\r\n\tThe protection of biodiversity is a major target of the European Union Marine Strategy Framework Directive, requiring an assessment of the status of biodiversity on the level of species, habitats, and ecosystems including genetic diversity and the role of biodiversity in food web structure and functioning. The restoration of marine ecosystems can support the productivity and reliability of goods and services that the ocean provides to humankind, to maintain ecosystem integrity and stability. Some of the goods produced by the marine ecosystem services are fish harvests, wild plant and animal resources, water, some of the services provided recreation, tourism, breeding and nursery habitats, water transport, carbon sequestration, erosion control, and habitat provision.
",isbn:"978-1-83968-460-9",printIsbn:"978-1-83968-459-3",pdfIsbn:"978-1-83968-544-6",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"727e7eb3d4ba529ec5eb4f150e078523",bookSignature:"Dr. Ana M.M. Marta Gonçalves",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",keywords:"Non-indigenous Species, Dynamics, Ecosystem Maturation, Ecological Succession, Water Quality, Recovery, Biodiversity, Environmental Status, Ecosystem Services, Goods Production, Carbohydrates, Carrageenan",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 14th 2022",dateEndSecondStepPublish:"June 22nd 2022",dateEndThirdStepPublish:"August 21st 2022",dateEndFourthStepPublish:"November 9th 2022",dateEndFifthStepPublish:"January 8th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Ana Marta Gonçalves (h-index 19) holds a Ph.D. in Biology, from the University of Coimbra, Portugal, in collaboration with Ghent University, in 2011. During her research career obtained several grants is highly international competitive calls, including the MARS award for young scientists funded by The Royal Netherlands Institute for Sea Research (NIOZ) and the Foundation for Science and Technology (FCT, Portugal) grants.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",middleName:"Marta",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves",profilePictureURL:"https://mts.intechopen.com/storage/users/320124/images/system/320124.jpg",biography:"Ana Marta Gonçalves obtained a Ph.D. in Biology with a specialization in Ecology from the University of Coimbra, Portugal, in collaboration with Ghent University, Belgium, in 2011. Currently, she is an auxiliary researcher at the Marine and Environmental Sciences Center (MARE), Portugal, where she is also a member of the Directive Board. Since 2016, she has been a member of the Scientific Council of the Institute for Interdisciplinary Research, University of Coimbra (IIIUC). Dr. Gonçalves holds various administrative and management positions in international networks, societies (e.g., Society of Environmental Toxicology and Chemistry, AIL), and associations (e.g., PROAQUA). She is an editorial board member and reviewer for several indexed journals. She has published more than 70 journal articles, 50 book chapters, and 165 communications in international scientific events. She participated as a member and/or coordinator in more than twenty-five national and international projects and is currently the coordinator of four research projects. She has supervised more than ninety-five national and international undergraduate and graduate students. She has experience as a teacher of university courses and in accredited training sessions for teachers. Additionally, she has coordinated several ocean literacy and environmental education activities for kindergarten and school students. During her research career, Dr. Gonçalves obtained several grants and a MARS award for young scientists funded by The Royal Netherlands Institute for Sea Research (NIOZ).\n\nShe has expertise in biosafety, biochemical pathways, and impacts of stressors in aquatic species. Her research focus is on the valorization of marine resources and their applications in the industrial sector, such as the food and pharmaceutical industries. Her studies also highlight the application of biomarker tools for monitoring and managing aquatic systems",institutionString:"University of Coimbra",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Coimbra",institutionURL:null,country:{name:"Portugal"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"12",title:"Environmental Sciences",slug:"environmental-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"278926",firstName:"Ivana",lastName:"Barac",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/278926/images/8058_n.jpg",email:"ivana.b@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3569",title:"Biodegradation",subtitle:"Life of Science",isOpenForSubmission:!1,hash:"bb737eb528a53e5106c7e218d5f12ec6",slug:"biodegradation-life-of-science",bookSignature:"Rolando Chamy and Francisca Rosenkranz",coverURL:"https://cdn.intechopen.com/books/images_new/3569.jpg",editedByType:"Edited by",editors:[{id:"165784",title:"Dr.",name:"Rolando",surname:"Chamy",slug:"rolando-chamy",fullName:"Rolando Chamy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"42175",title:"The Species Problem: A Conceptual Problem?",doi:"10.5772/54134",slug:"the-species-problem-a-conceptual-problem-",body:'There have long been multiple ways of conceiving
How various are the ideas, that enter into the minds of naturalists when speaking of species. With some, resemblance is the reigning idea & descent goes for little; with others descent is the infallible criterion; with others resemblance goes for almost nothing, & Creation is everything; with other sterility in crossed forms is an unfailing test, whilst with others it is regarded of no value. [2]
And one hundred years after Darwin, Ernst Mayr worried about this same problem in a book he edited, titled
Few biological problems have remained as consistently challenging through the past two centuries as the species problem. Time after time attempts were made to cut the Gordian knot and declare the species problem solved either by asserting dogmatically that species did not exist or by defining, equally dogmatically, the precise characteristics of species. Alas, these pseudosolutions were obviously unsatisfactory. One might ask: “Why not simply ignore the species problem?” This also has been tried, but the consequences were confusion and chaos. The species is a biological phenomenon that cannot be ignored. Whatever else the species might be, there is no question that it is one of the primary levels of integration in the many branches of biology, as in systematics (including that of microorganisms), genetics, and ecology, but also in physiology and in the study of behavior. Every living organism is a member of a species, and the attributes of these organisms can often best be interpreted in terms of this relationship. [3]
More recently, the species problem seems to have gotten worse. In 1997, Richard Mayden identified at least twenty-two species concepts currently in use. [4]
This multiplicity of species concepts is a genuine problem in that different ways of conceiving species divide biodiversity in different and inconsistent ways, and no single species concept is adequate. What counts as a species under one concept may not count as a species under another. So whether a group of organisms counts as a species depends on which species concept is used. One researcher might, for instance, use morphological or genetic similarity to group into species, while another might use interbreeding, and yet another might appeal to history or phylogeny. In other words, one person might use a species concept based on morphological or genetic similarity, while another might use a concept based on interbreeding or phylogeny.
The consequences of using different species concepts are often striking. Species counts, one way of measuring biodiversity, depend on which concept is used. The replacement of other concepts with the
Given that this there is so far no consensus on species concepts, these differences in species counts suggest that the conventional grouping of organisms into species may be arbitrary and reflects only the subjective point of view assumed, as Joel Cracraft suggests (emphasis added):
The primary reason for being concerned about species definitions is that they frequently lead us to divide nature in very different ways. If we accept the assumption of most systematists and evolutionists that species are real things in nature, and if the sets of species specified by different concepts do not overlap, then it is reasonable to conclude that real entities of the world are being confused. It becomes a fundamental scientific issue when one cannot even count the basic units of biological diversity. Individuating nature “correctly” is central to comparative biology and to teasing apart pattern and process, cause and effect. Thus, time-honored questions in evolutionary biology--from describing patterns of geographic variation and modes of speciation, to mapping character states or ecological change through time, to biogeographic analysis and the genetics of speciation, or to virtually any comparison one might make--
This problem is magnified by the fact that which concept is used often depends on seemingly arbitrary facts, such as which organism is studied, as Cracraft explains:
There has been something of a historical relationship between an adopted species concept and the taxonomic group being studied... Thus, for many decades now, ornithologists, mammalogists, and specialists from a few other disciplines have generally adopted a Biological Species Concept; most invertebrate zoologists, on the other hand, including the vast majority of systematists, have largely been indifferent to the Biological Species Concept in their day-to-day work and instead have tended to apply species status to patterns of discrete variation. Botanists have been somewhere in the middle, although most have not used a Biological Species Concept. [7]
But even among those who study the same organisms, there is disagreement about which species concept is best. Those who are committed to the method of taxonomy sometimes known as “cladistics” tend to use different concepts than those who have adopted the more traditional “evolutionary systematics.” And even those who regard themselves as cladists find little agreement. In a recent volume, five different cladistic species concepts were proposed and developed, seemingly without any consensus. [8]
This is clearly problematic for the understanding and preserving biodiversity, as Claridge, Dawah and Wilson recognize in their introduction to a recent collection of articles on species concepts:
The prolonged wrangle among scientists and philosophers over the nature of species has recently taken on added and wider significance. The belated recognition of the importance of biological diversity to the survival of mankind and the sustainable use of our natural resources makes it a matter of very general and urgent concern. Species are normally the units of biodiversity and conservation... so it is important that we should know what we mean by them. One major concern has been with estimating the total number of species of living organisms that currently inhabit the earth... In addition, many authors have attempted to determine the relative contributions of different groups of organisms to the totality of living biodiversity... Unless we have some agreed criteria for species such discussions are of only limited value. [9]
Moreover, if the application of endangered species legislation is affected by species counts, then the consequences of the species problem spreads beyond biology and into public policy. [1] There are clearly costs if the adoption of a particular species concept results in increased species counts. The authors of the survey quoted above, have estimated the costs of the proliferation of species taxa, based on the fact that the adoption of the
Any increase in the number of endangered species requires a corresponding increase in resources and money devoted toward conserving those species. For example, it has been estimated that the complete recovery of any of the species listed by the U.S. Endangered Species Act will require about $2.76 million… Thus, recovering all species listed currently would cost around $4.6 billion. With widespread adoption of the PSC [
These additional costs might be justified
There are theoretical concerns here as well. If species are the fundamental units of evolution and classification, as is typically assumed, surely we need a satisfactory, unambiguous way to determine what counts as the fundamental units in these ways. [1] We need to have a good idea, for instance, about what counts as a species in order to identify and study speciation events. After all, only if a new species has been formed can there be speciation. And as long as species are the fundamental, basal units of classification, as is usually assumed, we need to know unambiguously what counts as a species to generate an unambiguous classification.
We might make progress on this long-standing species problem by thinking about scientific problems in general. Some scientific problems are empirical in the sense that they are solved by the addition of new empirical data or information. For example, we might solve a problem of disease by the observation of some bacterial or viral pathogen. As is well known, this is happening with a variety of cancers. On the other hand, some scientific problems are largely conceptual in the sense that they are solved not so much by the addition of new empirical information, but through some conceptual innovation, change or clarification. For example, problems related to planetary motion were solved by Johannes Kepler through the use of a new orbital concept based on elliptical rather than circular motion. And around the turn of the twentieth century, Wilhelm Johannsen coined the terms ‘gene,’ ‘genotype,’ and ‘phenotype’ to introduce new and useful concepts to the many problems in the study of heredity. [10] Sometimes old concepts get modified, as we see in relativistic physics with its new ways of conceiving
There is a general insight to be gained in thinking about scientific problems in this way. From at least Plato and Aristotle on, it has been recognized that knowledge of the world is based on the application of language, ideas or concepts to the world. Consequently, successful inquiry depends in part on getting our language, ideas or concepts right. This can be relatively straightforward, as in Kepler’s application of the ellipse to planetary motion, or in the invention of the concepts of
So is the species problem empirical, conceptual or both? If empirical it will be solved by more empirical data or information. Present trends suggest that the problem is not exclusively empirical. The last century has made great progress in the empirical investigation of biodiversity and evolution, but the species problem seems to instead be getting worse! We now have more jointly inconsistent and individually inadequate concepts than ever. It is my contention here that the species problem is at least partly conceptual, and it is solved at an abstract level: the nature and relation of various species concepts. The solution is not merely a matter of introducing a new species concept, or modifying an existing concept. Rather it is to be found in an understanding how the various species concepts are related within a framework, how each concept works individually, and how this all has resulted in the species problem.
I shall argue that the species problem is solved first, by understanding the division of labor within the conceptual framework. Some species concepts are theoretical and are concerned with the nature of species things. Others are operational, telling us how to identify and individuate species things. Here I follow the lead of Richard Mayden and Kevin de Queiroz, but go a step further and argue that these operational concepts are better conceived as
The recent history of the species problem is not promising. Along with the increase in our understanding of biodiversity and the evolutionary processes that produced it has come a proliferation of species concepts. Richard Mayden [4] has identified and individuated over twenty species concepts currently in use. Some species concepts he identifies are based on similarity. The
The details of each of these species concepts are not important for purposes here. What is important is that first, with increased empirical understanding, species concepts seem to be proliferating; second, these concepts are inconsistent, carving nature in different and inconsistent ways; third, no single concept is adequate, applying across biodiversity. The
Mayden recognizes this. After outlining all these species concepts, he argues that there are really two main kinds of species concepts:
This hierarchical thinking about species may have the potential to solve the species problem, but only if there is a single, adequate theoretical concept. Mayden argues that there is such a concept, based on the fundamental idea of a lineage: the
The
While the ESC is the most appropriate primary concept, it requires bridging concepts permitting us to recognize entities compatible with its intentions. To implement fully the ESC we must supplement it with more operational, accessory notions of biological diversity – secondary concepts. Secondary concepts include most of the other species concepts. While these concepts are varied in their operational nature, they are demonstrably less applicable than the ESC because of their dictatorial restrictions on the types of diversity that can be recognized, or even evolve. [4]
Secondary operational concepts are those that can be readily applied to biodiversity, and are indicative of species lineages. Species concepts based on morphological or genetic similarity, for instance, can help identify lineages, since organisms within a single lineage will generally share some morphological and genetic traits. Concepts based on processes such as reproductive isolation and cohesion, mate recognition systems and ecological niches, can also be used to identify lineages since these are processes that operate in the formation and persistence of lineages.
Kevin de Queiroz has proposed a similarly hierarchical way to think about species concepts. According to de Queiroz, there are the
The species criteria adopted by contemporary biologists are diverse and exhibit complex relationships to one another (i.e. they are not necessarily mutually exclusive). Some of the better-known criteria are: potential inter-breeding or its converse, intrinsic reproductive isolation... common fertilization or specific mate recognition systems... occupation of a unique niche or adaptive zone... potential for phenotypic cohesion... monophyly as evidenced by fixed apomorphies... or the exclusivity of genic coalescence... qualitative... or quantitative... Because the entities satisfying these various criteria do not exhibit exact correspondence, authors who adopt different species criteria also recognize different species taxa. [11]
Like Mayden, de Queiroz argues that there is single, primary species concept that is adequate – applying across biodiversity. This is, according to de Queiroz, the
Species are segments of population-level lineages. This definition describes a very general conceptualization of the species category in that it explains the basic nature of species without specifying either the causal processes responsible for their existence or the operational criteria used to recognize them in practice. It is this deliberate agnosticism with regard to causal processes and operational criteria that allows the concepts of species just described to encompass virtually all modern views on species, and for this reason, I have called it the general lineage concept of species. [11]
In a later paper, de Queiroz describes this general theoretical concept in terms of a “metapopulation lineage,” which he describes as “sets of connected subpopulations, maximally inclusive populations.” [12]
Mayden and de Queiroz are largely right about the conceptual framework and the potential solution to the species problem. There may be multiple, seemingly inconsistent ways of thinking about species, but these ways of thinking are not all equivalent. The
This division of conceptual labor echoes a debate early in the twentieth century about how to define scientific concepts in physics, such as
Our theoretical laws deal exclusively with the behavior of molecules, which cannot be seen. How, therefore, can we deduce from such laws a law about observable properties such as the pressure or temperature of a gas or properties of sound waves that pass through the gas? The theoretical laws contain only theoretical terms. What we seek are empirical laws containing observable terms. Obviously, such laws cannot be derived without having something else given in addition to the theoretical laws.... That something else that must be given is this: a set of rules connecting the theoretical terms with the observable terms. [13]
Carnap called these rules connecting theoretical and observable terms “correspondence rules.” What is significant in Carnap’s proposal is that these
We can apply Carnap’s insight here to the species problem. As argued by Mayden and de Queiroz, some species concepts are theoretical. They tell us how to conceive species. They define species taxa and constitute the species category. But some species concepts are operational. They tell us how to identify and individuate the groups that are properly species
They want the physicist to tell them just what he means by “electricity”, “magnetism”, “gravity”, “a molecule”. If the physicist explains them in theoretical terms, the philosopher may be disappointed. “That is not what I meant at all”, he will say. “I want you to tell me, in ordinary language, what those terms mean.” [13]
The problem here is that the scientist is being asked for something he or she cannot give – a definition in something other than theoretical terms. Each of these concepts has satisfactory definitions, but they are in terms of the theoretical framework. That is the proper source for definitions – telling us how to interpret these concepts – not the operations to measure or identify the things that satisfy them. Carnap concluded:
The answer is that a physicist can describe the behavior of an electron only by stating theoretical laws, and these laws contain only theoretical terms. They described the field produced by an electron, the reaction of an electron to a field, and so on…. There is no way that a theoretical concept can be defined in terms of observables. We must, therefore, resign ourselves to the fact that definitions of the kind that can be supplied for observable terms cannot be formulated for theoretical terms. [13]
There are three things to note here about Carnap’s analysis. First is his emphasis on the role of theoretical frameworks in the interpretation of scientific concepts. Theoretical terms are to be understood in terms of the overarching theory. For a species concept the overarching theory is evolutionary theory. Second is the proposal that we think about operations as rules rather than concepts. What we might call operational
If we adopt Carnap’s approach, distinguishing theoretical definitions from operational “correspondence rules,” and apply this approach to the species problem, the species problem largely dissolves. So, for instance, given a particular theoretical concept (either Mayden‘s
Implicit in this division of conceptual labor are two distinct sets of evaluative criteria. Theoretical concepts best serve the needs of evolutionary theory and biosystematics if they are universal – apply across biodiversity. This is in effect, a unification requirement. A single concept will ideally
There are good reasons to think that Mayden and de Queiroz have the broad outlines of a primary theoretical concept right as well - even though there may be differences in each of the three formulations Mayden provides of the ESC and de Queiroz’s general lineage concept. A primary theoretical concept must be theoretically significant and consistent with evolutionary theory. At the most basic level, the theory of evolution tells us that there is change over time. Darwin thought that this involved the origin of new species through divergent change, whereby mere varieties become species. [15] This principle of divergence then explained the branching evolutionary tree diagram that in turn served to illustrate his approach to classification.
I request the reader turn to the diagram illustrating the action, as formerly explained, of these several principles; and he will see that the inevitable result is that the modified descendants proceeding from one progenitor become broken up into groups subordinate to groups... So that we here have many species descended from a single progenitor grouped into genera; and the genera are included in, or subordinate to, sub-families, families and orders, all united into one class. [15]
What is important here is that this tree (figure 1) [16] emphasized the temporal, historical dimension of evolution, and the branching associated with speciation. It tells us that species have beginnings in speciation events. They have duration. They change. And they have endings. Since Darwin, this historical component has become further entrenched in evolutionary thinking about species.
This is not to say, of course, that species taxa are
Evolutionary theory also tells us that species are the things that evolve. First, they have beginnings and endings in speciation and extinction events. Accordingly, each species taxon also has its own distinctive fate, in its trajectory of change or stasis and ultimate extinction. But species taxa also have some sort of cohesion, whether through reproduction, social interaction, gene transfer or the operation of natural selection. But to be universal, a theoretical concept must be indeterminate about which processes produce these general features. If there is a solution to the species problem, as I think there is, it will surely be based on something like what Mayden and de Queiroz propose – a primary theoretical species concept that treats species taxa as segments of populations lineages with cohesion and distinctive fates. And the more researchers find out about the processes that segment these population lineages and that produce cohesion, and that preserve or produce morphological, behavioral and molecular similarities, the more correspondence rules they will have at hand to identify and individuate species taxa. Since these correspondence rules are subservient to the primary theoretical species concept,
This is not to say, however, that the nature and application of the correspondence rules is obvious and unproblematic. It is not always obvious which correspondence rules are appropriate in particular instances. That will often depend on empirical facts about the relevant organisms and processes in question - facts that may or may not be known. Nor is the nature of the primary theoretical concept unproblematic. The lineage and population concepts both require clarification. It is not always clear what kinds of cohesion are relevant and operate in the various groups of organisms. But more pertinent to purposes here, this division of conceptual labor is only half of the solution to the species problem. The other half is found at a lower level, the level of the individual theoretical species concept, and how it functions.
Mayden and de Queiroz suggest that even with the use of multiple operational concepts/species criteria there is general agreement that species are segments of population lineages. This is what evolutionary theory requires. There is good reason to agree with them. Ironically though, an historical conception of species as lineages predates evolution in the ideas of John Ray and Linnaeus. [1] And Darwin noted that an historical way of thinking about species was largely accepted by his contemporaries.
With species in a state of nature, every naturalist has in fact brought descent into his classification; for he includes in his lowest grade, or that of a species, the two sexes; and how enormously these sometimes differ in the most important characters, is known to every naturalist: scarcely a single fact can be predicated in common of the males and hermaphrodites of certain cirripedes, when adult, and yet no one dreams of separating them. The naturalist includes as one species the several larval stages of the same individual, however much they may differ from each other and from the adult... He includes monsters; he includes varieties, not solely because they closely resemble the parent-form, but because they are descended from it... [15]
But as Darwin’s evolutionary tree diagram in the Origin shows, this historical thinking about species is also central to evolutionary theory. The idea here is that even with the use of other criteria for grouping into species, and identifying and individuating species taxa, there has been guidance from the basic conception that species are lineages. In Darwin’s tree diagram, species are the branches of the tree. If so, a systematist might use morphological or molecular similarity to identify and individuate species, but in ways that are constrained by a population lineage conception of species. This requires that the systematist ignore irrelevant morphological traits based on sexual dimorphism and developmental stages. If so, then there is an implicit hierarchy here, ust as Mayden and de Queiroz have argued.
There are puzzles about actual usage that remain. When naturalists, evolutionists and systematists actually
[H]ow various are the ideas, that enter into the minds of naturalists when speaking of species. With some, resemblance is the reigning idea & descent goes for little; with others descent is the infallible criterion; with others resemblance goes for almost nothing, & Creation is everything; with other sterility in crossed forms is an unfailing test, whilst with others it is regarded of no value. [2]
This is still the case. One person might apply the term
Much modern thinking about concepts begins with a framework laid out by Gottlob Frege, in a classic German paper of 1892, and its English translation, “On Sense and Reference.” [17] Here Frege addressed the question of how language can represent things in the world. He argued that linguistic entities such as concept terms function in propositions in two ways: first, through a “nominatum,” what the term
If meaning is to be associated with some descriptive content – a description that gives conditions for the application of the concept, then to understand the meaning of a term we need to know the descriptive content. One standard, “classical” approach conceives the description in terms of a definition with a particular definitional structure, a set of singly necessary and jointly sufficient conditions for falling under the concept. The meaning of the concept term is then this set of necessary and sufficient conditions. [18] This does not rule out non-definitional descriptive content though. Alongside the definitional core is a set of conditions that are associated with the term, but in an “accidental” way.
The term
There are, however, other ways to think about definitional structure. One limitation of the classical approach is that it implies that falling under a concept is all or nothing. Either the necessary and sufficient conditions are satisfied or they are not. But it seems possible for this to be a matter of degree. The “cluster” approach asserts that something can fall under a concept to varying degrees depending on how many conditions are met, and how typical or characteristic the particular conditions satisfied are. [19] This way of thinking about concepts as probabilistic clusters of conditions has lead some to advocate a “prototype” or “exemplar” approach, where some instance of the concept that instantiates the core set of conditions comes to represent it as an exemplar or ideal instance. [19] Here there are then degrees of concept application. Something can more or less fall under a particular concept depending on how many and which conditions are satisfied, or how close the analogy is with the exemplar. Definitional structure on the cluster approach then, is a conceptual core that has greater definitional weight than other conditions, without thereby constituting a set of singly necessary and jointly sufficient condition. The definition of a term would then be some weighted cluster or other of the descriptive properties or conditions associated with the concept.
On this approach,
But neither of these theories of meaning is fully adequate. Neither can answer questions about what determines the inclusion of conditions in the definition, or about how these conditions are related. They only designate the structure of concepts. What then determines the descriptive content and makes it cohere? Recently, an approach known as the “theory theory,” has provided an answer to these questions. The idea is that the definitional structure of concepts is filled out and made coherent by some
So given the
This is not to say that there is no vagueness in the application of classical concepts. The condition themselves may be vague. In the case of species, what counts as a population may be borderline vague in the way that
This vagueness goes hand-in-hand with a
It may also be that a concept is not yet settled on theoretical grounds, in that there is some dispute about which definitional conditions are correct. This may be because there is some disagreement about the theoretical significance of certain conditions. After Darwin’s
There are some important implications to this analysis of species concepts. First, there is an abstract, objective meaning constituted by a descriptive content associated with the term
Second, this descriptive content is available in part or whole, to anyone who uses the term
There is yet another factor relevant to a full understanding of the species problem. In the practice of science, scientists do not interact with
Each of the demes may need to engage the species concept in various ways, depending on their distinctive interests, problems, methods and values. And most important for purposes here, each deme may focus on various parts of the descriptive content of the species concept, and ignore other parts. So a geneticist may not need to worry about the morphological similarity typical of species, or the historical dimensions of species in engaging the species concept. And an ecologist may not need to worry so much about genetic similarity. De Queiroz recognizes these differences in interests:
The existence of diverse species concepts is not altogether unexpected, because concepts are based on properties that are of the greatest interest to subgroups of biologists. For example, biologists who study hybrid zones tend to emphasize reproductive barriers, whereas systematists tend to emphasize diagnosability and monophyly, and ecologists tend to emphasize niche differences. Paleontologists and museum taxonomists tend to emphasize morphological differences, and population geneticists and molecular systematists tend to emphasize genetic ones. [12]
We need not follow de Queiroz there though, in thinking of these as different concepts. Rather these are just different emphases on the descriptive content of the theoretical species concept. Moreover, researchers need not focus on just one part of the descriptive content. In behavioral genetics, both genes and behavior are obviously important. And for evolutionary theorists all aspects of species may be relevant.
What is important here is first that particular interests may guide how the members of each deme thinks about species. Second, this does not entail that across demes researchers are using different theoretical concepts. The primary theoretical concept is still available to all. And most importantly, the primary concept constrains the usage of the term
Not all of these uses of the species term across demes are equally authoritative though. There is a linguistic division of labor. Since evolutionary theory plays an important role in determining the definitional core of the term
The species problem has been in part a consequence of the neglect of two facts: first, there is a social hierarchy in science that governs interaction, ultimately into demes; and second, there is a division of linguistic labor that arises out of this hierarchy. Those who work in these demes do not always recognize or respect this division of linguistic labor, and sometimes treat their own usage as authoritative. If so, then it would
Some conceptual problems are relatively easy to solve. We propose or invent a new concept that works better. Or we modify a current concept to better serve theoretical purposes. Both kinds of solutions are central to the practice and progress of science. While these solutions are not easy in the sense that the solutions are always or even ever obvious, they are easy in that they are straightforward and uncomplicated. The species problem is not easy in this way though. Its solution requires a sophisticated understanding of how scientific concepts work, are structured and get content. It also requires an understanding of how they work within the social structure of science. This complexity explains the long-endurance of the species problem. In part, the understanding of how concepts work was lacking. Only recently do we have the theoretical framework to understand such conceptual problems. So, just as we need evolutionary theory to understand what species are, we need a satisfactory conceptual theory to understand complex conceptual problems like the species problem.
There are, however, worries still lurking. What if there are theoretically important differences between the various segments of population lineages that we are identifying as species? Perhaps there are crucial differences between vertebrates, invertebrates, fungi and bacteria such that they should not all be regarded as forming the same kinds of species. What if, on our best theoretical understanding, there really do seem to be different kinds of species things? Is there really then, a single, fully adequate species concept? Or might there be multiple, irreducible concepts? If so, then the species problem returns, and not just as an illusion.
Marc Ereshefsky argues for just this kind of possibility. He accepts the basic idea that species are genealogical - historical lineages, but denies that they are all the same kinds of lineages. First he begins by noting there are three main ways of thinking about species - in terms of interbreeding, ecology and monophyly. Then he argues that these are different kinds of lineages produced by different evolutionary forces.
The positive argument for species pluralism is simply this: according to contemporary biology, each of the three approaches to species highlights a real set of divisions in the organic world… All of the organisms on this planet belong to a single genealogical tree. The forces of evolution segment that tree into a number of different types of lineages, often causing the same organisms to belong to more than one type of lineage. The evolutionary forces at work here include interbreeding, selection, genetic homeostasis, common descent, and developmental canalization… The resultant lineages include lineages that form interbreeding units, lineages that form ecological units, and lineages that form monophyletic taxa. [22]
These different kinds of lineage concepts apply in different ways to biodiversity. Some organisms, for instance, may not form ecological lineages. Consequently, that lineage concept would therefore not apply.
It is not initially obvious how to respond to Ereshefsky’s pluralism. He considers and then rejects the suggestion that there is an additional parameter that can unite these three different kinds of lineages under one conception. [22] But at some level he seems to be already thinking of them under one conception. To even think of them
More worrisome perhaps, what if the species concept itself is ultimately unnecessary and misguided, the way the outdated ideas of
The rhesus monkey (
Rhesus monkeys are commonly used in toxicity studies and play a pivotal role in unraveling the mechanisms of health and diseases and during the development of vaccines. HIV, SARS and Covid-19 are a few examples of viral diseases that are studied in the rhesus monkey. In addition to investigations that require that the physiology of this laboratory animal parallels that of man, studies that demand a comparable anatomy are multiple as well. Examples include studies on osteoporosis, osteopenia, lordosis and kyphosis [1].
The aim of this book chapter is to provide the biomedical researcher, who studies and/or uses the rhesus monkey, with the essentials of its anatomy. Although this chapter is rather elaborate, not all the details of the rhesus monkey anatomy can be described. Where appropriate, emphasis is put on those structures that have importance during manipulations of the animal under investigation, such as the muscles that allow for intramuscular injection and the veins that can be punctured to draw blood or inject substances intravenously. Researchers can be referred to two anatomical atlases for further reading. These include the work by Hartman and Straus Jr. from 1933, entitled
The rhesus monkey exhibits pronounced sex differentiation (Figure 1). Females measure approximately 47 cm in length (crown-rump length, thus without tail) and weigh 5–8 kg, whereas males present values of 53 cm and 8–15 kg, respectively [6, 7]. They have a relatively short, nonprehensile tail. As the rhesus monkey is a despotic species, fights often occur related to their hierarchical rank order system causing severe tail wounds all resulting in the veterinarian’s decision to amputate the injured tail.
External appearance of the male (A) and female (B) rhesus monkey. Notice the twins suckling their mother.
The hairs on the lateral sides of the animal are gray to brown. The inside of the arms and legs, and the belly color pale beige to white. Each finger and toe, five on each hand and foot, possesses a nail (unguis). The palms of the hands and the soles of the feet are keratinized showing epidermal ridges [7]. The face, including the ears, has very few hairs and therefore a pinkish appearance. Females possess a pair of pectoral mammary glands.
The skin covering and surrounding the genitals is also devoid of hairs. In males, the scrotum is non-pendulous and contains a pair of testes that measure 4 cm in length [8]. The penis is normally retracted within the preputium (Figure 2), only extracted during mating.
External genital organs of the male rhesus monkey with the penis retracted into the preputium.
Menarche occurs at about 3 years of age and the length of the menstrual cycle is 28 days. The gestation length is around 165 days. Rhesus monkeys are seasonal breeders. Menstrual bleeding (menses) lasts for about 4 days. During the mating season (autumn-early winter), the skin of the face and genitals of females becomes characteristically red and/or swollen (Figures 3 and 4) during the period of regular cycles (sex skin coloration). These periodic changes in sex skin coloration are not valid indicators of either ovulation or menstruation. The sex skin is a secondary sex characteristic and reflects estrogenic activity. It fluctuates, as a rule, as to presence, extent, and time of year in a very unpredictable manner. In older females, the sex skin is less pronounced, and the redness may persist for longer intervals. Moreover, sex color is maintained during the entire gestational period and for several weeks after parturition: females who become pregnant during the mating season do not show the significant sex skin coloration decrease seen in nonpregnant females during the months that follow the mating season. Environmental cues, perhaps acting on a seasonal biological clock rather than social factors, are thought to be mainly responsible for the seasonal fluctuations observed. Sex skin involves the skin of the buttocks, hips, and base of tail, but the coloration and swelling can even spread in red splotches down the legs and over the calves to the heel; and there might also be a forward-tapering streak of red splotches from the symphysis to the umbilicus. Females could use color as a gauge to monitor other females’ reproductive status or cyclic phase, for competitive purposes, as hindquarter color can advertise the relative timing of ovulation. The possibility might not be plausible for facial color, given that the relationship between face color and cyclic phase is not predictable in rhesus monkeys.
Two examples of sex skin (coloration and swelling) in the face of females.
Four examples of sex skin coloration and swelling on the buttocks, hips, legs and base of tail in females.
In females, the vulva is pronounced, with a large visible clitoris between the sciatic protuberances that are covered with keratinized skin patches (callositas ischii/sciatic protuberances), which is typical for Old World monkeys, both males and females (Figure 5).
(A) Perineum of a female rhesus monkey. This female is presented with a tail stump (1) that is visible just dorsal to the anal opening (2). The large clitoris (3) is present in between the sciatic protuberances (4). (B) This female has an intact tail (1) just dorsal to the anal opening (2). The clitoris (3) is less pronounced but still visible in between the sciatic protuberances (4). The prudential labia (5) can however, more readily be recognized in the female.
The general build of the skeleton of the rhesus monkey is illustrated in Figure 6. The skull is large and heavy compared to the slender body. This contrasts with the sturdy external appearance of the rhesus monkey, as depicted in Figure 1, which suggests that this species has a well-developed musculature.
Skeleton of a female rhesus monkey. 1: cranium, 2: mandibula, 3: vertebrae cervicales, 4: scapula, 5: clavicula, 6: humerus, 7: radius, 8: ulna, 9: manus, 10: vertebrae thoracales, 11: sternum, 12: arcus costalis, 13: vertebrae lumbales, 14: sacrum, 15: pelvis, 16: femur, 17: patella, 18: tibia, 19: fibula, 20: pes, 21: vertebrae caudales.
The skull including the mandible of an adult male rhesus monkey is depicted in Figure 7. Some major anatomical landmarks are indicated. The splanchnocranium is relatively large but presents a reduced length. The very large conical orbits are almost completely postorbitally closed. The neurocranium is situated caudal to the former. It contains the cranial cavity that harbors the brains. The mandible and in particular its body is relatively large. A prominent mandibular angle can be seen. The symphysis between the left and right mandibles is synostotic.
Left lateral view of the skull of an adult male rhesus monkey. The splanchnocranium and neurocranium are shaded in red and green, respectively. 1: orbita, 2: canalis lacrimalis, 3: foramen infraorbitale, 4: foramen zygomaticofaciale, 5: os nasale, 6: os incisivum, 7: maxilla, 8: os frontale, 9: os parietale, 10: arcus zygomaticus, 11: fossa temporalis, 12: porus acusticus externus, 13: processus styloideus, 14: crista nuchae, 15: linea temporalis, 16: planum nuchale, 17: foramen magnum. The mandible is shaded in purple. 18: angulus mandibulae, 19: processus condylaris, 20: processus coronoideus, 21: foramen mentale.
The hyoid bone of the rhesus monkey (Figure 8) is not directly connected to the skull. It consists of a body (corpus) and a bilaterally present pair of horns that lie caudally. The lesser horn (cornu minus) is, however, fused with the greater horn (cornu majus). The latter horns are joined with the body by means of cartilage.
Dorsal view of the hyoid bone. The large corpus (1) is caudally elongated by the bilateral cornu minus (2) and the bilateral cornu majus (3) that are fused.
The vertebral column consists of 7 cervical vertebrae, 12 thoracic vertebrae, 7 lumbar vertebrae, 3 fused sacral vertebrae and around 19 caudal vertebrae. This number is variable. The fifth, sixth and seventh caudal vertebrae possess a hemal arch that encloses the caudal artery and vein. The number of rib pairs equals the number of thoracic vertebrae, i.e. 12. Consequently, the rhesus monkey presents 24 ribs in total. These are connected to the sternum, which is composed of 7 sternebrae, by means of costal cartilages. The manubrium is the first sternebra to which not only the first pair of ribs is connected, but also the bilaterally present clavicle (Figure 9). This bone connects the sternum with the thoracic limb through its junction with the acromion of the shoulder blade.
Dorsal view of the sternum. 1: manubrium sterni, 2: corpus sterni, 3: sternebra, 4: processus xyphoideus, 5: incisura clavicularis, 6: incisura costalis, 7: clavicula.
The thoracic limb, which is connected with the thorax by means of the clavicle, is composed of the shoulder blade or scapula (Figure 10), the humerus (Figure 11), the medially located radius (Figure 12) and the laterally located ulna (Figure 13) that are unfused, and the hand (Figure 14). The hand contains five fingers that are each composed of 3 phalanges, except the first, called the pollex, that lacks the middle phalanx.
Lateral view of the right scapula. 1: margo dorsalis, 2: margo caudalis, 3: margo cranialis, 4: angulus cranialis, 5: angulus caudalis, 6: angulus ventralis, 7: spina scapulae, 8: fossa infraspinata, 9: fossa supraspinata, 10: acromium, 11: facies articularis clavicularis, 12: collum scapulae, 13: incisura scapulae, 14: cavitas glenoidalis, 15: tuberculum supraglenoidale, 16: tuberculum infraglenoidale, 17: processus coracoideus.
Cranial (A) and caudal (B) views of the right humerus. 1: epiphysis proximalis or extremitas proximalis, 2: diaphysis or corpus humeri, 3: epiphysis distalis or extremitas distalis, 4: caput humeri, 5: collum humeri, 6: tuberculum majus, 7: tuberculum minus, 8: crista tuberculi minoris, 9: crista tuberculi majoris, 10: sulcus intertubercularis, 11: tuberositas deltoidea, 12: epicondylus lateralis, 13: epicondylus medialis, 14: fossa radialis, 15: fossa coronoidea, 16: trochlea humeri, 17: capitulum humeri, 18: fossa olecrani, 19: sulcus nervi radialis.
Cranial (A) and caudal (B) views of the right radius. 1: epiphysis proximalis or extremitas proximalis, 2: diaphysis or corpus radii, 3: epiphysis distalis or extremitas distalis, 4: caput radii, 5: fovea articularis, 6: collum radii, 7: tuberositas radii, 8: processus styloideus radii, 9: facies articularis carpalis, 10: tuberositas pronatoria, 11: incisura ulnaris.
Cranial (A) and caudal (B) views of the right ulna. 1: epiphysis proximalis or extremitas proximalis, 2: diaphysis or corpus ulnae, 3: epiphysis distalis or extremitas distalis, 4: olecranon with tuber olecrani, 5: incisura trochlearis with processus anconeus, 6: processus coronoideus medialis, 7: processus coronoideus lateralis, 8: tuberositas ulnae, 9: crista musculi supinatorii, 10: caput ulnae, 11: facies articularis, 12: processus styloideus ulnae.
Dorsal view of the skeleton of the right hand. 1: os carpi radiale (os scaphoideum), 2: os carpi intermedium (os lunatum), 3: os carpi ulnare (os triquetrum), 4: os carpi accessorium (os pisiforme), 5: os carpi Centrale, 6: os carpale primum (os trapezium), 7: os carpale secundum (os trapezoideum), 8: os carpale tertium (os capitatum), 9: os carpale quartum (os hamatum), 10: os sesamoideum m. abductoris digiti primi (pollicis), 11: os metacarpale primum, 12: os metacarpale secundum, 13: os metacarpale tertium, 14: os metacarpale quartum, 15: os metacarpale quintum, 16: Phalanx proximalis, 17: phalanx media, 18: phalanx distalis.
The pelvic limb connects to the body through the pelvis that consists of the fused left and right pelvic bones (Figures 15 and 16). The symphysis between these bones is synostotic. The femoral bone or femur presents a distal trochlea for the ovoid patella. Both femoral condyles, which each support a sesamoid bone on their caudoproximal aspects, articulate with the tibial plateau (Figure 17). The tibia (Figure 18) lies medial to the slender fibula (Figure 19). The foot (Figure 20) contains five toes that are each composed of 3 phalanges, except the first, called the hallux, that lacks the middle phalanx.
Dorsal (A) and ventral (B) views of the pelvis. 1: acetabulum, 2: ossa pubicae, 3: cavum pelvis, 4: foramen obturatum, 5: ramus cranialis ossis pubis, 6: ramus caudalis ossis pubis, 7: symphysis pubica, 8: tuberculum pubicum ventrale, 9: crista pubica, 10: pecten ossis pubis, 11: eminentia iliopubica, 12: corpus ossis ischii, 13: tabula ossis ischii, 14: ramus ossis ischii, 15: symphysis ischiadica, 16: tuber ischiadicum, 17: arcus ischiadicus, 18: spina ischiadica, 19: incisura ischiadica minor, 20: corpus ossis ilii, 21: ala ossis ilii, 22: facies sacropelvina, 23: incisura ischiadica major, 24: sacrum; 7+15 = symphysis pelvina.
Lateral view of the left os coxae. 1: acetabulum, 2: fossa acetabuli, 3: facies lunata, 4: incisura acetabuli, 5: corpus ossis pubis, 6: ramus cranialis ossis pubis, 7: ramus caudalis ossis pubis, 8: foramen obturatum, 9: symphysis pubica, 10: tuberculum pubicum ventrale, 11: pecten ossis pubis, 12: eminentia iliopubica, 13: crista pubica, 14: corpus ossis ilii, 15: ala ossis ilii, 16: facies sacropelvina, 17: facies glutea, 18: crista iliaca, 19: tuber sacrale or spina iliaca dorsalis, 20: spina iliaca dorsalis cranialis, 21: spina iliaca dorsalis caudalis, 22: incisura ischiadica major, 23: tuber coxae or spina iliaca ventralis, 24: spina iliaca ventralis cranialis, 25: spina iliaca ventralis caudalis.
Cranial (A) and caudal (B) views of the right femur. 1: epiphysis proximalis or extremitas proximalis, 2: diafysis or corpus femoris, 3: epiphysis distalis or extremitas distalis, 4: caput ossis femoris, 5: fovea capitis, 6: collum ossis femoris, 7: trochanter major, 8: fossa trochanterica, 9: trochanter minor, 10: crista intertrochanterica, 11: epicondylus lateralis, 12: epicondylus medialis, 13: condylus lateralis, 14: condylus medialis, 15: trochlea ossis femoris, 16: fossa intercondylaris, 17: facies articularis sesamoidea (lateralis et medialis), 18: fossa m. poplitei.
Cranial (A) and caudal (B) views of the right tibia. 1: epiphysis proximalis or extremitas proximalis, 2: diaphysis or corpus tibiae, 3: epiphysis distalis or extremitas distalis, 4: condylus medialis, 5: condylus lateralis, 6: facies articularis fibularis, 7: tuberositas tibiae, 8: facies articularis proximalis, 9: eminentia intercondylaris, 10: tuberculum intercondylare laterale et mediale, 11: crista tibiae, 12: linea muscularis, 13: malleolus medialis, 14: facies articularis distalis, 15: cochlea tibiae, 16: incisura fibularis.
Lateral (A) and medial (B) views of the right fibula. 1: epiphysis proximalis or extremitas proximalis, 2: diaphysis or corpus fibulae, 3: epiphysis distalis or extremitas distalis, 4: caput fibulae, 5: facies articularis capitis fibulae, 6: malleolus lateralis, 7: facies articularis malleoli.
Dorsal view of the skeleton of the right foot. 1: talus, 2: calcaneus, 3: os tarsi centrale (os naviculare), 4: os tarsale primum (os cuneiforme mediale), 5: os tarsale secundum (os cuneiforme intermedium), 6: os tarsale tertium (os cuneiforme laterale), 7: os tarsale quartum (os cuboideum), 8: os sesamoideum, 9: os metatarsale primum, 10: os metatarsale secundum, 11: os metatarsale tertium, 12: os metatarsale quartum, 13: os metatarsale quintum, 14: phalanx proximalis, 15: phalanx media, 16: phalanx distalis.
The various bones of which the skull is composed of are connected by means of sutures that ossify during puberty. As mentioned earlier, the symphysis mandibulae is synostotic. The mandibular joint between the mandible and the skull presents a cartilaginous disc that eliminates the incongruence between the mandibular fossa and the condylar process (Figure 21).
Left mandibular joint formed between the cranium (1) and the mandibula (2). More specifically, the articulation is present between the fossa mandibularis (3), caudally bordered by the processus styloideus (4), and the processus coronoideus (5). The discus articularis (6), of which a higher magnification is shown in the insert, is located in between these structures.
The atlanto-occipital joint between the occipital condyles of the skull and the cranial articulating foveae of the atlas (first cervical vertebra) is dorsally covered by the atlanto-occipital membrane. The bilateral articulations are laterally reinforced by the lateral ligaments.
The atlanto-axial joint has three important ligaments. The transverse ligament covers the dens axis. From this dens, the longitudinal dental ligament runs to the ventral edge of the foramen magnum. The alar ligaments connect the dens with the lateral edges of the foramen magnum.
The individual vertebrae, from the third cervical vertebra to the sacrum, are joined together with multiple ligaments and bands (Figure 22). The supraspinal ligament is the continuation of the nuchal ligament that connects the external occipital protuberance on the skull with the spinal processes of the 3rd tot 7th cervical vertebrae. The dorsal longitudinal ligament that lies immediately dorsal to the vertebral bodies, up to the sacrum, is the continuation of the tectorial membrane that covers the several ligaments of the atlanto-axial joint.
Right lateral view of four thoracic vertebrae with their associated ligaments and ribs. The cranial rib has been removed entirely while the other ribs are cut proximally. 1: discus intervertebralis, 2: ligamentum longitudinale ventrale, 3: ligamentum supraspinale, 4: ligamenta interspinalia, 5: ligamentum interarcuale, 6: ligamenta intertransversaria, 7: processus spinosus, 8: processus spinosus, 9: caput costae, 10: tuberculum costae, 11: ligamentum costotransversarium laterale, 12: ligamentum costotransversarium craniale, 13: ligamenta radiata.
The ribs have three contact points with the thoracic vertebrae. The costal head articulates with the caudal fovea of the cranial thoracic vertebra (or the 7th cervical vertebra in the case of the first rib) and the cranial fovea of the caudal thoracic vertebra. An additional attachment is present between the costal tubercle and the transverse process of the thoracic vertebra, which number equals that of the rib (e.g., thoracic vertebra number 3 bears rib pair number 3). Ribs 11 and 12 lack the typical articulations as they have no costal tubercle.
The front limb is not only connected to the thorax by means of a synsarcosis (connecting muscles) but also by means of the collar bone that attaches to the manubrium of the sternum, and the acromion and coracoid process of the shoulder blade. The coracoclavicular ligament is worth mentioning.
The shoulder joint between the shoulder blade and the humerus is characteristic in that the glenoid cavity of the scapula is narrower than the humeral head. Therefore, a glenoid labrum is present at the rims of the glenoid cavity. The coracohumeral ligament has its origin on the coracoid process of the scapula and inserts into the articular capsule. No collateral ligaments can be observed.
The elbow joint is formed by the humerus, radius and ulna. As such, a humeroradial and a proximal radioulnar articulation are present. The lateral collateral band originates at the lateral epicondyle of the humerus and attaches to the ulna (lateral coronoid process). It is therefore called the ulnar collateral ligament. The radial collateral ligament can be found between the medial humeral epicondyle and the radius (radial head) and ulna (medial coronoid process). The radial annular ligament attaches to both coronoid processes and encloses the radial head. In between the radius and ulna, the interosseous membrane can be seen. The distal radioulnar joint has a firm joint capsule that keeps both bones together.
The wrist or carpus/carpal joint is very complex. Numerous ligaments connect the several bones. These ligaments can be grouped into antebrachiocarpal (radiocarpal and ulnocarpal), intercarpal and carpometacarpal ligaments. The metacarpal bones are proximally connected to each other by means of the palmar metacarpal ligaments.
Metacarpophalangeal, proximal interphalangeal and distal interphalangeal joints are the several articulations that can be found in the fingers. The pollex only shows a single interphalangeal joint. Lateral and medial collateral bands connect the phalanges to each other and to the respective metacarpal bones.
The hip joint is formed between the acetabulum of the pelvic bone and the femoral head. The ligament of the femoral head is stretched between these structures. Since the acetabulum is rather shallow compared to the pronounced femoral head, its rim is provided by a cartilaginous labrum (Figure 23). No collateral bands are present.
Ventral view of the right hip joint. 1: acetabulum, 2: caput femoris, 3: labrum acetabulare, 4: incisura acetabuli, 5: ligamentum transversum acetabuli, 6: ligamentum capitis ossis femoris, 7: fovea capitis.
The knee joint is complex. It is composed of the femoropatellar, femorotibial and tibiofibular articulations. The ovoid patella bears a single straight patellar ligament that inserts on the tibial tuberosity. The incongruence between the femoral condyles and the tibial plateau is eliminated by the presence of C-shaped menisci. Both are cranially and caudally attached to the tibia by means of small meniscal ligaments. A cranial or lateral and a caudal or medial cruciate ligament can be observed between the femoral intercondylar fossa and the tibial intercondylar eminence. In addition, a meniscofemoral ligament or false cruciate ligament inserts on the caudal tip of the lateral meniscus. The lateral and medial collateral bands find their origins on the lateral and medial femoral epicondyles, respectively, and insert into the tibial epicondyle and fibular head, respectively (Figure 24).
View on the tibial plateau of the right limb. 1: meniscus medialis, 2: meniscus lateralis, 3: ligamentum meniscofemorale, 4: ligamentum cruciatum craniale, 5: ligamentum cruciatum caudale, 6: corpus adiposum infrapatellare, 7: ligamentum collaterale laterale.
The tarsal joint consists of the articulations between the tibia, the fibula, the several tarsal bones and the metatarsal bones (tarsocrural, proximal intertarsal, distal intertarsal and tarsometatarsal articulations). Numerous long and short ligaments connect the several bones. Long ligaments include the collateral ligaments and the long plantar ligament.
Metatarsophalangeal, proximal interphalangeal and distal interphalangeal joints are the several articulations that can be found in the toes. The hallux only shows a single interphalangeal joint. Lateral and medial collateral bands connect the phalanges to each other and to the respective metatarsal bones.
The superficial muscles that can be observed immediately after skinning the animal are illustrated in Figures 25 and 26, which are ventral, dorsal and left lateral views, respectively. Below, the musculature of the rhesus monkey is briefly described per region with emphasis on the origin and insertion of each muscle. Readers are referred to anatomical atlases [3, 9] for more details.
Superficial musculature. A: Ventral view with 1: m. pectoralis major, 2: m. pectoralis abdominalis, 3: m. latissimus dorsi, 4: m. obliquus externus abdominis, 5: m. rectus abdominis, 6: m. deltoideus, 7: m. biceps brachii caput longum, 8: m. biceps brachii caput breve, 9: m. triceps brachii caput mediale, 10: m. triceps brachii caput longum, 11: m. iliopsoas, 12: m. sartorius, 13: m. pectineus, 14: m. adductor longus, 15: m. gracilis, 16: m. semimembranosus, 17: m. rectus femoris, 18: m. vastus medialis. B: Dorsal view with 1: m. temporal, 2: m. masseter, 3a: m. trapezius pars cervicalis, 3b: m. trapezius pars thoracica, 4: m. latissimus dorsi, 5: fascia thoracodorsalis, 6: m. deltoideus, 7: m. biceps brachii caput longum, 8: m. triceps brachii caput laterale, 9: m. triceps brachii caput longum, 10: m. gluteus superficialis covered by the fascia glutea, 11: m. tensor fasciae latae, 12: Fascia lata, 13: m. biceps femoris, 14: m. gastrocnemius caput laterale.
Left lateral view of the superficial musculature. 1: m. frontalis, 2: m. orbitoauricularis, 3: m. auricularis dorsalis, 4: m. auricularis caudalis, 5: m. platysma, 6: m. masseter, 7a: m. trapezius pars cervicalis, 7b: m. trapezius pars thoracica, 8: m. latissimus dorsi, 9: fascia thoracodorsalis, 10: m. serratus ventralis, 11: m. obliquus externus abdominis, 12: m. obliquus internus abdominis, 13: m. pectoralis abdominalis, 14: Lamina externa vaginae m. recti abdominis, 15a: m. acromiodeltoideus, 15b: m. spinodeltoideus, 16a: m. triceps brachii caput laterale, 16b: m. triceps brachii caput longum, 16c: m. triceps brachii caput mediale, 17: m. biceps brachii, 18: fascia thoracolumbalis, 19: m. tensor fasciae latae, 20: m. gluteus superficialis, 21: fascia lata, 22: m. biceps femoris, 23: m. semitendinosus, 24: m. semimembranosus, 25: m. gastrocnemius caput laterale.
The facial muscles play a pivotal role in the facial expression and therefore the communication between animals [10, 11].
M. platysma: This very thin superficial muscle overlies the neck region and inserts into the m. caninus, m. orbicularis oris, m. depressor anguli oris, m. depressor labii inferioris and m. mentalis (Figure 26).
M. occipitalis: This cutaneous muscle lies superficial to the platysma muscle.
M. frontalis: This broad, thin muscle covers the forehead and inserts into the m. orbicularis oculi (Figure 26).
M. auricularis caudalis: This muscle finds its origin in the dorsal cervical region, medial to the occipital muscle. It bifurcates to insert bilaterally at the caudal aspect of the external acoustic meatus (Figure 26).
M. auricularis dorsalis: This muscle is wider and thinner than the former. It lies between the ears and inserts at the dorsal aspect of the external acoustic meatus (Figure 26).
M. orbitoauricularis: This inconsistent muscle runs from the lateral orbital angle to the rostral aspect of the external acoustic meatus (Figure 26).
M. orbicularis oculi: This muscle surrounds the orbit as a sphincter.
M. zygomaticus: The origin of this band-shaped muscle is the zygomatic arch, whereas the insertion is the lateral angle of the mouth.
M. levator labii superioris: It runs from the nasal and maxillary bones to the dorsal fibers of the orbicularis oris muscle.
M. levator labii alaeque nasi: This muscle lies medial to the former and presents fibers that insert into the nasal wings.
M. depressor anguli oris: This triangular muscle has insertions into the zygomatic and orbicularis oris muscles.
M. caninus: This muscle lies deep to the former. It can be found at the angles of the mouth that cover the canines.
M. orbicularis oris: This muscle surrounds the mouth opening as a sphincter.
M. depressor labii inferioris: This muscle that lies ventromedial to the depressor anguli oris muscle runs between the ventral aspect of the orbicularis oris muscle and the skin of the chin.
M. mentalis. This muscle covers the chin. It has insertions into the ventral aspect of the orbicularis oris muscle.
The muscles of mastification were studied after the facial musculature was removed.
M. masseter: The masseter originates from the zygomatic arch. It consists of a larger superficial and a smaller deep part that both insert into the mandible (Figures 25B, 26, and 27).
M. temporalis: This muscle fills the temporal fossa. Its fibers converge on the coronoid process of the mandible (Figures 26 and 27).
M. buccinator: The buccinator is a deep muscle that originates from the rostral part of the zygomatic arch and the maxilla. It is inserted into the mandible (Figure 27)
M. pterygoideus: The larger internal part arises from the pterygoid fossa and inserts into the mandibular angle. The smaller external part originates laterally on the pterygoid bone and inserts into the mandible at the level of the mandibular joint (Figure 27).
M. digastricus: The rostral and caudal bellies are separated by an intermediate tendon. The caudal belly attaches to the mastoid process while the rostral belly inserts into the rostroventral border of the mandible (Figure 27).
Ventrolateral view of the masticatory muscles and musculature of the ventral cervical region and tongue. 1a: m. masseter pars superficialis, 1b: m. masseter pars profunda, 2: m. temporalis, 3: m. buccinator, 4: m. pterygoideus, 5: m. digastricus venter caudalis, 6: m. sternomastoideus, 7: m. cleidomastoideus, 8: m. cleidooccipitalis, 9: m. levator scapulae cranialis, 10: m. trapezius pars cervicalis, 11: m. sternohyoideus, 12: m. sternothyroideus, 13: m. longus capitis, 14: m. longus colli, 15: m. mylohyoideus, 16: m. hyoglossus, 17: m. thyrohyoideus.
M. sternocleidomastoideus:\t\t
The lateral portion is the m. cleidooccipitalis that arises from the clavicle and inserts into the nuchal line of the skull (Figure 27).
The medial portion is the m. sternomastoideus that runs from the manubrium of the sternum to the mastoid process of the skull (Figure 27).
In between both muscles, the m. cleidomastoideus can be seen. It runs from the medial side of the clavicle to the mastoid process (Figure 27).
M. omohyoideus: This fusiform muscle originates from the cranial border of the scapula and inserts into the lateral aspect of the hyoid bone. It runs medial to the sternocleidomastoid muscle and lateral to the common carotid artery and vagosympathetic trunk.
M. sternohyoideus: This muscle finds its origin on the craniodorsal aspect of the manubrium sterni and inserts into the medial aspect of the hyoid bone. As a result, it covers the trachea in the ventral midline together with its contralateral counterpart (Figure 27).
M. sternothyroideus: This muscle has the same origin as the former but inserts into the thyroid cartilage. It lies medial to the common carotid artery and vagosympathetic trunk, and ventral to the trachea (Figure 27).
M. longus capitis: Both the major part (m. longus capitis major) and the minor part (m. longus capitis minor) insert into the basiocciput. The former arises from the ventral sides of the bodies of the 4th to 6th cervical vertebrae, while the latter has the atlas as its origo (Figure 27).
M. longus colli: This muscle lies deep against the ventral sides of all cervical and the first four thoracic vertebrae, dorsal to the trachea. The short muscle fibers interconnect the subsequent vertebrae (Figure 27).
M. mylohyoideus: This muscle originates from the medial surface of the mandibular body along its entire length and inserts into the median raphe of the tongue where it meets its counterpart (Figure 27).
M. hyoglossus: The hyoid bone is the origin of this muscle that inserts into the tongue (Figure 27).
M. thyrohyoideus: This muscle has its origin on the thyroid cartilage and inserts into the hyoid bone.
M. geniohyoideus: This muscle originates from the mandible at the caudal edge of the symphysis and travels caudally towards the hyoid bone.
M. splenius: This muscle is reduced in the rhesus monkey. It originates dorsally on the first three thoracic vertebrae and runs cranially towards the occiput.
M. complexus: This muscle arises from the transverse processes of the 3rd to 5th thoracic vertebrae and is inserted into the occipital bone below the nuchal crest near the median plane (Figure 28).
M. rectus capitis: The major part (m. rectus capitis major) and minor part (m. rectus capitis minor) arise from the crest of the axis and dorsal tubercle of the atlas, respectively. Both insert into the occipital bone (Figure 28).
M. obliquus capitis: The cranial part (m. obliquus capitis cranialis) runs from the wing of the atlas to the occiput. The caudal part (m. obliquus capitis cranialis) arises from the crest of the axis and inserts into the wing of the atlas.
M. trachelomastoideus: This muscle arises from the 2nd to 4th thoracic vertebrae and is inserted into the occipital bone and the mastoid process.
M. scalenus:\t\t
M. scalenus dorsalis (m. scalenus brevis posterior): The origin is laterocaudal to the ventral scalenus muscle. The insertion is into the transverse processes of all cervical vertebrae.
M. scalenus medius (m. scalenus longus): The origin is on the 3rd to 5th rib. The insertion is on the transverse process of the 4th cervical vertebra (Figure 30).
M. scalenus ventralis (m. scalenus brevis anterior): The origo can be found craniomedially on the first rib. The insertion is the transverse processes of the 3rd to 5th cervical vertebrae.
Musculature of the dorsal thoracocervical region. A: Superficial layer at the left and deeper layer at the right, B: Superficial layer at the left and deeper layer at the right after removal of the right front limb. 1a: m. trapezius pars cervicalis, 1b: m. trapezius pars thoracica, 2: m. latissimus dorsi, 3: fascia thoracodorsalis, 4: m. rectus capitis, 5: m. complexus, 6: m. splenius, 7a: m. rhomboideus cervicis, 7b: m. rhomboideus thoracis, 8: m. supraspinatus, 9: m. infraspinatus, 10: m. teres major, 11: m. spinalis, 12: m. longissimus dorsi, 13: m. iliocostalis, 14: m. serratus ventralis, 15: m. obliquus externus abdominis, 16: m. serratus dorsalis.
M. erector spinae:\t\t
M. iliocostalis: This long muscle originates from the wing of the ilium and inserts into the transverse processes of the lumbar vertebrae, the ribs and transverse processes of the last two cervical vertebrae. As such, a lumbar and thoracic part can be discerned (Figures 28 and 29).
M. longissimus dorsi: This long, cylindrical muscle that is covered by the thoracodorsal fascia lies medial to the former muscle and runs from the ilium to the mastoid process. Insertions can be found into the lumbar, thoracic and cervical vertebrae and the ribs (pars lumbalis, thoracis, cervicis and capitis) (Figure 28).
M. spinalis: This is the deepest muscle of this group. The origins and insertions are the spinal processes (Figures 28 and 29).
M. transversospinalis:
M. semispinalis (capitis) = m. complexus: This muscle was described earlier with the muscles of the dorsal and lateral cervical region (Figure 28).
Mm. multifidi et rotatores: These muscles lie very deep against the vertebrae. With their origins and insertions on the transverse processes and into the spinal processes, they can rotate the vertebral column.
M. serratus dorsalis cranialis: The cervicothoracic fascia offers the aponeurotic origin of this muscle that inserts into the 2nd to 5th ribs. The muscle fibers run in craniodorsal direction.
M. serratus dorsalis caudalis: The lumbosacral fascia offers the aponeurotic origin of this muscle that inserts into the caudal ribs. The muscle fibers run in caudodorsal direction.
Left lateral view of the abdominal muscles. A: Superficial musculature with 1: m. latissimus dorsi, 2: fascia thoracodorsalis, 3: m. serratus ventralis, 4: m. obliquus externus abdominis, 5: m. obliquus internus abdominis, 6: m. pectoralis abdominalis, 7: lamina externa vaginae m. recti abdominis. B. Deep musculature with 1: m. intercostalis externus, 2: m. transversus abdominis, 3: m. rectus abdominis, 4: fascia transversalis, 5: m. psoas minor, 6: m. psoas major, 7: m. quadratus lumborum, 8a: m. iliocostalis lumborum, 8b: m. iliocostalis thoracis 9a: m. longissimus lumborum, 9b: m. longissimus thoracis.
The tail of the rhesus monkey is nonprehensile. The muscles found on the dorsal aspect of the caudal vertebrae are the mm. interspinales caudae, the m. extensor caudae medialis, the m. extensor caudae lateralis, the m. abductor caudae medialis/internus and the m. abductor caudae lateralis/externus. The ventral muscles of the tail comprise the m. flexor caudae brevis, m. flexor caudae longus and the mm. intertransversarii caudae.
M. obliquus abdominis externus: The muscle has tendinous origins on the 4th to the 12th rib, where it interdigitates with the serratus ventralis muscle. In addition, muscle fibers originate dorsally from the lumbodorsal fascia in the lumbar region. The fibers run caudoventrally towards the linea alba onto which it attaches by means of an aponeurosis (Figures 29, 36, and 37).
M. obliquus abdominis internus: The fibers of this muscle that lies beneath the former originate from the thoracolumbar fascia and the iliac spine. The fibers run in cranioventral direction to become tendinous (aponeurosis) at the level of the straight abdominal muscle. The aponeurosis blends with that of the external oblique abdominal muscle and forms the external sheath of the straight abdominal muscle (Figures 29 and 36). In the male, the cremaster muscle branches off the internal oblique abdominal muscle (Figure 37).
M. transversus abdominis: This muscle arises from the costal arch, the lumbodorsal fascia and the iliac crest. The fibers run in dorsoventral direction to insert into the linea alba by means of an aponeurosis that forms the internal sheath of the straight abdominal muscle (Figure 29).
M. rectus abdominis: This muscle lies between the fused aponeurosis of the external and internal oblique abdominal muscles on the one hand and the aponeurosis of the transverse abdominal muscle. The muscle runs from the sternum to the pubis and presents several tendinous intersections (Figures 29 and 36).
Pectoral muscles:\t\t
M. pectoralis superficialis (m. pectoralis major):
Pars sternocapsularis: The sternoclavicular joint and the manubrium is the origo while the insertion is the intertubercular groove of the humerus (Figure 30).
Pars sternalis: This part has the same insertion site as the former but finds it origin along the entire length of the sternum (Figure 30).
Pars abdominalis: The origin is the xiphoid process and the cranial aspect of the external sheath of the straight abdominal muscle. The muscle inserts deep to the sternal part into the humerus (Figure 30).
M. pectoralis minor (m. pectoralis profundus): This pectoral muscle lies deep to the superficial pectoral muscle. It has origin on the cartilages of the 2nd to 6th ribs and is inserted into the greater tuberosity of the humerus (Figure 30).
M. subclavius: This small fusiform muscle arises from the 1st costal cartilage and is inserted into the clavicle (Figure 30).
M. trapezius: Both the cervical and thoracic parts arise from the scapular spine. The occiput and 10th thoracic vertebra are reached cranially, resp. caudally by this muscle that meets its counterpart in the dorsal midline (Figures 25, 26, and 28).
M. rhomboideus: The cervical part (m. rhomboideus cervicis = m. levator anguli scapulae) and thoracic part (m. rhomboideus thoracis) arise from the dorsal border of the scapula and insert into the occiput and nuchal ligament, and the first 6 thoracic vertebrae, respectively (Figure 28).
M. serratus ventralis: Muscle strands have attachments on the last four cervical vertebrae (m. serratus ventralis cervicis = m. levator scapulae) and first nine ribs (m. serratus ventralis thoracis) and inserts medially on the scapula (Figures 26, and 28–30).
M. latissimus dorsi: This muscle originates by means of an aponeurosis at the dorsal midline at the level of the 6th to 12th thoracic vertebrae and the lumbodorsal fascia. The insertion site is twofold, i.e. at the teres major tendon and into the bicipital groove (Figures 25, 26, and 28
Lateral views of the pectoral muscles. A: superficial layer, B: deeper layer, C: deepest layer. 1a: m. pectoralis superficialis pars sternocapsularis, 1b: m. pectoralis superficialis pars sternalis, 1c: m. pectoral superficialis pars abdominalis, 2: m. obliquus externus abdominis, 3: m. serratus ventralis, 4: m. serratus dorsalis, 5: m. subscapularis, 6: m. teres major, 7: m. latissimus dorsi, 8: m. pectoral profundus, 9: m. biceps brachii, 10: m. subclavius, 11: m. sternocostalis, 12: m. scalenus medius, 13a: m. cleidodeltoideus, 13b: m. acromiodeltoideus, 13c: m. spinodeltoideus, 14: m. latissimus dorsi.
M. supraspinatus: This muscle fills the supraspinous fossa and has insertion into the greater humeral tubercle (Figure 31).
M. infraspinatus: The origin is the infraspinous fossa. The muscle is covered by the spinodeltoid muscle. Its tendon inserts into the greater tubercle of the humerus, in between the tendons of the supraspinous and teres minor muscles (Figure 31).
M. deltoideus: The insertion is the deltoid tuberosity on the humerus. The origin is either the clavicle (M. cleidodeltoideus (M. deltoideus anterior)), the acromion (M. acromiodeltoideus (M. deltoideus medius)) or the scapular spine (M. spinodeltoideus (M. deltoideus posterior)) (Figure 30).
M. teres minor: This muscle has origin at the caudodistal margin of the shoulder blade and the caudal aspect of the infraspinatus muscle. It inserts into the greater tubercle of the humerus, just caudal to the insertion of the aforementioned muscle (Figure 31).
M. teres major: This muscle originates at the ventral angle and caudal border of the scapula and inserts medially into the humeral shaft in its proximal third (Figure 31).
M. subscapularis: The origin and insertion of this muscle are the subscapular fossa and the lesser tubercle of the humerus, respectively (Figure 31).
Musculature of the left shoulder. A: lateral view, B: medial view. 1: m. supraspinatus, 2: m. infraspinatus, 3: m. teres minor, 4: m. teres major, 5: m. triceps brachii caput longum, 6: m. triceps brachii caput laterale, 7: m. brachialis, 8: m. subscapularis, 9: m. latissimus dorsi, 10a: m. biceps brachii caput longum, 10b: m. biceps brachii caput breve, 11: m. coracobrachialis, 12: m. triceps brachii caput mediale, 13: m. triceps brachii caput laterale.
M. triceps brachii: The triceps muscle inserts into the olecranon of the ulna. Its long head (caput longum), lateral head (caput laterale) and medial head (caput mediale) originate from the caudal border of the scapula, the greater tuberosity of the humerus, and the proximo-medial side of the humeral shaft, respectively (Figures 25, 26, and 31).
M. anconeus (lateralis): This small muscle arises distally on the humeral shaft and inserts proximally on the ulna.
M. dorsoepitrochlearis: arises from the lower margin of the latissimus dorsi muscle and attaches to the antebrachial fascia and medial epicondyle of the humerus.
M. biceps brachii: The long head (caput longum) and short head (caput breve) run from the supraglenoid tubercle and coracoid process of the shoulder blade, respectively to the radial tuberosity of the radius (Figures 25, 26, 30, and 31).
M. coracobrachialis: Both the deep part (m. coracobrachialis profundus) and middle part (m. coracobrachialis medius) arise from the coracoid process on the shoulder blade. The former part inserts into the humeral neck, while the latter part attaches more distally at the medial side of the humeral shaft (Figure 31).
M. brachialis: The lateroproximal aspect of the humerus is the site of origin of this muscle, that follows the brachial sulcus of the humerus to insert into the medial coronoid process of the ulna (Figure 31).
M. extensor carpi radialis (longus et brevis): The lateral epicondylar crest of the humerus forms the origin of this muscle. The insertion is into the base of the 2nd metacarpal bone (long part) and 3rd metacarpal bone (short part) (Figures 32–34).
M. extensor carpi ulnaris: This muscle arises from the lateral epicondyle of the humerus and is inserted into the base of the 5th metacarpal bone (Figures 32 and 34).
M. extensor digitorum communis: This muscle arises from the lateral epicondyle of the humerus and inserts by means of four tendons into the distal phalanges of digits II to V (Figures 32 and 34).
M. extensor digiti:\t\t
primi longus (m. extensor pollicis longus): The origin is craniolaterally on the proximal half of the ulna and inserts into the distal phalanx of the pollex (Figure 34).
secundi (m. extensor indicis) et tertii: This muscle arises distal to the former muscle. At the level of the carpus, the tendon splits into two tendons, one to the proximal phalanx of the 2nd digit and one for the 3rd digit (Figures 32 and 34).
quarti: From the lateral humeral epicondyle to proximal phalanx of the 4th digit (Figures 32 and 34).
quinti: From the lateral humeral epicondyle to the middle phalanx of the 5th digit (Figures 32 and 34).
Lateral view of the musculature of the left forearm. A: superficial layer with 1: brachioradialis muscle, 2a: long part of extensor carpi radialis muscle, 2b: short part of extensor carpi radialis muscle, 3: extensor digitorum communis muscle, 4: extensor digitorum quarti et quinti muscle, 5: extensor carpi ulnaris muscle, 6: abductor digiti primi longus muscle. B: deep layer with 6: abductor digiti primi longus muscle, 7: extensor digitorum secundi et tertii muscle, 8: supinator muscle.
Medial view of the musculature of the left forearm. A: Superficial layer with 1: m. flexor carpi ulnaris, 2: m. palmaris longus, 3: m. flexor carpi radialis, 4: m. flexor digitorum profundus, 5: m. pronator teres, 6: m. extensor carpi radialis longus, 7: m. brachioradialis. B: Deep layer with 4: m. flexor digitorum profundus, 6: m. extensor carpi radialis longus, 6′: m. extensor carpi radialis brevis, 7: m. brachioradialis, 8: m. flexor digitorum superficialis.
Dorsal view of the musculature of the left hand. 1: m. extensor digitorum communis, 2: m. abductor digiti primi longus, 3: m. brachioradialis, 4: m. extensor carpi radialis longus, 5: m. extensor carpi radialis brevis, 6: m. extensor carpi ulnaris, 7: m. extensor digiti primi (pollicis) longus, 8: m. extensor digiti secundi, 9: m. extensor digiti tertii, 10: m. extensor digiti quarti, 11: m. extensor digiti quinti, 12: m. adductor digiti primi, 13: m. interosseous, 14: ligamentum carpi dorsale.
M. flexor carpi radialis: This muscle arises from the medial humeral condyle and inserts into the base of the 2nd metacarpal bone (Figures 33 and 35).
M. flexor carpi ulnaris: This muscle also arises from the medial humeral epicondyle. It attaches to the pisiform carpal bone (Figures 33 and 35).
M. palmaris longus: This muscle is situated in between the two aforementioned muscles. It also originates at the medial humeral epicondyle. It presents a distal aponeurosis (aponeurosis palmaris) which lies superficially at the palmar side of the hand (Figures 33 and 35).
M. brachioradialis: This muscle runs from the lateral humeral epicondyle to the distal aspect of the radius (Figures 32–35).
M. flexor digitorum superficialis (m. flexor digitorum sublimis): This very thin muscle originates on the medial epicondyle of the humerus. Its four tendons insert on the base of the 2nd phalanx of digits I to IV (Figures 33 and 35).
M. flexor digitorum profundus: This muscle arises from the proximal half of the ulna (caput ulnare) and the upper two-thirds of the radius (caput radiale). Five tendons arise, which are inserted into the palmar sides of the terminal phalanges of all five digits (Figures 33 and 35).
M. epitrochleoanconeus: This short muscle runs from the medial humeral epicondyle to the olecranon.
Palmar view of the musculature of the left hand. A: superficial layer, B: deeper layer, C: deepest layer. 1: m. flexor carpi ulnaris, 2: m. flexor carpi radialis, 3: m. palmaris longus with cut aponeurosis, 4: m. flexor digitorum superficialis, 5: m. brachioradialis, 6: m. abductor digiti primi brevis, 7: m. flexor digiti primi brevis superficialis, 8: m. flexor digiti primi brevis profundus, 9: m. adductor digiti primi, 10: m. flexor digiti quinti brevis, 11: m. abductor digiti quinti, 12: m. palmaris brevis, 13: mm. lumbricales, 14: ligamentum carpi palmare, 15: m. flexor digitorum profundus with 15a: caput radiale and 15b: caput ulnare, 16: m. opponens digiti quinti, 17: mm. contrahentes digitorum manus.
M. pronator teres: This pronator muscle of the forearm originates on the medial humeral epicondyle. It runs obliquely towards the middle third of the radius (Figure 33).
M. pronator quadratus: This rectangular muscle can be found at the medial side of the forearm, running from the proximal ulna to the distal radius.
M. supinator: The supinator of the forearm originates on the lateral humeral epicondyle. It runs obliquely towards the proximal half of the radius.
M. palmaris brevis: This short muscle, that lies directly subcutaneously, arises from the palmar aponeurosis and is inserted into the subcutis (Figure 35).
M. abductor digiti primi (pollicis) longus: This muscle has origin at the proximolateral aspect of the ulna and the cranial side of the radius. It attaches to the proximal end of the metacarpal bone of the pollex (Figures 32 and 34).
M. abductor digiti primi (pollicis) brevis: This muscle arises medially from the transverse carpal ligament. It is inserted into the base of the proximal phalanx of the pollex (Figure 35).
M. flexor digiti primi (pollicis) brevis: This muscle lies just lateral to the former. It also starts on the transverse carpal ligament and is inserted into the base of the proximal phalanx of the pollex (Figure 35).
M. adductor digiti primi (pollicis): This muscle runs from the 2nd and 3rd metacarpal bones towards the proximal phalanx of the pollex. The proximal and distal parts of this muscle cannot be discerned (Figures 34 and 35).
M. opponens digiti primi (pollicis): This muscle lies below the short abductor of the thumb. It runs from the transverse carpal ligament to the 1st metacarpal bone.
M. abductor digiti quinti: This muscle has origin on the transverse carpal ligament and the most lateral carpal bones. Insertion is into the proximal phalanx of the 5th digit (Figure 35).
M. flexor digiti quinti brevis: This muscle runs somewhat more medial and superficial compared to the former. The insertion site is the same (Figure 35).
M. opponens digiti quinti: This muscle lies deep compared to the abductor and flexor of the 5th digit. It insert along the entire length of the 5th metacarpal bone (Figure 35).
Mm. lumbricales manus: These muscles, which are 4 in number, are very well developed. They arise from the medial side of the deep flexor tendons to digits II – V. They are inserted into the base of the proximal phalanx and the metacarpophalangeal joints (Figure 35).
Mm. contrahentes digitorum manus: Origins are the proximal epiphyses of the 2nd and 3rd metacarpal bones. Insertion is into the proximal phalanges of the 2nd, 4th and 5th digits (Figure 35).
Mm. interossei manus: These muscles form pairs of muscles that are present in each intermetacarpal cleft. They attach to the sides of the metacarpophalangeal joints (Figure 34).
M. gluteus superficialis (m. gluteus maximus): The superficial gluteus muscle arises from the lumbar fascia and the first three caudal vertebrae. The tendon is inserted into fascia lata and the greater trochanter of the femur (Figures 25, 26 and 36).
M. gluteus medius: This deeper part of the gluteus musculature arises from the lateral surface of the wing of the ilium, the sacro-iliac joint and the first caudal vertebra. The large muscle is inserted into the greater trochanter of the femur (Figures 26 and 36).
M. gluteus profundus (m. gluteus minimus): This deepest gluteus muscle has its origin on the dorsal aspect of the ilium and inserts into the greater trochanter of the femur.
Lateral view of the left thigh musculature. 1: m. gluteus superficialis, 2: m. gluteus medius, 3: m. tensor fasciae latae, 4: fascia lata, 5: m. biceps femoris, 6: m. semitendinosus, 7: m. semimembranosus, 8: callositas ischii, 9: m. gastrocnemius caput laterale, 10: m. obliquus externus abdominis, 11: m. obliquus internus abdominis, 12: m. rectus abdominis.
M. psoas major: The psoas major muscle arises from the ventral sides of the lumbar vertebrae. The muscle is inserted into the lesser trochanter of the femur (Figure 29).
M. psoas minor: This psoas muscle lies ventromedial to the former. It originates from the ventral sides of the first four lumbar vertebrae and is inserted cranially on the pubic bone (tuberculum m. psoas minoris) (Figure 29).
M. iliacus: The origin of this muscle is the medial aspect of the ilium. It first runs lateral to the psoas major and finally joins it to form the m. iliopsoas (Figure 37). This muscle has insertion into the lesser trochanter of the femur (Figure 29).
M. quadratus lumborum: This muscle finds it origin on the crest and wing of the ilium. This thin quadrilateral muscle is inserted into the last rib and transverse processes of the lumbar vertebrae (Figure 29).
Medial view of the left thigh musculature. 1: m. sartorius, 2: m. gracilis, 3: m. pectineus, 4: m. adductor, 5: m. rectus femoris, 6: m. vastus intermedius, 7: m. vastus medialis, 8: m. semimembranosus, 9: m. iliopsoas, 10: m. cremaster, 11: m. obliquus externus abdominis.
M. sartorius: This long, slender muscle arises from the cranioventral spine of the ilium. It inserts into the medial side of the proximal third of the tibia (Figures 25, 37, and 39).
M. gracilis: This broad muscle starts from the pelvic symphysis and attaches to the craniomedial aspect of the proximal third of the tibia (Figures 25, 37, and 39).
M. pectineus: This short, fusiform muscle runs from the pecten pubis to the medioproximal aspect of the femur (Figures 25 and 37).
M. adductor (Figure 37):\t\t
longus: The origin of the long adductor muscle is the pelvic symphysis. It lies lateral (deep) to the gracilis muscle and inserts medially, halfway the femur (Figure 25).
magnus: This muscle is composed of two parts that individually attach to the proximocaudal part of the femoral diaphysis. Their origins are the pelvic symphysis and tuber sciatic tuberosity, respectively.
brevis: The small adductor muscle starts just ventral to the foramen obturatum and attaches to the medioproximal aspect of the femur.
M. obturatorius externus: This muscle arises from the obturator membrane and the bone surrounding the obturator foramen, at its dorsal side. The tendon is inserted into the intertrochanteric fossa.
M. obturatorius internus: This muscle also arises from the obturator membrane and the bone surrounding the obturator foramen, albeit at its ventral side. The insertion is at the medial side of the greater trochanter of the femur.
Mm. gemelli: The gemelli originate from the ischium. Their tendons are inserted into the tendon of the m. obturatorius internus.
M. quadratus femoris: This muscle runs from the sciatic tuberosity to the lesser femoral trochanter.
M. quadriceps: Intramuscular injections can be administered in this muscle that consists of four parts. All insert into the basis of the patella.\t\t
M. rectus femoris: The origin is just dorsal to the acetabulum (Figures 25 and 37).
M. vastus lateralis: This part of the quadriceps muscle arises from the greater trochanter of the femur.
M. vastus medialis: This muscle arises from lesser trochanter of the femur (Figure 37).
M. vastus intermedius (formerly described as the m. crureus): This deep muscle arises from the proximal three-fourths of the shaft of the femur (Figure 37).
M. tensor fasciae latae: The origin of this muscle is the ilium and the fascia overlying the gluteus medius muscle. The muscle is inserted into the fascia lata (Figures 25, 26, and 36).
M. biceps femoris: The biceps femoris muscle arises from the ischial tuberosity. The muscle forms a thin aponeurosis that is inserted into the fascia cruris (Figures 25, 26, and 36). This muscle can be used to administer intramuscular injections.
M. semitendinosus: This muscle also arises from the sciatic tuberosity, just caudal to the biceps femoris muscle. The tendon lies superficial to the semimembranosus muscle and attaches to the medial surface of the tibial shaft, deep to the tendon of the gracilis muscle (Figures 26, 36, and 38).
M. semimembranosus: The semimembranosus muscle consists of the smaller and more lateral semimembranosus proprius muscle and larger and more medial semimembranosus accessories muscle. The origins of both is caudal on the sciatic tuberosity. The semimembranosus proprius muscle is inserted medially on the tibial tuberosity, while the accessory semimembranosus muscle is broadly inserted more proximally, at the level of the medial femoral condyle (Figures 25, 26, 36, 37, and 39).
M. popliteus: This muscle is the only intrinsic flexor muscle of the knee. The fan-shaped muscle is located at the caudal side of the proximal tibial shaft. Its tendon inserts into the popliteal fossa of the femur (Figure 39).
Lateral view of the lower leg musculature (left hind limb). A: superficial layer, B: deeper layer, C: deepest layer. 1: m. biceps femoris, 2: m. semitendinosus, 3: m. gastrocnemius caput laterale, 4: m. tibialis cranialis, 5: m. extensor digitorum longus, 6: m. fibularis longus, 7: m. fibularis brevis, 8: m. tibialis caudalis, 9: m. plantaris, 10: m. soleus, 11: m. extensor digiti primi (hallucis) longus.
Medial view of the lower leg musculature (left hind limb). A: superficial layer, B: deeper layer, C: deep layer, D: deepest layer. 1: m. sartorius, 2: m. gracilis, 3a: m. gastrocnemius caput mediale, 3b: m. gastrocnemius caput laterale, 4: m. soleus, 5: m. plantaris, 6: m. flexor digitorum tibialis, 7: m. tibialis cranialis, 8: m. popliteus, 9a: m. semimembranosus accessorius, 9b: m. semimembranosus proprius, 10: m. tibialis caudalis.
M. tibialis cranialis: This muscle arises from the lateral condyle of the tibia and from the upper two-thirds of its shaft. Two bellies can be observed. The medial tendon attaches to the 1st tarsal bone, whereas the lateral tendon is inserted into the head of the 1st metatarsal bone (Figures 38–40).
M. extensor digitorum longus: The origins of this muscle are the lateral condyle of the tibia, and the fibular head. Three tendons arise at the level of the foot that are inserted into the middle and distal phalanges of the 2nd to 5th digits (Figures 38 and 40).
M. extensor digiti primi (hallucis) longus: This very thin muscle that lies deep to the former muscle obtains its origin from the medial side of the fibular diaphysis. The tendon is inserted into the terminal phalanx of the hallux (Figures 38 and 40).
M. fibularis longus: This muscle has its origin on the fibula and proximal epiphysis of the fibula. The tendon crosses the lateral malleolus and inserts into the plantar side of the 1st metatarsal bone, thus crossing the plantar side of the foot (Figure 38).
M. fibularis brevis: This muscle arises from the lower two-thirds of the shaft of the fibula. Insertion is into the metatarsal bone of the 5th digit (Figure 38).
M. fibularis digiti quinti: This muscle present a similar topography as the former muscle, but inserts into the distal phalanx of the 5th digit.
Dorsal view of the musculature of the left foot. A: superficial layer, B: deep layer. 1: retinaculum proximalis, 2: retinaculum distalis, 3: m. tibialis cranialis (two bellies), 4: m. extensor digitorum longus, 5: m. extensor digiti primi (hallucis) longus, 6: m. adductor digiti primi (hallucis), 7:m. extensor digitorum et digiti primi (hallucis) brevis, 8: m. abductor digiti quinti, 9: mm. interossei.
M. gastrocnemius: The lateral and medial heads of the gastrocnemius muscle arise from the lateral and medial epicondyle of the femur, respectively. A sesamoid bone is present in each tendon of origin (ossa sesamoidea m. gastrocnemii or fabellae). The tendo Achilles attaches to the tuber calcanei (Figures 25, 26, 36, 38, and 39).
M. soleus: This thin muscle arises from the head of the fibula. Its tendon fuses with the gastrocnemius muscle (Figures 38 and 39).
M. plantaris: The thin plantaris muscle has its origin on the lateral condyle of the femur. Its thin tendon lies on the medial side of the tendo Achilles and is inserted into the plantar fascia (Figures 38 and 39).
M. flexor digitorum (longus) tibialis (can be considered as the m. flexor digitorum superficialis): This muscle arises halfway from the caudal side of the tibia. The tendon crosses the medial malleolus and splits to attach to the plantar sides of the distal phalanges of digits II to V (Figure 41).
M. flexor digitorum (longus) fibularis (can be considered as the m. flexor digitorum profundus): This muscle lies deep to the former. It arises from the caudomedial aspect of the fibula, the interosseous membrane between the tibia and fibula, and the distal part of the tibia. The tendon travels along the plantar side of the tarsal joint, then splits in three tendons, one for digit I, III and IV (Figure 41).
M. tibialis caudalis: This muscle arises from the caudal side of the tibia. Its tendon crosses the medial malleolus and inserts into the plantar sides of the metatarsal bones of digits II to IV (Figures 38 and 39).
Plantar view of the musculature of the left foot. A: middle layer, B: deep layer. 1: m. quadratus plantae, 2: m. flexor digitorum (longus) tibialis, 3: m. flexor digitorum (longus) fibularis (tendon to digit I), 4: m. abductor digiti primi (hallucis), 5: m. flexor digiti primi (hallucis) brevis, 6: m. adductor digiti primi (hallucis), 7: m. flexor digiti quinti brevis, 8: mm. lumbricales, 9: mm. contrahentes digitorum pedis, 10: mm. interossei.
M. flexor digitorum brevis: The superficial head has its origin on the tuber calcanei. This head forms the short flexor of digit II as it inserts into its middle phalanx. The deep head arises from the flexor digitorum tibialis tendon, at the level of the medial malleolus. The three tendons are inserted into the base of the middle phalanx of digits III to V.
M. abductor digiti primi (hallucis): This muscle starts from the calcaneus and inserts into the plantar side of the proximal phalanx of the hallux (Figure 41).
M. flexor digiti primi (hallucis) brevis: Two heads originate from the plantar side of the tarsus and insert into the proximal phalanx of the hallux (Figure 41).
M. extensor digitorum et digiti primi (hallucis) brevis: This dorsally located muscle starts at the calcaneus and sends four tendons towards distal phalanx of digits I to IV (Figure 40).
M. adductor digiti primi (hallucis): This broad muscle has origin at the metatarsal bones of the 2nd and 3rd digits. The proximal phalanx of the hallux is the insertion site (Figures 40 and 41).
M. abductor digiti quinti: This muscle runs from the tuber calcanei towards the proximal phalanx of the 5th digit (Figure 40).
M. abductor ossis metatarsi quinti: This inconsistently present muscle runs lateral from the former muscle and inserts into the metatarsal bone of the 5th digit.
M. flexor digiti quinti brevis: This muscle has origin at the tendon of the fibularis longus muscle at the level of the metatarsal bone of the 5th digit. It inserts at the proximal phalanx of the 5th digit (Figure 41).
M. quadratus plantae: The origin is on the lateral side of the calcaneus. It splits into several tendons that insert into the tendons of the flexor digitorum longus muscles (Figure 41).
Mm. lumbricales pedis: Four fine muscle strands find their origins deep to the flexor digitorum brevis muscle. They run medial to the metatarsal bones of the 2nd to 5th digits to insert into their proximal phalanges (Figure 41).
Mm. contrahentes digitorum pedis: These muscles have a single aponeurosis in common at the level of the fibularis longus muscle. Three muscular bands originate from here to insert into the proximal phalanges of the 2nd, 4th and 5th digit (Figure 41).
Mm. interossei pedis: These muscles form pairs of muscles that are present in each intermetatarsal cleft. They attach to the sides of the metatarsophalangeal joints (Figures 40 and 41).
The rhesus monkey is omnivorous and mainly feeds on fruit, vegetables, insects and small mammals. Its dentition is very similar to that of humans as it also presents 32 teeth of which two incisors, one canine, two premolars and three molars in each quadrant. The teeth are of the brachydont type, thus with typical crowns and roots. The canines are more pronounced in the male compared to the female rhesus monkey. Furthermore, the premolars and molars are of the bunodont type, thus with typical cusps. The number of roots is one for the incisors and the canines, two for the premolars and molars of the mandible, and three for the premolars and molars of the maxilla (Figures 42 and 43).
Ventral view of the upper jaw (A) and dorsal view of the lower jaw (B) with the teeth unilaterally present. I1: dens incisivus primus, I2: dens incisivus secundus, C: dens caninus, P2: dens premolaris secundus, P3: dens premolaris tertius, M1: dens molaris primus, M2: dens molaris secundus, M3: dens molaris tertius.
Dentition of the rhesus monkey. Upper panel: teeth of the right upper jaw after extraction. Lower panel: teeth of the right lower jaw after extraction. Notice the clear distinction between the crowns and roots, and the number of roots.
It is worthwhile to mention that the rhesus monkey possesses a pair of cheek pouches [12]. The tongue plays a pivotal role in digestion and vocalization. The muscles that are responsible for the lingual movements are discussed in section 5.4. The dorsal mucosa of the tongue presents several types of papillae. Gustatory papillae include the fungiform, circumvallate and foliate papillae. The filiform papillae are of the mechanical type (Figure 44).
Dorsal view of the tongue. 1: papillae fungiformes, 2: papillae circumvallatae, 3: papillae foliatae, 4: papillae filiformes.
After a ventral midline incision through the abdominal wall has been made, the greater omentum (omentum majus) that covers the majority of abdominal organs can be observed (Figure 45A). It consists of the parietal and visceral sheets that enclose the virtual omental bursa. The parietal sheet is attached to the greater curvature of the stomach, while the visceral sheet is attached to the dorsal abdominal wall. The abdominal organs can only be observed after retraction or excision of the greater omentum (Figure 45B).
Ventral view of the abdominal cavity after a ventral midline incision was performed. A: The omentum majus is still present with 1: urinary bladder, 2: parietal sheeth of the omentum majus. B: The omentum majus is excised with 1: diaphragm, 2: lobus hepatis dexter lateralis, 3: lobus hepatis dexter medialis, 4: lobus hepatis sinister medialis, 5: ligamentum falciforme, 6: curvatura major of the stomach, 7: cecum, 8: colon transversum, 9: colon descendens, 10: mesocolon, 11: jejunum.
The esophagus presents a cervical, thoracic and abdominal segment. The cervical segment lies at the left side of the trachea. It bends to the right side of the body when reaching the thorax and deviates to the left side again to perforate the diaphragm (hiatus oesophageus). Its muscular layer is composed of an outer layer of longitudinally orientated fibers and an inner layer of circular fibers that enable peristalsis. The abdominal segment contains smooth muscle cells, while the other two segments present striated muscle fibers. The esophagus finally enters the stomach a few centimeters caudal to the diaphragm. Here, the cardiac sphincter is located. Relaxation of this sphincter and antiperistalsis in the esophagus allow for vomiting.
The stomach (Figure 46) consists of the fundus, the body, the pyloric canal and the pyloric antrum. The fundus is large and extends cranially left to the esophagus. The corpus is continuous with the esophagus and cannot be delineated from the fundus by any anatomical landmark. The pyloric antrum is continuous with the corpus. It can be distinguished from the body by its smaller diameter. The narrow short tube that follows is the pyloric canal that ends at the pyloric sphincter.
The reddish spleen is tongue-shaped and lies at the left side of the abdomen. It is connected to the stomach by means of the gastro-splenic ligament (Figure 46). The spleen is, however, a lymphoid organ.
Dorsal view of the stomach with the spleen attached. 1: oesophagus, 2: pars cardiaca, 3: fundus ventriculi, 4: corpus ventriculi, 5: pars pylorica, 6: pars cranialis duodeni, 7: lien.
The isolated intestinal tract of the rhesus monkey is presented in Figure 47. The small intestine measures approximately 175 cm in length and is composed of the duodenum, the jejunum and the ileum. The duodenum presents a long descending part (duodenum pars descendens/duodenum descendens) that is located at the right side of the abdomen, a short transverse part (duodenum pars transversa/duodenum transversum) in which the chyme travels from right to left in the caudal half of the abdominal cavity, and a short ascending part (duodenum pars ascendens/duodenum ascendens) at the left side of the abdomen. The basis of the mesentery lies in the middle of the J-shaped duodenum. The common bile duct (ductus choledochus) and the pancreatic ducts (i.e. ductus pancreaticus and ductus pancreaticus accessorius) enter the descending part of the duodenum at 1/3 of its length. The accessory pancreatic duct enters the duodenum separately on the minor duodenal papilla, whereas the common bile duct and the principal pancreatic duct join to terminate on the major duodenal papilla. Within the mesoduodenum descendens, the tail or lobus dexter of the pancreas is found. This organ measures approximately 12 cm by 2 cm. Its body (corpus pancreatis) and left lobe (lobus sinister pancreatis) lie within visceral sheet of the greater omentum against the stomach and in the mesocolon ascendens (Figure 48). The jejunum presents several loops and continues as the ileum that is anatomically defined as that segment of the small intestine that is attached to the cecum by means of the plica ileocecalis. The ileum finally enters the cecum (ostium ileocecale).
Isolated intestinal tract. 1: oesophagus, 2: stomach, 3: duodenum descendens, 4: duodenum transversum, 5: duodenum ascendens, 6: jejunum, 7: ileum, 8: caecum, 9: colon ascendens, 10: colon transversum, 11: colon descendens, 12: rectum.
Pancreas of the rhesus monkey in situ (A) and ex corpore (B) with 1: corpus ventriculi, 2a: lobus pancreatis sinister, 2b: lobus pancreatic dexter, 3: omentum majus paries profundus, 4: hepar.
The large intestine measures approximately 63 cm in length ans consists of the cecum, colon and rectum. The cecum can be found at the junction between the ileum and colon at the right side of the abdomen (Figure 45B). The cecum (Figure 49) is relatively large, measures 7 cm in length and lacks an appendix. Ventral and dorsal teniae that consist of smooth muscle fibers are present. They give origin to the several sacculations called haustra. The U-shaped colon consists of the ascending part (colon pars ascendens/colon ascendens), the transverse part (colon pars transversa/colon transversum) and the descending part (colon pars descendens/colon descendens). Its total length is approximately 46 cm. It present two teniae that give origin to haustra. The descending colon travels along the left side of the abdomen and passes insensibly into the rectum that is approximately 10 cm long and is defined as that segment of the large intestine that is located within the pelvic cavity.
Isolated cecum. 1: ileum, 2: plica ileocecalis, 3: apex ceci, 4: tenia, 5: corpus ceci, 6: colon ascendens.
The liver lies most cranial in the abdomen (Figure 45B). It measures approximately 15 cm by 10 cm. Its diaphragmatic side is located against the diaphragm while its visceral side faces the viscera, in particular the stomach. The esophagus runs in a fissure between the left and the caudate lobes. The lobulation of the liver is presented in Figure 50. The falciform ligament runs from the umbilicus to the liver, in between the left and right liver lobes towards the diaphragmatic side. This side is attached to the diaphragm by means of the left and right triangular ligaments and the coronary ligament. At the visceral side, the gall bladder is lodged in between the quadrate lobe and the right medial lobe.
Liver. A: visceral side with 1: lobus hepatis dexter lateralis, 2: lobus hepatis dexter medialis, 3: lobus hepatis sinister lateralis, 4: lobus hepatis sinister medialis, 5: processus anonimus, 6: processus papillaris of lobus caudatus, 7: processus caudatus of lobus caudatus, 8: vesica biliaris, 9: lobus quadratus. B: diaphragmatic side with 1 – 4 idem as in A, 5: ligamentum falciforme, 6: ligamentum triangulare dextrum, 7: ligamentum coronarium.
The common bile duct joins the principal pancreatic duct to enter the duodenum on the major duodenal papilla. The portal vein and hepatic artery enter the liver at the porta hepatis. Both vessels join at the level of the sinusoids. The blood within the sinusoidal system flows towards the central veins in the center of the liver lobules. These finally join to form multiple hepatic veins that ultimately drain into the caudal vena cava that runs at the dorsal margin of the liver (Figure 51).
Vascular corrosion cast of the liver, visceral side. 1: a. hepatica, 2: v. portae, 3: ductus choledochus, 4: vesica biliaris, 5: liver sinusoids.
The brownish, bean-shaped kidneys measure approximately 5 cm by 3 cm. The lateral margin is convex while the medial margin is concave (Figure 52B). The cranial pole of the left kidney lies against the left lobe of the pancreas and lies more caudal than the right kidney that makes contact with the caudate lobe of the liver. As a result, this liver lobe presents a renal impression. An adipose capsule surrounds the kidneys that are overlaid with a fibrous capsule (Figure 52A). At the hilus, the renal artery and renal vein enter the kidney, while the ureter leaves the kidney. After a longitudinal section of the kidney has been performed, the red cortex, brown medulla and the pale pelvis can be observed (Figure 52C).
A: Kidney (1) encapsulated by the capsula adiposa (2) and capsula fibrosa (3). B: Left kidney and adrenal gland ex corpore with 1: margo lateralis, 2: margo medialis, 3: hilus renalis, 4: glandula adrenalis, 5: polus cranialis, 6: polus caudalis, 7: ureter. C: Longitudinally sectioned kidney of which the blood vessels are filled with white latex rubber showing the cortex (1), medulla (2) and pelvis renalis (3).
The ureters lead the urine into the urinary bladder. Like the kidneys, they lie retroperitoneally. The abdominal part travels dorsal to the a. and v. ovarica or a. and v. testicularis. The pelvic part is located within the pelvic cavity and crosses the a. and v. iliaca externa ventrally. The intramural part travels obliquely within the wall of the urinary bladder.
The urinary bladder measures approximately 10 cm in length and 7 cm in width when filled with urine. It is attached to the abdominal wall by means of the median ligament (ligamentum vesicae medianum) and the left and right lateral ligaments (ligamenta vesicae lateralia). When the urinary bladder is cut longitudinally from the cervix, over the corpus to the apex, the mucosa can be studied. In the cervix, a left and right ostium ureteris is present on the respective columna ureterica. These distally elongate to form the left and right plica ureterica that distally join at the crista urethralis. As such, the trigonum vesicae is delineated. At the ostium urethrae internum, the urethra finds its origin (Figure 53).
A: Urinary bladder in situ showing the apex vesicae (1), corpus vesicae (2), cervix vesicae (3), ligamentum vesicae laterale dextrum (4), ligamentum vesicae laterale sinistrum (5). B: Opened urinary bladder with indication of the ostia ureteria (1), columnae uretericae (2), plicae uretericae (3), crista urethralis (4).
The female urethra is rather short as it opens ventrally into the vagina. This opening, the ostium urethrae externum, forms the border between the actual vagina and the vestibulum vaginae.
The adrenal glands are located within the adipose capsules of the kidneys, at their cranial poles (Figure 57B). They have a pink color, are lobulated and measure approximately 1 cm in length and a few mm in width (Figure 52B). The pink cortex produces mineralocorticosteroids, glucocorticosteroids and androgens. The brown medulla produces adrenalin and noradrenalin.
The oval-shaped ovaries measure approximately 8 mm in length and 6 mm in width. At the margo mesovaricus, they are attached to the abdominal wall by means of the mesovarium. The margo liber is devoid of any ligaments. The ligamentum suspensorium ovarii connects the ovary with the lateral pelvic wall. The a. and v. ovarica lie within this ligament. The ligamentum ovarii proprium links the ovary to the uterus.
The coiled fallopian tubes or oviducts lie lateral to the ovaries. They are attached to the abdominal wall by means of the mesosalpinx. The tapered infundibulum that lies against the ovary presents fimbriae to collect the ovulated ovum. Fertilization takes place within the wider ampulla. The isthmus is narrower and opens up into the uterus.
The uterus of the rhesus monkey is of the simplex type. The fundus uteri, corpus uteri and isthmus uteri measure approximately 5 mm, 10 mm and 5 mm in length, respectively. The isthmus is in continuation with the canalis cervicis uteri that is the central canal within the cervix. The uterus is connected with the abdominal wall by means of the mesometrium. Together with the mesosalpinx and the mesovarium, it forms the broad uterine ligament. The ligamentum teres uteri attaches to the uterine body and travels through the inguinal canal. Terminal fibers of this ligament disperse into the vulva lips (Figure 54).
A: The female reproductive tract in situ. 1: rectum, 2: ovarium, 3: tuba uterina, 4: isthmus tubae uterinae, 5: fundus uteri, 6: corpus uteri, 7: isthmus uteri, 8: ligamentum teres uteri, 9: vesical urinaria, 10: ligamentum latum uteri, 11: anulus inguinalis profundus. B: Isolated female reproductive tract. 1: margo liber ovaricae, 2: margo mesovaricus, 3: ovarium, 4: mesosalpinx, 5: tuba uterina, 6: ligamentum ovarii proprium, 7: ligamentum latum uteri, 8: ligamentum teres uteri, 9: fundus uteri, 10: corpus uteri, 11: isthmus uteri, 12: cervix, 13: vagina. C: Isolated female reproductive tract with opened uterus. 1: fundus uteri, 2: corpus uteri, 3: isthmus uteri, 4: canalis cervicis uteri, 5: fornix vaginae, 6: portio vaginalis cervicis, 7: vagina, 8: myometrium, 9: endometrium.
The vagina begins distal to the cervix. The portio vaginalis cervicis is the protrusion of the cervix into the vagina. The fornix vaginae is surrounding this structure. The vaginal mucosa is slightly keratinized and presents irregular folds. The vestibulum vaginae lies more distal and can be reached through the ostium vaginae. The border between the vagina and the vestibulum is formed by the urethral opening. This perineal opening that is located ventral to the anal opening is enclosed by a pair of vulva lips.
The primary genital glands of the male rhesus monkey are the testes. These are located in the scrotum that lies caudoventrally in the perineal region (Figure 2). The scrotal skin is thin and a has a limited number of hairs. This favors thermoregulation. The raphe scroti is visible in the midline and is continuous with the internal septum scroti that divides the scrotum in two separate cavities (cavum vaginale). These cavities can be reached by incision through the scrotal skin.
After transecting the wall of the vaginal cavity, i.e. the tunica vaginalis, the testis can be observed. This egg-shaped organ measures approximately 5 cm in length and 3 cm in width. It is encapsulated by the pale tunica albuginea that consist of dense connective tissue (Figure 55).
A: Penis and scrotum of the male rhesus monkey. 1: scrotum, 2: raphe scroti, 3: radix penis, 4: corpus penis, 5: glans penis, 6: preputium. B: Incision through the scrotal skin showing the testes. 1: scrotal skin, 2: septum scroti, 3: tunica vaginalis (partially incised), 4: tunica albuginea, 5: cauda epididymidis, 6: raphe scroti.
The a. testicularis is responsible for the testicular blood supply. It is surrounded by the venous plexus pampiniformis that cools the arterial blood. The ductus deferens is closely associated with the testicular blood vessels as they form the funiculus spermaticus that is enclosed by the tunica vaginalis. The ductus deferens is the continuation of the ductus epididymidis. This duct is extremely coiled, forming the epididymis, a solid structure adjacent to the testis. It can be divided into the caput, corpus and cauda epididymidis. The corpus lies against the medial side of the testis and is connected with this structure through the ligamentum testis proprium. The cauda epididymidis is attached to the tunica vaginalis by means of the ligamentum caudae epididymidis (Figure 56).
Left testis and epididymis of the rhesus monkey. 1: testis, 2: extremitas dorsalis, 3: extremitas ventralis, 4: caput epididymidis, 5: corpus epididymidis, 6: cauda epididymidis, 7: ductus deferens, 8: plexus pampiniformis.
The ductus deferens leaves the vaginal cavity through the inguinal canal. After it has entered the abdominal cavity, it presents a caudal flexion dorsal to the ureter to flow into the pelvic part of the urethra. Along this urethral segment, three accessory glands are present. The ellipsoid, lobulated vesicular glands are large, 5–6 cm in length. They are positioned against the neck of the urinary bladder. Their caudal parts have contact with the prostate. This gland is spherical with a diameter of approximately 1 cm. Its body is positioned in between the caudal parts of the vesicular glands, at the dorsal side of the urethra. Some glandular tissue, however, surrounds the urethra. The bulbourethral glands are very small. They can be found caudolateral to the prostate gland (Figure 57).
A: Ventral view of the isolated male urogenital tract. 1: ren, 2: glandula adrenalis, 3: ureter, 4: vesical urinaria, 5: glandula vesicularis, 6: ductus deferens, 7: plexus pampiniformis, 8: testis, 9: epididymis, 10: tunica vaginalis, 11: penis, 12: prostata, 13: glandula bulbourethralis. B: Larger magnification of the urinary bladder (1) and the accessory genital glands comprising the glandula vesicularis (2) and the prostata (3).
The penis of the rhesus monkey is of the cavernous type. When the penis is transected, the paired corpora cavernosa can be recognized by their pale brown color. Both are divided by the penile septum. The free part of the penis is approximately 5 cm long. It consists of the corpus penis and the glans penis. The urethral opening is located at the ventral side of the glans. The glans is covered by the preputium (Figure 58).
Dorsal view of the penis. 1: radix penis with a. dorsalis penis, 2: preputium, 3: corpus penis, 4: glans penis.
The major intrathoracic organs are the lungs. The lungs can be examined by auscultation are medical imaging in the region from the 2nd to the 8th intercostal space. They consist of the left and right lungs that are separated by the mediastinum. Both are divided into lung lobes by fissures. The left lung consists of a cranial and caudal lung lobe that are separated by the interlobar fissure. The left cranial lung lobe is additionally divided into a cranial part and a caudal part by the cardiac scissure. The right lung has four lobes. The presence of the cranial and caudal interlobar fissures allows for the determination of the cranial, middle and caudal lung lobes. In addition, an accessory lung lobe is present in the right lung (Figure 59).
Lungs. A: Left lateral view of the left lung with 1: trachea, 2a: lobus cranialis, pars cranialis, 2b: lobus cranialis, pars caudalis 3: lobus caudalis, 4: incisura cardiaca, 5: fissura interlobaris. B: Right lateral view of the right lung with 1: trachea, 2: lobus cranialis, 3: lobus medius, 4: lobus caudalis, 5: lobus accessorius, 6: fissura interlobaris cranialis, 7: fissura interlobaris caudalis.
Each lung lobe is ventilated by a principal bronchus (bronchus principalis sinister et dexter). These are the terminal bifurcation of the trachea. This structure counts approximately 27 cartilaginous rings and measures approximately 10 cm in length and 1 cm in diameter. Intrathoracically, the trachea lies ventral to the esophagus and is crossed by the aortic arch at its left side. From the left and right principal bronchi, two and three specific bronchi (bronchi lobares) for the several lung lobes branch off, respectively. The bronchus for the left cranial lung lobe further splits into a bronchus for the cranial part and one for the caudal part. The bronchus for the accessory lobe of the right lung is a branch from the caudal lobar bronchus (Figure 60).
Polyurethane cast of the lungs, ventral view. 1: trachea, 2: bifurcatio tracheae, 3a: bronchus principalis sinister, 3b: bronchus principalis dexter, 3a1: bronchus lobaris for the left cranial lung lobe, 3a2: bronchus lobaris for the left caudal lung lobe, 3b1: bronchus lobaris for the right cranial lung lobe, 3b2: bronchus lobaris for the right middle lung lobe, 3b3: bronchus lobaris for the right caudal lung lobe, 4a: pars cranialis lobi cranialis pulmonis sinistri, 4b: pars caudalis lobi cranialis pulmonis sinistri, 5: lobus caudalis pulmonis sinistri, 6: lobus cranialis pulmonis dextri, 7: lobus medius pulmonis dextri, 8: lobus caudalis pulmonis dextri, 9: lobus accessorius pulmonis dextri, 10: incisura cardiaca, 11: fissura interlobaris, 12: fissura interlobaris cranialis, 13: fissura interlobaris caudalis.
The heart lies in the thoracic cavity in the region from the 2nd to the 4th intercostal space. It is located between the lungs, in de middle mediastinum, and is enclosed by the pericardium. This fibrous structure dorsally attaches to the basis of the heart and ventrally to the sternum by means of the sternopericardiac ligament. After removal of the left thoracic wall, the blunt apex of the heart, which is formed by the left ventricle, can be observed in between the left cranial and caudal lung lobes as the longitudinal axis of the heart presents a deviation of approximately 45° towards the left. As a result, both the left and right auricle can be observed from the left. The left lateral aspect of the heart is therefore called the auricular side (facies auricularis). Both atria are visible from the right side. This side of the heart is the atrial side (facies atrialis). After removal of the right thoracic wall, it can be observed that the right heart including the right auricle and ventricle rests on the sternum as a result of the counterclockwise quarter rotation of the longitudinal cardiac axis (Figure 61).
Right lateral view of the thoracic cavity with 1: lobus cranialis pulmonis dextri, 2: lobus medius pulmonis dextri, 3: lobus caudalis pulmonis dextri, 4: lobus accessorius pulmonis dextri, 5: heart within the pericardium, 6: diaphragma, 7: n. phrenicus.
The left atrium, that is enlarged by the presence of the left auricle, receives oxygenated blood from the lungs via the four pulmonary veins. The left atrium is smaller in volume than the right atrium and has a smoother inner surface. From here, the blood flows to the left ventricle. The bicuspid left atrio-ventricular valve, i.e. the mitral valve, separates the left auricle from the left ventricle. It is attached to the papillary muscles in the wall of the left ventricle by means of the chordae tendineae. The latter presents a well trabeculated wall (trabeculae carneae) of approximately 6–9 mm in width. A septomarginal trabecula can be observed. Subsequently, blood flows to the ascending aorta. The aortic valve contains three valvulae.
The right atrium, with its right auricle, receives the systemic venous blood through the cranial and caudal vena cava that join at the level of the tuberculum intervenosum. Its wall is characterized by the mm. pectinati. The right auriculo-ventricular valve presents three cusps and is therefore known as the tricuspid valve. The wall of the right ventricle is also trabeculated and measures 1–2 mm in width. The right lumen contains a septomarginal trabecula. The pulmonary valve has the typical arrangement with three valvulae (Figures 62 and 63).
External anatomical landmarks of the heart. A: Left view, facies auricularis with 1: basis cordis, 2: apex cordis, 3: margo ventricularis dexter, 4: margo ventricularis sinister, 5: sulcus coronarius, 6: sulcus interventricularis paraconalis, 7: auricula sinistra, 8: auricula dextra, 9: ventriculus dexter, 10: ventriculus sinister, 11: aorta descendens, 12: truncus pulmonalis, 13: v. cava cranialis, 14: vv. pulmonales. B: Right view, facies atrialis with 1: basis cordis, 2: apex cordis, 3: margo ventricularis sinister, 4: margo ventricularis dexter, 5: sulcus coronarius, 6: sulcus interventricularis subsinuosus, 7: atrium dextrum, 8: sulcus terminalis, 9: ventriculus dexter, 10: atrium sinistrum, 11: ventriculus sinister, 12: aorta descendens, 13: vv. pulmonales, 14: v. cava cranialis, 15: v. cava caudalis, 16: sinus venarum cavarum.
Heart and larger vessels. A: Latex injected specimen, B: Vascular corrosion cast. 1: a. coronaria sinistra ramus interventricularis paraconalis, 2: ventriculus sinister, 3: ventriculus dexter, 4: atrium sinistrum, 5: arcus aortae, 6: vv. pulmonales, 7: v. cava caudalis, 8: aorta thoracica.
The left and right coronary arteries (a. coronaria sinistra et dextra) branch off the short ascending aorta, which runs craniodorsally, just above the aortic valve. These can initially be seen in the coronary sulcus. The a. coronaria dextra gives the a. interventricularis subsinuosus that runs in the sulcus interventricularis subsinuosus. It ultimately joins the ramus circumflexus of the a. coronaria sinistra. This coronary artery runs initially in the coronary sulcus, gives the ramus interventricularis paraconalis that runs in the sulcus interventricularis paraconalis, and continues as the ramus circumflexus that joins the right coronary artery. The left coronary artery is more pronounced than the right (Figure 63).
The aortic arch presents a branching pattern that is dissimilar to that in humans. Only two branches can be seen, the brachiocephalic trunk and the left subclavian artery. From the short initial segment of the brachiocephalic trunk, also known as the truncus communis, branches the left common carotid artery after a few mm to 1 cm. In humans, the left common carotid artery is a direct branch of the aortic arch. The right common carotid artery branches off subsequently. The continuation of the brachiocephalic trunk is the right subclavian artery (Figure 64).
Branching vessels from the aortic arch. A: Native specimen, B: Vascular corrosion cast. 1: aorta ascendens, 2: arcus aortae, 3: aorta descendens, 4a: truncus communis, 4b: truncus brachiocephalicus, 5: a. subclavia dextra, 6a: a. carotis communis sinistra, 6b: a. carotis communis dextra, 7: a. subclavia sinistra.
From the brachiocephalic trunk branches the left and subsequently the right common carotid artery. These arteries are laterally covered by the sternocleidomastoideus muscle. The internal jugular vein and vagal nerve are closely associated and lie just lateral to the artery. The common carotid artery divides into the internal and external carotid arteries at the mandibular angle. The former artery provides blood to the eye and the brains, while the latter gives off, amongst others, the linguofacial artery to continue as the maxillary artery.
The external jugular vein travels along the lateral aspect of the sternocleidomastoideus muscle and drains the venous blood from the head. This vein is suited for venipuncture. The accessory jugular vein lies parallel to the external jugular vein with which it fuses caudal to the collar bone. The caudal auricular veins, superficial temporal vein and maxillary vein drain into the external jugular vein. The facial vein drains partly into this vein, but mainly into the internal jugular vein. Both the external and internal jugular veins drain into the subclavian vein that in turn flow into the brachiocephalic vein. The cranial cava vein receives the left and right brachiocephalic veins.
In between the common carotid artery and the internal jugular vein lies the vagal nerve. It runs separately from the sympathetic trunk that lies deep against the cervical vertebrae. At the entrance of the thorax, the laryngeus recurrens nerve leaves the vagal nerve. The left sweeps around the aortic arch whereas the right makes a curvature around the right subclavian artery. The laryngeus recurrens nerve subsequently returns to the larynx, lateral to the trachea. Some major nerves and blood vessels of the rhesus monkey head are depicted in Figure 65.
A: Right lateral view of the rhesus monkey head of which the right side of the mandible has been removed with 1: n. lingualis, 2: n. vagus, 3: n. accessorius, 4: n. hypoglossus, 5: ansa cervicalis, 6: a. carotis communis, 7: a. lingualis. B: Right lateral view of a vascular corrosion cast of the rhesus monkey head with 1: a. facialis, 2: a. submentalis, 3: a. labialis superior, 4: a. nasalis lateralis, 5: a. angularis oculi, 6: a. temporalis superficialis, 7: vascular network of the parotid gland, 8: a. mentalis, 9: aa. temporales profundae, 10: v. facialis, 11: v. angularis oculi.
After crossing the 1st rib and giving off several branches to the head, neck, shoulder and thorax, the subclavian artery continues as the axillary artery that is accompanied by the axillary vein. The latter artery continues as the brachial artery after the a. subscapularis and a. circumflexa humeri cranialis have branched off. The brachial artery runs parallel to the n. medianus and gives off the a. profunda brachii as first branch. Subsequent branches are the collateralis ulnaris arteries that run collateral to the n. ulnaris. Just proximal to the elbow joint, the brachial artery splits into the radial and ulnar arteries. The former artery runs at the lateral side of the forearm towards the carpus where it gives origin to the dorsal and palmar arches. The ulnar artery joins the palmar arch. These arches supply the hand and fingers. Figures 66 and 68 present the discussed arteries.
Blood vessels and nerves of the thoracic limb. A: Medial view of the left upper arm with 1: a. brachialis, 2: a. collateralis ulnaris proximalis, 3: a. collateralis ulnaris distalis, 4: a. radialis, 5: n. medianus, 6: n. ulnaris. B: Medial/palmar view of the right forearm and hand with 1: n. medianus, 2: n. ulnaris, 3: ramus dorsalis (n. ulnaris), 4: nn. digitales palmares communes, 5: ramus superficialis (n. ulnaris), 6: a. ulnaris, 7: a. radialis, 8: arcus palmaris.
The venous circulation of the thoracic limbs consists of a deep and a superficial system. The deep system accompanies the arteries (e.g. v. subclavia, v. axillaris, v. brachialis), while the superficial veins have no arterial counterpart. In the rhesus monkey, the superficial venous system is poorly developed since the venous drainage of the hand and forearm is mainly provided by paired vv. comitantes. The cephalic vein, which is located at the cranial side of the antebrachium, is the major superficial vein of the forelimb. It forms a common stem with the accessory jugular vein that drains into the external jugular vein. It can be used for venipuncture, but is not preferred in the rhesus monkey (Figure 67).
Medial (A) and dorsal (B) views of the thoracic limb showing 1: v. brachialis, 2: n. medianus, 3: v. cephalica, 4: n. cutaneus brachii medialis, 5: n. cutaneus antebrachii medialis.
The nerves of the forelimb originate from the brachial plexus (C5 – T2) at the medial side of the upper arm. The thoracodorsal nerve innervates the latissimus dorsi muscle. The axillary nerve finds its way from medial to lateral superficially in the angle between the coracobrachialis and teres major muscles and deeper between the triceps and teres minor muscles to innervate the flexor muscles of the shoulder (deltoid, coracobrachialis and both teres muscles). The radial nerve runs from medial to lateral between the lateral and medial heads of the triceps muscle and perforates the brachioradialis muscle. Its muscular branches innervate the triceps and anconeus muscles as well as the extensor musculature of the upper arm, forearm and hand. The musculocutaneus nerve innervates the flexor muscles of the elbow joint (rami musculares to the coracobrachialis, biceps brachii and brachialis muscles). The median nerve runs parallel to the brachial artery in between the biceps brachii and brachialis muscle. More distally, it lies deep to the flexor muscles of the forearm, which it innervates. Its most distal branches are the digital nerves. The ulnar nerve can be found between the medial and long head of the triceps muscle. It crosses the elbow region in between the flexor carpi ulnaris and flexor digitorum profundus muscles to reach the hand. Its dorsal, superficial and deep branches innervate the flexor musculature of the fingers in addition to the median nerve. The n. cutaneus brachii et antebrachii medialis runs initially parallel to the ulnar nerve. The brachial and antebrachial branches innervate the skin at the medial sides of the upper and lower arm, respectively. The here discussed nerves are depicted in Figures 66–68.
Medial views of the nerves and blood vessels of the right forelimb. A: Plexus brachialis at the level of the shoulder joint with 1: n. thoracodorsalis, 2: n. axillaris, 3: n. radialis, 4: rami musculares, 5: n. musculocutaneus, 6: n. medianus, 7: n. ulnaris, 8: n. cutaneus brachii et antebrachii medialis, 9: a. axillaris, 10: a. circumflexa humeri cranialis, 11: a. subscapularis, 12: a. profunda brachii, 13: a. brachialis. B: Blood vessels and nerves at the level of the elbow joint with 1: n. medianus, 2: n. ulnaris, 3: n. musculocutaneus, 4: n. cutaneus brachii et antebrachii medialis, 5: Rami musculares, 6: n. cutaneus antebrachii lateralis, 7: n. radialis, 8: a. brachialis, 9: a. radialis, 10: a. ulnaris.
In this paragraph, some essential data on the ramifications of the abdominal aorta and caudal vena cava will be shared. As regards the arterial system that is depicted in Figure 69, it should be noticed that the truncus celiacus is very short and soon divides into the common hepatic artery, the gastrolienalis artery and the cranial mesenteric artery. The common hepatic artery branches into the a. hepatica propria that supplies the liver and arteries for the stomach, pancreas and duodenum. The a. gastrolienalis subsequently divides into the a. lienalis and a. gastrica sinistra. The a. mesenterica cranialis ramifies into the jejunal, ileal and colic arteries. Only approximately 1 cm caudal to the celiac trunk branches the right renal artery off the abdominal aorta. The left renal artery can be found a few mm more caudal. The caudal mesenteric artery branches off a few cm caudal to the left renal artery. This artery ramifies into the a. colica sinistra, a. sigmoidea and a. rectalis cranialis. Just cranial to the terminal bifurcation of the abdominal aorta into the common iliac arteries can the origin of the a. circumflexa ilium profunda be found.
Corrosion cast of the abdominal arteries, ventral view. 1: aorta abdominalis, 2: a. renalis dextra, 3: a. renalis sinistra, 4: a. adrenalis, 5: truncus celiacus, 6: a. hepatica communis, 7: a. gastrolienalis, 8: a. gastrica, 9: a. lienalis, 10: a. mesenterica cranialis, 11: aa. jejunales et ileales, 12: a. mesenterica caudalis, 13: a. circumflexa ilium profunda, 14: a. iliaca communis sinistra, 15: a. iliaca comunis dextra, 16: a. iliaca externa sinistra, 17: a. iliaca interna sinistra, 18: a. iliaca interna dextra, 19: a. iliaca externa dextra.
Regarding the venous system, the reader should be reminded of the fact that the arterial truncus celiacus has no venous counterpart. The portal vein is described above (Figure 51). The veins of the caudal segment of the caudal vena cava can be studied by means of Figure 70.
Latex cast of the caudal segment of the caudal cava vein of the male rhesus monkey, ventral view. 1: v. cava caudalis, 2a: v. renalis dextra, 2b: v. renalis sinistra, 3: v. adrenalis sinistra, 4a: v. testicularis dextra, 4b: v. testicularis sinistra, 5: v. mesenterica caudalis, 6a: v. circumflexa ilium profunda dextra, 6b: v. circumflexa ilium profunda sinistra, 7a: v. iliaca communis dextra, 7b: v. iliaca communis sinistra, 8a: v. iliaca externa dextra, 8b: v. iliaca externa sinistra, 9a: v. profunda femoris dextra, 9b: v. profunda femoris sinistra, 10a: v. circumflexa femoris lateralis dextra, 10b: v. circumflexa femoris lateralis sinistra, 11a: v. femoralis dextra, 11b: v. femoralis sinistra, 12a: v. iliaca interna dextra, 12b: v. iliaca interna sinistra, 13a + 14a: v. gluteus cranialis superficialis dextra, 13b + 14b: v. gluteus cranialis superficialis sinistra, 15a + 15b: Continuation of v. iliaca interna dextra et sinistra, 16a: v. obturatoria dextra, 16b: v. obturatoria sinistra.
The abdominal aorta divides into the left and right common iliac arteries within the pelvic cavity. These arteries subsequently divide into the external and internal iliac arteries (Figure 69). In the proximal part of the thigh, the external iliac artery continues as the femoral artery, which is suitable for palpation of the pulse, after the a. profunda femoris has branched off. This artery gives origin to the lateral circumflex artery, which branches supply the vasti muscles. The femoral artery then divides into the saphena artery and the popliteal artery. The latter artery runs deep between both heads of the gastrocnemius muscle and gives the medial and lateral a. genus distalis as branches. These branches supply the knee region together with the a. genus proximalis of the a. saphena. This artery emerges in the angle formed by the sartorius and gracilis muscles and runs superficially to the medial side of the tibia. She subsequently migrates to the cranial aspect of the tarsus to become the a. dorsalis pedis (superficialis et profunda). From the popliteal artery branches the a. tibialis cranialis. She becomes the a. tibialis caudalis at the level of the lower leg. At the level of the foot, the a. tibialis caudalis divides into the a. plantaris lateralis et medialis. The arterial and nerve system of the hind limb are visualized in Figures 71 and 73.
Vasculature and nerves of the pelvic limb. A: Dorsomedial view of the right upper leg with 1: a. femoralis, 2: a. circumflexa femoris lateralis, 3: a. profunda femoris, 4: n. femoralis, 5: rami cutanei craniales, 6: n. saphenus. B: Medial view of the thigh and knee of the left leg with 1: a. femoralis, 2: a. genus proximalis, 3: a. saphena: 4: a. dorsalis pedis profunda: 5: a. dorsalis pedis superficialis, 6: n. saphenus. C: Caudal view of the popliteal region of the left leg with 1: a. poplitea, 2: a. tibialis cranialis, 3: a. tibialis caudalis, 4: n. tibialis.
In analogy with the thoracic limb, the venous drainage of the pelvic limb is mainly effectuated by the vv. comitantes. The vv. marginalis medialis et lateralis pedis drain the dorsal side of the foot. The v. marginalis medialis pedis drains into the superficially located v. saphena magna that proximately flows into the femoral vein. The v. marginalis lateralis pedis drains into the v. saphena parva. It is an important vein as it drains the larger part of the hind leg and is suitable for venipuncture at the caudal aspect of the calf (Figure 72). In the popliteal fossa, she drains into the popliteal vein. This vein runs adjacent to the eponymous artery and flows into the femoral vein. This vein is also suitable for venipuncture. The femoral vein proximally drains into the external iliac vein that in turn flows into the common iliac vein.
Superficial veins of the pelvic limb. A: Subcutaneous localization of the v. saphena parva. B: Catheterization of the v. saphena parva.
The nerves of the hind limb originate from the lumbosacral plexus. The femoral nerve is associated with the eponymous blood vessels. Its muscular branches innervate the extensor muscles of the knee. In addition, cranial cutaneous branches innervate the skin at the craniomedial side of the upper leg and the medial side of the knee. The distal continuation of the femoral nerve is the n. saphenus that accompanies the a. saphena and innervates the skin at the craniomedial aspect of the lower leg. The n. gluteus caudalis, that innervates the m. gluteus superficialis, emerges together with the sciatic nerve. This nerve divides into the n. fibularis communis and n. tibialis. The former nerve deviates towards the lateral head of the gastrocnemius muscle. Halfway the upper leg, the n. cutaneus surae lateralis branches off to innervate the skin at the caudolateral side of the lower leg. Here, nerve biopsy can be performed. At the level of the knee, the n. fibularis communis divides into the n. fibularis superficialis et profundus. The latter travels deep to the fibularis longus and extensor digitorum longus muscles to innervate the flexors of the tarsal joint and the extensors of the toes. The former gives off ramifications to the fibularis muscles and branches into the skin at the dorsolateral side of the foot. The tibial nerve presents several ramifications at the level of the knee. The majority migrate between the heads of the gastrocnemius muscle to innervate the popliteus muscle, the extensors of the tarsal joint and the flexor musculature of the toes. A specific branch, the n. cutaneus surae caudalis, innervates the skin at the caudal side of the lower leg. More distally, it runs more laterally and is then called the n. suralis. Just proximal to the medial ankle, the tibial nerve divides into the medial and lateral plantar nerves. The n. flexoris femoris runs adjacent to the proximal part of the tibial nerve and branches into the hamstrings.
Nerves and blood vessels of the right pelvic limb. Laterocaudal view of the right knee with 1: n. tibialis, 2: n. cutaneus surae medialis, 3: rami musculares, 4: n. fibularis communis, 5: n. cutaneus surae lateralis. B: Laterocaudal, superficial view of the lower leg with 1: n. fibularis profundus, 2: n. fibularis superficialis, 3: n. cutaneus pedis dorsalis medialis, 4: n. cutaneus pedis dorsalis intermedius. C: Laterocaudal, deep view of the lower leg with 1: n. tibialis, 2: n. cutaneus surae medialis, 3: n. suralis, 4: n. fibularis communis, 5: a. et v. poplitea, 6: v. saphena parva.
The authors would like to thank Carlien Blockhuys (DVM), Lotte Joosten (DVM), Olga Kopilova (DVM), Caroline Mertens (DVM) and Gwenny Van Acoleyen (DVM) for their preliminary dissections that formed the basis of this chapter, and professor Jan Langermans (PhD) and Thea de Koning for critical reading and editing.
Customer Satisfaction is of paramount importance at IntechOpen and we take all complaints very seriously. Our Authors, their institutions, and other purchasers, if dissatisfied with the service provided, or the product purchased, can file a written complaint to IntechOpen, 5 Princes Gate Court, London, SW7 2QJ, UK or via the following e-mail address: info@intechopen.com.
',metaTitle:"Customer Complaints",metaDescription:"Our authors, their institutions and other purchasers, if unsatisfied with the service provided or the product purchased, can file a written complaint at IN TECH d.o.o offices at Janeza Trdine 9, 51000 Rijeka, Croatia, or via the following e-mail address: info@intechopen.com.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\\n\\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\\n\\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\\n\\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\\n\\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\n\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\n\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\n\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\n\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11662},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22333},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33644}],offset:12,limit:12,total:135278},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"10"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11493",title:"Solar Radiation - Enabling Technologies, Recent Innovations, and Advancements for Energy Transition",subtitle:null,isOpenForSubmission:!0,hash:"0400d540d2b8fb55d4cc8590e1e58844",slug:null,bookSignature:"Dr. Mohammadreza Aghaei and Associate Prof. Amin Moazami",coverURL:"https://cdn.intechopen.com/books/images_new/11493.jpg",editedByType:null,editors:[{id:"317230",title:"Dr.",name:"Mohammadreza",surname:"Aghaei",slug:"mohammadreza-aghaei",fullName:"Mohammadreza Aghaei"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11836",title:"Estuary Research - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"0c8c5352d19470a9e3433b4d62c0cada",slug:null,bookSignature:"Prof. Andrew James Manning",coverURL:"https://cdn.intechopen.com/books/images_new/11836.jpg",editedByType:null,editors:[{id:"23008",title:"Prof.",name:"Andrew James",surname:"Manning",slug:"andrew-james-manning",fullName:"Andrew James Manning"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11837",title:"Ecology and Geography of the Mediterranean",subtitle:null,isOpenForSubmission:!0,hash:"bbb25987a982d61da4f47fb13614ba3c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11837.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11842",title:"Altimetry - Theory, Applications and Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"b2b6e7b58333453ef7b73416d8fdfaf3",slug:null,bookSignature:"Dr. Tomislav Bašić",coverURL:"https://cdn.intechopen.com/books/images_new/11842.jpg",editedByType:null,editors:[{id:"343125",title:"Dr.",name:"Tomislav",surname:"Bašić",slug:"tomislav-basic",fullName:"Tomislav Bašić"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11999",title:"Earthquakes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"b2af07109b13b76e5af9583532ab5bee",slug:null,bookSignature:"Dr. Walter Salazar",coverURL:"https://cdn.intechopen.com/books/images_new/11999.jpg",editedByType:null,editors:[{id:"236461",title:"Dr.",name:"Walter",surname:"Salazar",slug:"walter-salazar",fullName:"Walter Salazar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12000",title:"Natural Hazards",subtitle:null,isOpenForSubmission:!0,hash:"d9fad96ccf42b288f2134775f6a8a1be",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12000.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12001",title:"Polar Climate",subtitle:null,isOpenForSubmission:!0,hash:"b226f7ff46cf93d4dc25aa49b23cc118",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12001.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12002",title:"Oceanography",subtitle:null,isOpenForSubmission:!0,hash:"b48da2053b7a270a24db1eeaea08f16b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12002.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12003",title:"Rural Areas",subtitle:null,isOpenForSubmission:!0,hash:"5d6bf787bf04690d8773b4d47bc54353",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12003.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12004",title:"Tropical Forests",subtitle:null,isOpenForSubmission:!0,hash:"1478a073e834c74e589098e43f49d1d8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12004.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12006",title:"Advances in Clay Science and Technology",subtitle:null,isOpenForSubmission:!0,hash:"64e16abe1a29e6bf30c582970a5bc1ed",slug:null,bookSignature:"Prof. Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/12006.jpg",editedByType:null,editors:[{id:"7153",title:"Prof.",name:"Gustavo",surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:22},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:6},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:15},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:37},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:15},{group:"topic",caption:"Mathematics",value:15,count:8},{group:"topic",caption:"Medicine",value:16,count:62},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:5},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:19},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4797},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"14",title:"Materials Science",slug:"materials-science",parent:{id:"1",title:"Physical Sciences, Engineering and Technology",slug:"physical-sciences-engineering-and-technology"},numberOfBooks:320,numberOfSeries:0,numberOfAuthorsAndEditors:8300,numberOfWosCitations:17589,numberOfCrossrefCitations:9112,numberOfDimensionsCitations:21496,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"14",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10945",title:"Collagen Biomaterials",subtitle:null,isOpenForSubmission:!1,hash:"721724968654675a93937e3b5645a266",slug:"collagen-biomaterials",bookSignature:"Nirmal Mazumder and Sanjiban Chakrabarty",coverURL:"https://cdn.intechopen.com/books/images_new/10945.jpg",editedByType:"Edited by",editors:[{id:"256296",title:"Dr.",name:"Nirmal",middleName:null,surname:"Mazumder",slug:"nirmal-mazumder",fullName:"Nirmal Mazumder"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11210",title:"Chalcogenides",subtitle:"Preparation and Applications",isOpenForSubmission:!1,hash:"f5bf032bc55f99e48f4b0e5375ca7442",slug:"chalcogenides-preparation-and-applications",bookSignature:"Dhanasekaran Vikraman",coverURL:"https://cdn.intechopen.com/books/images_new/11210.jpg",editedByType:"Edited by",editors:[{id:"199404",title:"Prof.",name:"Dhanasekaran",middleName:null,surname:"Vikraman",slug:"dhanasekaran-vikraman",fullName:"Dhanasekaran Vikraman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10847",title:"Aluminium Alloys",subtitle:"Design and Development of Innovative Alloys, Manufacturing Processes and Applications",isOpenForSubmission:!1,hash:"f4ecc3e8fea00488cb2213b7d34b42aa",slug:"aluminium-alloys-design-and-development-of-innovative-alloys-manufacturing-processes-and-applications",bookSignature:"Giulio Timelli",coverURL:"https://cdn.intechopen.com/books/images_new/10847.jpg",editedByType:"Edited by",editors:[{id:"44147",title:"Prof.",name:"Giulio",middleName:null,surname:"Timelli",slug:"giulio-timelli",fullName:"Giulio Timelli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11208",title:"Current Trends in Magnesium (Mg) Research",subtitle:null,isOpenForSubmission:!1,hash:"21372a0c65f42d075d4519c2f891e203",slug:"current-trends-in-magnesium-mg-research",bookSignature:"Sailaja S. Sunkari",coverURL:"https://cdn.intechopen.com/books/images_new/11208.jpg",editedByType:"Edited by",editors:[{id:"325832",title:"Dr.",name:"Sailaja S.",middleName:"S.",surname:"Sunkari",slug:"sailaja-s.-sunkari",fullName:"Sailaja S. Sunkari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10942",title:"Fiber-Reinforced Plastics",subtitle:null,isOpenForSubmission:!1,hash:"50dc791b1036b236a6676986cb295c6f",slug:"fiber-reinforced-plastics",bookSignature:"Martin Alberto Masuelli",coverURL:"https://cdn.intechopen.com/books/images_new/10942.jpg",editedByType:"Edited by",editors:[{id:"99994",title:"Dr.",name:"Martin",middleName:"Alberto",surname:"Alberto Masuelli",slug:"martin-alberto-masuelli",fullName:"Martin Alberto Masuelli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10489",title:"Biocomposites",subtitle:null,isOpenForSubmission:!1,hash:"c794533fcae9dcea38672f814ae182db",slug:"biocomposites",bookSignature:"Brajesh Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/10489.jpg",editedByType:"Edited by",editors:[{id:"176093",title:"Dr.",name:"Brajesh",middleName:null,surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9926",title:"Magnesium Alloys Structure and Properties",subtitle:null,isOpenForSubmission:!1,hash:"a6d1a99f4befe885857743f77e81524c",slug:"magnesium-alloys-structure-and-properties",bookSignature:"Tomasz Tański and Paweł Jarka",coverURL:"https://cdn.intechopen.com/books/images_new/9926.jpg",editedByType:"Edited by",editors:[{id:"15700",title:"Prof.",name:"Tomasz Arkadiusz",middleName:null,surname:"Tański",slug:"tomasz-arkadiusz-tanski",fullName:"Tomasz Arkadiusz Tański"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10700",title:"Titanium Dioxide",subtitle:"Advances and Applications",isOpenForSubmission:!1,hash:"d9448d83caa34d90fd58464268c869a0",slug:"titanium-dioxide-advances-and-applications",bookSignature:"Hafiz Muhammad Ali",coverURL:"https://cdn.intechopen.com/books/images_new/10700.jpg",editedByType:"Edited by",editors:[{id:"187624",title:"Dr.",name:"Hafiz Muhammad",middleName:null,surname:"Ali",slug:"hafiz-muhammad-ali",fullName:"Hafiz Muhammad Ali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6832",title:"Ruthenium",subtitle:"An Element Loved by Researchers",isOpenForSubmission:!1,hash:"9a3be4dd6035f78add07d239b8eae379",slug:"ruthenium-an-element-loved-by-researchers",bookSignature:"Hitoshi Ishida",coverURL:"https://cdn.intechopen.com/books/images_new/6832.jpg",editedByType:"Edited by",editors:[{id:"210140",title:"Dr.",name:"Hitoshi",middleName:null,surname:"Ishida",slug:"hitoshi-ishida",fullName:"Hitoshi Ishida"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:320,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"60680",doi:"10.5772/intechopen.76082",title:"Environmental Contamination by Heavy Metals",slug:"environmental-contamination-by-heavy-metals",totalDownloads:16254,totalCrossrefCites:188,totalDimensionsCites:408,abstract:"The environment and its compartments have been severely polluted by heavy metals. This has compromised the ability of the environment to foster life and render its intrinsic values. Heavy metals are known to be naturally occurring compounds, but anthropogenic activities introduce them in large quantities in different environmental compartments. This leads to the environment’s ability to foster life being reduced as human, animal, and plant health become threatened. This occurs due to bioaccumulation in the food chains as a result of the nondegradable state of the heavy metals. Remediation of heavy metals requires special attention to protect soil quality, air quality, water quality, human health, animal health, and all spheres as a collection. Developed physical and chemical heavy metal remediation technologies are demanding costs which are not feasible, time-consuming, and release additional waste to the environment. This chapter summarises the problems related to heavy metal pollution and various remediation technologies. A case study in South Africa mines were also used.",book:{id:"6534",slug:"heavy-metals",title:"Heavy Metals",fullTitle:"Heavy Metals"},signatures:"Vhahangwele Masindi and Khathutshelo L. Muedi",authors:[{id:"225304",title:"Dr.",name:"Vhahangwele",middleName:null,surname:"Masindi",slug:"vhahangwele-masindi",fullName:"Vhahangwele Masindi"},{id:"241403",title:"M.Sc.",name:"Khathutshelo",middleName:"Lilith",surname:"Muedi",slug:"khathutshelo-muedi",fullName:"Khathutshelo Muedi"}]},{id:"37067",doi:"10.5772/35482",title:"Fourier Transform Infrared Spectroscopy for Natural Fibres",slug:"fourier-transform-infrared-spectroscopy-for-natural-fibres",totalDownloads:9291,totalCrossrefCites:167,totalDimensionsCites:400,abstract:null,book:{id:"2270",slug:"fourier-transform-materials-analysis",title:"Fourier Transform",fullTitle:"Fourier Transform - Materials Analysis"},signatures:"Mizi Fan, Dasong Dai and Biao Huang",authors:[{id:"104647",title:"Prof.",name:"Mizi",middleName:null,surname:"Fan",slug:"mizi-fan",fullName:"Mizi Fan"}]},{id:"42566",doi:"10.5772/53706",title:"Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials",slug:"challenges-and-opportunities-for-spark-plasma-sintering-a-key-technology-for-a-new-generation-of-mat",totalDownloads:9168,totalCrossrefCites:99,totalDimensionsCites:213,abstract:null,book:{id:"3478",slug:"sintering-applications",title:"Sintering Applications",fullTitle:"Sintering Applications"},signatures:"M. Suárez, A. Fernández, J.L. Menéndez, R. Torrecillas, H. U. Kessel, J. Hennicke, R. Kirchner and T. Kessel",authors:[{id:"102383",title:"Dr.",name:"Marta",middleName:null,surname:"Suárez",slug:"marta-suarez",fullName:"Marta Suárez"},{id:"103822",title:"Dr.",name:"J.L",middleName:null,surname:"Menendez",slug:"j.l-menendez",fullName:"J.L Menendez"},{id:"103833",title:"Prof.",name:"Ramón",middleName:null,surname:"Torrecillas",slug:"ramon-torrecillas",fullName:"Ramón Torrecillas"},{id:"162633",title:"Dr.",name:"Adolfo",middleName:null,surname:"Fernández",slug:"adolfo-fernandez",fullName:"Adolfo Fernández"}]},{id:"23617",doi:"10.5772/24118",title:"Collagen- vs. Gelatine-Based Biomaterials and Their Biocompatibility: Review and Perspectives",slug:"collagen-vs-gelatine-based-biomaterials-and-their-biocompatibility-review-and-perspectives",totalDownloads:9461,totalCrossrefCites:63,totalDimensionsCites:203,abstract:null,book:{id:"1487",slug:"biomaterials-applications-for-nanomedicine",title:"Biomaterials",fullTitle:"Biomaterials Applications for Nanomedicine"},signatures:"Selestina Gorgieva and Vanja Kokol",authors:[{id:"55577",title:"Prof.",name:"Vanja",middleName:null,surname:"Kokol",slug:"vanja-kokol",fullName:"Vanja Kokol"},{id:"61285",title:"BSc",name:"Selestina",middleName:null,surname:"Gorgieva",slug:"selestina-gorgieva",fullName:"Selestina Gorgieva"}]},{id:"46243",doi:"10.5772/57255",title:"Corrosion Inhibitors – Principles, Mechanisms and Applications",slug:"corrosion-inhibitors-principles-mechanisms-and-applications",totalDownloads:13737,totalCrossrefCites:40,totalDimensionsCites:163,abstract:null,book:{id:"3817",slug:"developments-in-corrosion-protection",title:"Developments in Corrosion Protection",fullTitle:"Developments in Corrosion Protection"},signatures:"Camila G. Dariva and Alexandre F. Galio",authors:[{id:"169261",title:"Dr.",name:"Camila",middleName:"G.",surname:"Dariva",slug:"camila-dariva",fullName:"Camila Dariva"},{id:"170138",title:"Dr.",name:"Alexandre",middleName:"Ferreira",surname:"Galio",slug:"alexandre-galio",fullName:"Alexandre Galio"}]}],mostDownloadedChaptersLast30Days:[{id:"76780",title:"Basics of Clay Minerals and Their Characteristic Properties",slug:"basics-of-clay-minerals-and-their-characteristic-properties",totalDownloads:1930,totalCrossrefCites:16,totalDimensionsCites:25,abstract:"Clay minerals such as kaolinite, smectite, chlorite, micas are main components of raw materials of clay and formed in presence of water. A large number of clays used to form the different structure which completely depends on their mining source. They are known as hydrous phyllosilicate having silica, alumina and water with variable amount of inorganic ions like Mg2+, Na+, Ca2+ which are found either in interlayer space or on the planetary surface. Clay minerals are described by presence of two-dimensional sheets, tetrahedral (SiO4) and octahedral (Al2O3). There are different clay minerals which are categorized based on presence of tetrahedral and octahedral layer in their structure like kaolinite (1:1 of tetrahedral and octahedral layers), smectite group of clay minerals (2:1 of tetrahedral and octahedral layers) and chlorite (2:1:1 of tetrahedral, octahedral and octahedral layers). The particle size of clay minerals is <2microns which can be present in form of plastic in presence of water and solidified when dried. The small size and their distinctive crystal structure make clay minerals very special with their unique properties including high cation exchange capacity, swelling behavior, specific surface area, adsorption capacity, etc. which are described in this chapter. Due to all these unique properties, clay minerals are gaining interest in different fields.",book:{id:"10949",slug:"clay-and-clay-minerals",title:"Clay and Clay Minerals",fullTitle:"Clay and Clay Minerals"},signatures:"Neeraj Kumari and Chandra Mohan",authors:[{id:"258132",title:"Dr.",name:"Chandra",middleName:null,surname:"Mohan",slug:"chandra-mohan",fullName:"Chandra Mohan"},{id:"352399",title:"Dr.",name:"Neeraj",middleName:null,surname:"Kumari",slug:"neeraj-kumari",fullName:"Neeraj Kumari"}]},{id:"51535",title:"An Introduction to Hydrogels and Some Recent Applications",slug:"an-introduction-to-hydrogels-and-some-recent-applications",totalDownloads:11734,totalCrossrefCites:70,totalDimensionsCites:140,abstract:"Hydrogels have existed for more than half a century, and today they have many applications in various processes ranging from industrial to biological. There are numerous original papers, reviews, and monographs focused on the synthesis, properties, and applications of hydrogels. This chapter covers the fundamental aspects and several applications of hydrogels based on the old and the most recent publications in this field.",book:{id:"5251",slug:"emerging-concepts-in-analysis-and-applications-of-hydrogels",title:"Emerging Concepts in Analysis and Applications of Hydrogels",fullTitle:"Emerging Concepts in Analysis and Applications of Hydrogels"},signatures:"Morteza Bahram, Naimeh Mohseni and Mehdi Moghtader",authors:[{id:"179718",title:"Prof.",name:"Morteza",middleName:null,surname:"Bahram",slug:"morteza-bahram",fullName:"Morteza Bahram"},{id:"185713",title:"Dr.",name:"Naimeh",middleName:null,surname:"Mohseni",slug:"naimeh-mohseni",fullName:"Naimeh Mohseni"},{id:"185714",title:"Dr.",name:"Mehdi",middleName:null,surname:"Moghtader",slug:"mehdi-moghtader",fullName:"Mehdi Moghtader"}]},{id:"70661",title:"Bioremediation Techniques for Polluted Environment: Concept, Advantages, Limitations, and Prospects",slug:"bioremediation-techniques-for-polluted-environment-concept-advantages-limitations-and-prospects",totalDownloads:2672,totalCrossrefCites:10,totalDimensionsCites:27,abstract:"Environmental pollution has been rising in the past few decades due to increased anthropogenic activities. Bioremediation is an attractive and successful cleaning technique to remove toxic waste from polluted environment. Bioremediation is highly involved in degradation, eradication, immobilization, or detoxification diverse chemical wastes and physical hazardous materials from the surrounding through the all-inclusive and action of microorganisms. The main principle is degrading and converting pollutants to less toxic forms. Bioremediation can be carried out ex-situ and in-situ, depending on several factors, which include but not limited to cost, site characteristics, type, and concentration of pollutants. Hence, appropriate bioremediation technique is selected. Additionally, the major methodologies to develop bioremediation are biostimulation, bioaugmentation, bioventing, biopiles, and bioattenuation provided the environmental factors that decide the completion of bioremediation. Bioremediation is the most effective, economical, eco-friendly management tool to manage the polluted environment. All bioremediation techniques have its own advantage and disadvantage because it has its own specific applications.",book:{id:"9343",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",title:"Trace Metals in the Environment",fullTitle:"Trace Metals in the Environment - New Approaches and Recent Advances"},signatures:"Indu Sharma",authors:[{id:"301262",title:"Associate Prof.",name:"Indu",middleName:null,surname:"Sharma",slug:"indu-sharma",fullName:"Indu Sharma"}]},{id:"18275",title:"Modeling and Identification of Parameters the Piezoelectric Transducers in Ultrasonic Systems",slug:"modeling-and-identification-of-parameters-the-piezoelectric-transducers-in-ultrasonic-systems",totalDownloads:10197,totalCrossrefCites:3,totalDimensionsCites:5,abstract:null,book:{id:"201",slug:"advances-in-ceramics-electric-and-magnetic-ceramics-bioceramics-ceramics-and-environment",title:"Advances in Ceramics",fullTitle:"Advances in Ceramics - Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment"},signatures:"Pawel Fabijanski and Ryszard Lagoda",authors:[{id:"13086",title:"Dr.",name:"Pawel",middleName:null,surname:"Fabijański",slug:"pawel-fabijanski",fullName:"Pawel Fabijański"}]},{id:"60680",title:"Environmental Contamination by Heavy Metals",slug:"environmental-contamination-by-heavy-metals",totalDownloads:16251,totalCrossrefCites:187,totalDimensionsCites:407,abstract:"The environment and its compartments have been severely polluted by heavy metals. This has compromised the ability of the environment to foster life and render its intrinsic values. Heavy metals are known to be naturally occurring compounds, but anthropogenic activities introduce them in large quantities in different environmental compartments. This leads to the environment’s ability to foster life being reduced as human, animal, and plant health become threatened. This occurs due to bioaccumulation in the food chains as a result of the nondegradable state of the heavy metals. Remediation of heavy metals requires special attention to protect soil quality, air quality, water quality, human health, animal health, and all spheres as a collection. Developed physical and chemical heavy metal remediation technologies are demanding costs which are not feasible, time-consuming, and release additional waste to the environment. This chapter summarises the problems related to heavy metal pollution and various remediation technologies. A case study in South Africa mines were also used.",book:{id:"6534",slug:"heavy-metals",title:"Heavy Metals",fullTitle:"Heavy Metals"},signatures:"Vhahangwele Masindi and Khathutshelo L. Muedi",authors:[{id:"225304",title:"Dr.",name:"Vhahangwele",middleName:null,surname:"Masindi",slug:"vhahangwele-masindi",fullName:"Vhahangwele Masindi"},{id:"241403",title:"M.Sc.",name:"Khathutshelo",middleName:"Lilith",surname:"Muedi",slug:"khathutshelo-muedi",fullName:"Khathutshelo Muedi"}]}],onlineFirstChaptersFilter:{topicId:"14",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"83080",title:"Boron Doping in Next-Generation Materials for Semiconductor Device",slug:"boron-doping-in-next-generation-materials-for-semiconductor-device",totalDownloads:2,totalDimensionsCites:0,doi:"10.5772/intechopen.106450",abstract:"The article surveys the most recent achievements starting with the boron doping mechanism, mainly focused on doping in semiconductor materials such as Si, Ge, graphene, carbon nanotube, or other 2D materials. Frequently used doping methodologies are discussed, including ion implantation and solid-phase doping, mainly focused on recent developing techniques of monolayer doping. These doped materials’ structural, electronic, and chemical properties are addressed to understand the boron doping effect better. Theoretical and experimental information and data are used to support such atomic-level effects. Therefore, this review can provide valuable suggestions and guidelines for materials’ properties manipulation by boron doping for further research exploration.",book:{id:"11762",title:"Characteristics and Applications of Boron",coverURL:"https://cdn.intechopen.com/books/images_new/11762.jpg"},signatures:"Linh Chi T. Cao, Luqman Hakim and Shu-Han Hsu"},{id:"83055",title:"Boron Clusters in Biomedical Applications: A Theoretical Viewpoint",slug:"boron-clusters-in-biomedical-applications-a-theoretical-viewpoint",totalDownloads:6,totalDimensionsCites:0,doi:"10.5772/intechopen.106215",abstract:"In this chapter, we presented an analysis of the recent advances in the applications of boron clusters in biomedical fields such as the development of biosensors and drug delivery systems on the basis of quantum chemical calculations. Biosensors play an essential role in many sectors, e.g., law enforcement agencies for sensing illicit drugs, medical communities for detecting overdosed medications from human and animal bodies, etc. The drug delivery systems have theoretically been proposed for many years and subsequently implemented by experiments to deliver the drug to the targeted sites by reducing the harmful side effects significantly. Boron clusters form a rich and colorful family of atomic clusters due to their unconventional structures and bonding phenomena. Boron clusters and their complexes have various biological activities such as the drug delivery, imaging for diagnosis, treatment of cancer, and probe of protein-biomolecular interactions. For all of these reactivities, the interaction mechanisms and the corresponding energetics between biomaterials and boron clusters are of essential importance as a basic step in the understanding, and thereby design of relevant materials. During the past few years, attempts have been made to probe the nature of these interactions using quantum chemical calculations mainly with density functional theory (DFT) methods. This chapter provides a summary of the theoretical viewpoint on this issue.",book:{id:"11762",title:"Characteristics and Applications of Boron",coverURL:"https://cdn.intechopen.com/books/images_new/11762.jpg"},signatures:"Ehsan Shakerzadeh, Elham Tahmasebi, Long Van Duong and Minh Tho Nguyen"},{id:"83048",title:"Structural, Magnetic, and Magnetodielectric Properties of Bi-Based Modified Ceramic Composites",slug:"structural-magnetic-and-magnetodielectric-properties-of-bi-based-modified-ceramic-composites",totalDownloads:2,totalDimensionsCites:0,doi:"10.5772/intechopen.106569",abstract:"In this chapter, we introduce a promising composite material, which can be used as a potential candidate in the field of charge storage, sensors, and spintronic devices. The structural, magnetic, and magnetodielectric properties of the pure cum composite samples are investigated. The Rietveld refinement of the X-ray data confirmed the presence of a single (A21am) and mixed phases (A21am + R-3c + Pbam) in the pure and composite sample, correspondingly. The SEM microstructure suggests the contrasting nature of the homogeneous and heterogeneous distribution of grains in the corresponding pure and composite sample. The magnetic properties of the composite sample increase due to the enhanced exchange interaction between the different magnetic ions. The frequency-dependent dielectric subjected to a constant magnetic field indicates the signature of magnetodielectric (MD) coupling for both the samples. The field variation of the MD loop shows the symmetric hysteresis loop in the composite due to the addition of magnetostrictive La0.67Sr0.33MnO3 and the non-collinear antiferromagnetic Bi2Fe4O9 phase. The maximum value of MD% (~0.12%) is enhanced by ~13 times in the composite than in the pure sample. Therefore, the improved MD coupling and symmetric switching of the MD loop of the composite make it a suitable candidate for low power consumption storage devices.",book:{id:"11117",title:"Smart and Advanced Ceramics and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11117.jpg"},signatures:"Rasmita Jena, Kouru Chandrakanta and Anil Kumar Singh"},{id:"83035",title:"Breaking the Property Trade-Offs by Using Entropic Conceptions",slug:"breaking-the-property-trade-offs-by-using-entropic-conceptions",totalDownloads:11,totalDimensionsCites:0,doi:"10.5772/intechopen.106532",abstract:"Entropic conception has been used as an effective strategy for developing materials to break the property recordings of current materials, for example, breaking the trade-off between the high-strength and low-ductility structural alloys. The performance of materials usually under a complex circumstance, a balance of multiple properties, for example, combined the high-strength, high ductility, high conductivity, high corrosion resistance, high irradiation resistance, etc., the strategy of high-entropy-alloy (HEA) will provide a materials design and development technology to realize the goal. Magnetic materials usually exhibit excellent magnetic properties but weak mechanical properties and corrosion resistance. The reported unique behaviors of HEAs, for example, self-healing effects may be the mechanism for the high irradiation resistance of the HEAs, and self-sharpening behaviors of the tungsten-based HEAs main closely be related to the serration behaviors.",book:{id:"11468",title:"High Entropy Materials - Microstructures and Properties",coverURL:"https://cdn.intechopen.com/books/images_new/11468.jpg"},signatures:"Yong Zhang and Xuehui Yan"},{id:"82929",title:"Prediction of Solubility and Miscibility Parameters of Bismuth-Arsenic Complex and Amorphous Mineral Compounds Using Molecular Dynamics Simulation",slug:"prediction-of-solubility-and-miscibility-parameters-of-bismuth-arsenic-complex-and-amorphous-mineral",totalDownloads:4,totalDimensionsCites:0,doi:"10.5772/intechopen.106316",abstract:"Bismuth is one of the most difficult impurities to remove in mining concentrates and low concentrations generate problems in silver and copper refineries. Therefore, financial penalties are established when concentrations exceed 0.05%. Some researchers had used arsenic to remove bismuth with results of up to 52% of extraction. Unfortunately, this mechanism is not yet fully understood. The objective of this research was to obtain the solubility parameters of amorphous mineral compounds, including bismuth-based compounds, through computational simulation using molecular dynamics. The composition of the mineral sample was determined by X-ray diffraction and the crystalline species were obtained and modeled using Materials Studio software. The nanostructures were optimized by an energy minimization methodology using the Broyden-Fletcher-Goldfarb-Shanno algorithm and were validated using the figure of merit equation and density. Simulations were performed using the Universal Force Field at constant pressure and temperature. The results of the minerals identified in the sample were compared with arsenic trioxide, indicating miscibility between As2O3 and Bi2O3, possible miscibility with 10 other minerals, and immiscibility with the rest. The results indicate that As2O3 can be successfully used for the removal of Bi2O3 without a negative effect on the recovery of other minerals of higher commercial value.",book:{id:"11467",title:"Bismuth-Based Nanostructured Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11467.jpg"},signatures:"Francisco Adrián De la Torre-Martínez, Efren Delgado, María Dolores Josefina Rodríguez Rosales, Hiram Medrano-Roldán, Javier López-Miranda and Damián Reyes-Jáquez"},{id:"82940",title:"Role of Surface Defects and Optical Band-gap Energy on Photocatalytic Activities of Titanate-based Perovskite Nanomaterial",slug:"role-of-surface-defects-and-optical-band-gap-energy-on-photocatalytic-activities-of-titanate-based-p",totalDownloads:4,totalDimensionsCites:0,doi:"10.5772/intechopen.106253",abstract:"In recent years, water pollution has become one of the major challenges faced by humans because of consistent rise in population and industrial activities. Water pollution due to discharge from cosmetics and pharmaceutical wastes, organic dyes, and heavy metal seen as carcinogens has the potential to disrupt hormonal processes in the body. Different approaches such as chlorination, aerobic treatment, aeration, and filtration have been deployed to treat wastewaters before being discharged into the streams, lakes, and rivers. However, more attention has been accorded to treatment approaches that involve use of nanomaterial due to non-secondary pollution, energy efficiency, and ease of operation. Titanate-based perovskite (TBP) is one of the most frequently studied nanomaterials for photocatalytic applications because of its stability and flexibility in optical band-gap modification. This chapter provided an overview of basic principles and mechanisms of a semiconductor photocatalyst, and current synthesis techniques that have been used in formulating TBP nanomaterial. The effect of reaction conditions and approaches such as doping, codoping, composites, temperature, pH, precursor type, surface area, and morphology on surface defects and optical band-gap energy of TBP nanomaterial was highlighted. Importantly, the impact of surface defects and optical band-gap energy of TBP on its photocatalytic activities was discussed. Finally, how to enhance the degradation efficiency of TBP was proposed.",book:{id:"11469",title:"Recent Advances in Perovskite Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11469.jpg"},signatures:"Izunna Stanislaus Okeke, Priscilla Yahemba Aondona, Amoge Chidinma Ogu, Eugene Echeweozo and Fabian Ifeanyichukwu Ezema"}],onlineFirstChaptersTotal:81},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:141,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:124,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",isOpenForSubmission:!0,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",isOpenForSubmission:!0,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",isOpenForSubmission:!0,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:27,paginationItems:[{id:"83092",title:"Novel Composites for Bone Tissue Engineering",doi:"10.5772/intechopen.106255",signatures:"Pugalanthipandian Sankaralingam, Poornimadevi Sakthivel and Vijayakumar Chinnaswamy Thangavel",slug:"novel-composites-for-bone-tissue-engineering",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biomimetics - Bridging the Gap",coverURL:"https://cdn.intechopen.com/books/images_new/11453.jpg",subseries:{id:"8",title:"Bioinspired Technology and Biomechanics"}}},{id:"82800",title:"Repurposing Drugs as Potential Therapeutics for the SARS-Cov-2 Viral Infection: Automatizing a Blind Molecular Docking High-throughput Pipeline",doi:"10.5772/intechopen.105792",signatures:"Aldo Herrera-Rodulfo, Mariana Andrade-Medina and Mauricio Carrillo-Tripp",slug:"repurposing-drugs-as-potential-therapeutics-for-the-sars-cov-2-viral-infection-automatizing-a-blind-",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82582",title:"Protecting Bioelectric Signals from Electromagnetic Interference in a Wireless World",doi:"10.5772/intechopen.105951",signatures:"David Marcarian",slug:"protecting-bioelectric-signals-from-electromagnetic-interference-in-a-wireless-world",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82586",title:"Fundamentals of Molecular Docking and Comparative Analysis of Protein–Small-Molecule Docking Approaches",doi:"10.5772/intechopen.105815",signatures:"Maden Sefika Feyza, Sezer Selin and Acuner Saliha Ece",slug:"fundamentals-of-molecular-docking-and-comparative-analysis-of-protein-small-molecule-docking-approac",totalDownloads:27,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:5,paginationItems:[{id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",hash:"727e7eb3d4ba529ec5eb4f150e078523",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 22nd 2022",isOpenForSubmission:!0,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12222",title:"Advances and Challenges in Microplastics",coverURL:"https://cdn.intechopen.com/books/images_new/12222.jpg",hash:"a36734a551e0997d2255f6ce99eff818",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 1st 2022",isOpenForSubmission:!0,editors:[{id:"347657",title:"Prof.",name:"El-Sayed",surname:"Salama",slug:"el-sayed-salama",fullName:"El-Sayed Salama"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11650",title:"Aquifers - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11650.jpg",hash:"27c1a2a053cb1d83de903c5b969bc3a2",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 12th 2022",isOpenForSubmission:!0,editors:[{id:"271093",title:"Dr.",name:"Abhay",surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12223",title:"Sustainable Management of Natural Resources",coverURL:"https://cdn.intechopen.com/books/images_new/12223.jpg",hash:"1881a08bbd8f5dc1102c5cb7c635bc35",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 19th 2022",isOpenForSubmission:!0,editors:[{id:"144417",title:"Dr.",name:"Mohd Nazip",surname:"Suratman",slug:"mohd-nazip-suratman",fullName:"Mohd Nazip Suratman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11668",title:"Mercury Pollution",coverURL:"https://cdn.intechopen.com/books/images_new/11668.jpg",hash:"0bd111f57835089cad4a9741326dbab7",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 22nd 2022",isOpenForSubmission:!0,editors:[{id:"196849",title:"Dr.",name:"Ahmed",surname:"Abdelhafez",slug:"ahmed-abdelhafez",fullName:"Ahmed Abdelhafez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:21,paginationItems:[{id:"83000",title:"Purine and Pyrimidine Pathways as Antimalarial Targets",doi:"10.5772/intechopen.106468",signatures:"Yacoba V.T. Minnow and Vern L. Schramm",slug:"purine-and-pyrimidine-pathways-as-antimalarial-targets",totalDownloads:1,totalCrossrefCites:null,totalDimensionsCites:null,authors:null,book:{title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"83065",title:"Interventions and Practical Approaches to Reduce the Burden of Malaria on School-Aged Children",doi:"10.5772/intechopen.106469",signatures:"Andrew Macnab",slug:"interventions-and-practical-approaches-to-reduce-the-burden-of-malaria-on-school-aged-children",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Andrew",surname:"Macnab"}],book:{title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82804",title:"Psychiatric Problems in HIV Care",doi:"10.5772/intechopen.106077",signatures:"Seggane Musisi and Noeline Nakasujja",slug:"psychiatric-problems-in-hiv-care",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82827",title:"Epidemiology and Control of Schistosomiasis",doi:"10.5772/intechopen.105170",signatures:"Célestin Kyambikwa Bisangamo",slug:"epidemiology-and-control-of-schistosomiasis",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82817",title:"Perspective Chapter: Microfluidic Technologies for On-Site Detection and Quantification of Infectious Diseases - The Experience with SARS-CoV-2/COVID-19",doi:"10.5772/intechopen.105950",signatures:"Andres Escobar and Chang-qing Xu",slug:"perspective-chapter-microfluidic-technologies-for-on-site-detection-and-quantification-of-infectious",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82667",title:"Perspective Chapter: Analysis of SARS-CoV-2 Indirect Spreading Routes and Possible Countermeasures",doi:"10.5772/intechopen.105914",signatures:"Cesare Saccani, Marco Pellegrini and Alessandro Guzzini",slug:"perspective-chapter-analysis-of-sars-cov-2-indirect-spreading-routes-and-possible-countermeasures",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82559",title:"Perspective Chapter: Bioinformatics Study of the Evolution of SARS-CoV-2 Spike Protein",doi:"10.5772/intechopen.105915",signatures:"Črtomir Podlipnik, Radostina Alexandrova, Sebastian Pleško, Urban Bren and Marko Jukič",slug:"perspective-chapter-bioinformatics-study-of-the-evolution-of-sars-cov-2-spike-protein",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82521",title:"Challenges in Platelet Functions in HIV/AIDS Management",doi:"10.5772/intechopen.105731",signatures:"Gordon Ogweno",slug:"challenges-in-platelet-functions-in-hiv-aids-management",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82701",title:"Pathology of Streptococcal Infections",doi:"10.5772/intechopen.105814",signatures:"Yutaka Tsutsumi",slug:"pathology-of-streptococcal-infections",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Yutaka",surname:"Tsutsumi"}],book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82634",title:"Bacterial Sexually Transmitted Disease",doi:"10.5772/intechopen.105747",signatures:"Lebeza Alemu Tenaw",slug:"bacterial-sexually-transmitted-disease",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},subseriesFiltersForOFChapters:[{caption:"Fungal Infectious Diseases",value:4,count:1,group:"subseries"},{caption:"Bacterial Infectious Diseases",value:3,count:5,group:"subseries"},{caption:"Parasitic Infectious Diseases",value:5,count:5,group:"subseries"},{caption:"Viral Infectious Diseases",value:6,count:10,group:"subseries"}],publishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",slug:"animal-reproduction",publishedDate:"May 25th 2022",editedByType:"Edited by",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",hash:"2d66af42fb17d0a6556bb9ef28e273c7",volumeInSeries:11,fullTitle:"Animal Reproduction",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt",profilePictureURL:"https://mts.intechopen.com/storage/users/90846/images/system/90846.jpg",institutionString:"İskenderun Technical University",institution:{name:"İskenderun Technical University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",slug:"animal-feed-science-and-nutrition-production-health-and-environment",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Amlan Kumar Patra",hash:"79944fc8fbbaa329aed6fde388154832",volumeInSeries:10,fullTitle:"Animal Feed Science and Nutrition - Production, Health and Environment",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Sergey Tkachev",hash:"49cce3f548da548c718c865feb343509",volumeInSeries:9,fullTitle:"Rabies Virus at the Beginning of 21st Century",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10496",title:"Advanced Studies in the 21st Century Animal Nutrition",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",slug:"advanced-studies-in-the-21st-century-animal-nutrition",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"László Babinszky, Juliana Oliveira and Edson Mauro Santos",hash:"8ffe43a82ac48b309abc3632bbf3efd0",volumeInSeries:8,fullTitle:"Advanced Studies in the 21st Century Animal Nutrition",editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",slug:"canine-genetics-health-and-medicine",publishedDate:"June 2nd 2021",editedByType:"Edited by",bookSignature:"Catrin Rutland",hash:"b91512e31ce34032e560362e6cbccc1c",volumeInSeries:7,fullTitle:"Canine Genetics, Health and Medicine",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9081",title:"Equine Science",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",slug:"equine-science",publishedDate:"September 23rd 2020",editedByType:"Edited by",bookSignature:"Catrin Rutland and Albert Rizvanov",hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",volumeInSeries:5,fullTitle:"Equine Science",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón Poggi",slug:"juan-carlos-gardon-poggi",fullName:"Juan Carlos Gardón Poggi",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:null,institution:{name:"Valencia Catholic University Saint Vincent Martyr",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",institutionString:null,institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Animal Nutrition",value:20,count:2},{group:"subseries",caption:"Animal Reproductive Biology and Technology",value:28,count:4},{group:"subseries",caption:"Animal Science",value:19,count:5}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:1},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:754,paginationItems:[{id:"310674",title:"Dr.",name:"Pravin",middleName:null,surname:"Kendrekar",slug:"pravin-kendrekar",fullName:"Pravin Kendrekar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/310674/images/system/310674.jpg",biography:"Dr. Pravin Kendrekar, MSc, MBA, Ph.D., is currently a visiting scientist at the Lipid Nanostructure Laboratory, University of Central Lancashire, England. He previously worked as a post-doctoral fellow at the Ben-Gurion University of Negev, Israel; University of the Free State, South Africa; and Central University of Technology Bloemfontein, South Africa. He obtained his Ph.D. in Organic Chemistry from Nagaoka University of Technology, Japan. He has published more than seventy-four journal articles and attended several national and international conferences as speaker and chair. Dr. Kendrekar has received many international awards. He has several funded projects, namely, anti-malaria drug development, MRSA, and SARS-CoV-2 activity of curcumin and its formulations. He has filed four patents in collaboration with the University of Central Lancashire and Mayo Clinic Infectious Diseases. His present research includes organic synthesis, drug discovery and development, biochemistry, nanoscience, and nanotechnology.",institutionString:"Visiting Scientist at Lipid Nanostructures Laboratory, Centre for Smart Materials, School of Natural Sciences, University of Central Lancashire",institution:null},{id:"428125",title:"Dr.",name:"Vinayak",middleName:null,surname:"Adimule",slug:"vinayak-adimule",fullName:"Vinayak Adimule",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/428125/images/system/428125.jpg",biography:"Dr. Vinayak Adimule, MSc, Ph.D., is a professor and dean of R&D, Angadi Institute of Technology and Management, India. He has 15 years of research experience as a senior research scientist and associate research scientist in R&D organizations. He has published more than fifty research articles as well as several book chapters. He has two Indian patents and two international patents to his credit. Dr. Adimule has attended, chaired, and presented papers at national and international conferences. He is a guest editor for Topics in Catalysis and other journals. He is also an editorial board member, life member, and associate member for many international societies and research institutions. His research interests include nanoelectronics, material chemistry, artificial intelligence, sensors and actuators, bio-nanomaterials, and medicinal chemistry.",institutionString:"Angadi Institute of Technology and Management",institution:null},{id:"284317",title:"Prof.",name:"Kantharaju",middleName:null,surname:"Kamanna",slug:"kantharaju-kamanna",fullName:"Kantharaju Kamanna",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284317/images/21050_n.jpg",biography:"Prof. K. Kantharaju has received Bachelor of science (PCM), master of science (Organic Chemistry) and Doctor of Philosophy in Chemistry from Bangalore University. He worked as a Executive Research & Development @ Cadila Pharmaceuticals Ltd, Ahmedabad. He received DBT-postdoc fellow @ Molecular Biophysics Unit, Indian Institute of Science, Bangalore under the supervision of Prof. P. Balaram, later he moved to NIH-postdoc researcher at Drexel University College of Medicine, Philadelphia, USA, after his return from postdoc joined NITK-Surthakal as a Adhoc faculty at department of chemistry. Since from August 2013 working as a Associate Professor, and in 2016 promoted to Profeesor in the School of Basic Sciences: Department of Chemistry and having 20 years of teaching and research experiences.",institutionString:null,institution:{name:"Rani Channamma University, Belagavi",country:{name:"India"}}},{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",biography:"Prof. Dr. Yusuf Tutar conducts his research at the Hamidiye Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Division of Biochemistry, University of Health Sciences, Turkey. He is also a faculty member in the Molecular Oncology Program. He obtained his MSc and Ph.D. at Oregon State University and Texas Tech University, respectively. He pursued his postdoctoral studies at Rutgers University Medical School and the National Institutes of Health (NIH/NIDDK), USA. His research focuses on biochemistry, biophysics, genetics, molecular biology, and molecular medicine with specialization in the fields of drug design, protein structure-function, protein folding, prions, microRNA, pseudogenes, molecular cancer, epigenetics, metabolites, proteomics, genomics, protein expression, and characterization by spectroscopic and calorimetric methods.",institutionString:"University of Health Sciences",institution:null},{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",biography:"Hiroyuki Kagechika received his bachelor’s degree and Ph.D. in Pharmaceutical Sciences from the University of Tokyo, Japan, where he served as an associate professor until 2004. He is currently a professor at the Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU). From 2010 to 2012, he was the dean of the Graduate School of Biomedical Science. Since 2012, he has served as the vice dean of the Graduate School of Medical and Dental Sciences. He has been the director of the IBB since 2020. Dr. Kagechika’s major research interests are the medicinal chemistry of retinoids, vitamins D/K, and nuclear receptors. He has developed various compounds including a drug for acute promyelocytic leukemia.",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",country:{name:"Japan"}}},{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",biography:"Martins Emeje obtained a BPharm with distinction from Ahmadu Bello University, Nigeria, and an MPharm and Ph.D. from the University of Nigeria (UNN), where he received the best Ph.D. award and was enlisted as UNN’s “Face of Research.” He established the first nanomedicine center in Nigeria and was the pioneer head of the intellectual property and technology transfer as well as the technology innovation and support center. Prof. Emeje’s several international fellowships include the prestigious Raman fellowship. He has published more than 150 articles and patents. He is also the head of R&D at NIPRD and holds a visiting professor position at Nnamdi Azikiwe University, Nigeria. He has a postgraduate certificate in Project Management from Walden University, Minnesota, as well as a professional teaching certificate and a World Bank certification in Public Procurement. Prof. Emeje was a national chairman of academic pharmacists in Nigeria and the 2021 winner of the May & Baker Nigeria Plc–sponsored prize for professional service in research and innovation.",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",country:{name:"Nigeria"}}},{id:"436430",title:"Associate Prof.",name:"Mesut",middleName:null,surname:"Işık",slug:"mesut-isik",fullName:"Mesut Işık",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/436430/images/19686_n.jpg",biography:null,institutionString:null,institution:{name:"Bilecik University",country:{name:"Turkey"}}},{id:"268659",title:"Ms.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/268659/images/8143_n.jpg",biography:"Dr. Zhan received his undergraduate and graduate training in the fields of preventive medicine and epidemiology and statistics at the West China University of Medical Sciences in China during 1989 to 1999. He received his post-doctoral training in oncology and cancer proteomics for two years at the Cancer Research Institute of Human Medical University in China. In 2001, he went to the University of Tennessee Health Science Center (UTHSC) in USA, where he was a post-doctoral researcher and focused on mass spectrometry and cancer proteomics. Then, he was appointed as an Assistant Professor of Neurology, UTHSC in 2005. He moved to the Cleveland Clinic in USA as a Project Scientist/Staff in 2006 where he focused on the studies of eye disease proteomics and biomarkers. He returned to UTHSC as an Assistant Professor of Neurology in the end of 2007, engaging in proteomics and biomarker studies of lung diseases and brain tumors, and initiating the studies of predictive, preventive, and personalized medicine (PPPM) in cancer. In 2010, he was promoted to Associate Professor of Neurology, UTHSC. Currently, he is a Professor at Xiangya Hospital of Central South University in China, Fellow of Royal Society of Medicine (FRSM), the European EPMA National Representative in China, Regular Member of American Association for the Advancement of Science (AAAS), European Cooperation of Science and Technology (e-COST) grant evaluator, Associate Editors of BMC Genomics, BMC Medical Genomics, EPMA Journal, and Frontiers in Endocrinology, Executive Editor-in-Chief of Med One. He has\npublished 116 peer-reviewed research articles, 16 book chapters, 2 books, and 2 US patents. His current main research interest focuses on the studies of cancer proteomics and biomarkers, and the use of modern omics techniques and systems biology for PPPM in cancer, and on the development and use of 2DE-LC/MS for the large-scale study of human proteoforms.",institutionString:null,institution:{name:"Xiangya Hospital Central South University",country:{name:"China"}}},{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",biography:"Dr. Rizwan Ahmad is a University Professor and Coordinator, Quality and Development, College of Medicine, Imam Abdulrahman bin Faisal University, Saudi Arabia. Previously, he was Associate Professor of Human Function, Oman Medical College, Oman, and SBS University, Dehradun. Dr. Ahmad completed his education at Aligarh Muslim University, Aligarh. He has published several articles in peer-reviewed journals, chapters, and edited books. His area of specialization is free radical biochemistry and autoimmune diseases.",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",country:{name:"Saudi Arabia"}}},{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",biography:"Farid A. Badria, Ph.D., is the recipient of several awards, including The World Academy of Sciences (TWAS) Prize for Public Understanding of Science; the World Intellectual Property Organization (WIPO) Gold Medal for best invention; Outstanding Arab Scholar, Kuwait; and the Khwarizmi International Award, Iran. He has 250 publications, 12 books, 20 patents, and several marketed pharmaceutical products to his credit. He continues to lead research projects on developing new therapies for liver, skin disorders, and cancer. Dr. Badria was listed among the world’s top 2% of scientists in medicinal and biomolecular chemistry in 2019 and 2020. He is a member of the Arab Development Fund, Kuwait; International Cell Research Organization–United Nations Educational, Scientific and Cultural Organization (ICRO–UNESCO), Chile; and UNESCO Biotechnology France",institutionString:"Mansoura University",institution:{name:"Mansoura University",country:{name:"Egypt"}}},{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",biography:"Dr. Singh received a BPharm (2003) and MPharm (2005) from Panjab University, Chandigarh, India, and a Ph.D. (2013) from Punjab Technical University (PTU), Jalandhar, India. He has more than sixteen years of teaching experience and has supervised numerous postgraduate and Ph.D. students. He has to his credit more than seventy papers in SCI- and SCOPUS-indexed journals, fifty-five conference proceedings, four books, six Best Paper Awards, and five projects from different government agencies. He is currently an editorial board member of eight international journals and a reviewer for more than fifty scientific journals. He received Top Reviewer and Excellent Peer Reviewer Awards from Publons in 2016 and 2017, respectively. He is also on the panel of The International Reviewer for reviewing research proposals for grants from the Royal Society. He also serves as a Publons Academy mentor and Bentham brand ambassador.",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",country:{name:"India"}}},{id:"142388",title:"Dr.",name:"Thiago",middleName:"Gomes",surname:"Gomes Heck",slug:"thiago-gomes-heck",fullName:"Thiago Gomes Heck",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/142388/images/7259_n.jpg",biography:null,institutionString:null,institution:{name:"Universidade Regional do Noroeste do Estado do Rio Grande do Sul",country:{name:"Brazil"}}},{id:"336273",title:"Assistant Prof.",name:"Janja",middleName:null,surname:"Zupan",slug:"janja-zupan",fullName:"Janja Zupan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/336273/images/14853_n.jpeg",biography:"Janja Zupan graduated in 2005 at the Department of Clinical Biochemistry (superviser prof. dr. Janja Marc) in the field of genetics of osteoporosis. Since November 2009 she is working as a Teaching Assistant at the Faculty of Pharmacy, Department of Clinical Biochemistry. In 2011 she completed part of her research and PhD work at Institute of Genetics and Molecular Medicine, University of Edinburgh. She finished her PhD entitled The influence of the proinflammatory cytokines on the RANK/RANKL/OPG in bone tissue of osteoporotic and osteoarthritic patients in 2012. From 2014-2016 she worked at the Institute of Biomedical Sciences, University of Aberdeen as a postdoctoral research fellow on UK Arthritis research project where she gained knowledge in mesenchymal stem cells and regenerative medicine. She returned back to University of Ljubljana, Faculty of Pharmacy in 2016. She is currently leading project entitled Mesenchymal stem cells-the keepers of tissue endogenous regenerative capacity facing up to aging of the musculoskeletal system funded by Slovenian Research Agency.",institutionString:null,institution:{name:"University of Ljubljana",country:{name:"Slovenia"}}},{id:"357453",title:"Dr.",name:"Radheshyam",middleName:null,surname:"Maurya",slug:"radheshyam-maurya",fullName:"Radheshyam Maurya",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/357453/images/16535_n.jpg",biography:null,institutionString:null,institution:{name:"University of Hyderabad",country:{name:"India"}}},{id:"418340",title:"Dr.",name:"Jyotirmoi",middleName:null,surname:"Aich",slug:"jyotirmoi-aich",fullName:"Jyotirmoi Aich",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038Ugi5QAC/Profile_Picture_2022-04-15T07:48:28.png",biography:"Biotechnologist with 15 years of research including 6 years of teaching experience. Demonstrated record of scientific achievements through consistent publication record (H index = 13, with 874 citations) in high impact journals such as Nature Communications, Oncotarget, Annals of Oncology, PNAS, and AJRCCM, etc. Strong research professional with a post-doctorate from ACTREC where I gained experimental oncology experience in clinical settings and a doctorate from IGIB where I gained expertise in asthma pathophysiology. A well-trained biotechnologist with diverse experience on the bench across different research themes ranging from asthma to cancer and other infectious diseases. An individual with a strong commitment and innovative mindset. Have the ability to work on diverse projects such as regenerative and molecular medicine with an overall mindset of improving healthcare.",institutionString:"DY Patil Deemed to Be University",institution:null},{id:"349288",title:"Prof.",name:"Soumya",middleName:null,surname:"Basu",slug:"soumya-basu",fullName:"Soumya Basu",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035QxIDQA0/Profile_Picture_2022-04-15T07:47:01.jpg",biography:"Soumya Basu, Ph.D., is currently working as an Associate Professor at Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India. With 16+ years of trans-disciplinary research experience in Drug Design, development, and pre-clinical validation; 20+ research article publications in journals of repute, 9+ years of teaching experience, trained with cross-disciplinary education, Dr. Basu is a life-long learner and always thrives for new challenges.\r\nHer research area is the design and synthesis of small molecule partial agonists of PPAR-γ in lung cancer. She is also using artificial intelligence and deep learning methods to understand the exosomal miRNA’s role in cancer metastasis. Dr. Basu is the recipient of many awards including the Early Career Research Award from the Department of Science and Technology, Govt. of India. She is a reviewer of many journals like Molecular Biology Reports, Frontiers in Oncology, RSC Advances, PLOS ONE, Journal of Biomolecular Structure & Dynamics, Journal of Molecular Graphics and Modelling, etc. She has edited and authored/co-authored 21 journal papers, 3 book chapters, and 15 abstracts. She is a Board of Studies member at her university. She is a life member of 'The Cytometry Society”-in India and 'All India Cell Biology Society”- in India.",institutionString:"Dr. D.Y. Patil Vidyapeeth, Pune",institution:{name:"Dr. D.Y. Patil Vidyapeeth, Pune",country:{name:"India"}}},{id:"354817",title:"Dr.",name:"Anubhab",middleName:null,surname:"Mukherjee",slug:"anubhab-mukherjee",fullName:"Anubhab Mukherjee",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0033Y0000365PbRQAU/ProfilePicture%202022-04-15%2005%3A11%3A18.480",biography:"A former member of Laboratory of Nanomedicine, Brigham and Women’s Hospital, Harvard University, Boston, USA, Dr. Anubhab Mukherjee is an ardent votary of science who strives to make an impact in the lives of those afflicted with cancer and other chronic/acute ailments. He completed his Ph.D. from CSIR-Indian Institute of Chemical Technology, Hyderabad, India, having been skilled with RNAi, liposomal drug delivery, preclinical cell and animal studies. He pursued post-doctoral research at College of Pharmacy, Health Science Center, Texas A & M University and was involved in another postdoctoral research at Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Santa Monica, California. In 2015, he worked in Harvard-MIT Health Sciences & Technology as a visiting scientist. He has substantial experience in nanotechnology-based formulation development and successfully served various Indian organizations to develop pharmaceuticals and nutraceutical products. He is an inventor in many US patents and an author in many peer-reviewed articles, book chapters and books published in various media of international repute. Dr. Mukherjee is currently serving as Principal Scientist, R&D at Esperer Onco Nutrition (EON) Pvt. Ltd. and heads the Hyderabad R&D center of the organization.",institutionString:"Esperer Onco Nutrition Pvt Ltd.",institution:null},{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/319365/images/system/319365.png",biography:"Manash K. Paul is a Principal Investigator and Scientist at the University of California Los Angeles. He has contributed significantly to the fields of stem cell biology, regenerative medicine, and lung cancer. His research focuses on various signaling processes involved in maintaining stem cell homeostasis during the injury-repair process, deciphering lung stem cell niche, pulmonary disease modeling, immuno-oncology, and drug discovery. He is currently investigating the role of extracellular vesicles in premalignant lung cell migration and detecting the metastatic phenotype of lung cancer via machine-learning-based analyses of exosomal signatures. Dr. Paul has published in more than fifty peer-reviewed international journals and is highly cited. He is the recipient of many awards, including the UCLA Vice Chancellor’s award, a senior member of the Institute of Electrical and Electronics Engineers (IEEE), and an editorial board member for several international journals.",institutionString:"University of California Los Angeles",institution:{name:"University of California Los Angeles",country:{name:"United States of America"}}},{id:"311457",title:"Dr.",name:"Júlia",middleName:null,surname:"Scherer Santos",slug:"julia-scherer-santos",fullName:"Júlia Scherer Santos",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/311457/images/system/311457.jpg",biography:"Dr. Júlia Scherer Santos works in the areas of cosmetology, nanotechnology, pharmaceutical technology, beauty, and aesthetics. Dr. Santos also has experience as a professor of graduate courses. Graduated in Pharmacy, specialization in Cosmetology and Cosmeceuticals applied to aesthetics, specialization in Aesthetic and Cosmetic Health, and a doctorate in Pharmaceutical Nanotechnology. Teaching experience in Pharmacy and Aesthetics and Cosmetics courses. She works mainly on the following subjects: nanotechnology, cosmetology, pharmaceutical technology, aesthetics.",institutionString:"Universidade Federal de Juiz de Fora",institution:{name:"Universidade Federal de Juiz de Fora",country:{name:"Brazil"}}},{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",biography:"Dr. Kükürt graduated from Uludağ University in Turkey. He started his academic career as a Research Assistant in the Department of Biochemistry at Kafkas University. In 2019, he completed his Ph.D. program in the Department of Biochemistry at the Institute of Health Sciences. He is currently working at the Department of Biochemistry, Kafkas University. He has 27 published research articles in academic journals, 11 book chapters, and 37 papers. He took part in 10 academic projects. He served as a reviewer for many articles. He still serves as a member of the review board in many academic journals. He is currently working on the protective activity of phenolic compounds in disorders associated with oxidative stress and inflammation.",institutionString:null,institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"178366",title:"Dr.",name:"Volkan",middleName:null,surname:"Gelen",slug:"volkan-gelen",fullName:"Volkan Gelen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178366/images/system/178366.jpg",biography:"Volkan Gelen is a Physiology specialist who received his veterinary degree from Kafkas University in 2011. Between 2011-2015, he worked as an assistant at Atatürk University, Faculty of Veterinary Medicine, Department of Physiology. In 2016, he joined Kafkas University, Faculty of Veterinary Medicine, Department of Physiology as an assistant professor. Dr. Gelen has been engaged in various academic activities at Kafkas University since 2016. There he completed 5 projects and has 3 ongoing projects. He has 60 articles published in scientific journals and 20 poster presentations in scientific congresses. His research interests include physiology, endocrine system, cancer, diabetes, cardiovascular system diseases, and isolated organ bath system studies.",institutionString:"Kafkas University",institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"418963",title:"Dr.",name:"Augustine Ododo",middleName:"Augustine",surname:"Osagie",slug:"augustine-ododo-osagie",fullName:"Augustine Ododo Osagie",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/418963/images/16900_n.jpg",biography:"Born into the family of Osagie, a prince of the Benin Kingdom. I am currently an academic in the Department of Medical Biochemistry, University of Benin. Part of the duties are to teach undergraduate students and conduct academic research.",institutionString:null,institution:{name:"University of Benin",country:{name:"Nigeria"}}},{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",biography:"Prof. Shagufta Perveen is a Distinguish Professor in the Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. Dr. Perveen has acted as the principal investigator of major research projects funded by the research unit of King Saud University. She has more than ninety original research papers in peer-reviewed journals of international repute to her credit. She is a fellow member of the Royal Society of Chemistry UK and the American Chemical Society of the United States.",institutionString:"King Saud University",institution:{name:"King Saud University",country:{name:"Saudi Arabia"}}},{id:"49848",title:"Dr.",name:"Wen-Long",middleName:null,surname:"Hu",slug:"wen-long-hu",fullName:"Wen-Long Hu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49848/images/system/49848.jpg",biography:"Wen-Long Hu is Chief of the Division of Acupuncture, Department of Chinese Medicine at Kaohsiung Chang Gung Memorial Hospital, as well as an adjunct associate professor at Fooyin University and Kaohsiung Medical University. Wen-Long is President of Taiwan Traditional Chinese Medicine Medical Association. He has 28 years of experience in clinical practice in laser acupuncture therapy and 34 years in acupuncture. He is an invited speaker for lectures and workshops in laser acupuncture at many symposiums held by medical associations. He owns the patent for herbal preparation and producing, and for the supercritical fluid-treated needle. Dr. Hu has published three books, 12 book chapters, and more than 30 papers in reputed journals, besides serving as an editorial board member of repute.",institutionString:"Kaohsiung Chang Gung Memorial Hospital",institution:{name:"Kaohsiung Chang Gung Memorial Hospital",country:{name:"Taiwan"}}},{id:"298472",title:"Prof.",name:"Andrey V.",middleName:null,surname:"Grechko",slug:"andrey-v.-grechko",fullName:"Andrey V. Grechko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/298472/images/system/298472.png",biography:"Andrey Vyacheslavovich Grechko, Ph.D., Professor, is a Corresponding Member of the Russian Academy of Sciences. He graduated from the Semashko Moscow Medical Institute (Semashko National Research Institute of Public Health) with a degree in Medicine (1998), the Clinical Department of Dermatovenerology (2000), and received a second higher education in Psychology (2009). Professor A.V. Grechko held the position of Сhief Physician of the Central Clinical Hospital in Moscow. He worked as a professor at the faculty and was engaged in scientific research at the Medical University. Starting in 2013, he has been the initiator of the creation of the Federal Scientific and Clinical Center for Intensive Care and Rehabilitology, Moscow, Russian Federation, where he also serves as Director since 2015. He has many years of experience in research and teaching in various fields of medicine, is an author/co-author of more than 200 scientific publications, 13 patents, 15 medical books/chapters, including Chapter in Book «Metabolomics», IntechOpen, 2020 «Metabolomic Discovery of Microbiota Dysfunction as the Cause of Pathology».",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",biography:'Natalia Vladimirovna Beloborodova was educated at the Pirogov Russian National Research Medical University, with a degree in pediatrics in 1980, a Ph.D. in 1987, and a specialization in Clinical Microbiology from First Moscow State Medical University in 2004. She has been a Professor since 1996. Currently, she is the Head of the Laboratory of Metabolism, a division of the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russian Federation. N.V. Beloborodova has many years of clinical experience in the field of intensive care and surgery. She studies infectious complications and sepsis. She initiated a series of interdisciplinary clinical and experimental studies based on the concept of integrating human metabolism and its microbiota. Her scientific achievements are widely known: she is the recipient of the Marie E. Coates Award \\"Best lecturer-scientist\\" Gustafsson Fund, Karolinska Institutes, Stockholm, Sweden, and the International Sepsis Forum Award, Pasteur Institute, Paris, France (2014), etc. Professor N.V. Beloborodova wrote 210 papers, five books, 10 chapters and has edited four books.',institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"354260",title:"Ph.D.",name:"Tércio Elyan",middleName:"Azevedo",surname:"Azevedo Martins",slug:"tercio-elyan-azevedo-martins",fullName:"Tércio Elyan Azevedo Martins",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/354260/images/16241_n.jpg",biography:"Graduated in Pharmacy from the Federal University of Ceará with the modality in Industrial Pharmacy, Specialist in Production and Control of Medicines from the University of São Paulo (USP), Master in Pharmaceuticals and Medicines from the University of São Paulo (USP) and Doctor of Science in the program of Pharmaceuticals and Medicines by the University of São Paulo. Professor at Universidade Paulista (UNIP) in the areas of chemistry, cosmetology and trichology. Assistant Coordinator of the Higher Course in Aesthetic and Cosmetic Technology at Universidade Paulista Campus Chácara Santo Antônio. Experience in the Pharmacy area, with emphasis on Pharmacotechnics, Pharmaceutical Technology, Research and Development of Cosmetics, acting mainly on topics such as cosmetology, antioxidant activity, aesthetics, photoprotection, cyclodextrin and thermal analysis.",institutionString:null,institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"334285",title:"Ph.D. Student",name:"Sameer",middleName:"Kumar",surname:"Jagirdar",slug:"sameer-jagirdar",fullName:"Sameer Jagirdar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334285/images/14691_n.jpg",biography:"I\\'m a graduate student at the center for biosystems science and engineering at the Indian Institute of Science, Bangalore, India. I am interested in studying host-pathogen interactions at the biomaterial interface.",institutionString:null,institution:{name:"Indian Institute of Science Bangalore",country:{name:"India"}}},{id:"329248",title:"Dr.",name:"Md. Faheem",middleName:null,surname:"Haider",slug:"md.-faheem-haider",fullName:"Md. Faheem Haider",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329248/images/system/329248.jpg",biography:"Dr. Md. Faheem Haider completed his BPharm in 2012 at Integral University, Lucknow, India. In 2014, he completed his MPharm with specialization in Pharmaceutics at Babasaheb Bhimrao Ambedkar University, Lucknow, India. He received his Ph.D. degree from Jamia Hamdard University, New Delhi, India, in 2018. He was selected for the GPAT six times and his best All India Rank was 34. Currently, he is an assistant professor at Integral University. Previously he was an assistant professor at IIMT University, Meerut, India. He has experience teaching DPharm, Pharm.D, BPharm, and MPharm students. He has more than five publications in reputed journals to his credit. Dr. Faheem’s research area is the development and characterization of nanoformulation for the delivery of drugs to various organs.",institutionString:"Integral University",institution:{name:"Integral University",country:{name:"India"}}},{id:"329795",title:"Dr.",name:"Mohd Aftab",middleName:"Aftab",surname:"Siddiqui",slug:"mohd-aftab-siddiqui",fullName:"Mohd Aftab Siddiqui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329795/images/system/329795.png",biography:"Dr. Mohd Aftab Siddiqui is an assistant professor in the Faculty of Pharmacy, Integral University, Lucknow, India, where he obtained a Ph.D. in Pharmacology in 2020. He also obtained a BPharm and MPharm from the same university in 2013 and 2015, respectively. His area of research is the pharmacological screening of herbal drugs/natural products in liver cancer and cardiac diseases. He is a member of many professional bodies and has guided many MPharm and PharmD research projects. Dr. Siddiqui has many national and international publications and one German patent to his credit.",institutionString:"Integral University",institution:null}]}},subseries:{item:{id:"22",type:"subseries",title:"Applied Intelligence",keywords:"Machine Learning, Intelligence Algorithms, Data Science, Artificial Intelligence, Applications on Applied Intelligence",scope:"This field is the key in the current industrial revolution (Industry 4.0), where the new models and developments are based on the knowledge generation on applied intelligence. The motor of the society is the industry and the research of this topic has to be empowered in order to increase and improve the quality of our lives.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11418,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"13633",title:"Prof.",name:"Abdelhamid",middleName:null,surname:"Mellouk",slug:"abdelhamid-mellouk",fullName:"Abdelhamid Mellouk",profilePictureURL:"https://mts.intechopen.com/storage/users/13633/images/1567_n.jpg",institutionString:null,institution:{name:"Paris 12 Val de Marne University",institutionURL:null,country:{name:"France"}}},{id:"109268",title:"Dr.",name:"Ali",middleName:null,surname:"Al-Ataby",slug:"ali-al-ataby",fullName:"Ali Al-Ataby",profilePictureURL:"https://mts.intechopen.com/storage/users/109268/images/7410_n.jpg",institutionString:null,institution:{name:"University of Liverpool",institutionURL:null,country:{name:"United Kingdom"}}},{id:"3807",title:"Dr.",name:"Carmelo",middleName:"Jose Albanez",surname:"Bastos-Filho",slug:"carmelo-bastos-filho",fullName:"Carmelo Bastos-Filho",profilePictureURL:"https://mts.intechopen.com/storage/users/3807/images/624_n.jpg",institutionString:null,institution:{name:"Universidade de Pernambuco",institutionURL:null,country:{name:"Brazil"}}},{id:"38850",title:"Dr.",name:"Efren",middleName:null,surname:"Gorrostieta Hurtado",slug:"efren-gorrostieta-hurtado",fullName:"Efren Gorrostieta Hurtado",profilePictureURL:"https://mts.intechopen.com/storage/users/38850/images/system/38850.jpg",institutionString:null,institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},{id:"239041",title:"Dr.",name:"Yang",middleName:null,surname:"Yi",slug:"yang-yi",fullName:"Yang Yi",profilePictureURL:"https://mts.intechopen.com/storage/users/239041/images/system/239041.jpeg",institutionString:null,institution:{name:"Virginia Tech",institutionURL:null,country:{name:"United States of America"}}}]},onlineFirstChapters:{paginationCount:10,paginationItems:[{id:"82804",title:"Psychiatric Problems in HIV Care",doi:"10.5772/intechopen.106077",signatures:"Seggane Musisi and Noeline Nakasujja",slug:"psychiatric-problems-in-hiv-care",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82817",title:"Perspective Chapter: Microfluidic Technologies for On-Site Detection and Quantification of Infectious Diseases - The Experience with SARS-CoV-2/COVID-19",doi:"10.5772/intechopen.105950",signatures:"Andres Escobar and Chang-qing Xu",slug:"perspective-chapter-microfluidic-technologies-for-on-site-detection-and-quantification-of-infectious",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82667",title:"Perspective Chapter: Analysis of SARS-CoV-2 Indirect Spreading Routes and Possible Countermeasures",doi:"10.5772/intechopen.105914",signatures:"Cesare Saccani, Marco Pellegrini and Alessandro Guzzini",slug:"perspective-chapter-analysis-of-sars-cov-2-indirect-spreading-routes-and-possible-countermeasures",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82559",title:"Perspective Chapter: Bioinformatics Study of the Evolution of SARS-CoV-2 Spike Protein",doi:"10.5772/intechopen.105915",signatures:"Črtomir Podlipnik, Radostina Alexandrova, Sebastian Pleško, Urban Bren and Marko Jukič",slug:"perspective-chapter-bioinformatics-study-of-the-evolution-of-sars-cov-2-spike-protein",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82521",title:"Challenges in Platelet Functions in HIV/AIDS Management",doi:"10.5772/intechopen.105731",signatures:"Gordon Ogweno",slug:"challenges-in-platelet-functions-in-hiv-aids-management",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82552",title:"Perspective Chapter: SARS-CoV-2 Variants - Two Years Post-Onset of the Pandemic",doi:"10.5772/intechopen.105913",signatures:"Adekunle Sanyaolu, Aleksandra Marinkovic, Stephanie Prakash, Chuku Okorie, Abdul Jan, Priyank Desai, Abu Fahad Abbasi, Jasmine Mangat, Zaheeda Hosein, Kareem Hamdy, Nafees Haider, Nasar Khan, Rochelle Annan, Olanrewaju Badaru, Ricardo Izurieta and Stella Smith",slug:"perspective-chapter-sars-cov-2-variants-two-years-post-onset-of-the-pandemic",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82367",title:"Spatial Variation and Factors Associated with Unsuppressed HIV Viral Load among Women in an HIV Hyperendemic Area of KwaZulu-Natal, South Africa",doi:"10.5772/intechopen.105547",signatures:"Adenike O. Soogun, Ayesha B.M. Kharsany, Temesgen Zewotir and Delia North",slug:"spatial-variation-and-factors-associated-with-unsuppressed-hiv-viral-load-among-women-in-an-hiv-hype",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82207",title:"Management Strategies in Perinatal HIV",doi:"10.5772/intechopen.105451",signatures:"Kayla Aleshire and Rima Bazzi",slug:"management-strategies-in-perinatal-hiv",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82013",title:"Streamlining Laboratory Tests for HIV Detection",doi:"10.5772/intechopen.105096",signatures:"Ramakrishna Prakash and Mysore Krishnamurthy Yashaswini",slug:"streamlining-laboratory-tests-for-hiv-detection",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"81644",title:"Perspective Chapter: Ethics of Using Placebo Controlled Trials for Covid-19 Vaccine Development in Vulnerable Populations",doi:"10.5772/intechopen.104776",signatures:"Lesley Burgess, Jurie Jordaan and Matthew Wilson",slug:"perspective-chapter-ethics-of-using-placebo-controlled-trials-for-covid-19-vaccine-development-in-vu",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}}]},publishedBooks:{paginationCount:4,paginationItems:[{type:"book",id:"9869",title:"Self-Driving Vehicles and Enabling Technologies",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9869.jpg",slug:"self-driving-vehicles-and-enabling-technologies",publishedDate:"September 22nd 2021",editedByType:"Edited by",bookSignature:"Marian Găiceanu",hash:"fd451ca2e4785ef098e04b7d695a18d9",volumeInSeries:6,fullTitle:"Self-Driving Vehicles and Enabling Technologies",editors:[{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9958",title:"Artificial Intelligence",subtitle:"Latest Advances, New Paradigms and Novel Applications",coverURL:"https://cdn.intechopen.com/books/images_new/9958.jpg",slug:"artificial-intelligence-latest-advances-new-paradigms-and-novel-applications",publishedDate:"September 1st 2021",editedByType:"Edited by",bookSignature:"Eneko Osaba, Esther Villar, Jesús L. Lobo and Ibai Laña",hash:"39648fbfdaa11385097d62b1f13aad54",volumeInSeries:5,fullTitle:"Artificial Intelligence - Latest Advances, New Paradigms and Novel Applications",editors:[{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",institutionString:'"Politechnica" University Timişoara',institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:141,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:124,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/57923",hash:"",query:{},params:{id:"57923"},fullPath:"/profiles/57923",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()