Values of physical properties used in the simulation
\r\n\t- how to enhance local economy, and to create attractive economic environment;
\r\n\t- how to make the economy or businesses sustainable and resilient;
\r\n\t- how to maintain and enhance quality of life through social welfare enhancement (income, health, and housing), and security and safety enhancement (from crimes, pollution, diseases, and disasters);
\r\n\t- how to promote social justice and intergenerational equity on resources and opportunities;
\r\n\t- how to incorporate resilience and disater risk reduction into actions;
\r\n\t- how to maintain and enhance the quality of environment through co-existing with the environment, better land/land use management, conserving ecosystems, restore and rehabilitate already damaged ecosystems;
\r\n\t- how to improve planning, implementation and measurement of sustainability for monitored outcomes.
An emulsion is a two-phase liquid system of two immiscible liquids, where the liquid with lower mass fraction is dispersed in form of small droplets in other surrounding liquid of higher mass fraction. Emulsions are widely used to produce sol–gel, drugs, synthetic materials, and food products. Based on the size of droplet, emulsions can be classified as micro and macro emulsion. Karbstein and Schubert, (1995) have made a limiting droplet size of 0.1 µm, below which the emulsion is termed as micro emulsion and above that size the emulsion is termed as macro emulsion. Size and size distribution of droplets play important roles in the stability of emulsion. There are also other factors such as sedimentation, skimming, droplet aggregation and coalescence, which may affect the stability of the droplets. Thus for making a stable emulsion it is necessary to convert the dispersed phase into tiny droplets and stabilize them against coalescence. Some amount of energy is required in the process to break the dispersed phase into droplets. The amount of energy put in the dispersing phase also controls the resulting droplet size. The stability of newly formed droplets depends on how fast the used emulsifiers are able to occupy the newly created interfaces and how well they stabilize them. The common devices used to produce emulsions are rotor-stator-systems, stirrers and high-pressure homogenizers. During last two decades, new technologies of making emulsion have been developed. Compared to conventional method of emulsification such as rotor-stator method, these new techniques of emulsification have several advantages such as low energy consumption, controllable droplet size with proper distribution and easy scalability. These new methods are based on the microdroplet formation in micrometer sized channels. Three such new methods are T-junction emulsification, flow focusing emulsification, and membrane emulsification. In all these methods, controllable droplet formations are achieved by properly maintaining the combination of continuous and dispersed phase flow rate.
In membrane emulsification process, micro or macro porous membranes are used to generate droplets by pressing the dispersed phase through the porous matrix of the membrane towards the continuous phase. At the interface, the dispersed phase forms droplets near the region of pores openings and detached by the cross-flowing continuous phase. Sometimes surfactants are used to stabilize the droplets. Compared to the conventional method, membrane emulsification process requires a lower energy input (105 – 106 J/m3) to generate micro-sized droplets (Schubert and Behrend, 2003). Since small droplets are directly formed at the micro-pores of a membrane, rather than by disruption in zones of high energy density, smaller amount of stress is required in the process compared to the conventional method. The main disadvantage of the process is the requirement of longer production time compared to the conventional processes because of the slow rate at which the dispersed phase flows through the membrane (Joscelyne and Trägårdh, 1991, 2000). The longer production time can be reduced by increasing the flow rate of dispersed phase fluid. With the increase in dispersed phase flow rate, the droplet diameter increases first than decreases and the process shifts towards jetting phenomenon (Pathak, 2011). Thus there should be an optimum dispersed phase flux for optimum production time and droplet size in a membrane emulsification system.
The schematic diagram of a cross-flow membrane emulsification has been shown in Fig. 1. Some commonly used membranes are tubular micro-porous glass (MPG) and shirasu porous glass (SPG) membrane. Some metallic oxides such as ceramic α-Al2O3 or α-Al2O3 coated with titainia oxide or zirconia oxide are also used as membrane. These membranes contain cylindrical, interconnected, uniform micro-pores having pore sizes, typically ranging about 0.05–14 µm. In membrane emulsification system, the time of droplets formation, size and stability of droplets are three important parameters which control the emulsification system. Thus understanding the droplet dynamics in detail may enable to explore the possibilities and limits of membrane emulsification for various applications.
Schematic diagram of a cross-flow membrane emulsification process
In membrane emulsification process, the size distribution of pores and their relative spatial distribution in the membrane surface control the production of mono-disperse emulsions. The growth and detachment of the droplet i.e. droplet dynamics in membrane emulsification depends on several parameters. Luca et al., (2004) has classified them into three broad categories.
Operating parameters: cross-flow velocity, transmembrane pressure and disperse phase flux;
Membrane parameters: pore size, active pores, distance between the pores, membrane hydrophobicity/hydrophilicity;
Phase parameters: interfacial tension, viscosity and density of the processed phases.
Based on these parameters, the size of the droplet in membrane emulsification system depends upon the pore diameter and the dependence of the droplet diameter on pore diameter can be expressed as:
Dp = x\n\t\t\t\tD0(1)
where Dp is the droplet diameter and D0 is the pore diameter. Katoh et al., (1996) experimentally observed the value of x in the range of 2 to 12. The major factors affecting the value of x are: (i) the shear rates of continuous cross-flow fluid (ii) the dynamic interfacial tension, γ; and (iii) the disperse phase flux (Jd). Other parameters those implicitly control the value of x are: the average velocity of the continuous phase flow
Cross-flow velocity of continuous phase imparts drag force on the growing droplet for which the droplet detaches at the pore. With the increase in cross-flow velocity, the droplet diameter decreases. The dispersed phase flow rate or velocity influences the droplet dynamics via the inertial force competing with other forces such as drag and surface tension force. The difference between the pressure of dispersed phase in the dispersed phase channel and the average pressure of the continuous phase in the main channel is termed as transmembrane pressure.
The average pressure of the continuous phase is defined as:
where
The design and pore distribution of the membrane are important factors controlling the droplet dynamics in membrane emulsification. Due to presence of multi-pore and multi-droplet formation, there is a change in hydrodynamic effects caused by neighboring droplet and interactions between the droplets. The separation distance between the pores controls those hydrodynamic effects. If the separation distance of pores in the flow direction is small, the continuous phase velocity decreases and the boundary layer thickness increases as the flow approaches consecutive rows after crossing the first row. These would lead to an increase in the size of the droplets. With the increase in droplet size, there would be a caution of stability loss and coalescence of the droplets. For high efficiency of the emulsification process, narrow droplet size distribution and higher dispersed phase velocity is required. However, with the increase in dispersed phase flow rate, the droplet formation phenomenon shifts towards jetting (Pathak, 2011) and this requires a greater distance between the pores in the direction of the cross-flowing continuous phase in order to prevent drops from colliding and coalescing. In several experimental studies (Sugiura et al., 2002; Kobayashi et al, 2003, 2006) the droplet size distribution has been observed narrow up to a specific velocity of the dispersed phase, above which the diameter of the droplet distribution has been increased. Timgren et al. (2009) have investigated the effects of pore size distribution on hydrodynamic effects of droplet size and distribution. They observed that for small pore separation distance and with a low dispersed phase velocity the drop formation process was uniform, resulting an emulsion with a narrow drop size distribution. For shortest pore separation distance, with the increase in dispersed phase velocity, they observed the formation of poly dispersed emulsion, whereas pore separations of 15 and 20 times the pore diameter gave nearly mono dispersed emulsions.
The wetting behavior of membrane surface also controls the droplet growth. The wetting behavior of a membrane is represented by the static contact angle between the two liquid phases and the solid boundary. The static contact angle between the two phases and walls controls the evolution of the dispersed phase inside the micro-pore and in the continuous phase flow channel. If the angle is less than 90o the wall is said to be wetting and if it is greater than 90o, the wall is called the non-wetting.
Among different properties of the phase, surface tension controls the droplet dynamics in a greater way than any other properties. Surface tension force holds the droplet and offers the resistance against any deformation. The viscosities of both the phases have also effect on the droplet deformation. The drag force imparted by the continuous phase on the droplet depends upon the viscosity ratio of dispersed phase and continuous phase. For fixed flow rate of continuous phase the drag force increases with the increase in viscosity ratio up to some extent. After that value, the drag force becomes independent of the viscosity ratio. The densities of both phases enter into the droplet dynamics through the buoyancy or gravity force. In micro- or nano-fluidics flow the value of gravity force is very small and it can be neglected without loss of much accuracy.
All the parameters discussed in above control the droplet dynamics in membrane emulsification process with different magnitudes and output of the process can be analyzed on the basis of these operating parameters. Besides the individual effects, many of these parameters exhibit coupling effects. Different types of hydrodynamic forces act in the emulsification process. The droplet growth and deformation in membrane emulsification can be explained from the action of these and the final droplet size is a result of the interaction of these forces.
Different forces acting on the emulsification system
The major forces that act in the process are: drag force imparted by the flowing continuous phase, the interfacial tension force, the inertial force of the dispersed phase and the buoyancy or gravitational force. Different forces acting in the droplet formation process are shown in Fig. 2. Among these forces, interfacial tension force is the attaching force and other are detaching force. The droplet is detached from the pore when the detaching forces overcome the attaching force.
These four forces can be approximated as follows:
Drag force:
Surface tension force:
Inertial force of dispersed phase:
Buoyancy force:
In above
where
where b and h are the width and height of the continuous phase channel respectively. The drag coefficient
Out of these forces, the only attaching force is the surface tension force and remaining forces, drag and inertial and buoyancy force are detaching forces. Neglecting the buoyancy or gravity force, the balance of forces at the moment of droplet detachment can be written as
For low value of We number, the value of inertial force (
Thus analytically, droplet diameter increases with the increase in surface tension value.
Droplet formation and deformation have been studied for a long time due to complexity with the problem and practical utilities of the phenomenon. Droplet formation in a two-phase flow system possesses a rich dynamics with the involvement of several parameters such as average velocity of the liquids, their viscosities, densities, surface tension, surface chemistry and the flow geometry. Droplets formation results the creation of new surfaces which enhance the heat and mass transfer between the phases. Due to enhanced heat and mass transfer, the process has been used for wide ranges of phase-contact applications. Particularly the droplet formation in micro or nano size has received significant attention during last several years. Due to miniature size, the fabrication of experimental facility is expensive and reliable experimentation of microfluidic is very intricate. Hence the viable alternate is the numerical tools for investigating the problems. With the development of high speed computer and advanced algorithm, numerical modeling and simulation have become an essential part in the design and development of numerous engineering systems. Numerical simulations of droplet dynamics i.e. the investigations of two-phase flow in micro scale have been extensively undertaken during last several years. Various types of numerical techniques have been developed to solve the governing equations of the two-phase flow.
In numerical simulation of droplet dynamics or as a whole in the simulation of two-phase flow, there are several challenges which need to be carefully tackled to obtain reliable results. The main challenge is capturing the moving interface of the two phases accurately, which is not known priory. The accurate tracking of the interface and investigation of two-phase flow topology should be the essentiality of a good numerical method. There are several numerical methods based on interface kinematics to track the interface in free surface flows. Among them are: volume of fluid methods, front tracking methods, level set methods, phase field formulations, continuum advection schemes, boundary integral methods, particle-based methods, and moving mesh methods.
Volume of fluid method (VOF), earlier known as the volume tracking method, were originally developed by Nichols and Hirt (1975), Noh and Woodward (1976) and further extended by Hirt and Nichols (1981). Since then, the method has been extensively used and significantly improved over the years (Rudman,1997; Rider and Kothe,1998). The VOF method is based on the conservation of the volume fraction function F with respect to time and space, expressed as
In VOF method, the computational grid is kept fixed and the interface between the two fluids is tracked within each cell through which it passes. In a computational grid cell, the interface can be effectively represented by line of the slope. To reconstruct the interface, the piecewise linear interpolation calculation (PLIC) method developed by Youngs (1982) is used in the computation. The interfacial surface forces are incorporated as body forces per unit volume in the Navier-Stokes equations; hence no extra boundary condition is required across the interface.
The basic working principle of front tracking method is based on the marker and cell (MAC) formulation (Harlow and Welch, 1966; Daly, 1967). The interface is represented discretely by Lagrangian markers connected to form a front which lies within and moves through a stationary Eulerian mesh. As the front moves and deforms, interface points are added, deleted, and reconnected as necessary. Further details of the method may be found in (Glimm et al., 1985; Churn et al., 1986; Tryggvason et al., 1998).
Level set methods have been developed by Osher and Sethian (1988). This method can compute the geometrical properties of highly complicated interface without explicitly tracking the interface. The basic principle of the level set method is to embed the propagating interface Γ(t) as the zero level set of a higher dimensional function φ, defined as φ (x, t =0) = ±d, where d is the distance from x to Γ (t = 0). The function is chosen to be positive (negative) if x is outside (inside) the initial position of the interface Γ (t = 0) = φ (x, t =0)=0. Afterwards a dynamical equation for φ (x, t =0) that contains the embedded motion for Γ(t) as the level set φ =0 can be derived similarly as in the volume of fluid conservation equation (13)
In phase field method, interfacial forces are modeled as continuum forces by smoothing interface discontinuities and forces over thin but numerically resolvable layers. This smoothing allows conventional numerical approximations of interface kinematics on fixed grids. The method has been used for investigating the problems governed by Navier-Stokes equations (Antanovskii, 1995; Jacqumin, 1996).
Boundary integral methods are designed to track the interface explicitly, as in front tracking methods, although the flow solution in the entire domain is deduced solely from information possessed by discrete points along the interface. The advantage of these methods is the reduction of the flow problem by one dimension involving quantities of the interface only.
Particle-based methods use discrete "particles" to represent macroscopic fluid parcels. Here, Lagrangian coordinates are used to solve the Navier-Stokes equations on "particles" having properties such as mass, momentum, and energy. The nonlinear convection term is modeled simply as particle motion and by knowing the identity and position of each particle, material interfaces are automatically tracked. By using particle motion to approximate the convection terms, numerical diffusion across interfaces (where particles change identity) is virtually zero; hence interface widths are well defined.
In moving mesh methods, the position history of discrete point’s xi lying on the interface is tracked for all time by integrating the evolution equation, forward in time.
A moving mesh is Lagrangian if every point is moved, and mixed (Lagrangian-Eulerian) if grid points in a subset of the domain are moved. Mixed methods are used for mold filling simulations, where the mold computational domain can be held stationary and the molten liquid is followed with a Lagrangian mesh.
Besides these individual methods, there are some combined method such as coupled level set and volume of fluid method. This method has been developed to tackle the inefficiency of VOF method in calculating complex geometrical properties and problem of mass imbalance of level set method. In the coupled method, the LS function is used only to compute the geometric properties (normal and curvature) at the interface while the void fraction is calculated using the VOF approach. Ohta et al. (2007) and Sussman et al. (2007) developed a novel coupled LS-VOF method to determine the sharp interface for incompressible, immiscible two-phase flows for large value of density ratio.
Numerical investigation of active droplet formation is reasonably complex as it is potentially a multi-physics problem governed by a large number of partial differential equations (PDEs). Numerical simulation of droplet dynamics in membrane emulsion process requires accurate capturing of the evolving liquid–liquid interfaces. This gives sufficient challenge since the boundary between the two phases is not known priori and it is a part of the solution. In addition, the solution technique has to deal with different properties of both the phases such as density, viscosity, and velocity ratios. Numerical investigation of membrane emulsification process requires two main issues to be dealt with: one is permeation of the disperse phase through the membrane pores; the other is the mechanism of droplet detachment. Several earlier investigations have treated these issues separately; however both of them simultaneously contribute to droplet evolution and should be considered in the same framework. Both these issues have been considered in the present work. In the present work, numerical simulation of droplet dynamics in a membrane emulsification has been carried out considering multipore membrane. The hydrodynamic effects due to multipores and the effect of different operating parameters on the droplet dynamics have been investigated.
The flow configuration of membrane emulsification considered in the present work has been shown in Fig. 3. Here the membrane emulsification process with two pores has been considered. A uniform pore arrangement in the membrane surface has been considered and the simulation has been mode for a row of pores consisting of two pores. The dispersed phase liquid has been injected through cylindrical pores of 10 μm diameter and a length of 100 μm. The distance between the pores in cross-flow direction has been considered as 100 μm. The height of the rectangular channel through which the continuous phase flows has been considered as 150 μm (y-direction). The width of the computational domain has been considered as 150 μm (z-direction) and a length of 500 μm (x-direction) has been considered. Since the present computational domain is a small element of whole membrane emulsification process, symmetrical boundary conditions have been considered in both the sides of computational domain in z-direction. The fluid properties used in the present simulation are within the range of properties of o/w emulsion system. Simulations have been made for different values of the non-dimensional numbers and other flow properties as shown in Table 1.
Schematic of computational domain
In the simulation of membrane emulsification system, both the phases have been considered incompressible, isothermal and laminar flow. The phase properties and the surface tension have been assumed to be constant throughout the flow domain. The conservation of mass on the whole domain (both the fluid phases and interface) leading to continuity equation is written as:
The momentum equation or unsteady Navier-Stokes equation is written as:
In above
Parameters | Ranges |
Diameter of pore | 10 μm |
Flow rate of continuous phase | 0.27 and 0.54 liter/h |
Flow rate of dispersed phase | 0.0014 to 0.007 liter/h |
Viscosity of continuous phase | 0.001 Pa.s |
Viscosity of dispersed phase | 0.0036 to 0.014 Pa.s |
Density of continuous phase | 1000 kg/m3 |
Density of dispersed phase | 827 kg/m3 |
Surface tension | 0.0008 to 0.0024 N/m |
Weber no (We) | 0.0021 to 0.215 |
Capillary no (Ca) | 0.0208 to 0.0625 |
Froude no (Fr) | 6.37 to 637 |
Values of physical properties used in the simulation
Volume of fluid method (VOF) has been used for tracking the interface. In this method, the distribution of volume fraction is solved from its transport equation.
With the inclusion of volume fraction in the calculation, the volume averaged density and viscosity (
where subscript 1 and 2 denote the continuous and dispersed phase respectively. The surface force
where
Various types of boundary conditions have been used in the simulation of the membrane emulsification. A fully developed laminar duct flow has been considered at the inlet to the continuous phase channel and the flow has been assumed to be dominant along the stream direction thus:
To reduce the number of dependable variables, the governing equations have been expressed in dimensionless form. The diameter of the pore (
In above starred quantities are non-dimensional parameters. The three non-dimensional numbers appeared in the problem are: Reynolds number (Re), Weber number (We) and Froude number (Fr). They are defined as:
The Reynolds numbers (Re) is defined as the ratio of viscous force to the inertia force, Weber number (We) is defined as the ratio of inertia force relative to the surface tension force and Froude number (Fr) is defined as the ratio of inertia to gravity force. In the present work to incorporate the effect of the continuous phase fluid, the Capillary number has been introduced and is defined as:
where
Commercial code Ansys Fluent (V12) based on finite volume method has been used in the simulation. The momentum and volume fraction transport equation have been discretized with 2nd order upwind scheme. The PISO (pressure implicit with splitting of operators) algorithm has been used for pressure correction. The VOF/CSF techniques have been used to track the fluid interface between the two immiscible fluids. A geometry reconstruction scheme has been used in the simulation to avoid the diffusion at the interface. The interface was reconstructed by the piecewise-linear interface calculation (PLIC) technique (Youngs, 1982). The unsteady term was treated with first-order implicit time stepping. Simulations were made with very small time steps (~10-7 s). The solutions have been assumed to be converged and therefore iterations have been terminated when the normalized sum of residual mass was less than 10-4 and variation of other variables in successive iteration was less than 10-2. A non-uniform grid was used in the simulation where grids were clustered near the walls and the injection portion of the dispersed phase. The channel was decomposed into 12
In the present work, the dynamics of droplet formation in two pores of membrane emulsification has been investigated for different flow rates (velocities) of dispersed phase, continuous phase, surface tension and viscosity of the two phases. It is to be noted that In case of membrane emulsification process, the dispersed phase fluid gets more space to interact with the continuous phase fluid compared to the confined geometries in case of T- junction emulsification. Due to this the evolution of dispersed phase becomes different than the case of T-junction emulsion and the dependence of the process on different properties of both the phases also changes.
In membrane emulsification system, the flow rate of dispersed phase controls the droplet dynamics via its inertial force competing with the drag force imparted by the continuous phase and interfacial tension force. In order to investigate the effect of dispersed phase flow rate, simulations have been made for different values of We number by changing the dispersed phase velocity i.e. inertial force and keeping the surface tension force fixed. Before discussing the effects of We, the growth and detachment of the droplet for a constant values of We (0.0086) and Ca (0.028) at different time levels have been shown in Fig. 4. It has been observed that both the droplet grow at their respective micro-pore and detached by the continuous phase at the same location. As the first droplet is being detached and carried away by continuous phase fluid, the second droplet starts to grow at the pore and the repetition of droplets detachment takes place periodically with constant volume of droplet. Simulation has also revealed that the growth rate of the droplet at the downstream micro pore is different than the upstream micro pore and the droplet at that pore requires more detachment time. The presence of upstream droplet changes the hydrodynamic effects and reduces the viscous drag force of continuous phase on the downstream droplet. Due to reduction in drag force, the surface tension force can hold the droplet for longer time and detachment takes place lately. Due to this the droplet size is greater than the droplet formed at the upstream pore. Moreover due to low drag force of the continuous phase, the inertia force of dispersed phase has some effect in forming the necking of the droplet in the downstream pore. The diameter of the droplet after detachment has been found as 41.3 µm, which is about 4.13 times the pore diameter. This ratio is within the range of 1-12 observed by Katoh et al. (1996).
Growth and detachment of droplet at different time level, We = 0.0086, Ca = 0.0208
Thus the distance between the two pores should be at least five times the pore diameter for simultaneous growing of two spherical droplets without any hindrance from the neighboring pore. On the other hand the droplet deforms in the direction of flow of the continuous phase as shown in Fig. 4. Considering the deformation and growth of the droplet, it can be concluded that a distance of almost 10 times the pore diameter between the two pores in x-direction i.e. in cross-flow direction is needed to avoid contact, and thus avoid coalescence at two neighboring pores for this particular flow rate of dispersed phase and surface tension.
The investigation of droplet growth in transverse direction i.e. z-direction is important to design the pore distance in transverse direction. The growth of the droplet in a horizontal plane (x-z) at at y/D0 = 25 µm has been shown in Fig. 5 at different time levels for We = 0.0086 and Ca = 0.0208. As the time progresses, the droplet at the first pore grows and deforms along the cross-flow fluid direction. Thus the distance between the two forming droplets decreases. It has been observed that in the transverse (z-) direction the droplet remains almost spherical throughout the formation process; therefore, the distance between the pores in that direction can be fixed at seven times the pore diameter.
Growth of droplets at horizontal x-z plane at different time level, We = 0.0086, Ca = 0.0208
With the fixed distance along cross-flow and transverse direction, the maximum porosity of the membrane can be calculated. The porosity is defined as the ratio of the total pore cross-sectional area and the total membrane surface area.
Growth of droplets at horizontal x-z plane for different values of We, Ca = 0.0208
To check the effect of We on the droplet growth along transverse direction, the simulated results of droplet growth at horizontal plane for different values of We and at different time levels have been shown in Fig 6. With the increase in We the droplet size increases and the distance between the two droplets decreases along the continuous phase fluid flow direction. At high value of We the necking phenomenon has been observed which makes the insufficient distance between the pore for avoiding coalescence. On the other hand at high value of We the growth of the droplet in transverse direction is same as the case in lower value of We. Thus the spacing of pores in transverse direction can be fixed based on droplet diameter and irrespective of the dripping or jetting mode.
In order to show the effect of dispersed phase flow rate in droplet dynamics, the droplet growth before the detachment has been shown in Fig.7 for different values of We (0.0021 to 0.215) number. The qualitative difference in droplet growth for different values of We can be seen in the figure. Some key phenomena such as dripping at low We number, necking and jetting at higher We number have been observed. During the droplet formation in membrane emulsification process, the inertial force of the dispersed flow acts as detaching force, and acts against the attaching force of surface tension. When inertia force of the dispersed is less than the drag force or interfacial tension force, it cannot influence the droplet dynamics and the droplet growth and detachment are controlled by the drag force competing with the surface tension force. At the low value of We (We =0.0021) number, the droplet forms and breakups at the micro-pore which is termed as the dripping mode.
Growth of the droplets for different values of We, Ca = 0.0208
At intermediate values of Weber number (0.0086 and 0.077), the point of droplet detachment has been moved away from the micro-pore, and formation of dispersed phase thread and necking have been observed. With the increase in inertial force of the dispersed phase, the effective pressure overcomes the capillary pressure inside the liquid thread leading to a stretched filament and also distends the droplet neck noticeably. With the increasing in dispersed phase flow rate further (0.215), two nodes form in the liquid filament and extension of the droplet neck occurs. The detachment point of the droplets moves further downstream from the pore. Thus jetting occurs and the droplet forms at the tip of the droplet. A decrease in the resultant droplet size can be observed. Thus at higher value of We number, due to formation of the jetting and the droplet formation from the tip, the distance of 10 pore diameter between the pores is not sufficient to avoid the contact and coalescence of two neighboring droplets.
The droplet dynamics in membrane emulsification process is controlled by the evolving velocity field outside and inside the dispersed phase since the drag force is correlated to velocity. The velocity fields for We = 0.0086 in the central vertical plane (x-y) at the time level t = 0.125 have been shown in Fig. 8. Recirculating flows have been observed inside the both droplets and the center of recirculation is different in both the droplets.
Velocity vector at the central plane, We = 0.0086, Ca = 0.0208
Velocity vector at the horizontal plane, We = 0.0086, Ca = 0.0208
As the continuous liquid phase interacts the dispersed phase, it imparts a viscous drag force on the evolving interface between the two phases. The viscous drag force produces shear stress along the interface that faces the continuous phase fluid. This initiates the recirculation inside the both droplets. The acceleration of the dispersed phase out of the pore also affects the motion inside the forming drop, especially at an early stage of drop formation. The centre point of the rotational flow inside the drop is at the top of the drop, which is controlled by the above two factors. The dispersed phase inside the interface front finally flows along the continuous liquid phase and is accelerated by the viscous drag. From the velocity diagram it can be seen that the upstream droplet has disturbed the approaching velocity field for the downstream growing droplet. Thus the droplet that grows in the ‘‘shade’’ of another droplet experiences a different velocity profile.
The velocity field inside and outside the dispersed phase in horizontal plane (x-z) at the time level (0.125) for We = 0.0086 has been shown in Fig. 9. The wake formed by the first droplet is visible from the velocity field, where velocity field is weak.
To show the effect of continuous phase velocity, the simulation has been made for same range of Weber number (0.00 to 0.215) but with higher continuous phase flow rate (Qcp = 0.54 l/h). The comparison of droplet diameter for two values of continuous phase velocities i.e. flow rates has been shown in Fig. 10. It has been observed that for the higher continuous phase flow rate, the diameter of the droplets is smaller compared to lower continuous phase flow rate. At a particular value of continuous phase flow rate, the droplet diameter increases with the increase in droplet diameter, than decreases with the increase in droplet diameter due to jetting phenomenon. It can be seen that with the increase in continuous phase velocity, the droplet diameter decreases. Due to increase in velocity, the continuous phase fluid imparts higher drag force and droplet detaches within short interval. It has been also observed that the reduction of droplet diameter during transition from dripping to jetting is less in case of higher value of continuous phase velocity compared to its lower value.
Effect of continuous phase velocity on droplet diameter
The detachment time of droplets for two values of flow rates of continuous phase have been shown in Fig. 11. With lower value of continuous phase flow rate, the detachment time decreases exponentially with the increase in We number up to some value of We number, after that the decrease rate reduces. At a particular We number, the detachment time has been observed less for higher continuous phase flow rate compared to lower continuous phase flow rate. For lower flow rate of continuous phase, the detachment time decreases with the increase of We number, but it does not follow the same trend as for the lower flow rate.
Detachment time of the droplet for different We number
To show the effect of surface tension on the droplet formation, the simulation has been made for different values of surface tension (Ca = 0.0208 to 0.0625) at constant value of inertial force. The droplet diameters for different values of Ca and two values of continuous phase flow rate have been shown in Fig. 12. With the decrease in surface tension force i.e. increase of Ca, the droplet diameter decreases. At low value of surface tension, the attaching surface tension force cannot hold the droplet for longer time against the other detaching forces leading to formation of droplet with smaller size. At very low value of surface tension (0.0008 N/m) even at low value of We (0.0021) the phenomenon shows the jetting behavior as shown in Fig. 13. Due to jetting phenomenon, the spacing between the micro-pore is not sufficient to avoid the coalescence of the droplets at two neighbor pores.
Effect of surface tension on droplet diameter
From the present investigation, it can be seen that dripping to jetting transition can be possible in two ways: one at constant surface tension while varying the inertial force (varying the dispersed phase flow rate) and another at constant inertial force while varying the surface tension force. A qualitative difference in flow pattern in both the transitions has been observed. During dispersed phase controlled transition, the diameter of the drop increases first then decreases rapidly while in surface tension controlled transition, the size of the droplet continuously decreases (Fig. 10 and Fig. 12).
Surface tension force is dominant over the inertial force in dripping mode, hence the droplet size increases and in jetting mode inertial force overcomes the surface tension force for which drop size decreases. In surface controlled breakup, the drag force and interfacial force take part in the droplet formation.
Jetting behavior at low surface tension value
The viscosities of both the phases also effect the droplet growth and deformation as discussed in introduction section. The drag force which detaches the droplet depends upon the viscosity ratio of dispersed phase and continuous phase. At a constant value of continuous phase flow rate, the drag force increases with the increase in viscosity ratio up to some extent. After that, the drag force becomes independent of the viscosity ratio. Pathak (2011) has observed negligible effect of dispersed phase viscosity in the membrane emulsification system. Moreover it has been also observed that the effect viscosity on droplet dynamics is not very significant if the ratio of dispersed phase and continuous phase viscosity is high (van Dijke et al., 2010). Since the viscosity ratio of dispersed phase and continuous phase fluid is above 3, the effects of viscosities have not been investigated in the present work.
Droplet formation in a two-pore membrane emulsification has been numerically investigated in this chapter. The dynamics of droplet formation has been investigated by solving the two-phase governing equations using VOF method. The effects of various parameters, viz., dispersed and continuous phase flow rate, surface tension and viscosities on the droplet dynamics have been investigated. The dynamics of evolution of dispersed phase and droplets formation show the dripping and jetting behavior depending upon the operating conditions and properties of two-phase liquids in the emulsification system. At constant continuous phase flow rate, the dripping phenomenon occurs at low dispersed phase velocity i.e. at low We number and transits towards jetting with the increase in dispersed phase flow rate. At constant continuous phase flow rate, with the increase in dispersed phase flow rate, the droplet size increases initially but decreases as the system transits towards jetting. At constant dispersed phase flow rate, with the increase in continuous phase flow rate, the droplet size decreases and also detachment time. Two ways of dripping to jetting transition have been observed, one with the increasing dispersed phase flow rate at constant continuous phase flow rate and other way is reducing the surface tension at constant dispersed phase flow rate. Both the transitions show different physical structures. The effect of inertia force has been observed the negligible for high value of surface tension and significant for lower surface tension value. The distance between the pore in continuous flow direction depends upon the operating parameters leading to dripping to jetting mode but the pore distance in transverse direction is not affected by the dripping or jetting behavior. Thus at higher value of We number, due to formation of the jetting and the droplet formation from the tip, the distance of 10 pore diameter between the pores is not sufficient to avoid the contact and coalescence of two neighboring droplets. The droplet size in the process scales with four main forces: drag forces imparted by the continuous phase, inertia force imparted by dispersed phase, surface tension force and the gravity force. In dripping mode inertial force of dispersed phase has negligible effect as the surface tension and drag force are dominant whereas in jetting mode inertial force of dispersed phase and surface tension force take part in the droplet formation. The evolving vortices are observed in the initial stage of dripping mode but it disappears in later stage. Three important factors must be considered in order to obtain a high production rate in membrane emulsification. (i) A proper combination of continuous phase, dispersed phase flow rate and surface tension so that droplet formation is made just before the starting of surface instability in jetting region. (ii) A proper distribution of pores so that coalescence of droplets does not occur during the droplet growth. (iii) The crossflow velocity must be high enough to provide a sufficient wall shear stress at the membrane surface to transport the drops away from the pore opening and, thus avoid the static hindrance and drop coalescence.
An | Area of the droplet neck ((μm)2) | |
b | Width of the continuous phase channel (μm) | |
Ca | Capillary number | |
Cd | Drag coefficient | |
Dh | Hydraulic diameter of the continuous phase channel (μm) | |
D0 | Diameter of micro-pore (μm) | |
Dp | Diameter of the droplet (μm) | |
fs | Surface force (N) | |
F | Volume fraction of dispersed phase fluid | |
g | Acceleration due to gravity (m/s2) | |
h | Height of the continuous phase channel (μm) | |
k1 | Constant | |
k2 | Constant | |
p | Pressure of the flow (Pa) | |
pc | Pressure of the continuous phase fluid flow (Pa) | |
pd | Pressure of the dispersed phase fluid flow (Pa) | |
pγ | Capillary pressure (Pa) | |
Qcp | Flow rate of continuous phase fluid (m3/s) | |
Qdp | Flow rate of dispersed phase fluid (m3/s) | |
R | Viscosity ratio of continuous phase to dispersed phase fluid | |
Re | Reynolds number of the flow | |
Rp | Reynolds number of the drop | |
u | Velocity in x- direction (m/s) | |
ucp | Velocity of continuous phase at the inlet to the channel (m/s) | |
v | Velocity in y- direction (m/s) | |
v* | Local velocity of continuous phase fluid in the channel (m/s) | |
v0 | Velocity of dispersed phase at the inlet to the micro-pore (m/s) | |
V | Velocity vector | |
Vdr | Droplet volume((μm)2) | |
w | Velocity in z- direction (m/s) | |
We | Webber number | |
Greek letters | ||
Γ | Position vector of interface of the two phase | |
φ | Level set function | |
κ | Surface curvature (m-1) | |
λ | Viscosity ratio of dispersed phase to continuous phase fluid | |
μcp | Viscosity of continuous phase fluid (m2/s) | |
μdp | Viscosity of dispersed phase fluid (m2/s) | |
ρcp | Density of continuous phase fluid (kg/ m3) | |
ρdp | Density of dispersed phase fluid (kg/ m3) | |
σ | Surface tension coefficient (N/m) |
Endovascular aneurysm repair is associated, in a significant proportion of cases, to a systemic inflammatory response that was denominated Postimplantation syndrome (PIS) [1]. PIS was first described in 1999 by Velazquez et al. [2] as a syndrome of fever and leukocytosis after aortic stent-graft implantation. It was incidentally noted in prior clinical studies on EVAR, but the exact origin is unknown. The authors suggested that these manifestations, comprising fatigue or other constitutional (flu-like) symptoms, fever and laboratory findings of inflammation, are a reproducible phenomenon specific to the nature of this procedure, rather than related to postoperative infections [2].
\nIn fact, experimental studies in animals had suggested a local peri-aortic inflammatory response to endovascular exclusion of aneurysms. For example, in a study in sheep that underwent to endovascular implantation of heparin-coated Dacron-covered grafts, the macroscopic examination of the arterial wall revealed significant inflammatory peri-graft response with vascular thickening and adhesions around the grafts. Microscopic examination revealed a severe foreign-body response [3].
\nSeveral publications addressing the issue have been published since 1999. However, there is still no consensus over the definition for the syndrome, its real incidence, associated factors, consequences, treatment, and eventually prophylactic therapy.
\nPIS is defined as fatigue and fever associated to a rise in inflammatory biomarkers. Which markers should be used and their cutoff values is still a matter of debate. There are several proposed combinations of fever, leukocytosis, and elevated C-reactive protein (CRP) used as definition for PIS in the literature. Some authors defined PIS as the presence of fever coinciding with an elevated serum CRP level, whereas the majority of them adapted the systemic inflammatory response syndrome (SIRS) criteria and defined PIS as the presence of fever combined with leukocytosis [1, 2, 4, 5, 6, 7, 8, 9, 10, 11].
\nArnaoutoglou et al. [10] defined PIS as the presence of fever (>38°C) and leukocytosis (>12.000/μL). However, they verified that hs-CRP values were strongly related to the presence of PIS and also emerged as an important predictor of the 30 day-outcome. Therefore, they concluded that hs-CRP probably is a better marker to inflammatory response. The reported incidence of PIS in the literature varies widely, and the lack of a universally accepted definition may be responsible for this. Reported incidence ranges from 2 to 100% (Table 1).
\nIncidence of PIS according to definition.
*Only with Incraft® endograft.
**Only with Zenith Alpha® thoracic endografts.
*** The sample only included percutaneous EVAR.
****Only with Anaconda® endograft.
aThis group defined PIS as fever and leukocytosis and abdominal and/or back pain, or other nonspecific symptoms such as malaise or loss of appetite.
Blum et al. [12], analyzed prospectively the clinical outcome after EVAR in 154 patients. All were treated with polyester-covered nitinol endograft and 87 patients (56%) developed fever (temperature, 38.0–39.7°C), that lasted for 4–10 days, without evidence of bacteremia or graft infection. All patients showed leukocytosis (range from 9.800 to 29.500/μL) in laboratory tests and an elevation of C-reactive protein concentrations (range from 4 to 34.1 mg/dL) [12].
\nTwo years after, Velazquez et al. [2] developed the first study specifically aimed at describing and understanding the postimplantation syndrome, characterized by fever and leukocytosis following endovascular stent graft repair of aortic aneurysms. They defined PIS as a syndrome that occurs after EVAR and proposed two criteria for diagnosis: fever and leukocytosis. However, the cutoffs of these criteria are not specified. In their small study, they found seven patients (58%) to have leukocyte count superior to 11.000/μL, 10 patients (83%) to have fever greater than 38°C and 8 patients (67%) superior to 38.5°C. Indeed, in eight patients, CT revealed air within the native aorta, around the stent-graft and within the thrombus of the excluded aneurysm. Physical examination, chest radiograph, urinalysis, urine culture and blood culture excluded any source of infection in 11 of 12 patients [2].
\nGabriel et al. [13] analyzed the inflammatory response after endovascular repair of abdominal, thoracic and thoracoabdominal aortic aneurysms, but they neither define PIS nor stated its incidence. They found that peak values of sedimentation velocity, CRP and interleukin-6 were observed at 7 postoperative days, elevation of leukocytes count occurred in premature phase, while lymphocyte and platelet count occurred in a late phase of follow-up. Serum levels of creatinine did not have significant variability during follow-up (3 months) and fever occurred mainly in the period between 24 and 48 h after the surgery.
\nChang et al. [14] studied the systemic inflammation, coagulopathy and acute renal insufficiency following endovascular thoracoabdominal aortic aneurysm repair (TAAA). They hypothesized that endovascular TAAA repair triggers a severe form of PIS. During the postoperative time, 18 of 38 patients (47%) developed fever (>38.0°C) and all had statistically significant changes in leukocyte and platelet counts and prothrombin time. Once again, neither the definition nor the incidence was stated.
\nGeorgiadis et al. [15] in their prospective study comparing the results of Endurant® endoprosthesis in hostile and friendly necks, pointed to a PIS incidence of 36.4% (28 patients, 9 patients in friendly neck group vs. 19 patients in hostile neck group; p = 0.032) with a mean duration of 2.02 days. However, the definition of PIS is unclear.
\nTwo other studies described PIS incidence, but they did not clarify the definition used. Mazzaccaro et al. [16] performed a retrospective study with 10 patients who underwent EVAR, but only with Incraft® endograft. They found an incidence of PIS of 30% (three patients). However, they do not specify the definition that they used. Melissano et al. [17] evaluated retrospectively the safety and efficacy of the Zenith Alpha® (Cook Medical Inc., Bloomington, IN, USA), in thoracic endovascular aortic repair of thoracic aortic aneurysms, aortic ulcers and traumatic aortic rupture on 42 patients. They do not specify the PIS definition that they used but stated a PIS incidence of 2%.
\nSeveral studies defined PIS as a combination of two criteria: leukocytosis and fever. Arnaoutoglou et al. [1] performed a prospective study with 162 patients (148 with AAA and 14 with TAAA) who underwent endovascular aneurysm repair. PIS was defined according to definition of SIRS: presence of fever (continuous temperature > 38°C) and leukocytosis (>12,000/μl) despite antibiotic therapy and negative culture results. PIS occurred in 49 patients (30.2%) and there were no significant differences in patients’ characteristics and intra-operative variables, between the two groups. In this study, the authors did not characterize the population in detail and opted to describe consequences of PIS in six cases. In a subsequent prospective study of the same authors, with 40 patients, they found a similar incidence of PIS – 35% (14 patients). They did not also verify significant differences in patients’ characteristics and intraoperative variables. Of note, a significant increase in IL-6 levels was observed only in the PIS group and the decrease in platelets count was greater in the PIS group, as was an increase in hs-CRP. The incidence of PIS varied according to the graft that was deployed, with highest incidences for Anaconda grafts (Vascutek-Terumo Cardiovascular System Corp, Ann Arbor, MI, USA) with 100% of incidence, and Zenith grafts (Cook Medical Inc., Bloomington, IN, USA), with 50% of incidence. The Talent grafts (Medtronic Vascular AVE, Medtronic Europe SA, Route du Molliau, Switzerland) had an incidence of 37% (6/16 patients) and the Excluder grafts (W.L. Gore & Associates, Inc., Flagstaff, AZ, USA) had the lowest incidence with 12% (2/17 patients) [4].
\nDosluoglu et al. [6] studied the feasibility and safety of ambulatory percutaneous EVAR in a sample of 79 patients. In this way, they compared the group in which the patients go home in the same-day of the procedure to the non-ambulatory-group and evaluate the incidence of PIS in these two groups. They defined PIS as any combination of fever >37.8°C, white blood cell count >10.000/μl, abdominal and/or back pain, or other nonspecific symptoms such as malaise or loss of appetite. PIS occurred in 23% of the patients, 19% in the same-day discharge group and in 26% in non-ambulatory group.
\nIn another study, with a retrospective design, of 118 patients who underwent EVAR but only with Anaconda endograft. These authors used the same definition of PIS with leukocytes >12.000/μl and temperature and reported an incidence of PIS of 20.3% (24 patients) [8]. Another retrospective study with 87 patients, using the same definition for PIS, found an incidence of 39%. This value was not similar between graft types, with the highest incidence for Anaconda endograft (71%) and the least incidence in Excluder grafts (13%) [18]. Arnaoutoglou et al. [10] prospectively evaluated PIS after elective EVAR in 214 patients with AAAs and investigated its association with clinical outcome during first 30 postoperative days. The diagnosis of PIS occurred in 36% patients. They also used the same criteria described above for PIS.
\nWith the same definition, Sartipy et al. [19] also investigated the impact of stent graft material on the inflammatory response, in 45 patients undergoing standard elective EVAR. The global incidence of PIS was 28%. A single-center, observational cohort study of 204 consecutive EVARs revealed an incidence of PIS of 31.4%, with the same definition [20]. In a similar way, Arnaoutoglou et al. [21] in a more recent prospective study with 182 consecutive EVARs, diagnosed PIS in 65 patients (35.7%).
\nFewer studies defined PIS with elevation of CRP instead of leukocytosis. Voûte et al. [5] compared the effect of stent graft composition in PIS. This group defined the PIS as fever (tympanic temperature > 38°C) and elevated serum CRP level (>10 mg/l). They found an incidence of PIS of 56.1% (46 patients) for the woven polyester group and 17.9% (12 patients) for the ePTFE group (p = 0.001).
\nA randomized, double-blind, placebo-controlled trial was designed to analyze the effect of a single preoperative dose of 30 mg/kg of methylprednisolone or placebo, administered 2 h before surgery, in reducing the incidence of PIS after EVAR. They used the SIRS criteria for PIS (the presence of at least two of the following criteria: temperature > 38°C or < 36°C; leukocytes >12.000/l, <4.000/ or > 10% bands; heart rate > 90; respiratory rate > 20; PaCO2 < 32 mm Hg), except the criterion of leukocytosis. Instead of leukocytosis, the criterion used was elevation of CRP > 75 mg/L. PIS with modified SIRS criteria was present in 27% in the methylprednisolone group versus 100% in the placebo group [7].
\nGorla et al. [22] developed a retrospective study and analyzed PIS incidence, but the 133 patients included underwent TEVAR due to type B acute aortic syndrome. The authors defined PIS as fever >38°C, leukocytes >12.000/mL and CRP >10 mg/dL within 72 h after TEVAR, despite negative blood cultures. PIS was diagnosed in 15.8% of patients.
\nA German group studied the effects of antibiotics in preventing PIS after aortic endoprosthesis implant. This trial included 40 patients and they did not have an aneurysmal disease. In each group, there were 18 type B dissections and 2 penetrating aortic ulcers.
\nThey compared the influence of perioperative single-shot versus prolonged (7 days) antibiotic therapy on parameters of PIS after thoracic endografting. There were no differences in parameters related to PIS, namely body temperature, leukocytes count and CRP, between two groups. They also did not find differences between the groups of acute and chronic type B dissections [23].
\nMoulakakis et al. [11] assessed the inflammatory and renal response after TEVAR in the descending thoracic aorta on 30 patients (28 aneurysms, 1 type B aortic dissection and 1 penetrating aortic ulcer). They do not evaluate the incidence of PIS but detected a significant increase in leukocytes, CRP, interleucin-6 and interleucin-10 at 24 and 48 h after endograft implantation compared to baseline; platelets were significantly decreased. This inflammatory response after TEVAR was associated to a rise in body temperature in the postprocedure period. Conversely, there were no significant differences in serum levels of interleucin-8, TNF-α, creatinine, urea or cystatin C after stent graft implantation.
\nIn conclusion, many studies do not specify the PIS definitions, many others used the definition with leukocytosis and fever and only three studies used a definition that includes CRP. The reported incidences in literature vary greatly which is possibly a consequence of variability in definitions. Hence, the obvious need for a universal definition of this syndrome.
\nThe etiology of PIS is not entirely clear. Implant composition has been identified as one of the most important determinants of the incidence and severity of PIS. [4, 5] However, the inflammatory response is not of the same magnitude in all patients treated with the same type of endograft. So, factors other than implant material must also be responsible to the occurrence of PIS. These may be patient or implant related.
\nLesion of the endothelium during implantation, bacterial translocation due to transient sigmoid ischemia, contrast medium-induced neutrophils degranulation, endovascular instrumentation of the mural thrombus and thrombosis of the aneurysm sac after aneurysm exclusion had all been proposed as factors that could trigger the pathophysiology of PIS [14, 23, 24, 25, 26] (Figure 1).
\nMultiple factors that may contribute to PIS occurrence.
This is the best investigated risk factor; several studies compared the incidence of PIS or the difference in inflammatory parameters and endograft material, mainly focusing on differences between polyester and expanded politetrafluoroethylene (ePTFE)-based structures.
\nThe majority of the studies pointed to a higher incidence of PIS or a greater increase of inflammatory markers in polyester-based endografts [4, 5, 8, 18, 20]. Voûte et al. [5] constructed a multivariable risk model for PIS, and woven polyester constitution of the endograft was the only significant factor associated with an increased risk of developing PIS (HR 5.58; p = 0.007). Kakisis et al. [18] had similar results when testing for risk factors for PIS using a multivariable model; only the type of endograft was independently associated with the development of PIS.
\nDespite the results, another three studies could not identify a difference in the incidence of PIS between polyester and ePTFE endografts. [5, 11, 19] Gerasimidis et al. compared, prospectively, the incidence of inflammatory response between endovascular aneurysm repair with polyester devices (12 patients) and ePTFE devices (10 patients). One patient in each group had PIS, according to SIRS criteria. Three patients in the polyester group had fever (>38°C) and only one patient in the PTFE group (p < 0.005). However, there were no statistically significant differences between two groups, for all endpoints, possibly due to sample size. Of note, all the patients in this study received a dose of an antihistamine (cetirizine hydrochloride 10 mg) before the surgery and nonsteroid antiinflammatory drugs (nimesulide 100 mg twice a day) during 72 h postoperatively [5]. In the study by Sartipy et al. [19] there were significant differences between the two types of graft material concerning fever and CRP, but there were no significant differences in the number of PIS events. It could also be related to sample size, with 32 patients treated with polyester grafts but only 13 patients with ePTFE grafts. They performed a sensitivity analysis that showed if three more patients in the polyester group would have developed PIS (or none instead of one patient in the PTFE group), the results would have reached significance. Lastly, Moulakakis et al. [11] assessed the inflammatory and renal response after TEVAR, and they did not observe a significant difference in inflammatory response between polyester and PTFE groups. They attributed that to small number of patients implanted with ePTFE endografts in their trial.
\nIn any case, PIS related to Anaconda® endografts had the highest incidence in published literature, except in one study by Nano et al. [8] in which the reported incidence was of only 20.3% [4, 18, 25]. In that study, however, isolated fever without any sign of infection and maintained for more than a week occurred in many patients, even after administration of corticosteroids (median duration, 11 days, (4–30 days)). In the same period in this hospital, PIS occurred with other endografts but lasted for less than 3 days or resolved completely after administration of corticosteroids [8]. Thus, it seems that in addition to the higher incidence of PIS, Anaconda® endografts are associated to a more intense syndrome, which is also more difficult to resolve.
\nApart from fabric, other components of the graft structure could be implicated. The stent structure, for example, could influence the occurrence of PIS. As discussed by Voûte et al. [5] when comparing Endurant® and Talent® endografts, the Excluder graft, which is associated to the lowest incidence of PIS, has an additional outer layer of ePTFE, covering the alloy, whereas in others, the metal and fabric are connected by stitches. Moreover, the latter have a bare top stent which constitutes an additional amount of nitinol directly exposed to the circulation and to the vessel wall. In addition to amount of alloy exposition, the exact balance between nickel and titanium (components of nitinol) or even the way of cutting and polishing may differ between manufacturers and may influence the inflammatory reaction [5]. However, it is important to note that nitinol has been widely used in coronary and peripheral arterial “bare-metal” stents and no inflammatory response have been reported in these applications [27]. In Zenith® endograft, an additional component of stainless steel can contribute for the inflammatory response, but this has not been adequately studied.
\nDelivery systems could also theoretically influence PIS. Moulakakis et al. [25] showed that the Excluder® endograft had a milder postimplantation inflammation, compared to the others. In addition to differences of material composition, the Excluder® endograft is introduced through a sheath, in contrast to other endografts. They hypothesize that this may cause less injury to endothelium. Moreover, thickness and porosity may differ between polyester endografts, as the metallic skeleton, and can justify variability in inflammatory response after EVAR [25]. Despite all the proposed mechanisms, the only component of endografts that seems to influence the incidence of PIS significantly is the fabric. Polyester, when compared to ePTFE, results in a higher inflammatory reaction both in vitro and in vivo, and this is well replicated in aortic endograft implants [28].
\nThe hypothesis that the amount of preexisting mural thrombus within the aneurysm sac could be related to PIS development derived from the finding that mural thrombus of an aortic aneurysm contains high levels of interleucin-6 [29]. In this way, it was conjectured that manipulations with endovascular material, as wires and catheters, in mural thrombus could release interleucin-6 and induce an inflammatory response. Nano et al. [8] reported an association between preoperative thrombus thickness and PIS with EVAR using the Anaconda® endograft (p = 00.1). However, Kakisis et al. [18] rebutted this hypothesis, since they found that the volume of chronic mural thrombus did not affect any parameter of PIS. In the same line, in the study by Moulakakis et al. [25] the Anaconda® endograft had the highest inflammatory response and, simultaneously, requires less thrombus manipulation with catheters and wires during implant, once it has a magnet on the contralateral limb to facilitate its cannulation. If the mural thrombus was the main source to PIS, patients treated with the Anaconda® endograft should have the lowest incidence, and the contrary is observed.
\nAnother hypothesis was that new-onset thrombus, instead of chronic mural thrombus, could be responsible for the acute inflammatory response [30]. Three authors tried to demonstrate this effect of new-onset thrombus but the results were not consistent. Kakisis et al. [18] could not find an association between the previous thrombus and PIS, but they found a significant correlation between the volume of new-onset thrombus and PIS parameters. In a multiple variable model, these authors showed that both the volume of new-onset thrombus and the type of endograft were independently associated with the development of PIS. However, Vôute et al. [5] analyzed the association between inflammatory response and new-onset thrombus after EVAR and found no significant correlation between new-onset thrombus and the rise in temperature (p = 0.08) or CRP (p = 0.17), with a larger patient sample. In the same way, Arnaoutoglou et al. [10] did not find differences regarding preoperative endoluminal thrombus or in the amount of newly formed thrombus between PIS and non-PIS patients groups. In light of the current evidence, it is not likely that chronic mural thrombus or new-onset thrombus within the aneurysm sac play a significant role in the development of PIS. It is possible that new onset thrombus may play a small role, which could not yet be clearly demonstrated due to sample size in all published studies on the subject.
\nAnother potential etiology for PIS after endovascular aneurysm repair is bacterial translocation due to transient sigmoid ischemia. Intestinal ischemia may be produced by either occlusion of a previously patent inferior mesenteric artery (IMA) or microembolization during catheter and wire manipulations. Thus, Kakisis et al. [18] analyzed the association between patency of the IMA and the postoperative temperature and inflammatory markers and found no significant correlation. Another trial, that studied the effects of antibiotic therapy in PIS after thoracic aortic stent placement, is in agreement [23]. The authors stated that there were no differences in parameters related to PIS, regardless of the duration of postoperative antibiotic therapy. Therefore, the hypothesis of bacterial translocation as a cause for PIS seems remote and there is no evidence to date to support it.
\nVidem et al. [26] suggested that contrast medium iohexol provokes neutrophil degranulation, which is greatly enhanced when combined with stent graft material, contributing to PIS occurrence. There are other recent studies that specifically analyzed inflammatory response after endovascular aortic repair; however, they did not find any correlation between contrast use or dosage and PIS parameters [5, 8, 18, 25]. As such, this theory remains to be demonstrated.
\nThe influence of several other factors in PIS parameters has also been explored, namely age, gender, aneurysm size, extent of aortic coverage, length of operation, blood loss or transfusion, intensive care unit, statin, chronic obstructive disease, ischemic heart disease and heart failure. None has been shown to be an important factor to PIS [5, 8, 9, 14, 18].
\nPIS is characterized by fever, anorexia, fatigue and lumbar pain associated to increase in leukocytes count, CRP, decrease in platelets count and/or coagulation abnormalities.
\nIt typically resolves within 2 weeks without any permanent ill effects, but in some cases may result in severe complications such as pulmonary dysfunction, cardiovascular events, renal insufficiency and multisystem organ failure [1, 14, 25].
\nThe diagnosis might be suspected in the presence of fever without clinical source of infection in the immediate postoperative period after EVAR. However, the diagnosis of PIS will depend on definition that is adopted.
\nFever is usually accompanied by a rise in laboratorial inflammatory markers and a drop in platelet count. Leukocytes count typically rises in the first postoperative day [5, 25]. CRP levels increase significantly between the first and third postoperative day [23, 31] (Figure 2).
\nEvolution of body temperature, leucocytes count and CRP since EVAR until 96 h after the procedure. Adapted by Voûte et al. [5], Gabriel et al. [13] and Akin et al. [23].
In the presence of fever and inflammatory parameters in the early postoperative period, patients usually undergo a work-up for possible infection, typically including chest radiography, urinalysis, urine culture and blood culture [32]. Some argue that this may be costly and unnecessary in clinical absence of an infection source [33]. However, since consequences of a serious postoperative infection may be devastating, at least close observation is recommended.
\nSartipy et al. [9] designed a prospective study to test the hypothesis was that procalcitonin would remain <0.5 ng/mL among patients who develop PIS after elective EVAR surgery, conversely to infectious complications. They defined PIS as a body temperature > 38°C and leukocytes >12,000/mL at any time during the observation period combined with no other detected complication or any open surgical event explaining the inflammatory response. The global incidence of PIS in this trial was 17.5% (12 patients) but this incidence was higher in patients with polyester grafts than in PTFE grafts (22.4% vs. 5%). They verified that all PIS patients had levels of procalcitonin <0.5 ng/mL, as they hypothesized, whereas all showed an elevation on CRP >100 mg/L and leukocytes >12.000/mL.
\nThus, procalcitonin appears as a good differentiator between PIS and infectious complications, probably less expensive and faster than microbiologic culture tests.
\nSeveral clinical consequences of PIS have been proposed, both in the early postoperative period and over follow-up (Table 2).
\nSummary table of the studies that favor influence of PIS in outcomes and of those that are against.
Moulakakis et al. [11] did not find any clinical adverse events related to PIS and there were no readmissions in their study. In another study that evaluated inflammatory response to Anaconda® endografts, the patients who developed this syndrome had a longer hospital-stay [8]. Other studies showed a significant prolongation of postoperative hospitalization in the PIS group compared to non-PIS group [4, 10, 20].
\nArnaoutoglou et al. [1] described six cases that required readmission, four cases due to a mild SIRS that resolves with non-steroidal anti-inflammatory drug orally, but the other two cases were a severe SIRS that required a stay in an intensive care unit and endovenous corticosteroids treatment.
\nIn a study concerning the applicability of percutaneous ambulatory EVAR, one patient was also readmitted due to severe PIS in third postoperative day (in the non-ambulatory group) and PIS was the only reason for delayed discharge in five patients [6].
\nChang et al. [14] analyzed the systemic inflammation, coagulopathy and acute renal insufficiency following endovascular TAAA repair. These authors found that patients with postoperative renal insufficiency had higher changes in leukocytes and platelets counts, as compared with those who did not develop renal failure. Indeed, the two patients who died in first postoperative month developed acute renal insufficiency in the early postoperative period. The preoperative glomerular filtration rate < 60 mL/min/1.73 m2 was not associated with the development of acute renal insufficiency (p = 0.80). They performed a univariate logistic regression analysis, which showed that each 5000 cells/μL increase in leukocytes in the postoperative period was associated with a 2.4-fold odds of postoperative renal insufficiency (p = 0.02). For platelets, each decrease of 50,000 platelets/μL was associated with a 4.0-fold odds of postoperative renal insufficiency (p = 0.02). In opposition, Moulakakis et al. [11] stated that renal function was not influenced by the inflammatory response; no correlation was recognized between the increased inflammatory markers and renal function.
\nIn a study that analyzed the influence of inflammatory reaction after endovascular aneurysm repair in 30-day outcomes, a multiple logistic regression model revealed that coronary artery disease (p = 0.01), post-operative hs-CRP (p = 0.001) and duration of fever (p = 0.02) independently predict major cardiovascular events. For every additional day of fever after the first, the chance of a cardiovascular episode increased by 67.9% (p = 0.017) and for every 10 units increase of hs-CRP, this probability increases by 15% (p = 0.001). For all adverse events studied, namely cardiovascular events, acute renal failure, readmission and death by any cause, multiple logistic regression analysis showed that postoperative hs-CRP (p = 0.004), PIS (p = 0.01), maximum temperature (p = 0.02) and smoking history (p = 0.02) were independent predictors. Postoperative hs-CRP revealed an important predictor for adverse outcomes during the first 30 days. A threshold value of 125 mg/L was highly associated with an adverse event, with a sensitivity of 72% and specificity of 75% [10].
\nIn a prospective study of 182 consecutive EVARs, patients were monitored during a year. Several adverse events are scrutinized, such as any major adverse cardiovascular events, acute renal failure, readmission and death from any cause. During the follow-up period, major adverse cardiovascular events occurred in 17.2% patients in PIS group vs. 4.3% in non PIS group and the other adverse events occurred in 18.8% of patients vs. 5.1%, respectively. Multiple logistic regression analysis showed that the occurrence of PIS was the only independent predictor of major adverse cardiovascular events (p = 0.007) or any adverse event (p = 0.005). Patients with the diagnosis of PIS were about 4–5 times more likely to suffer of a major cardiovascular event or another adverse event, than non-PIS patients [21].
\nConversely, Kwon et al. [20] stated that patients with and without PIS had similar long-term overall survival rates and other clinical outcomes, such as systemic or implant-related complications.
\nIn the study by Voûte et al. [5] the change in PIS parameters did not correlate to postoperative endoleaks. Besides prolongation of hospital stay, Nano et al. [8] also established a benign character for the PIS; no association between PIS and onset of early and long-term complications, namely endoleaks, was reported.
\nGorla et al. [22] studied a composite endpoint of major adverse events, such as aortic rupture, need for reintervention and all-cause mortality, after TEVAR of type B acute aortic syndromes. The mean follow-up was 4.0 ± 2.9 years. The major adverse events were more frequent in the PIS than in the non-PIS group (62.5 vs. 25.9%; p = 0.004).
\nKwon et al. [20] in a study with a follow-up of 44 months, PIS was significantly associated with a decreased risk of developing type II endoleaks (p = 0.044). PIS appeared to be beneficial in preventing type II endoleaks during postoperative period. Kaplan–Meier survival analysis showed that the groups (PIS and non-PIS) had similar rates of overall survival (p = 0.761) and other clinical outcomes (p = 0.562), except the rate of secondary procedures that was significantly higher in the non-PIS group (p = 0.049).
\nArnaoutoglou et al. [21] in a prospective study with 1 year-follow up, found no correlation between endoleak or any complication rates and PIS (p > 0.05).
\nThe analysis of the questionnaires on quality of life after 1 month of the surgery showed that PIS patients felt significantly more limited in their daily physical activities after surgery, as well as more emotionally discouraged and depressed/anxious about their state of health [8]. No long-term studies involving quality of life are available to date.
\nIn summary, there is a suspicion that PIS may be involved in a higher rate of early cardiovascular complications and worse early quality of life. There is no evidence to date that suggests a worse long-term outcome for patients affected, but the data are scarce.
\nThe 30 day-outcomes of patients with PIS described by Arnaoutoglou et al. [10] suggest that a specific treatment should be adopted to PIS to avoid clinical consequences. Akin et al. [23] tested the extension of antibiotherapy during the postoperative time, but it did not show any advantage in PIS incidence. In the study by Nano et al. [8] in case of PIS diagnosis, 1 g of hydrocortisone was administered intravenously on the third postoperative day, according to institutional protocol. In another study with patients who underwent percutaneous ambulatory EVAR, one patient had to be readmitted due to a severe PIS in third postoperative day. He was managed with hydration, pain control and anti-inflammatory medications and went home again after 3 days [6].
\nDe la Motte et al. [7] in a randomized, double-blind, placebo-controlled trial involving 153 patients, analyzed the effects of a single preoperative dose of 30 mg/kg of methylprednisolone or placebo, administered 2 h before surgery. For diagnosis of PIS, they used all criteria of SIRS, except for leukocytosis that was changed to CRP elevation due to the influence of corticoid therapy on leucocyte count and they obtained, with a single preoperative dose of methylprednisolone, a reduction in PIS from 100–27% [7]. The postoperative need for morphine was significantly reduced by methylprednisolone but the need for antiemetics was similar. There were no differences in 30-day medical morbidity (13 vs. 43%), surgical morbidity (20 vs. 43%), reinterventions (0 vs. 29%) or readmissions (7 vs. 14%) in the methylprednisolone versus placebo group. There was no 30-day mortality in all the patients included, and during the 3 months of follow up, there was no significant difference in mortality between the groups (3% vs. 1%, P = 1.0). Regarding adverse effects of corticosteroids, 11 potential methylprednisolone side effects occurred in 10 patients (14%). They were mainly related to infusion of the drug: metallic taste in five patients, flushing in three patients, rise in blood pressure requiring treatment in two patients and euphoria within the first 24 h in one patient. In the placebo group, rise in blood pressure was noted in one patient. Analyzing the subgroup of diabetic patients (15 patients in methylprednisolone group and 7 patients in placebo group), the intraoperative median blood glucose levels were higher in the methylprednisolone group than in the placebo (363 mg/dL vs. 298 mg/dL (p = 0.01)) and they remained higher during the first 24 h (p = 0.006). In 47% of patients in the methylprednisolone group, supplementary insulin was necessary compared to none in placebo group during the first 24 h. There were no records of adverse events relating to dysregulation of blood glucose levels. Subgroup analysis on the diabetic patients showed the same tendencies as in the entire cohort [7]. In this trial, there was a substantial difference between PIS incidence with a single preoperative dose of methylprednisolone. However, they defined PIS as having either fever or elevated CRP levels. Hence, possibly, the higher incidence of 100% in placebo group.
\nThe routine administration of drugs like steroids or nonsteroid anti-inflammatory drugs is of concern because of their side effects, mainly in patients with multiple or more severe comorbidities [1]. However, it seems reasonable to prevent this inflammatory response, once it can lead to prolonged hospitalization or a readmission and even to more severe consequences, as the authors described above.
\nUndoubtedly, future studies have to be performed to clarify the need for routine prophylaxis for this syndrome or a symptom based anti-inflammatory therapy (Figure 3).
\nSchematic diagram of prevention, diagnosis and treatment of PIS, with associated references.
The absence of a universal definition for PIS is responsible to the variability of its incidence. However, CRP seems to be a better criterion for PIS instead of leukocyte count. The etiology is still not clarified, but the majority of the studies pointed to a relevant role for endograft material. Regarding diagnosis, procalcitonin appears to be a good differentiator between PIS and infectious complications. The clinical consequences of this syndrome, in length of hospital stay, readmissions, renal function, cardiovascular events, endoleaks and quality of life, are not fully elucidated, and more studies have to be performed. However, there is evidence suggesting a prolonged hospital stay, higher risk of early cardiovascular events and worse early quality of life for affected patients. Regarding treatment, although corticosteroids and nonsteroidal anti-inflammatory drugs seem to be a reasonably effective strategy, there is a need to establish the best treatment and weather pharmaceutical prophylaxis is necessary. The routine administration of drugs like steroids or nonsteroid anti-inflammatory drugs raises concerns due to side effects, mainly in patients with more severe comorbidities.
\nWe pride ourselves on our belief that scientific progress is generated by collaboration, that the playing field for scientific research should be leveled globally, and that research conducted in a democratic environment, with the use of innovative technologies, should be made available to anyone.
\n\nWe look forward to hearing from individuals and organizations who are interested in new discoveries and sharing their research.
",metaTitle:"Contact us",metaDescription:null,metaKeywords:null,canonicalURL:"/page/contact-us",contentRaw:'[{"type":"htmlEditorComponent","content":"Headquarters
\\n\\n\\n\\n
London
\\n\\nIntechOpen Limited, 7th floor
\\n\\n10 Lower Thames Street
\\n\\nLondon, EC3R 6AF, UK
\\n\\nPhone: +44 (0)203 972 6202
\\n\\n\\n\\n
Rijeka
\\n\\nIN TECH d.o.o.
\\n\\nJaneza Trdine 9
\\n\\n51000 Rijeka - Croatia
\\n\\nPhone: +385 (0) 51 686 165
\\n"},{"imagePath":"/media/thumbnail/780x430/3","type":"mediaComponent","mediaType":"image","mimeType":"image/jpeg","caption":"","originalUrl":"/media/thumbnail/600x600/3","alignment":"center"},{"type":"htmlEditorComponent","content":"General Inquires: info@intechopen.com
\\n\\nFunders: funders@intechopen.com
\\n\\n*INTECHOPEN LIMITED is a privately owned company registered in England and Wales, No. 11086078 Registered Office: 7th floor, 10 Lower Thames Street, London, EC3R 6AF, UK
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Headquarters
\n\n\n\n
London
\n\nIntechOpen Limited, 7th floor
\n\n10 Lower Thames Street
\n\nLondon, EC3R 6AF, UK
\n\nPhone: +44 (0)203 972 6202
\n\n\n\n
Rijeka
\n\nIN TECH d.o.o.
\n\nJaneza Trdine 9
\n\n51000 Rijeka - Croatia
\n\nPhone: +385 (0) 51 686 165
\n"},{imagePath:"/media/thumbnail/780x430/3",type:"mediaComponent",mediaType:"image",mimeType:"image/jpeg",caption:"",originalUrl:"/media/thumbnail/600x600/3",alignment:"center"},{type:"htmlEditorComponent",content:'General Inquires: info@intechopen.com
\n\nFunders: funders@intechopen.com
\n\n*INTECHOPEN LIMITED is a privately owned company registered in England and Wales, No. 11086078 Registered Office: 7th floor, 10 Lower Thames Street, London, EC3R 6AF, UK
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:null},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5313},{group:"region",caption:"Middle and South America",value:2,count:4819},{group:"region",caption:"Africa",value:3,count:1468},{group:"region",caption:"Asia",value:4,count:9363},{group:"region",caption:"Australia and Oceania",value:5,count:837},{group:"region",caption:"Europe",value:6,count:14778}],offset:12,limit:12,total:108153},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10100",title:"Evo-Devo",subtitle:null,isOpenForSubmission:!0,hash:"4c17ab0c64ce206c75ad6cec64e05737",slug:null,bookSignature:"Dr. Dimitrios P. Vlachakis, Prof. Elias Eliopoulos and Prof. George P. Chrousos",coverURL:"https://cdn.intechopen.com/books/images_new/10100.jpg",editedByType:null,editors:[{id:"179110",title:"Dr.",name:"Dimitrios",surname:"Vlachakis",slug:"dimitrios-vlachakis",fullName:"Dimitrios Vlachakis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7845",title:"Platelets",subtitle:null,isOpenForSubmission:!0,hash:"d33b20516d6ff3a5b7446a882109ba26",slug:null,bookSignature:"Dr. Steve W. W. Kerrigan and Prof. Niamh Moran",coverURL:"https://cdn.intechopen.com/books/images_new/7845.jpg",editedByType:null,editors:[{id:"73961",title:"Dr.",name:"Steve W.",surname:"Kerrigan",slug:"steve-w.-kerrigan",fullName:"Steve W. Kerrigan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7965",title:"Display Technology",subtitle:null,isOpenForSubmission:!0,hash:"eb83772cea6200bdd685b8a1b93ee35d",slug:null,bookSignature:"Dr. In Byeong Kang",coverURL:"https://cdn.intechopen.com/books/images_new/7965.jpg",editedByType:null,editors:[{id:"241133",title:"Dr.",name:"In Byeong",surname:"Kang",slug:"in-byeong-kang",fullName:"In Byeong Kang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9280",title:"Underwater Work",subtitle:null,isOpenForSubmission:!0,hash:"647b4270d937deae4a82f5702d1959ec",slug:null,bookSignature:"Dr. Sérgio António Neves Lousada",coverURL:"https://cdn.intechopen.com/books/images_new/9280.jpg",editedByType:null,editors:[{id:"248645",title:"Dr.",name:"Sérgio António",surname:"Neves Lousada",slug:"sergio-antonio-neves-lousada",fullName:"Sérgio António Neves Lousada"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6837",title:"Lithium-ion Batteries - Thin Film for Energy Materials and Devices",subtitle:null,isOpenForSubmission:!0,hash:"ea7789260b319b9a4b472257f57bfeb5",slug:null,bookSignature:"Prof. Mitsunobu Sato, Dr. Li Lu and Dr. Hiroki Nagai",coverURL:"https://cdn.intechopen.com/books/images_new/6837.jpg",editedByType:null,editors:[{id:"179615",title:"Prof.",name:"Mitsunobu",surname:"Sato",slug:"mitsunobu-sato",fullName:"Mitsunobu Sato"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9212",title:"Titration Technique",subtitle:null,isOpenForSubmission:!0,hash:"5278b500d19d2508a7c933276167d82c",slug:null,bookSignature:"Associate Prof. Vu Dang Hoang",coverURL:"https://cdn.intechopen.com/books/images_new/9212.jpg",editedByType:null,editors:[{id:"199907",title:"Associate Prof.",name:"Vu Dang",surname:"Hoang",slug:"vu-dang-hoang",fullName:"Vu Dang Hoang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9423",title:"Applications of Artificial Intelligence in Process Industry Automation, Heat and Power Generation and Smart Manufacturing",subtitle:null,isOpenForSubmission:!0,hash:"10ac8fb0bdbf61044395963028653d21",slug:null,bookSignature:"Prof. Konstantinos G. Kyprianidis and Prof. Erik Dahlquist",coverURL:"https://cdn.intechopen.com/books/images_new/9423.jpg",editedByType:null,editors:[{id:"35868",title:"Prof.",name:"Konstantinos",surname:"Kyprianidis",slug:"konstantinos-kyprianidis",fullName:"Konstantinos Kyprianidis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9428",title:"New Trends in the Use of Artificial Intelligence for the Industry 4.0",subtitle:null,isOpenForSubmission:!0,hash:"9e089eec484ce8e9eb32198c2d8b34ea",slug:null,bookSignature:"Dr. Luis Romeral Martinez, Dr. Roque A. Osornio-Rios and Dr. Miguel Delgado Prieto",coverURL:"https://cdn.intechopen.com/books/images_new/9428.jpg",editedByType:null,editors:[{id:"86501",title:"Dr.",name:"Luis",surname:"Romeral Martinez",slug:"luis-romeral-martinez",fullName:"Luis Romeral Martinez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8968",title:"Molecular and Metabolic Alterations in Tumorigenesis",subtitle:null,isOpenForSubmission:!0,hash:"e3c27ac25ffa58c82beeb2b70147b9bf",slug:null,bookSignature:"Dr. Yasemin Basbinar and Dr. Gizem Calibasi Kocal",coverURL:"https://cdn.intechopen.com/books/images_new/8968.jpg",editedByType:null,editors:[{id:"242097",title:"Dr.",name:"Yasemin",surname:"Basbinar",slug:"yasemin-basbinar",fullName:"Yasemin Basbinar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8031",title:"Pavement Engineering",subtitle:null,isOpenForSubmission:!0,hash:"1d8ae1b3b3a208c2b16c1ff852e14207",slug:null,bookSignature:"Dr. Sameh Zaghloul",coverURL:"https://cdn.intechopen.com/books/images_new/8031.jpg",editedByType:null,editors:[{id:"269407",title:"Dr.",name:"Sameh",surname:"Zaghloul",slug:"sameh-zaghloul",fullName:"Sameh Zaghloul"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7997",title:"Autophagy in Injury, Infection and Cancer Diseases",subtitle:null,isOpenForSubmission:!0,hash:"3daed6048bc8ff8368c4279558f109d7",slug:null,bookSignature:"Dr. Nikolai Gorbunov",coverURL:"https://cdn.intechopen.com/books/images_new/7997.jpg",editedByType:null,editors:[{id:"180960",title:"Dr.",name:"Nikolai",surname:"Gorbunov",slug:"nikolai-gorbunov",fullName:"Nikolai Gorbunov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9010",title:"Ion Channel Dysfunction in Disease",subtitle:null,isOpenForSubmission:!0,hash:"2bc87751cc961a9d348958e2ebb8b3a7",slug:null,bookSignature:"Dr. Saverio Gentile",coverURL:"https://cdn.intechopen.com/books/images_new/9010.jpg",editedByType:null,editors:[{id:"181463",title:"Dr.",name:"Saverio",surname:"Gentile",slug:"saverio-gentile",fullName:"Saverio Gentile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:34},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:33},{group:"topic",caption:"Business, Management and Economics",value:7,count:10},{group:"topic",caption:"Chemistry",value:8,count:30},{group:"topic",caption:"Computer and Information Science",value:9,count:25},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:74},{group:"topic",caption:"Environmental Sciences",value:12,count:13},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:38},{group:"topic",caption:"Mathematics",value:15,count:14},{group:"topic",caption:"Medicine",value:16,count:137},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:6},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:8},{group:"topic",caption:"Physics",value:20,count:20},{group:"topic",caption:"Psychology",value:21,count:2},{group:"topic",caption:"Robotics",value:22,count:6},{group:"topic",caption:"Social Sciences",value:23,count:13},{group:"topic",caption:"Technology",value:24,count:10},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3},{group:"topic",caption:"Genesiology",value:300,count:1},{group:"topic",caption:"Machine Learning and Data Mining",value:521,count:1},{group:"topic",caption:"Intelligent System",value:535,count:1}],offset:12,limit:12,total:505},popularBooks:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8416",title:"Non-Equilibrium Particle Dynamics",subtitle:null,isOpenForSubmission:!1,hash:"2c3add7639dcd1cb442cb4313ea64e3a",slug:"non-equilibrium-particle-dynamics",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/8416.jpg",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,isOpenForSubmission:!1,hash:"76361b4061e830906267933c1c670027",slug:"antioxidants",bookSignature:"Emad Shalaby",coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4396},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8463",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",subtitle:null,isOpenForSubmission:!1,hash:"23f39beea4d557b0ae424e2eaf82bf5e",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",bookSignature:"Sameh Shehata",coverURL:"https://cdn.intechopen.com/books/images_new/8463.jpg",editedByType:"Edited by",editors:[{id:"37518",title:"Prof.",name:"Sameh",middleName:null,surname:"Shehata",slug:"sameh-shehata",fullName:"Sameh Shehata"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7187",title:"Osteosarcoma",subtitle:"Diagnosis, Mechanisms, and Translational Developments",isOpenForSubmission:!1,hash:"89096359b754beb806eca4c6d8aacaba",slug:"osteosarcoma-diagnosis-mechanisms-and-translational-developments",bookSignature:"Matthew Gregory Cable and Robert Lawrence Randall",coverURL:"https://cdn.intechopen.com/books/images_new/7187.jpg",editedByType:"Edited by",editors:[{id:"265693",title:"Dr.",name:"Matthew Gregory",middleName:null,surname:"Cable",slug:"matthew-gregory-cable",fullName:"Matthew Gregory Cable"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editedByType:"Edited by",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editedByType:"Edited by",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"e7ea7e74ce7a7a8e5359629e07c68d31",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",editedByType:"Edited by",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8256",title:"Distillation",subtitle:"Modelling, Simulation and Optimization",isOpenForSubmission:!1,hash:"c76af109f83e14d915e5cb3949ae8b80",slug:"distillation-modelling-simulation-and-optimization",bookSignature:"Vilmar Steffen",coverURL:"https://cdn.intechopen.com/books/images_new/8256.jpg",editedByType:"Edited by",editors:[{id:"189035",title:"Dr.",name:"Vilmar",middleName:null,surname:"Steffen",slug:"vilmar-steffen",fullName:"Vilmar Steffen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7240",title:"Growing and Handling of Bacterial Cultures",subtitle:null,isOpenForSubmission:!1,hash:"a76c3ef7718c0b72d0128817cdcbe6e3",slug:"growing-and-handling-of-bacterial-cultures",bookSignature:"Madhusmita Mishra",coverURL:"https://cdn.intechopen.com/books/images_new/7240.jpg",editedByType:"Edited by",editors:[{id:"204267",title:"Dr.",name:"Madhusmita",middleName:null,surname:"Mishra",slug:"madhusmita-mishra",fullName:"Madhusmita Mishra"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editedByType:"Edited by",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editedByType:"Edited by",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editedByType:"Edited by",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"328",title:"Food Technology",slug:"agricultural-and-biological-sciences-bromatology-food-technology",parent:{title:"Bromatology",slug:"agricultural-and-biological-sciences-bromatology"},numberOfBooks:16,numberOfAuthorsAndEditors:470,numberOfWosCitations:67,numberOfCrossrefCitations:165,numberOfDimensionsCitations:421,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"agricultural-and-biological-sciences-bromatology-food-technology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6723",title:"Polyphenols",subtitle:null,isOpenForSubmission:!1,hash:"1844b27c0c7a6c102522f7428d96e3b6",slug:"polyphenols",bookSignature:"Janica Wong",coverURL:"https://cdn.intechopen.com/books/images_new/6723.jpg",editedByType:"Edited by",editors:[{id:"124788",title:"Ph.D.",name:"Janica",middleName:"C.",surname:"Wong",slug:"janica-wong",fullName:"Janica Wong"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6300",title:"The Yeast Role in Medical Applications",subtitle:null,isOpenForSubmission:!1,hash:"28bdc16fb0cb1dba54968cca24422659",slug:"the-yeast-role-in-medical-applications",bookSignature:"Waleed Mohamed Hussain Abdulkhair",coverURL:"https://cdn.intechopen.com/books/images_new/6300.jpg",editedByType:"Edited by",editors:[{id:"175713",title:"Dr.",name:"Waleed Mohamed Hussain",middleName:null,surname:"Abdulkhair",slug:"waleed-mohamed-hussain-abdulkhair",fullName:"Waleed Mohamed Hussain Abdulkhair"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6007",title:"Old Yeasts",subtitle:"New Questions",isOpenForSubmission:!1,hash:"4214dcadd46b262a55f53d855b3b60de",slug:"old-yeasts-new-questions",bookSignature:"Candida Lucas and Celia Pais",coverURL:"https://cdn.intechopen.com/books/images_new/6007.jpg",editedByType:"Edited by",editors:[{id:"95655",title:"Prof.",name:"Cândida",middleName:null,surname:"Lucas",slug:"candida-lucas",fullName:"Cândida Lucas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6293",title:"Yeast",subtitle:"Industrial Applications",isOpenForSubmission:!1,hash:"46632cf5c744c601f5c36175e8dc8dc4",slug:"yeast-industrial-applications",bookSignature:"Antonio Morata and Iris Loira",coverURL:"//cdnintech.com/web/frontend/www/assets/cover.jpg",editedByType:"Edited by",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5705",title:"Future Foods",subtitle:null,isOpenForSubmission:!1,hash:"3e0407db8b07ae39128d6454b67bc690",slug:"future-foods",bookSignature:"Heimo Mikkola",coverURL:"https://cdn.intechopen.com/books/images_new/5705.jpg",editedByType:"Edited by",editors:[{id:"144330",title:"Dr.",name:"Heimo",middleName:"Juhani",surname:"Mikkola",slug:"heimo-mikkola",fullName:"Heimo Mikkola"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5781",title:"Phytohormones",subtitle:"Signaling Mechanisms and Crosstalk in Plant Development and Stress Responses",isOpenForSubmission:!1,hash:"054eaa85c13ebe3d04fb8852005d2bad",slug:"phytohormones-signaling-mechanisms-and-crosstalk-in-plant-development-and-stress-responses",bookSignature:"Mohamed El-Esawi",coverURL:"https://cdn.intechopen.com/books/images_new/5781.jpg",editedByType:"Edited by",editors:[{id:"191770",title:"Dr.",name:"Mohamed A.",middleName:null,surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5706",title:"The Question of Caffeine",subtitle:null,isOpenForSubmission:!1,hash:"42f89febd9092e77c8edd4f8ca9da8f8",slug:"the-question-of-caffeine",bookSignature:"Jolanta Natalia Latosinska and Magdalena Latosinska",coverURL:"https://cdn.intechopen.com/books/images_new/5706.jpg",editedByType:"Edited by",editors:[{id:"77808",title:"Dr.",name:"Jolanta Natalia",middleName:null,surname:"Latosińska",slug:"jolanta-natalia-latosinska",fullName:"Jolanta Natalia Latosińska"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5688",title:"Rice",subtitle:"Technology and Production",isOpenForSubmission:!1,hash:"7d595f7b12ce6b947505477073a29b16",slug:"rice-technology-and-production",bookSignature:"Amanullah and Shah Fahad",coverURL:"https://cdn.intechopen.com/books/images_new/5688.jpg",editedByType:"Edited by",editors:[{id:"178825",title:"Dr.",name:"Dr.",middleName:null,surname:"Amanullah",slug:"dr.-amanullah",fullName:"Dr. Amanullah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5305",title:"Fermentation Processes",subtitle:null,isOpenForSubmission:!1,hash:"ade563b4042ed9674f6413b4ac8883f3",slug:"fermentation-processes",bookSignature:"Angela Faustino Jozala",coverURL:"https://cdn.intechopen.com/books/images_new/5305.jpg",editedByType:"Edited by",editors:[{id:"174371",title:"Dr.",name:"Angela",middleName:"Faustino",surname:"Jozala",slug:"angela-jozala",fullName:"Angela Jozala"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5217",title:"Advances in Silage Production and Utilization",subtitle:null,isOpenForSubmission:!1,hash:"74a9d90a738f4237f986bfc897dec332",slug:"advances-in-silage-production-and-utilization",bookSignature:"Thiago da Silva and Edson Mauro Santos",coverURL:"https://cdn.intechopen.com/books/images_new/5217.jpg",editedByType:"Edited by",editors:[{id:"144240",title:"Dr.",name:"Thiago",middleName:"Carvalho",surname:"Da Silva",slug:"thiago-da-silva",fullName:"Thiago Da Silva"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5100",title:"Fungal Pathogenicity",subtitle:null,isOpenForSubmission:!1,hash:"1a1402153a3f4f476ac29fd76d2cfbed",slug:"fungal-pathogenicity",bookSignature:"Sadia Sultan",coverURL:"https://cdn.intechopen.com/books/images_new/5100.jpg",editedByType:"Edited by",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5083",title:"Significance, Prevention and Control of Food Related Diseases",subtitle:null,isOpenForSubmission:!1,hash:"fb85a37391ab251574d0f2ad6cd3e805",slug:"significance-prevention-and-control-of-food-related-diseases",bookSignature:"Hussaini Anthony Makun",coverURL:"https://cdn.intechopen.com/books/images_new/5083.jpg",editedByType:"Edited by",editors:[{id:"59728",title:"Dr.",name:"Hussaini",middleName:"Anthony",surname:"Makun",slug:"hussaini-makun",fullName:"Hussaini Makun"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:16,mostCitedChapters:[{id:"40090",doi:"10.5772/52945",title:"Drought Stress and Tolerance in Soybean",slug:"drought-stress-and-tolerance-in-soybean",totalDownloads:4825,totalCrossrefCites:9,totalDimensionsCites:33,book:{slug:"a-comprehensive-survey-of-international-soybean-research-genetics-physiology-agronomy-and-nitrogen-relationships",title:"A Comprehensive Survey of International Soybean Research",fullTitle:"A Comprehensive Survey of International Soybean Research - Genetics, Physiology, Agronomy and Nitrogen Relationships"},signatures:"Yee-Shan Ku, Wan-Kin Au-Yeung, Yuk-Lin Yung, Man-Wah Li, Chao-Qing Wen, Xueyi Liu and Hon-Ming Lam",authors:[{id:"18448",title:"Prof.",name:"Hon-Ming",middleName:null,surname:"Lam",slug:"hon-ming-lam",fullName:"Hon-Ming Lam"},{id:"21943",title:"Mr.",name:"Man-Wah",middleName:null,surname:"Li",slug:"man-wah-li",fullName:"Man-Wah Li"},{id:"154164",title:"Ms.",name:"Yee Shan",middleName:null,surname:"Ku",slug:"yee-shan-ku",fullName:"Yee Shan Ku"},{id:"154165",title:"Ms.",name:"Yuk Lin",middleName:null,surname:"Yung",slug:"yuk-lin-yung",fullName:"Yuk Lin Yung"},{id:"154166",title:"Ms.",name:"Chao Qing",middleName:null,surname:"Wen",slug:"chao-qing-wen",fullName:"Chao Qing Wen"},{id:"154167",title:"Prof.",name:"Xueyi",middleName:null,surname:"Liu",slug:"xueyi-liu",fullName:"Xueyi Liu"},{id:"164136",title:"Dr.",name:"Wan-Kin",middleName:null,surname:"Au-Yeung",slug:"wan-kin-au-yeung",fullName:"Wan-Kin Au-Yeung"},{id:"164755",title:"Mr.",name:"Wan-Kin",middleName:null,surname:"Au-Yeung",slug:"wan-kin-au-yeung",fullName:"Wan-Kin Au-Yeung"}]},{id:"40180",doi:"10.5772/50568",title:"Plant Tissue Culture: Current Status and Opportunities",slug:"plant-tissue-culture-current-status-and-opportunities",totalDownloads:59245,totalCrossrefCites:18,totalDimensionsCites:31,book:{slug:"recent-advances-in-plant-in-vitro-culture",title:"Recent Advances in Plant in vitro Culture",fullTitle:"Recent Advances in Plant in vitro Culture"},signatures:"Altaf Hussain, Iqbal Ahmed Qarshi, Hummera Nazir and Ikram Ullah",authors:[{id:"147617",title:"Dr.",name:"Altaf",middleName:null,surname:"Hussain",slug:"altaf-hussain",fullName:"Altaf Hussain"}]},{id:"40179",doi:"10.5772/50367",title:"Somaclonal Variation in Tissue Culture: A Case Study with Olive",slug:"somaclonal-variation-in-tissue-culture-a-case-study-with-olive",totalDownloads:24033,totalCrossrefCites:14,totalDimensionsCites:29,book:{slug:"recent-advances-in-plant-in-vitro-culture",title:"Recent Advances in Plant in vitro Culture",fullTitle:"Recent Advances in Plant in vitro Culture"},signatures:"A.R. Leva, R. Petruccelli and L.M.R. Rinaldi",authors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}]}],mostDownloadedChaptersLast30Days:[{id:"40180",title:"Plant Tissue Culture: Current Status and Opportunities",slug:"plant-tissue-culture-current-status-and-opportunities",totalDownloads:59245,totalCrossrefCites:18,totalDimensionsCites:31,book:{slug:"recent-advances-in-plant-in-vitro-culture",title:"Recent Advances in Plant in vitro Culture",fullTitle:"Recent Advances in Plant in vitro Culture"},signatures:"Altaf Hussain, Iqbal Ahmed Qarshi, Hummera Nazir and Ikram Ullah",authors:[{id:"147617",title:"Dr.",name:"Altaf",middleName:null,surname:"Hussain",slug:"altaf-hussain",fullName:"Altaf Hussain"}]},{id:"40181",title:"Plant Tissue Culture Media",slug:"plant-tissue-culture-media",totalDownloads:99835,totalCrossrefCites:2,totalDimensionsCites:10,book:{slug:"recent-advances-in-plant-in-vitro-culture",title:"Recent Advances in Plant in vitro Culture",fullTitle:"Recent Advances in Plant in vitro Culture"},signatures:"Abobkar I.M. Saad and Ahmed M. Elshahed",authors:[{id:"144204",title:"Prof.",name:"Abobkar",middleName:null,surname:"Mohamed",slug:"abobkar-mohamed",fullName:"Abobkar Mohamed"}]},{id:"50189",title:"Food Safety – Problems and Solutions",slug:"food-safety-problems-and-solutions",totalDownloads:4436,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"significance-prevention-and-control-of-food-related-diseases",title:"Significance, Prevention and Control of Food Related Diseases",fullTitle:"Significance, Prevention and Control of Food Related Diseases"},signatures:"Aslı Uçar, Mustafa Volkan Yilmaz and Funda Pınar Çakıroğlu",authors:[{id:"80923",title:"Prof.",name:"Aslı",middleName:null,surname:"Uçar",slug:"asli-ucar",fullName:"Aslı Uçar"},{id:"176587",title:"M.Sc.",name:"Mustafa Volkan",middleName:null,surname:"Yılmaz",slug:"mustafa-volkan-yilmaz",fullName:"Mustafa Volkan Yılmaz"},{id:"176588",title:"Prof.",name:"Funda Pınar",middleName:null,surname:"Çakıroğlu",slug:"funda-pinar-cakiroglu",fullName:"Funda Pınar Çakıroğlu"}]},{id:"49838",title:"Risk Factors and Outcomes of Food Poisoning in Africa",slug:"risk-factors-and-outcomes-of-food-poisoning-in-africa",totalDownloads:5035,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"significance-prevention-and-control-of-food-related-diseases",title:"Significance, Prevention and Control of Food Related Diseases",fullTitle:"Significance, Prevention and Control of Food Related Diseases"},signatures:"Ntambwe Malangu",authors:[{id:"84773",title:"Prof.",name:"Ntambwe",middleName:null,surname:"Malangu",slug:"ntambwe-malangu",fullName:"Ntambwe Malangu"}]},{id:"51614",title:"Environmental Factors Affecting Corn Quality for Silage Production",slug:"environmental-factors-affecting-corn-quality-for-silage-production",totalDownloads:1647,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"advances-in-silage-production-and-utilization",title:"Advances in Silage Production and Utilization",fullTitle:"Advances in Silage Production and Utilization"},signatures:"Gonzalo Ferreira and Alston N. Brown",authors:[{id:"180479",title:"Dr.",name:"Gonzalo",middleName:null,surname:"Ferreira",slug:"gonzalo-ferreira",fullName:"Gonzalo Ferreira"},{id:"185277",title:"MSc.",name:"Alston",middleName:null,surname:"Brown",slug:"alston-brown",fullName:"Alston Brown"}]},{id:"51512",title:"Production Processes for Monoclonal Antibodies",slug:"production-processes-for-monoclonal-antibodies",totalDownloads:4238,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"fermentation-processes",title:"Fermentation Processes",fullTitle:"Fermentation Processes"},signatures:"Lucas Silva Carvalho, Otávio Bravim da Silva, Gabriela Carneiro de\nAlmeida, Juliana Davies de Oliveira, Nadia Skorupa Parachin and\nTalita Souza Carmo",authors:[{id:"182512",title:"Prof.",name:"Nádia",middleName:null,surname:"Parachin",slug:"nadia-parachin",fullName:"Nádia Parachin"},{id:"183188",title:"Prof.",name:"Talita",middleName:"Souza",surname:"Carmo",slug:"talita-carmo",fullName:"Talita Carmo"},{id:"187912",title:"MSc.",name:"Lucas",middleName:null,surname:"Silva Carvalho",slug:"lucas-silva-carvalho",fullName:"Lucas Silva Carvalho"},{id:"187913",title:"MSc.",name:"Otávio",middleName:null,surname:"Bravim Da Silva",slug:"otavio-bravim-da-silva",fullName:"Otávio Bravim Da Silva"},{id:"187914",title:"BSc.",name:"Gabriela",middleName:null,surname:"Carneiro De Almeida",slug:"gabriela-carneiro-de-almeida",fullName:"Gabriela Carneiro De Almeida"},{id:"187916",title:"Dr.",name:"Juliana",middleName:null,surname:"Davies Oliveira",slug:"juliana-davies-oliveira",fullName:"Juliana Davies Oliveira"}]},{id:"54262",title:"Nano-Silicate from Paddy Waste as Natural Corrosion Inhibitor",slug:"nano-silicate-from-paddy-waste-as-natural-corrosion-inhibitor",totalDownloads:1233,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"rice-technology-and-production",title:"Rice",fullTitle:"Rice - Technology and Production"},signatures:"Norinsan Kamil Othman, Denni Asra Awizar and Zulhusni Dasuki",authors:[{id:"189476",title:"Associate Prof.",name:"Norinsan Kamil",middleName:null,surname:"Othman",slug:"norinsan-kamil-othman",fullName:"Norinsan Kamil Othman"},{id:"197109",title:"MSc.",name:"Denni Asra",middleName:null,surname:"Awizar",slug:"denni-asra-awizar",fullName:"Denni Asra Awizar"},{id:"197110",title:"MSc.",name:"Zulhusni",middleName:null,surname:"Dasuki",slug:"zulhusni-dasuki",fullName:"Zulhusni Dasuki"}]},{id:"50256",title:"Cholera – Epidemiology, Prevention and Control",slug:"cholera-epidemiology-prevention-and-control",totalDownloads:4042,totalCrossrefCites:4,totalDimensionsCites:4,book:{slug:"significance-prevention-and-control-of-food-related-diseases",title:"Significance, Prevention and Control of Food Related Diseases",fullTitle:"Significance, Prevention and Control of Food Related Diseases"},signatures:"Saulat Jahan",authors:[{id:"85323",title:"Dr.",name:"Saulat",middleName:null,surname:"Jahan",slug:"saulat-jahan",fullName:"Saulat Jahan"}]},{id:"40179",title:"Somaclonal Variation in Tissue Culture: A Case Study with Olive",slug:"somaclonal-variation-in-tissue-culture-a-case-study-with-olive",totalDownloads:24033,totalCrossrefCites:14,totalDimensionsCites:29,book:{slug:"recent-advances-in-plant-in-vitro-culture",title:"Recent Advances in Plant in vitro Culture",fullTitle:"Recent Advances in Plant in vitro Culture"},signatures:"A.R. Leva, R. Petruccelli and L.M.R. Rinaldi",authors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}]},{id:"56515",title:"Yeast as a Versatile Tool in Biotechnology",slug:"yeast-as-a-versatile-tool-in-biotechnology",totalDownloads:1236,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"yeast-industrial-applications",title:"Yeast",fullTitle:"Yeast - Industrial Applications"},signatures:"Ewa Żymańczyk-Duda, Małgorzata Brzezińska-Rodak, Magdalena\nKlimek-Ochab, Maciej Duda and Agata Zerka",authors:[{id:"203728",title:"Prof.",name:"Ewa",middleName:null,surname:"Żymańczyk-Duda",slug:"ewa-zymanczyk-duda",fullName:"Ewa Żymańczyk-Duda"},{id:"203729",title:"Dr.",name:"Małgorzata",middleName:null,surname:"Brzezińska-Rodak",slug:"malgorzata-brzezinska-rodak",fullName:"Małgorzata Brzezińska-Rodak"},{id:"203730",title:"Prof.",name:"Magdalena",middleName:null,surname:"Klimek-Ochab",slug:"magdalena-klimek-ochab",fullName:"Magdalena Klimek-Ochab"},{id:"203731",title:"MSc.",name:"Maciej",middleName:null,surname:"Duda",slug:"maciej-duda",fullName:"Maciej Duda"},{id:"203732",title:"MSc.",name:"Agata",middleName:null,surname:"Zerka",slug:"agata-zerka",fullName:"Agata Zerka"}]}],onlineFirstChaptersFilter:{topicSlug:"agricultural-and-biological-sciences-bromatology-food-technology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"6837",title:"Lithium-ion Batteries - Thin Film for Energy Materials and Devices",subtitle:null,isOpenForSubmission:!0,hash:"ea7789260b319b9a4b472257f57bfeb5",slug:null,bookSignature:"Prof. Mitsunobu Sato, Dr. Li Lu and Dr. Hiroki Nagai",coverURL:"https://cdn.intechopen.com/books/images_new/6837.jpg",editedByType:null,editors:[{id:"179615",title:"Prof.",name:"Mitsunobu",middleName:null,surname:"Sato",slug:"mitsunobu-sato",fullName:"Mitsunobu Sato"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9423",title:"Applications of Artificial Intelligence in Process Industry Automation, Heat and Power Generation and Smart Manufacturing",subtitle:null,isOpenForSubmission:!0,hash:"10ac8fb0bdbf61044395963028653d21",slug:null,bookSignature:"Prof. Konstantinos G. Kyprianidis and Prof. Erik Dahlquist",coverURL:"https://cdn.intechopen.com/books/images_new/9423.jpg",editedByType:null,editors:[{id:"35868",title:"Prof.",name:"Konstantinos",middleName:"G.",surname:"Kyprianidis",slug:"konstantinos-kyprianidis",fullName:"Konstantinos Kyprianidis"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9428",title:"New Trends in the Use of Artificial Intelligence for the Industry 4.0",subtitle:null,isOpenForSubmission:!0,hash:"9e089eec484ce8e9eb32198c2d8b34ea",slug:null,bookSignature:"Dr. Luis Romeral Martinez, Dr. Roque A. Osornio-Rios and Dr. Miguel Delgado Prieto",coverURL:"https://cdn.intechopen.com/books/images_new/9428.jpg",editedByType:null,editors:[{id:"86501",title:"Dr.",name:"Luis",middleName:null,surname:"Romeral Martinez",slug:"luis-romeral-martinez",fullName:"Luis Romeral Martinez"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10107",title:"Artificial Intelligence in Oncology Drug Discovery & Development",subtitle:null,isOpenForSubmission:!0,hash:"043c178c3668865ab7d35dcb2ceea794",slug:null,bookSignature:"Dr. John Cassidy and Dr. Belle Taylor",coverURL:"https://cdn.intechopen.com/books/images_new/10107.jpg",editedByType:null,editors:[{id:"244455",title:"Dr.",name:"John",middleName:null,surname:"Cassidy",slug:"john-cassidy",fullName:"John Cassidy"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10080",title:"Vortex Dynamics",subtitle:null,isOpenForSubmission:!0,hash:"ea97962e99b3e0ebc9b46b48ba5bea14",slug:null,bookSignature:"Dr. Zambri Harun",coverURL:"https://cdn.intechopen.com/books/images_new/10080.jpg",editedByType:null,editors:[{id:"243152",title:"Dr.",name:"Zambri",middleName:null,surname:"Harun",slug:"zambri-harun",fullName:"Zambri Harun"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8903",title:"Carbon Based Material for Environmental Protection and Remediation",subtitle:null,isOpenForSubmission:!0,hash:"19da699b370f320eca63ef2ba02f745d",slug:null,bookSignature:"Dr. Mattia Bartoli and Dr. Marco Frediani",coverURL:"https://cdn.intechopen.com/books/images_new/8903.jpg",editedByType:null,editors:[{id:"188999",title:"Dr.",name:"Mattia",middleName:null,surname:"Bartoli",slug:"mattia-bartoli",fullName:"Mattia Bartoli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8771",title:"Raman Scattering",subtitle:null,isOpenForSubmission:!0,hash:"1354b3097eaa5b27d9d4bd29d3150b27",slug:null,bookSignature:"Dr. Samir Kumar and Dr. Prabhat Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/8771.jpg",editedByType:null,editors:[{id:"296661",title:"Dr.",name:"Samir",middleName:null,surname:"Kumar",slug:"samir-kumar",fullName:"Samir Kumar"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10073",title:"Recent Advances in Nanophotonics-Fundamentals and Applications",subtitle:null,isOpenForSubmission:!0,hash:"aceca7dfc807140870a89d42c5537d7c",slug:null,bookSignature:"Dr. Mojtaba Kahrizi and Ms. Parsoua Abedini Sohi",coverURL:"https://cdn.intechopen.com/books/images_new/10073.jpg",editedByType:null,editors:[{id:"113045",title:"Dr.",name:"Mojtaba",middleName:null,surname:"Kahrizi",slug:"mojtaba-kahrizi",fullName:"Mojtaba Kahrizi"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:19},humansInSpaceProgram:{},teamHumansInSpaceProgram:{},route:{name:"profile.detail",path:"/profiles/56671/andrzej-skrzypczak",hash:"",query:{},params:{id:"56671",slug:"andrzej-skrzypczak"},fullPath:"/profiles/56671/andrzej-skrzypczak",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()