Part of the book: Tissue Engineering for Tissue and Organ Regeneration
Tissue engineering results from the use of cells and scaffolds to reproduce structural and spatial organization or function of a tissue. The Production of an ideal engineered tissue depends on its designed purpose. For clinical applications, the main concerns are biocompatibility and the generation of a tissue able to mimic most of its original biological functions. Moreover, the viability of an implanted tissue is associated with its stability to support vascular networks. This chapter summarizes the theory of the self-assembly approach for tissue engineering. Adjustments and modifications in stromal thickness and extracellular matrix composition for various self-assembled tissues are discussed. Methods developed to generate tissue closely mimicking the native morphology and structure, to incorporate capillary-like networks, and to reduce production time and costs are also reviewed. The self-assembly technique leads to the production of a stroma free of exogenous material and can be adapted to generate fastest, inexpensive, and near-to-native tissue bioengineering for medical and fundamental research applications.
Part of the book: Composition and Function of the Extracellular Matrix in the Human Body