Most important characteristics for different types of fuel cells
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"intechopen-signs-new-contract-with-cepiec-china-for-distribution-of-open-access-books-20210319",title:"IntechOpen Signs New Contract with CEPIEC, China for Distribution of Open Access Books"},{slug:"150-million-downloads-and-counting-20210316",title:"150 Million Downloads and Counting"},{slug:"intechopen-secures-indefinite-content-preservation-with-clockss-20210309",title:"IntechOpen Secures Indefinite Content Preservation with CLOCKSS"},{slug:"intechopen-expands-to-all-global-amazon-channels-with-full-catalog-of-books-20210308",title:"IntechOpen Expands to All Global Amazon Channels with Full Catalog of Books"},{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"}]},book:{item:{type:"book",id:"6575",leadTitle:null,fullTitle:"Bringing Thermoelectricity into Reality",title:"Bringing Thermoelectricity into Reality",subtitle:null,reviewType:"peer-reviewed",abstract:"The disproportionate use of fossil fuels has turned into a serious environmental issue. Thus, we are encountering one of the biggest challenges of the twenty-first century, satisfying the energy demand with respect to the environment. Thermoelectricity is an emerging technology, which contributes to reducing the impact of the use of traditional technologies, harvesting the waste heat, and eliminating the use of refrigerants. The book Bringing Thermoelectricity into Reality covers the current thermoelectric investigations: the study of novel thermoelectric materials, the development of computational models, the design of proper assemblies, and the optimization of thermal designs, as well as novel thermoelectric generators, coolers, and heating applications. This book looks for the definitive thermoelectric applications applied to everyday life.",isbn:"978-1-78923-441-1",printIsbn:"978-1-78923-440-4",pdfIsbn:"978-1-83881-565-3",doi:"10.5772/intechopen.71354",price:139,priceEur:155,priceUsd:179,slug:"bringing-thermoelectricity-into-reality",numberOfPages:386,isOpenForSubmission:!1,isInWos:1,hash:"7093275b866334e0eaa82eb3e5b046f5",bookSignature:"Patricia Aranguren",publishedDate:"July 11th 2018",coverURL:"https://cdn.intechopen.com/books/images_new/6575.jpg",numberOfDownloads:13107,numberOfWosCitations:26,numberOfCrossrefCitations:18,numberOfDimensionsCitations:26,hasAltmetrics:0,numberOfTotalCitations:70,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 9th 2017",dateEndSecondStepPublish:"October 30th 2017",dateEndThirdStepPublish:"December 29th 2017",dateEndFourthStepPublish:"March 19th 2018",dateEndFifthStepPublish:"May 18th 2018",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"188620",title:"Dr.",name:"Patricia",middleName:null,surname:"Aranguren",slug:"patricia-aranguren",fullName:"Patricia Aranguren",profilePictureURL:"https://mts.intechopen.com/storage/users/188620/images/6000_n.jpg",biography:"Dr. Patricia Aranguren completed her PhD degree focused on thermoelectric generation applications in 2015 from the Mechanical, Energy and Materials Engineering Department, Public University of Navarre, Spain. Her research interests are heat transfer optimization and thermoelectricity.\nDr. Patricia Aranguren is the recipient of the “Graduate Student Award” awarded by the International Thermoelectric Society as a recognition for her outstanding research trajectory in the thermoelectrics field. The International Thermoelectric Society has awarded Patricia on two more occasions with the “Best Contribution Award” during the celebration of the annual International Conferences on Thermoelectrics. \nUntil now, she has published 13 publications in peer-reviewed international journals in the field, a chapter in one book and has participated in 23 contributions presented at international conferences. She is also serving as a reviewer for many international journals.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Navarra",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"773",title:"Thermal Engineering",slug:"engineering-energy-engineering-thermal-engineering"}],chapters:[{id:"60165",title:"Nanostructured Thermoelectric Chalcogenides",doi:"10.5772/intechopen.75442",slug:"nanostructured-thermoelectric-chalcogenides",totalDownloads:660,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Javier Gainza, Federico Serrano-Sánchez, Mouna Gharsallah,\nManuel Funes, Félix Carrascoso, Norbert M. Nemes, Oscar J. Dura,\nJosé L. Martínez and José A. Alonso",downloadPdfUrl:"/chapter/pdf-download/60165",previewPdfUrl:"/chapter/pdf-preview/60165",authors:[{id:"189662",title:"Prof.",name:"Jose Antonio",surname:"Alonso",slug:"jose-antonio-alonso",fullName:"Jose Antonio Alonso"},{id:"194777",title:"Dr.",name:"Federico",surname:"Serrano-Sánchez",slug:"federico-serrano-sanchez",fullName:"Federico Serrano-Sánchez"},{id:"240543",title:"Ph.D. Student",name:"Javier",surname:"Gainza",slug:"javier-gainza",fullName:"Javier Gainza"},{id:"240544",title:"Dr.",name:"Mouna",surname:"Gharsallah",slug:"mouna-gharsallah",fullName:"Mouna Gharsallah"},{id:"240545",title:"MSc.",name:"Manuel",surname:"Funes",slug:"manuel-funes",fullName:"Manuel Funes"},{id:"240546",title:"MSc.",name:"Felix",surname:"Carrascoso",slug:"felix-carrascoso",fullName:"Felix Carrascoso"},{id:"240547",title:"Dr.",name:"Norbert",surname:"Nemes",slug:"norbert-nemes",fullName:"Norbert Nemes"},{id:"240548",title:"Dr.",name:"Oscar",surname:"Dura",slug:"oscar-dura",fullName:"Oscar Dura"},{id:"240549",title:"Prof.",name:"Jose Luis",surname:"Martinez",slug:"jose-luis-martinez",fullName:"Jose Luis Martinez"}],corrections:null},{id:"60046",title:"Thermoelectric Textile Materials",doi:"10.5772/intechopen.75474",slug:"thermoelectric-textile-materials",totalDownloads:972,totalCrossrefCites:1,totalDimensionsCites:4,signatures:"Qian Wu and Jinlian Hu",downloadPdfUrl:"/chapter/pdf-download/60046",previewPdfUrl:"/chapter/pdf-preview/60046",authors:[{id:"201511",title:"Prof.",name:"Jin-Lian",surname:"Hu",slug:"jin-lian-hu",fullName:"Jin-Lian Hu"},{id:"240827",title:"Dr.",name:"Qian",surname:"Wu",slug:"qian-wu",fullName:"Qian Wu"}],corrections:null},{id:"60522",title:"Thermoelectricity from Macro to Nanoscale: Wave Behaviour and Non-Local Effects",doi:"10.5772/intechopen.75998",slug:"thermoelectricity-from-macro-to-nanoscale-wave-behaviour-and-non-local-effects",totalDownloads:528,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Aldo Figueroa Lara, Iván Rivera Islas, Víctor Hernández García, Jaziel\nRojas Guadarrama and Federico Vázquez Hurtado",downloadPdfUrl:"/chapter/pdf-download/60522",previewPdfUrl:"/chapter/pdf-preview/60522",authors:[{id:"176938",title:"Dr.",name:"Federico",surname:"Vazquez",slug:"federico-vazquez",fullName:"Federico Vazquez"},{id:"176940",title:"Dr.",name:"Aldo",surname:"Figueroa",slug:"aldo-figueroa",fullName:"Aldo Figueroa"},{id:"230052",title:"Dr.",name:"Isaac",surname:"Rodríguez-Vargas",slug:"isaac-rodriguez-vargas",fullName:"Isaac Rodríguez-Vargas"},{id:"230053",title:"BSc.",name:"Iván",surname:"Rivera",slug:"ivan-rivera",fullName:"Iván Rivera"},{id:"230054",title:"BSc.",name:"Jaziel Alberto",surname:"Rojas",slug:"jaziel-alberto-rojas",fullName:"Jaziel Alberto Rojas"}],corrections:null},{id:"60176",title:"Mechanical Properties of Thermoelectric Materials for Practical Applications",doi:"10.5772/intechopen.75476",slug:"mechanical-properties-of-thermoelectric-materials-for-practical-applications",totalDownloads:826,totalCrossrefCites:5,totalDimensionsCites:4,signatures:"Gilad M. Guttmann and Yaniv Gelbstein",downloadPdfUrl:"/chapter/pdf-download/60176",previewPdfUrl:"/chapter/pdf-preview/60176",authors:[{id:"95796",title:"Prof.",name:"Yaniv",surname:"Gelbstein",slug:"yaniv-gelbstein",fullName:"Yaniv Gelbstein"},{id:"232708",title:"M.Sc.",name:"Gilad",surname:"Guttmann",slug:"gilad-guttmann",fullName:"Gilad Guttmann"}],corrections:null},{id:"62183",title:"Introduction to (p × n)-Type Transverse Thermoelectrics",doi:"10.5772/intechopen.78718",slug:"introduction-to-p-n-type-transverse-thermoelectrics",totalDownloads:519,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Matthew Grayson, Qing Shao, Boya Cui, Yang Tang, Xueting Yan\nand Chuanle Zhou",downloadPdfUrl:"/chapter/pdf-download/62183",previewPdfUrl:"/chapter/pdf-preview/62183",authors:[{id:"231282",title:"Prof.",name:"Matthew",surname:"Grayson",slug:"matthew-grayson",fullName:"Matthew Grayson"},{id:"253689",title:"Ms.",name:"Qing",surname:"Shao",slug:"qing-shao",fullName:"Qing Shao"},{id:"253690",title:"Dr.",name:"Boya",surname:"Cui",slug:"boya-cui",fullName:"Boya Cui"},{id:"253691",title:"Dr.",name:"Yang",surname:"Tang",slug:"yang-tang",fullName:"Yang Tang"},{id:"253692",title:"Ms.",name:"Xueting",surname:"Yan",slug:"xueting-yan",fullName:"Xueting Yan"},{id:"253693",title:"Dr.",name:"Chuanle",surname:"Zhou",slug:"chuanle-zhou",fullName:"Chuanle Zhou"}],corrections:null},{id:"60475",title:"Thermoelectric Devices: Influence of the Legs Geometry and Parasitic Contact Resistances on ZT",doi:"10.5772/intechopen.75790",slug:"thermoelectric-devices-influence-of-the-legs-geometry-and-parasitic-contact-resistances-on-zt",totalDownloads:586,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Angel Fabian-Mijangos and Jaime Alvarez-Quintana",downloadPdfUrl:"/chapter/pdf-download/60475",previewPdfUrl:"/chapter/pdf-preview/60475",authors:[{id:"163155",title:"Dr.",name:"Jaime",surname:"Álvarez Quintana",slug:"jaime-alvarez-quintana",fullName:"Jaime Álvarez Quintana"},{id:"227130",title:"Dr.",name:"Angel",surname:"Fabian",slug:"angel-fabian",fullName:"Angel Fabian"}],corrections:null},{id:"60440",title:"The Importance of the Assembly in Thermoelectric Generators",doi:"10.5772/intechopen.75697",slug:"the-importance-of-the-assembly-in-thermoelectric-generators",totalDownloads:589,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Miguel Araiz, Leyre Catalan, Oscar Herrero, Gurutze Perez and\nAntonio Rodriguez",downloadPdfUrl:"/chapter/pdf-download/60440",previewPdfUrl:"/chapter/pdf-preview/60440",authors:[{id:"230661",title:"Ph.D. Student",name:"Leyre",surname:"Catalan",slug:"leyre-catalan",fullName:"Leyre Catalan"},{id:"230662",title:"Dr.",name:"Miguel",surname:"Araiz",slug:"miguel-araiz",fullName:"Miguel Araiz"},{id:"230753",title:"BSc.",name:"Óscar",surname:"Herrero",slug:"oscar-herrero",fullName:"Óscar Herrero"},{id:"240499",title:"Dr.",name:"Gurutze",surname:"Perez",slug:"gurutze-perez",fullName:"Gurutze Perez"},{id:"240500",title:"Dr.",name:"Antonio",surname:"Rodriguez",slug:"antonio-rodriguez",fullName:"Antonio Rodriguez"}],corrections:null},{id:"60567",title:"Thermoelectric Power Generation for Heat Recovery in Automotive Industries",doi:"10.5772/intechopen.75467",slug:"thermoelectric-power-generation-for-heat-recovery-in-automotive-industries",totalDownloads:646,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Bo Li, Kuo Huang and Yuying Yan",downloadPdfUrl:"/chapter/pdf-download/60567",previewPdfUrl:"/chapter/pdf-preview/60567",authors:[{id:"225827",title:"Dr.",name:"Bo",surname:"Li",slug:"bo-li",fullName:"Bo Li"},{id:"240446",title:"Mr.",name:"Kuo",surname:"Huang",slug:"kuo-huang",fullName:"Kuo Huang"},{id:"240447",title:"Prof.",name:"Yuying",surname:"Yan",slug:"yuying-yan",fullName:"Yuying Yan"}],corrections:null},{id:"60231",title:"Automotive Waste Heat Recovery by Thermoelectric Generator Technology",doi:"10.5772/intechopen.75443",slug:"automotive-waste-heat-recovery-by-thermoelectric-generator-technology",totalDownloads:1274,totalCrossrefCites:1,totalDimensionsCites:4,signatures:"Duraisamy Sivaprahasam, Subramaniam Harish, Raghavan Gopalan\nand Govindhan Sundararajan",downloadPdfUrl:"/chapter/pdf-download/60231",previewPdfUrl:"/chapter/pdf-preview/60231",authors:[{id:"227670",title:"Dr.",name:"Duraisamy",surname:"Sivaprahasam",slug:"duraisamy-sivaprahasam",fullName:"Duraisamy Sivaprahasam"},{id:"234003",title:"Dr.",name:"Harish",surname:"Subramaniam",slug:"harish-subramaniam",fullName:"Harish Subramaniam"},{id:"241018",title:"Dr.",name:"Raghavan",surname:"Gopalan",slug:"raghavan-gopalan",fullName:"Raghavan Gopalan"},{id:"241021",title:"Dr.",name:"Govindhan",surname:"Sundararajan",slug:"govindhan-sundararajan",fullName:"Govindhan Sundararajan"}],corrections:null},{id:"61447",title:"Prospects and Problems of Increasing the Automotive Thermoelectric Generators Efficiency",doi:"10.5772/intechopen.76971",slug:"prospects-and-problems-of-increasing-the-automotive-thermoelectric-generators-efficiency",totalDownloads:1032,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Alexey Osipkov, Roman Poshekhonov, Konstantin Shishov and\nPavel Shiriaev",downloadPdfUrl:"/chapter/pdf-download/61447",previewPdfUrl:"/chapter/pdf-preview/61447",authors:[{id:"227819",title:"Dr.",name:"Alexey",surname:"Osipkov",slug:"alexey-osipkov",fullName:"Alexey Osipkov"},{id:"249143",title:"Dr.",name:"Roman",surname:"Poshekhonov",slug:"roman-poshekhonov",fullName:"Roman Poshekhonov"},{id:"249144",title:"BSc.",name:"Konstantin",surname:"Shishov",slug:"konstantin-shishov",fullName:"Konstantin Shishov"},{id:"249145",title:"M.Sc.",name:"Pavel",surname:"Shiriaev",slug:"pavel-shiriaev",fullName:"Pavel Shiriaev"}],corrections:null},{id:"60039",title:"Thermoelectric Refrigeration Principles",doi:"10.5772/intechopen.75439",slug:"thermoelectric-refrigeration-principles",totalDownloads:1424,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Diana Enescu",downloadPdfUrl:"/chapter/pdf-download/60039",previewPdfUrl:"/chapter/pdf-preview/60039",authors:[{id:"226207",title:"Ph.D.",name:"Diana",surname:"Enescu",slug:"diana-enescu",fullName:"Diana Enescu"}],corrections:null},{id:"60452",title:"Thermoelectric Cooling",doi:"10.5772/intechopen.75791",slug:"thermoelectric-cooling",totalDownloads:1018,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Raghied M. Atta",downloadPdfUrl:"/chapter/pdf-download/60452",previewPdfUrl:"/chapter/pdf-preview/60452",authors:[{id:"227580",title:"Associate Prof.",name:"Raghied",surname:"Atta",slug:"raghied-atta",fullName:"Raghied Atta"}],corrections:null},{id:"61356",title:"Computational Thermoelectricity Applied to Cooling Devices",doi:"10.5772/intechopen.75473",slug:"computational-thermoelectricity-applied-to-cooling-devices",totalDownloads:503,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Roberto Palma, Emma Moliner and Josep Forner-Escrig",downloadPdfUrl:"/chapter/pdf-download/61356",previewPdfUrl:"/chapter/pdf-preview/61356",authors:[{id:"230509",title:"Dr.",name:"Roberto",surname:"Palma",slug:"roberto-palma",fullName:"Roberto Palma"},{id:"230550",title:"Dr.",name:"Emma",surname:"Moliner",slug:"emma-moliner",fullName:"Emma Moliner"},{id:"230551",title:"MSc.",name:"Josep",surname:"Forner-Escrig",slug:"josep-forner-escrig",fullName:"Josep Forner-Escrig"}],corrections:null},{id:"60613",title:"Thermoelectric Cooling: The Thomson Effect in Hybrid Two- Stage Thermoelectric Cooler Systems with Different Leg Geometric Shapes",doi:"10.5772/intechopen.75440",slug:"thermoelectric-cooling-the-thomson-effect-in-hybrid-two-stage-thermoelectric-cooler-systems-with-dif",totalDownloads:660,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Pablo Eduardo Ruiz-Ortega, Miguel Angel Olivares-Robles and\nAmado F. Garcia Ruiz",downloadPdfUrl:"/chapter/pdf-download/60613",previewPdfUrl:"/chapter/pdf-preview/60613",authors:[{id:"188238",title:"Dr.",name:"Miguel Angel",surname:"Olivares-Robles",slug:"miguel-angel-olivares-robles",fullName:"Miguel Angel Olivares-Robles"},{id:"232181",title:"Dr.",name:"Pablo Eduardo",surname:"Ruiz-Ortega",slug:"pablo-eduardo-ruiz-ortega",fullName:"Pablo Eduardo Ruiz-Ortega"}],corrections:null},{id:"60467",title:"Building-Integrated Thermoelectric Cooling-Photovoltaic (TEC-PV) Devices",doi:"10.5772/intechopen.75472",slug:"building-integrated-thermoelectric-cooling-photovoltaic-tec-pv-devices",totalDownloads:791,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Himanshu Dehra",downloadPdfUrl:"/chapter/pdf-download/60467",previewPdfUrl:"/chapter/pdf-preview/60467",authors:[{id:"12304",title:"Mr.",name:"Himanshu",surname:"Dehra",slug:"himanshu-dehra",fullName:"Himanshu Dehra"}],corrections:null},{id:"60527",title:"Feasibility and Numerical Analysis of Hybrid Photovoltaic (PV) Panels with Thermoelectric Cooling (TEC) Systems",doi:"10.5772/intechopen.75441",slug:"feasibility-and-numerical-analysis-of-hybrid-photovoltaic-pv-panels-with-thermoelectric-cooling-tec-",totalDownloads:440,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Arturo Monedero Khouri and Miguel Angel Olivares Robles",downloadPdfUrl:"/chapter/pdf-download/60527",previewPdfUrl:"/chapter/pdf-preview/60527",authors:[{id:"188238",title:"Dr.",name:"Miguel Angel",surname:"Olivares-Robles",slug:"miguel-angel-olivares-robles",fullName:"Miguel Angel Olivares-Robles"},{id:"232182",title:"Mr.",name:"Arturo",surname:"Monedero Khouri",slug:"arturo-monedero-khouri",fullName:"Arturo Monedero Khouri"}],corrections:null},{id:"60784",title:"Heat Pipe and Thermosyphon for Thermal Management of Thermoelectric Cooling",doi:"10.5772/intechopen.76289",slug:"heat-pipe-and-thermosyphon-for-thermal-management-of-thermoelectric-cooling",totalDownloads:660,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Thiago Antonini Alves, Larissa Krambeck and Paulo H. Dias dos\nSantos",downloadPdfUrl:"/chapter/pdf-download/60784",previewPdfUrl:"/chapter/pdf-preview/60784",authors:[{id:"227996",title:"Prof.",name:"Thiago",surname:"Antonini Alves",slug:"thiago-antonini-alves",fullName:"Thiago Antonini Alves"},{id:"229393",title:"Prof.",name:"Paulo",surname:"Santos",slug:"paulo-santos",fullName:"Paulo Santos"},{id:"229395",title:"MSc.",name:"Larissa",surname:"Krambeck",slug:"larissa-krambeck",fullName:"Larissa Krambeck"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"3072",title:"Mass Transfer",subtitle:"Advances in Sustainable Energy and Environment Oriented Numerical Modeling",isOpenForSubmission:!1,hash:"11ea46b65df067928b6e0c012fca735a",slug:"mass-transfer-advances-in-sustainable-energy-and-environment-oriented-numerical-modeling",bookSignature:"Hironori Nakajima",coverURL:"https://cdn.intechopen.com/books/images_new/3072.jpg",editedByType:"Edited by",editors:[{id:"45206",title:"Dr.",name:"Hironori",surname:"Nakajima",slug:"hironori-nakajima",fullName:"Hironori Nakajima"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"900",title:"Thermal Power Plants",subtitle:null,isOpenForSubmission:!1,hash:"9cd70196c2a6bf83de6eac762ad73ed2",slug:"thermal-power-plants",bookSignature:"Mohammad Rasul",coverURL:"https://cdn.intechopen.com/books/images_new/900.jpg",editedByType:"Edited by",editors:[{id:"68665",title:"Dr.",name:"Mohammad",surname:"Rasul",slug:"mohammad-rasul",fullName:"Mohammad Rasul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3385",title:"Thermal Power Plants",subtitle:"Advanced Applications",isOpenForSubmission:!1,hash:"79a440454d0d4636b47cb20c1fe756b2",slug:"thermal-power-plants-advanced-applications",bookSignature:"Mohammad Rasul",coverURL:"https://cdn.intechopen.com/books/images_new/3385.jpg",editedByType:"Edited by",editors:[{id:"68665",title:"Dr.",name:"Mohammad",surname:"Rasul",slug:"mohammad-rasul",fullName:"Mohammad Rasul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6469",title:"Application of Exergy",subtitle:null,isOpenForSubmission:!1,hash:"0836749bb350a373d5e2628c73539698",slug:"application-of-exergy",bookSignature:"Tolga Taner",coverURL:"https://cdn.intechopen.com/books/images_new/6469.jpg",editedByType:"Edited by",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7272",title:"Advanced Cooling Technologies and Applications",subtitle:null,isOpenForSubmission:!1,hash:"540cb9c921dadbc8230afd4390eb8248",slug:"advanced-cooling-technologies-and-applications",bookSignature:"S. M. Sohel Murshed",coverURL:"https://cdn.intechopen.com/books/images_new/7272.jpg",editedByType:"Edited by",editors:[{id:"24904",title:"Prof.",name:"S. M. Sohel",surname:"Murshed",slug:"s.-m.-sohel-murshed",fullName:"S. M. Sohel Murshed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8394",title:"Low-temperature Technologies",subtitle:null,isOpenForSubmission:!1,hash:"be68d10255b1c1c72aef7caddf946e34",slug:"low-temperature-technologies",bookSignature:"Tatiana Morosuk and Muhammad Sultan",coverURL:"https://cdn.intechopen.com/books/images_new/8394.jpg",editedByType:"Edited by",editors:[{id:"193888",title:"Prof.",name:"Tatiana",surname:"Morosuk",slug:"tatiana-morosuk",fullName:"Tatiana Morosuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7217",title:"Organic Rankine Cycle Technology for Heat Recovery",subtitle:null,isOpenForSubmission:!1,hash:"c9f91d2615f45f47fe9537b174e9cd87",slug:"organic-rankine-cycle-technology-for-heat-recovery",bookSignature:"Enhua Wang",coverURL:"https://cdn.intechopen.com/books/images_new/7217.jpg",editedByType:"Edited by",editors:[{id:"199752",title:"Dr.",name:"Enhua",surname:"Wang",slug:"enhua-wang",fullName:"Enhua Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7487",title:"Thermal Energy Battery with Nano-enhanced PCM",subtitle:null,isOpenForSubmission:!1,hash:"a917c6664886ab78f757aeb59f45635d",slug:"thermal-energy-battery-with-nano-enhanced-pcm",bookSignature:"Mohsen Sheikholeslami Kandelousi",coverURL:"https://cdn.intechopen.com/books/images_new/7487.jpg",editedByType:"Edited by",editors:[{id:"185811",title:"Dr.",name:"Mohsen",surname:"Sheikholeslami Kandelousi",slug:"mohsen-sheikholeslami-kandelousi",fullName:"Mohsen Sheikholeslami Kandelousi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7659",title:"Organic Rankine Cycles for Waste Heat Recovery",subtitle:"Analysis and Applications",isOpenForSubmission:!1,hash:"98c4b304e87fd0d4e56579783f22a1f7",slug:"organic-rankine-cycles-for-waste-heat-recovery-analysis-and-applications",bookSignature:"Silvia Lasala",coverURL:"https://cdn.intechopen.com/books/images_new/7659.jpg",editedByType:"Edited by",editors:[{id:"190049",title:"Dr.",name:"Silvia",surname:"Lasala",slug:"silvia-lasala",fullName:"Silvia Lasala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7657",title:"Exergy and Its Application",subtitle:"Toward Green Energy Production and Sustainable Environment",isOpenForSubmission:!1,hash:"16fc8afa11f1219fb17e2482de73edd4",slug:"exergy-and-its-application-toward-green-energy-production-and-sustainable-environment",bookSignature:"Muhammad Aziz",coverURL:"https://cdn.intechopen.com/books/images_new/7657.jpg",editedByType:"Edited by",editors:[{id:"98160",title:"Associate Prof.",name:"Muhammad",surname:"Aziz",slug:"muhammad-aziz",fullName:"Muhammad Aziz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66064",slug:"corrigendum-to-textured-bst-thin-film-on-silicon-substrate-preparation-and-its-applications-for-high",title:"Corrigendum to: Textured BST Thin Film on Silicon Substrate: Preparation and Its Applications for High Frequency Tunable Devices",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66064.pdf",downloadPdfUrl:"/chapter/pdf-download/66064",previewPdfUrl:"/chapter/pdf-preview/66064",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66064",risUrl:"/chapter/ris/66064",chapter:{id:"62285",slug:"textured-bst-thin-film-on-silicon-substrate-preparation-and-its-applications-for-high-frequency-tuna",signatures:"Congchun Zhang, Jianze Huang, Chunsheng Yang and Guifu Ding",dateSubmitted:"February 7th 2018",dateReviewed:"June 3rd 2018",datePrePublished:"November 5th 2018",datePublished:"January 3rd 2019",book:{id:"7253",title:"Coatings and Thin-Film Technologies",subtitle:null,fullTitle:"Coatings and Thin-Film Technologies",slug:"coatings-and-thin-film-technologies",publishedDate:"January 3rd 2019",bookSignature:"Jaime Andres Perez-Taborda and Alba G. Avila Bernal",coverURL:"https://cdn.intechopen.com/books/images_new/7253.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193020",title:"Dr.",name:"Jaime Andres",middleName:null,surname:"Perez Taborda",slug:"jaime-andres-perez-taborda",fullName:"Jaime Andres Perez Taborda"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"33329",title:"Prof.",name:"guifu",middleName:null,surname:"Ding",fullName:"guifu Ding",slug:"guifu-ding",email:"gfding@sjtu.edu.cn",position:null,institution:{name:"Shanghai Jiao Tong University",institutionURL:null,country:{name:"China"}}},{id:"244624",title:"Associate Prof.",name:"Congchun",middleName:null,surname:"Zhang",fullName:"Congchun Zhang",slug:"congchun-zhang",email:"zhcc@sjtu.edu.cn",position:null,institution:null},{id:"255541",title:"Mr.",name:"Jianze",middleName:null,surname:"Huang",fullName:"Jianze Huang",slug:"jianze-huang",email:"huangjz420@sjtu.edu.cn",position:null,institution:null},{id:"255547",title:"Mr.",name:"Chunsheng",middleName:null,surname:"Yang",fullName:"Chunsheng Yang",slug:"chunsheng-yang",email:"csyang@sjtu.edu.cn",position:null,institution:null}]}},chapter:{id:"62285",slug:"textured-bst-thin-film-on-silicon-substrate-preparation-and-its-applications-for-high-frequency-tuna",signatures:"Congchun Zhang, Jianze Huang, Chunsheng Yang and Guifu Ding",dateSubmitted:"February 7th 2018",dateReviewed:"June 3rd 2018",datePrePublished:"November 5th 2018",datePublished:"January 3rd 2019",book:{id:"7253",title:"Coatings and Thin-Film Technologies",subtitle:null,fullTitle:"Coatings and Thin-Film Technologies",slug:"coatings-and-thin-film-technologies",publishedDate:"January 3rd 2019",bookSignature:"Jaime Andres Perez-Taborda and Alba G. Avila Bernal",coverURL:"https://cdn.intechopen.com/books/images_new/7253.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193020",title:"Dr.",name:"Jaime Andres",middleName:null,surname:"Perez Taborda",slug:"jaime-andres-perez-taborda",fullName:"Jaime Andres Perez Taborda"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"33329",title:"Prof.",name:"guifu",middleName:null,surname:"Ding",fullName:"guifu Ding",slug:"guifu-ding",email:"gfding@sjtu.edu.cn",position:null,institution:{name:"Shanghai Jiao Tong University",institutionURL:null,country:{name:"China"}}},{id:"244624",title:"Associate Prof.",name:"Congchun",middleName:null,surname:"Zhang",fullName:"Congchun Zhang",slug:"congchun-zhang",email:"zhcc@sjtu.edu.cn",position:null,institution:null},{id:"255541",title:"Mr.",name:"Jianze",middleName:null,surname:"Huang",fullName:"Jianze Huang",slug:"jianze-huang",email:"huangjz420@sjtu.edu.cn",position:null,institution:null},{id:"255547",title:"Mr.",name:"Chunsheng",middleName:null,surname:"Yang",fullName:"Chunsheng Yang",slug:"chunsheng-yang",email:"csyang@sjtu.edu.cn",position:null,institution:null}]},book:{id:"7253",title:"Coatings and Thin-Film Technologies",subtitle:null,fullTitle:"Coatings and Thin-Film Technologies",slug:"coatings-and-thin-film-technologies",publishedDate:"January 3rd 2019",bookSignature:"Jaime Andres Perez-Taborda and Alba G. Avila Bernal",coverURL:"https://cdn.intechopen.com/books/images_new/7253.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193020",title:"Dr.",name:"Jaime Andres",middleName:null,surname:"Perez Taborda",slug:"jaime-andres-perez-taborda",fullName:"Jaime Andres Perez Taborda"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"1751",leadTitle:null,title:"From Preconception to Postpartum",subtitle:null,reviewType:"peer-reviewed",abstract:"Obstetrics is evolving rapidly and finds itself today at the forefront of numerous developments. Providing selected updates on contemporary issues of basic research and clinical practice, as well as dealing with preconception, pregnancy, labor and postpartum, the present book guides the reader through the tough and complex decisions in the clinical management. Furthermore, it deepens the scientific understanding in the pathogenetic mechanisms implicated in pregnancy and motivates further research by providing evidence of the current knowledge and future perspectives in this field. Written by an international panel of distinguished authors who have produced stimulating articles, the multidisciplinary readers will find this book a valuable tool in the understanding of the maternal, placental and fetal interactions which are crucial for a successful pregnancy outcome.",isbn:null,printIsbn:"978-953-51-0353-0",pdfIsbn:"978-953-51-6921-5",doi:"10.5772/2187",price:139,priceEur:155,priceUsd:179,slug:"from-preconception-to-postpartum",numberOfPages:328,isOpenForSubmission:!1,hash:"d424b9faf7ae0d3d2ec8bcba61766a4c",bookSignature:"Stavros Sifakis and Nikolaos Vrachnis",publishedDate:"March 23rd 2012",coverURL:"https://cdn.intechopen.com/books/images_new/1751.jpg",keywords:null,numberOfDownloads:60828,numberOfWosCitations:7,numberOfCrossrefCitations:4,numberOfDimensionsCitations:14,numberOfTotalCitations:25,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 1st 2011",dateEndSecondStepPublish:"March 29th 2011",dateEndThirdStepPublish:"August 3rd 2011",dateEndFourthStepPublish:"September 2nd 2011",dateEndFifthStepPublish:"December 31st 2011",remainingDaysToSecondStep:"10 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"33248",title:"Dr.",name:"Stavros",middleName:null,surname:"Sifakis",slug:"stavros-sifakis",fullName:"Stavros Sifakis",profilePictureURL:"https://mts.intechopen.com/storage/users/33248/images/2637_n.jpg",biography:"Dr Sifakis is a consultant in Obstetrics & Gynecology, and a Director of Maternal Fetal Medicine Unit, University Hospital of Heraklion, Crete, Greece. He was trained for three years in Prenatal Diagnosis and Fetal Medicine at the University of Connecticut, CT, USA, and at the Kings’ College Hospital, London, UK. He has published more than 100 research articles in peer-reviewed medical \njournals and has participated with more than 350 presentations in medical congresses. Dr Sifakis is a member of the Board of Hellenic Society in Perinatal Medicine. His research has been awarded several times, and is focused on the aetiopathogenesis of preeclampsia and fetal growth restriction, antenatal diagnosis of rare genetic syndromes, and non-invasive prenatal diagnosis by the use of free fetal DNA and fetal cells in the maternal circulation and the endocervical canal.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],coeditorOne:{id:"120884",title:"Dr.",name:"Nikos",middleName:null,surname:"Vrachnis",slug:"nikos-vrachnis",fullName:"Nikos Vrachnis",profilePictureURL:"https://mts.intechopen.com/storage/users/120884/images/system/120884.jpg",biography:'Nikolaos Vrachnis completed Ob/Gyn training in United Kingdom(UK), 2001. Received postgraduate Certificate in Medical Education, Cardiff University, UK. Completed thesis, "Inflammation and preterm labor", at Athens University Medical School, 2005. Currently works as Lecturer, "Obstetrics-Gynecology and Fetal-Maternal Medicine", at same University. Has 35+ publications in peer-reviewed journals; wrote or edited 8 books and 20+ chapters in books; over 200 presentations at national and international meetings. Is in charge of Advanced Life Support in Obstetrics(ALSO) course, Greece, and member of ALSO(UK) and ALSO(USA) Advisory Faculties. Recently developed a hands-on Advanced Life Support in Gynecology(ALSG) course. President of Hellenic Society of Obstetric and Gynecologic Emergency and member of the board of Hellenic Society of Obstetrics and Gynecology.',institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1068",title:"Menopausal and Geriatric Gynecology",slug:"menopausal-and-geriatric-gynecology"}],chapters:[{id:"33782",title:"Who Selects Obstetrics and Gynecology as a Career and Why, and What Traits Do They Possess?",slug:"who-selects-obstetrics-andgynecology-as-a-career-and-why-and-what-traits-do-they-possess-",totalDownloads:8666,totalCrossrefCites:0,authors:[{id:"89032",title:"Dr.",name:"Bruce",surname:"Newton",slug:"bruce-newton",fullName:"Bruce Newton"}]},{id:"33783",title:"The Effect of Prepregnancy Body Mass Index and Gestational Weight Gain on Birth Weight",slug:"the-effect-of-prepregnancy-body-mass-index-and-gestational-weight-gain-on-birth-weight-",totalDownloads:1811,totalCrossrefCites:0,authors:[{id:"75055",title:"Prof.",name:"Hiroko",surname:"Watanabe",slug:"hiroko-watanabe",fullName:"Hiroko Watanabe"}]},{id:"33784",title:"Maternal Immunity, Pregnancy and Child's Health",slug:"maternal-immunity-pregnancy-and-child-s-health",totalDownloads:2062,totalCrossrefCites:0,authors:[{id:"75205",title:"Dr.",name:"Alexander",surname:"Poletaev",slug:"alexander-poletaev",fullName:"Alexander Poletaev"}]},{id:"33785",title:"Environmental Electromagnetic Field and Female Fertility",slug:"environmental-electromagnetic-field-and-female-fertility",totalDownloads:2359,totalCrossrefCites:0,authors:[{id:"82600",title:"PhD.",name:"Leila",surname:"Roshangar",slug:"leila-roshangar",fullName:"Leila Roshangar"},{id:"82975",title:"Prof.",name:"Jafar",surname:"Soleimani Rad",slug:"jafar-soleimani-rad",fullName:"Jafar Soleimani Rad"}]},{id:"33786",title:"Role of Tumor Marker CA-125 in the Detection of Spontaneous Abortion",slug:"role-of-tumor-marker-ca-125-in-detection-spontaneous-abortion",totalDownloads:2571,totalCrossrefCites:0,authors:[{id:"77656",title:"Dr.",name:"Batool Mutar",surname:"Mahdi",slug:"batool-mutar-mahdi",fullName:"Batool Mutar Mahdi"}]},{id:"33787",title:"Medical and Surgical Induced Abortion",slug:"medical-and-surgical-induced-abortion",totalDownloads:2352,totalCrossrefCites:0,authors:[{id:"78136",title:"Dr.",name:"Dennis",surname:"Chambers",slug:"dennis-chambers",fullName:"Dennis Chambers"}]},{id:"33788",title:"Post Abortion Care Services in Nigeria",slug:"post-abortion-care-services",totalDownloads:2995,totalCrossrefCites:0,authors:[{id:"80548",title:"Dr.",name:"Echendu",surname:"Adinma",slug:"echendu-adinma",fullName:"Echendu Adinma"}]},{id:"33789",title:"Renal Function and Urine Production in the Compromised Fetus",slug:"renal-function-and-urine-production-in-the-compromised-fetus",totalDownloads:2951,totalCrossrefCites:1,authors:[{id:"76502",title:"Dr.",name:"Mats",surname:"Fägerquist",slug:"mats-fagerquist",fullName:"Mats Fägerquist"}]},{id:"33790",title:"Recent Insights into the Role of the Insulin-Like Growth Factor Axis in Preeclampsia",slug:"recent-insights-into-the-role-of-the-insulin-like-growth-factor-axis-in-preeclampsia",totalDownloads:1531,totalCrossrefCites:0,authors:[{id:"33248",title:"Dr.",name:"Stavros",surname:"Sifakis",slug:"stavros-sifakis",fullName:"Stavros Sifakis"},{id:"124223",title:"Dr.",name:"Nikolaos",surname:"Vrachnis",slug:"nikolaos-vrachnis",fullName:"Nikolaos Vrachnis"}]},{id:"33791",title:"Blood Parameters in Human Fetuses with Congenital Malformations and Normal Karyotype",slug:"blood-parameters-in-human-fetuses-with-congenital-malformations-and-normal-karyotype",totalDownloads:1175,totalCrossrefCites:0,authors:[{id:"95095",title:"Dr.",name:"Chantal",surname:"Bon",slug:"chantal-bon",fullName:"Chantal Bon"}]},{id:"33792",title:"Placental Angiogenesis and Fetal Growth Restriction",slug:"placental-angiogenesis-and-fetal-growth-restriction",totalDownloads:2402,totalCrossrefCites:1,authors:[{id:"33248",title:"Dr.",name:"Stavros",surname:"Sifakis",slug:"stavros-sifakis",fullName:"Stavros Sifakis"},{id:"124223",title:"Dr.",name:"Nikolaos",surname:"Vrachnis",slug:"nikolaos-vrachnis",fullName:"Nikolaos Vrachnis"}]},{id:"33793",title:"The External Version in Modern Obstetrics",slug:"external-cephalic-version",totalDownloads:2206,totalCrossrefCites:0,authors:[{id:"74956",title:"Dr",name:"Esther",surname:"Fandiño García",slug:"esther-fandino-garcia",fullName:"Esther Fandiño García"},{id:"86840",title:"Dr.",name:"Juan Carlos",surname:"Delgado Herrero",slug:"juan-carlos-delgado-herrero",fullName:"Juan Carlos Delgado Herrero"}]},{id:"33794",title:"Reduced Fetal Movements",slug:"reduced-fetal-movements",totalDownloads:7306,totalCrossrefCites:0,authors:[{id:"74717",title:"Dr.",name:"Keelin",surname:"O'Donoghue",slug:"keelin-o'donoghue",fullName:"Keelin O'Donoghue"},{id:"84012",title:"Dr.",name:"Julia",surname:"Unterscheider",slug:"julia-unterscheider",fullName:"Julia Unterscheider"}]},{id:"33795",title:"Lactate Level in Amniotic Fluid, a New Diagnostic Tool",slug:"lactate-level-in-amniotic-fluid-a-new-diagnostic-tool-in-dysfunctional-labor-",totalDownloads:2416,totalCrossrefCites:1,authors:[{id:"74846",title:"Dr.",name:"Eva",surname:"Wiberg-Itzel",slug:"eva-wiberg-itzel",fullName:"Eva Wiberg-Itzel"}]},{id:"33796",title:"Oxytocin and Myometrial Contractility in Labor",slug:"oxytocin-and-myometrial-contractility-in-labor",totalDownloads:3593,totalCrossrefCites:0,authors:[{id:"33248",title:"Dr.",name:"Stavros",surname:"Sifakis",slug:"stavros-sifakis",fullName:"Stavros Sifakis"},{id:"124223",title:"Dr.",name:"Nikolaos",surname:"Vrachnis",slug:"nikolaos-vrachnis",fullName:"Nikolaos Vrachnis"},{id:"165631",title:"Dr.",name:"Zoe",surname:"Iliodromiti",slug:"zoe-iliodromiti",fullName:"Zoe Iliodromiti"}]},{id:"33797",title:"Operative Vaginal Deliveries in Contemporary Obstetric Practice",slug:"operative-vaginal-deliveries-in-contemporary-obstetric-practise",totalDownloads:8529,totalCrossrefCites:0,authors:[{id:"74801",title:"Dr.",name:"Sunday",surname:"Adaji",slug:"sunday-adaji",fullName:"Sunday Adaji"},{id:"86877",title:"Dr.",name:"Charles",surname:"Ameh",slug:"charles-ameh",fullName:"Charles Ameh"}]},{id:"33798",title:"Umbilical Cord Blood Changes in Neonates from a Preeclamptic Pregnancy",slug:"umbilical-cord-blood-changes-in-neonates-from-a-preeclamptic-pregnancy",totalDownloads:3316,totalCrossrefCites:1,authors:[{id:"56250",title:"Prof.",name:"Luís",surname:"Belo",slug:"luis-belo",fullName:"Luís Belo"},{id:"56251",title:"Prof.",name:"Alice",surname:"Santos Silva",slug:"alice-santos-silva",fullName:"Alice Santos Silva"},{id:"88178",title:"Prof.",name:"Cristina",surname:"Catarino",slug:"cristina-catarino",fullName:"Cristina Catarino"},{id:"93871",title:"Prof.",name:"Irene",surname:"Rebelo",slug:"irene-rebelo",fullName:"Irene Rebelo"},{id:"93877",title:"Prof.",name:"Alexandre",surname:"Quintanilha",slug:"alexandre-quintanilha",fullName:"Alexandre Quintanilha"}]},{id:"33799",title:"Bioethics in Obstetrics",slug:"bioethics-in-obstetrics",totalDownloads:2594,totalCrossrefCites:0,authors:[{id:"75245",title:"Prof.",name:"Joseph",surname:"Adinma",slug:"joseph-adinma",fullName:"Joseph Adinma"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"63176",firstName:"Anja",lastName:"Filipovic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/63176/images/4737_n.jpg",email:"anja@intechopen.com",biography:"As a Commissioning Editor at IntechOpen, I work closely with our collaborators in the selection of book topics for the yearly publishing plan and in preparing new book catalogues for each season. This requires extensive analysis of developing trends in scientific research in order to offer our readers relevant content. Creating the book catalogue is also based on keeping track of the most read, downloaded and highly cited chapters and books and relaunching similar topics. I am also responsible for consulting with our Scientific Advisors on which book topics to add to our catalogue and sending possible book proposal topics to them for evaluation. Once the catalogue is complete, I contact leading researchers in their respective fields and ask them to become possible Academic Editors for each book project. Once an editor is appointed, I prepare all necessary information required for them to begin their work, as well as guide them through the editorship process. I also assist editors in inviting suitable authors to contribute to a specific book project and each year, I identify and invite exceptional editors to join IntechOpen as Scientific Advisors. I am responsible for developing and maintaining strong relationships with all collaborators to ensure an effective and efficient publishing process and support other departments in developing and maintaining such relationships."}},relatedBooks:[{type:"book",id:"5984",title:"Menopause",subtitle:"A Multidisciplinary Look at",isOpenForSubmission:!1,hash:"8608e36ebed0f1f01881486213b5f7df",slug:"a-multidisciplinary-look-at-menopause",bookSignature:"Juan Francisco Rodriguez-Landa and Jonathan Cueto-Escobedo",coverURL:"https://cdn.intechopen.com/books/images_new/5984.jpg",editedByType:"Edited by",editors:[{id:"45702",title:"Dr.",name:"Juan Francisco",surname:"Rodríguez-Landa",slug:"juan-francisco-rodriguez-landa",fullName:"Juan Francisco Rodríguez-Landa"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8584",title:"Molecular Bases of Endometriosis",subtitle:"The Integration Between Research and Clinical Practice",isOpenForSubmission:!1,hash:"9cc793fe99169a1dc09ad735d5d0955f",slug:"molecular-bases-of-endometriosis-the-integration-between-research-and-clinical-practice",bookSignature:"Giovana Aparecida Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/8584.jpg",editedByType:"Edited by",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"49510",title:"Designing Perovskite Oxides for Solid Oxide Fuel Cells",doi:"10.5772/61304",slug:"designing-perovskite-oxides-for-solid-oxide-fuel-cells",body:'The development of new energy technologies has become important with the present situation of increasing energy demand, rising energy prices, and reinforcement of countermeasures for global warming and its detrimental climatological, ecological, and sociological effects [1]. The supplies of fossil fuels are constantly decreasing and some believe that we have reached the peak for oil production. A reappearing problem in the energy field is the conversion from available to usable form. This concerns the conversion of chemical energy in the form of fossil resources and derivatives, such as hydrogen and alcohols, into electrical energy. It has become increasingly important to reduce the losses associated with the applied conversion techniques partly due to industrialization and technological progress. Traditional conversion to electrical energy is by gas turbine, steam turbine, or reciprocating engine driving a generator, where the Carnot cycle sets a limit to the efficiency [2]. A fuel cell provides an alternative, whereby electrical energy can be made available with small losses, and no Carnot limit [3]. The effluents are in principle water, heat and CO2 if the fuel is clean.
The energy situation has caused a push for sustainable energy technologies. Here, fuel cells play an important role in the renewable energy sector because of their highly efficient energy conversion and their especially high reliability. During the last decades, fuel cells have attracted much attention because of their potential for producing electricity more efficiently than conventional power generation like heat engines, which normally are limited by the Carnot cycle. The discovery of the fuel cell is ascribed to Sir William Grove (1839), demonstrating the reversibility of electrolytic water separation [4]. In 1899, Nernst contributed by demonstrating that certain oxides attained remarkably high electrical conductivity by doping with other oxides [5]. In the late twentieth century, the development accelerated and the interest in fuel cell technology increased. Today, there are five different types of fuel cells, all named after their electrolyte materials:
Alkaline fuel cells (AFC)
Polymer exchange membrane fuel cells (PEMFC)
Phosphoric acid fuel cells (PAFC)
Molten carbonate fuel cells (MCFC)
Solid oxide fuel cells (SOFC)
Depending on the electrolyte, each fuel cell has certain characteristics such as operation temperature, electric efficiency, and demands for fuel composition (Table 1).
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
Electrolyte | \n\t\t\tKOH | \n\t\t\tPolymer | \n\t\t\tH3PO4\n\t\t\t | \n\t\t\tLi2CO3+K2 CO3\n\t\t\t | \n\t\t\tZrO2+Y2O3\n\t\t\t | \n\t\t
Charge carrier | \n\t\t\tOH–\n\t\t\t | \n\t\t\tH+\n\t\t\t | \n\t\t\tH+\n\t\t\t | \n\t\t\tCO3\n\t\t\t\t2–\n\t\t\t | \n\t\t\tO2–\n\t\t\t | \n\t\t
Fuel | \n\t\t\tPure H2\n\t\t\t | \n\t\t\tPure H2\n\t\t\t | \n\t\t\tCo-free H2\n\t\t\t | \n\t\t\tH2, CO, CH4\n\t\t\t | \n\t\t\tH2, CO, CH4, NH3\n\t\t\t | \n\t\t
\n\t\t\t\t | \n\t\t\t65%–220 | \n\t\t\t60%–130 | \n\t\t\t150%–220 | \n\t\t\t650 | \n\t\t\t700%–1000 | \n\t\t
Electrical efficiency | \n\t\t\t45%–60% | \n\t\t\t40%–60% | \n\t\t\t35%–40% | \n\t\t\t45%–60% | \n\t\t\t45%–60% | \n\t\t
Most important characteristics for different types of fuel cells
Low-temperature fuel cells (AFC, SPFC, and PAFC) have potential for the propulsion of cars, where a short heating time is needed and the efficiency has to be compared with about 20% for a combustion engine, whereas high-temperature fuel cells (MCFC and SOFC) are suitable for continuous power and heat production, where the cell temperature can be maintained. The high-temperature fuel cells have higher efficiency and are more tolerant to the choice of fuel compared to the low-temperature fuel cells [3].
Solid oxide fuel cells (SOFC) are electrochemical devices which convert chemical energy directly into electrical energy with high efficiency and low environmental impact and are expected to become the emerging technology for stationary power production [6].
SOFCs are considered by many researchers to be the most suitable for generating electricity from hydrocarbons because of their simplicity, efficiency, and ability to tolerate some degree of impurities. There are many advantages of SOFC with respect to other fuel cells. Some of the main advantages are [7]:
The highest efficiencies of all fuel cells (50–60%)
A potential long-life expectancy of more than 40,000–80,000 h
Constructed from readily obtainable ceramic materials
Few problems with electrolyte management
High-grade waste heat is produced, for combined heat and power (CHP) applications increasing overall efficiencies to over 80%, and
Internal reforming of hydrocarbon fuels is possible
However, there are some drawbacks related to the choice of materials in relation to costs. There are roughly two design types, tubular and flat plate. For the tubular cell, the material problems are less, but fabrication costs are high, whereas for the flat plate design, fabrication costs are less but more materials problems arise [8].
The operating principle of the solid oxide fuel cells is illustrated in Figure 1.
Sketch of solid oxide fuel cell operated on hydrogen and air.
SOFCs consist of three layers of functional materials: the anode, the electrolyte and the cathode. The anode is where the oxidation reaction takes place, and the cathode is where the reduction takes place. The cathode is fed with air or oxygen while the anode is fed with fuel gas. At the cathode, oxygen molecules are reduced to oxygen ions (½ O2 (g) + 2 e–\n\t\t\t\t
To limit cathode overpotential, the traditional SOFC with yttria-stabilized zirconia (YSZ) electrolyte and strontium-doped lanthanum manganite (LSM) cathodes operate at relatively high temperatures (800°C–1000°C). These high temperatures encourage cell degradation—increasing cell, stack, and system maintenance. In addition, even higher temperatures are required for fabrication, encouraging electrode–electrolyte reactions, often forming undesirable, insulating secondary phases and consequently increasing cell resistance. Lowering the operating and fabrication temperature to 400°C–800°C could reduce both cell degradation and manufacturing costs. Cells which operate in this temperature range are known as intermediate temperature SOFCs (IT-SOFC). The advancement of this technology, limited by the high temperatures required, can be overcome by reducing operating temperatures, thus increasing theoretical efficiency. In order to operate efficiently at these reduced temperatures and to develop the next generation of hydrogen-related energy devices, new materials are required and the utilized processing routes must be optimized [6,9].
Among the new generation of materials, those with ABO3-type perovskite structures stand out due to their great versatility. Through the correct choice of A and B site cations and the introduction of dopants, it is possible to obtain a large variety of materials with a wide range of properties and applications. This chapter will cover a selection of key materials developed for use in SOFC devices, their advantages and disadvantages and the optimization strategies published so far.
The general formula unit of the perovskite is ABO3, where A is a larger cation with a coordination number of 12 and B is a smaller cation with a coordination number of 6 (Figure 2). The large A cations can be rare earth, alkaline earth, alkali, and others [10] whereas the smaller B site accommodates many transition metals. These elements are typically the source of electronic conductivity. Cations of a rather wide range of ionic radii and valence are able to enter one or another site in the perovskite structure, exhibiting versatile physical and chemical properties and, thus, high concentrations of oxide vacancies and high ionic conductivity may be achieved [11]. This ability to hold a large content of oxygen vacancies makes them good candidates as electrodes in SOFC applications.
Atomic structure and oxygen transport in mixed conducting perovskites. On the left, the positions of the ions in a cubic structure. On the right, corner-sharing BO6 octahedra and oxygen vacancy migration path.
The B cations are located in the corners of the cube and the A cation occupies the center. The oxygen is placed at the centers of the twelve cube edges, giving corner-shared strings of BO6 octahedra. The A cation has the same size as the oxide ion, while the B cation is smaller. Depending on the type of cations, it is possible to create oxygen vacancies in the structure. These oxygen vacancies move along the structure giving rise to ionic conduction (Figure 2).
The composition and the microstructure of electrode materials greatly influence the performance of SOFCs. The high temperature and the reducing or oxidizing atmospheres limit the choice of these materials.
One of the major research efforts in SOFC technology is directed towards decreasing the cell operating temperature. The best performance of the electrolyte, anode, and cathode materials typically is seen at an operating temperature above 800°C. This makes the use of expensive alloys as interconnectors and current collectors necessary. Decreasing the operating temperature would make it possible to use soft steel alloys with a remarkable decrease of the initial cost of the device. It is necessary, however, to develop new materials which exhibit good performance at lower temperatures in terms of conductivity, and chemical and mechanical compatibility. The widely used materials also need to be optimized in order to minimize technical problems at elevated temperatures. These problems are often associated with a mismatch between the thermal expansion coefficients of the electrolyte and cathode or as a consequence of oxygen loss from the cathode material.
The role of the cathode as the active site for the electrochemical reduction of oxygen is an important parameter to take into account in the material’s design. SOFCs operate at high temperatures for long periods of time and, therefore, some requirements must be fulfilled [12]: (i) high electronic conductivity (σ > 100 S cm–1); (ii) a thermal expansion coefficient (TEC) match with other SOFC components; (iii) chemical compatibility with the electrolyte and interconnect materials; (iv) adequate porosity to allow mass transport of oxygen; (v) high thermal stability; (vi) high catalytic activity for the oxygen reduction reaction (ORR); and (vii) low cost.
The cathodic reaction is quite complex and compromises a number of single steps such as diffusion, adsorption, dissociation, ionization, and finally, incorporation of oxygen into the electrolyte [13]. Oxygen molecules adsorb on the surface where they form partially reduced ionic/atomic species. These electroactive species must be transported along surfaces, interfaces, or inside the bulk of the electrode material to the electrolyte, where they are fully incorporated as O2–.
The cathode materials can be classified into two groups: mainly, electronic conductors (with poor ionic conduction) and mixed ionic-electronic conductors (MIECs). Depending on the type of material, the conduction mechanism in the cathode will be different (Figure 3). In a poor ionic conductor, adsorption, dissociation, and diffusion of oxygen between the gas phase, electrode, and electrolyte [14] occurs through the triple phase boundary (TPB). In the MIECs, the conduction mechanism also occurs through the double phase boundary (DPB) [15,16]. The mixed conducting nature of the oxide ensures that electrochemical reactions occur at the MIEC/gas double phase boundary (DPB).
Schematic representation of conduction mechanisms (DPB: double phase boundary; TPB: triple phase boundary).
The deposition technique is also an important parameter which influences the electrochemical behaviour. Conduction in porous electrodes occurs through the three-phase boundary (TPB), whereas in MIECs, this also occurs through the DPB. In the case of dense electrodes, there is no direct contact between the cathode, electrolyte, and gas (hence, no TPB conduction exists). In this case, the oxygen reduction reaction occurs anywhere on the cathode surface, forming oxide anions which diffuse into the bulk of the electrode material towards the electrolyte. The material must present mixed ionic and electronic conduction [17].
La1-
Several authors have investigated other rare earths in the lanthanide position such as Pr, Sm, or Nd in order to improve the performance of manganites and avoid problems associated with the formation of the pyrochlore-insulating phases at the LSM/YSZ interface [23]. By substituting La with Sm, new materials with lower energetic barriers for adsorption and diffusion of oxygen species have been obtained [24]. In addition, they present excellent compatibility with YSZ and electronic conductivity well above that required in a SOFC (100 S/cm) [25]. The most promising electrode materials are Pr0.7Sr0.3MnO3-
While looking for alternative materials to manganites, lanthanum cobaltites doped with bivalent metals such as Ca or Sr emerged [30]. These materials exhibit high conductivity values when 30% or 40% of Ca or Sr are added, respectively. In addition, the substitution of La by other lanthanides such as Pr and Sm has also lead to promising results. Despite the good results that these cobaltites exhibit, other drawbacks such as their high TECs and the appearance of secondary phases, limit their application.
In order to use the beneficial properties of these cobaltites, these materials are doped with Fe. Although, the addition of Fe promotes the decrease of the conductivity of the orthoferrites, lower TEC values are also achieved. Among these cobalto-ferrites, the Ba0.5Sr0.5Co0.8Fe0.2O3 material stands out for SOFC cathode application. Shao et al. reported excellent performance at intermediate temperatures, proving that the orthoferrites are an interesting alternative for IT-SOFCs [30]. At the same time, the use of La1-
Rare earth orthoferrites with perovskite-type structure are interesting materials for many electronic applications because of their mixed conductivity [36,37]. A site–doped rare earth orthoferrite compounds have been studied as candidates to replace manganites and cobaltite cathodes due to its high catalytic activity and mixed ionic and electronic conductivities at reduced temperature (
While a large number of studies concerning cathode materials report the presence of secondary phases, they are often left unidentified [46] and are typically considered undesirable and associated with insulating phases that give rise to low conductivity values and poor performance [47]. Conversely, actual research in SOFC cathodes is focused on the development of composite materials, as the inherent requirements are so wide-ranging that no single material is capable of fulfilling every aspect [48]. The creation of composite cathodes is a good way to enhance the cathodic performance. They are composed of a solid electrolyte and an electronic conducting electrocatalytic material as in the La0.6Ca0.4Fe0.8Ni0.2O3-
The development of double perovskite materials such as GdBaCo2O5+
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t||||
\n\t\t\t\t \n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t | ||
La1-xSr | \n\t\t\t11.6××10–6\n\t\t\t | \n\t\t\t0.18 | \n\t\t\t750 | \n\t\t\t180 | \n\t\t\t800 | \n\t\t\t— | \n\t\t\t3 × 10–9\n\t\t\t | \n\t\t\t800 | \n\t\t\t[57,58] | \n\t\t
La1-xSr | \n\t\t\t12.1 × 10–6\n\t\t\t | \n\t\t\t0.1 | \n\t\t\t800 | \n\t\t\t125 | \n\t\t\t800 | \n\t\t\t1 × 10–5\n\t\t\t | \n\t\t\t6 × 10–7\n\t\t\t | \n\t\t\t1000 | \n\t\t\t[59–61] | \n\t\t
La1-xSr | \n\t\t\t15.4 × 10–6\n\t\t\t | \n\t\t\t0.34 | \n\t\t\t750 | \n\t\t\t404 | \n\t\t\t550 | \n\t\t\t6 × 10–6\n\t\t\t | \n\t\t\t3 × 10–5\n\t\t\t | \n\t\t\t626 | \n\t\t\t[62-65] | \n\t\t
La1-xSr | \n\t\t\t15.6 × 10–6\n\t\t\t | \n\t\t\t0.16 | \n\t\t\t700 | \n\t\t\t435 | \n\t\t\t800 | \n\t\t\t— | \n\t\t\t— | \n\t\t\t— | \n\t\t\t[66,67] | \n\t\t
La0.6Ca0.4Fe0.8Ni0.2O3\n\t\t\t | \n\t\t\t11 × 10–6\n\t\t\t | \n\t\t\t0.10 | \n\t\t\t800 | \n\t\t\t260 | \n\t\t\t600 | \n\t\t\t— | \n\t\t\t— | \n\t\t\t— | \n\t\t\t[6] | \n\t\t
La0.6Sr0.4Fe0.8Cu0.2O3\n\t\t\t | \n\t\t\t14.6 × 10–6\n\t\t\t | \n\t\t\t0.138 | \n\t\t\t750 | \n\t\t\t135 | \n\t\t\t275 | \n\t\t\t--- | \n\t\t\t--- | \n\t\t\t--- | \n\t\t\t[68] | \n\t\t
Pr0.6Sr0.4Co0.8Fe0.2O3\n\t\t\t | \n\t\t\t19.6 × 10–6\n\t\t\t | \n\t\t\t0.046 | \n\t\t\t800 | \n\t\t\t1040 | \n\t\t\t300 | \n\t\t\t--- | \n\t\t\t9.4 × 10–5\n\t\t\t | \n\t\t\t600 | \n\t\t\t[69] | \n\t\t
LaNi0.6Fe0.4O3\n\t\t\t | \n\t\t\t11.4 × 10–6\n\t\t\t | \n\t\t\t0.018 | \n\t\t\t800 | \n\t\t\t600 | \n\t\t\t600 | \n\t\t\t--- | \n\t\t\t2 × 10–7\n\t\t\t | \n\t\t\t950 | \n\t\t\t[70,71] | \n\t\t
Pr1-xSr | \n\t\t\t14 × 10–6\n\t\t\t | \n\t\t\t0.454 | \n\t\t\t600 | \n\t\t\t2190 | \n\t\t\t600 | \n\t\t\t--- | \n\t\t\t--- | \n\t\t\t--- | \n\t\t\t[72,73] | \n\t\t
Sm0.5Sr0.5CoO3−δ\n\t\t\t | \n\t\t\t22.8 × 10–6\n\t\t\t | \n\t\t\t0.20 | \n\t\t\t600 | \n\t\t\t1000 | \n\t\t\t850 | \n\t\t\t6 × 10–5\n\t\t\t | \n\t\t\t8.6 × 10–7\n\t\t\t | \n\t\t\t890 | \n\t\t\t[74,75] | \n\t\t
Ba0.5Sr0.5Zn0.2Fe0.8O3−δ\n\t\t\t | \n\t\t\t16.5 × 10–6\n\t\t\t | \n\t\t\t0.48 | \n\t\t\t650 | \n\t\t\t9.4 | \n\t\t\t590 | \n\t\t\t--- | \n\t\t\t--- | \n\t\t\t--- | \n\t\t\t[76] | \n\t\t
Ba0.5Sr0.5Co0.8Fe0.2O3\n\t\t\t | \n\t\t\t19.9 × 10–6\n\t\t\t | \n\t\t\t0.15 | \n\t\t\t600 | \n\t\t\t30 | \n\t\t\t600 | \n\t\t\t--- | \n\t\t\t7.3 × 10–5\n\t\t\t | \n\t\t\t--- | \n\t\t\t[77,78] | \n\t\t
PrBaCo2O5+δ\n\t\t\t | \n\t\t\t20 × 10–6\n\t\t\t | \n\t\t\t0.11 | \n\t\t\t600 | \n\t\t\t2000 | \n\t\t\t150 | \n\t\t\t1 × 10–3\n\t\t\t | \n\t\t\t1 × 10–5\n\t\t\t | \n\t\t\t350 | \n\t\t\t[56,79,80] | \n\t\t
PrBaCoFeO5+δ\n\t\t\t | \n\t\t\t21 × 10–6\n\t\t\t | \n\t\t\t0.049 | \n\t\t\t800 | \n\t\t\t321 | \n\t\t\t350 | \n\t\t\t--- | \n\t\t\t--- | \n\t\t\t--- | \n\t\t\t[81] | \n\t\t
NdBaCoFeO5+δ\n\t\t\t | \n\t\t\t19.5 × 10–6\n\t\t\t | \n\t\t\t0.062 | \n\t\t\t800 | \n\t\t\t172 | \n\t\t\t350 | \n\t\t\t--- | \n\t\t\t--- | \n\t\t\t--- | \n\t\t\t[81] | \n\t\t
GdBaCo2O5+δ\n\t\t\t | \n\t\t\t20.1 × 10–6\n\t\t\t | \n\t\t\t0.15 | \n\t\t\t750 | \n\t\t\t512 | \n\t\t\t500 | \n\t\t\t2 × 10–6\n\t\t\t | \n\t\t\t3 × 10–7\n\t\t\t | \n\t\t\t350 | \n\t\t\t[82,83] | \n\t\t
SmBaCo2O5+δ\n\t\t\t | \n\t\t\t16 × 10–6\n\t\t\t | \n\t\t\t0.098 | \n\t\t\t750 | \n\t\t\t815 | \n\t\t\t500 | \n\t\t\t--- | \n\t\t\t--- | \n\t\t\t--- | \n\t\t\t[84] | \n\t\t
SmBa0.5Sr0.5Cu2O5+δ\n\t\t\t | \n\t\t\t14.1 × 10–6\n\t\t\t | \n\t\t\t0.25 | \n\t\t\t650 | \n\t\t\t277.7 | \n\t\t\t485 | \n\t\t\t--- | \n\t\t\t--- | \n\t\t\t--- | \n\t\t\t[85] | \n\t\t
YBaCo2O5+δ\n\t\t\t | \n\t\t\t16.3 × 10–6\n\t\t\t | \n\t\t\t0.11 | \n\t\t\t700 | \n\t\t\t315 | \n\t\t\t325 | \n\t\t\t--- | \n\t\t\t--- | \n\t\t\t--- | \n\t\t\t[86] | \n\t\t
The main properties of SOFC cathodes with both single and double perovskite structures
In recent years, advancements in cathode material properties have been made where a variety of perovskite oxides with a wide range of properties have been investigated. There are still, however, many chemistries to investigate which may yield superior performance in the future.
The requirements for a SOFC anode are quite similar to those for cathodes (changing the oxidizing atmosphere by a reducing environment), including: (i) proper electronic conductivity; (ii) thermomechanical and chemical compatibility with the electrolyte and interconnect materials; (iii) adequate porosity to allow gas transport to the reaction sites; and (iv) low cost. High ionic and electronic conductivity over a wide pO2 range and high surface oxygen exchange kinetics and good catalytic properties for the anode reactions are also desirable properties for a good anode material. Nickel-YSZ cermet has been widely used in the SOFC anode. This material fulfills most requirements: Ni exhibits good catalytic activity for the dissociation of hydrogen while remaining stable at operating conditions and YSZ provides structural support for the Ni particles and inhibits their coarsening while matching the thermal expansion properties of the rest of the cell components [87]. Areas where this anode composition is lacking, however, include poor redox stability, low sulphur and carbon deposition tolerance when hydrocarbon fuels are used, and the tendency for nickel to agglomerate after prolonged operation [88]. In the search for alternative anode materials that are capable of withstanding sulphur contamination and carbon deposition, oxides with perovskite structure have drawn considerable attention [87]. Several authors have studied anode materials based on the perovskite structure as very promising alternatives [89,90]. Among the numerous materials with perovskite structure, SrTiO3-type titanates have received a great deal of attention due to their high stability under reducing atmospheres and high temperatures [91]. This material, however, suffers from poor electronic conductivity, but this can be overcome through the introduction of appropriate dopants in the structure [92]. Marina et al. studied the effect of La doping in SrTiO3 with a clear effect seen from the substitution of the Sr and the oxygen partial pressure on the total electrical conductivity with values as high as 500 S/cm at 500°C for the La0.3Sr0.7TiO3 phase [93]. Furthermore, doping with Sr in the A site and Nb in the B site, it was possible to increase the conductivity to 10 S/cm; however, these materials exhibited a poor ionic conductivity [94]. Ti has also been substituted by other cations such as Al, Fe, Ga, Mg, Mn, or Sc, affecting significant changes on the redox properties of the material and conductivities [95]. By adding multivalent cations such as Mn or Fe, reduction or oxidation occurs in these cations in preference to or together with Ti, leading to a general decrease in the presence of Ti (III), resulting in a decrease in conductivity [96]. The effect of Co has also been analyzed, observing that after reduction with H2, the segregation of Co nanoparticles occurs on the anode surface, which favors the oxidation of the fuel, thus reducing the resistance under anodic polarization [97]. To improve the behaviour of titanates, various dopants have been introduced on the A site (Y, La, Ce) [98,99]. The introduction of Ce3+ leads to decomposition into a variety of phases due to its ready oxidation in air. Some Ce-rich phases migrate to the grain boundaries, which result in an increase in the catalytic properties of up to an order of magnitude [100]. It is particularly interesting to note the results obtained by Morales-Ruiz et al., where (La,Sr)(Ti,M)O3 (M = Ga, Mn) anodes exhibited comparable performance to those of conventional Ni-YSZ anodes [101]. Recently, AMoO3 perovskite types (A = Ca, Sr, and Ba), containing Mo4+ ions have received interest for their potential use as anodes [102]. While these materials have high electrical conductivities (104 S/cm) they also present problems associated with the diffusion of oxide ions [102]. This limitation can be overcome by doping with other metals such as Fe or Cr on the Mo site [103,104]. Co is another suitable dopant which also creates oxygen vacancies, supplying sufficient ionic transport making a material with excellent catalytic properties for the oxidation of hydrogen [105]. Another alternative is to create composites with materials which have high ionic conductivity [106]. In this regard, the most commonly used materials are Y0.08Zr0.92O2 (YSZ), La0.8Sr0.2Ga0.8Mg0.2O3 (LSGM), and Gd0.1Ce0.9O2 (GDC), which have been traditionally used as electrolytes, facilitating greater thermal, mechanical, and chemical compatibility with the anode composite. From these systems, a new material with the general formula Sr2Fe1.5Mo0.5O6 (SFMO) and perovskite-type structure has been developed, which features suitable mixed ionic-electronic conductivity and interesting catalytic activity [107]. It exhibits great stability when H2, fuel or natural gas is used and high tolerance to sulfides [108]. Recently, Sutirakun et al. developed a theoretical model for analyzing the electrochemical oxidation of H2 on the surface of this material [109]. One strategy for optimizing the material is to increase either the Mo content or add a small amount of active transition metal such as Ni in order to reduce the energy required for the formation of vacancies on the surface of SFMO. The other family of materials which has been widely studied are the chromites (LaCrO3). These materials initially developed as interconnectors for SOFCs, which will be discussed later, because of their high stability in both oxidizing and reducing atmospheres and low tendency to accumulate carbon [110]. Their low catalytic activity, however, makes their use with some fuels such as methane impossible. To solve this problem, the effect of different dopants on the properties of this material (Ca and Sr on the A site and Mg, Mn, Fe, Co, and Ni in the B site) has been studied [111]. (La, Sr) (Cr, Fe)O3 is the best candidate due to its high redox stability, high conductivity, and electrochemical activity [111]. In addition, this material works well as a catalyst for methane [112] and has a thermal expansion coefficient very similar to YSZ and LSGM [113]. Fowler et al. have also studied these materials, finding that the La0.6Sr0.4Cr0.4Fe0.6O3-
Electrolyte ceramic materials must meet the following requirements: high ionic conductivity and low electronic conductivity; the charge carrier must either be from the oxidizer (O2) or fuel (H2), i.e. O2– or protons [119]. To date, SOFC electrolytes are, in most commercial cases, 8 mol% yttria stabilized zirconia (8-YSZ) [120]. This material belongs to the group of fluorite-type solid solutions and up to now is the O2– ion conductor most used as electrolyte material for SOFC due to its high ionic conductivity and thermomechanical stability. Doping ZrO2 with Y2O3 has two main functions. First, to stabilize the cubic, fluorite phase, otherwise only stable at elevated temperatures, and second, to compensate the insertion of the trivalent Y3+ ions by oxygen vacancies in the zirconia lattice, giving rise to an enhancement of the oxygen ion conductivity. Generally, yttria-doped zirconia with 8 mol% Y2O3 exhibit an ionic conductivity higher than 0.1 S/cm at 1000°C and an electrical conductivity lower than 10–4 S/cm [121].
An important aspect to be considered is the chemical stability of the candidate materials at cell operation conditions, presenting high ionic conductivity (>0.1 S/cm) at intermediate temperatures and thermal expansion coefficients similar to the components of the cell [119]. The decrease in operating temperature can lead to an increase in chemical stability and cell lifetime, as well as a reduction in manufacturing costs; however, in the case of YSZ, cell performance decreases at lower temperatures due to the thermally activated ionic conductivity [122].
In order to obtain materials with improved properties at temperatures below 800°C, two families with perovskite type structure: gallates and cerates have been developed [123]. Most studies focus on Sr-doped LaGaO3, but other dopants such as Ba have also been investigated [124]. Phase segregation occurs when Ba is used due to its large size compared to Sr which forms a mixture of LaBaGa3O7 and LaGaO3 resulting in poor conductivities [125]. The ionic conductivity of this material can be increased by introducing Mg in the perovskite B site due to the introduction of compensating defects in the structure [126,127]. It has also been shown that the presence of a stoichiometry deficient in Ga may result in an increase in the concentration of oxygen vacancies [128]. In fact, this material is stable in CO-rich atmospheres, which allows its use as an electrolyte in direct coal solid oxide fuel cells (DC-SOFCs) [129]. Another strategy to increase the ionic conductivity of the material is through the production of composites with doped ceria electrolytes [130]. Through this method, it has been possible to optimize conduction through the grain boundaries, resulting in up to 10 times higher conductivity than ceria electrolytes at 500°C. In summary, the cells employing (La,Sr)(Ga,Mg)O3-
The other family of materials with perovskite structures is based on BaZrO3 and BaCeO3, which traditionally have been developed as proton-conducting oxides, especially the cerates [133]. The production method, the temperatures employed in the process and the type and concentration of the dopant will affect proton conduction in the material. The cerates allow the introduction of precious metals such as Pd, which facilitates oxygen mobility, although the best results were obtained by using metal nanoparticles and by decorating the surface of the perovskite which acts as active catalysts [134]. Other dopants, both divalent and trivalent (Y, Yb, Gd, Sm, Nd, and La) have been employed [135–137]. This makes it possible to design materials resistant to reducing atmospheres with high conductivity and thermal and chemical stability in IT-SOFC operating conditions, even at temperatures as low as 500°C.
SOFC interconnect material requirements are as follows: (i) electronic conductivity > 100 S/cm; (ii) ionic transport number < 0.01 to avoid chemical shortcut permeation; (iii) gas tight; (iv) tolerate both reducing (H2) and oxidizing (air/O2) atmospheres; (v) be compatible with anode and cathode electrode materials (TEC and chemistry); and (vi) mechanical strength. LaCrO3 chromites are the most widely used SOFC interconnects and, doped with other elements, their properties are shown to be improved [138]. The dopants most widely employed in the A site of the perovskite are Sr, Mg, and Ca, with dissolution limits of 50% [139], 15% [140], and 50% [141], respectively. Furthermore, the B site is also doped with Co or Fe, in order to limit the Cr content as much as possible due to its volatility [142]. Doped lanthanum chromites seem ideal materials for use as interconnects as they are highly stable in both oxidizing and reducing atmospheres and, at SOFC operating temperatures, do not react with the other cell components. Regarding thermal compatibility, through appropriate doping, it is possible to tailor the thermal expansion coefficient to that of the other components of the cell. LaCrO3 is a p-type conductor that, upon divalent cation substitution on the La site, is seen to charge compensate by a valence change in the Cr (Cr3+–Cr4+), accompanied by an increase in the electronic conductivity of the material. The main problem associated with these compounds is their sinterability, as at high temperatures and under high oxygen pressure, volatilization of chromium oxide can occur. To avoid this, various strategies such as more reactive synthesis methods at lower temperatures, the introduction of cationic vacancies, and new fabrication techniques (including microwave sintering, freeze drying with EDTA, and more) have been analyzed [143].
Nowadays, the research in solid oxide fuel cells (SOFCs) is focused on lowering the operating temperature below 800°C in order to overcome problems such as the ageing of the materials. Concurrently, lowering the operating temperature has the detrimental consequences of decreasing the rate of surface reactions and bulk diffusion in the cathode, giving rise to a worsening of the cell performance. Surface exchange and ionic conduction must therefore be improved to maximize the yield of the cathode reaction. This improvement can be carried out not only by new material selection but also by the detailed control of the microstructure [144]. As stated before, a common strategy for improving the electrochemical performance of the electrodes is the fabrication of composite materials, combining ionic and mixed ionic electronic conducting materials, where the ionic conductor is homogeneously distributed [49]. Using composites, the ionic conductivity across the electrode will be enhanced and, simultaneously, a higher thermomechanical compatibility with the electrolyte can be achieved. The catalytic activity of the material is associated with its microstructure, so if the latter is improved, the active surface area will be increased, and a higher electrochemical durability will be obtained [145]. A significant number of studies have also been conducted to increase active surface area via microstructural control: the use of organic materials as pore formers, template materials such as colloidal crystals, meshes, foams or microfibers, glassy carbon microspheres, or membrane-based templates [146]. These methods look for higher catalytic activities for electrode reactions and lower annealing temperatures due to the numerous active sites and large surface areas. The same goal can be achieved using a new tool that has been developed during the last two decades: nanotechnology [147].
Recently, nanotechnology has been shown to overturn many established theories in a wide range of scientific fields, often with highly desirable properties [148]. This has naturally resulted in a great deal of interest from both scientific and industrial communities in the properties of nanostructured materials. This interest arises from new and unexpected behaviour when compared with bulk materials. Enhancements have been reported in electrical and ionic conductivity, chemical reactivity, and other properties. The shift from bulk to nanomaterials is therefore a promising approach in the development of new advanced technologies capable of achieving higher performance and low environmental impact.
Nanomaterials have typically been considered for low-temperature devices, as high temperatures could promote coarsening and therefore loss of the desired properties. This has generally kept nanomaterials from application in solid oxide fuel cells (SOFCs), but constant material advances have led to the decrease in their operational temperature. These so-called intermediate temperature SOFCs (IT-SOFCs), operating at 500°C–850°C, allow new possibilities for the use of nanomaterials.
The high surface area to volume ratio inherent in nanomaterials provides a large active area for SOFC electrodes. Nanomaterials are defined as a range of materials where at least one dimension is below 100 nm, resulting in nanostructures in zero- to three-dimensions. Nanoparticles, 0-D in nature, are well suited for use in composite electrodes, 1-D nanostructures, including nanotubes and nanowires, are thought to operate as promising electrodes, and thin films, 2-D in nature are of interest for application in micro-SOFCs (μ-SOFCs) and interlayers. Although the electrical properties of these nanostructures have been analyzed as independent 0- or 1-dimensional structures, the 2- or 3-dimesional behavior is more frequently reported, as it provides reliable results.
When working with SOFCs, there are two main approaches to develop nanomaterials with improved properties: optimizing existing composites by transforming them to nanocomposites and exploring novel nanostructured materials with high mixed ionic and electronic conductivity. In order to fabricate nanocomposites, wet impregnation/infiltration has been gaining increasing attention in recent years [149]. The infiltration process consists of placing a drop of a metal salt solution, with the chemistry required to give rise to the MIEC electrode material after decomposition, on top of a porous material (typically the ionic conductor) [150].
In parallel, MIEC nanostructured materials have also been developed in order to find further optimization of current state-of-the-art electrode materials. This kind of material features one dimension below 100 nm, giving rise to different structures such as nanoparticles, nanotubes, nanofibers, etc. There are several techniques for obtaining these unique phase nanomaterials with enhanced active areas and lower particle sizes with one of the most commonly used being via templating. Only some examples utilizing this procedure will be shown, although a large number of articles have been published on this topic. However, the excellent review by Ruiz-Morales et al. is recommended for those interested in a more detailed description of this method [146]. There are just a few materials able to act as templates because they must fulfill requirements such as removability, compatibility with the process conditions, wettability with the network forming precursor solution and a narrow particle size distribution to achieve optimal packing. Some of the most interesting templates are the organic polymer spheres of polycarbonate (PC), polystyrene (PS), and polymethyl methacrylate (PMMA) [151]. It has been demonstrated that templated porosity is maintained and highly influences electrochemical behavior, presenting an effective means of enhancing the triple phase boundary (TPB), and thus improving cell performance [152]. Another interesting method to obtain economical nanostructures is based on the use of carbon nanotubes (CNTs) as particle growth controller templates [153,154]. The growth controller material must fulfill the following two characteristics for the desired application: thermal stability and either an ease of removal or sufficient electrical properties to form a composite material. This facile and economical route allows to synthesize perovskite nanoparticles with grain sizes as small as 16 nm and surface areas of 151 m2/g, improving electrochemical performance of the electrode by approximately one order of magnitude [153].
Of all possible nanostructures, nanotube-shaped materials seem to exhibit the most interesting improvements to electrode performance [155]. Although inorganic nanowires have been synthesized by several methods such as hydrothermal reaction [156], vapor transport [157], and electrospinning [158], the complexity of perovskite nanotube synthesis has resulted in the template-assisted synthesises becoming the most employed method. There are currently several membranes with different properties which can be used as templates, with anodized alumina (AAO) membranes being the most common [159]. The most important advantage of these membranes is their thermal stability, which allows the control of the morphology at high temperatures. Their high cost and the problems associated with their anodization do, however, limit their use. These membranes are classified in the literature as hard membranes while there is another group of templates known as soft membranes, which are primarily polymeric in nature. While not costly, they decompose between 200°C and 300°C, which means that the morphology cannot be completely controlled at higher synthesis temperatures. There are several types of polymeric membranes, with polycarbonates being the most commonly used [160]. The use of the pore wetting technique with polycarbonate membranes as templates and subsequent freeze-drying allows the fabrication of highly ordered three-dimensional nanostructures [161]. The electrospinning technique has also been used for the production of MIEC lanthanum strontium cobalt orthoferrite nanofibers [162]. This nanofiber-based cathode architecture is highly stable at intermediate temperatures (600°C–800°C) and provides continuous pathways for charge transport throughout the cathode.
Finally, there is a third generation of materials consisting of nanostructured nanocomposites. An improvement in oxygen reduction reaction (ORR) activity was reported when LSM nanoparticles were loaded on a porous YSZ framework [163–166]. Also, electrocatalytic nanoparticles could be produced in oxide anodes for solid oxide fuel cell (SOFC) by an ex-solution method, i.e., by incorporating metals into a perovskite oxide phase in air followed by the reduction of the perovskite oxide [167]. The improvement in the performance of the cell by using these nanocomposites lies in the extension of the TPB to the newly generated surfaces [168]. Templates such as polycarbonate membranes have also been used for the production of composite nanotubes with 20 nm wall thicknesses [169]. With this strategy, a clear decrease in polarization resistance of the electrode is observed, giving rise to higher efficiencies at temperatures as low as 700°C. Recently, an electrolyte-supported SOFC was fabricated with all-nanocomposite components and operated below 600°C [170]. The highly active nanocomposite electrodes and easily sintered nanocomposite electrolyte allow an in situ low-temperature sintering while preserving the microstructure and electrochemical performance stability upon thermal cycling.
The performance of intermediate temperature SOFCs can be improved by engineering the electrode architecture on the nanoscale. Lowering the temperature facilitates the use of nanotechnology in synthesizing new nanostructured materials in which parameters such as porosity, the distribution of generated pores, and surface area can be closely controlled. These parameters have a significant influence on the performance of the materials used for energy conversion and storage, which means that these methods are an important starting point for the design and optimization of these types of energy devices.
The great versatility of the perovskite structure allows for different doping to obtain a variety of properties, which is a key feature in the development of materials for solid oxide fuel cells (SOFCs). This chapter not only briefly introduces the foundation and operation of SOFCs but also shows the evolution of perovskite materials for device components. Among the electrolytes, BaCeO3-based cerates exhibit the highest ionic conduction at intermediate temperatures while chromites doped with Sr find potential as interconnector materials. By introducing Fe in the Cr site, these chromites become interesting alternatives to the traditional NiO anode, in addition to the new trend of double perovskite-type materials such as Sr2MgMoO6, which present very promising results for anode application. It is in the area of SOFC cathodes in which the most progress has been made. Initially, in the 1960s, doped manganese perovskites (La1-
Finally, it is worth mentioning the importance of not only the material composition but also its structure, morphology and porosity. It has been found that a higher catalytic electrode area results in a significant improvement in the electrochemical system efficiency. Reducing operating temperatures of the SOFC has allowed nanotechnology to become a useful tool for the development of future generations of materials for IT-SOFCs.
This work has been partially financed by the Ministerio de Educación y Ciencia under project MAT2013-41128-R and by the Eusko Jaurlaritza/Gobierno Vasco under project IT-570-13. N. Ortiz-Vitoriano acknowledges a Marie Curie International Outgoing Fellowship within the EU Seventh Framework Programme for Research and Technological Development (2007–2013).
Pectin is the major constituent of all plants and makes up approximately two-third of the dry mass of plant primary cell walls. It provides structural integrity, strength, and flexibility to the cell wall and acts as barrier to the external environment [1]. Pectin is also a natural component of all omnivorous diet and is an important source of dietary fiber. Due to the resistant in digestive system and lack of pectin digestive enzymes, human beings are not able to digest pectin directly but microorganism present in large intestine can easily assimilate the pectin and convert it into soluble fibers. These oligosaccharides promote beneficial microbiota in gut and also help in lipid and fat metabolism, glycemic regulation, etc. [2]. Being complex and highly diverse in structure, role of pectin is not only limited to the biological and physiological functions, but it has tremendous potential and contributes substantially in other applications ranging from food processing to pharmaceuticals. Pectin is a water-soluble fiber and used in various food as emulsifier, stabilizer, gelling, and thickening agent.
\nCommercial pectins are extracted from citrus and apple fruit. On the basis of dry mass, apple pomace contains 10–15% pectin, whereas citrus peel possesses 20–30% pectin. However, pectin has also been extracted in higher amount from several other fruits and their by-products, such as sunflower head, mango peal, soybean hull [3], passion fruit peel [4], sugar beet pulp [5],
S. No | \nSource | \nParts used | \nExtraction method used | \nPectin yield (%) | \nType of pectin (HMP/LMP) | \nRef | \n
---|---|---|---|---|---|---|
1 | \nPassion fruit | \nPeel | \nAPP | \n14.8% | \nHMP | \n[4] | \n
2 | \nBanana | \nPeel | \nAPP | \n5–21% | \nHMP (DE, 50–80%) | \n[8] | \n
3 | \nChick pea | \nHusk | \nAcid extraction, APP, and freeze dried | \n8% | \nLMP (DE, 10%) | \n[9] | \n
4 | \nKrueo Ma Noy | \nLeaves | \nAPP, DPP | \n21–28% | \nLMP (DE, 34–42%) | \n[11] | \n
5 | \nYellow Passion | \nFruit rind | \nAPP, DPP, MPP | \n3–16% | \nHMP (DE, 54–59%) | \n[12] | \n
6 | \nDurian | \nRind | \nAPP | \n2–10.25% | \nHMP (DE, 50–64%) | \n[13] | \n
7 | \nMulberry | \nMulberry bark with epidermis (MBE) and without epidermis (MB) | \nExtracted using 60–100% isopropanol | \n11.88% | \nHMP (MB–DE, 71.13%); LMP (MBE–DE, 24.27%) | \n[14] | \n
8 | \nYuzu, citrus family | \nPomace | \nExtracted with APP and enzyme (Viscozyme® L with 1.2 × 10−4 fungal β-glucanase | \nDPP, APP (7.3–8%) | \nLMP (APP–DE, 41%; DPP–DE, 46.3%) | \n[16] | \n
9 | \nCacao pods | \nHusk | \nExtracted with 1 N HNO3 at different pH and precipitated by ethanol and acetone | \n3.7–8.6% | \nLMP (DE 36.7% @ pH 1, DE 44.3% @ pH 3); HMP (DE 52.4% @ pH 2) | \n[17] | \n
10 | \nCashew apple | \nPomace | \nAOP at different pH (1.0, 1.5, and 2.0) | \n10.7–25.3% | \nLMP (DE, 28–46%) | \n[18] | \n
11 | \nLeaves | \nExtracted with acid and alkali, precipitated the pectin by ethanol | \n4–8% | \nHMP (acid treated: 65–75% DE) LMP (Alkali treated: 36% DE) | \n[19] | \n|
12 | \nDragon fruit | \nPeel | \nExtracted using HCl, precipitated and purified with 70 and 99.6% isopropanol. | \n18.59% | \nLMP (DE, 46.95%) | \n[20] | \n
13 | \nJackfruit | \nPeel | \nUltrasonic-microwave-assisted extracted (UMAE) pectin | \n21.5% | \nHMP (DE, 62.5%) | \n[22] | \n
14 | \nPotato | \nPulp | \nExtracted with different acids and precipitated by ethanol | \n4.08–14.34% | \nLMP (DE, 21.51–37.45%) | \n[23] | \n
High methoxyl pectins (HMP) and low methoxyl pectins (LMP) from various horticultural crops.
APP, alcohol-precipitated pectin; MPP, metal ion-precipitated pectin; DPP, dialyzed precipitated pectin.
Pectin is a highly complex plant cell wall polysaccharide that plays a significant role in plant growth and development. It is predominantly present in fruits and vegetables and constitutes approximately 35–40% of the primary cell wall in all the dicot plants [24]. The composition and structure of pectin is influenced by the developmental stages of plants [25, 26]. Structural analysis of pectin revealed that it is a polymer comprised of chain-like configuration of approximately 100–1000 saccharide units; therefore, it does not possess a defined structure. In general, pectin is illustrated as a heteropolysaccharide of three components namely, homogalacturonan (HG), rhamnogalacturonan-I (RGI), and rhamnogalacturonan-II (RGII) [28, 29]. The Backbone structure may branch with other neutral sugar chains such as arabinan, xylogalacturonan (XGA), arabinogalactan I (AG-I), and arabinogalactan II (AG-II).
\nHomogalacturonan (HG) is a polymer of galacturonic acid (GalA), in which Gal A residues are linked together by α-1-4 glycosidic bond and the number of GalA residues in HG may vary from 72 to 100% depending on the source of pectin [30]. For instance, the HG backbone of cashew apple pectin,
Rhamnogalacturonan I represents approximately 20–35% of the pectin polysaccharides. It is the highly branched and heterogeneous polysaccharide which is characterized as repeating units of α-(1 → 2)-linked rhamnose and α-(1 → 4)-linked GalA residues. It can be O-acetylated at O-2 and/or O-3 positions of GalA residues [33, 34]. Pectin from citrus peels, mung bean, kidney bean, apple fruit, and flax hypocotyls has been reported 100% methyl esterified in the RGI region [35, 36]. The composition of RGI varies in pectin extracted from different sources. In sugar beet pectin, 80 repeating units of [→2] –α-L-Rha-(1–4)- α-D-GalA-(1→) comprised the backbone of rhamnogalacturonan I (RG-I), whereas citrus pectin contains only 15–40 repeating units [37]. The polymeric side chains of galactans and arabinans are substituted at the O-4 position of RG-I backbone. Arabinogalactan I (AG-I) and arabinogalactan II (AG-II) are also reported to be present as polymeric side chains [38, 39, 40]. The side chains are often referred to as “hairs” and believed to play an important role in pectin functionality. The loss of side chains may increase the solubility of the pectin [41]. PGI is prone to enzymatic depolymerization. However, protease and acid-catalyzed cleavage of RGI has also been reported [28, 42, 43].
\nThe highly conserved polysaccharide of pectin is rhamnogalacturonan II which constitutes about 10% of the pectin polymer [44]. This polysaccharide is made up of (1 → 4)-linked-α-D-GalA units containing 12 monosaccharide such as apiose, acetic acid, 3-deoxy-manno-2-octulosonic acid (KDO), and 3-deoxy-lyxo-2-heptulosaric acid (DHA) as side chains [30, 39]. GalA present in backbone of rhamnogalacturonan II (RG-II) may be methyl esterified at the C-6 position. The percentage of esterified GalA and acetylated groups in HG chain is termed as the DE and DAc, respectively. It is proposed that in the early developmental stages of plants, highly esterified pectin is formed that undergoes some deesterification in the cell wall or middle lamella. In general, tissue pectin ranges from 60 to 90% DE [45]. Both the DE and the DAc of pectin may vary depending on the method of extraction and plant origin [30, 46]. The functional properties of the pectin are determined by the amount and the distribution of esterified GalA residues in the linear backbone. Presence and distribution of esterified and nonmethylated GalA in pectin define the charge on pectin molecules. Based on their degree of esterification (DE), pectins are classified as high methoxy pectins (HMP) or low methoxy pectins (LMP). DE values of HM pectin range from 60 to 75%, whereas pectin with 20–40% of DE is referred as LM pectin. It was also observed that solubility, viscosity, and gelation properties of pectin are correlated and highly dependent on structural features [47, 48]. Pectin and monovalent salts of pectins are generally soluble in water but di- and trivalent ions are insoluble. The solubility of pectin in water increases with decrease in polymer size and increase in methoxy contents. Pectin powder gets hydrated very fast in water and forms clumps. The solubility of these clumps is very slow. As the pectin molecules come in contact with water, deesterification and depolymerization of pectins start spontaneously. The rate of decomposition of pectin depends on pH and temperature of the solution. As the pH of the solution decreased, with elevated temperature, ionization of carboxylate groups also reduced, which suppresses the hydration and repulsion between the polysaccharide molecules and results in the association of molecules in the form of gels. During thermal processing, solubilization of pectin is affected by β-elimination which depolymerized the pectin molecule and reduced its chain length. Small polymers have poor affinity with cell wall framework and solubilize easily. However, preheating, as well as reduced moisture contents in thermal processing, adversely affects the solubility of pectin in water [49, 50].
\nFood additives that are used in food processing to blend two immiscible liquids to produce a desirable product are known as food emulsifier or emulgent. These additives act as surface-active agents on the border of immiscible layers and reduce oil crystallization and prevent water separation. Emulsifiers are used in large number of food products such as ice creams, low-fat spreads, yoghurts, margarine, salad dressings, salty spreads, bakery products, and many other creamy sauces, to keep them in stable emulsion [27]. Emulsifiers increase the whip-ability of batters, enhance mouthfeel of the products, and improve texture and shape of the dough. Moreover, emulsions also help to encapsulate the bioactives [51]. Based on the disperse phase, there are two types of emulsion: oil in water (O/W) and water in oil (W/O). Milk, mayonnaise, dressings, and various beverages are some examples of O/W emulsion, whereas butter and margarine are the typical examples of W/O emulsion. Progress in hydrocolloid chemistry has resulted in the development of multitype emulsion such as O/W/O and O/W/O type emulsion (Figure 1). These emulsions are very important for fat reduction or encapsulation of bioactives and are used in preparation and stabilization of various low-fat creams, seasoning, and flavoring of sauces [52].
\nTypes of emulsions.
Commonly used emulsifiers in food processing are (i) small-molecular surfactant such as lectithins, derivatives of mono- and diglycerides prepared by mixing edible oils with glycerin or ethylene oxide, fatty acid derivatives such as glycol esters, sorbitan esters, polysorbates and (ii) macromolecular emulsifiers that include proteins and plant-based polymers such as soy polysaccharide, guar gum, modified starch, pectin, etc. [53]. As far as the properties of food emulsifier are concern, a good emulsifier should be low in molecular weight, capable to reduce the surface tension rapidly at interface, and should be soluble in continuous phase [54]. Research on food additives revealed the adverse effect of synthetic food additives on human being. Chassaing et al. found that polysorbate 80(P80) or carboxy methyl cellulose (CMC) had adverse effects on gut microbiota and their continuous use triggered the weight gain and metabolic syndrome after 12 weeks of administration in mouse [55]. A recent research carried out on mice shows that regular use of P80 and CMC triggers low-grade intestinal inflammation which may ultimately lead to the development of colon cancer [56]. Therefore, safety issues with the synthetic food additives and consumer’s demand for all natural food ingredients have necessitated the use of plant-based emulsifiers and stabilizers in food.
\nPectin is a natural hydrocolloid which exhibits wide spectrum of functional properties. Because of the gelling ability of pectin, it is used as viscosity enhancer. During emulsification process, pectin molecules adsorb at the fine oil droplets from at O/W interface and protect the droplet from coalescing with adjacent drops (short-term stability). The quality of emulsifier is defined by its ability to provide long-term stability against flocculation and coalescence [27]. Figure 2 depicts the stages in long-term emulsion formation using pectin as emulgent. When the viscosity of the continuous phase is increased, the movements of oil droplets become restricted which improves the shelf life of emulsion [57]. In the past decade, some pectin has also been reported to exhibit surface active behavior in oil-water interface and thereby stabilizing the fine oil droplets in emulsion [42, 58]. These functions of pectin are determined by its source, structural modification during processing, distribution of functional groups in pectin backbone, and also by various extrinsic factors such as pH, temperature, ionic strength, cosolute concentration, etc. The emulsification or surface active properties of pectin, i.e., formation of fine oil droplets, are mainly contributed due to the high hydrophobicity of protein residue present in pectin [46, 59] and also by hydrophobic nature of acetyl, methyl, and feruloyl esters [42, 60], whereas emulsion-stabilizing ability is attributed to the carbohydrate moieties and their conformational features [61].
\nEmulsion formation and stabilization using polymer as emulgent.
The mechanism of emulsion formation is shown in Figure 3. Different models explain the emulsion formation as covalently bound protein moieties in pectin are adsorbed onto the oil-water interface [46], form anchor points at the interface, and reduce the interfacial tension while the charged carbohydrate units extend into the aqueous phase [62] and stabilize by steric and viscosity effects in the aqueous phase(Figure 3a). Now, it is a well-established fact that pectin from different source shows variability in structure and protein contents. Leroux et al. identified many anchor points in sugar beet pectin (SBP) molecules [46], and proposed a loop-and-tail model (Figure 3b). According to the authors, only a limited amount of protein is adsorbed at the oil surface and acts as main moiety in the stabilization of the emulsion. This model was further confirmed by Siew and others [62]. The study was carried out to measure the thickness of the adsorbed SBP on oil-water interface layer, proposed a multilayer adsorption model (Figure 3c). Electrostatic interactions between the positively charged protein moiety and the negatively charged carbohydrate moiety were also reported.
\nDifferent models showing pectin adsorption at oil/water interface during emulsion formation.
Pectin O/W emulsion is generally stabilized through steric and electrostatic interaction. The carbohydrate moieties and neutral sugar side chains of RG I region of pectin confer the stability to the pectin emulsions through steric properties of the adsorbed polymers, when pectin is used as monoemulsifiers. In addition, pectin reversible association with galactan/arabinogalactan prior to emulsification also improves the emulsion stability [42, 63]. Electrostatic stabilization of emulsion is ascribed to sugar moieties and structural features of the HG units of pectin. If the pH of dispersion medium is above 3.5, nonmethylated carboxylic group of HG region gets ionized and confers charge on the pectin surface. Interaction of an ionic surfactant with oil droplets results in electrostatic stabilization [64]. Pectin viscosity also plays an important role in controlling the emulsion stability. HG region-rich pectin shows higher intrinsic viscosity ([
Molecular weight of pectin has also been reported to affect the emulsifying capacity of pectin. Pectin with low molecular weight was more efficient in stabilizing small emulsion droplets than high-molecular weight pectin. However, very small size of citrus pectin had negative effect on emulsion-stabilizing ability of pectin. It could be due to the poor steric stabilization of depolymerized polymer [59].
\nEmulsion-based food products can be defined as a network of pectin-protein molecules entrapping the oil droplet in between. Nowadays, a large number of pectin- and polysaccharide-based emulsified low-fat dairy products, meat products, spreads or desserts, bakery products, sauces, etc., are available in market. Low-fat and low-cholesterol mayonnaise, low-fat cottage cheese, low-fat drinking yogurt, and flavored oil-containing acidified milk drinks are the few examples of pectin-based emulsified products. These products are prepared by replacing full-fat milk from skimmed milk, emulsified oil, and whey proteins [70, 71]. A low-fat cheese was prepared using skimmed milk and water-in-oil-in-water (W1/O/W2) emulsified canola oil. Different emulsifiers such as amidated low-methoxyl pectins (LMP), gum arabic (GA), carboxymethylcellulose (CMC), and combinations of GA-CMC or GA-LMP were used to stabilize the emulsion. Textural characteristics and sensory evaluation of low-fat cheese show that polymers used to stabilize the emulsion affected both microcrystalline structure and organoleptic properties. The cheese prepared using GA and LMP was almost similar in textural characteristics to the full-fat milk cheese [72]. In another study, Liu et al. compared the textural and structural features and sensory quality of full-fat and low-fat cheese analogs prepared with or without the incorporation of pectin [71]. Microstructure analysis using scanning electron microscopy revealed that full-fat cheese was denser and contained higher concentration of fat globules than low-fat cheese made with or without pectin. Comparison within the low-fat cheese analogs showed clear difference in their hardness, gumminess, chewiness, and adhesiveness. Addition of pectin had positive effect on textural and sensory attribute and scored better in mouthfeel also.
\nLow-fat (Lf) mayonnaise was prepared by partial replacement of egg yolk and incorporation of pectin as emulsifier [73, 74]. Pectin weak gel, pectin microencapsulation, and whey protein isolate were used in preparation of low-fat (Lf) mayonnaise. Physicochemical and sensory properties of Lf mayonnaise were compared with full-fat (Ff) mayonnaise; Lf mayonnaise had low energy and more water contents than Ff. Textural features and rheological properties of the Lf and Ff mayonnaise were similar and both displayed thixotropic shear thinning behavior and categorized as weak gels. Moreover, Lf mayonnaise prepared using pectin had better acceptability than whey protein incorporation [75]. Emulsified oil is used as an effective delivery system of active compound in functional foods, and also serves as milk fat replacer in fat-free dairy products. To improve the nutritional value of food, low-fat dairy products are produced, whereas saturated milk fat is generally replaced with emulsified-unsaturated vegetable oils [76].
\nIn recent year, pectin in combination with inulin has been reported to prepare low-fat meat batter. Méndez-Zamora et al. studied the effect of substitution of animal fat with different formulations of pectin and inulin on chemical composition, textural, and sensory properties of frankfurter sausages [77]. Finding of the research showed that fracturability, gumminess, and chewiness of the low-fat sauces were slightly lower than those of the control. However, addition of 15% inulin improves the sensory properties. In a similar work, replacement of pork back fat with 15% pectin and 15% inulin was found effective in maintaining the physicochemical properties and emulsion stability of the low-fat meat batter [78].
\nThe use of pectin in food products as a gelling agent is a long tradition. Later on, it was discovered that pectin forms different types of viscoelastic solution under suitable conditions. This property of pectin is commercially exploited in preparation of jams, jellies, and marmalades. Rheological behaviors of pectin depend on pectin source, its degree of methylation, distribution of nonmethylated GalA unit on pectin backbone, and degree of acetylation, and also on various extrinsic factors such as temperature, pH, concentration, and presence of divalent ions. At a constant pH, the setting time of pectin increases with decreasing DM and degree of blockiness (DB) in the absence of bivalent ions [79]. Therefore, on the basis of gelling process, pectin is classified as rapid, medium, and slow set pectin [80].
\nGelling process of pectin and its stabilization follows different mechanisms for different types of pectin. HMP form gels in a narrow pH range (2.0–3.5) in the presence of sucrose at a concentration higher than 55% w/v in medium. During the gelatin process of HMP, junction zones are formed due to the cross-linking of two or more pectin molecules. These junctions are stabilized by weak molecular interaction such as hydrogen and hydrophobic bonds between polar and nonpolar methyl-esterified groups and require high sugar concentration and low pH [81]. These gels are thermally reversible. LMP can form gel over a wide pH range (2.0–6.0) independent of sucrose, but requires divalent ion, such as calcium [82, 83]. LMP follow the eggbox model for its gelation, where positively charged calcium ions (Ca2+) are entrapped in between the negatively charged carboxylic group of pectin. The zigzag network of Ca2+ ion and GalA molecules looks like eggbox, and therefore, model is named as eggbox model [80]. These gels are stabilized by electrostatic bonds. In the presence of Ca2+, calcium bridges are formed with pectin molecules that make the solution more viscous. At the higher pH, the ionic strength of the solution is increased and thus more Ca2+ is needed for gelation. In case of highly acetylated pectin such as sugar beet, acetyl groups cause steric hindrances and interfere with the Ca2+ ion and GalA bond formation, thus preventing gel formation. Kuuva et al. [84] reported that enzymatic modification in pectin structure, i.e., removal of acetyl groups using α-arabinofuranosidase (α-Afases) and acetyl esterase enzymes, can improve the gelling property of acetylated pectin.
\nHMP are generally used in preparation of standard jams where sugar contents are above 55%, high-quality, tender confectionary jellies, fruit pastes, etc. LMP do not require sugar for its gelatin and therefore preferred choice for the production of low-calorie food products such as milk desserts, jams, jellies, and preserves, [28, 85]. LM pectins are more stable in low pH and high temperature conditions as compare to HM pectins and can be stored for more than a year.
\nFood packaging is one of the fastest growing segments of food industry. Traditionally, packaging system was limited to the containers and packaging material to transport the food items from manufacturer to the retail market and then to the consumers. Such type of packaging was unable to contribute in the extension of the shelf life and maintenance of the quality of the products. Due to the globalization of food market and increasing demand of shelf-stable processed food that retains the natural properties of food, the need of functional/active packaging material is increasing. To meet the industrial demand, a number of polymers are being synthesized and used in food packaging because of their flexibility, versatility, and cost effectiveness. Although, synthetic materials are able to fulfill all the industrial needs and keep food fresh and safe by protecting them from abiotic factors such as moisture, heat, oxygen, unpleasant odor, and biotic components such as micro- and macroorganisms. But, disposal of nonbiodegradable packaging material is a serious problem which poses a threat to the environment. Therefore, more research has been focused on the development of biodegradable packaging for food packaging applications using poly(lactic acid) (PLA), poly(hydroxyalkanoates) (PHAs), starch, etc. [86]. Among all the natural polymers, polysaccharides are gaining more attention as they are versatile in nature and easily available in relatively low cost.
\nA variety of natural polysaccharides, such as pectin, chitosan derivatives, alginate, cellulose, seaweed extract, and starch are usually used in the preparation of edible films and coatings [87]. Pectin is one of the most significant renewable natural polymers which are the main component of all the biomass and ubiquitous in nature. Being flexible in nature, pectin and its derivatives are used in many biodegradable packaging materials that serve as moisture, oil, and aroma barrier, reduce respiration rate and oxidation of food [88]. Pectin along with food grade emulsifiers is also used in the preparation of edible films. These films are used in fresh and minimally processed, fruits and vegetables, foods and food products as pectin is the main component of the omnivorous diet and can be metabolized. Edible coating protects the nutritional properties of the food and also saves highly perishable food from the enzymatic browning, off-flavor development, aroma loss, retards lipid migration, and reduces pathogen attack during storage.
\nAt low pH, LM pectins are cross-linked with calcium cations and form hard gels. These gels have highly stable structure and act as water barriers. Because of these properties, LM pectin films are used as edible coatings [88, 89]. Extension of shelf life of avocado fruits was also reported to over a month at 10°C by using edible pectin films. It was found that when avocados were coated with edible pectin films and stored at 10°C, rate of oxygen absorption and rate of respiration decreased which results in delaying of texture and color change of fruits [90]. Oms-Oliu et al. used calcium chloride and sunflower oil cross-linked with LM pectin films onto fresh-cut melon to see the effect on extension of shelf life of cut fruits [91]. It was observed that edible pectin films maintained the initial firmness, decrease the wounding stress of fresh-cut fruits, and prevent the dehydration during storage up to 15 days at 4°C but could not reduce the microbial growth onto the fresh melon. It has been observed that to reduce the respiration rate and to prevent the off-flavor development, different pectin and emulsifier formations are required for different fruits. Edible coating film formulation consisted on pectin, sorbitol, and bee wax was successfully used by Moalemiyan et al. to keep the fresh-cut mangoes in original state for over 2 weeks [92]. Whereas in a similar study, pectin coating containing sucrose and calcium lactate was able to prevent the fruits’ respiration rate and maintain sensory properties in fresh melon fruits for up to 14 days storage at 5°C. In a similar study [93], pectin edible coating solution containing pectin (3%), glycerol (2.5%), polyvinyl alcohol (1.25%), and citric acid (1%) was prepared and applied on sapota fruits by dipping method and uncoated sapota fruits were used as control. Both the treated and control fruits were stored at 30 ± 3°C. Physicochemical parameters namely, weight, color, firmness, acidity, TSS, pH, and ascorbic acid contents of both the coated and control fruits were measured at regular interval up to 11th day of the storage at 30 ± 3°C. Reduced rate of change in weight loss and other parameters were reported in pectin-coated sapota as compared to control fruits and it was observed that pectin film formulation was able to maintain good quality attributes and extend the shelf life of pectin-coated sapota fruits up to 11 days of storage at room temperature, whereas control fruits were edible up to 6 days. Furthermore, it was also observed that sapota fruits dipped in sodium alginate containing 2% pectin solution for 2 min were more effective in maintaining the organoleptic properties up to 30 days of refrigerated storage as compared to sapota fruits dipped for 4 min and untreated sapota fruits [94]. Bayarri et al. developed antimicrobial films using lysozyme and LM pectin complex. The main purpose of the study was to control the release of lysozyme in packaged food and to target lysozyme-sensitive bacteria such as
In last few years, some researchers have focused on pectin-based coating containing edible essential to improve the antimicrobial properties and to enhance the efficiency of the pectin films. Edible coating formulation containing sodium alginate and pectin (PE) enriched with eugenol (Eug) and citral (Cit) essential oil at different concentrations was used to increase the shelf life of strawberries. Physical and organoleptic parameters of coated fruits stored at 10°C for 14 days show that formulation containing PE 2% + Eug 0.1%; PE 2% + Cit 0.15% was more suitable than sodium alginate-based formulations [96]. Pectin coating containing lemon and orange peel essential oils was reported to increase the shelf life and quality attributes of the strawberry fruits up to 12 days when stored at 5°C. It was also observed that fruits coated with pectin + 1% orange essence showed less weight loss and soluble solids as compare to their control during the storage [97]. Sanchís et al. studied the combined effect of edible pectin coating with active modified atmospheric packaging on fresh-cut “Rojo Brillante” persimmon. Persimmon fruit slices were coated by dipping in the pectin-based emulsion or in water as control. Both the treated and control slices were packed under 5 kPa O2 (MAP) or under ambient atmosphere for up to 9 days at 5°C. Various parameters, such as package gas composition, color and firmness of slice, polyphenol oxidase activity, were measured during storage. It was observed that edible coating along with MAP significantly reduced the CO2 emission and O2 consumption in the packaged fruits. Furthermore, coating was also effective in controlling microbial growth and reducing enzymatic browning and maintains good sensory parameters up to 10 days on storage [98].
\nDrying is the traditional and oldest method of fruit and vegetable preservation. It decreases the enzymatic activity, reduces the moisture contents, and protects the food from microbial attack. However, drying results in loss of nutrients, vitamins, heat-labile enzymes, modifies the texture, color, and organoleptic quality of dried fruits and vegetables and therefore diminishes the market value also. Pretreatment of food products with pectin coatings containing other bioactive compound such as ascorbic acid, CaCl2, edible gum, etc., before drying or blanching has been proposed as an effective method to preserve the nutritional as well as organoleptic quality of dried food [99]. Recent researches have shown that application of pectin coating could protect the moisture and vitamin C loss in pretreated papaya slice and osmotic dehydrated pineapple. In one of the research [100], pineapple slice was pretreated with pectin coating formulation containing (50%)/calcium lactate (4%)/ascorbic acid (2%) solutions and then dried by hot-air-drying method. Physicochemical analysis of dried product showed less reduction in vitamin C contents as compared to untreated pineapple slice. In a similar work, pectin coating supplement with vitamin C (1%) was used for precoating of papaya slice. It was found that incorporation of vitamin C did not affect the drying process. However, significant increase in vitamin C content was observed in final product [101].
\nFrying is a method of cooking that causes changes in chemical and physical parameters of food and enhances the taste. However, high temperature vaporizes the water of food and affects the nutritional properties due to protein denaturation and starch gelatinization. The oil uptake during frying is affected by various parameters such as type of oil used, frying temperature and duration, product moisture content, shape, porosity, prefrying treatment, etc. [102]. Surface area and pretreatment of products are the major factors that determine the oil absorbed. Edible coating has also been used successfully, to reduce the oil uptake during frying in various deep-fried products. Reduction in oil uptake and improvement of texture and quality of potato slices was reported by Daraei Garmakhany et al. in 2008. Authors found that coating of potato slices with pectin, guar, and CMC solutions can reduce the oil uptake when compared with nontreated potato chips [103]. Similar results were also obtained by Khalil, where a combination of pectin or sodium alginate with calcium chlorides significantly reduces the oil uptake of French fries. Coating formulation of 0.5% calcium chloride and 5% pectin was most effective in reducing the oil uptake [104]. Kizito et al. used different edible coatings (pectin, carboxy methyl cellulose, agar, and chitosan) at a concentration of 1–2% for pretreatment of potato chips, followed by deep frying of chips. Fried chips were analyzed biochemically and organoleptically to investigate the quality attributes of the products. It was revealed that all the coating polymers were successful in reducing the oil uptake but pectin was most effective and reduced oil uptake up to 12.93%, followed by CMC (11.71%), chitosan (8.28%), and agar (5.25%) and significantly improved moisture retention of strips (p < 0.05) [105].
\nThe application of natural polymers in food industry is increasing day by day. Researchers are focusing more and more toward the pectin because of the ease-of-availability, structural flexibility, and versatile composition. Pectin can be sourced from a number of easily available horticulture crops (Table 1). Pectin is a hydrocolloid which is used as a food emulsifier, gelling agent, thickener, and stabilizer. It is the preferred choice of most of the food processors as fat or sugar replacer in low-calorie foods. In the recent years, increasing demand of ready-to-serve foods, fresh-cut fruits, and vegetable has opened a new market for edible films. Being biodegradable and recyclable, a lot of research is being done on pectin-based edible film formulations. These films reduce the exchange of moisture, gases, lipids, and volatiles between food and environment, and also serve as protective barrier for microorganisms.
\nEven though a lot of information is available regarding pectin structure and many pectin-based products are available in market, role of many carbohydrate moieties and their effect on various function of pectin are not yet well defined. Therefore, it is necessary to understand the structural-function relationship of pectin and its interactions for developing functional food products.
\nThe authors thank Director, CSIR-CFTRI for the encouragement.
\nThe authors declare no conflict of interest.
\nYou have been successfully unsubscribed.
",metaTitle:"Unsubscribe Successful",metaDescription:"You have been successfully unsubscribed.",metaKeywords:null,canonicalURL:"/page/unsubscribe-successful",contentRaw:'[{"type":"htmlEditorComponent","content":""}]'},components:[{type:"htmlEditorComponent",content:""}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5816},{group:"region",caption:"Middle and South America",value:2,count:5281},{group:"region",caption:"Africa",value:3,count:1754},{group:"region",caption:"Asia",value:4,count:10511},{group:"region",caption:"Australia and Oceania",value:5,count:906},{group:"region",caption:"Europe",value:6,count:15913}],offset:12,limit:12,total:119061},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"1175"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:26},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:9},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:9},{group:"topic",caption:"Engineering",value:11,count:25},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:2},{group:"topic",caption:"Medicine",value:16,count:45},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:0},popularBooks:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5315},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9536",title:"Education at the Intersection of Globalization and Technology",subtitle:null,isOpenForSubmission:!1,hash:"0cf6891060eb438d975d250e8b127ed6",slug:"education-at-the-intersection-of-globalization-and-technology",bookSignature:"Sharon Waller, Lee Waller, Vongai Mpofu and Mercy Kurebwa",coverURL:"https://cdn.intechopen.com/books/images_new/9536.jpg",editedByType:"Edited by",editors:[{id:"263302",title:"Dr.",name:"Sharon",middleName:null,surname:"Waller",slug:"sharon-waller",fullName:"Sharon Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editedByType:"Edited by",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editedByType:"Edited by",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9524",title:"Organ Donation and Transplantation",subtitle:null,isOpenForSubmission:!1,hash:"6ef47e03cd4e6476946fc28ca51de825",slug:"organ-donation-and-transplantation",bookSignature:"Vassil Mihaylov",coverURL:"https://cdn.intechopen.com/books/images_new/9524.jpg",editedByType:"Edited by",editors:[{id:"313113",title:"Associate Prof.",name:"Vassil",middleName:null,surname:"Mihaylov",slug:"vassil-mihaylov",fullName:"Vassil Mihaylov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9280",title:"Underwater Work",subtitle:null,isOpenForSubmission:!1,hash:"647b4270d937deae4a82f5702d1959ec",slug:"underwater-work",bookSignature:"Sérgio António Neves Lousada",coverURL:"https://cdn.intechopen.com/books/images_new/9280.jpg",editedByType:"Edited by",editors:[{id:"248645",title:"Dr.",name:"Sérgio António",middleName:null,surname:"Neves Lousada",slug:"sergio-antonio-neves-lousada",fullName:"Sérgio António Neves Lousada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editedByType:"Edited by",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1169",title:"Condensed Matter Physics",slug:"nanotechnology-and-nanomaterials-material-science-condensed-matter-physics",parent:{title:"Material Science",slug:"nanotechnology-and-nanomaterials-material-science"},numberOfBooks:59,numberOfAuthorsAndEditors:1673,numberOfWosCitations:3242,numberOfCrossrefCitations:1223,numberOfDimensionsCitations:2846,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"nanotechnology-and-nanomaterials-material-science-condensed-matter-physics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8773",title:"Magnetic Materials and Magnetic Levitation",subtitle:null,isOpenForSubmission:!1,hash:"2342b6038c029039a1a852caa1fecb9f",slug:"magnetic-materials-and-magnetic-levitation",bookSignature:"Dipti Ranjan Sahu and Vasilios N. Stavrou",coverURL:"https://cdn.intechopen.com/books/images_new/8773.jpg",editedByType:"Edited by",editors:[{id:"251855",title:"Prof.",name:"Dipti Ranjan",middleName:null,surname:"Sahu",slug:"dipti-ranjan-sahu",fullName:"Dipti Ranjan Sahu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8447",title:"Density Functional Theory Calculations",subtitle:null,isOpenForSubmission:!1,hash:"430664e87463d090a0f03b1f096a7d9d",slug:"density-functional-theory-calculations",bookSignature:"Sergio Ricardo De Lazaro, Luis Henrique Da Silveira Lacerda and Renan Augusto Pontes Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/8447.jpg",editedByType:"Edited by",editors:[{id:"176017",title:"Prof.",name:"Sergio Ricardo De",middleName:null,surname:"Lazaro",slug:"sergio-ricardo-de-lazaro",fullName:"Sergio Ricardo De Lazaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9881",title:"Perovskite and Piezoelectric Materials",subtitle:null,isOpenForSubmission:!1,hash:"8fa0e0f48567bbc50fbb3bfdde6f9a0b",slug:"perovskite-and-piezoelectric-materials",bookSignature:"Someshwar Pola, Neeraj Panwar and Indrani Coondoo",coverURL:"https://cdn.intechopen.com/books/images_new/9881.jpg",editedByType:"Edited by",editors:[{id:"177037",title:"Dr.",name:"Someshwar",middleName:null,surname:"Pola",slug:"someshwar-pola",fullName:"Someshwar Pola"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7430",title:"Magnetometers",subtitle:"Fundamentals and Applications of Magnetism",isOpenForSubmission:!1,hash:"0d7c0464c36927782cee8c9ef40efca6",slug:"magnetometers-fundamentals-and-applications-of-magnetism",bookSignature:"Sergio Curilef",coverURL:"https://cdn.intechopen.com/books/images_new/7430.jpg",editedByType:"Edited by",editors:[{id:"125424",title:"Prof.",name:"Sergio",middleName:null,surname:"Curilef",slug:"sergio-curilef",fullName:"Sergio Curilef"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9257",title:"Electromagnetic Field Radiation in Matter",subtitle:null,isOpenForSubmission:!1,hash:"dda82e17d67826552d58b2e610f32435",slug:"electromagnetic-field-radiation-in-matter",bookSignature:"Walter Gustavo Fano, Adrian Razzitte and Patricia Larocca",coverURL:"https://cdn.intechopen.com/books/images_new/9257.jpg",editedByType:"Edited by",editors:[{id:"215741",title:"Prof.",name:"Walter Gustavo",middleName:null,surname:"Fano",slug:"walter-gustavo-fano",fullName:"Walter Gustavo Fano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7630",title:"Inelastic X-Ray Scattering and X-Ray Powder Diffraction Applications",subtitle:null,isOpenForSubmission:!1,hash:"80896f929598a48f6b4c306a6be47ea6",slug:"inelastic-x-ray-scattering-and-x-ray-powder-diffraction-applications",bookSignature:"Alessandro Cunsolo, Margareth K. K. D. Franco and Fabiano Yokaichiya",coverURL:"https://cdn.intechopen.com/books/images_new/7630.jpg",editedByType:"Edited by",editors:[{id:"176605",title:"Dr.",name:"Alessandro",middleName:null,surname:"Cunsolo",slug:"alessandro-cunsolo",fullName:"Alessandro Cunsolo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9215",title:"Progress in Fine Particle Plasmas",subtitle:null,isOpenForSubmission:!1,hash:"42c9a3b34a54b24180ac3b1fe5c544b3",slug:"progress-in-fine-particle-plasmas",bookSignature:"Tetsu Mieno, Yasuaki Hayashi and Kun Xue",coverURL:"https://cdn.intechopen.com/books/images_new/9215.jpg",editedByType:"Edited by",editors:[{id:"209593",title:"Dr.",name:"Tetsu",middleName:null,surname:"Mieno",slug:"tetsu-mieno",fullName:"Tetsu Mieno"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8823",title:"On the Properties of Novel Superconductors",subtitle:null,isOpenForSubmission:!1,hash:"7ac9708760da3a91f84d9183feb90be2",slug:"on-the-properties-of-novel-superconductors",bookSignature:"Heshmatollah Yavari",coverURL:"https://cdn.intechopen.com/books/images_new/8823.jpg",editedByType:"Edited by",editors:[{id:"24773",title:"Dr.",name:"Heshmatollah",middleName:null,surname:"Yavari",slug:"heshmatollah-yavari",fullName:"Heshmatollah Yavari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9414",title:"Advances in Condensed-Matter and Materials Physics",subtitle:"Rudimentary Research to Topical Technology",isOpenForSubmission:!1,hash:"3aebac680de7d3af200eadd0a0b2f737",slug:"advances-in-condensed-matter-and-materials-physics-rudimentary-research-to-topical-technology",bookSignature:"Jagannathan Thirumalai and Sergey Ivanovich Pokutnyi",coverURL:"https://cdn.intechopen.com/books/images_new/9414.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",middleName:null,surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7683",title:"Nanoplasmonics",subtitle:null,isOpenForSubmission:!1,hash:"d4dcd2cf2584da7b5b75aae513216df1",slug:"nanoplasmonics",bookSignature:"Carlos J. Bueno-Alejo",coverURL:"https://cdn.intechopen.com/books/images_new/7683.jpg",editedByType:"Edited by",editors:[{id:"206130",title:"Dr.",name:"Carlos J.",middleName:null,surname:"Bueno-Alejo",slug:"carlos-j.-bueno-alejo",fullName:"Carlos J. Bueno-Alejo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7612",title:"Electrospinning and Electrospraying",subtitle:"Techniques and Applications",isOpenForSubmission:!1,hash:"77e9708250507395a4bea2c17d012982",slug:"electrospinning-and-electrospraying-techniques-and-applications",bookSignature:"Sajjad Haider and Adnan Haider",coverURL:"https://cdn.intechopen.com/books/images_new/7612.jpg",editedByType:"Edited by",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8398",title:"2D Materials",subtitle:null,isOpenForSubmission:!1,hash:"974977d9d7e76f2f4c93470c844f4cd5",slug:"2d-materials",bookSignature:"Chatchawal Wongchoosuk and Yotsarayuth Seekaew",coverURL:"https://cdn.intechopen.com/books/images_new/8398.jpg",editedByType:"Edited by",editors:[{id:"34521",title:"Associate Prof.",name:"Chatchawal",middleName:null,surname:"Wongchoosuk",slug:"chatchawal-wongchoosuk",fullName:"Chatchawal Wongchoosuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:59,mostCitedChapters:[{id:"9725",doi:"10.5772/8508",title:"Biosynthesis and Application of Silver and Gold Nanoparticles",slug:"biosynthesis-and-application-of-silver-and-gold-nanoparticles",totalDownloads:27640,totalCrossrefCites:17,totalDimensionsCites:47,book:{slug:"silver-nanoparticles",title:"Silver Nanoparticles",fullTitle:"Silver Nanoparticles"},signatures:"Zygmunt Sadowski",authors:null},{id:"17184",doi:"10.5772/17039",title:"Polymer Nanocomposites: From Synthesis to Applications",slug:"polymer-nanocomposites-from-synthesis-to-applications",totalDownloads:16805,totalCrossrefCites:22,totalDimensionsCites:47,book:{slug:"nanocomposites-and-polymers-with-analytical-methods",title:"Nanocomposites and Polymers with Analytical Methods",fullTitle:"Nanocomposites and Polymers with Analytical Methods"},signatures:"S. Anandhan and S. Bandyopadhyay",authors:[{id:"27050",title:"Prof.",name:"Sri",middleName:null,surname:"Bandyopadhyay",slug:"sri-bandyopadhyay",fullName:"Sri Bandyopadhyay"},{id:"44992",title:"Prof.",name:"Anandhan",middleName:null,surname:"Srinivasan",slug:"anandhan-srinivasan",fullName:"Anandhan Srinivasan"}]},{id:"17099",doi:"10.5772/18343",title:"Applications of Antimicrobial Polymer Nanocomposites in Food Packaging",slug:"applications-of-antimicrobial-polymer-nanocomposites-in-food-packaging",totalDownloads:9124,totalCrossrefCites:22,totalDimensionsCites:43,book:{slug:"advances-in-nanocomposite-technology",title:"Advances in Nanocomposite Technology",fullTitle:"Advances in Nanocomposite Technology"},signatures:"Aryou Emamifar",authors:[{id:"31204",title:"Dr.",name:"Aryou",middleName:null,surname:"Emamifar",slug:"aryou-emamifar",fullName:"Aryou Emamifar"}]}],mostDownloadedChaptersLast30Days:[{id:"52860",title:"Cerium Oxide Nanostructures and their Applications",slug:"cerium-oxide-nanostructures-and-their-applications",totalDownloads:4467,totalCrossrefCites:12,totalDimensionsCites:31,book:{slug:"functionalized-nanomaterials",title:"Functionalized Nanomaterials",fullTitle:"Functionalized Nanomaterials"},signatures:"Adnan Younis, Dewei Chu and Sean Li",authors:[{id:"191574",title:"Dr.",name:"Adnan",middleName:null,surname:"Younis",slug:"adnan-younis",fullName:"Adnan Younis"}]},{id:"49413",title:"Electrodeposition of Nanostructure Materials",slug:"electrodeposition-of-nanostructure-materials",totalDownloads:2851,totalCrossrefCites:0,totalDimensionsCites:4,book:{slug:"electroplating-of-nanostructures",title:"Electroplating of Nanostructures",fullTitle:"Electroplating of Nanostructures"},signatures:"Souad A. M. Al-Bat’hi",authors:[{id:"174793",title:"Dr.",name:"Mohamad",middleName:null,surname:"Souad",slug:"mohamad-souad",fullName:"Mohamad Souad"}]},{id:"72638",title:"Magnetic Full-Heusler Compounds for Thermoelectric Applications",slug:"magnetic-full-heusler-compounds-for-thermoelectric-applications",totalDownloads:258,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"magnetic-materials-and-magnetic-levitation",title:"Magnetic Materials and Magnetic Levitation",fullTitle:"Magnetic Materials and Magnetic Levitation"},signatures:"Kei Hayashi, Hezhang Li, Mao Eguchi, Yoshimi Nagashima and Yuzuru Miyazaki",authors:[{id:"109291",title:"Prof.",name:"Yuzuru",middleName:null,surname:"Miyazaki",slug:"yuzuru-miyazaki",fullName:"Yuzuru Miyazaki"},{id:"187244",title:"Associate Prof.",name:"Kei",middleName:null,surname:"Hayashi",slug:"kei-hayashi",fullName:"Kei Hayashi"},{id:"318309",title:"Mr.",name:"Hezhang",middleName:null,surname:"Li",slug:"hezhang-li",fullName:"Hezhang Li"},{id:"318310",title:"Ms.",name:"Yoshimi",middleName:null,surname:"Nagashima",slug:"yoshimi-nagashima",fullName:"Yoshimi Nagashima"},{id:"320040",title:"Mr.",name:"Mao",middleName:null,surname:"Eguchi",slug:"mao-eguchi",fullName:"Mao Eguchi"}]},{id:"55242",title:"Facile Methodology of Sol-Gel Synthesis for Metal Oxide Nanostructures",slug:"facile-methodology-of-sol-gel-synthesis-for-metal-oxide-nanostructures",totalDownloads:3305,totalCrossrefCites:12,totalDimensionsCites:22,book:{slug:"recent-applications-in-sol-gel-synthesis",title:"Recent Applications in Sol-Gel Synthesis",fullTitle:"Recent Applications in Sol-Gel Synthesis"},signatures:"Shrividhya Thiagarajan, Anandhavelu Sanmugam and\nDhanasekaran Vikraman",authors:[{id:"199404",title:"Prof.",name:"Dhanasekaran",middleName:null,surname:"Vikraman",slug:"dhanasekaran-vikraman",fullName:"Dhanasekaran Vikraman"},{id:"199415",title:"Dr.",name:"Shrividhya",middleName:null,surname:"Thiagarajan",slug:"shrividhya-thiagarajan",fullName:"Shrividhya Thiagarajan"},{id:"199416",title:"Dr.",name:"Anandhavelu",middleName:null,surname:"Sanmugam",slug:"anandhavelu-sanmugam",fullName:"Anandhavelu Sanmugam"}]},{id:"68271",title:"Superconductivity and Microwaves",slug:"superconductivity-and-microwaves",totalDownloads:497,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"on-the-properties-of-novel-superconductors",title:"On the Properties of Novel Superconductors",fullTitle:"On the Properties of Novel Superconductors"},signatures:"Rafael Zamorano Ulloa",authors:[{id:"176210",title:"Dr.",name:"Rafael",middleName:null,surname:"Zamorano Ulloa",slug:"rafael-zamorano-ulloa",fullName:"Rafael Zamorano Ulloa"}]},{id:"16866",title:"Strategies to Successfully Cross-Link Carbon Nanotubes",slug:"strategies-to-successfully-cross-link-carbon-nanotubes",totalDownloads:4861,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"electronic-properties-of-carbon-nanotubes",title:"Electronic Properties of Carbon Nanotubes",fullTitle:"Electronic Properties of Carbon Nanotubes"},signatures:"Steve Acquah, Darryl Ventura and Harold Kroto",authors:[{id:"28886",title:"Prof.",name:"Harold",middleName:"Walter",surname:"Kroto",slug:"harold-kroto",fullName:"Harold Kroto"},{id:"28974",title:"Dr.",name:"Steve",middleName:"Francis Albert",surname:"Acquah",slug:"steve-acquah",fullName:"Steve Acquah"},{id:"32949",title:"Mr",name:"Darryl",middleName:null,surname:"Ventura",slug:"darryl-ventura",fullName:"Darryl Ventura"}]},{id:"52962",title:"Electrospinning for Drug Delivery Systems: Drug Incorporation Techniques",slug:"electrospinning-for-drug-delivery-systems-drug-incorporation-techniques",totalDownloads:2171,totalCrossrefCites:5,totalDimensionsCites:20,book:{slug:"electrospinning-material-techniques-and-biomedical-applications",title:"Electrospinning",fullTitle:"Electrospinning - Material, Techniques, and Biomedical Applications"},signatures:"Cornejo Bravo José Manuel, Villarreal Gómez Luis Jesús and Serrano\nMedina Aracely",authors:[{id:"126286",title:"Dr.",name:"Luis Jesús",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-jesus-villarreal-gomez",fullName:"Luis Jesús Villarreal-Gómez"},{id:"189962",title:"Dr.",name:"Jose",middleName:null,surname:"Cornejo-Bravo",slug:"jose-cornejo-bravo",fullName:"Jose Cornejo-Bravo"},{id:"194663",title:"Dr.",name:"Aracely",middleName:null,surname:"Serrano-Medina",slug:"aracely-serrano-medina",fullName:"Aracely Serrano-Medina"}]},{id:"54703",title:"Sol-Gel-Derived Doped ZnO Thin Films: Processing, Properties, and Applications",slug:"sol-gel-derived-doped-zno-thin-films-processing-properties-and-applications",totalDownloads:2438,totalCrossrefCites:6,totalDimensionsCites:9,book:{slug:"recent-applications-in-sol-gel-synthesis",title:"Recent Applications in Sol-Gel Synthesis",fullTitle:"Recent Applications in Sol-Gel Synthesis"},signatures:"Asad Mahmood and Abdul Naeem",authors:[{id:"191569",title:"Prof.",name:"Abdul",middleName:null,surname:"Naeem",slug:"abdul-naeem",fullName:"Abdul Naeem"},{id:"196379",title:"Dr.",name:"Asad",middleName:null,surname:"Mahmood",slug:"asad-mahmood",fullName:"Asad Mahmood"}]},{id:"50296",title:"Graphene Materials to Remove Organic Pollutants and Heavy Metals from Water: Photocatalysis and Adsorption",slug:"graphene-materials-to-remove-organic-pollutants-and-heavy-metals-from-water-photocatalysis-and-adsor",totalDownloads:2355,totalCrossrefCites:4,totalDimensionsCites:17,book:{slug:"semiconductor-photocatalysis-materials-mechanisms-and-applications",title:"Semiconductor Photocatalysis",fullTitle:"Semiconductor Photocatalysis - Materials, Mechanisms and Applications"},signatures:"Eduardo E. Pérez-Ramírez, Miguel de la Luz-Asunción, Ana L.\nMartínez-Hernández and Carlos Velasco-Santos",authors:[{id:"178665",title:"Dr.",name:"Carlos",middleName:null,surname:"Velasco-Santos",slug:"carlos-velasco-santos",fullName:"Carlos Velasco-Santos"},{id:"178667",title:"Prof.",name:"Ana Laura",middleName:null,surname:"Martínez-Hernandez",slug:"ana-laura-martinez-hernandez",fullName:"Ana Laura Martínez-Hernandez"},{id:"178668",title:"MSc.",name:"Eduardo Enrique",middleName:null,surname:"Perez-Ramirez",slug:"eduardo-enrique-perez-ramirez",fullName:"Eduardo Enrique Perez-Ramirez"},{id:"178669",title:"MSc.",name:"Miguel",middleName:null,surname:"De La Luz-Asunción",slug:"miguel-de-la-luz-asuncion",fullName:"Miguel De La Luz-Asunción"}]},{id:"52906",title:"Functionalization of Surfaces in Layered Double Hydroxides and Hydroxide Salt Nanoparticles",slug:"functionalization-of-surfaces-in-layered-double-hydroxides-and-hydroxide-salt-nanoparticles",totalDownloads:2215,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"functionalized-nanomaterials",title:"Functionalized Nanomaterials",fullTitle:"Functionalized Nanomaterials"},signatures:"Gregorio Guadalupe Carbajal Arizaga, Cecilia Sánchez Jiménez,\nAlexandra Viruete and Jenny Arratia-Quijada",authors:[{id:"191649",title:"Dr.",name:"Gregorio",middleName:null,surname:"Arizaga",slug:"gregorio-arizaga",fullName:"Gregorio Arizaga"},{id:"192468",title:"BSc.",name:"Cecilia",middleName:null,surname:"Sánchez Jiménez",slug:"cecilia-sanchez-jimenez",fullName:"Cecilia Sánchez Jiménez"},{id:"192470",title:"BSc.",name:"Alexandra",middleName:null,surname:"Viruete",slug:"alexandra-viruete",fullName:"Alexandra Viruete"},{id:"195166",title:"Dr.",name:"Jenny",middleName:null,surname:"Arratia-Quijada",slug:"jenny-arratia-quijada",fullName:"Jenny Arratia-Quijada"}]}],onlineFirstChaptersFilter:{topicSlug:"nanotechnology-and-nanomaterials-material-science-condensed-matter-physics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/54294/mario-la-rosa",hash:"",query:{},params:{id:"54294",slug:"mario-la-rosa"},fullPath:"/profiles/54294/mario-la-rosa",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()