Theoretical and empirical estimates of global stream and river length and area provided by different studies and datasets.
\r\n\tRNA therapies evolved as profitable and widely applicable individualized treatment solutions. Moreover, RNA-based therapeutic vaccines (e.g., against SARS-CoV-2 infection) have been proven to be safe and effective, and several of them are approved by the United States Food and Drug Administration (FDA).
\r\n\tThis book aims to present distinct classes of RNA therapeutics, ranging from single-stranded antisense oligonucleotides (ASOs), and subclasses of RNA interferences (miRNAs and other RNAi), to in vitro transcribed mRNAs and RNA vaccines. Also, it will present some of the challenges in RNA drug engineering, delivery, and specificity. Additionally, the improvement of pharmacological effectiveness will be discussed. Monumental breakthroughs in molecular biology, computational chemistry, bioinformatics, and individualized genomics, which undoubtedly propelled RNA therapeutics through the commercialization stage, will also be examined in this book.
\r\n\tRNA therapeutics have had a significant impact on medicine, the economy, and overall public health; they are becoming prescription drugs, and this holds great promise for modernizing healthcare.
Our knowledge of Earth’s ecosystems and biodiversity is growing at rates that exceed our ability to accurately predict regional species pools [1]. Recent estimates of Earth’s biodiversity suggest that the planet boasts a total of 8.7 million species, 87% of which are yet to be described [2]. Yet while our comprehension of the magnitude and appreciation of species diversity grows, many have suggested we are currently within the Earth’s six mass extinction event [3, 4], in which rates of species loss are unprecedented compared to past extinction events. Indeed, cataloguing biodiversity is a catalyst for global conservation efforts. The International Union for the Conservation of Nature (IUCN) has assessed over 77,300 species, of which 29,530 (38%) are classified as threatened, endangered, or critically endangered, and >10,000 more (13%) species listed as vulnerable [5]. While only 0.01% of Earth’s surface water occurs in rivers, lakes, and swamps, >126,000 (7%) of the Earth’s described species are found in freshwaters [6, 7]. Therefore, freshwater species especially are in serious jeopardy of extinction.
\nDudgeon et al.’s [6] review of threats and conservation challenges to global freshwater biodiversity came at a much-needed time and addressed information gaps limiting our knowledge of these systems. The authors suggested (correctly) that there was no global comprehensive analysis of freshwater biodiversity comparable to those conducted for terrestrial systems [8]. Additionally, there was no comprehensive mapping of inland waters. The lack of this information prohibited our collective ability to inform large-scale conservation and prioritizing species and habitat protection. Since that time, many have answered the call to map global freshwater habitats and biodiversity to inform large-scale conservation. Just 2 years later, in 2008, the first seamless high-resolution map of global river hydrography was developed [9], and the first global biogeographical regionalization of freshwater biodiversity was completed [10].
\nIn more recent years, significant advances in mapping aquatic habitats—specifically rivers, lakes, and wetlands—have been made at the global scale (e.g., [11, 12, 13]). Much of the progress in spatially depicting freshwater ecosystems has been the result of new globally comprehensive remote sensing technologies [13], but also significant efforts by scientists to collate disparate data sources [14]. As new datasets and geospatial products emerge with increasing spatial resolution, estimates of the spatial extent and importance of freshwater ecosystems in global biogeochemical cycles have also increased [15, 16, 17]. While efforts to develop comprehensive inventories and maps of the distribution of the world’s freshwater fauna have dramatically increased [18, 19], these efforts have remained separate from those of freshwater habitat mapping.
\nHerein, we briefly review the status and recent history of global mapping of freshwater habitats, their biodiversity, and human disturbances. First, we provide an overview of the efforts and datasets to empirically map rivers, lakes, reservoirs, and wetlands at the global scale, and compare these to theoretical estimates of the spatial coverage of unobserved features. This provides an assessment of the accuracy and comprehensiveness of global freshwater habitat mapping. Secondly, we discuss the current state of global freshwater biodiversity mapping and provide sources of information and various approaches used. We compare the spatial scales and resolution of biodiversity and freshwater habitat mapping to identify potential overlap and information gaps. Additionally, we discuss various approaches to map the global extent of human disturbances in freshwater systems. Finally, we discuss emerging themes, but also gaps and research needs for continuing to improve our knowledge of patterns in freshwater species and their habitats. We also present summaries of the various databases used in supporting these efforts, which to our knowledge have not been previously summarized in one publication.
\nGlobal estimates of freshwater ecosystem coverages have been developed through both theoretical [20] or empirical means [21], or a combination of both [11]. Theoretical constructs, for example, might assume relationships between the size, distribution, and bifurcation of rivers (i.e., network theory) to quantify size and distribution of rivers within a region [20]. Likewise, theoretical relationships of size versus distribution are commonly used to estimate the frequency and size of unobserved waterbodies [22]. In contrast, empirical estimates typically rely on spatial observations from remote sensing data. Because the geospatial representation of waterbodies is limited to the spatial fidelity of mapping efforts, the number and areas of waterbodies provided through empirical observation is consistently smaller than that estimated theoretically. This comparison is important, however, in that it yields insights into the current state (i.e., comprehensiveness and granularity) of global freshwater mapping efforts. In the following sections, we review and compare approaches to obtaining global scale estimates of three different freshwater ecosystem types: rivers and streams, lakes and reservoirs, and wetlands. Estimation methods and datasets vary for each of these aquatic ecosystem types and influence their respective global estimates. We also devote particular attention to trends in freshwater mapping efforts within the United States.
\nGlobal estimates of river and stream mileage and area range widely, with aerial estimates provided more frequently than distances. The latest and largest estimates of river length and area are over 88.3 million km and 662,100 km2, respectively [20]. To provide these estimates, Downing et al. [20] used two approaches, one reliant on stream network theory and empirical data on stream widths and the other estimating the fraction of continental area occupied by streams while correcting for the unresolved small stream portion. The authors first estimated global river number, length, and area according to stream order by relying on relying on river geometry and scaling laws [23, 24] and known bifurcation ratios and stream length-order equations [25]. Stream widths among different order streams were obtained from literature or aerial imagery and applied to the number and lengths of streams. In the second method, estimates of the fraction of river area per land for well-studied landscapes were extrapolated to the global land area, which led to a very close second approximation, 640,400 km2.
\nEmpirical estimates of global river length and area from mapping efforts are far less than the maximum theoretical estimates [20]. The Digital Chart of the World (DCW) estimates global stream length at 16.6 million km [26, 27]. HydroSheds (basins and stream networks) were developed from global digital elevation models (DEMs) which increased the estimate to 27.3 million km (derived from 15 arc-second resolution) (\nFigure 1\n) [9]. The Hydro1K database is currently the highest resolution empirical estimates of global stream length [28], which constitutes 53% of the highest theoretical estimates [20]. Previous estimates of global river area range from 360,000 to 510,000 km2 (\nTable 1\n). The Global Lakes and Wetlands Database (GLWD) is a compilation of at least 17 different datasets of regional to global registers, inventories, and digital maps according to different spatial extents [21]. Their estimate of 360,000 km2 of global river area was dependent upon aerial and satellite imagery of >5th order rivers and streams [20].
\nHydroSHED 15s basin boundaries (left). Example of improved accuracy of rivers mapped in HydroSHEDs 15s versus the Digital Chart of the World in the Congo River Basin, Africa.
Study or database | \nLength (km) | \nArea (km2) | \n
---|---|---|
Theoretical | \n||
Downing et al. [20]: A | \n88,325,340 | \n662,100 | \n
Downing et al. [20]: B | \n\n | 640,400 | \n
Downing et al. [20]: C | \n\n | 485,000 | \n
Aufdenkampe et al. [29] | \n\n | 510,000 | \n
Downing [30] | \n\n | 508,000 | \n
Empirical | \n||
HydroSheds [9] | \n27,300,269 | \n\n |
Global Wetlands and Lakes Database [21] | \n\n | 360,000 | \n
Digital Chart of the World [26, 27] | \n16,610,004 | \n\n |
Hydro1K [28] | \n46,900,425 | \n\n |
Theoretical and empirical estimates of global stream and river length and area provided by different studies and datasets.
Downing et al. [20] use three different approaches to estimating stream and river area as denoted by A, B, and C (see text).
The spatial distribution and quantification of global river and stream mileage is limited to the resolution of widespread DEMs and, in turn, derived stream networks [31, 32]. Increased spatial resolution [33] and new algorithms for deriving stream networks [31] have continually increased the accuracy of spatial representations of global rivers (\nFigures 1\n and \n2\n). The finest resolution of consistent global-extent elevation grids is >90 m [9, 28], which will grossly underrepresent small stream systems. According to the DCW, the length of streams and rivers within the conterminous-US (CONUS) totals 727,326 km (almost 29,000 reaches) whereas the HydroSheds database (15 arc-second) estimates the same distance as almost 1.9 million km (238,405 reaches) (\nFigure 3\n). In contrast, the total mileage is 5.7 million km (2.98 million reaches) according to the NHD plus medium resolution dataset (1:100k scale) [34], which was constructed on the basis of 30-m DEM resolution [35]. The NHD High-Resolution Dataset (1:24k scale), however, estimates stream length for the CONUS at 1.2 million km (\nFigure 3\n) [36]. While mapping perennial systems seems straightforward, accurately mapping ephemeral systems from flow accumulation thresholds is difficult. Even the NHDplus dataset under-represents the small headwater systems apparent in the high-resolution National Hydrography Dataset (1:24k scale), which also under-represents potential ephemeral systems (\nFigure 2\n).
\nComparison of HydroSHEDs to NHDPlus (1:100k) flowlines in the Ohio and Tennessee River Basins of the US (left). Example of the increased spatial resolution provided by the National Hydrography Dataset (High-resolution, 1:24k) over that of NHDPlus in Bear Creek, near Oak Ridge, Tennessee, USA. However, ephemeral channels are likely even underestimated by the NHD High-resolution dataset.
Total continental US stream distance represented by four spatial datasets depicting river networks.
Interestingly, global length-stream order relationships do not follow global area-stream order relationships. For example, the number and length of 1st order systems in the world are, by far, numerically dominant constituting 52% of global river length (28.5 million and 45.7 million km2, respectively) [20]. However, global river area is dominated by larger order systems (≥6th order), which represent 65% of total river area. Size-specific stream distribution estimates are extremely important for accurately portraying or modeling the distribution of aquatic organisms.
\nStudies estimating the global extent of lakes and reservoirs were more numerous than those estimating river and stream distributions. Global numbers of lakes range from 800,000 to 304 million whereas cumulative area of world lakes ranges from 2.3 to 5 million km2 (\nTable 2\n, \nFigure 4\n). Human construction of reservoirs has been extensive, the most current estimate at 16.7 million waterbodies with a cumulative surface of 305,723 km2, an area equivalent to increasing the world’s naturally occurring terrestrial water surface by 7.3% [11]. Other estimates of global reservoir surface area range from 150,000 to 600,000 km2, depending on the source and whether regulated natural lakes are included (\nTable 2\n). Only one study provided an estimate of global farm pond coverage (77,000 km2) using relationships between the fraction of farm pond area within farm land and annual precipitation [22].
\nArea | \nLakes | \nReservoirs | \nFarm ponds | \n
---|---|---|---|
103 km2\n | \n103 km2\n | \n103 km2\n | \n|
Kelly et al. (1994) [37] | \n\n | 500 | \n\n |
Pearce (1996) [38] | \n\n | 600 | \n\n |
Meybeck (1995) [39] | \n2300–2600 | \n\n | \n |
Lehner and Doll (2004) [21]\n*\n\n | \n2428 | \n251 | \n\n |
Lehner and Doll (2004) [21]\n*\n\n | \n3200 | \n\n | \n |
McDonald (2012) [40] | \n3800 | \n\n | \n |
Downing et al. [22] | \n4200 | \n260 | \n77 | \n
St. Louis et al. (2000) [41] | \n\n | 150 | \n\n |
Lehner et al. (2011) [11]\n*\n\n | \n\n | 305 | \n\n |
Messager et al. (2016) [42]\n*\n\n | \n2677 | \n250 | \n\n |
Verpoorter et al. (2014) [13]\n*\n\n | \n5000 | \n\n | \n |
Number | \n103\n | \n103\n | \n103\n | \n
Meybeck (1995) [39] | \n800–1300 | \n\n | \n |
Lehner and Doll (2004) [21]\n*\n\n | \n246 | \n0.822 | \n\n |
Lehner and Doll (2004) [21]\n*\n\n | \n15100 | \n\n | \n |
McDonald et al. (2012) [40] | \n64000 | \n\n | \n |
Downing et al. [22] | \n304000 | \n\n | \n |
Lehner et al. [11]\n*\n\n | \n\n | 16700 | \n\n |
Messager et al. [42]\n*\n\n | \n1421 | \n7 | \n\n |
Global estimates of the area and number of lakes, reservoirs, and farm ponds according to different studies.
Empirical estimates.
Global lake abundance estimated by several different studies.
Similar to rivers and streams, lakes and reservoirs have been estimated using both empirical observation of available geospatial datasets or via extrapolation of observed data to unobserved features. Until recently, theoretical estimates of lakes exceeded that of empirically derived estimates. New high-resolution satellite imagery provided means to observe lakes >0.002 km2 [13]. Using this technology, the GLObal WAter BOdies database (GLOWABO) was developed for 117 million lakes with a total surface area of 5 million km2 [13]. This surface area estimate exceeds that of the highest theoretical estimate [20], but is still smaller in total lake abundance (\nFigure 4\n).
\nThe development of reservoir mapping datasets has provided valuable spatial representations of waterbodies in recent years. For example, the GLWD dataset consists of polygon shapefiles of approximately 250,000 lakes and reservoirs >0.1 km2 and raster datasets of other lakes, reservoirs, and wetland coverages [21]. The GLWD included only information for the world’s largest reservoirs (storage >0.5 km3) either because spatial information was limiting or existing lake datasets did not explicitly clarify whether a given waterbody was manmade. Because of the incomplete nature of global datasets on impoundments, the Global Reservoir and Dam database (GranD) was developed as a compilation of spatial coverages of 6862 reservoir polygons and associated dams and attributes [11]. More recently, a new geospatial coverage of global lakes and reservoirs, HydroLakes, was developed and includes hydrologic attributes, such as volume and residence time, using a geo-statistical model [42] (\nFigure 5\n). Within the US, the NHDplus (1:100k) dataset provides coverage of lakes and areas as polygons, an area estimated at almost 250,000 km2; however, this dataset misses small waterbodies, especially farm ponds. The NHD high-resolution (1:24k) dataset estimates lake and reservoir area coverage as approximately 890,000 km2, almost 3.5 times higher than that of NHDplus.
\nHydroLakes database depiction of global lakes and reservoirs.
The most numerous lake and reservoir waterbodies are very small (<0.1 km2) (\nFigure 4\n), yet these are typically omitted from most maps (with recent exceptions, [13]). To estimate the size and distribution of these smaller waterbodies, Pareto distributions of log-abundance versus log-size are fit to observed larger lakes and then those coefficients are used to extrapolate the abundance of smaller, unobserved lakes [43] or reservoirs [11]. Obviously, these estimates do not come without error, with some suggesting that numbers of small lakes and any related scaling estimates (e.g., carbon fluxes) are unreliable [44].
\nWetlands are transitional systems by nature, making them difficult to distinguish from other waterbodies. A distinction is provided by the U.S. Fish and Wildlife Service (USFWS) [45], which defines wetlands as “lands transitional between terrestrial and aquatic systems where the water table is usually at or near the surface or the land is covered by shallow water”. USFWS [45] goes on to list three main attributes of wetlands: “(1) at least periodically, the land supports predominantly hydrophytes, (2) the substrate is predominantly undrained hydric soil, and (3) the substrate is non soil and is saturated with water or covered by shallow water at some time during the growing season of each year.” In contrast, the International Union for the Conservation of Nature (IUCN) broadens the definition of wetlands to be all-inclusive of “areas of marsh, fen, peatland or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine water the depth of which at low tide does not exceed 6 m” [46]. For our purposes, we include wetlands as any waterbody or part of the landscape that falls within the definitions above, but cannot be distinguished as a lake, reservoir, pond, river or stream.
\nUnfortunately, there is little consistency in the nomenclature distinguishing among various waterbodies in the spatial datasets used to estimate global coverage of wetlands. The GLWD is commonly used in representations of wetlands across the globe (\nFigure 6\n). Many of the spatial datasets contributing to the GLWD, however, have contrasting naming conventions for waterbodies [21]. In particular, the DCW does not distinguish between vectors portraying lakes, reservoirs, larger rivers, and wetlands [26]. In comparison, the Wetlands Map of the World Conservation Monitoring Center (WCMC) includes 20,000 wetland and lake polygons classified into 21 types and represents the most comprehensive and accurate vector map of the world’s wetlands [47]. As opposed to representing wetlands as vectors or polygons, other mapping efforts display wetlands as raster maps. For example, the US Geological Survey Global Land Cover Characteristics (GLCC) database [48] and MODerate resolution imaging spectroradiometer (MODIS) data [49] provides classification of global landcover, including wetlands, as 30 second grids (MODIS). Others have developed global wetland land cover maps at coarser resolutions using varied methodologies [50, 51, 52]. Because of the uncertainties on global wetland extents and inventories, the Ramsar Convention on Wetlands has promoted new efforts and advanced remote sensing technologies to provide new and improved global wetland inventories [53, 54].
\nMap of global waterbodies based on the Global Lakes and wetlands database (GLWD).
Similar to other freshwater systems, estimates of the global coverage of wetlands have increased over time with advances in higher-resolution spatially comprehensive datasets. Early estimates (pre-2000) ranged from 4.3 to 5.3 million km2 whereas current estimates approach almost 13 million km2 (\nTable 3\n). However, the highest estimate may be an overestimate inclusive of lake and reservoir waterbodies [57] relative to the reference [21] estimate of 9.2 million km2. Within the US, wetlands are depicted by a few vector and raster datasets. For the conterminous US, the Multi-Resolution Land Characteristics Consortium (MRLC) provides National Land Cover Databases (NLCD) as raster images [58]. According to the 2011 NLCD data, the area classified as woody or herbaceous wetlands sums to 417,442 km2. Open water constitutes almost the same spatial area, 422,111 km2. The USFWS maintains the National Wetland Inventory (NWI), a database of polygons and associated very detailed classification framework for the conterminous US [59] (\nFigure 7\n). The NWI provides a status update of the nation’s wetlands every five years with the latest 2009 report indicating there were 445,559 km2 of wetlands, 95% of which are freshwater systems [60]. The difference of 28,118 km2 between NWI and NLCD estimates of wetland area for the entire conterminous US suggests differences in the approaches taken to classify wetlands (\nFigure 7\n). Both of these datasets, however, far exceed the spatial granularity of wetlands depicted by the GLWD (\nFigure 7\n).
\nStudy | \nWetlands (103 km2) | \n
---|---|
Lehner and Doll [21] | \n9167 | \n
Williams [55] | \n8558 | \n
Mitch and Gosselink [56] | \n7000 - 9000 | \n
Mathews and Fung [50] | \n5260 | \n
Cogley [51] | \n4340 | \n
Sillwell-Soller et al. [52] | \n4795 | \n
GLCC [48] | \n1093 | \n
MODIS [49] | \n1291 | \n
Gross Wetlands Map [21] | \n11711 | \n
Finlayson et al. [57] | \n12800 | \n
Global areal estimates of wetland coverages according to different studies.
Numbers provided by Lehner and Doll [21].
Comparison of wetland maps derived from the National Wetlands Inventory (NWI), the National Land Cover Database (NLCD), and the Global Lakes and Wetlands Database (GLWD) for a coastal portion of the State of North Carolina located in the eastern United States. Examples of types of wetland databases available in the conterminous US.
Global and continental-scale mapping of freshwater species distributions has lagged freshwater habitat mapping efforts in terms of finer spatial granularity. More specifically, there are mismatches between the resolution of current global biogeography efforts and the spatial fidelity of waterbodies in the landscape. This makes intuitive sense for two main reasons: (1) The presence of a species within a given area typically requires in situ observation, as opposed to detection via remote sensing technologies, such as in the case of waterbodies and other landscape features. That being said, remote sensing of biodiversity is a rapidly growing area of research [61], with potential new capabilities for direct aerial observation of biota [62]. (2) Most observations of species are discrete points in space and time, are influenced by methods of detection, and are not spatially comprehensive. Hence, extending species presences into unsampled areas requires various levels of inference ranging from summarization into regions or watersheds to sophistical statistical models predicting probability of presence using a suite of predictor variables characterizing habitat. Obviously, the first approach requires less resources and information, whereas the latter approach requires rich information on descriptions of habitat, not just the features themselves.
\nGenerally, we found little congruence between global mapping of biodiversity and global mapping of freshwater habitats (\nTable 4\n). Only two studies in \nTable 4\n used spatial products from recent global habitat mapping efforts [19, 72]. Richman et al. [19] summarized crayfish range maps from IUCN and georeferenced occurrences (from experts) in Hydro1K basins [28] to examine factors responsible for their decline. All but one of the studies outlined in \nTable 4\n have been published within the last 15 years, and opposite as expected, species mapping efforts do not display a clear trend of increasing spatial granularity over time. In contrast, studies seem to summarize biogeographical information at the coarsest scales sufficient to achieving their purpose, which in most cases, was related to examining declines in species and threats to their existence. Spatial resolutions of freshwater species mapping ranged from biogeographic regions and range estimates (polygons) to 96-km2 gridded cells and small watersheds (e.g., Hydro1K).
\nSource | \nDescription | \nSpatial resolution | \nSource | \n
---|---|---|---|
\n | \n|||
Oberdorff et al. [63] | \nAnalyze fish species richness patterns across continents and show that species-area and species-energy relationships explain most of the variation | \nMajor drainage basins (n = 292) | \nMultiple published sources | \n
Amarasinghe & Welcome [64] | \nDeveloped models of fish species richness from natural lake characteristics | \nNature lake features | \nMultiple published sources; International Lake Environment Committee Foundation (ILEC) global lake database [65] | \n
Xenopoulos et al. [66] | \nUse global hydrologic model to simulate scenarios of future fish species loss with losses in river discharge from climate change and withdrawal | \nMajor drainage basins (n = 325) | \nOberdorff et al. 1995 [63]; FishBase [67] | \n
Abell et al. [10] | \nDeveloped first global biogeographic regionalization of Earth\'s freshwater systems based on composition of freshwater fish species | \nFreshwater ecoregions (n = 397) | \nMultiple | \n
Oberdorff et al. [68] | \nDeveloped a framework of mechanisms and processes driving global and regional patterns in fish richness | \nMajor drainage basins | \nMultiple published sources | \n
Liermann et al. [69] | \nUse spatial distribution of fish, their traits, and current dam development to examine risks of fish species loss | \nFreshwater ecoregions (n = 397) | \nAbell et al. 2008 [10] | \n
Bross et al. [70] | \nDeveloped a database of native, endemic and non-native fish species richness in major basins of the world | \nMajor drainage basins (n >1000) | \nMultiple published sources | \n
Toussaint et al. [71] | \nExamine world patterns in functional diversity of fish relative to species diversity | \nBiogeographic regions (n = 6) | \nBross et al. 2013 [70] | \n
Winemiller et al. [72] | \nExamined patterns in fish biodiversity and endemic species overlapping with current and proposed dam construction in the Amazon, Congo, and Mekong River basins | \nFreshwater ecoregions; hydroBasins | \nAbell et al. 2008 [10]; IUCN [73] | \n
\n | \n|||
Stuart et al. [74] | \nStatus and trends of worldwide amphibian declines and extinctions. Mapped species distributions by reason for decline | \n10 Cell | \nGlobal Amphibian Assessment (IUCN) [75] | \n
Gallant et al. [76] | \nGlobal assessment of land use dynamics in the context of amphibian distributions | \nGlobal ecoregions (n = 21) | \nGlobal Amphibian Assessment (IUCN) [75] | \n
Sodhi et al. [77] | \nGlobal analysis to quantify the influences of life history, climate, human density, and habitat loss on declines and extinction of 45% of known amphibians | \nRange maps | \nGlobal Amphibian Assessment (IUCN) [75] | \n
Wake and Vredenburg [3] | \nGlobal assessment of the decline and extinction of amphibians | \nCountry | \nMultiple | \n
Rödder et al. [78] | \nGlobal risk assessment for amphibian extinction for the Panzootic Chytrid Fungus | \n0.50 Cell | \nGlobal Amphibian Assessment (IUCN) [75] | \n
Hof et al. [79] | \nAssess the current and future interactions of climate change, land-use change, and spread of the pathogenic fungal disease chytridiomycosis on amphibian species declines | \n20 Cell | \nMultiple | \n
Ficetola et al. [80] | \nAssessment of error in global range maps for amphibians | \nRange maps; point distributions | \nGlobal Amphibian Assessment (IUCN) [75]; GBIF [81]; Check List Online Journal [82] | \n
\n | \n|||
Graf and Cummings [83] | \nReview of systematics and global diversity of freshwater mussel species | \nGeographic regions (n = 32) | \nMUSSEL Project [84] | \n
Nobles and Zhang [85] | \nAssessment of global biodiversity loss in mussels including threats and solutions | \nBiogeographic regions (n = 6) | \nMultiple published sources | \n
\n | \n|||
Crandall and Buhay [86] | \nDescription of global diversity in crayfish | \nContinents | \nMultiple | \n
Richman et al. [19] | \nEvaluation of factors responsible for global declines in crayfish | \nHydroIK river basins | \nIUCN; expert georeference collection efforts | \n
\n | \n|||
Rodrigues et al. [87] | \nExamination of global protected areas in representing species diversity (includes amphibians, mammals, birds, turtles). | \n0.50 Cell | \nIUCN [73] | \n
Rodrigues et al. [88] | \nGlobal gap analysis assessing the extent of protected land coverage for representation of biodiversity including amphibians, mammals, freshwater turtles and tortoises, and globally threatened birds | \n0.250 Cell | \nIUCN [73] | \n
Grenyer et al. [89] | \nExamine congruence and commonalities in biodiversity and rare and threatened species among amphibians, mammals, and birds | \n96.3 km2 grids | \nMultiple | \n
McGeoch et al. [90] | \nDevelopment of indicators describing relationships between the extent of biological invasion by alien species, its impact on biodiversity and policy response. Species included mammals, birds, amphibians, freshwater fish, vascular plants and marine organisms (including algae, corals, invertebrates and fish) | \nCountries | \nConvention on Biological Diversity [117] | \n
Collen et al. [18] | \nExamined geographical ranges of 7083 freshwater species of mammals, amphibians, reptiles, fishes, crabs and crayfish to examine commonalities in distribution of richness, threatened species, endemism, and congruence in diversity measures among taxa | \n10 Cell | \nIUCN [73] | \n
Prim et al. [91] | \nReview of global species biodiversity, their rates of extinction, distribution, and protection (includes amphibians, fish, terrestrial birds, terrestrial mammals, and plants) | \nVaried (amphibians, 0.50 cell; fish, Freshwater Ecoregions, n = 397) | \nIUCN [73]; Abell et al. 2008 [10] | \n
Jenkins et al. [92] | \nAssessed the US protected areas with respect to biodiversity of freshwater fish, terrestrial vertebrates, and trees | \nVaried | \nNature Serve [93]; BirdLife International [94]; IUCN [73]; US Geological Survey Tree Database [95] | \n
Examples of studies developing or utilizing global freshwater biogeography databases.
In most cases, global mapping of biodiversity has been achieved by summarizing occurrence or estimated range information into spatial units as opposed to developing predictive species distribution models (SDMs) (\nTable 4\n). There are, however, several global-scale species modeling efforts, many of which are provided as interactive online resources (see following sections). Of freshwater taxa, amphibians and fish mapping efforts have been documented more than crayfish and mussels (\nTable 4\n), possibly because more vertebrate species have been described and more is known about the details of their life histories, habitat requirements, and conservation status. Additionally, global mapping efforts for amphibians are more common because of the wealth of data for that taxa. In particular, the Global Amphibian Assessment conducted by the International Union for the Conservation of Nature (IUCN) produced polygon range maps for >6000 known amphibian species [75] (\nFigure 8\n) and was used in six different studies (\nTable 4\n). The IUCN provides similar spatial data for mammals, reptiles, and marine and freshwater taxa [73]. The range maps are many times converted to gridded raster datasets [74] (\nFigure 8\n) or overlapped with region polygons to provide summaries of species within those areas (e.g., [76]).
\nGlobal amphibian richness from the International Union for the Conservation of Nature (IUCN) Global Amphibian Assessment.
The IUCN recently produced a set of higher-resolution global maps of ranges of freshwater taxa (IUCN) within HydroBasins (240,000 basins globally) [12] (\nFigure 9\n). One study relied on this resource to examine spatial relationships between fish biodiversity and planned hydropower dam construction in three large basins of the world [72]. The authors suggested that site selection for dams not be conducted purely on the grounds of energy, but should be conducted strategically through tradeoff analyses to conserve the most biodiversity while financing new dams. The IUCN data is currently the best openly available global information on freshwater species occurrences, but has many gaps in spatial coverage (e.g., \nFigure 9\n). While the Congo and Mekong River (China) basins had sufficient information at the resolution of HydroBasins, the Amazon Basin did not have comprehensive biodiversity mapping at that resolution; hence, reference [72] relied on biodiversity estimates in Freshwater Ecoregions [10], a far coarser alternative. The Amazon basin is over 7 million km2 yet only contains 13 Freshwater Ecoregions. Obviously, for conservation purposes, higher-resolution granularity is required to inform dam site selection in many areas of the globe. To compensate for lack of knowledge in many areas of the world, other mapping efforts have relied on published resources to compile freshwater species lists within regions or basins [63, 70]. While these resources can fill in important knowledge gaps, they are coarse (presented at the resolution of large basins) and leave large regions of the globe vacant of information (\nFigure 9\n).
\nGlobal maps of fish richness provided by the IUCN [
Although many of the world’s freshwater species lack formal description, are prone to misidentification, and have few georeferenced occurrences, databases of species observations and species characteristics are growing rapidly. For example, the Global Biodiversity Information Facility (GBIF) currently has over 730 million occurrences for over 1.64 million species and harnesses global community participation [81]. GBIF operates through more formal data publishing, whereas other databases, such as iSPOT [96] provides a platform for crowd-sourced species observations. Additionally, rich databases on species ecology and conservation status have emerged to assist with linking biodiversity with their global freshwater habitat requirements [67, 93]. The wealth of information from georeferenced occurrence databases and descriptive databases suggests that global freshwater biodiversity SDM efforts are not limited by observations, but the inability to extrapolate occurrences to fine-grain freshwater habitats via distribution modeling. This is not to suggest that global freshwater biodiversity SDM efforts are completely absent. Indeed, novel web tools are available to enable users to perform their own SDM projections, both current and future. The Life Mapper project is an online resource that utilizes GBIF observations and global climate, terrain and land cover information to model the current and future distributions of species (including freshwater) [97]. Models of current ranges of species and habitat specifications are calibrated based on existing observations and climate information and used to model future potential ranges based on four climate scenarios spanning 2050 and 2070, according to the International Panel on Climate Change (\nFigure 10\n). As another example, AquaMaps uses a simplistic “environmental-envelope” method to develop large-scale predictions of marine and freshwater species occurrences [98, 99]. Occurrence data are obtained from GBIF and literature available through FishBase and summarized within bounding basins to constrain subsequent projections of distribution to only natural ranges. Occurrence data are overlain with eight environmental parameters to create an envelope of environmental suitability, which is essentially using the percent of observations (percentiles) in conjunction with local habitat conditions to estimate probability of occurrence [98]. Environmental envelopes are then used to model probabilities of species occurrence based on local conditions. Both the Life Mapper project and Aquamaps are freely available and are a quick approach to developing distribution maps; however, they are still relatively coarse projections, currently set at 10 arc-minutes and 0.5° (30 arc-second) cells, respectively, and do not approximate freshwater habitat features.
\nLife map projections of Brook Trout (
We suggest that the current leading limitation of achieving high-resolution global freshwater biodiversity mapping efforts has been a matter of limiting global habitat characteristic data, as opposed to limitations in occurrence data. Even if occurrences for a species are limited, current modeling approaches (e.g., Maxent) are capable of developing SDMs with low sample sizes [100]. By high-resolution, we are referring to the spatial granularity that approximates that of global freshwater habitat features. Recent developments have produced high-resolution depictions of freshwater features in the landscape, but much of these features have little accompanying information on habitat requirements for species (e.g., temperature, hydrology, depth, etc). One exception is a database on world lakes (n = 217) provided by the International Lake Environment Committee Foundation (ILEC), which includes location, morphometric features, climate, water quality, and edaphic variables [65]. This provided an opportunity to model fish species richness in selected natural lakes across the globe [64].
\nIn comparison to terrestrial ecosystems, habitats within freshwater systems are shaped by upstream hydrologic processes, which require sophisticated geospatial summarization methods for appropriate characterization. For example, suppose air temperature is being used as a surrogate of water temperature in a fish species distribution model at the resolution of stream reaches or small watersheds. In this case, air temperature summarized at the location of the individual stream reach is unlikely to be representative of actual water temperature conditions. In contrast, using stream network routing to accumulate air temperature values for the entire upstream drainage network of each reach would be more representative [35]. Until recently, this type of habitat characterization was globally unavailable to support high-resolution freshwater species distributions. A near-global dataset summarizing 324 layers describing climate, land cover, topography, geology, and soils was recently developed for upstream drainage network of HydroSHEDs river reaches [101]. For the US, a comparable dataset is the NHD plus system (1:24K scale), which provides climate, hydrology, and land-use information summarized within the entire upstream network above each stream reach. Many freshwater species distribution modeling efforts have utilized the NHDplus data (1:24k) and architecture because of topological connectivity and habitat predictors offered by the resource [102, 103, 104, 105, 106, 107] (\nFigure 11\n). Although NHDplus is a convenient database to support freshwater species distribution modeling, it does not adequately represent 1st order streams, the majority of which provide habitat for freshwater taxa (\nFigure 11\n). The NHD High resolution database (1:100k) represents smaller stream systems, but does not provide pre-summarized habitat information. For this reason, other studies have developed their own reach datasets with accumulated habitat variables to support freshwater SDMs at resolution comparable to the NHD high-resolution dataset [108].
\nSpecies distribution model (SDM) developed for Largescale stoneroller (
Mapping species distributions is considered important for conservation efforts because it increases understanding of the spatial patterns of endemism and vulnerability. Species mapping may be conducted along with an inventory of current and future landscape-scale anthropogenic stressors. Understanding the global extent of freshwater habitat alteration is important to prioritize areas for protection and restoration while finding global development pathways that balance human demands (e.g., dam construction) with freshwater ecosystem needs [109]; however, a key challenge to mapping freshwater habitat alteration is lack of understanding about how anthropogenic activities propagate impacts in freshwater environments. Freshwaters are influenced by upstream drainage networks, the surrounding landscape, and hence, are recipients of upstream land activities, all of which creates a challenge in modeling, mapping, and understanding conservation challenges [6].
\nRecently, much progress has been made in understanding the extent and current state of global freshwater habitat alteration due to dam construction and extractive uses of water. Flow regulation and fragmentation were first examined for global large river systems by assessing the percentage of annual runoff captured by reservoirs and the longest mileage of rivers running unobstructed within each basin [110]. The authors found that over half of all large basins in the world are affected by dam fragmentation and/or regulation. Subsequently, reference [111] examined global river flow alterations by using a global water model, WaterGAP, to simulate the effects of reservoirs and withdrawals on river discharges at the 0.5° cell resolution. These were important studies, but properly assessing global impacts of dams and reservoirs required spatially explicit analysis in river networks, which entailed better representation of reservoirs in relation to hydrographic features [11]. The latest estimate suggests that 575,900 river kilometers or 7.6% of the world’s rivers have flows regulated by reservoirs [11]. All the above studies provided relatively simplistic indicators of impacts from dams on river environments, which may not translate into predictions of potential biodiversity impacts [109]. In response, Grill et al. [109] developed novel indicators, a river fragmentation index and river regulation index, to examine holistic impacts of dams on major basins of the world currently and planned in the future. Grill et al. [109] concluded that 48% of global river volume is severely impacted by reservoirs and that number would increase to 93% if all dams planned and under construction are completed. Other approaches to quantify widespread anthropogenic alterations to aquatic landscapes also includes historical spatial inventories of waterbodies and habitat loss (e.g., [112])
\nExamining observed or potential responses of species to environmental change through the lens of species traits provides a mechanism to link species conservation needs to habitat alteration [113, 114]. Species traits are characteristics that describe the life history, ecology, and behavior of organisms. As the name suggests, the field of trait biogeography links species trait values with their spatial distributions [115, 116] (\nFigure 12\n). This provides a powerful tool to assess or predict individual, community, or regional species pool responses to habitat alterations. For example, by synthesizing global dam occurrences and fish traits in freshwater ecoregions, several fish taxa that were at high risk of species loss could be identified [69]. Several databases are available that provide rich information on species traits. For example, FishBase provides information on taxonomy, conservation status, biology, trophic ecology, and life history for >33,000 freshwater and marine fish species [67]. For North America, the Fish Traits database provides life history information, trophic attributes, reproductive ecology, habitat associations, and salinity/temperature information for >800 native and exotic freshwater fish species [113].
\nTwo examples of species trait biogeography maps for US fish species. Pools of species within watersheds are summarized by their trait values, e.g. averages (nest guarder index) or by proportions of species possessing a trait or having a life history strategy (proportion of opportunistic species). Data from [
Recent developments in global freshwater habitat and biodiversity mapping products (and the rate at which they are updated) is encouraging for future conservation efforts. Assessing the conservation status of species and prioritizing areas of the globe for protection will continue to rely on spatially comprehensive and contiguous inventories of habitats, the biota they support, and evaluation of the degree of alteration at progressively higher spatial resolutions. Metrics are needed that translate anthropogenic stressors into meaningful measures of global habitat alterations in to freshwater systems. Depicting these relationships is challenging for freshwater ecosystems because they are inherently tied to upstream landscape processes. In turn, the field of trait biogeography shows promise in providing a predictive template to convert habitat alterations into specific biodiversity concerns.
\nWhile many nations have their own freshwater mapping initiatives conducted at relatively high resolutions (e.g., the US’s NHD and NatureServe projects), many underdeveloped nations experiencing intense pressures from development (e.g., Brazil) are likely to rely on external globally-derived products to inform conservation efforts. Even so, local conservation efforts require more spatial fidelity to guide future development pathways. In particular, the Amazon basin is experiencing rapid hydropower development without proper knowledge of the full diversity and geography of fish, invertebrates, and amphibians, or the strategies needed to prevent extinction of these organisms during energy expansion [72]. The development and justification of global reserves for biodiversity conservation will also be contingent upon the accuracy and resolution of aquatic habitats and the organisms they support. New advances in our observation of earth (e.g. through remote sensing), provide opportunities for filling some of these gaps; however, understanding global biodiversity patterns at high resolutions will require exploring local knowledge bases and building predictive models before they disappear.
\nWe thank the countless individuals who have recorded observations of species for hundreds of years and those who make spatial data available to support applications in biogeography. Special thanks to Esther Parish for providing comments on earlier versions of this manuscript. This work was funded by the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, Water Power Technologies Office and by program development funds provided by the Climate Change Science Institute at Oak Ridge National Laboratory.
\nAccording to the WHO World report on disability 2011, About 15% of the world’s population lives with some form of disability, of whom 2–4% experience significant difficulties in functioning. The global disability prevalence is higher than previous WHO estimates, which date from the 1970s and suggested a figure of around 10%. This global estimate for disability is on the rise due to population aging and the rapid spread of chronic diseases, as well as improvements in the methodologies used to measure disability.
Individuals with disabilities have generally poorer health, lower education, fewer economic opportunities, and higher rates of poverty than people without disabilities. This is mainly due to the obstacles they face in their daily lives and the lack of services available to them. Regarding oral health and access to dental care, the same obstacles are of concern. Oral health is mostly ignored, oral hygiene is neglected, and dental treatments are postponed after other health issues. As a result, individuals with special needs present more dental caries, periodontal problems, orthodontic anomalies, and are more prone to dental diseases compared with the healthy population.
Cerebral palsy is a non-progressive movement, posture, and tone disorder characterized by the impairment of motor activities in the developing fetal or infant brain. Motor disorders are often accompanied by sensory, perception, communication, and behavioral disorders, epilepsy, and musculoskeletal problems [1]. In these patients, muscle weakness or paralysis, unbalanced and irregular gait, uncoordinated movements, sudden seizures, mental retardation, emotional disorders, learning, speech communication disorders, and weakness of swallowing, and coughing reflexes are seen. Because brain development continues during the first 2 years of life, cerebral palsy may develop as a result of brain damage occurring in the prenatal, perinatal, or postnatal periods [2]. However, more than 80% of cases are due to problems in the prenatal period.
Etiologically, in the prenatal period; maternal diseases, trauma, genetics, drug use, bleeding, consanguineous marriage, radiation, in the natal period; premature/late birth, birth trauma due to inappropriate position, low/high birth weight, cord entanglement, lack of oxygen, multiple pregnancies, difficult birth, birth trauma, in the postnatal period; febrile diseases, trauma, hyperbilirubinemia, hypoglycemia, seizure, and cerebral hemorrhage are risk factors for cerebral palsy [3].
It has been reported that the rate of drooling in children with cerebral palsy is 10–58% [4]. Although drooling is normal in infants and young children, it is considered pathological after 4 years of age. Most children with cerebral palsy, who are drooling, are unable to swallow normal saliva due to oral-motor dysfunction, although not much saliva is produced. Perioral eczema, infection, and dehydration occur as a result of drooling out of the mouth [5].
Bruxism, especially in the “Spastic” type, is commonly observed in individuals with cerebral palsy [6]. It has been reported that 36.9–51% of children with cerebral palsy have bruxism. In addition to bruxism, the presence of parafunctional habits such as pacifier-finger sucking, biting objects have also been detected [7].
Periodontal diseases occur more often in children with cerebral palsy due to physical inadequacies, malocclusions, poor oral hygiene, chewing, swallowing difficulties, and consumption of soft food with high carbohydrate content. Besides, the use of phenytoin for seizure control causes gingival hyperplasia [8].
Caries formation is observed at a high rate in children with cerebral palsy. The most important reason for this situation is poor oral hygiene. Other risk factors for caries formation are mouth breathing, the effect of drugs used, and enamel hypoplasia [8]. Differences in food form, increased duration of food consumption, difficult cooperation, and structural defects in the teeth cause an increase in the prevalence of dental caries in children with cerebral palsy, and it has been reported that there are more extracted and untreated teeth compared with healthy children [9].
Malocclusions are observed two times more when compared with healthy individuals, and these patients have unilateral crossbite with excessive overbite and overjet. It has been reported that patients with cerebral palsy have a higher prevalence of malocclusion than healthy individuals, but the severity of malocclusion varies according to the degree of neurological disorder. In these individuals, musculoskeletal anomalies, altered cranial base relationships, premature tooth eruption, mouth breathing, and inadequate lip closure, as well as increased overjet and overbite, can be observed [10, 11].
It has been reported that cerebral palsy is not an etiological factor for erosion, but an increase in erosion since gastro-esophageal reflux is frequently observed in these individuals [12]. It has been reported that in children with cerebral palsy accompanied by gastro-esophageal reflux, especially in the quadriplegia type, the risk of dental erosion is considerably increased and the incidence of oral diseases is quite high [13].
Neuromuscular problems specific to cerebral palsy affect oral health in different ways. Changes in the orofacial region cause nutritional problems as well as the development of parafunctional habits and difficulties in maintaining oral hygiene [14]. In addition, dyskinetic movements cause pathological oral reflexes such as sudden biting or nausea. Gastric reflux associated with a blended diet, often rich in sugar, further puts these patients’ oral health at risk. Neuromuscular problems also prevent the patient from brushing their teeth correctly [15]. Patients with cerebral palsy have difficulty in chewing and swallowing due to changes in tongue, cheek, and lip motility. In these patients, there is an imbalance in the oral microbiota, which favors the proliferation of acidogenic bacterial species, which initiate the caries process [15].
Treatment sessions should be kept brief for patients with cerebral palsy. Patients may need to be moved from a wheelchair to a dental chair. The patient should be placed in the middle of the dental chair with arms and legs as close to the body as possible. After the patient is placed properly in a dental chair, the patient should be checked whether he/she is comfortable and the position of the extremities is correct. To keep the airway open, the patient should be seated at a 45-degree angle, but not in the supine position. The dental chair should be moved slowly, and the light reflector should be turned on slowly to prevent spastic muscle movements and to eliminate the risk of seizure. Myorelaxant agents should be used when necessary.
During dental treatment procedures, it is crucial to balance the patient’s head at all stages. Various mouthguards should be used to control involuntary jaw movements and accidental bites. The airway should be controlled, and frequent breaks should be given to allow the patient to relax and breathe normally. To minimize the startle reflex, the patient should be warned at every stage. The use of stimuli such as sudden movements, sounds, and lights should be avoided. Efficient, fast treatment should be done, and chair time should be minimized to reduce muscle fatigue. In patients with more complex situations, sedation or general anesthesia may be an option [15, 16, 17].
Down syndrome, defined by Down in 1866, is an autosomal anomaly associated with the trisomy of the 21st chromosome pair. Its incidence in the population is 1/800, and it is the most common chromosomal change. There is an extra 21st chromosome (trisomy) in 95% of cases. In some cases, there are 46 normal chromosomes, but the 21st chromosome has been replaced with another chromosome [18, 19]. Mosaic Down syndrome, on the other hand, is caused by the inability of chromosomes to fully divide during cell division in the embryonic period. Some cells of the mosaic type have 47 chromosomes, while others have 46 chromosomes [19]. Individuals with Down syndrome represent learning difficulties, neuropsychiatric disorders, and behavioral problems as well as congenital cardiac anomalies, thyroid problems, seizures, visual and hearing disorders, early-onset dementia, and frequent infections. Also, some individuals with Down syndrome are hepatitis B carriers, and leukemia can be seen in patients with Down syndrome [20].
The only factor known to cause Down syndrome is the age of the mother during pregnancy, the risk increases in pregnancies over the age of 35. However, because young women, in general, have more babies, 75–80% of children with Down syndrome are babies of young mothers. There is no difference between country, nationality, or socioeconomic status [21].
Craniofacial features of individuals with Down syndrome include brachycephaly, broad and short neck, maxillary hypoplasia, sloping palpebral fissures, short ears, midface hypoplasia, curved eyes, narrow, flat nose [22].
Although individuals with Down syndrome have usually a cooperative personality, providing sufficient oral hygiene depends on the family’s knowledge and education level. Down syndrome children might also experience anxiety or fear of dental visits and parents are usually not aware of the dental problems of their children. Also, Down syndrome children using medical agents suffering from seizures experience dry mouth due to a decrease in the salivary flow rate, which may lead to xerostomia preparing a suitable environment for caries and periodontal problems [29, 30]. In addition, high levels of tooth wear are observed in these patients. This is mainly due to bruxism and the acidic oral environment (reflux and vomiting) [22].
The behavior management skills of the dental professional are the key factor in a child’s acceptance of dental treatment [19]. Before determining the right approach to the Down syndrome child, the dentist should consider the level of the mental, emotional, and social development of the child [31]. Most Down syndrome children are affectionate and cooperative for their dental treatment and can be treated easily with the tell-show-do technique [32].
When treating Down Syndrome children, the need for prophylaxis of subacute bacterial endocarditis and the patient’s compliance level should be considered [22]. During treatment, the gag reflex can be reduced by behavioral management techniques, as comforting and distracting patients. It can also be reduced by intraoral massage and pharmacological or non-pharmacological interventions [33]. The recalls should be planned frequently, and preventive dental treatments should be included in the treatment plan. The education of caregivers is crucial for sufficient oral hygiene provision and follow-ups. Mild sedation may be used in children with moderate anxiety. Extremely resistant patients may require general anesthesia [17].
Autism was first described in 1943 by an American child psychiatrist, Leo Kanner. Autism spectrum disorder (ASD) is a neurodevelopmental disorder, characterized by difficulties in communication, social relationships, and limited and repetitive behaviors [34, 35].
Individuals with ASD have characteristics such as stereotypical or repetitive motor behavior (flapping, rocking back and forth), repetitive use of objects (turning coins, putting objects in order), or making repetitive speeches. Many patients adhere to rigid routines in their lives and may have a more rigid thinking pattern. They react negatively to even minor changes or transitions [36].
No specific etiology has been identified for ASD. However, studies indicate a combination of genetical and environmental factors before and after birth, such as parental age, fetal environment (e.g., sex steroids, maternal infections/immune activation, obesity, diabetes, hypertension, or ultrasound examinations), perinatal and obstetric events (e.g., hypoxia), medication (valproate, selective serotonin reuptake inhibitors), smoking and alcohol use, nutrition (e.g., short inter-pregnancy intervals, e.g., vitamin D, iron, zinc, and copper), vaccination, and toxic exposures (air pollution, heavy metals, pesticides, organic pollutants) and low birth weight [37, 38].
In addition, problems such as tongue thrusting, erosion, hyperactive gag reflex, and some malocclusions such as anterior open bite and maxillary retrognathia were also reported in these individuals [42, 43].
Clinical conditions that ASD children present, such as sensorimotor and attention deficits, anxiety and related emotion regulation, comprehensive difficulties, and general speech disorders, create various difficulties for families, educators, and dentists in the provision of oral health care of these children [44]. Besides, parents face difficulties in brushing the teeth of the ASD children due to the sensory sensitivities of their children and the unpredictable or aggressive behavior that may require physical restraints.
In the literature, the caries experience of ASD individuals is controversial. Research reports state that ASD children are more prone to dental caries due to the consumption of sugar-containing food [45, 46, 47]. Besides, insufficient chewing and prolonged time of food staying in the mouth also increase caries formation [48]. The fact that autistic individuals are more difficult to accept oral and dental health care than healthy individuals and that their hand skills are not sufficiently developed and that they cannot perform adequate and effective tooth brushing is also effective in the formation of caries [49].
The impaired behavioral activities and complicated medical conditions make the dental management of patients with ASD challenges. Children with ASD have remarkable difficulties in establishing relationships with other people, understanding and the following information, and dentists may be insufficient in providing cooperation during the dental treatment process [40]. Furthermore, the invasive nature of dental treatment procedures along with the hypersensitivity of children with ASD to sensory stimulation (sound, touch, and light) may trigger undesired responses during dental treatment.
In the dental treatment of autistic individuals, many basic behavior management techniques such as tell-show-do, desensitization, and voice control behavior management can be successfully applied [50].
The dental treatment sessions of autistic individuals should be kept short and the sensory stimulation should be minimized. However, it has been reported that in many cases it may be necessary to use advanced behavior management techniques including sedation and general anesthesia [51, 52]. Also, a dental office filled with unpleasant smells, sounds, and colors can be an overstimulating environment for patients with autism [53].
To minimize anxiety and uncooperative behavior pattern, soothing light, rhythmic music with or without headphones, and having minimal visual stimuli on the walls should be considered. It may also be beneficial to improve cooperation by having the same dental professional in the same operating room at all sessions [54].
If traumatic ulcers or lesions are observed on oral mucosa or gingiva, a mouth guard may be prescribed for patients who have problems with self-injurious behavior or bruxism.
The term intellectual disability (ID) is generally used to describe mental retardation. The most widely used current definition of disability is the World Health Organization’s (WHO) International Classification of Functioning, Disability and Health (ICF), which incorporates the complex interactions between health conditions, environmental factors, and personal factors. Regarding a person with an ID, this definition would consider how their factors, health condition, and environment affect their lives (WHO 2001). Three elements are common for people with ID:
Significant impairment of intelligence,
A resultant significant reduction in adaptive behavior/social functioning and
The development of the condition (which persists throughout life) before the age of 18 years.
Mental retardation is a developmental disorder that occurs before the age of 18. In addition to having significant retardation in normal functions, there is an inadequacy in the adaptive skills necessary to maintain daily life. Adaptive skills cover skill areas such as self-care skills such as feeding, dressing, bathing, home life skills such as housekeeping, speaking and understanding language, as well as communication skills, social skills, social usefulness, and professional skills [55].
Intellectual disability may be caused by a problem that starts any time before a child turns 18 years old—even before birth. It can be caused by injury, disease, or a problem in the brain. For many children, the cause of their intellectual disability is not known. Some of the most common known causes of intellectual disability—such as Down syndrome, fetal alcohol syndrome, fragile X syndrome, genetic conditions, birth defects, and infections—occur before birth. Others occur during or soon after birth. Besides, other reasons for intellectual disability do not occur until a child is older; these include serious head injury, stroke, or certain infections [56].
Patients with intellectual disability associated with a syndrome may present typical facial appearance; e.g., in these individuals, the tongue is placed in a protruding position due to macroglossia with micrognathia. Malocclusion, enamel defects, short conical roots, delayed eruption of teeth, congenital tooth agenesis, and tooth malformation are other common intraoral findings [57]. Due to certain genetic conditions or a history of high fever, children with disabilities may have their enamel defects or malformation and thus be more prone to dental caries.
These individuals also have inadequate lip closure, impaired tongue movement, and destabilization of the chewing muscles [55]. Salivary flow rate alterations due to the use of multiple medications along with poor oral hygiene may increase dental plaque and calculus formation, which may lead to dental and periodontal disease and halitosis.
Due to early loss of teeth, speech disorders may also be observed in these individuals [58]. Individuals with intellectual disabilities often consume a cariogenic and soft diet. Besides, individuals consuming daily medicine in the form of syrup constantly have a high risk of caries due to the high sugar content.
It has been shown that individuals with MR (mental retardation) aged 4–18 present significantly higher mean DMFT and dental erosion scores than healthy individuals [59].
Individuals with severe intellectual disability present impaired oral motor functions and weakened muscles, which cause chewing and swallowing problems. These patients often consume a soft diet including puree or semi-solid foods. In addition, individuals with an intellectual disability usually need the help of their caregivers to consume liquids and do not benefit enough from the washing and cleansing effect of liquids because they consume less liquid than healthy individuals. Oral hygiene procedures such as tooth brushing, which require manual dexterity, may not be performed adequately due to varying degrees of motor dysfunction as well as cognitive deficiencies in mentally retarded individuals [55].
Medical history is quite essential to assess the degree and type of ID and associated medical problems [60]. Complete information should be obtained from the parents/caregivers about the medical background, the medicine consumption, the level of communication of the child, the daily functions she/he can perform individually, and if there are behavior problems at home/institution [61].
It may be helpful to familiarize patients and/or caregivers with the clinical environment without any treatment at the first appointment. Dental office and instruments should be introduced patiently, and the tell-show-do method may be also introduced.
In the next session, the dental instruments that may cause anxiety are introduced, and then treatment may start. It is essential to keep the sessions short. The treatment session should begin with the easy-to-tolerate procedures and no pain stimulus should be created during the first procedure.
Behavior management with positive direction and distraction with movies or music may be applied. Perception difficulties are observed in patients with MR. In these patients, directions and explanations should be short and simple and the instructions should be repeated. General anesthesia or sedation should be considered in patients who do not comply and cannot cooperate [55].
Visual impairment was defined as visual acuity less than 20/40 in the better eye. Hearing impairment was defined as the pure-tone average air-conduction hearing threshold worse than 25-dB hearing level (dB HL) in the better ear, averaged over four frequencies: 500, 1000, 2000, and 4000 Hz. [62] Hearing loss can be mild, moderate, moderate, severe, or profound and can affect one or both ears.
Major causes of hearing loss include congenital or early-onset childhood hearing loss due to various chronic middle ear infections, noise-induced hearing loss, age-related hearing loss, and ototoxic drugs that damage the inner ear [62]. Hereditary hearing loss can be conductive, sensorineural, or mixed and is sometimes the result of a genetic trait passed down from a parent.
Children with hearing loss experience social isolation, loneliness, and frustration, and delayed language development due to the loss of ability to communicate with others [62].
Visual impairment is usually defined as a best-corrected visual acuity worse than 20/40 or 20/60 [63]. Visual impairment, or vision loss, is a degree of reduced vision that causes problems that cannot be corrected by general methods, such as with glasses [64]. The term blindness is used for complete or near-complete loss of vision. Physical injury risks such as falling, hitting, and traumatic injuries are reported higher in visually impaired children. Besides, their conceptual development and cognitive skills may be delayed, and they have challenges especially in skills that require abstract thinking [65].
The most common causes of visual impairment are globally uncorrected refractive error (43%), cataracts (33%), and glaucoma (2%). Refractive errors include myopia, hypermetropia, presbyopia, and astigmatism. Cataracts are the most common cause of blindness [66]. Other disorders that may cause visual problems include age-related macular degeneration, diabetic retinopathy, corneal clouding, childhood blindness, and several infections [67]. Visual impairment can also be caused by problems in the brain due to stroke, premature birth, or trauma, among others [68].
Visual impairment may have a negative impact on an individual’s oral hygiene. As a result of the inability to remove the microbial dental plaque appropriately, visually impaired individuals experience more dental caries, calculus, and gingivitis compared with healthy individuals [69]. Reluctance to consume solid foods due to prolonged infantile swallowing patterns and poor oral hygiene may be the main reason for the oral health problems. Besides, enamel hypomineralization has been identified as a possible oral manifestation in visually impaired children.
Visually impaired children are more prone to traumatic dental injuries, especially in the anterior teeth is also a predisposing factor. Visually impaired people generally require a high level of orthodontic treatment due to the increasing prevalence and severity of malocclusions [70].
Hard tissue anomalies such as enamel hypoplasia and higher rates of demineralization in the teeth are seen in patients with hearing impairment. Also, a high incidence of bruxism is one of the problems that occur especially when the individual has both hearing loss and visual impairment [71].
Due to the difficulties of providing oral hygiene, diet type, and problems of accessibility to the routine dental check-ups, dental caries are quite often seen in patients with hearing impairment [72]. The prevalence of gingivitis is also higher in these individuals due to poor oral hygiene and mouth breathing, and they are more prone to develop periodontitis early in life [73, 74].
Visually impaired individuals experience difficulties maintaining oral hygiene since they cannot visualize plaque on the tooth surface and adequately assess whether dental plaque is removed effectively. This leads to the progression of dental caries and also to oral inflammatory diseases [74].
Compared with healthy children, individuals with hearing impairment may have a higher risk of experiencing oral diseases, including dental caries or periodontal disease, as they have difficulties maintaining good oral hygiene [75].
Individuals with hearing impairment should be informed about the procedures to be performed at the first appointment, and an individual method should be developed for the communication during treatment sessions.
The degree of hearing loss should be noted in the patient’s medical history. In the first appointment, it is necessary to avoid exaggerated facial movements and mimics when communicating with the patient, not to cause difficulty to read lips. Comforting the child patient and increasing the sense of trust by smiling will help to establish confidence and healthy communication with the dental professional.
Before starting the dental treatment session, the instruments should be introduced using the show-tell-do method. If the hearing-impaired patient feels that she/he is unable to understand directions, she/he may show fear or aggression. For this reason, communication should be facilitated by reducing external sounds such as high-speed air turbines, dental aspirator, and radio or TV as much as possible. Mirrors, models, pictures, and written information should be used to establish communication [71].
In visually impaired individuals, treatment should be explained using the senses of touch, taste, and smell instead of the tell-show-do technique. The environment should be introduced, and necessary definitions should be made before each treatment. The dental professional should speak to the patient in a clear, warm tone of voice and should use a descriptive manner to explain the procedures. Also, patients should be informed about how the equipment may feel and sound and how the procedures will be performed before the instruments are inserted into the mouth.
The dental restorative materials should be placed in small pieces as the sharp taste may irritate the patient. Since such patients cannot see and remove dental plaque, tooth brushing should be explained by the dentist by holding the brush together with the patient. Oral hygiene education and motivation should be given by the doctor to whom he is accustomed to the treatment of the patient [70, 75].
Special healthcare need patients are literally special patients who need special attention by means of healthcare provision including dental care. The major challenges they have with their overall health may create barriers to access to proper oral healthcare. Oral healthcare for this special group is often neglected or down the list, and as a result, they often attend to dental clinics with emergency.
Individuals with special needs are the most underserved regarding healthcare needs in almost all populations. Due to the challenges of nutrition and insufficient oral hygiene provision, this population is usually more prone to dental caries, periodontal disease, and orthodontic problems. Besides, they face more difficulties accessing professional dental care than other segments of the population.
The field of special care dentistry is attracting more interest of pediatric dentists and general dental practitioners. The inclusion of the specialty programs in the dentistry faculty curriculum may initiate the ideal treatment procedures and regular recalls of these special patients, which may facilitate the access to sufficient dental care provision and regular check-ups for this special group.
Though many countries developed community-based systems to improve oral health for people with special needs, providing good oral health mainly depends on the effort of the families. Therefore the education of the caregiver about oral hygiene provision is also critical for the special needs patient to enjoy a lifetime of oral health the same as other members of the society.
The author declares no conflict of interest.
These Terms and Conditions outline the rules and regulations pertaining to the use of IntechOpen’s website www.intechopen.com and all the subdomains owned by IntechOpen located at 5 Princes Gate Court, London, SW7 2QJ, United Kingdom.
',metaTitle:"Terms and Conditions",metaDescription:"These terms and conditions outline the rules and regulations for the use of IntechOpen Website at https://intechopen.com and all its subdomains owned by Intech Limited located at 7th floor, 10 Lower Thames Street, London, EC3R 6AF, UK.",metaKeywords:null,canonicalURL:"/page/terms-and-conditions",contentRaw:'[{"type":"htmlEditorComponent","content":"By accessing the website at www.intechopen.com you are agreeing to be bound by these Terms of Service, all applicable laws and regulations, and agree that you are responsible for compliance with any applicable local laws. Use and/or access to this site is based on full agreement and compliance of these Terms. All materials contained on this website are protected by applicable copyright and trademark laws.
\\n\\nThe following terminology applies to these Terms and Conditions, Privacy Statement, Disclaimer Notice, and any or all Agreements:
\\n\\n“Client”, “Customer”, “You” and “Your” refers to you, the person accessing this website and accepting the Company’s Terms and Conditions;
\\n\\n“The Company”, “Ourselves”, “We”, “Our” and “Us”, refers to our Company, IntechOpen;
\\n\\n“Party”, “Parties”, or “Us”, refers to both the Client and ourselves, or either the Client or ourselves.
\\n\\nAll Terms refer to the offer, acceptance, and consideration of payment necessary to provide assistance to the Client in the most appropriate manner, whether by formal meetings of a fixed duration, or by any other agreed means, for the express purpose of meeting the Client’s needs in respect of provision of the Company’s stated services/products, and in accordance with, and subject to, the prevailing laws of the United Kingdom.
\\n\\nAny use of the above terminology, or other words in the singular, plural, capitalization and/or he/she or they, are taken as interchangeable.
\\n\\nUnless otherwise stated, IntechOpen and/or its licensors own the intellectual property rights for all materials on www.intechopen.com. All intellectual property rights are reserved. You may view, download, share, link and print pages from www.intechopen.com for your own personal use, subject to the restrictions set out in these Terms and Conditions.
\\n\\nWe employ the use of cookies. By using the IntechOpen website you consent to the use of cookies in accordance with IntechOpen’s Privacy Policy. Most modern day interactive websites use cookies to enable the retrieval of user details for each visit. On our site, cookies are predominantly used to enable functionality and ease of use for those visiting the site.
\\n\\nIn no circumstances shall IntechOpen or its suppliers be liable for any damages (including, without limitation, damages for loss of data or profit, or due to business interruption) arising out of the use, or inability to use, the materials on IntechOpen's websites, even if IntechOpen or an IntechOpen authorized representative has been notified orally or in writing of the possibility of such damage. Some jurisdictions do not allow limitations on implied warranties, or limitations of liability for consequential or incidental damages; consequently, these limitations may not apply to you.
\\n\\nIntechopen.com website content and services are provided on an "AS IS" and an "AS AVAILABLE" basis. Material appearing on www.intechopen.com could include minor technical, typographical, or photographic errors. IntechOpen may make changes to any material contained on its website at any time without notice.
\\n\\nIntechOpen has no formal affiliation to any external sites that link to www.intechopen.com, unless otherwise specifically stated. As such, it is not responsible for content that appears on any such sites. The inclusion of any link to IntechOpen does not imply endorsement by IntechOpen. Use of any such linked website is done solely at the user's own discretion.
\\n\\nWe reserve the right of ownership over our entire website www.intechopen.com, and all contents. By using our services, you agree to remove all links to our website immediately upon request. We also reserve the right to amend these Terms and Conditions and our linking policy at any time. By continuing to link to our website, you agree to be bound to, and abide by, these linking Terms and Conditions.
\\n\\nIf you find any link on our website, or any linked website, objectionable for any reason, please Contact Us. We will consider all requests to remove links but will have no obligation to do so.
\\n\\nWithout prior approval and express written permission, you may not create frames around our web pages or use other techniques that alter in any way the visual presentation or appearance of our website.
\\n\\nIntechOpen may revise its Terms of Service for its website at any time without notice. By using this website, you are agreeing to be bound by the current version of all Terms at the time of use.
\\n\\nThese Terms and Conditions are governed by and construed in accordance with the laws of the United Kingdom and you irrevocably submit to the exclusive jurisdiction of the courts in London, United Kingdom.
\\n\\nCroatian version of Terms and Conditions available here
\\n"}]'},components:[{type:"htmlEditorComponent",content:'By accessing the website at www.intechopen.com you are agreeing to be bound by these Terms of Service, all applicable laws and regulations, and agree that you are responsible for compliance with any applicable local laws. Use and/or access to this site is based on full agreement and compliance of these Terms. All materials contained on this website are protected by applicable copyright and trademark laws.
\n\nThe following terminology applies to these Terms and Conditions, Privacy Statement, Disclaimer Notice, and any or all Agreements:
\n\n“Client”, “Customer”, “You” and “Your” refers to you, the person accessing this website and accepting the Company’s Terms and Conditions;
\n\n“The Company”, “Ourselves”, “We”, “Our” and “Us”, refers to our Company, IntechOpen;
\n\n“Party”, “Parties”, or “Us”, refers to both the Client and ourselves, or either the Client or ourselves.
\n\nAll Terms refer to the offer, acceptance, and consideration of payment necessary to provide assistance to the Client in the most appropriate manner, whether by formal meetings of a fixed duration, or by any other agreed means, for the express purpose of meeting the Client’s needs in respect of provision of the Company’s stated services/products, and in accordance with, and subject to, the prevailing laws of the United Kingdom.
\n\nAny use of the above terminology, or other words in the singular, plural, capitalization and/or he/she or they, are taken as interchangeable.
\n\nUnless otherwise stated, IntechOpen and/or its licensors own the intellectual property rights for all materials on www.intechopen.com. All intellectual property rights are reserved. You may view, download, share, link and print pages from www.intechopen.com for your own personal use, subject to the restrictions set out in these Terms and Conditions.
\n\nWe employ the use of cookies. By using the IntechOpen website you consent to the use of cookies in accordance with IntechOpen’s Privacy Policy. Most modern day interactive websites use cookies to enable the retrieval of user details for each visit. On our site, cookies are predominantly used to enable functionality and ease of use for those visiting the site.
\n\nIn no circumstances shall IntechOpen or its suppliers be liable for any damages (including, without limitation, damages for loss of data or profit, or due to business interruption) arising out of the use, or inability to use, the materials on IntechOpen's websites, even if IntechOpen or an IntechOpen authorized representative has been notified orally or in writing of the possibility of such damage. Some jurisdictions do not allow limitations on implied warranties, or limitations of liability for consequential or incidental damages; consequently, these limitations may not apply to you.
\n\nIntechopen.com website content and services are provided on an "AS IS" and an "AS AVAILABLE" basis. Material appearing on www.intechopen.com could include minor technical, typographical, or photographic errors. IntechOpen may make changes to any material contained on its website at any time without notice.
\n\nIntechOpen has no formal affiliation to any external sites that link to www.intechopen.com, unless otherwise specifically stated. As such, it is not responsible for content that appears on any such sites. The inclusion of any link to IntechOpen does not imply endorsement by IntechOpen. Use of any such linked website is done solely at the user's own discretion.
\n\nWe reserve the right of ownership over our entire website www.intechopen.com, and all contents. By using our services, you agree to remove all links to our website immediately upon request. We also reserve the right to amend these Terms and Conditions and our linking policy at any time. By continuing to link to our website, you agree to be bound to, and abide by, these linking Terms and Conditions.
\n\nIf you find any link on our website, or any linked website, objectionable for any reason, please Contact Us. We will consider all requests to remove links but will have no obligation to do so.
\n\nWithout prior approval and express written permission, you may not create frames around our web pages or use other techniques that alter in any way the visual presentation or appearance of our website.
\n\nIntechOpen may revise its Terms of Service for its website at any time without notice. By using this website, you are agreeing to be bound by the current version of all Terms at the time of use.
\n\nThese Terms and Conditions are governed by and construed in accordance with the laws of the United Kingdom and you irrevocably submit to the exclusive jurisdiction of the courts in London, United Kingdom.
\n\nCroatian version of Terms and Conditions available here
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2459},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"9,11"},books:[{type:"book",id:"11938",title:"Ballistics",subtitle:null,isOpenForSubmission:!0,hash:"9c64ef67aac55216f08c65a2a179835c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11938.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11942",title:"Updates on Spatial Audio",subtitle:null,isOpenForSubmission:!0,hash:"f4ac095defb765e0e9bfebc06dac719e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11942.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11915",title:"Ontology in Information Science",subtitle:null,isOpenForSubmission:!0,hash:"b52397215f6b5e05a22368f629695704",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11915.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12040",title:"Advances in Lean Manufacturing",subtitle:null,isOpenForSubmission:!0,hash:"280b436c389c11cac34db042d0ea4f21",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12040.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12062",title:"Public Transportation",subtitle:null,isOpenForSubmission:!0,hash:"c045089da37d46be1ee7e5e74f93cc93",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12062.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12041",title:"Digital Twin Technology",subtitle:null,isOpenForSubmission:!0,hash:"29f905ada571d401131a0d3b0311329d",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12041.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12024",title:"UWB Technology",subtitle:null,isOpenForSubmission:!0,hash:"6158349f714de7cee2337adf57b2617d",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12024.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12025",title:"Cognitive Radio Systems",subtitle:null,isOpenForSubmission:!0,hash:"75b14778d5efbcfe9c1f51d2e31f6aeb",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12025.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12026",title:"Induction Motor",subtitle:null,isOpenForSubmission:!0,hash:"0273a4ffd6bc66faed9db00380771240",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12026.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12065",title:"Computer Memory and Data Storage",subtitle:null,isOpenForSubmission:!0,hash:"7df13263a2801b346f2dea5ff127f81f",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12065.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12027",title:"Optical Fiber",subtitle:null,isOpenForSubmission:!0,hash:"479f515bddf75aa9857e4f0ccf3e7c74",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12027.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12030",title:"Remote Sensing",subtitle:null,isOpenForSubmission:!0,hash:"4c72e8ef86d70bb4f35a3b70ff698427",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12030.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:22},{group:"topic",caption:"Computer and Information Science",value:9,count:23},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:15},{group:"topic",caption:"Materials Science",value:14,count:24},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:114},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:120},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"846",title:"Ecotoxicology",slug:"environmental-sciences-ecology-ecotoxicology",parent:{id:"126",title:"Ecology",slug:"environmental-sciences-ecology"},numberOfBooks:3,numberOfSeries:0,numberOfAuthorsAndEditors:62,numberOfWosCitations:93,numberOfCrossrefCitations:50,numberOfDimensionsCitations:140,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"846",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10997",title:"Arsenic Monitoring, Removal and Remediation",subtitle:null,isOpenForSubmission:!1,hash:"a40cc5d83f2f1233db31ef10c547b35c",slug:"arsenic-monitoring-removal-and-remediation",bookSignature:"Margarita Stoytcheva and Roumen Zlatev",coverURL:"https://cdn.intechopen.com/books/images_new/10997.jpg",editedByType:"Edited by",editors:[{id:"170080",title:"Dr.",name:"Margarita",middleName:null,surname:"Stoytcheva",slug:"margarita-stoytcheva",fullName:"Margarita Stoytcheva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5101",title:"Invertebrates",subtitle:"Experimental Models in Toxicity Screening",isOpenForSubmission:!1,hash:"ebef5298af7d87ad3c9c7f5fe808fa2c",slug:"invertebrates-experimental-models-in-toxicity-screening",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/5101.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4606",title:"Emerging Pollutants in the Environment",subtitle:"Current and Further Implications",isOpenForSubmission:!1,hash:"1502287827685f0b71235bd45fe35ae4",slug:"emerging-pollutants-in-the-environment-current-and-further-implications",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/4606.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"48738",doi:"10.5772/60455",title:"Impact of Oil Spills on Marine Life",slug:"impact-of-oil-spills-on-marine-life",totalDownloads:4851,totalCrossrefCites:14,totalDimensionsCites:32,abstract:"Petroleum contamination is a growing environmental concern that harms both terrestrial and aquatic ecosystems. However, the public and regulatory and scientific communities have given more attention to the contamination of marine habitats. This is because marine oil spills can have a serious economic impact on coastal activities, as well as on those who exploit the resources of the sea. Thus, communities that are at risk of oil disasters must anticipate the consequences and prepare for them.",book:{id:"4606",slug:"emerging-pollutants-in-the-environment-current-and-further-implications",title:"Emerging Pollutants in the Environment",fullTitle:"Emerging Pollutants in the Environment - Current and Further Implications"},signatures:"Ismail M.K. Saadoun",authors:[{id:"173457",title:"Prof.",name:"Ismail",middleName:null,surname:"Saadoun",slug:"ismail-saadoun",fullName:"Ismail Saadoun"}]},{id:"49635",doi:"10.5772/61771",title:"Rotifers as Models in Toxicity Screening of Chemicals and Environmental Samples",slug:"rotifers-as-models-in-toxicity-screening-of-chemicals-and-environmental-samples",totalDownloads:2698,totalCrossrefCites:7,totalDimensionsCites:23,abstract:"An important objective of aquatic ecotoxicology is to determine the effects of toxic compounds in organisms that play a central role in aquatic communities where rotifers have a large impact on several important ecological processes. The contribution of the rotifers to secondary production in many aquatic communities is substantial as they are often the larger fraction of zooplankton biomass at certain times of the year. In addition to the importance of their ecological roles in aquatic communities, the rotifers are attractive organisms for ecotoxicological studies by its short life cycles and rapid reproduction, their small size, and little volumes needed for culture and toxicity assays. The main end points used in ecotoxicological studies are mortality, reproduction, behavior, and biomarkers. Such parameters are included in international regulations from all over the world, where different species are used to evaluate the effect of environmental samples or chemical compounds. The high diversity of rotifers is an important issue because it can modify their relative susceptibility to toxicants. Thus, more studies are needed to know the relations and mechanisms involved in clonal variation, sensitivity, and development, which can be all assessed by state-of-the-art procedures.",book:{id:"5101",slug:"invertebrates-experimental-models-in-toxicity-screening",title:"Invertebrates",fullTitle:"Invertebrates - Experimental Models in Toxicity Screening"},signatures:"Roberto Rico-Martínez, Mario Alberto Arzate-Cárdenas, Daniel\nRobles-Vargas, Ignacio Alejandro Pérez-Legaspi, Alvarado-Flores\nJesús and Gustavo Emilio Santos-Medrano",authors:[{id:"96153",title:"Dr.",name:"Roberto",middleName:null,surname:"Rico-Martinez",slug:"roberto-rico-martinez",fullName:"Roberto Rico-Martinez"},{id:"177852",title:"Dr.",name:"Mario Alberto",middleName:null,surname:"Arzate-Cárdenas",slug:"mario-alberto-arzate-cardenas",fullName:"Mario Alberto Arzate-Cárdenas"},{id:"177853",title:"Dr.",name:"Daniel",middleName:null,surname:"Robles-Vargas",slug:"daniel-robles-vargas",fullName:"Daniel Robles-Vargas"},{id:"177854",title:"Dr.",name:"Ignacio Alejandro",middleName:null,surname:"Pérez-Legaspi",slug:"ignacio-alejandro-perez-legaspi",fullName:"Ignacio Alejandro Pérez-Legaspi"},{id:"177855",title:"Dr.",name:"Jesús",middleName:null,surname:"Alvarado-Flores",slug:"jesus-alvarado-flores",fullName:"Jesús Alvarado-Flores"},{id:"177856",title:"Dr.",name:"Gustavo Emilio",middleName:null,surname:"Santos-Medrano",slug:"gustavo-emilio-santos-medrano",fullName:"Gustavo Emilio Santos-Medrano"}]},{id:"49050",doi:"10.5772/60216",title:"Immunotoxicological Threats of Pollutants in Aquatic Invertebrates",slug:"immunotoxicological-threats-of-pollutants-in-aquatic-invertebrates",totalDownloads:1853,totalCrossrefCites:2,totalDimensionsCites:17,abstract:"Immunology deals with the physiological activity of organisms to defend against pathogen and toxin invasion. Invertebrates residing in aquatic ecosystems often face toxicological threat arises from habitat pollution. The aquatic habitat of invertebrates is in the precarious risk of pollution caused by diverse groups of environmental toxins. Immunotoxins have been considered as a special group of pollutants capable of affecting the immunological profile of organisms. Invertebrates residing in water bear ecological, economical, medicinal, industrial, nutritional and biotechnological significance. Global aquatic bioresource is largely composed of invertebrates belonging to multiple Phyla. These organisms, including insects, snails, clams, mussels, crabs and sponges, are physiologically dependent on innate immunological response for defense against pathogen and environmental contaminants. External physicochemical barriers of invertebrates act as primary line of defen against toxin entry. Principal barriers have been identified as shell, tunic, test, carapace, mucus, etc., in diverse species. Toxin-induced morphological damage of specialized immunocytes of invertebrates has been reported. Toxin-induced shift in density, surface adhesion efficacy and aggregation of blood cells or haemocytes have been identified as major xenobiotic stress in invertebrates. Various environmental toxins are capable of initiating alteration in the innate phagocytic response and cytotoxicity of blood cells. Lysosomes of invertebrate haemocytes are functionally involved in intracellular destruction of environmental pathogens. Toxins like arsenic, pyrethroid pesticides, azadirachtin and washing soda were reported to increase the relative fragility of lysosomal membranes of immunocytes. This often leads to impairment in the efficacy of invertebrates to destroy pathogen under the exposure of pollutants. Xenobiotics like pyrethroid pesticides have been recorded to affect apoptosis and necrosis of invertebrate immunocytes. Selected toxin-induced morphological damages of heart, gill, digestive gland, mantle and antennae may result in the overall impairment in homeostatic levels of invertebrates inhabiting the polluted environment. Global environment, in recent times, is under the serious threat of contamination by diverse chemical compounds of unknown or less known toxicity. A thorough ecotoxicological analysis at cellular and molecular levels needs to be carried out in invertebrates occupying the different realms of the planet in future.",book:{id:"4606",slug:"emerging-pollutants-in-the-environment-current-and-further-implications",title:"Emerging Pollutants in the Environment",fullTitle:"Emerging Pollutants in the Environment - Current and Further Implications"},signatures:"Sajal Ray, Soumalya Mukherjee, Niladri Sekhar Bhunia, Anindya\nSundar Bhunia and Mitali Ray",authors:[{id:"173697",title:"Prof.",name:"Sajal",middleName:null,surname:"Ray",slug:"sajal-ray",fullName:"Sajal Ray"},{id:"175476",title:"Dr.",name:"Soumalya",middleName:null,surname:"Mukherjee",slug:"soumalya-mukherjee",fullName:"Soumalya Mukherjee"},{id:"175477",title:"Mr.",name:"Niladri Sekhar",middleName:null,surname:"Bhunia",slug:"niladri-sekhar-bhunia",fullName:"Niladri Sekhar Bhunia"},{id:"175478",title:"Mr.",name:"Anindya Sundar",middleName:null,surname:"Bhunia",slug:"anindya-sundar-bhunia",fullName:"Anindya Sundar Bhunia"},{id:"175479",title:"Dr.",name:"Mitali",middleName:null,surname:"Ray",slug:"mitali-ray",fullName:"Mitali Ray"}]},{id:"49867",doi:"10.5772/62228",title:"Overview of the Standard Methods for Soil Ecotoxicology Testing",slug:"overview-of-the-standard-methods-for-soil-ecotoxicology-testing",totalDownloads:2661,totalCrossrefCites:6,totalDimensionsCites:12,abstract:"This chapter briefly describes the importance of the services provided by soil invertebrates in terrestrial ecosystems and highlights the role of soil fauna in the risk assessments of potentially polluting substances for the terrestrial environment, considering the sensitivity of these organisms, when compared to other indicators of soil quality (e.g., chemical and physical). The main invertebrate groups used in laboratorial ecotoxicological assays are presented and, based on its physiological characteristics and habit requirements, the advantages and disadvantages of using certain taxonomic groups in laboratory assessments are also discussed. The most frequently used methods to perform this type of toxicity tests are summarized, highlighting the fundamental steps of the assays with the species Eisenia fetida/Eisenia andrei, Folsomia candida, Enchytraeus albidus/Enchytraeus crypticus, and Hypoaspis aculeifer, as well as the possible adjustments that are being carried out in tropical countries. Finally, the future prospects, related to the challenge of increasing the realism of laboratory ecotoxicological analyses, are discussed to show the main needs of this study at global and regional perspectives.",book:{id:"5101",slug:"invertebrates-experimental-models-in-toxicity-screening",title:"Invertebrates",fullTitle:"Invertebrates - Experimental Models in Toxicity Screening"},signatures:"Paulo Roger Lopes Alves and Elke Jurandy Bran Nogueira Cardoso",authors:[{id:"176887",title:"Dr.",name:"Paulo Roger",middleName:null,surname:"Lopes Alves",slug:"paulo-roger-lopes-alves",fullName:"Paulo Roger Lopes Alves"},{id:"177015",title:"Prof.",name:"Elke Jurandy",middleName:null,surname:"Bran Nogueira Cardoso",slug:"elke-jurandy-bran-nogueira-cardoso",fullName:"Elke Jurandy Bran Nogueira Cardoso"}]},{id:"48714",doi:"10.5772/60887",title:"The Relevance of ATR-FTIR Spectroscopy in Semiconductor Photocatalysis",slug:"the-relevance-of-atr-ftir-spectroscopy-in-semiconductor-photocatalysis",totalDownloads:3079,totalCrossrefCites:3,totalDimensionsCites:12,abstract:"Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy has a high potential for investigating a wide range of samples and systems. In photocatalysis, various interfacial phenomena can be studied using this technique, including pH-dependent adsorption and photodegradation of probe molecules. The analysis of the processes occurring at the interface of thin particle films deposited on the surface of an ATR crystal, either in the liquid or the gas phase, is perhaps the best way to elucidate the mechanism of adsorption and heterogeneous photocatalytic reactions. This chapter summarizes the recent advances and applications of ATR-FTIR techniques in semiconductor photocatalysis. A brief outlook at some of the possible investigations in this area is provided and the different proposed adsorption and photocatalytic degradation mechanisms are discussed.",book:{id:"4606",slug:"emerging-pollutants-in-the-environment-current-and-further-implications",title:"Emerging Pollutants in the Environment",fullTitle:"Emerging Pollutants in the Environment - Current and Further Implications"},signatures:"Mohamed Faycal Atitar, Hamza Belhadj, Ralf Dillert and Detlef W.\nBahnemann",authors:[{id:"100553",title:"Prof.",name:"Detlef",middleName:null,surname:"Bahnemann",slug:"detlef-bahnemann",fullName:"Detlef Bahnemann"},{id:"173632",title:"M.Sc.",name:"Mohamed Faycal",middleName:null,surname:"Atitar",slug:"mohamed-faycal-atitar",fullName:"Mohamed Faycal Atitar"},{id:"173812",title:"Dr.",name:"Ralf",middleName:null,surname:"Dillert",slug:"ralf-dillert",fullName:"Ralf Dillert"},{id:"175502",title:"MSc.",name:"Hamza",middleName:null,surname:"Belhadj",slug:"hamza-belhadj",fullName:"Hamza Belhadj"}]}],mostDownloadedChaptersLast30Days:[{id:"48714",title:"The Relevance of ATR-FTIR Spectroscopy in Semiconductor Photocatalysis",slug:"the-relevance-of-atr-ftir-spectroscopy-in-semiconductor-photocatalysis",totalDownloads:3072,totalCrossrefCites:3,totalDimensionsCites:12,abstract:"Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy has a high potential for investigating a wide range of samples and systems. In photocatalysis, various interfacial phenomena can be studied using this technique, including pH-dependent adsorption and photodegradation of probe molecules. The analysis of the processes occurring at the interface of thin particle films deposited on the surface of an ATR crystal, either in the liquid or the gas phase, is perhaps the best way to elucidate the mechanism of adsorption and heterogeneous photocatalytic reactions. This chapter summarizes the recent advances and applications of ATR-FTIR techniques in semiconductor photocatalysis. A brief outlook at some of the possible investigations in this area is provided and the different proposed adsorption and photocatalytic degradation mechanisms are discussed.",book:{id:"4606",slug:"emerging-pollutants-in-the-environment-current-and-further-implications",title:"Emerging Pollutants in the Environment",fullTitle:"Emerging Pollutants in the Environment - Current and Further Implications"},signatures:"Mohamed Faycal Atitar, Hamza Belhadj, Ralf Dillert and Detlef W.\nBahnemann",authors:[{id:"100553",title:"Prof.",name:"Detlef",middleName:null,surname:"Bahnemann",slug:"detlef-bahnemann",fullName:"Detlef Bahnemann"},{id:"173632",title:"M.Sc.",name:"Mohamed Faycal",middleName:null,surname:"Atitar",slug:"mohamed-faycal-atitar",fullName:"Mohamed Faycal Atitar"},{id:"173812",title:"Dr.",name:"Ralf",middleName:null,surname:"Dillert",slug:"ralf-dillert",fullName:"Ralf Dillert"},{id:"175502",title:"MSc.",name:"Hamza",middleName:null,surname:"Belhadj",slug:"hamza-belhadj",fullName:"Hamza Belhadj"}]},{id:"49472",title:"Nanotoxicity in Aquatic Invertebrates",slug:"nanotoxicity-in-aquatic-invertebrates",totalDownloads:2181,totalCrossrefCites:3,totalDimensionsCites:11,abstract:"Due to their unique properties, nanomaterials (NMs) are being incorporated in several applications including consumer products, electronics, pesticides and the pharmaceutical industry. As such, the rapid development and large-scale production of NMs has inspired concerns regarding their environmental health risks. In order to address these concerns, there has been a rapid development in the methods of toxicity testing of NMs, specifically in aquatic organisms. Understanding the unique properties of nanoscale materials has proven to be a particular important aspect of their toxicity. Properties such as surface area, surface coating, surface charge, particle reactivity, aggregation and dissolution may affect cellular uptake, in vivo reactivity and distribution across tissues. The behaviour of NPs is influenced by both the inherent properties of the NP as well as environmental properties (such as temperature, pH, ionic strength, salinity, organic matter). As such, this chapter describes methodologies of NM characterization in exposure media and NM in vivo toxicity experimental procedures under variable environmental conditions (with special emphasis on temperature).",book:{id:"5101",slug:"invertebrates-experimental-models-in-toxicity-screening",title:"Invertebrates",fullTitle:"Invertebrates - Experimental Models in Toxicity Screening"},signatures:"Chavon Walters, Edmund Pool and Vernon Somerset",authors:[{id:"6648",title:"Associate Prof.",name:"Vernon",middleName:null,surname:"Somerset",slug:"vernon-somerset",fullName:"Vernon Somerset"},{id:"176939",title:"Dr.",name:"Chavon",middleName:null,surname:"Walters",slug:"chavon-walters",fullName:"Chavon Walters"},{id:"177116",title:"Prof.",name:"Edmund",middleName:null,surname:"Pool",slug:"edmund-pool",fullName:"Edmund Pool"}]},{id:"49635",title:"Rotifers as Models in Toxicity Screening of Chemicals and Environmental Samples",slug:"rotifers-as-models-in-toxicity-screening-of-chemicals-and-environmental-samples",totalDownloads:2692,totalCrossrefCites:7,totalDimensionsCites:23,abstract:"An important objective of aquatic ecotoxicology is to determine the effects of toxic compounds in organisms that play a central role in aquatic communities where rotifers have a large impact on several important ecological processes. The contribution of the rotifers to secondary production in many aquatic communities is substantial as they are often the larger fraction of zooplankton biomass at certain times of the year. In addition to the importance of their ecological roles in aquatic communities, the rotifers are attractive organisms for ecotoxicological studies by its short life cycles and rapid reproduction, their small size, and little volumes needed for culture and toxicity assays. The main end points used in ecotoxicological studies are mortality, reproduction, behavior, and biomarkers. Such parameters are included in international regulations from all over the world, where different species are used to evaluate the effect of environmental samples or chemical compounds. The high diversity of rotifers is an important issue because it can modify their relative susceptibility to toxicants. Thus, more studies are needed to know the relations and mechanisms involved in clonal variation, sensitivity, and development, which can be all assessed by state-of-the-art procedures.",book:{id:"5101",slug:"invertebrates-experimental-models-in-toxicity-screening",title:"Invertebrates",fullTitle:"Invertebrates - Experimental Models in Toxicity Screening"},signatures:"Roberto Rico-Martínez, Mario Alberto Arzate-Cárdenas, Daniel\nRobles-Vargas, Ignacio Alejandro Pérez-Legaspi, Alvarado-Flores\nJesús and Gustavo Emilio Santos-Medrano",authors:[{id:"96153",title:"Dr.",name:"Roberto",middleName:null,surname:"Rico-Martinez",slug:"roberto-rico-martinez",fullName:"Roberto Rico-Martinez"},{id:"177852",title:"Dr.",name:"Mario Alberto",middleName:null,surname:"Arzate-Cárdenas",slug:"mario-alberto-arzate-cardenas",fullName:"Mario Alberto Arzate-Cárdenas"},{id:"177853",title:"Dr.",name:"Daniel",middleName:null,surname:"Robles-Vargas",slug:"daniel-robles-vargas",fullName:"Daniel Robles-Vargas"},{id:"177854",title:"Dr.",name:"Ignacio Alejandro",middleName:null,surname:"Pérez-Legaspi",slug:"ignacio-alejandro-perez-legaspi",fullName:"Ignacio Alejandro Pérez-Legaspi"},{id:"177855",title:"Dr.",name:"Jesús",middleName:null,surname:"Alvarado-Flores",slug:"jesus-alvarado-flores",fullName:"Jesús Alvarado-Flores"},{id:"177856",title:"Dr.",name:"Gustavo Emilio",middleName:null,surname:"Santos-Medrano",slug:"gustavo-emilio-santos-medrano",fullName:"Gustavo Emilio Santos-Medrano"}]},{id:"48738",title:"Impact of Oil Spills on Marine Life",slug:"impact-of-oil-spills-on-marine-life",totalDownloads:4846,totalCrossrefCites:14,totalDimensionsCites:32,abstract:"Petroleum contamination is a growing environmental concern that harms both terrestrial and aquatic ecosystems. However, the public and regulatory and scientific communities have given more attention to the contamination of marine habitats. This is because marine oil spills can have a serious economic impact on coastal activities, as well as on those who exploit the resources of the sea. Thus, communities that are at risk of oil disasters must anticipate the consequences and prepare for them.",book:{id:"4606",slug:"emerging-pollutants-in-the-environment-current-and-further-implications",title:"Emerging Pollutants in the Environment",fullTitle:"Emerging Pollutants in the Environment - Current and Further Implications"},signatures:"Ismail M.K. Saadoun",authors:[{id:"173457",title:"Prof.",name:"Ismail",middleName:null,surname:"Saadoun",slug:"ismail-saadoun",fullName:"Ismail Saadoun"}]},{id:"49867",title:"Overview of the Standard Methods for Soil Ecotoxicology Testing",slug:"overview-of-the-standard-methods-for-soil-ecotoxicology-testing",totalDownloads:2657,totalCrossrefCites:6,totalDimensionsCites:12,abstract:"This chapter briefly describes the importance of the services provided by soil invertebrates in terrestrial ecosystems and highlights the role of soil fauna in the risk assessments of potentially polluting substances for the terrestrial environment, considering the sensitivity of these organisms, when compared to other indicators of soil quality (e.g., chemical and physical). The main invertebrate groups used in laboratorial ecotoxicological assays are presented and, based on its physiological characteristics and habit requirements, the advantages and disadvantages of using certain taxonomic groups in laboratory assessments are also discussed. The most frequently used methods to perform this type of toxicity tests are summarized, highlighting the fundamental steps of the assays with the species Eisenia fetida/Eisenia andrei, Folsomia candida, Enchytraeus albidus/Enchytraeus crypticus, and Hypoaspis aculeifer, as well as the possible adjustments that are being carried out in tropical countries. Finally, the future prospects, related to the challenge of increasing the realism of laboratory ecotoxicological analyses, are discussed to show the main needs of this study at global and regional perspectives.",book:{id:"5101",slug:"invertebrates-experimental-models-in-toxicity-screening",title:"Invertebrates",fullTitle:"Invertebrates - Experimental Models in Toxicity Screening"},signatures:"Paulo Roger Lopes Alves and Elke Jurandy Bran Nogueira Cardoso",authors:[{id:"176887",title:"Dr.",name:"Paulo Roger",middleName:null,surname:"Lopes Alves",slug:"paulo-roger-lopes-alves",fullName:"Paulo Roger Lopes Alves"},{id:"177015",title:"Prof.",name:"Elke Jurandy",middleName:null,surname:"Bran Nogueira Cardoso",slug:"elke-jurandy-bran-nogueira-cardoso",fullName:"Elke Jurandy Bran Nogueira Cardoso"}]}],onlineFirstChaptersFilter:{topicId:"846",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},overviewPagePublishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science\nand Technology from the Department of Chemistry, National\nUniversity of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013.\nShe relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the\nNational Institute of Fundamental Studies from April 2013 to\nOctober 2016. She was a senior lecturer on a temporary basis at the Department of\nFood Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is\ncurrently Deputy Principal of the Australian College of Business and Technology –\nKandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI)",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:1,paginationItems:[{id:"11478",title:"Recent Advances in the Study of Dyslexia",coverURL:"https://cdn.intechopen.com/books/images_new/11478.jpg",hash:"26764a18c6b776698823e0e1c3022d2f",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 30th 2022",isOpenForSubmission:!0,editors:[{id:"294281",title:"Prof.",name:"Jonathan",surname:"Glazzard",slug:"jonathan-glazzard",fullName:"Jonathan Glazzard"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82212",title:"Protein Prenylation and Their Applications",doi:"10.5772/intechopen.104700",signatures:"Khemchand R. Surana, Ritesh B. Pawar, Ritesh A. Khairnar and Sunil K. Mahajan",slug:"protein-prenylation-and-their-applications",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82096",title:"An Important Component of Tumor Progression: Fatty Acids",doi:"10.5772/intechopen.105087",signatures:"Jin Wang, Qifei Wang and Guangzhen Wu",slug:"an-important-component-of-tumor-progression-fatty-acids",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82029",title:"Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety",doi:"10.5772/intechopen.104908",signatures:"Vinayak Adimule, Pravin Kendrekar and Sheetal Batakurki",slug:"synthesis-characterization-and-antimicrobial-properties-of-novel-benzimidazole-amide-derivatives-bea",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:1,group:"subseries"},{caption:"Chemical Biology",value:15,count:5,group:"subseries"},{caption:"Metabolism",value:17,count:13,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:15,group:"subseries"}],publishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:4},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:9},{group:"subseries",caption:"Chemical Biology",value:15,count:13}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:8},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:301,paginationItems:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}},{id:"338856",title:"Mrs.",name:"Nur Alvira",middleName:null,surname:"Pascawati",slug:"nur-alvira-pascawati",fullName:"Nur Alvira Pascawati",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universitas Respati Yogyakarta",country:{name:"Indonesia"}}},{id:"441116",title:"Dr.",name:"Jovanka M.",middleName:null,surname:"Voyich",slug:"jovanka-m.-voyich",fullName:"Jovanka M. Voyich",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Montana State University",country:{name:"United States of America"}}},{id:"330412",title:"Dr.",name:"Muhammad",middleName:null,surname:"Farhab",slug:"muhammad-farhab",fullName:"Muhammad Farhab",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"349495",title:"Dr.",name:"Muhammad",middleName:null,surname:"Ijaz",slug:"muhammad-ijaz",fullName:"Muhammad Ijaz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Veterinary and Animal Sciences",country:{name:"Pakistan"}}}]}},subseries:{item:{id:"19",type:"subseries",title:"Animal Science",keywords:"Animal Science, Animal Biology, Wildlife Species, Domesticated Animals",scope:"The Animal Science topic welcomes research on captive and wildlife species, including domesticated animals. The research resented can consist of primary studies on various animal biology fields such as genetics, nutrition, behavior, welfare, and animal production, to name a few. Reviews on specialized areas of animal science are also welcome.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11415,editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null,series:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517"},editorialBoard:[{id:"258334",title:"Dr.",name:"Carlos Eduardo",middleName:null,surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves",profilePictureURL:"https://mts.intechopen.com/storage/users/258334/images/system/258334.jpg",institutionString:null,institution:{name:"Universidade Paulista",institutionURL:null,country:{name:"Brazil"}}},{id:"191123",title:"Dr.",name:"Juan José",middleName:null,surname:"Valdez-Alarcón",slug:"juan-jose-valdez-alarcon",fullName:"Juan José Valdez-Alarcón",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBfcQAG/Profile_Picture_1631354558068",institutionString:"Universidad Michoacana de San Nicolás de Hidalgo",institution:{name:"Universidad Michoacana de San Nicolás de Hidalgo",institutionURL:null,country:{name:"Mexico"}}},{id:"161556",title:"Dr.",name:"Maria Dos Anjos",middleName:null,surname:"Pires",slug:"maria-dos-anjos-pires",fullName:"Maria Dos Anjos Pires",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS8q2QAC/Profile_Picture_1633432838418",institutionString:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}},{id:"209839",title:"Dr.",name:"Marina",middleName:null,surname:"Spinu",slug:"marina-spinu",fullName:"Marina Spinu",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLXpQAO/Profile_Picture_1630044895475",institutionString:null,institution:{name:"University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca",institutionURL:null,country:{name:"Romania"}}},{id:"92185",title:"Dr.",name:"Sara",middleName:null,surname:"Savic",slug:"sara-savic",fullName:"Sara Savic",profilePictureURL:"https://mts.intechopen.com/storage/users/92185/images/system/92185.jfif",institutionString:'Scientific Veterinary Institute "Novi Sad"',institution:{name:'Scientific Veterinary Institute "Novi Sad"',institutionURL:null,country:{name:"Serbia"}}}]},onlineFirstChapters:{paginationCount:34,paginationItems:[{id:"81595",title:"Prosthetic Concepts in Dental Implantology",doi:"10.5772/intechopen.104725",signatures:"Ivica Pelivan",slug:"prosthetic-concepts-in-dental-implantology",totalDownloads:27,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"80963",title:"Pain Perception in Patients Treated with Ligating/Self-Ligating Brackets versus Patients Treated with Aligners",doi:"10.5772/intechopen.102796",signatures:"Farid Bourzgui, Rania Fastani, Salwa Khairat, Samir Diouny, Mohamed El Had, Zineb Serhier and Mohamed Bennani Othmani",slug:"pain-perception-in-patients-treated-with-ligating-self-ligating-brackets-versus-patients-treated-wit",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"80500",title:"Novel Dental Implants with Herbal Composites: A Review",doi:"10.5772/intechopen.101489",signatures:"Gopathy Sridevi and Seshadri Srividya",slug:"novel-dental-implants-with-herbal-composites-a-review",totalDownloads:49,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"78320",title:"Implant-Retained Maxillary and Mandibular Overdentures - A Solution for Completely Edentulous Patients",doi:"10.5772/intechopen.99575",signatures:"Dubravka Knezović Zlatarić, Robert Ćelić and Hrvoje Pezo",slug:"implant-retained-maxillary-and-mandibular-overdentures-a-solution-for-completely-edentulous-patients",totalDownloads:66,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79724",title:"Implant Stability Quotient (ISQ): A Reliable Guide for Implant Treatment",doi:"10.5772/intechopen.101359",signatures:"Gaurav Gupta",slug:"implant-stability-quotient-isq-a-reliable-guide-for-implant-treatment",totalDownloads:60,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"80223",title:"Bridging the Gap: Nasoalveolar Moulding in Early Cleft Palate Rehabilitation",doi:"10.5772/intechopen.101986",signatures:"Amanda Nadia Ferreira",slug:"bridging-the-gap-nasoalveolar-moulding-in-early-cleft-palate-rehabilitation",totalDownloads:73,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"80186",title:"Effects of Various Dentofacial Orthopedic and Orthognathic Treatment Modalities on Pharyngeal Airway",doi:"10.5772/intechopen.101719",signatures:"Tejashri Pradhan and Aarti Sethia",slug:"effects-of-various-dentofacial-orthopedic-and-orthognathic-treatment-modalities-on-pharyngeal-airway",totalDownloads:83,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"78834",title:"Current Methods for Acceleration of Orthodontic Tooth Movement",doi:"10.5772/intechopen.100221",signatures:"Mehmet Akin and Leyla Cime Akbaydogan",slug:"current-methods-for-acceleration-of-orthodontic-tooth-movement",totalDownloads:131,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79817",title:"Peri-Implant Soft Tissue Augmentation",doi:"10.5772/intechopen.101336",signatures:"Marko Blašković and Dorotea Blašković",slug:"peri-implant-soft-tissue-augmentation",totalDownloads:128,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Marko",surname:"Blašković"},{name:"Dorotea",surname:"Blaskovic"}],book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79100",title:"Orthodontics and the Periodontium: A Symbiotic Relationship",doi:"10.5772/intechopen.100801",signatures:"Betsy Sara Thomas and Mohan Alexander",slug:"orthodontics-and-the-periodontium-a-symbiotic-relationship",totalDownloads:74,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79680",title:"Digital Workflow for Homemade Aligner",doi:"10.5772/intechopen.100347",signatures:"Dalal Elmoutawakkil and Nabil Hacib",slug:"digital-workflow-for-homemade-aligner",totalDownloads:202,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79611",title:"Growth Factors and Dental Implantology",doi:"10.5772/intechopen.101082",signatures:"Deeksha Gupta",slug:"growth-factors-and-dental-implantology",totalDownloads:103,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79584",title:"Orthodontic Management of Adult Sleep Apnea: Clinical Case Reports",doi:"10.5772/intechopen.101193",signatures:"Lahcen Ousehal, Soukaina Sahim, Hajar Bouzid, Hakima Aghoutan, Asmaa El Mabrak, Mohamed Mahtar and Mohamed El Fatmi Kadri Hassani",slug:"orthodontic-management-of-adult-sleep-apnea-clinical-case-reports",totalDownloads:86,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"78791",title:"Surface Modification of Titanium Orthodontic Implants",doi:"10.5772/intechopen.100038",signatures:"Abdulqadir Rampurawala and Amol Patil",slug:"surface-modification-of-titanium-orthodontic-implants",totalDownloads:150,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79334",title:"Orthodontic Therapeutic Biomarkers in Saliva and Gingival Crevicular Fluid",doi:"10.5772/intechopen.100733",signatures:"Sagar S. Bhat, Ameet V. Revankar and Shrinivas M. Basavaraddi",slug:"orthodontic-therapeutic-biomarkers-in-saliva-and-gingival-crevicular-fluid",totalDownloads:128,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"78213",title:"A Review of Current Concepts in Full Arch Rehabilitation with Dental Implants",doi:"10.5772/intechopen.99704",signatures:"Leandro Díez-Suárez",slug:"a-review-of-current-concepts-in-full-arch-rehabilitation-with-dental-implants",totalDownloads:139,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Leandro",surname:"Díez Suárez"}],book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"14",title:"Cell and Molecular Biology",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression"},{id:"15",title:"Chemical Biology",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors"},{id:"17",title:"Metabolism",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation"},{id:"18",title:"Proteomics",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/56615",hash:"",query:{},params:{id:"56615"},fullPath:"/profiles/56615",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()