",email:"mia.v@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6942",title:"Global Social Work",subtitle:"Cutting Edge Issues and Critical Reflections",isOpenForSubmission:!1,hash:"222c8a66edfc7a4a6537af7565bcb3de",slug:"global-social-work-cutting-edge-issues-and-critical-reflections",bookSignature:"Bala Raju Nikku",coverURL:"https://cdn.intechopen.com/books/images_new/6942.jpg",editedByType:"Edited by",editors:[{id:"263576",title:"Dr.",name:"Bala",surname:"Nikku",slug:"bala-nikku",fullName:"Bala Nikku"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"17720",title:"Engineered Drug Resistant Cell-Mediated Immunotherapy",doi:"10.5772/21958",slug:"engineered-drug-resistant-cell-mediated-immunotherapy",body:'In principle, gene therapy is the introduction of a nucleic acid sequence(s) into target cells to prevent or cure a wide range of diseases. Such a therapeutic approach was initially directed toward the correction of inherited disorders. For example, one strategy involves introduction of a corrected gene into cells followed by transplantation of the genetically modified cells into patients. But technological hurdles such inadequate transfer of genetic materials into cells, thus leading to low transgene integration, and safety concerns with gene transfer methodologies have limited the use of gene therapy. However, significant improvements in gene delivery systems that are both efficient and safe have now directed the growth of gene therapy, as evidenced by several hundred gene therapy-based clinical trials being conducted worldwide. Advancements in all areas of gene therapy now allow for the development of genetically engineered immunocompetent cell-based therapies for cancer.
The therapeutic role of immune cells to control malignancies has been well established. For example, immunocompetent hosts frequently reject transplanted tumors while tumors can easily be established in immunosuppressant hosts. In vitro studies have demonstrated that immunocompetent cells exhibit powerful cytotoxicity toward a broad range of cancer cells and tumorigenic animal models have shown that these cells can infiltrate tumors resulting in tumor regression. Tumor infiltration by immunocompetent cells indicates favorable prognosis in various cancers, such as melanoma, colon, ovarian cancer, basal cell carcinoma, and lung cancer (Haanen et al., 2006; Halliday et al., 1995; Inoue et al., 2000; Kerr et al., 1998; Pages et al., 2005; Zhang et al., 2003). These observations have led to the development of cell based immunotherapy strategies to target cancer.
However, intensive chemotherapy regimens, the frontline therapy to treat patients with advanced cancer, frequently lead to non-specific cellular toxicity to adoptively transferred immunocompetent cells and to hematopoietic stem cells. One strategy to combat drug-induced toxicity is to genetically engineer immune cells to make them drug resistant. Several genes, such as methylguanine methyltransferase (MGMT), dihydrofolate reductase (DHFR), cytidine deaminase (CD), and multidrug resistant protein (MDR-1) have been identified that can confer drug resistance to anti-cancer immune cells, and advances in gene therapy techniques have made it possible to test the feasibility of using the cDNAs encoding these sequences in drug resistant gene therapy studies. The ability to generate chemo-resistant immune cells can be exploited to test novel anti-cancer therapies, such as “Drug Resistant Immunotherapy” (or DRI) whereby drug resistant immunocompetent cells can be administered in conjunction with chemotherapy. Such a treatment modality can significantly enhance the generation of anti-tumor immunity that is quantitatively and qualitatively superior to that achieved by either cellular immunotherapy or chemotherapy alone. DRI can also benefit from the ability to selectively expanding the modified cells in vivo by administering specific chemotherapeutic agents thereby mitigating the problem of inefficient gene transfer to these cells. The anti-cancer effectiveness of DRI based therapy has been successfully demonstrated using either drug resistant bone marrow or immunocompetent cells with intrinsic cytotoxic capabilities. The therapeutic benefits afforded by a DRI based strategy can potentially be enhanced by the synergistic effects between chemotherapy and immunotherapy. For example, chemotherapy mediated lymphodepletion prior to adoptive transfer of drug resistant immunocompetent cells can mitigate immunosuppressive mechanisms that are advantageously exploited by progressive tumor cells to evade immune recognition. With the recent advances in ex vivo gene transfer technology, drug resistant variants of i) tumor specific lymphocytes, and their genetically engineered counterparts such as those harboring transgenic αβ T cell receptor (TCR)/cancer antigen receptor (CAR) modifications, and ii) lymphocytes with non-specific cytotoxic potentials, can be bioengineered to treat various malignancies.
However such a gene therapy based approach can be limited by inadequate transfer of cDNA that encodes drug resistant genes. The ability to genetically engineer immune cells, specifically hematopoietic cells, has greatly advanced in recent years. It is generally accepted that recombinant retroviral vectors, specifically those based on HIV-1) are the most efficient gene transfer systems for the ex vivo modification of hematopoietic cells. Retroviral systems have the advantage that i) recombinant viruses are now relatively easy to generate and characterize, ii) most components for retroviral transfer systems are commercially available, iii) retroviral gene transfer results in stable integration of the transferred nucleic acid sequence into the genome of the target cell, and iv) depending on the target cells, the efficiency of gene transfer can approach 100%.
This chapter will discuss cancer immunotherapy with genetically engineered immune cells and the feasibility of employing drug resistant variants of these cells during chemotherapy that can potentially augment such a cell therapy based approach.
Despite relentless efforts worldwide to improve upon conventional treatment modalities for cancer, chemotherapy remains a much needed frontline therapy. Several cytotoxic agents, such as anti-metabolites, alkylating agents, anthracyclines, DNA methylasetransferase inhibitors, platinum compounds and spindle poisons have been developed to kill cancer cells. However, they are not uniformly effective, and the introduction of these agents with novel state-of-the-art therapies, such as immunotherapies, is problematic. For example, these agents can be detrimental to the establishment of robust anti-tumor immunocompetent cells due to the non-specific cellular toxicity of many anti-cancer agents. Intensive chemotherapy frequently administered to treat patients with advanced cancer can result in lymphopenia, which decrease the numbers and function of potential anti-cancer T cells in the blood thereby blunting the anti-tumor immune responses (Liseth et al., 2010). Tumor drug resistance can also develop, resulting in ineffective chemotherapy treatment (Michael & Doherty, 2005). In addition, induced secondary cancers and long-term survivorship issues limit the effectiveness of some cytotoxic chemotherapy agents (Perry et al., 1998). If the chemotherapy regimens that are transiently effective can be combined with immunocompetent cell therapies, then it is predicted that a significant improvement of anti-neoplastic therapy can be achieved. However, because chemotherapy regimens are toxic to immunocompetent cells, the co-administration of these treatments reduces or eliminates the effectiveness of the immunocompetent cells.
One strategy to combat drug-induced toxicity is to genetically engineer immunocompetent cells to make them drug resistant. This strategy facilitated the development of a DRI-based anti-cancer technology that combines the therapeutic effectiveness afforded by drug resistant immunocompetent cells with conventional chemotherapy. This strategy involves 1) the use of lentivirus mediated applications to introduce cDNAs that encode for drug resistant genes into immunocompetent cells, and 2) administration of the genetically-modified immunocompetent cells in conjunction with chemotherapy to enhance tumor cell clearance. The novel features of such a strategy are 1) it can be more potent in tumor elimination than the individual administration of chemotherapy or immunotherapy, 2) it can easily be integrated with other conventional treatment modalities, such as surgery and antibody/vaccine based immunotherapy, 3) it is applicable to patients with any disease stages, and, 4) less aggressive chemotherapy can be applied during DRI therapy applications, thereby reducing the development of tumor drug resistance and induction of secondary cancers. Several strategies have been identified that can be used to confer drug resistance to targeted cells, and advances in gene therapy techniques have made it possible to test the feasibility of using the cDNA encoding proteins that confer resistance in drug resistance gene therapy studies. A number of proteins have been identified that confer drug resistance, but this chapter will focus on four that have already been used to confer resistance specifically to hematopoietic cells.
DHFR regulates folate homeostasis by controlling the synthesis of purines and pyrimidines. Anti-folate drugs such methotrexate and trimetraxte, are inhibitors of DHFR. Gene therapy strategies have exploited the use of DHFR mutants that can confer resistance to antifolates. For example, bioengineered hematopoietic stem cells (HSCs) harboring a mutated DHFR transgene protects mice from an antifolate dose that is lethal to non-modified HSCs. (Allay et al., 1997, 1998a; Spencer et al., 1996,). However, HSCs bypass drug induced toxicity by increased nucleoside transport. To circumvent such effects, nucleoside transport inhibitors have been co-administered with antifolate drugs to significantly increase the population of cells modified with DHFR mutants, specifically L22Y (Allay et al., 1998b; Warlick et al., 2002).
The therapeutic efficiency of a single drug resistant based gene therapy can be significantly enhanced by genetically engineering dual drug resistant anti-cancer cells. Such a strategy can be particularly effective in treating tumors that respond to drug combinations that exhibit synergistic (or additive) effects. The combination of methotrexate and a cytosine nucleotide analog, cytosine arabinoside (Ara-C) has been successfully used in patients with Non-Hodgkins lymphoma (Fisher et al., 1993; Khouri et al., 1998). Ara-C is inactivated by CD which is involved in the salvage of pyrimidine compounds and in pyrimidine metabolism. The feasibility of bioengineering cells resistant to both an antifolate and Ara-C have led to the development of gene therapy strategies based on the generation of dual drug resistant cells (Sauerbrey et al., 1999). Transplantation of dual drug resistant bone marrow cells generated by the retroviral transfer of a fusion construct: mutDHFR-CD encoding for mutant DHFR and CD genes, into myoablated mice significantly reduced the growth of established leukemia, while protecting hematopoietic cells (Budak-Alpdogan et al., 2004).
During cancer progression, the tumor acquires resistance to multiple natural products by the expression of the MDR-1 gene. This gene encodes a membrane glycoprotein, known as P-glycoprotein (P-GP) involved in the transport of metabolic byproducts across the cell membrane. The P-GP protein displays broad specificity towards several structurally unrelated chemotherapy agents. Thus, pleitropic drug resistance can be conferred to cells by the transfer of nucleic acid sequence that encodes for MDR-1. MDR-1 gene was one of the first candidate genes to be exploited in the context of drug resistant gene therapy to confer protection to bone marrow cells. (Abonour et al., 2000; Bunting et al, 2000; Cowan et al, 1999; Moscow et al., 1999; Sellers et al., 2001; Sorrentino et al, 1992). These initial studies, and others, led to the development of the field of drug resistance gene therapy for cancer. One strategy is to harvest HSCs from cancer patients and genetically modify them to express the MDR-1 gene followed by transplantation into patients. During engraftment, chemotherapy is administered to selectively enrich for modified cells in vivo, which leads to lower cytotoxicity upon repeated chemotherapy treatments.
Among the drug resistant genes studied, MGMT is among the most promising. This gene encodes for human alkyl guanine transferase (hAGT), a DNA repair protein that confers resistance to the cytotoxic effects of alkylating agents, such as BCNU and temozolomide (Davis et al., 1997; Liu et al., 2002; Maze et al., 1996). Tumor cells have been shown to express high levels of AGT, which can be an effective mechanism of tumor cell drug resistance. To circumvent AGT-mediated resistance, alkylating agents have been administered in combination with inhibitors of AGT, namely 6-Benzyl Guanine (6-BG) (Dolan et al., 1989). Although 6-BG sensitizes tumor cells to alkylating agents, drug induced toxicities such as myelosuppression severely limit the use of these combined agents. To overcome this limitation, several BG-resistant variants of AGT have been generated and used in gene transfer studies. Among them, the P140KMGMT variant has been well characterized with respect to drug resistant gene therapy. (Gerull et al., 2007; Larochelle et al., 2009; Neff, et al., 2005; Pollok et al., 2003; Sawai et al., 2001; Zielske et al., 2003).
The development of drug resistant genes along with the advancements in gene delivery systems has allowed for the chemoprotection of immunocompetent cells. Genetic engineering of drug resistant hematopoietic cells has been well documented (Allay et al, 1998a, 1998b; Davis et al, 1997; Maze et al, 1996; Zhao et al, 2008). Transplantation of modified HSCs has been shown to protect the hematopoietic system from chemotherapy-induced toxicity, and this strategy has been used to enrich the percentage of circulating gene-modified cells. The advantages to the establishment of such chemo-resistant bone marrow cells are two-fold. First, chemotherapy can be administered, possibly at a higher frequency and at higher doses. For example, transplantation of the DHFR mutant L22Y-modified HSCs allowed for the administration of the antifolate drug, trimetrexate (TMTX) at concentrations that are lethal to animals not receiving the genetically altered bone marrow cells (Allay et al., 1997, 1998; May et al., 1995; Spencer et al., 1996). Secondly, tumor targeting T lymphocytes can be expanded during chemotherapy challenges, leading to increased tumor infiltration and potentially increased tumor clearance
The anti-cancer effectiveness of combining drug resistant HSCs, immune-modulating agents, and chemotherapy was evaluated by combining the administration of an antifolate based chemotherapy, trimetrexate (TMTX), along with anti-CD137-based immunotherapy in mice transplanted with anti-folate resistant HSCs (McMillin et al., 2006). Mice were initially transplanted with L22Y-DHFR-modified bone marrow and were allowed to reconstitute with drug resistant hematopoietic cells. The reconstituted mice were implanted with sarcoma cells, i.e. the AG104 sarcoma cell line. The tumor bearing animals were exposed to treatments comprising of either anti-CD137, TMTX, or the combination of anti-CD137 and TMTX. Chemotherapy alone mediated tumor regressions only during the treatment phase. However, once this treatment ended all animals in this treatment group experienced rapid growth of their tumor. Similarly, administration of immunotherapy alone regressed tumors in the majority of animals, but only 40% of the animals achieve long-term tumor clearance. However, all animals treated with chemotherapy along with immunotherapy resulted in complete tumor regressions. Such an observation confirmed the existence of possible synergism between immunotherapy and chemotherapy in the context of a drug resistant immunotherapy strategy. Importantly, application of the DRI based strategy by combining chemo-and immunotherapies can lead to the induction of immunological memory. Such an effect was demonstrated by infusing splenocytes isolated from mice in the combined treatment group into untreated tumor bearing animals. The adoptive transfer of potential immunocompetent cell populations led to reductions in tumor burdens and extension of survival of the recipient mice. These studies have important implications in designing treatment modalities to generate a robust antitumor response that may lead to eradicate residual tumor. Such a strategy will involve the co-administration of chemo-protected immunocompetent cells with chemotherapy that mediate a fast antitumor response to reduce tumor burden followed by the induction of immune memory cells that are sustained over a long time to eliminate any persistent cancer cells.
Although initial studies focused on immunotherapy driven by HSCs, which is the source of all immune cells, other proof-of-concept studies were directed toward the evaluation of specific immunocompetent cells as mediators of DRI. For example, one study exploited the use of genetically engineered drug resistant variants of the anti-cancer immune cells, NK92 and T-ALL104 cells, in combination with temozolomide (Dasgupta, et al., 2010). These cells were selected based on their direct immunotherapeutic properties to mediate robust anti-tumor properties without the requirement of MHC presentation (Gong et al., 1994; Tam et al., 1999; Tonn et al., 2001). TALL-104 cells represent a leukemic T cell line that has surface markers typical of both cytotoxic T lymphocytes and natural killer cells and adoptive immunotherapy with TALL-104 cells has induced long-term complete or partial remissions in tumor bearing animals (Cesano et al., 1998; Geoerger et al., 2000). In this study, a SIV-based lentiviral system was employed to deliver the drug resistant variant P140KMGMT into the immunocompetent cell lines NK-92 and TALL-104, and in the myelogenous leukemia cell line, K562, which is a target for both NK-92 and TALL-104 cells. Using in vitro survival and cytotoxicity assays it was demonstrated that 1) the genetically-modified cells developed significant resistance to the alkylating drug temozolomide when compared to the untransfected wild type cells, 2) genetic modification of the immune effector cells did not alter their ability to kill target cells, and 3) genetically altered cells were active in killing target cells after drug treatments, while the killing effectiveness of the unmodified effector cells is significantly diminished after a chemotherapy challenge. However, genetically modified drug resistant cells killed virtually all of un-modified K562 target cells in the presence of drug, which was significantly higher compared to the killing effectiveness of the non-modified effector cells.
These in vivo and in vitro proof-of-concept studies demonstrate that drug resistant immunocompetent effector cells are superior cytotoxic effectors during a chemotherapy challenge. This is a significant finding which can potentially be combined with current cell-based and adoptive immunotherapies. Regression of large, vascularized tumors has been shown in patients with refractory metastatic melanoma. However, for maximum effectiveness a lympho-depleting regimen is necessary prior to autologous lymphocyte cell transfer (Rosenberg & Dudley, 2004). Generation and expansion of drug-resistant lymphocytes ex vivo can allow, in this setting, for the administration of immunocompetent cell-based therapy concurrently with chemotherapy, potentially improving tumor clearance while anti-tumor immunity is established and maintained. In this scenario, non-transduced lymphocytes can continually be depleted using a selective chemotherapy treatment, which could be repeatedly applied during the administration of adoptive immunotherapy. The co-administration of chemo- and immunotherapies could then lead to long-term tumor clearance. Thus, it is anticipated that the T lymphocytes with memory phenotypes are suitable candidates to be incorporated into future DRI studies to target advanced cancer.
Combining chemotherapy with immunotherapy is an attractive strategy to enhance the effectiveness of both treatments, but initial combination strategies consisting of high-dose chemotherapy combined with interleukin-2 (IL-2) were no better than chemotherapy alone (Pollera et al., 1994; Rinehart et al., 1992). However, studies in the last decade have demonstrated potential synergistic effects between chemotherapy and immunotherapy (Fridlender et al., 2010; Lake et al., 2005; Ramakrishnan et al., 2011). Conventional chemotherapy can augment immunotherapy in several ways: 1) induction of chemotherapy mediated-lymphodepletion leading to i) enhanced persistence of the tumor reactive T lymphocytes, ii) increase in tumor trafficking by the tumor responsive T cells (Dudley et al, 2002a, 2005), iii) modulation of immunosuppressive factors (Cui et al., 2009), and iv) promotion of differentiation of central memory effector cells (to augment vaccine based strategies) (Badovinac et al., 2005; Wrzesinski et al., 2007), and 2) chemotherapy induced sensitization of tumor to the immunocompetent cells by i) the induction of stress responsive molecules on tumor surface and ii) increasing the availability of tumor antigens to “boost” the T cell response (Fridlender et al., 2010). Thus a DRI therapy approach that integrates both chemo- and drug resistant immune cell therapies can significantly benefit from such partnerships.
Several clinical trials with melanoma patients support the concept that adoptive transfer of genetically engineered T lymphocytes may not be sufficient to improve treatment outcomes without lymphodepletion. For example, in the treatment of patients with advanced melanoma, anti-tumor response rate was observed only after adoptive transfer of T lymphocytes (with or without engineered specificity towards melanoma antigens) with lymphodepleting regimens (Dudley, et al., 2001, 2002b, 2005; Hughes et al, 2005). Lymphodepletion is thought to provide space in the lymphoid compartment thereby allowing robust establishment of the transferred lymphocytes (Klebanoff et al., 2005) which resulted in the induction of faster and more efficient immune response with enhanced anti-tumor properties (Dudley et al., 2002; Rosenberg & Dudley, 2004; Wang et al., 2005a, 2005b). Lymphopenia also induces the rescue of memory T cells as shown in the treatment of mice with established melanoma. For example, the anti-tumor efficacy of an immunotherapy comprising an oncolytic vaccinia virus expressing CD137 T-cell costimulatory molecule is significantly enhanced when animals were lymphodepleted prior to vaccination (Kim et al., 2009). In addition, T regulatory cells (Tregs) have been implicated as having potent immune suppressive functions, and clinical trials have indicated that depleting or inhibiting such cells can increase anticancer efficacy (Phan et al., 2003). The number of Tregs can be reduced by chemotherapy and also by a combination of an adenoviral based immunogene therapy (Fridlender et al., 2010).
Chemotherapy can sensitize tumors to augment immunotherapy by the up-regulation of tumor specific antigens that are recognized by the activating receptors expressed by NK and T cells, thereby leading to an increase in tumor clearance (Nausch & Cerwenka, 2008). It has been reported that various cancer cells exposed to drugs upregulate stress-associated molecules MIC-A, MIC-B, and UL-16 binding proteins which are recognized by immunocompetent NK and T cells through their MHC-independent NKG2D/TCR pathways. Such innate HLA-independent interactions lead to the activation of anti-tumor properties of these cells, as has been demonstrated by T cell mediated destruction of glioblastoma cells exposed to temozolomide, the frontline chemotherapy agent in the treatment of patients afflicted with glioblastoma multiforme (GBM) (Lamb, 2009). This mode of immune cell-activation opens the possibility of testing a treatment modality that can combine immunotherapy based on drug resistant variants of NK or T cells and chemotherapy to target cancer types that express these activators during drug treatments. It was also demonstrated that in mouse models of colon and mammary cancer, applications of chemotherapeutic drugs upregulated the expression of a tumor cell surface receptor, mannose 6-phosphate receptor (Motyka et al, 2000). This receptor is implicated in the uptake of granzyme B released by CTLs upon contact with tumor cells, thereby establishing a synergy between chemotherapy and immunotherapy (Ramakrishnan et al, 2010).
Chemotherapy induced tumor cell apoptosis can liberate massive amounts of tumor specific antigens that are duly processed by antigen presenting cells and the processed antigens are presented, in association with MHC class I molecules, to CTLs leading to an increase in antigen presentation (Lake et al, 2005). Thus chemotherapy can augment immunotherapy by increasing antigen presentation, which can 1) lead to T lymphocyte expansion and increased lymphocyte infiltration of solid tumors and 2) mediate cancer vaccination effects. For example, it has been shown that chemotherapy can prime the host’s immunity and enhance antitumor responses (Nowak et al., 2003a). Antitumor cytotoxic T lymphocytes (CTLs) showed increased proliferation because of increased tumor apoptosis when chemotherapy was administered, and incorporating immunotherapy with chemotherapy extended animal survival (Nowak et al., 2003b). Importantly, this study showed that the delivery of chemotherapy before immunotherapy is more effective than after immunotherapy (Nowak et al., 2003a).
Our knowledge about the host immune response to cancer has led to the development of immunocompetent cell-based therapeutics. Two distinct classes of cells that are defined by their mechanism to invoke anti-tumor immunity have been exploited: i) the widely used tumor specific T lymphocytes, which must be primed prior to tumor cell killing, and ii) non-specific MHC-unrestricted effector cells with intrinsic tumor killing properties.
T cells mediate their potent anti-tumor effectiveness by their ability to recognize a wide spectrum of antigens expressed on the tumor surface. These tumor associated antigens are processed by the antigen presenting cells, such as dendritic cells into smaller peptides which are presented to T cells in combination with MHC complexes. T cell activation occurs after the recognition of the peptide-MHC complex via their antigen specific receptor, i.e. TCR-CD3 complex. The T cell receptor is a heterodimer composed of either α and β or γ and δ polypeptide chains. Each chain of the TCR is composed of a variable region (V) and a constant region (C). The V region determines the antigen binding specificity of the TCR. The vast majority of peripheral blood T lymphocytes and TCR+ thymocytes have αβ TCR while epithelial T cells contain the γδ TCR. The TCR heterodimer is associated with the CD3 complex. The CD3 complex is necessary for i) the expression of TCR on the T cell surface and ii) activation of T cells by signal transduction when the TCR binds to its specific polypeptide primed MHC complex. Following the recognition of peptide-MHC, the CD3 complex initiates signal transduction pathways to mediate cell proliferation, cytokine secretion and activation of T cell anti-tumor properties (Chan et al.; 1992; Punt et al., 1994). Several tumor antigens such as melanoma/melanocyte differentiation antigens (MART-1 and gp100) and NY-ESO-1 cancer-testis antigen have been identified (Cormier et al., 1998; Morgan, et al., 2003; Zhao et al., 2005). The tumor antigens can activate a large number of T lymphocytes that can infiltrate the tumor (TIL). These immune cells have been widely employed during the administration of ACT to treat cancer. ACT involves i) the isolation of tumor infiltrating lymphocytes, either from a surgically removed tumor or from the peripheral blood, ii) ex vivo expansion of the selected cells in the presence of cytokines, and iii) infusion of the expanded cells back into the patient, typically after ‘conditioning’ of the patient with lymphodepleting regimens comprised of either chemotherapy or total body irradiation (TBI). It is now well established that ACT can establish or augment immunity and eradicate malignant cells.
Following the discovery of a large number of tumor antigens, TILs directed against such antigens have been successfully generated, mainly from melanoma but also from renal cell carcinoma and glioma (Dillman et al., 1991; Figlin et al., 1997; Kradin et al., 1989; Quattrocchi et al, 1999). TILs mediated tumor regression when transferred into tumor-bearing mice. ACT with TILs directed against melanoma antigens have proven successful since patients with melanoma are immunized against antigens expressed by their own tumors and melanoma tumors generate relatively higher quantities of melanoma antigen specific T lymphocytes. However, the use of TILs in the treatment of patients with cancer other than melanoma has met with limited success, possibly due to the presence of low number of cytotoxic T lymphocytes within TILs (Finke et al., 1994; Hom et al., 1993; Schwartzentruber et al., 1992). Therefore, improvements in the usefulness of TILs are needed, and DRI studies are in progress to determine if such modifications can improve the therapeutic potential of these cells.
In general, αβ T lymphocytes display low affinity TCRs. Therefore, success with ACT with tumor directing αβ T lymphocytes is limited by the difficulty in isolating high affinity αβ T lymphocytes that exist in low numbers in vivo and in ex vivo expansion of these cells to generate adequate quantities for in vivo anti-tumor efficacy. Furthermore, tumor derived immunosuppression mechanisms reduce the number of tumor specific αβ T cells in circulation. As a means of enhancing the anti-cancer efficacy of αβ T lymphocytes, these cells can be genetically modified to express transgenic α and β TCR chains, which can be derived from T cell clones specific for tumor-associated antigens. These genetically engineered CTLs harboring a transgenic αβ TCR, in addition to their native αβ TCR, acquire the same antigen specificity as the high affinity T cells from which the TCR was cloned. Several CTLs harboring transgenic TCRs have now been developed that are directed specifically to tumor antigens, such as MART-1, gp100, NY-ESO-1 and CEA, resulting in tumor elimination in animal models (Abad, et al., 2008; Morgan, et al., 2003; 2006; Kessels et al., 2001; Stanislawski et al., 2001; Wargo et al., 2009; Xue et al., 2005). Bicistronic viral vectors encoding cDNA sequences for both α and β chains have been successfully incorporated into retroviral based strategies to transfer αβ transgenic TCR into T lymphocytes (Yang et al., 2008). The functional efficacies of the engineered CTLs have also been improved by codon optimizing α and β sequences that result in increased surface expression of the transgenic TCRs (Jorritsma et al., 2007; Scholten et al., 2006). The chimeric αβ T cells can be rapidly expanded ex vivo to produce sufficient quantities of tumor reactive cells and after adoptive transfer to patients display potent MHC-restricted cytotoxic activity against tumor cells expressing the specific epitope. ACT with tumor directed chimeric αβ T lymphocytes have been widely used to treat various malignancies, particularly melanoma, because of the ease of isolating and expanding melanoma reactive CTLs ex vivo.
However, the genetic engineering of CTLs that express the transgenic αβ TCR along with their endogenous TCR has inherent disadvantages. The endogenous TCR can compete with the transgenic αβ TCR to bind to the initiator CD3 molecule. Consequently, the chimeric αβ TCR-modified CTLs may suffer from reduced activation leading to a decrease in affinity of the transgenic αβ TCR towards specific tumor antigens. Furthermore rearrangements between the chimeric and the naïve TCR chains can induce new and unwanted reactivities. To combat such undesired consequences TCR negative lymphocytes have been modified to harbor αβ transgenic TCR while the sequences of such chimeric αβ TCRs have been redesigned to reduce cross competition within T lymphocytes harboring naïve TCR (Kuball et al., 2007; Robbins et al., 2008).
Adoptive immunotherapy for cancer utilizes additional bioengineering strategies adaptable to drug resistant immunotherapy whereby T lymphocytes are genetically modified to express chimeric antigen receptors. In contrast to chimeric αβ TCR, CAR combines antigen specificity derived from a tumor antigen specific monoclonal antibody fragment and T cell proliferation signal moieties. Upon infusion into patients, immunocompetent T cells genetically engineered to express CAR can specifically recognize and respond to soluble, immobilized and/or tumor antigens and, to date, a range of CARs targeting a variety of surface molecules expressed by many solid tumors and hematological malignancies, such as B cell malignancies and melanoma, have been developed (Kohn et al., 2011).
The potency of CAR modified CTLs have evolved through several generations of design changes (Cartellieri et al., 2010). First generation CARs are constructed by the fusion of the single-chain Fv (scFv) moiety, derived from the light and variable chains of a monoclonal antibody, directed against tumor associated antigens with the transmembrane and cytoplasmic signaling domains derived from the CD3 ζ chain. The CD3 domain provides activation signal to the CAR for the induction of cytotoxicity towards the tumor expressing the protein that is recognized by the scFV. Thus CAR integrates the antigen specificity of an antibody and anti-tumor properties of CTLs. However, bioengineered CTLs were poorly activated by the first generation CARs, possibly due to in sufficient co- stimulatory signaling as evident by low response rates in clinical trials in subjects with various malignancies, such as lymphoma, and ovarian cancer (Kershaw et al., 2006; Lamers et al., 2006). To circumvent this issue, various signaling domains from costimulatory molecules such as CD28, OX40, and CD137 (4-1BB) were fused to the cytoplasmic tail of the CAR which improved the anti-tumor efficacies of the CTLs modified with the second generation CAR in preclinical models (Kowolik et al, 2006). To further enhance the potency of the engineered CTLs, recent third generation CARs are designed to incorporate tripartite signaling domains, such as CD3ζ-CD28-41BB or CD3ζ-CD28-OX40. Several vector systems have been designed to introduce the chimeric receptors into T cells. Such systems include γ-retroviral vectors, lentiviral vectors and transposon based (sleeping beauty) constructs (Hackett et al., 2010; Westwood & Kershaw, 2010).
CAR based anti-neoplastic cellular therapy can be applicable to patients with any HLA type since CARs use antibodies as the component that recognize the target antigen and thereby the CAR-modified cells act in “HLA non-restricted” fashion to destroy their target. Thus CAR mediated cellular immunotherapy is refractory to the immune evasion strategies by tumors, such as downregulation of HLA class I molecules or failure to process or present proteins. However, CAR can be targeted only against extracellular (surface) antigens, which represent only a subset of potential tumor-associated antigens. To circumvent limitation, CARs have also been designed to recognize carbohydrates and glycolipids (Dotti et al, 2005; Sadelain et al., 2009). It should also be noted that currently, murine derived antibodies are employed to design the antibody components of most CARs, which raises the possibility of evoking immune responses against the CAR-engineered cells after infusion.
Conventional cell based immunotherapeutic strategies that are based on the activation of HLA-restricted lymphocytes have limited anti-tumor response. This is due to i) frequent down regulation of HLA on the tumor cell surface thereby mitigating the activity of adaptive immune responsive cells, ii) secretion of immunosuppressive factors by the tumors and iii) limited expression of tumor antigens in small subset of the tumor cells. Thus novel strategies that harness the anti-cancer responsive-innate immune cells, such as NK92 cells and a minor subclass in the T lymphocyte repertoire, T cells present a promising alternative to conventional adaptive cell based therapy approaches to treat cancer.
NK cells comprise a unique subset of lymphocytes, distinct from T and B cells, and are members of the innate immune response cells with potent immunosurveillance properties. These cells do not require any prior immune sensitization by the host to lyze tumor cells (Herberman et al., 1975; Kiessling et al., 1975; Klingemann, 2005). Early pioneering work demonstrated the therapeutic benefits of adopting innate immune responsive killer cell based strategies, specifically with LAK cells along with IL2, to target advanced metastatic renal cell carcinoma and melanoma (Rosenberg, et al., 1985). However, later studies found similar benefits with administrations of IL2 alone (Law et al., 1995). It was initially thought that NK cells exhibit potent cytotoxicity towards transformed cells that express altered MHC molecules (missing self recognition) while sparing normal cells that express unaltered MHC molecules (self recognition) via the activation of the inhibitory receptors. However, NK cells are able to efficiently attack some target cells that express normal levels of class I MHC molecules, while some other cells are not sensitive to NK cell-lysis despite low or absent class I MHC expression. It is now established that NK cells express NKG2D (natural killer group D) receptors that are activated by the recognition of ligands that are strongly upregulated in stressed tumor cells (Bauer et al., 1999; Cosman et al., 2001). Surprisingly, normal non-stressed cells of bone marrow activated peripheral blood T lymphocytes and even normal non-hematopoetitic cells express NKG2D ligands. The specific roles of NK cells towards each of these cell types are under investigation (Eagle et al, 2009). The use of autologous NK cells has met with limited success (Burns et al, 2003; Law et al, 1995; Rosenberg et al, 1985). Consequently, focus has shifted to the use of allogeneic NK cells to treat cancer (Miller, et al., 2005; Ljunggren & Malmberg, 2007).
Several NK cell lines have been developed that share functional and phenotypic characteristics of activated NK cells. Among these, the most promising is the NK92 cell line, an allogeneic cell line derived from a patient with non-Hodgkin’s lymphoma (Gong et al., 1994; Tam et al., 1999; Tonn et al., 2001). There are several advantages to employing NK92 cells, or similar cell lines, in adoptive immunotherapy: i) they represent a well characterized immunophenotype with powerful anti-tumor properties that are independent of MHC restrictions, ii) these cells express activating receptors and lack most of the inhibitory killer immunoglobulin-like receptors, KIRs (Middleton et al., 2002), thus retaining their cytotoxicity against cancer cells that up-regulate MHC class I molecules and iii) the ease of culturing these cells to generate adequate quantities for clinical use. Currently, there are several clinical trials are underway to evaluate the efficacy of NK cell mediated cancer immunotherapy.
T cells are defined by their expression of T cell receptors (TCR) encoded by and loci. T cells combine features of both innate and adaptive immune systems. These cells exhibit direct anti-tumor properties via MHC-independent NKG2D and TCR pathways. T cell based immunotherapy strategies have been extensively tested to target GBM (Bryant et al., 2011; Lamb, 2009). Thus, T cells that require no priming and mediate their cytotoxicity by direct recognition of chemotherapy induced antigens on the surface of GBM cells represent an attractive cellular immunotherapeutic candidate for GBM therapy. In this context, genetic engineering of T cells that are resistant to temozolomide, the frontline chemotherapy agent to treat GBM, presents an attractive scenario whereby drug resistant T cell based immunotherapy can be administered in combination with a traditional chemotherapeutic agent.
Freshly isolated and expanded T cells from the peripheral blood of healthy donors can destroy neuroblastoma cells while adoptive transfer of T cells, expanded under clinical grade conditions, in combination with immunocytokines are effective against disseminated neuroblastoma established in mice (Otto et al., 2005; Schilbach et al., 2000). Recently, a clinical study of 25 patients with advanced stages of various solid tumors demonstrated that T cell based immunotherapy is beneficial and importantly, such a therapy did not induce any serious treatment related side effects (Noguchi et al., 2011). However, these cells comprise a minor fraction (1-5 %) of the peripheral blood lymphocytes and consequently T cell based immunotherapy requires prior expansion ex vivo. Protocols to expand T cells using therapeutic grade materials have been developed to facilitate the initiation of clinical trials to treat patients with cancer (Noguchi et al., 2011).
Although the combination of surgery and chemotherapy is effective for some types of cancer, there are obvious limitations to our current state-of-the-art treatment of cancer. Among the various potential therapeutic modalities being used to treat cancer, immunocompetent cell-based therapy is becoming an effective alternative, which is possible because of the advancements in technologies used to genetically engineer these cells. As described in this chapter, various engineering strategies have potentiated the acquired or intrinsic anti-tumor response of immunocompetent cells. It is now anticipated that bioengineered cell-based therapies, when partnered with conventional chemotherapies, can invoke an anti-tumor response that is superior to results achieved by the individual therapies. Both the chemotherapy and cellular therapy fields are focused on determining optimal strategies for combining these therapies, and many types of combination approaches are being evaluated. Several successes using combination strategies have already been reported. For example, administration of chemotherapy following vaccine based immunotherapy have shown therapeutic efficacies in patients with several types of cancer, such as small-cell lung cancer, prostate cancer and advanced stages of ovarian, breast, colorectal, renal and prostrate cancers (Antonia et al., 2006; Arlen et al, 2006; Gribben et al. 2005). Strikingly, when chemotherapy was added to tumor bearing mice previously administered with immunotherapy, both the percentage and potency of tumor specific immunocompetent cells were increased (Fridlender, et al., 2010), indicating that immunotherapy and chemotherapy can be combined, but combining the two treatment modalities is not straightforward. Although potential synergism exists between chemotherapy and immunotherapy, drug mediated myelosuppressive effects limits the employment of immune-effector cells during chemotherapy applications. DRI can allow for the administration of a dual therapy regimen, which combines genetically engineered drug resistant cell-based therapy with chemotherapy. Proof-of-concept studies evaluating DRI have yielded promising results, which show robust anti-tumor responses can be maintained during chemotherapy challenges. However, challenges remain as to i) the manipulation of the immune effector cells, ii) the timing of infusion of the bioengineered cells with chemotherapy, and iii) the long term safety profiles of such treatments. But the potential benefits afforded that can be accomplished by employing engineered immune cells, and specifically modified cells that have been engineered as drug resistant cells, warrants the continued development of such therapeutic approaches. The use of cDNA sequences that confer drug resistance to immunocompetent cells can eventually be directed toward a broad range of human malignant diseases that continue to have unmet medical needs.
Teacher behaviors play a key role in forming and shaping organizational culture in schools. The current innovative and leadership-based learning objectives introduced by Education 4.0 have made the transformation obligatory from traditional classroom of the industrial society to creation of digital classrooms. The Fourth Industrial Revolution has taken people to an era of new social and unprecedented changes. In all sectors of all industries, today’s hot issue is the Fourth Industrial Revolution. The First Industrial Revolution was based on the mechanization through the steam engine; the Second Industrial Revolution was based on mass production through electric energy; and the Third Industrial Revolution was based on intelligence information revolution through computer and internet. And the ongoing Fourth Industrial Revolution is based on IoT, Cloud, big data, AI, and mobiles. Also, in the near future, we will meet the 5G wireless network era. The speed of 5G is 280 times faster than LTE. And in some countries, this Fourth Industrial Revolution can be called digital transformation. Figure 1 illustrates the advent of the Fourth Industrial Revolution (IR) age.
The advent of the fourth industrial revolution (IR) age.
The Fourth Industrial Revolution makes three major changes namely intellectualization of human and machine, virtualization of the real and virtual, and hyper connection of human and things. This revolution brings about changes in future society due to technological progress. Technological progress includes infinite increase in data as well as explosive growth of network. This technological progress will bring increase in value of data and according to these changes the future society will evolve toward role change between humans and machines. In particular, we need to note the increasing data value, which will become more important in the near future.
Within this framework, we need to discuss the global change trends to respond to the Fourth Industrial Revolution. First of all, adaptability is more critical to success than ever. In other words, the importance of the user experience is growing and growing. Additionally, as the amount of data increases, big data management and analytics will become more important. For example, in 2027, bitcoin and the blockchain will become very popular in the business fields. With regard to the key success factors, we need to look at three aspects: technology, industry, and society.
From a technological point of view, technology will evolve into “High Intelligence Information Tech” and “High Quality Data Infrastructure” and provide high-quality intelligent information technologies to industry. And with technological assistance, the whole industry will achieve intelligent information.
As far as the educational innovation in the Fourth Industrial Revolution era is concerned, these changes have accelerated many things and respective and unique skilled sets of human capital have been required by the different conditions of social economy. The important factor in the future intelligent information society is to cultivate human-tech literacy resources. The importance of development of the required skills lies in people in learning management, to develop the skills as well as knowledge abilities taking the needs of the society into consideration [1]. Leapfrog [2] called the education in this era responding to the agrarian society as Education 1.0, industrial society as Education 2.0, globalization as Education 3.0, and innovation as Education 4.0.
To be able to cultivate human-tech literacy resources in the future intelligent information society, new and creative fusion talents are required. These creative fusion talents should have the following four intelligences: context intelligence, emotional intelligence, social emotion intelligence, and physical intelligence as indicated in Figure 2.
Creative fusion talents for future intelligent information society.
As can be seen in Figure 2, the intelligences traditionally known as multiple intelligences within the theory of multiple intelligences developed in Gardner [3] (logical-mathematical, linguistic, bodily-kinesthetic, musical, spatial, intrapersonal, interpersonal, and naturalist intelligence) look to have been reshaped and focus has been given on social, physical, context, and emotional intelligence with a new understanding. This shift will bring many changes in learning and teaching theories currently being followed as well.
From today on, we will be discussing creative talent cultivation through fusion education together with the introduction of the importance of these four intelligences with more emphasis on various ICT-based learning models. These learning models will also replace traditionally known learning models used in different educational contexts. These various kinds of learning models are evolving based on mobile. Particularly, in some countries, mobile has become commonplace beyond the PC. Figure 3 describes the diversification of digital learning in the Fourth IR era.
Diversification of digital learning in fourth IR era.
The learning models given in Figure 3 also include various elements of learning ecosystem to provide optimized learning system to each learner in response to the Fourth Industrial Revolution. This learning ecosystem has to be considered to promote innovative and optimized learning. This innovative and optimized learning introduces change trends of educational digital contents. Nowadays, digital content is evolving in the following six directions. 1. Interactive, 2. Characteristic, 3. Clipped (mobile-based), 4. Global, 5. Realistic (AR/VR embedded), and 6. Emotional.
Almost each of these directions gives a special focus on coding education. In the Fourth Industrial Revolution era, the importance of coding education is emphasized around the world in following ways:
Coding is the building block of the future.
Learning code is your gateway into understanding how to make the future yours.
The coding really determines how it will look on the screen. Learning to code will guarantee that your vision gets carried through to completion.
Behind code is a bunch more 1s and 0s that do the real work inside the brain of the computer. Code is a fascinating world of its own.
Coding will change the way you think.
Code will give you a fresh way to look at problems. Code is a lot like structured poetry and will change the way you see the world through computational thinking.
To sum up, the future education direction is to create a leading country of intelligence information society with creative fusion talents. This change trend also redefines the objectives of future of education in the following reflected ways:
Education to maximize student interest and aptitude
Education for thinking, problem-solving, and creativity
Customized education considering individual learning ability
Education to raise key talents in intelligence information technology
Education to focus on people and contribute to social integration.
From the stand point of educational innovation for the intelligent information society, the content and objectives of educational system in the world seem to move beyond rote education to realize problem-solving and critical-thinking centered education. This will require an expansion of SW/STEAM education and fulfilling computational thinking-oriented education and a reorganization of curriculum and system overall for developing autonomous competency and supporting future preparation. Establishing an adaptive learning system using intelligent information technology will also set up an adaptive learning system by analyzing history and level to maximize learning efficacy.
These chain changes will develop intelligence learning platform to support activities for advanced learning according to individual interest and level and create a core personnel specializing in intelligent IT that is capable of leading new industries. These systems are expected to raise intelligence information talents who are good at computer science, data analytics, and SW development (foster talented children in intelligent information area).
Furthermore, these new trends will also have implications for universities. For example, industry-university-research collaboration intensive learning courses with top faculties will be opened and the quality gains of the students registered in these courses will naturally support best graduation schools in intelligence information technology area.
Development of direction of cloud-based intelligent personalized learning service will consider new assessments based on individual service, service beneficiary, visualized technology, AI platform technology and resource. For example, in the case of individual service, online activity, analytics, assessment/diagnosis, and so on will be implemented. These will bring new insights into the evaluation of student products and learning outcomes. Because data will be collected based on learner’s use and learning activities, and analytics results are recommended for optimized personalized learning. However, older teachers will hesitate to use new learning methods or new ICT-based devices.
Above all, in order to cultivate future creative convergence talents, a teacher competency development program for the future is needed. Within this framework, we need to rethink innovative learning opportunities for teachers in educational organizations toward Education 4.0. To be able to create these innovative learning environments for teachers, we should train teachers and expand infrastructure for the intelligent information society. Additionally, we should commit customized training of S/W education for teachers’ continuous reinforcement of SW capacity. Doing so, we will also supply wireless internet network in all schools and develop high-tech future school model using AI, AR, and VR. The content and areas of teacher competency development are summarized in Figure 4.
Teacher competency development for educational innovation.
As can be seen in Figure 4, this teacher competency development can be realized with “Training of Leading Teachers,” “Customized Teacher Training,” “Development and Offering of New Teacher Training Programs,” and “Training for Creative Convergence Education.”
The huge transformation in learning and teaching models, digital classroom, and educational contexts will bring a radical change in teacher behaviors. For the teachers to change, creation of reflective learning communities is required together with a redefinition of the meaning and scope of teacher supervision. Such a change would only be possible through development of new coaching skills, which would require development of reflective and cognitive skills of the teachers themselves and peer coaching environments to be able to survive and cope with their adaptation to Education 4.0 within the educational contexts. Serving teacher development and collaboration for better learning and teaching, this model will also change teacher behaviors and it will help reshaping. Within this framework, three supervision models namely, reflective, cognitive, and peer coaching to be able help teachers survive and cope with their adaptation to Education 4.0 will be discussed.
The fourth industrial based on changes such as intellectualization of human and machine, virtualization of reality and virtual and hyper connection of human and things and its reflections on Education 4.0 are catering to the needs of the learners and teachers in “innovative era.” These require changes in behaviors with certain features of connectivism, parallelism [4], and visualization. The learner’s ability should be developed through this learning management for the sake of applying the new technology. According to Sinlarat [1], the learning management mentioned looks to be a new learning system, which will allow learners to grow with knowledge and skills to survive during their whole life and they will be equipped with the best of their abilities. From this perspective, Education 4.0 would be more than just an education. On the other hand, learning management is expected to cope with the changes in economic and social and environments to serve the human capital need. To be able to achieve this, a change would be needed in learning management, which requires reflection. Through reflection and reflective learning environments, teachers would have a great opportunity to self-evaluate their reflective teaching practices. Because, they can raise their professional development as long as they become more aware of their weaknesses as well as strengths in their actual teaching practices.
From this point of view, reflection could be regarded as a powerful tool to reflect and change and it could be conducted with some methods [5]. According to some scholarly works, it could be achieved through reflective practices, which would allow teachers to grow professionally [6]. Schön [7] named reflective practice as a critical process in refining a person’s artistry and crafting a certain discipline. In other words, this process requires a person to see his or her experiences in practice while being observed and coached by other people. Smyth [8] maintains that there are four serial stages regarding questions, which lead a teacher to critical reflection:
Describing—What do I do?
Informing—What is the meaning of this?
Confronting—How did I come to be like this?
Constructing—In what other ways could I do it?
These types of reflective practices are utilized in both in-service and pre-service education and peer involvement and coaching are regarded as two essential parts of reflective practices observed mostly in pre-service education for teachers [9]. In this study, our focus will be on journals for individual reflective practices, collaborative learning, video or audio recordings of lessons, teacher educator’s feedback, student feedback, action research, study groups for reflective practice of small groups, teacher portfolios, instructional rounds, classroom walk-throughs for school-based reflective practice, and cognitive coaching and peer coaching even though different approaches to each type of reflective practice are available.
To have a brief understanding of the content and functions of reflective coaching, one needs to find out the reflective instruments and strategies employed during the teacher evaluation. The preliminary stage before the reflective process is to collect data about what is actually happening in classes. There are some options to do that:
Reflective journals/diaries: This could be regarded as the easiest way to initiate the reflective process because it is completely personal. Through the use of journals to create reflective learning environments, Göker [10] argues that teachers could provide other teachers with some opportunities to reflect on their actual practices. Within this framework, writing diaries is often used in various learning environments. In writing diaries, teachers would basically express his or her feelings, ideas, and reflections considering their own teaching practice. Doing so, teachers could keep notes in learning logs or personal narratives, dialog journals including various reflections providing them with a critical understanding of how they act in classes and assisting them in realizing other alternative strategies to develop their own practice.
Collaborative learning: According to Brookfield [11], an ongoing communication with the peers created in mutually cooperative environment is essential. This type of collaborative work with peers is expected to contribute to development of reflective thought among teachers. Through efficient discussions, teachers could report their experiences and reframe, and check to broaden their vision about the practices. These would bring changes in teacher behaviors and the school culture could change naturally.
Video or audio recordings of lessons: Recording of lessons could present quality data for the reflective practice. After watching these recordings of their own or other peer members, teachers could develop better awareness of their own teaching. Because, many things happen in classes and teachers may not be aware of what is actually happening and teachers may not normally see. Within this perspective, this type of recording could present a clearer picture about the whole process of teaching. Discussions to be made would trigger a teacher’s reflective thought, reflecting on their strengths and weaknesses, thus helping them get some inspiration toward their development in their teaching.
Teacher educator’s feedback: This type of feedback would assist the teachers in reflecting upon their lessons, tasks, and activities in the school culture.
Student feedback: Students in classes could also give more information about what is actually happening in classes. Teachers could ask their students to present information about what is going on in classes, because, students’ perceptions and opinions could present a different and valuable perspective.
Action research: Seeing it as a reflective process, a teacher could find out progressive responses and solutions to problems to understand his or her practice and develop the ways they address issues. This type of reflective process would help teachers to develop more awareness about what is actually happening in classes by means of defining the main problems and speculating on prospective causes and solutions. They would then attempt to initiate a proper action plan.
Study groups for reflective practice of small groups: This type of formation of groups has been utilized since colonial times, the first of which was documented in America by Franklin [12]. The basic aim then was to search for better business practices. These groups were organized and utilized for teacher development to serve the quality of teaching by means of professional reading, dialog in the 1980s [6, 13, 14, 15] (Little, 1981). To achieve their objectives, 5–10 teachers form a group to begin discussions on a defined topic or curriculum, methodology, and testing to be able to compare and review their own experiences and to seek answers to implement new things in their future teaching practices. The members highly value class observations and they come together after observation to discuss the issues targeted before. This approach is still followed during post-conference sessions of today’s cognitive and peer coaching implementations.
Teacher portfolios: They were first initiated and utilized professionally after the formation of a professional model for teachers by the NBPTS (The National Board for Professional Teaching Standards) seeking national certification [16]. To achieve teaching standards, experienced teachers [17] wishing to get the highest honor in teaching profession came together.
Instructional rounds: These rounds have recently been initiated by City et al. [18]. They attempted to adapt and extend on health practices to be able to develop their knowledge and practices through observations, analysis, and discussions conducted with other physicians. School principals and supervisors employed a similar method to create a learning environment serving the progressive solutions to problems to improve instruction together with the teachers and develop their teaching practices. They carried out four different steps consisting of identifying a problem, observing, debriefing, and taking corrective steps [18]. Their aim was to form a reflective culture through the use of a common language among each other. Within this framework, a cultural reflective transformation was targeted to create a reflective learning environment, in which they would reshape teacher behaviors. They did it as a type of reflection-for action because they aimed to improve teaching practices within a system.
Classroom walk-throughs for school-based reflective practice: Classroom walk-through, as a supervisory technique and a type of reflection on action, was first initiated in educational settings in the 1990s [19]. Supervisors visit classes to observe classes and evaluate practices of teaching and learning outcomes. Professional dialogs between supervisors and teachers consist of dialog, focus on what is actually happening in classes are highly valued [18]. Follow-up dialogs conducted in reflective in nature are expected to move teachers to achieve a certain level of reflection and collaboration to teaching practices.
This type of coaching model was first initiated by Costa and Garmston [20] as a critical and “nonjudgmental mediation of thinking” based on constructivist learning theory. The ultimate goal is to foster a person’s capacity to improve abilities of self-monitoring, self-directedness as well as those of self-modification. Planning conversation, observation, and reflecting conversation basically constitute a three-stage coaching cycle. The model described as a teacher supervision means in this study is mainly based on (a) the theories by Bandura [21] and Vygotsky [22], (b) application of the researcher’s model of peer coaching [9] and model of reflective coaching [10, 23] implemented within different educational contexts, and (c) similar mentoring or coaching studies.
During the coaching process, a competent coach (mentor) is regarded as an essential figure with a capacity to: (1) create interactions with the participants giving priority to produce self-directed learning; (2) seek trust in maintaining coaching relationships; (3) evaluate and intercede the five states of mind; and finally (4) produce new approaches to foster the five states of mind to be able to create a learning environment, in which the trainees could mediate the capacity of their own and that of others to develop. Cognitive coaching, within this process, could also be described as a formative model to promote teacher self-evaluation to help them develop their self-efficacy, identity, and teaching skills. From this perspective, it is important to ease reflective process and possible responses coming from the mentee, the mentor in this study drafts questions. To be able to produce any cognitive development, a good mentor should use paralanguage, structuring as well as meditative questioning response behaviors [20]. The four strategies given above are always utilized during both the planning and reflective conversation sessions to help the mentees give the most suitable decisions about their teaching practices. A teacher could also be provided autonomy to a certain extent and this would ease their professional development conducted through cognitive coaching.
Peer coaching is regarded as a part of reflective process and a fruitful tool to create collaborative efforts and it warrants consideration as a potentially serviceable solution for improving teacher effectiveness when implemented both in pre-service and in-service teaching settings. Peer coaching as almost the most basic supervision mode employed in classes is regarded as a clinical and reflective process, in which teacher teams or student teachers regularly observe themselves for the sake of refining teaching practice, encouraging reflective practice, providing assistance, suggestions, and support [9, 24, 25]. This process is considered as a tool for the more experienced teachers to use the skills they gained during their in-service teacher program. Research also advocates the use of peer coaching implementations to empower transfer of training to real teaching practice in classes, supercharging collegiality by means of peers’ exchange of feedback together with reflective development of teachers [9, 25].
The most common way of peer coaching is conducted in the following way: A teacher invites his or her peer to monitor his/her class to collect data about what is really happening in class. This could be done through note taking, checklist, a narrative agreed, a simple observation task, and drawing conclusions. The teacher could ask his/her peer to put emphasis on, for example, what different patterns of interaction occur or which students contribute the most in the lesson. It is better for the observer not to be involved in evaluating the teacher’s lesson for the sake of having a positive evaluation. Coaching benefits and expectations are negotiated between the peers during a pre-conference and post-conference.
Taking the recent developments and changes in Education 4.0, Göker [9] argues that these peer coaching environments could play a key role in creating the required reflective learning communities, in which teachers and teacher candidates would be trained as practitioners to lead to change. Göker [9] further maintains that one strategy for development of teachers mostly suitable for the creation of a reflective learning community is that of peer coaching, described as the process of two peers studying on planning instruction, developing support materials, and monitoring each other’s work with students. Within this framework, peer coaching is regarded as nonjudgmental, based on classroom observation followed by feedback, and intended to develop teaching skills. Openness and trust are the two essential characteristics of peer coaching process and peers need to be sensitive to be non-evaluative or nonjudgmental during the pre/post-conference sessions, in which they discuss, share their own experiences, teaching, and learning behaviors as well as teaching practices.
Any change in teacher behavior, which plays a key role in forming and shaping organizational culture in schools, is not an easy task. From the stand point of educational innovation for the intelligent information society, promoting reflective practices and developing professional learning communities through reflective, cognitive, and peer coaching implementations is essential to lead to a teacher change. The current innovative and leadership-based learning objectives introduced by Education 4.0 have made it obligatory for teachers to change. As Education 4.0 environments require future creative convergence talents, teachers should carry out new tasks to take greater ownership of growing creative convergence talents and to change processes of their school culture. This change process could be achieved through creating reflective learning communities together with a redefinition of the meaning and scope of teacher supervision. For the sake of achieving these changes in teacher behaviors, this study discussed a “Teacher Competency Development Model,” in which, innovative learning opportunities for teachers in educational organizations were offered through innovative models in teacher supervision based on cognitive, reflective, and peer coaching and their utilization within the educational contexts. It is obvious that if teachers create a professional and reflective learning community aiming at behavioral change in reflective practices and promoting professional development, learning becomes self-directed and they definitely become empowered thorough learning management, which looks to be an essential task required by Education 4.0. Today, we have a digital society and life style has changed. Learning management needs to respond to the prospective changes of behaviors of both teachers and learners.
Unsubscribe unsuccessful, no matching records found in our database.
",metaTitle:"Unsubscribe Unsuccessful",metaDescription:"Unsubscribe unsuccessful, no matching records found in our database.",metaKeywords:null,canonicalURL:"/page/unsubscribe-unsuccessful",contentRaw:'[{"type":"htmlEditorComponent","content":""}]'},components:[{type:"htmlEditorComponent",content:""}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5698},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10244},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15650}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"20"},books:[{type:"book",id:"10206",title:"Terahertz Technology",subtitle:null,isOpenForSubmission:!0,hash:"2cdb79bf6297623f1d6202ef11f099c4",slug:null,bookSignature:"Dr. Borwen You and Dr. Ja-Yu Lu",coverURL:"https://cdn.intechopen.com/books/images_new/10206.jpg",editedByType:null,editors:[{id:"191131",title:"Dr.",name:"Borwen",surname:"You",slug:"borwen-you",fullName:"Borwen You"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10575",title:"Magnetic Skyrmions",subtitle:null,isOpenForSubmission:!0,hash:"d93d7485e8a6a30d9e069aed78fdb355",slug:null,bookSignature:"Prof. Dipti Ranjan Sahu",coverURL:"https://cdn.intechopen.com/books/images_new/10575.jpg",editedByType:null,editors:[{id:"251855",title:"Prof.",name:"Dipti Ranjan",surname:"Sahu",slug:"dipti-ranjan-sahu",fullName:"Dipti Ranjan Sahu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10957",title:"Liquid Crystals",subtitle:null,isOpenForSubmission:!0,hash:"b8dac1788dc54d12f8fc3d94a7e3e338",slug:null,bookSignature:"",coverURL:"//cdnintech.com/web/frontend/www/assets/cover.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:16},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:4},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:56},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:4},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5143},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"90",title:"Computer Science and Engineering",slug:"computer-science-and-engineering",parent:{title:"Computer and Information Science",slug:"computer-and-information-science"},numberOfBooks:33,numberOfAuthorsAndEditors:771,numberOfWosCitations:720,numberOfCrossrefCitations:637,numberOfDimensionsCitations:1179,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"computer-science-and-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8423",title:"Security and Privacy From a Legal, Ethical, and Technical Perspective",subtitle:null,isOpenForSubmission:!1,hash:"dc4f0b68a2f903e7bf1ec7fbe042dbf2",slug:"security-and-privacy-from-a-legal-ethical-and-technical-perspective",bookSignature:"Christos Kalloniatis and Carlos Travieso-Gonzalez",coverURL:"https://cdn.intechopen.com/books/images_new/8423.jpg",editedByType:"Edited by",editors:[{id:"219671",title:"Associate Prof.",name:"Christos",middleName:null,surname:"Kalloniatis",slug:"christos-kalloniatis",fullName:"Christos Kalloniatis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editedByType:"Edited by",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6958",title:"High Performance Parallel Computing",subtitle:null,isOpenForSubmission:!1,hash:"dd811128360e48c520a91871f0279659",slug:"high-performance-parallel-computing",bookSignature:"Satyadhyan Chickerur",coverURL:"https://cdn.intechopen.com/books/images_new/6958.jpg",editedByType:"Edited by",editors:[{id:"239076",title:"Dr.",name:"Satyadhyan",middleName:null,surname:"Chickerur",slug:"satyadhyan-chickerur",fullName:"Satyadhyan Chickerur"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6715",title:"Petri Nets in Science and Engineering",subtitle:null,isOpenForSubmission:!1,hash:"b0b98cd043ed2dc582d8365630929d33",slug:"petri-nets-in-science-and-engineering",bookSignature:"Raul Campos-Rodriguez and Mildreth Alcaraz-Mejia",coverURL:"https://cdn.intechopen.com/books/images_new/6715.jpg",editedByType:"Edited by",editors:[{id:"178524",title:"Dr.",name:"Raul",middleName:null,surname:"Campos-Rodriguez",slug:"raul-campos-rodriguez",fullName:"Raul Campos-Rodriguez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5368",title:"Radio Frequency Identification",subtitle:null,isOpenForSubmission:!1,hash:"c86dd0c6a48afce125a9f8f2363fd4b8",slug:"radio-frequency-identification",bookSignature:"Paulo Cesar Crepaldi and Tales Cleber Pimenta",coverURL:"https://cdn.intechopen.com/books/images_new/5368.jpg",editedByType:"Edited by",editors:[{id:"38288",title:"Prof.",name:"Paulo",middleName:"Cesar",surname:"Crepaldi",slug:"paulo-crepaldi",fullName:"Paulo Crepaldi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6038",title:"Wireless Sensor Networks",subtitle:"Insights and Innovations",isOpenForSubmission:!1,hash:"e63cb7f71bc1fed54902b371cbe21a2a",slug:"wireless-sensor-networks-insights-and-innovations",bookSignature:"Philip Sallis",coverURL:"https://cdn.intechopen.com/books/images_new/6038.jpg",editedByType:"Edited by",editors:[{id:"10893",title:"Prof.",name:"Philip John",middleName:null,surname:"Sallis",slug:"philip-john-sallis",fullName:"Philip John Sallis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5966",title:"Heuristics and Hyper-Heuristics",subtitle:"Principles and Applications",isOpenForSubmission:!1,hash:"da699185a8b84a430d96d54bc35acdb2",slug:"heuristics-and-hyper-heuristics-principles-and-applications",bookSignature:"Javier Del Ser Lorente",coverURL:"https://cdn.intechopen.com/books/images_new/5966.jpg",editedByType:"Edited by",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5745",title:"Recent Progress in Parallel and Distributed Computing",subtitle:null,isOpenForSubmission:!1,hash:"dba64b23d703d16339860ebf4a13f022",slug:"recent-progress-in-parallel-and-distributed-computing",bookSignature:"Wen-Jyi Hwang",coverURL:"https://cdn.intechopen.com/books/images_new/5745.jpg",editedByType:"Edited by",editors:[{id:"108614",title:"Prof.",name:"Wen-Jyi",middleName:null,surname:"Hwang",slug:"wen-jyi-hwang",fullName:"Wen-Jyi Hwang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5707",title:"Computer Simulation",subtitle:null,isOpenForSubmission:!1,hash:"9eec1723d4d4775dc9755db55aa387a6",slug:"computer-simulation",bookSignature:"Dragan Cvetkovic",coverURL:"https://cdn.intechopen.com/books/images_new/5707.jpg",editedByType:"Edited by",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5183",title:"Face Recognition",subtitle:"Semisupervised Classification, Subspace Projection and Evaluation Methods",isOpenForSubmission:!1,hash:"d693acce19fca9cbf40d8f3f759e491d",slug:"face-recognition-semisupervised-classification-subspace-projection-and-evaluation-methods",bookSignature:"S. Ramakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/5183.jpg",editedByType:"Edited by",editors:[{id:"116136",title:"Dr.",name:"Srinivasan",middleName:null,surname:"Ramakrishnan",slug:"srinivasan-ramakrishnan",fullName:"Srinivasan Ramakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5150",title:"Electronics Cooling",subtitle:null,isOpenForSubmission:!1,hash:"b95856cfcc87ef3cb7d7c7c7bac4010d",slug:"electronics-cooling",bookSignature:"S M Sohel Murshed",coverURL:"https://cdn.intechopen.com/books/images_new/5150.jpg",editedByType:"Edited by",editors:[{id:"24904",title:"Prof.",name:"S. M. Sohel",middleName:null,surname:"Murshed",slug:"s.-m.-sohel-murshed",fullName:"S. M. Sohel Murshed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4655",title:"Applications of Digital Signal Processing through Practical Approach",subtitle:null,isOpenForSubmission:!1,hash:"b20308efd28e8a487949997c8d673fb8",slug:"applications-of-digital-signal-processing-through-practical-approach",bookSignature:"Sudhakar Radhakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/4655.jpg",editedByType:"Edited by",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:33,mostCitedChapters:[{id:"50801",doi:"10.5772/62898",title:"Performance Evaluation of Nanofluids in an Inclined Ribbed Microchannel for Electronic Cooling Applications",slug:"performance-evaluation-of-nanofluids-in-an-inclined-ribbed-microchannel-for-electronic-cooling-appli",totalDownloads:1949,totalCrossrefCites:44,totalDimensionsCites:78,book:{slug:"electronics-cooling",title:"Electronics Cooling",fullTitle:"Electronics Cooling"},signatures:"Mohammad Reza Safaei, Marjan Gooarzi, Omid Ali Akbari, Mostafa\nSafdari Shadloo and Mahidzal Dahari",authors:[{id:"178854",title:"Dr.",name:"Mohammad Reza",middleName:null,surname:"Safaei",slug:"mohammad-reza-safaei",fullName:"Mohammad Reza Safaei"},{id:"179807",title:"Dr.",name:"Mostafa",middleName:null,surname:"Safdari Shadloo",slug:"mostafa-safdari-shadloo",fullName:"Mostafa Safdari Shadloo"},{id:"179809",title:"Dr.",name:"Mahidzal",middleName:null,surname:"Dahari",slug:"mahidzal-dahari",fullName:"Mahidzal Dahari"},{id:"179813",title:"MSc.",name:"Marjan",middleName:null,surname:"Goodarzi",slug:"marjan-goodarzi",fullName:"Marjan Goodarzi"},{id:"185093",title:"MSc.",name:"Omid",middleName:null,surname:"Ali Akbari",slug:"omid-ali-akbari",fullName:"Omid Ali Akbari"}]},{id:"5184",doi:"10.5772/6180",title:"From the Lab to the Real World: Affect Recognition Using Multiple Cues and Modalities",slug:"from_the_lab_to_the_real_world__affect_recognition_using_multiple_cues_and_modalities",totalDownloads:3132,totalCrossrefCites:34,totalDimensionsCites:51,book:{slug:"affective_computing",title:"Affective Computing",fullTitle:"Affective Computing"},signatures:"Hatice Gunes, Massimo Piccardi and Maja Pantic",authors:null},{id:"5197",doi:"10.5772/6167",title:"Generating Facial Expressions with Deep Belief Nets",slug:"generating_facial_expressions_with_deep_belief_nets",totalDownloads:3140,totalCrossrefCites:1,totalDimensionsCites:46,book:{slug:"affective_computing",title:"Affective Computing",fullTitle:"Affective Computing"},signatures:"Joshua M. Susskind, Geoffrey E. Hinton, Javier R. Movellan and Adam K. Anderson",authors:null}],mostDownloadedChaptersLast30Days:[{id:"68505",title:"Research Design and Methodology",slug:"research-design-and-methodology",totalDownloads:16004,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"cyberspace",title:"Cyberspace",fullTitle:"Cyberspace"},signatures:"Kassu Jilcha Sileyew",authors:null},{id:"15946",title:"Wake-Up-Word Speech Recognition",slug:"wake-up-word-speech-recognition",totalDownloads:4003,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"speech-technologies",title:"Speech Technologies",fullTitle:"Speech Technologies"},signatures:"Veton Kepuska",authors:[{id:"24379",title:"Prof.",name:"Veton",middleName:null,surname:"Kepuska",slug:"veton-kepuska",fullName:"Veton Kepuska"}]},{id:"51031",title:"Face Recognition: Issues, Methods and Alternative Applications",slug:"face-recognition-issues-methods-and-alternative-applications",totalDownloads:10292,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"face-recognition-semisupervised-classification-subspace-projection-and-evaluation-methods",title:"Face Recognition",fullTitle:"Face Recognition - Semisupervised Classification, Subspace Projection and Evaluation Methods"},signatures:"Waldemar Wójcik, Konrad Gromaszek and Muhtar Junisbekov",authors:[{id:"24059",title:"Dr.Ing.",name:"Konrad",middleName:null,surname:"Gromaszek",slug:"konrad-gromaszek",fullName:"Konrad Gromaszek"}]},{id:"56541",title:"Routing Protocols for Wireless Sensor Networks (WSNs)",slug:"routing-protocols-for-wireless-sensor-networks-wsns-",totalDownloads:4344,totalCrossrefCites:9,totalDimensionsCites:11,book:{slug:"wireless-sensor-networks-insights-and-innovations",title:"Wireless Sensor Networks",fullTitle:"Wireless Sensor Networks - Insights and Innovations"},signatures:"Noman Shabbir and Syed Rizwan Hassan",authors:[{id:"206600",title:"Mr.",name:"Noman",middleName:null,surname:"Shabbir",slug:"noman-shabbir",fullName:"Noman Shabbir"},{id:"206601",title:"Mr.",name:"Syed Rizwan",middleName:null,surname:"Hassan",slug:"syed-rizwan-hassan",fullName:"Syed Rizwan Hassan"}]},{id:"62639",title:"Reliability Evaluation for Mechanical Systems by Petri Nets",slug:"reliability-evaluation-for-mechanical-systems-by-petri-nets",totalDownloads:514,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"petri-nets-in-science-and-engineering",title:"Petri Nets in Science and Engineering",fullTitle:"Petri Nets in Science and Engineering"},signatures:"Jianing Wu and Shaoze Yan",authors:[{id:"238979",title:"Dr.",name:"Jianing",middleName:null,surname:"Wu",slug:"jianing-wu",fullName:"Jianing Wu"}]},{id:"70973",title:"Social Media, Ethics and the Privacy Paradox",slug:"social-media-ethics-and-the-privacy-paradox",totalDownloads:850,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"security-and-privacy-from-a-legal-ethical-and-technical-perspective",title:"Security and Privacy From a Legal, Ethical, and Technical Perspective",fullTitle:"Security and Privacy From a Legal, Ethical, and Technical Perspective"},signatures:"Nadine Barrett-Maitland and Jenice Lynch",authors:[{id:"311821",title:"Ph.D. Student",name:"Nadine",middleName:null,surname:"Barrett-Maitland",slug:"nadine-barrett-maitland",fullName:"Nadine Barrett-Maitland"},{id:"311822",title:"Ms.",name:"Jenice",middleName:null,surname:"Lynch",slug:"jenice-lynch",fullName:"Jenice Lynch"}]},{id:"50437",title:"Face Recognition: Demystification of Multifarious Aspect in Evaluation Metrics",slug:"face-recognition-demystification-of-multifarious-aspect-in-evaluation-metrics",totalDownloads:2343,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"face-recognition-semisupervised-classification-subspace-projection-and-evaluation-methods",title:"Face Recognition",fullTitle:"Face Recognition - Semisupervised Classification, Subspace Projection and Evaluation Methods"},signatures:"Mala Sundaram and Ambika Mani",authors:[{id:"180904",title:"Mrs.",name:"Mala",middleName:null,surname:"Sundaram",slug:"mala-sundaram",fullName:"Mala Sundaram"},{id:"180905",title:"Mrs.",name:"Ambika",middleName:null,surname:"Mani",slug:"ambika-mani",fullName:"Ambika Mani"}]},{id:"50065",title:"Heat Pipes for Computer Cooling Applications",slug:"heat-pipes-for-computer-cooling-applications",totalDownloads:4038,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"electronics-cooling",title:"Electronics Cooling",fullTitle:"Electronics Cooling"},signatures:"Mohamed H.A. Elnaggar and Ezzaldeen Edwan",authors:[{id:"178453",title:"Dr.",name:"Mohamed",middleName:null,surname:"Elnaggar",slug:"mohamed-elnaggar",fullName:"Mohamed Elnaggar"},{id:"184278",title:"Dr.",name:"Ezzaldeen",middleName:null,surname:"Edwan",slug:"ezzaldeen-edwan",fullName:"Ezzaldeen Edwan"}]},{id:"5175",title:"Facial Expression Recognition Using 3D Facial Feature Distances",slug:"facial_expression_recognition_using_3d_facial_feature_distances",totalDownloads:3825,totalCrossrefCites:5,totalDimensionsCites:10,book:{slug:"affective_computing",title:"Affective Computing",fullTitle:"Affective Computing"},signatures:"Hamit Soyel and Hasan Demirel",authors:null},{id:"68561",title:"Cyberspace and Artificial Intelligence: The New Face of Cyber-Enhanced Hybrid Threats",slug:"cyberspace-and-artificial-intelligence-the-new-face-of-cyber-enhanced-hybrid-threats",totalDownloads:527,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"cyberspace",title:"Cyberspace",fullTitle:"Cyberspace"},signatures:"Carlos Pedro Gonçalves",authors:[{id:"278948",title:"Prof.",name:"Carlos Pedro",middleName:null,surname:"Gonçalves",slug:"carlos-pedro-goncalves",fullName:"Carlos Pedro Gonçalves"}]}],onlineFirstChaptersFilter:{topicSlug:"computer-science-and-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/58586/katriina-aalto-setaelae",hash:"",query:{},params:{id:"58586",slug:"katriina-aalto-setaelae"},fullPath:"/profiles/58586/katriina-aalto-setaelae",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()