Main indications for the use of ECMO assistance.
\r\n\t- how to enhance local economy, and to create attractive economic environment;
\r\n\t- how to make the economy or businesses sustainable and resilient;
\r\n\t- how to maintain and enhance quality of life through social welfare enhancement (income, health, and housing), and security and safety enhancement (from crimes, pollution, diseases, and disasters);
\r\n\t- how to promote social justice and intergenerational equity on resources and opportunities;
\r\n\t- how to incorporate resilience and disater risk reduction into actions;
\r\n\t- how to maintain and enhance the quality of environment through co-existing with the environment, better land/land use management, conserving ecosystems, restore and rehabilitate already damaged ecosystems;
\r\n\t- how to improve planning, implementation and measurement of sustainability for monitored outcomes.
Approaches are needed for providing advanced autonomous wheeled robots with a sense of self, immediate ambience, and mission. The following list of abilities would form the desired feature set of such approaches: self-localization, detection and correction of course deviation errors, faster and more reliable identification of friend or foe, simultaneous localization and mapping in uncharted environments without necessarily depending on external assistance, and being able to serve as web services. Situations, where enhanced robots with such rich feature sets come to play, span competitions such as line following, cooperative mini sumo fighting, and cooperative labyrinth discovery. In this chapter we look into how such features may be realized towards creating intelligent robots.
\n\t\t\tCurrently through-cell localization in robots mainly relies on availability of shaft-encoders. In this regard, we would like to firstly present a simple-to-implement through-cell localization approach for robots even without a shaft-encoder in order to empower them to traverse approximately on the desired course (curve or linear) and end up registered properly at the desired target position. Researchers have presented ways including fuzzy- and neural-based control systems for correcting the navigation deviation error. By providing a formulation for deviation error, especially during turning curves, and then applying reverse formulation to correct it, our self-corrective gyroscope-accelerometer-encoder cascade control system adjusts the robot even more. When the robot detects that it has yawed off course, the system affects the requisite maneuvering and its timing in order to correct the deviation from course.
\n\t\t\tNext step is to facilitate robots with ability of Friend-or-Foe (FoF) identification for cooperative multi-robot tasks. Mini-sumo team robots are well-known case-in-point where FoF identification capability would be most welcome whereas absolute positioning of teammates is not practical. Our simple-to-implement FoF identification does not require two-way communication as it only relies on decryption of payload in one direction. It is shown that the replay attack is not feasible due to high computation complexity as the communication is encrypted and timestamp is inserted in the messages. Our hardware implementation of cooperative robots incorporates a gyroscope chipset and rotary radar which is able to sense the direction and distance to detected object. Studying dynamics of robots allows finding solutions to attack even stronger enemy from sides so they will not be able to resist. Besides, there are certain situations that robots must evade or even try escaping instead of facing a fight. Our experimental work here attempts to illustrate situations of real battlefields of cooperative mini-sumo competitions as an example of localization, mapping, and collaborative problem solving in uncharted environments.
\n\t\t\tSimultaneous localization and mapping (SLAM) is another feature we wish to discuss here. Within this respect, robots are not only able to identify friends from foes but also they construct a real-time map of the situation without use of expensive equipments as laser beam sensors or vision cells.
\n\t\t\tThere have been a lot of change and improvement in robotics within current decade. Today, humanoid robots such as ASIMO are able to talk, walk, learn and communicate. On the other hand, there are new trends for self-adjustment and calibration in wheeled robots. Both humanoid and wheeled robots may be able to identify friends or foes, communicate with others, and correct deviation errors. Researchers have provided quite acceptable balance mechanisms for any type of inverted pendulum based robots from a range of humanoids holding themselves on one leg to wheeled robots standing on a wheel or two while moving. Yet they cannot jump, nor run on irregular surfaces like humans do. However, there are many other features including speech synthesizing and video processing enabled on more advanced robots.
\n\t\t\tAdvanced robots should be equipped with further human-like capability to reason and base it on knowing the meaning of its surroundings. At this point, we tend to introduce the subject of Semantic Intelligence (SI) as opposed to and in augmentation of conventional artificial intelligence. Better understanding of environment, and reasoning necessarily through SI fueled by the intelligence of knowing the meaning of what goes around. In other words, SI would be enabling robots with the power of imagination as we do. As future study, we aim to shed some light on bases of robotic behavior towards thinking, learning, and imagining the way human being does through Semantic Intelligence Reasoning.
\n\t\t\tIn next section, we will discuss self localization of robots with limited resources while they have neither shaft encoders nor gyroscope. Consequent section will represent more advanced family of robots where they are able to correct deviated errors with use of gyroscope, accelerometer, and shaft encoder in a triple cascaded loop. Section 4 presents our formulations and algorithms for identification of Friend or Foe and responding accordingly in battle of multi and collaborative robots. Then we will present Simultaneous Localization and Mapping for multi collaborative robots in section 5. Section 6 will cover a brief introductory on Semantic Intelligence and application example for solving a robotic problem. Finally the chapter is concluded in section 7.
\n\t\tLine following is one of the simplest categories of wheeled robots. Line following robots is mainly equipped with two DC motors for left and right wheels and line tracking sensors which is a set of 1 to 6 Infrared transceiver pairs. (Notice that using only one sensor to follow a line makes the robot able to only follow edge of a connected and simple path without extra loops). Microrobot Cruiser robot (Active-Robots) were selected for this section due to the simplicity of design. In addition, there is neither shaft encoder nor gyroscope on this robot. It is aimed to enable even such robots to traverse the desired curve or path.
\n\t\t\tAs can be seen in Figure 1 (A), the front side of the robot is equipped with 6 IR sensors (3 at left and at right side) each one consisting of an infrared transmitter LED and an infrared receiver transistor read by ADC port of the microcontroller. The ADC port output is a voltage between [0,Vmax\n\t\t\t\t] presenting the reverse relation with distance to reflector (an obstacle, for example, walls in labyrinth platform). Sensors provide \n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t
left section of sensor boards of Microrobot Cruiser robot (A), and Turning left over the perimeter of the circle in a labyrinth: representation of a situation where the decision maker has decreed that the robot is to turn left (B).
For a robot turning toward a direction, its starting position is important. The radius of the curve and its length need be calculated. The main points are deciding on which curve (radius defines it) is the best choice, and when the turn has been accomplished. It is assumed that the best curve is the one which keeps the robot straddling the middle line of the next cell.
\n\t\t\tPractically, if\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t
Now let’s consider more advanced robots which are widely used in real-life where not only pushing the robot to follow a specific curve is intended but also error detection and correction is considered simultaneously. Autonomous Guided Vehicles (AGVs) are highly used everywhere. Next section presents a solution to error detection and correction in situations that the machine works properly however, problems such as slippage causes deviation.
\n\t\tSelf-corrective gyroscope-accelerometer-encoder cascade control system adjusts the robot if the host vehicle deviates from its designated lane. In case the vehicle detects that it has yawed away, the system calculates a desired maneuvering moment in order to correct deviation. The calculation is simply addition/subtraction from the desired value of movement expected from shaft encoder sensors of both wheels. This is done by steering the host vehicle back on course in a direction that avoids the host vehicle\'s lane deviation. The system compensates for the desired yawing moment by a correction factor or a gain. Manufacturing a new generation of AGVs with ability of self-corrective gyroscope-accelerometer-encoder cascade control system will improve current AGVs and cooperative robots to overcome their major difficulties and improve their utility.
\n\t\t\tWhen measuring odometry errors, one must distinguish between 1) Systematic errors and 2) non-systematic errors. Systematic errors are caused by kinematic imperfections of the mobile robot (i.e. unequal wheel-diameters). Another systematic error caused in many researches is simplifying kinematic control properties by default values (i.e. d = 0, d is distance from new referenced point to intersection of rear wheel axis and symmetry axis of mobile robot). Extending the kinematic control into dynamics level, the majority of researchers consider the general case of d = 0 in dynamic model of mobile robot, whereas the restriction of I = 0 is mostly imposed by the kinematic controller (Pengcheng & Zhicheng, 2007). On the other hand, non-systematic errors may be caused by wheel-slippage or irregularities of the floor. University of Michigan Benchmark test (UMBmark), is a test method for systematic errors prescribing a simple testing procedure designed to quantitatively measure the odometric accuracy of a mobile robot (Borenstein & Feng, 1995). Non-systematic errors are more difficult to be detected. Cascade control systems for localization are more reliable in this sense.
\n\t\t\tJ. Borenstein et al (Borenstein et al., 1997) defined seven categories for positioning systems based on the type of sensors used in controlling the robot. 1) Odometry is based on simple equations which hold true when wheel revolutions can be translated accurately into linear displacement relative to the floor. However, in case of wheel slippage and some other more subtle causes, wheel rotations may not translate proportionally into linear motion. The resulting errors can be categorized into one of two groups: systematic errors and non-systematic errors. 2) Inertial Navigation uses gyroscopes and accelerometers to measure rate of rotation and acceleration, respectively. Measurements are integrated once (or twice, for accelerometers) to yield position. 3) Magnetic Compass is widely used. However, the earth\'s magnetic field is often distorted near power lines or steel structures. Besides, the speed of measurement and accuracy is low. There are several types of magnetic compasses due to variety of physical effects related to the earth\'s magnetic field. Some of them include Mechanical, Fluxgate, Hall-effect, Magnetoresistive, and Magnetoelastic compasses. 4) Active Beacons navigation systems are the most common navigation aids on ships and airplanes, as well as on commercial mobile robot systems. Two different types of active beacon systems can be distinguished: trilateration that is the determination of a vehicle\'s position based on distance measurements to known beacon sources; and triangulation, which in this configuration there are three or more active transmitters mounted at known locations. 5) Global Positioning System (GPS) is a revolutionary technology for outdoor navigation. GPS was developed as a Joint Services Program by the Department of Defense. However, GPS is not applicable in most of robotics fields due to two reasons, firstly, unavailability of GPS signals indoor; and secondly, low accuracy in small prototype single chip GPS receivers used in cellular phones and robot boards. 6) Landmark Navigation is based on landmarks that are distinct features so a robot can recognize from its sensory input. Landmarks can be geometric shapes (e.g., rectangles, lines, circles), and they may include additional information (e.g., in the form of bar-codes). In general, landmarks have a fixed and known position, relative to which a robot can localize itself. 7) Model Matching or Map-based positioning, also known as map matching is a technique in which the robot uses its sensors to create a map of its local environment. This local map is then compared to a global map previously stored in memory. If a match is found, then the robot can compute its actual position and orientation in the environment. Certainly there are lots of situations where achieving global map is unfeasible or prohibited. Therefore, solutions based on independent sensors carried on robots are more likely valued.
\n\t\t\tSome applications of cascade control can be seen in the research done by (Ke et al., 2004) where cascade control strategy of robot subsystem has been applied instead of the widely used single speed-feedback closed-loop control strategy. They provided the cascade control system such that the outer loop is to regulate speed of the wheel; the inner loop is to adjust the current passing through the DC-motor. By applying cascade control system to DC-motor, the unexpected time-delay and inaccuracy can be reduced. The dynamic features of robots motion and anti-interference of robots can be improved. At the same time, the damage of current to DC-motor can be dropped and the life span of DC-motor can be prolonged.
\n\t\t\tVarious control strategies for mobile robot formations have been reported in the literature, including behavior based methods, virtual structure techniques, and leader–follower schemes (Defoort et al., 2008). Among them, the leader–follower approaches have been well recognized and become the most popular approaches.
\n\t\t\tThe basic idea of this scheme is that one robot is selected as leader and is responsible for guiding the formation. The other robots, called followers, are required to track the position and orientation of the leader with some prescribed offsets. The advantage of using such a strategy is that specifying a single quantity (the leader’s motion) directs the group behavior. In followers, sliding-mode formation controller is applied which is only based on the derivation of relative motion states. It eliminates the need for measurement or estimation of the absolute velocity of the leader and enables formation control using vision systems carried by the followers. However, it creates bottleneck for message passing and decision making while it can be improved by decentralized autonomous control such as in (Elçi & Rahnama, 2009) on the other hand, situations wherein the leader dies is not considered.
\n\t\t\tOther method of cascade control in robotics is with use of multi visual elements in positioning and controlling the motion of articulated arms (Lippiello et al., 2007). In a multi arm robotic cell, visual systems are usually composed of two or more cameras that can be rigidly attached to the robot end-effectors or fixed in the workspace. Hence, the use of both configurations at the same time makes the execution of complex tasks easier and offers higher flexibility in the presence of a dynamic scenario.
\n\t\t\tCascade control for positioning is also used in Unmanned Aerial Vehicles (UAVs). A decentralized cascade control system including autopilot and trajectory control units presents more precise collision avoidance strategy (Boivin et al., 2008).
\n\t\t\tFollowing information on various application areas of AGVs is presented in order to highlight wide spectrum of applicability of the results of the upgraded AGVs.
\n\t\t\t\tTypical AGV applications in the automotive industry include automated raw material delivery, automated work in process movements between manufacturing cells, and finished goods transport. AGVs link shipping/receiving, warehousing, and production with just-in-time part deliveries that minimize line side storage requirements. AGV systems help create the fork-free manufacturing environment which many plants in the automotive industry are seeking.
\n\t\t\t\tUsing an AGV Automated Transport System (ATS) frees hospital employees to spend a maximum amount of their time directly on patient care. It improves safety in the hospital by minimizing the potential for hospital workers to be injured pushing heavy carts. It tracks all material movements and can prioritize jobs so that the most important tasks can be completed first (for example: surgical supplies, then patient meals, then linens, then trash, etc.) The AGV can be outfitted with obstacle detection sensors which bring it to a safe stop before contacting any obstacles that might be in its path. It is reliable, safe, efficient and cost effective.
\n\t\t\t\tTimely movement of materials is a critical element to an efficient manufacturing operation. The costs associated with delivering raw materials, moving work in process and removing finished goods must be minimized while also minimizing any product damage that is the result of improper handling. An AGV system helps streamline operations while also delivering improved safety and tracking the movement of materials.
\n\t\t\t\t\tOur aim is to create a universal AGV controller board with the abilities as explained in the previous section. Manufacturing a new generation of AGVs with ability of Self-Corrective Compass Cascaded Control System will improve current AGVs to overcome difficulties mentioned earlier.
\n\t\t\t\t\tThe product is a universal robot controller board which can be produced and exported worldwide. Future enhancements were taken into account as covering more servo/stepper motors for full fledged robots serving different purposes.
\n\t\t\t\tAGVs are widely used in production lines of factories. They mostly track a line on floor rather than being able to accurately follow dynamics of planned trajectories of start and end positions. In more advanced cases, they are equipped with a feedback control loop, which corrects the deviation errors due to movement imperfection of actuators and motors. This section presents triple feedback loops consisting of gyroscope, accelerometer, and shaft-encoder to provide self-corrective cascade control system.
\n\t\t\t\tA cascade control system is a multiple-loop system where the primary variable is controlled by adjusting the set point of a related secondary variable controller. The secondary variable then affects the primary variable through the process.
\n\t\t\t\tThe primary objective in cascade control is to divide an otherwise difficult to control process into two portions, whereby a secondary control loop is formed around major disturbances thus leaving only minor disturbances to be controlled by the primary controller.
\n\t\t\t\tDespite the fact that first loop (which might be implemented by a PID controller) detects and corrects deviation errors in trajectory planning, however in practice there are disturbances that are generally excluded in theoretical implementations. Nevertheless, disturbances such as friction and slippage are highly important and are frequently happening in real life robotic implementations. For instance, an oily floor in factory causes AGVs to slide however, the primary control does not recognize it.
\n\t\t\t\tIn such a scenario, Global Positioning System (GPS) is not useful either because rotational errors (without movement of the position) are not detectable. In addition, in real life examples of factories, reading GPS signals indoor is barely possible. Besides, accuracy of GPS receptors is very low in small form factor carried by tiny robots.
\n\t\t\t\tOn the other hand, errors caused by skidding wheels while robot has not moved or parallel deviation can be detected by a ternary control loop using not only detection of movement, but also detection of acceleration towards each axis.
\n\t\t\tEssentially the movement of the robot is translated in terms of number of Pulses generated from shaft-encoders connected to each wheel. The number of Steps estimates the length of movement and rotation of each wheel. However it might face with an error in movement. Therefore, the robot is deviated from the straight line. Consequently, error on both motors at the same time do not deviate the robot from the line but it causes less or more movement on that line. Therefore, the trajectory planning of the robot movement is planned as a rectangle starting from a vertex and return to the same after passing all four edges.
\n\t\t\t\tThis path is divided into smaller sub paths based on number of traversed pulses. And at each, the magnetic angle of the robot is read using the compass module. If the robot is deviated the correct value for control algorithm is calculated to eliminate and minimize the total error.
\n\t\t\t\tFeedback control with shaft encoder (A), additional loop for gyroscope (B), and the third loop for accelerometer (C).
As shown in Figure 2(A), the robot is only based on shaft encoder and without Gyroscope to be used in cascaded control as the second loop. The loop continues until the number of pulses coming from shaft encoders reaches the required value. For instance, the command go_forward(1 meter) will be translated as Right_Servo(CW, 1000); and Left_Servo(CCW, 1000) then the shaft encoder which triggers external interrupt routines for counting left and right pulses. The encoder value will be increased at each interrupt call until it reaches the maximum value (i.e. 1000 in above example). Then it sends a stop command to pulse generator module at control unit to stop the corresponding motor.
\n\t\t\t\tSuch system yet is vulnerable to errors caused by the environment such as slippage while shaft encoders yet present correct movement. A command might be wasted at mechanics of motor because of voltage loss etc. in Addition, the motor might work but the wheel does not have enough friction with the floor to push the robot. Therefore, gyroscope enables the robot to understand such deviations. Figure 2 (B) presents the cascaded control with inclusion of Gyroscope. Yet, slippages in the direction of movement while both wheels having same amount of error do not activate gyroscope. Our proposed way to detect such error is to control acceleration continuously toward direction of movement. Acceleration is zero while traversing a path on a fixed speed. Moreover, acceleration can be subtracted from output of accelerometer in situations that robot traverses a path on variable speed. Figure 2 (C) presents the triple cascade control loop.
\n\t\t\tIn order to test the result, we developed a scenario for movement of the robot without/with triple cascade control feedback mechanism. The robot must traverse a rectangle of edge size equal to one meter and return to the home position. The error is calculated in both unmodified and modified robot assuming only one direction of rotation (CCW). Following figure presents the developed scenario.
\n\t\t\t\tTrajectory design of self-corrective cascade control robot.
As shown in Figure 4 (A), robot without second and third loop in cascade control mechanism deviates a lot from desired positions in robot trajectory. Figure 4 (B) presents the corrected error after applying above mentioned loops to correct the deviation error.
\n\t\t\t\tRobot with only shaft encoder feedback control loop (A), and results while triple loop cascade control is applied (B).
In next section more sophisticated robots are presented while they are not only to correct the deviated errors but also they are able to identify friends from enemies in cooperative environment and help each other towards achieving the common goal.
\n\t\t\tIn this section a novel and simple-to-implement FOF identification system is proposed. The system is composed of ultrasonic range finder rotary radar scanning the circumference for obstacles, and an infrared receiver reading encrypted echo messages propagated from omnidirectional infrared transmitter on the detected object through a fixed direction.
\n\t\t\tEach robot continuously transmits a message encrypted by a shared secret key between teammates consisting of its unique identifier and timestamp. The simplicity is due to excluding transceiver system for exchanging encoded/decoded messages. System counters replay attack by comparing the sequence of decoded timestamp. Encryption is done using a symmetric encryption technique such as RC5. The reason for selecting RC5 is its simplicity and low decryption time. Besides its hardware implementation consists of few XOR and simple basic operators which are available in all microcontrollers.
\n\t\t\tThe decision making algorithm and behavioral aspects of each robot are represented as follows.
\n\t\t\t\n\t\t\t\t\t\t1. Scan surrounding objects using ultrasonic sensor. \n\t\t\t\t\t
\n\t\t\t\t\t\t2. Create a record consist of distance and position for detected elements. \n\t\t\t\t\t
\n\t\t\t\t\t\t3. Fetch the queue top record and direct the rotary radar towards its position. \n\t\t\t\t\t
\n\t\t\t\t\t\t4. Listen to IR receptor within a certain period (i.e. 100 ms)\n\t\t\t\t\t
\n\t\t\t\t\t\t5. if no message is received\n\t\t\t\t\t
\n\t\t\t\t\t\t\t\tClear all records\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\tAttack the object\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\tGo to 1\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t6. Otherwise, \n\t\t\t\t\t
\n\t\t\t\t\t\t\t\tDecode the message using the secret key\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\tIf not decodable Go to 5.a\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\tOtherwise, register the identifier and timestamp besides position and distance for detected object\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\tListen again to IR receptor within a certain period\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\tDecode the message using the secret key\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\tIf not decodable Go to 5.a\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\tOtherwise, match the identifier and timestamp against the one kept before\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\tIf identifier mismatches or timestamp is the same or smaller than as it was before, Go to 5.a\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\tElse if detected identifier is the same as the identifier of detector, Go to 5.a\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\tGo to 3\n\t\t\t\t\t\t\t
It is assumed that the received message is free of noise and corrupted messages are automatically discarded. This can be done by listening for a limited number of times if message is not decodable. However, transmission is modulated on a 38 KHz IR carrier so sunlight and fluorescent light are not highly distorting the IR transmitted stream.
\n\t\t\tOur first generation of cooperative mini sumo robot included an electronic compass instead of gyroscope and accelerometer so it was not able to detect skidding errors towards any axes without possibly the robot being rotated. Very common instance is when the robot is pushed by enemies. Figure 5 (A) presents the first developed board being able to control two DC servomotors, communicate through wireless over 900MHz modulation, and having infrared sensors and bumpers to detect surrounding objects.
\n\t\t\t\tIn the second design, an extension board suitable for open source Mark III mini sumo robots is presented. The Mark III Robot is the successor to the two previous robot kits designed and sold by the Portland Area Robotics Society. The base robot is serial port programmable. It includes Picture 16F877 20MHz microcontroller with boot-loader which has made programming steps easier. In System Programming (ISP) is provided by boot-loader facility. It is possible to program the robot in Object Oriented PIC (OOPIC) framework. It includes controller for two DC servomotors in addition to three line following and two range finder sensors. Low-battery indicator is an extra feature provided on Mark III. However, there were few requirements to enhance the robot to fit our requirements for cooperative robotics. Wireless Communication, Ultrasonic range finder, infrared modulated transceiver, gyroscope, and acceleration sensors were added in extension board as shown in Figure 5 (B). In addition, the robot uses two GWS S03N 2BB DC servomotors each providing 70 gr.cm torques at 6v. However, the battery pack connected to motors is not regulated so it does not provide steady voltage while discharging. It effects center point of Servo calibration which effects servo proper movement. In extension board, a regulator is also included to fix the problem explained above.
\n\t\t\t\tSuch robots are able to communicate and collaborate with each other in addition to benefitting from self-corrective cascaded control system. It can be easily used as a controller for intelligent robotics to solve a given task cooperatively by multiple robots.
\n\t\t\t\tThe first generation of cooperative mini sumo platform robots 9×10 cm (A), and the extension board for Mark III (B).
Following figure represents two of the worst cases for decision making in battlefield. These two crucial situations shown in Figure 6 includes 1) When an enemy robot masks a friend and enemy copies messages it receives from the masked friend to others so called reply attack. 2) Attacking an enemy by two robots from opposite sides
\n\t\t\t\tAn example arrangement of two teams of robots while fighting. Arrows demonstrate detection of objects.
In the first instance, E1 stands between F2 and F3 covering their line of sight, so it is possible for E1 to copy messages propagated from F3 and replay them to F2 and present itself as a friend and then attack against F2. In this situation, F2 assumes that E1 is friend F3 and it will be targeting the next possible enemy detected by rotary radar however it will be attacked by E1.
\n\t\t\t\t\tPart 6.1 of the algorithm presented in Section 2 counters replay attack. In order to avoid replay attack, the timestamp included in decrypted message is compared against the one received in advance. Besides, the other friend robot receives the same copy of its own transmitted message including its identifier. Therefore it recognizes the enemy by matching and comparing the identifier of copied message with its own unique identifier. Therefore it recognizes the enemy.
\n\t\t\t\tAccording to the algorithm represented in previous section, both F2 and F3 start attacking E1 from opposite sides either towards sideways of E1, or one faces front of E1. In both cases, they keep pushing enemy until they see the boundary so they return and start searching for other enemies. However, they either stay in this situation and challenging for a long time or one of friend robots understands that it is pushed out. It is highly possible so any of friends will be detected by other enemies and they will be pushed out. Therefore, a convincing strategy is to escape if it is not able to push. Being pushed or challenging without being able to push is simply detectable by checking gyroscope and acceleration sensors. LIS3LV02DL from free samples of ST Microelectronics single chipset gyro-acceleration sensor is used to provide movement and acceleration towards x, y, and z axes.
\n\t\t\t\tEscape strategy simply consists of backing off for a period or rotating around itself with maximum speed and then moving towards a direction so it can start the algorithm from beginning or attack the enemy from a better direction.
\n\t\t\t\tAnother upgrade in algorithm is to cancel an attack if the enemy is escaped away out of detection radios. The reason is making the system more efficient and spending time on fighting against other enemies instead of an escaping robot which might not be caught in a short while.
\n\t\t\t\tIt is assumed that the radius of detection range is adjusted to half of radius of the platform. It is due to applying Divide and Conquer (DAC) policy within cooperative robots by assuming to solve each subset of battlefield by one of the robots. In addition it reduces the complexity and collision while communicating with other teammates. Later it is shown that the radius of detection can be dynamically changed based on real-time conditions of match.
\n\t\t\t\tA better but more time consuming approach is to detect all enemies in range and then decide which one to attack rather than attacking against first detected enemy. For instance, E1and E2 are in see sight of the F2. In this situation F2 should be intelligent enough to choose the best attack. It is highly possible for robots to be at the boundary so they cannot back off or run away. Therefore the robot has to attack to the first detected enemy asking for help from other teammates.
\n\t\t\t\tDetermining the level of power of enemy robots helps deciding to utilize escape strategy more efficiently. The problem refers to the condition that level power of enemy robots are more than ours. Therefore, in such situation having face to face attack is not desired. Instead, the only way to remedy is to attack from wheel sides of enemy robot. Consequently finding relative movement angle of the enemy robot helps friend robots to decide whether to attack or not. Following are three main concerns.
\n\t\t\t\tUtilizing gyroscope and matching it with usual speed of the robot in steady state helps measuring movement toward x,y,z axes. See Figure 7.
\n\t\t\t\t\tThe direction of axes over the robot while y showing the front of the robot.
Respectively\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
Formula: \n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tθ\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tEquation 033.wmf>is acceptable if\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tθ\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tθ\n\t\t\t\t\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t.
Estimating velocity of enemy robots is done through two ways. Firstly, while the enemy attacks directly towards friend. Therefore,\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
Second way of calculation of the average speed of enemy.
The relative angle is considered in both static and dynamic situations. Static situation (see Figure 10) is while friend robot does not move. Reversely, dynamic situation declares when friend robot is moving.
\n\t\t\t\t\tWhile enemy is getting far from friend robot (A). The enemy gets closer with a desirable angle (B). While enemy gets closer with an angle more than threshold (C).
In Figure 10 (A) \n\t\t\t\t\t\t
\n\t\t\t\t\t\t
In Figure 10 (B)\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
In the situation shown by Figure 10 (C) friend is not allowed to attack. Therefore execution of escape strategy is done and friend robot runs away. In other words, \n\t\t\t\t\t\t
\n\t\t\t\t\t\t\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
1. If \n\t\t\t\t\t\t\t\t
2. If \n\t\t\t\t\t\t\t\t
3. If \n\t\t\t\t\t\t\t\t
Next, the dynamic situation is considered. As shown in Figure 11.\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
If \n\t\t\t\t\t\t
1. If \n\t\t\t\t\t\t\t\t
2. If \n\t\t\t\t\t\t\t\t
3. If \n\t\t\t\t\t\t\t\t
Conditions 2 and 3 are desirable to attack. However, a better strategy in condition 4 is escaping away. Condition 1 depends on the ratio of speed of friend versus speed of enemy. This ratio can be used in decision making strategy whether to attack or leave the enemy.
\n\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tv\n\t\t\t\t\t\t\t\t\t\t\t\t\t¯\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tv\n\t\t\t\t\t\t\t\t\t\t\t\t\tf\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tA), and \n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tv\n\t\t\t\t\t\t\t\t\t\t\t\t\tf\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tv\n\t\t\t\t\t\t\t\t\t\t\t\t\t¯\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tα\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t(B).
If the enemy comes towards friend straightly and there would be no possibility to escape, friend should start attack while announcing request for help over wireless medium. Notice, it is already known that level of power of enemy is higher than level of power of friend. Therefore more likely, friend will lose the battle. Now teammates can decide to help the challenging friend if the distance is acceptable or if friend is in the range of their radar, or leave the friend to die.
\n\t\t\t\tThe developed system is tested on team of three robots. The team of enemies consists of three cooperative robots with basic abilities which include IR transceiver for FOF identification. The test is done for ten rounds. Last remaining robot(s) win the game. There were five different situations to test robots. Therefore, fifty different rounds of competition were conducted. These five situations included basic, wireless enabled, radar and wireless enabled, radar and wireless with gyroscope, and finally everything in addition to utilizing escape strategy. Wireless communication helps robots to talk to each other, share their information, and ask for help. Rotary radar is an ultrasonic range finder. Gyroscope shows movement towards all directions. Finally escape strategy is a software enhancement as mentioned in earlier section. Following figure presents five set of competitions each in ten rounds. The absolute duration for each competition resulting loss of one team is considered separately in terms of mm:ss.
\n\t\t\t\tCompetition time for 50 different tests.
An unmanned aerial vehicle (UAV) is tasked to explore an unknown environment and to map the features it finds, but must do so without the use of infrastructure-based localization systems such as GPS, or any a priori terrain data. The UAV navigates using a statistical estimation technique known as simultaneous localization and mapping (SLAM) which allows for the simultaneous estimation of the location of the UAV as well as the location of the features it sees. SLAM offers a unique approach to vehicle localization with potential applications including planetary exploration, or when GPS is denied (for example under intentional GPS jamming, or applications where GPS signals cannot be reached), but more importantly can be used to augment already existing systems to improve robustness to navigation failure (Bryson & Sukkarieh, 2008).
\n\t\t\tThe solution of the SLAM problem has been one of the notable successes of the robotics community over the past decade. SLAM has been formulated and solved as a theoretical problem in a number of different forms. SLAM has also been implemented in a number of different domains from indoor robots, to outdoor, underwater and airborne systems. At a theoretical and conceptual level, SLAM can now be considered a solved problem. However, substantial issues remain in practically realizing more general SLAM solutions and notably in building and using perceptually rich maps as part of a SLAM algorithm (Chanier et al., 2008) (Pathiranage et al., 2008).
\n\t\t\tThe first problem is the computational complexity due to the growing state vector with each added landmark in the environment. The second problem is the data association which matches the observations and landmarks in the state vector (Temeltas & Kayak, 2008).
\n\t\t\tOne key requirement for SLAM to work is that it must re observe features, and this has two effects: firstly, the improvement of the location estimate of the feature; and secondly, the improvement of the location estimate of the platform because of the statistical correlations that link the platform to the feature. So our UAV has two options; should it explore more unknown terrain to find new features, or should it revisit known features to improve localization quality. These options are instantiated into the online path planner for the UAV (Bryson & Sukkarieh, 2008).
\n\t\t\tOne of the main problems with the SLAM algorithm has been the computational requirements. Although the algorithm is originally of O(N3) the complexity of the SLAM algorithm can be reduced to O(N2),N being the number of landmarks in the map. For long duration missions the number of landmarks will increase and eventually computer resources will not be sufficient to update the map in real time. This N2 scaling problem arises because each landmark is correlated to all other landmarks. The correlation appears since the observation of a new landmark is obtained with a sensor mounted on the mobile robot and thus the landmark location error will be correlated with the error in the vehicle location and the errors in other landmarks of the map. This correlation is of fundamental importance for the long-term convergence of the algorithm and needs to be maintained for the full duration of the mission (Frese, 2005).
\n\t\t\tRecently, estimation algorithms have been roughly classified according to their underlying basic principle. The most popular approaches to the SLAM problem are the extended Kalman filter (EKF-SLAM) and the Rao–Black wellized particle filter. The effectiveness of the EKF approach comes from the fact that it estimates a fully correlated posterior over feature maps and vehicle poses. EKF-SLAM permits linear approximations of the motion and the measurement models, and it assumes Gaussian representations for the probability density functions.the solution of the EKF-SLAM is inconsistent due to errors introduced during linearization, which induces inaccurate maps with filter divergence. Therefore, the consistency issue of the EKF-SLAM has attracted the attention of the research community due to its importance, and many recent research efforts have concentrated on improving the classical algorithm (Kim et al., 2008).
\n\t\t\tThere are \n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t
Different situations while scanning the environment by ultrasonic radar
The matrix \n\t\t\t\t\t
A friend is masked by another friend.
In this condition l is the distance between the robot at the bottom and the masking robot. The masking robot is having \n\t\t\t\t\t
\n\t\t\t\t\t
and, by the sine rules on triangle
\n\t\t\t\tthen scanner robot updates l and \n\t\t\t\t\t
Third situation while a friend is masked by an enemy. Blue robot is scanner, Friends are shown in green color, and Enemies are shown by red.
In the Figure 15 (A) a friend is masked by an enemy. In this condition l and\n\t\t\t\t\t
\n\t\t\t\t\t
In case of having no friend in a proper position to solve the problem presented in Figure 15 (B), the record and estimation of position of friends are considered. \n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t
Semantic Web Services provide a new approach to communication, situation- and context-awareness, and knowledge representation for reasoning by multiple agents. Collaboratively working multiple robots on a mesh acting autonomously require a universal platform in order to merge data processed by each agent for perception and map building while gathering possible answers to a query.
\n\t\t\tIn the foundation of semantic Web reasoning engines and communication platforms rests Open World Assumption (OWA). This is due to ‘openness’ of web where absence of entities being searched should not entail negative response rather simply treated as a fact “not available at the moment.” While, that sets the base in anticipation of future enhancements of the fact base, it is not preferred in situations where a definitive answer is needed. Closed World Assumption (CWA) alternatively returns definitive yes/no answers even in situations where future enhancements are inevitable (Elçi et al., 2008). It is also essential to derive partial results from a set of cooperative agents/robots based on Locally Close World (LCW) settings (Doherty et al., 2000).
\n\t\t\tRobots currently apply CWA for decision making and learning. They could also utilize the huge mass of information available on semantic web in order to deduct new knowledge using standard or extended OWA. Consequently, robots cannot only cooperate and communicate using semantic Web platform but also be able to retrieve much more realistic and acceptable answers to queries. This is even more so where unsupervised learning plays the main role where our knowledge about task is incomplete; and that is true for the most of real life situations.
\n\t\t\tSystems with distributed processing and control require distributed coordination in order to achieve a shared goal. Such systems may be realized using self-actuated agents donning semantic capability such as that of an autonomous semantic agent (ASA). Implementation of an ASA (Elçi et al., 2006) as a semantic Web service possibly offered by a robot provides the required features. In a multi-agent system, one of the ASAs may indeed assume as well the duty of a common site acting as the central registry of web services in the field. We devised new software architecture for distributed environments using autonomous semantic agents (ASAs) (Elçi & Rahnama, IWSC2005, 2005). Multiple ASAs can act collaboratively serving the same goal. One of the applications ASAs can serve is Traffic network Management System (TMS).
\n\t\t\tRecent research on traffic and transport systems has been concentrated on vehicle and driver safety through fitting vehicles with onboard IT systems. TMS takes control over traffic flow and reports possible incidents in an urban area. An intersection network can then serve to improve the quality of life in mobile municipal communities ((Elçi & Rahnama, 8-9 June 2006), (Takahashi et al., Dec. 2004). Traffic junctions can be replaced by MASAs rather than to be controlled through a centralized architecture. An instance of such structure is a security scenario concerning tracing and tracking of missing vehicles was considered and shown how to implement it over so called Traffic network Management and Information System (TMIS) network. Simulation results showed promising outcomes. Further research involving similar development base was also suggested (Elçi et al., TEHOSS 2006, 09-13 October 2006). Cooperatively responding to a query by intelligent intersections in TMIS is in some essential ways similar to a multi-agent robotic system discovering a way out of a labyrinth. Communication-wise, each robot should talk to its neighbors and share its information. Furthermore, we aim at effecting coordination and cooperation among MASAs towards realizing intelligent behavior in order to achieve a shared goal through processes benefiting from semantic web technologies (Elçi & Rahnama, ROMAN 2007, August 26-29, 2007) (Elçi & Rahnama, 30 Nov - 1 Dec 2006). Within this respect and for simplicity in referring to these robots, and in order to convey their capability better, we will call them as the Cooperative Labyrinth Discovery Robots (CLDRs).
\n\t\t\tResearchers have worked in various categories of cooperatively solving problems by robots. For instance, to recite a few, Takahashi et al. (Takahashi et al., Dec. 2004) studied autonomous decentralized control for formation of multiple mobile robots. They covered formulations for forming a group of robots following the same goal. Chia-How Lin et al.(Lin et al., 10-12 Oct. 2005) represented an agent-based robot control design for multi-robot cooperation in real time control. Their system is suitable for cooperative tasks with capability of controlling heterogeneous robots. Finally, Xie Yun et al. (Yun et al., 5-8 Oct. 2003) have prepared a communication protocol for their soccer robots.
\n\t\t\tIn cooperative robotics, such as Cooperative Labyrinth Discovery (CLD), (Elci & Rahnama, 30 Nov - 1 Dec 2006), (Elci & Rahnama, 2009) in an uncharted labyrinth, conventionally, the probability and the estimation were used to select one path among a set of possible but as yet undiscovered ones. In order to overcome naïve decision making, according to (Elçi et al., 2008) a hybrid scheme is needed to serve as decision maker. Following algorithm is a revised and simplified version of the one presented at (Elci & Rahnama, 2009) to suite the limited capacity CCLDRs by dividing it into two phases running cooperative decision making on SCLDRs and local standalone decision making on CCLDRs.
\n\t\t\tTeam of CLDRs consists of an SCLDR and some CCLDRs start discovering an unknown labyrinth trying to find the correct exit. (i.e. an entrance should not be distinguished as exit if it is not defined so). The only information they have is the position of entrance they start from and position of exit in labyrinth matrix but not the way through. As mentioned earlier a counter is defined for each cell presenting the number of times that a robot has visited it. Therefore, value 0 presents an undiscovered cell. In SCLDR in addition to copy of local counters, another counter indicates shared value as sum of all local counters concerning a cell.
\n\t\t\tThe α / β algorithm is an undeterministic version of minimax algorithm widely used in AI. Our algorithm applies α / β algorithm as entire labyrinth data is not known for each individual. Assuming a CLDR at a junction with 4 possible ways (left, right, forward and backward), α / β finds the minimum of counter values of respected neighboring cells. For instance, assuming 3 for value of local counter of cell at left side, 4 for front and 8 for the cell at backside, and 0 for the cell at the right side, the minimum of 0, 3, 4, and 8 which is 0 (right) is chosen. Following is the detailed algorithm.
\n\t\t\t\n\t\t\t\t\t\t1. CCLDR is on a cell in the labyrinth. It is to decide on its next move: advance to neighboring cell forward, left, right or backup?\n\t\t\t\t\t
\n\t\t\t\t\t\t2. Has the current cell been visited before? \n\t\t\t\t\t
\n\t\t\t\t\t\t\t\t2.1. Read walls of the current cell if not visited\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t2.2. Update local counter at CCLDR and request SCLDR to update the shared counter \n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t2.3. Request SCLDR to update shared memory of paths (Actually it is done as consequence of 1.2. at SCLDR)\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t3. Run Decision-Maker based on CWA (Local Counters) obtaining the next-move-to cell. \n\t\t\t\t\t
\n\t\t\t\t\t\t\t\t3.1. Has the next-move-to cell been visited before?\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t\t3.1.1. If yes, run shortest path algorithm\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t\t3.1.2. Otherwise wait for the answer from SCLDR based on following situations \n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t\t\t\t3.1.2.1. Finding results of running α / β algorithm based on shared counter of visited cells\n\t\t\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t\t\t\t3.1.2.2. If α / β algorithm returns more than one minimum, run OWA based on local counters\n\t\t\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t\t\t\t3.1.2.3. If OWA results in an unknown answer, then infer from labyrinth ontology based on LCW by limiting shared ontology to just neighboring cells. \n\t\t\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t\t\t\t3.1.2.4. If LCW reasoning contradicts CWA results, select a solution randomly or based on a move priority\n\t\t\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t4. Move the robot to the next-move-to position and update position value.\n\t\t\t\t\t
\n\t\t\t\t\t\t5. Check if the selected cell is an exit cell. \n\t\t\t\t\t
\n\t\t\t\t\t\t\t\t5.1. If not, repeat from Step 1. \n\t\t\t\t\t\t\t
Screenshot from the Semantic Intelligent Reasoning Engine on three cooperative labyrinth discovery robots.
The experience with this algorithm proved that there are some cases for which CWA alone cannot answer the query so OWA returns a better estimation of a possible answer. Therefore, utilizing open / locally-closed / open world assumptions simultaneously is necessary side-by-side. It is not possible to avoid any of the world assumptions but having them together leads to better answer sets to queries in some domains such as robotic platforms. This powers the robot with better estimation and answers where CWA alone would have returned negative result. The following screenshot presents the SI software developed to act as core of decision making according to the given algorithm.
\n\t\tThis chapter draws a beginning to end framework for design and implementation of more intelligent robots in different aspects such as self-localization, deviated error correction, Friend or Foe identification, simultaneous localization and mapping, and finally semantic intelligence.
\n\t\t\tLine-following robots were used to illustrate simple modification without necessarily hardware improvement and making them able to localize themselves while traversing a curve or a straight line. Mini-sumo robots were the example case self-corrective cascade control and friend or foe identification robots while absolute positioning of each teammate was not possible. Our designed friend or foe strategy does not require two-way communication as it only relies on decryption of payload in one direction. The replay attack is not feasible time wise as the communication is encrypted and timestamp is inserted in the messages.
\n\t\t\tThere were two sets of hardware implementations for the test robots. The second version is equipped with rotary robot able to detect direction and distance to detected object in addition to gyroscope chipset. There were several facts that could be enhanced in decision making algorithm of fighter robots. There were situations that robot were losing the game against more powerful enemies. Although studying dynamics of robots allowed finding solutions to attack such enemies from sides so they will not be able to resist. There were certain situations that robots must escape instead of fighting. These states were based on the relative position, speed and other properties of enemies which could be calculated by friend robots helping them to act more intelligently in cooperative environments. Such improved robots can be used within the scope of industry standards and they that can be applied in manufacturing industries, hospitals, and automated seeking products in chain shops.
\n\t\t\tFinally, design and implementation of client cooperative labyrinth discovery robots (CCLDRs) were presented especially addressing severe restriction or lack of resources. Decision making is performed through a semantic intelligence approach incorporating Open / Locally Closed / Closed World Assumptions in its algorithm. The algorithm was retrofitted from earlier research in order to fit into limited capacities of client CLDRs. On the other hand, decision making algorithm was optimized to perform autonomously leaving only more complicated calculation to SCLDR.
\n\t\t\tCCLDR hardware architecture was enhanced by inserting an extension board accommodating modulated IR receivers for Friend or Foe determination, wireless communication capability, and allowing multiplexing of line tracing and sides detector sensor boards. Robots are able to localize themselves based on the mathematical formulations relying on distance measurements by side sensors but without needing shaft-encoders. They act as clients of more advanced CLDRs with ability of processing ontology files, and providing Semantic Web Services (SWS), etc. Within this environment, each agent is autonomous complex system acting based on its sensory input, information retrieved from other agents, and suitable form of converted ontology files from SCLDR.
\n\t\tWe wish to thank Mr. Hamid Mirmohammad Sadeghi from EMU for his valuable contribution in mathematical formulating of proposed algorithms provided in this chapter.
\n\t\t\tThe material in Section 3- Self-Corrective Cascaded Control was drawn from our project proposal "Self-corrective compass cascaded control system for AGVs" in the Project Competition to support young entrepreneurs by GMTGB Teknopark, Famagusta, North Cyprus. Our project proposal was awarded the fourth place on 24 October 2008.
\n\t\tCardiac surgeons and/or cardiac anaesthesiologists after cardiac operations prevalently use the ECMO in its VA-ECMO configuration for cardio-circulatory failure [1, 2]. Recently, ECMO in its veno-venous configuration is becoming widely used in ICU by intensivists to treat severe form of respiratory failure (ARDS) [3, 4] after the recent successes obtained with the use of ECMO in the A(H1N1) influenza epidemic [5, 6], linked to the results of CESAR Trial [7].
\nAt the same time, the practice of echocardiographic investigation in intensive care units by the intensivists combined the echocardiographic method to haemodynamic monitoring, favouring the use of echocardiography for the assessment of haemodynamic and respiratory instability [8].
\nThe patient who needs extracorporeal support is thus evaluated by the echocardiographer who establishes the timing of the support, the need for support, and the contraindications to the support and follows the phases of cannulation and functioning of the extracorporeal support [9].
\nECMO is a rescue therapy used to provide cardiac and/or respiratory support for critically ill patients in whom maximal conventional medical management failed [3, 4]. VV-ECMO provides adequate oxygenation and removal of carbon dioxide in isolated refractory respiratory failure, while VA-ECMO is used when support for cardiac and /or respiratory failure is needed [1] (Table 1).
\nEchocardiography (ECHO) plays a pivotal role in the management of critical patients, particularly those supported with ECMO [9, 10, 11]. ECHO can be used to not only evaluate function and diagnose diseases requiring ECMO but also to detect all cardiac complications or vascular diseases that may arise following ECMO [12, 13].
\nThe central role of ECHO is important to identifying various diseases such as cardiac /undiagnosed valve lesions and left ventricular (LV) dysfunction, which could be the cause of severe haemodynamic instability, as well as to exclude them to avoid ECMO support [11].
\nThe detection of aortic dissection represents an absolute contraindication in VA-ECMO, whereas a moderate to severe aortic valve regurgitation (AVR) is a relative contraindication in VA-ECMO, because the LV afterload increase, determining by ECMO itself, leads a worsening in AVR. ECHO provides information on aortic atherosclerosis and then guides the intensivist to decide the suitable cannulation sites (central versus peripheral) or the technique (surgical versus percutaneous) [13]. ECHO also helps to evaluate the right heart morphology for any structural abnormality, which could prevent the positioning of venous cannula for VV-ECMO or VA-ECMO [14].
\nIn addition, as stated above, ECHO has a key role during ECMO cannulation. First, it guides the correct placement of the ECMO cannulae [15]. TTE may not be able to guide ECMO cannulation because of limited spatial resolution, and therefore transoesophageal echocardiography (TOE) represents the examination of choice to guiding the insertion. Echocardiographer and intensivist have to work together in order to correct the final position of the cannulae [15]. In VV-ECMO the position of the tips of the venous cannulae is essential for the correct functioning of the ECMO. Indeed, the drainage cannula must be positioned just before the entrance of the inferior vena cava (IVC) in the right atrium (RA), while the tip of the return cannula must be positioned in the central part of the RA just before the tricuspid valve but far away from the inter-atrial septum [16].
\nHowever, the echocardiographic evaluation is also essential for the identification and management of specific complications that may arise during ECMO support and may determine its malfunction. For the problems related to TTE resolution, also involving to the patient’s respiratory pathology, the TOE is preferred to make it clear any possible complication [17]. ECHO allows a rapid evaluation not only of the positioning of the cannula but mainly of the cardiac filling, of the cardiac function, and of the cardiac tamponade [16, 17]. Detection of cardiac tamponade and evaluation of the significance of pericardial effusion or collection may be difficult in patients supported with ECMO because the heart is in a partially bypassed state.
\nIn conclusion, ECHO is mandatory during the start of ECMO, cannulae insertion, haemodynamic monitoring, and detection of complications during weaning [16, 17, 18].
\nIn many cases, cannulation can be performed without ultrasound guidance. However, the use of ultrasound can help to reduce the rate of complications associated with cannulation such as haematoma, retroperitoneal haematoma, vascular damage, cardiac tamponade, and ischemia of the lower leg [19]. In the paediatric patient, the eco-guided cannulation has been shown to reduce complications, especially the need for surgical placement [20, 21].
\nThe ultrasound evaluation of the diameter of the vessels to be cannulated, especially the femoral artery, allows to choose the right size of the cannula, avoiding vascular occlusions distal to the cannulation point, with consequent ischemia, for example, of the lower limb [15, 19]. Cannulation can be carried out echo-guided or echo-assisted, i.e. only by identifying the insertion point. Today the ultrasound shows a greater sensitivity and specificity compared to radiography in identifying the exact point of arrival of the cannulae. The exact position of the femoral arterial cannula allows to optimise the flow, as well as the exact position of the venous cannula in IVC, above the hepatic vein, and contributes to an excellent drainage, clearly optimising hepatic drainage [22] (Figure 1). The echocardiography, after the positioning of the cannulae, must be performed to highlight early cardiac tamponade and problems of acute dilatation of the ventricles [14, 16, 23]. The use of colour Doppler also highlights problems of distal perfusion in the lower limb, such as having to provide with dedicated shunts.
\nCannulation scheme in VV-ECMO. The red arrows indicate the reinfusion of oxygenated blood, the purple arrow indicates the recirculating blood, and the light blue arrows indicate the drainage of the venous blood. SVC, superior vena cava; IVC, inferior vena cava; TV, tricuspid valve; RA, right atrium.
Before dilating vein for venous cannulation, it is necessary to make sure that guide wires, percutaneously inserted, are positioned inside the heart or large vessels. Only after ultrasound confirmation, physicians can proceed to advance the cannulae on these wires. However, it is necessary to discriminate the real images from the echocardiographic artefacts generated by these wires and cannulae, before proceeding to the final position of the cannulae. In the peripheral configurations of ECMO, especially in the VA-ECMO, we must assist with ultrasound the placement of the venous cannula in the middle of the right atrium in order to obtain an optimal drainage [13, 14] (Figure 2). With TOE, the bi-caval projection is able to orient perfectly on the optimal position of the venous cannula (Figure 3). Although the ultrasounds cannot indicate the level of the arterial cannula tip, which reaches the iliac artery from the femoral artery, they can confirm that the guide wire used in percutaneous arterial cannulation is located in the lumen of the aorta, before the femoral artery dilatation, reducing the risk of extra-arterial placement of the cannula.
\nBi-caval view of the TOE: the drainage cannula from the IVC is visible in the middle atrium (arrow light blue).
Bi-caval view to the 3D TOE: the drainage cannula from the IVC can be seen in the middle atrium (arrow light blue).
Therefore, summing up, it is essential to visualise in real time the positioning of the guide wires in the caval districts (IVC and SVC) with the middle oesophageal bi-caval projection to the TOE [11] (Figures 2–4). This is to avoid incorrect positioning of the cannula in the right ventricle, in the coronary sinus, or, worse, in the left atrium through a patent foramen ovale (PFO) [11, 13, 16]. During the entire positioning manoeuvres of the venous cannulae, particular attention must be paid to the presence of pericardial effusion, from atrial/right ventricular trauma, and to the possible suction of the inter-atrial septum, with the obstruction of the drainage flow, linked to the venous aspiration from an adherent cannula to the septum itself [24, 25]. In the case of loss of oxygen performance of the ECMO, when a recirculation phenomenon is suspected due to a close position of the tips of the drainage and reinfusion cannulae, TOE can guide the correct repositioning of the cannulae [26].
\n(A) Drainage cannula in IVC (light blue arrow) and (B) colour Doppler showing the flow in the cannula.
Compared to the classic configuration of the VV-ECMO which provides a double cannulation, the development of newer devices, such as the Dual Lumen Bi-Caval catheter (Avalon®, Maquet Cardiopulmonary GmbH Kehler Str. 31, 76,437 Rastatt, Germany), allowed VV-ECMO with a single cannula inserted in the right internal jugular vein [27]. This allows greater patient mobility, also reducing the femoral cannula decubitus and the infectious risk that this entails. However, being a stiffer and larger diameter cannula, the placement of the bi-luminal cannula involves greater risks of vessel injury and cardiac tamponade, in addition to the possible malfunction due to migration of the cannula from its original position [28, 29]. It is essential to use the TOE for the correct positioning of the Avalon® catheter. In fact, the tip of the cannula is advanced under the TOE guide until the cannula drainage holes are positioned in the inferior and in the superior venae cave (like a normal two-stage cannula used for cardiopulmonary bypass), and the re-entry is perfectly aligned with the inflow of the tricuspid valve [27]. This alignment is investigated with the colour Doppler which will measure the linear flow in case of correct positioning or a turbulent flow, in case of malposition. It is best to advance and withdraw the cannula under the TOE guide until the flow is laminar and directed through the centre of the tricuspid valve. Particular attention should be paid to visualising the cannula tip in the hepatic vein. A malposition of the cannula will cause recirculation, because the oxygenated blood from the cannula is drained immediately from the suction areas of the cannula to the ECMO circuit before being circulated systematically [28, 30].
\nIn the treatment of severe respiratory failure (severe ARDS), VV-ECMO is a valid option [31]. It can be considered a bridge to the healing of the lung, allowing the therapies to act effectively. Moreover, unlike the VA-ECMO it does not present problems of oxygenation north-south (harlequin syndrome). All this is valid if cardiac function is maintained normal and able to effectively support the systemic circulation. Therefore, before a VV-ECMO is established, a complete evaluation of both the patient’s echocardiographic and haemodynamic parameters is essential [11, 16]. Echocardiography, both TTE and TOE, must ensure a correct evaluation of the right ventricular function and evaluate the degree of tricuspid insufficiency and the estimate of pulmonary artery pressure, potentially altered parameters in the course of ARDS, and sepsis [32].
\nVV-ECMO could improve the performance of the right ventricle and the whole heart. There is an irrelevant modification of the right preload, an increase in the left load due to a reduction in pulmonary pressure with a further increase in SvO2, and the saturation of the coronary blood. Approximately 20–25% of patients with ARDS develop an acute cor pulmonale (ACP) with right ventricular dilatation, inter-ventricular septum shift, left ventricular hypo-diastolic status, and pulmonary hypertension [32, 33]. This clinical picture is also typical of the right ventricular failure induced by the septic state. Echocardiography helps to choose the right timing for extracorporeal support and allows to follow the evolutionary state (improvement) of the right performance following VV-ECMO support: reduction of pulmonary pressure, increase in right contractility (increased systolic excursion of the tricuspid annular plane (TAPSE)), and improvement of the cardiac output (CO) [11, 16, 34].
\nTTE echocardiographic evaluation in patients with ARDS may present some resolution problems; therefore, normally the TOE is used, also because of low invasiveness as the patients are already intubated and sedated.
\nThe presence of pulmonary hypertension and sepsis can create the conditions for a rapid deterioration of cardiac function, so that can worsen from initial presence of respiratory failure to cardiorespiratory insufficiency. Through echocardiographic and haemodynamic monitoring, we can anticipate the worsening of the clinical picture and establish a cardiorespiratory support (VA-ECMO).
\nThe right ventricle echocardiographic assessment in the ECMO patients with acute respiratory distress syndrome (ARDS) plays a key role to reduce complications and to improve the outcome [11, 14, 16, 31].
\nIt is simple to understand the role of ECHO in the risk stratification of patients undergoing VV-ECMO. In fact, ARDS requires an initial aggressive ventilatory treatment that brings to haemodynamic instability [33]. Patient presents high CVP associated to fluid accumulation in the pleural and abdominal spaces. ECHO shows a dilatation of the right ventricle with associated pulmonary hypertension. This clinical picture is described as ACP [8, 32, 33]. To minimise the impact of the positive end-expiratory pressure (PEEP) on right ventricular haemodynamic, physicians have choice a right balance between the PEEP value and cardio-circulatory stability. The therapeutic request is the protective ventilation aimed at reducing right ventricular failure related to an increase in the afterload of the right chambers [8, 33]. The aim of the treatment is the reduction of pulmonary arterial hypertension to reduce enlargement of right ventricle and consequent shift of the inter-ventricular septum. Unfortunately, despite implementation of protective lung ventilation, ACP still remains until 25% [32, 33, 34]. VV-ECMO represents a real solution to support both the lung and the right ventricle [35, 36].
\nThe improvement of gas exchange and the reduction of airway pressures both contribute at the reduction of pulmonary vascular resistance with consequent hemodynamic improvement.
\nThe daily evaluation of echocardiography in this case is mandatory.
\nBecause the high acoustic impedance is caused by high PEEP values, TTE cannot be straightforward, and TOE is preferred.
\nA recently published summary paper on the management of ECMO recommends that physician training in echocardiography be part in the ECMO patient care team [37].
\nHowever, the role of echocardiography in ECMO is not widely accepted and is still poorly described in the literature.
\nThe echocardiographic examination of the right ventricle requires a long axis and a short axis view to evaluate the size of the cavity with the relationship of the left ventricle and the kinetics of the septum. The examination can be completed by the Doppler of the right ventricular outflow and tricuspid regurgitation when present, to measure the systolic pressure of the pulmonary artery. The measurement of the TAPSE, simple and useful from prognostic point of view, avoids measuring the fractional area change (FAC) of the right ventricle more complicated. Right ventricle TDI (tissue Doppler imaging) is useful to evaluate diastolic and systolic functions [38].
\nModerate to severe right ventricular dilatations, defined as a ratio greater than 0.6 and as a ratio greater than or equal to 1, are associated with paradoxical septum motion at the end systole complicating the left ventricular function [8, 39, 40].
\nPulmonary hypertension is usually associated with tricuspid regurgitation, but it also depends on right ventricular systolic function, and its value can be very low when associated with low CO [38, 39]. The right ventricular remodelling in ARDS patients is represented by the thickness of free wall, related to the increase in afterload [40]. Most important is also the detection of a PFO that can complicate the oxygenation of ARDS patients [39] (Figures 5 and 6). The displacement of septum due to right ventricular dilatation causes the left ventricular hypo-diastolic status, with a consequent low CO syndrome related to the difficult preload of the left ventricle. This is considered an ECHO evaluation of right ventricular function in pre-ECMO stage.
\nBi-caval view in which an aneurysm of the inter-atrial septum is seen.
Colour Doppler bi-caval view in which you see the shunt through the PFO.
The purpose of the VA-ECMO is to support cardio-circulatory function in patients with heart failure refractory to medical therapy [1, 36]. Based on the INTERMACS class it belongs to, VA-ECMO can be used in major risk classes, not only as bridge to recovery or bridge to destination therapy (left ventricular assist device (LVAD) or heart transplantation (HTx)) but also as bridge to decision [41] (Table 2). In addition, the VA-ECMO can be used in haemodynamic support to refractory cardiac arrest that can result in patient recovery or be used as a procedure for donation of splanchnic organs in non-beating heart [42, 43].
\nMain indications for the use of ECMO assistance.
Possible uses of VA-ECMO.
Compared to other mechanical cardiac assistance devices, ECMO has the advantage.
\nof reduced costs and the possibility of being set up easily and quickly on the outside.
\nof the operating room (intensive care unit, cardiac catheterization theatre, or emergency departments) and also during cardiopulmonary resuscitation manoeuvres [43]. However, it is an invasive assistance technique with major problems such as the short duration of assistance, the possible increase of infections, bleeding and thrombosis, and the increase of the afterload of the left ventricle.
\nThe ultrasound evaluation is important before the implantation of the VA-ECMO. However, the conditions of the left ventricle, the degree of aortic insufficiency, and the presence of mitral and tricuspid valve insufficiencies must be carefully evaluated. The configuration of the VA-ECMO involves peripheral cannulations, already partially described, and central cannulations (right atrium and aorta) that can be performed in the cardiac surgery patient who has problems in weaning from the cardiopulmonary bypass.
\nIn patients with cardiogenic shock, echocardiographic examination is necessary to determine cause and indication for extracorporeal support [41] (Table 1). Even more, the echo exam can identify situations that may contraindicate the placement of circulatory assistance.
\nThe echo examination must be as complete as possible and must highlight the morphology and the systolic and diastolic functions of the ventricles, evaluate the valve continence and the presence of pericardial effusion, and seek, in greater detail, the cause of cardiogenic shock (i.e. regional or global dysfunction of the left ventricle) [39]. In the study of cardiac valvular function, the study of the aortic valve is fundamental since its regurgitation can create unfavourable conditions for the positioning of VA-ECMO, given the increase in the afterload that the VA-ECMO generates. Clearly aortic dissection is an absolute contraindication for VA-ECMO placement. In addition, the morphology and the structure of the right atrium and of the right heart in general must be carefully evaluated. In fact, the presence of leads (pacemaker or ICD), a prominent Chiari network, a PFO, a tricuspid valve prosthesis, they are all elements that can compromise or make atrial cannulation impossible [11].
\nThe echocardiographic examination must fundamentally focus on the systolic function of the left ventricle. The systolic function is evaluated with conventional parameters such as the size of the left ventricle (LV), ejection fraction (EF), mitral regurgitation dP/dt, and aortic velocity time integral (VTI) [39]. The blood flow of ECMO can be adjusted based on the overall assessment of ventricular systolic function and cardiac preload. Some authors have systematically studied the effect of the flow rate of oxygenation of the extracorporeal membrane on changes in cardiac parameters [44]. A decrease of flow from 4 to 0.7 L/min leads to a 22% increase in the E/E′ ratio (from 5.9 to 7.2; p < 0.001), an increase of 17% in EF (from 15 to 17.5%; 0.001), increase of 12 and 45% of VTI (from 8 to 11.6 cm; p < 0.001), and increase of 12% of the left ventricular tele-diastolic volume (from 95 to 108 ml, p < 0.001) [44, 45].
\nA serious problem in the ultrasound evaluation is the detection of an evolving pericardial effusion to the cardiac tamponade (Figure 7), due to the passage of wires or cannulae with rupture of the cardiac chambers [11, 14, 16]. Following anticoagulant therapy, necessary in VA-ECMO, the pericardial blood collection can become consistent at many hours from the positioning, and only a series of ultrasound analysis allows the recognition of this clinical situation.
\nPresence of abundant pericardial effusion (light blue arrow) at TTE.
Thrombosis is a major complication during VA-ECMO and can be catastrophic when cerebral embolism occurs [46, 47]. Factors predisposing thrombosis are related to the blood/circuit contact and its activation as well as to the turbulence linked to the lumen of the cannulae [48]. Thrombosis can be more or less evident at ultrasound, and a real pitfall is represented by spontaneous intracavitary echo contrast (smoke) [49]. The evaluation of the opening of the aortic valve guarantees a certain pulsatility to the flow and avoids the stasis linked to the stagnant flow on the closed valve and predictor of thrombosis [46, 47, 48, 49]. If the valve does not open, it is necessary to open the valve through changes in the flow of the VA-ECMO, the use of inodilator drugs, or the insertion of the intra-aortic balloon pump (IABP), which also favours the decompression of the left ventricle. Furthermore, in these cases it is necessary to optimise anticoagulation, which can be evaluated with specific point of care (thrombo-elastographic examination (TEG)) [50].
\nThe increase in the afterload generated by the VA-ECMO can promote mitral-aortic valve regurgitation, compromising myocardial oxygenation and favouring the left ventricular distension not good for cardiac functional recovery.
\nThe difficult management of the patient in VA-ECMO must be accompanied by a continuous echocardiographic evaluation, carried out at least two times a day and whenever there is an unforeseen haemodynamic instability. The study of cardiac function should allow to optimise the flows of the mechanical support and the concomitant therapies. The ECHO evaluation must precede the start of the ECMO, follow the initial support phase, evaluate the evolution of the cardiac function in the stabilisation phase, and evaluate the cardiac functional recovery dictating the weaning time from the extracorporeal support.
\nAt the start of the VA-ECMO, it is necessary to concentrate the attention on the venous drainage to be able to maintain the flow rate. Flow reduction may be due to obstructions (thrombus) or malposition of the cannula or hypovolaemia [11, 48]. A sudden reduction in perfusion pressure and low flow could lead to the search for aortic dissection or severe aortic valve regurgitation resulting in dilation of the left ventricle.
\nVA-ECMO is usually a medium-short duration assay, allowing the recovery of cardiac function or the bridge to other solutions (LVAD or HTx). At this time, echocardiographic monitoring is essential to monitor cardiac function recovery or lack of it.
\nOne of the major problems, especially in the peripheral configuration of the VA-ECMO, is the distension of the left ventricle, such as to increase the tele-diastolic pressure and compromise the functional recovery of the heart [51, 52]. During peripheral VA-ECMO, LV preload usually decreases, but the LV afterload increases, resulting in a distension of the left ventricle associated with failure to open the aortic valve. The flow thus becomes continuous and non-pulsatile with consequent stasis, tendency to thrombosis, and embolization. This situation compromises the recovery of the heart.
\nThe therapeutic strategy consists in venting the left ventricle [52] (Figure 8). The opening of the aortic valve can be done simply by trying to reduce the ECMO flow, but almost always you have to proceed with the IABP or better with the use of Impella® (ABIOMED, Inc., 22 Cherry Hill Drive, Danvers, MA 01923, USA) [53]. The most effective system is the cannulation of the left ventricular apex through a mini-thoracotomy, a procedure that can be performed under ultrasound guidance [52]. Echocardiographic monitoring has a key role in monitoring the distension of the left ventricle which leads to an increase in capillary pressure, interstitial pulmonary oedema, and bi-ventricular insufficiency. An alternative but less effective venting system is represented by an EndoVent in the pulmonary artery that, rather than detecting the left ventricle as it would take, reduces its preload [54]. Another solution for left ventricular decompression, in patients receiving extracorporeal membrane oxygenation for myocardial failure, is represented by balloon atrial septostomy, used especially in paediatric patients [55, 56].
\nThe light blue indicates the presence of intraventricular vent for the unloading of the left ventricle.
Echocardiography, through the evaluation of trans-aortic flow, is a precious instrument to measure CO during ECMO support as all CO monitoring methods are affected by errors.
\nThe evaluation of distal perfusion is mandatory, and in most cases the distal hypoperfusion must be resolved by a retrograde perfusion cannula.
\nThe echocardiographic evaluation reaches its peak in determining the timing and the possibility of weaning from ECMO [57]. Clearly weaning is possible only if the recovery of cardiac function is associated, as is evident, with the resolution of the pathological conditions determining the use of the VA-ECMO. An indirect sign of recovery of cardiac function is the increase in systolic-diastolic blood pressure. The echocardiographic parameters, which may suggest a safe weaning from the VA-ECMO, are the aortic VTI > 10 cm, the absence of cardiac tamponade, the partial recovery of the EF%, but above all an increase of the Sa wave at the TDI (>6 cm/s) [57, 58].
\nDuring the weaning of the VA-ECMO, the flow of ECMO is reduced, and clinical, haemodynamic, and echocardiographic parameters are evaluated. ECMO flows are usually not reduced below 1–2 L/min, due to the increased risk of thrombosis (Figure 9) of the low-flow circuit [59, 60]. If the patient remains with stable haemodynamic at low flow, they can be ready to be disconnected from the support. Weaning and de-cannulation are delicate phases, and careful haemodynamic and echocardiographic evaluation is needed to identify and promptly deal with contingent problems.
\nTOE (4Ch view) of patient in VA-ECMO in which there is an extensive thrombotic formation of the left ventricle and of the left atrium.
The ultrasonography evaluation also allows the vascular evaluation after de-cannulation.
\nUltrasounds play a fundamental role in managing patients supported with ECMO, during all the different stages of assistance [10, 11, 14, 15, 16, 58], from indication to cannulation, monitoring, and weaning. Either during circulatory or respiratory assistance, ultrasounds are fundamental to evaluate the cardiac function of the patients, providing information that determines appropriate patient selection. They are also needed to choose the best vascular access sites, guide the insertion of cannulas, monitor progress, detect complications, and help in determining recovery and weaning of support [10, 14, 15, 16, 34].
\nWe pride ourselves on our belief that scientific progress is generated by collaboration, that the playing field for scientific research should be leveled globally, and that research conducted in a democratic environment, with the use of innovative technologies, should be made available to anyone.
\n\nWe look forward to hearing from individuals and organizations who are interested in new discoveries and sharing their research.
",metaTitle:"Contact us",metaDescription:null,metaKeywords:null,canonicalURL:"/page/contact-us",contentRaw:'[{"type":"htmlEditorComponent","content":"Headquarters
\\n\\n\\n\\n
London
\\n\\nIntechOpen Limited, 7th floor
\\n\\n10 Lower Thames Street
\\n\\nLondon, EC3R 6AF, UK
\\n\\nPhone: +44 (0)203 972 6202
\\n\\n\\n\\n
Rijeka
\\n\\nIN TECH d.o.o.
\\n\\nJaneza Trdine 9
\\n\\n51000 Rijeka - Croatia
\\n\\nPhone: +385 (0) 51 686 165
\\n"},{"imagePath":"/media/thumbnail/780x430/3","type":"mediaComponent","mediaType":"image","mimeType":"image/jpeg","caption":"","originalUrl":"/media/thumbnail/600x600/3","alignment":"center"},{"type":"htmlEditorComponent","content":"General Inquires: info@intechopen.com
\\n\\nFunders: funders@intechopen.com
\\n\\n*INTECHOPEN LIMITED is a privately owned company registered in England and Wales, No. 11086078 Registered Office: 7th floor, 10 Lower Thames Street, London, EC3R 6AF, UK
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Headquarters
\n\n\n\n
London
\n\nIntechOpen Limited, 7th floor
\n\n10 Lower Thames Street
\n\nLondon, EC3R 6AF, UK
\n\nPhone: +44 (0)203 972 6202
\n\n\n\n
Rijeka
\n\nIN TECH d.o.o.
\n\nJaneza Trdine 9
\n\n51000 Rijeka - Croatia
\n\nPhone: +385 (0) 51 686 165
\n"},{imagePath:"/media/thumbnail/780x430/3",type:"mediaComponent",mediaType:"image",mimeType:"image/jpeg",caption:"",originalUrl:"/media/thumbnail/600x600/3",alignment:"center"},{type:"htmlEditorComponent",content:'General Inquires: info@intechopen.com
\n\nFunders: funders@intechopen.com
\n\n*INTECHOPEN LIMITED is a privately owned company registered in England and Wales, No. 11086078 Registered Office: 7th floor, 10 Lower Thames Street, London, EC3R 6AF, UK
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:null},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5313},{group:"region",caption:"Middle and South America",value:2,count:4819},{group:"region",caption:"Africa",value:3,count:1468},{group:"region",caption:"Asia",value:4,count:9363},{group:"region",caption:"Australia and Oceania",value:5,count:837},{group:"region",caption:"Europe",value:6,count:14778}],offset:12,limit:12,total:108153},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10100",title:"Evo-Devo",subtitle:null,isOpenForSubmission:!0,hash:"4c17ab0c64ce206c75ad6cec64e05737",slug:null,bookSignature:"Dr. Dimitrios P. Vlachakis, Prof. Elias Eliopoulos and Prof. George P. Chrousos",coverURL:"https://cdn.intechopen.com/books/images_new/10100.jpg",editedByType:null,editors:[{id:"179110",title:"Dr.",name:"Dimitrios",surname:"Vlachakis",slug:"dimitrios-vlachakis",fullName:"Dimitrios Vlachakis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7845",title:"Platelets",subtitle:null,isOpenForSubmission:!0,hash:"d33b20516d6ff3a5b7446a882109ba26",slug:null,bookSignature:"Dr. Steve W. W. Kerrigan and Prof. Niamh Moran",coverURL:"https://cdn.intechopen.com/books/images_new/7845.jpg",editedByType:null,editors:[{id:"73961",title:"Dr.",name:"Steve W.",surname:"Kerrigan",slug:"steve-w.-kerrigan",fullName:"Steve W. Kerrigan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7965",title:"Display Technology",subtitle:null,isOpenForSubmission:!0,hash:"eb83772cea6200bdd685b8a1b93ee35d",slug:null,bookSignature:"Dr. In Byeong Kang",coverURL:"https://cdn.intechopen.com/books/images_new/7965.jpg",editedByType:null,editors:[{id:"241133",title:"Dr.",name:"In Byeong",surname:"Kang",slug:"in-byeong-kang",fullName:"In Byeong Kang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9280",title:"Underwater Work",subtitle:null,isOpenForSubmission:!0,hash:"647b4270d937deae4a82f5702d1959ec",slug:null,bookSignature:"Dr. Sérgio António Neves Lousada",coverURL:"https://cdn.intechopen.com/books/images_new/9280.jpg",editedByType:null,editors:[{id:"248645",title:"Dr.",name:"Sérgio António",surname:"Neves Lousada",slug:"sergio-antonio-neves-lousada",fullName:"Sérgio António Neves Lousada"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6837",title:"Lithium-ion Batteries - Thin Film for Energy Materials and Devices",subtitle:null,isOpenForSubmission:!0,hash:"ea7789260b319b9a4b472257f57bfeb5",slug:null,bookSignature:"Prof. Mitsunobu Sato, Dr. Li Lu and Dr. Hiroki Nagai",coverURL:"https://cdn.intechopen.com/books/images_new/6837.jpg",editedByType:null,editors:[{id:"179615",title:"Prof.",name:"Mitsunobu",surname:"Sato",slug:"mitsunobu-sato",fullName:"Mitsunobu Sato"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9212",title:"Titration Technique",subtitle:null,isOpenForSubmission:!0,hash:"5278b500d19d2508a7c933276167d82c",slug:null,bookSignature:"Associate Prof. Vu Dang Hoang",coverURL:"https://cdn.intechopen.com/books/images_new/9212.jpg",editedByType:null,editors:[{id:"199907",title:"Associate Prof.",name:"Vu Dang",surname:"Hoang",slug:"vu-dang-hoang",fullName:"Vu Dang Hoang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9423",title:"Applications of Artificial Intelligence in Process Industry Automation, Heat and Power Generation and Smart Manufacturing",subtitle:null,isOpenForSubmission:!0,hash:"10ac8fb0bdbf61044395963028653d21",slug:null,bookSignature:"Prof. Konstantinos G. Kyprianidis and Prof. Erik Dahlquist",coverURL:"https://cdn.intechopen.com/books/images_new/9423.jpg",editedByType:null,editors:[{id:"35868",title:"Prof.",name:"Konstantinos",surname:"Kyprianidis",slug:"konstantinos-kyprianidis",fullName:"Konstantinos Kyprianidis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9428",title:"New Trends in the Use of Artificial Intelligence for the Industry 4.0",subtitle:null,isOpenForSubmission:!0,hash:"9e089eec484ce8e9eb32198c2d8b34ea",slug:null,bookSignature:"Dr. Luis Romeral Martinez, Dr. Roque A. Osornio-Rios and Dr. Miguel Delgado Prieto",coverURL:"https://cdn.intechopen.com/books/images_new/9428.jpg",editedByType:null,editors:[{id:"86501",title:"Dr.",name:"Luis",surname:"Romeral Martinez",slug:"luis-romeral-martinez",fullName:"Luis Romeral Martinez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8968",title:"Molecular and Metabolic Alterations in Tumorigenesis",subtitle:null,isOpenForSubmission:!0,hash:"e3c27ac25ffa58c82beeb2b70147b9bf",slug:null,bookSignature:"Dr. Yasemin Basbinar and Dr. Gizem Calibasi Kocal",coverURL:"https://cdn.intechopen.com/books/images_new/8968.jpg",editedByType:null,editors:[{id:"242097",title:"Dr.",name:"Yasemin",surname:"Basbinar",slug:"yasemin-basbinar",fullName:"Yasemin Basbinar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8031",title:"Pavement Engineering",subtitle:null,isOpenForSubmission:!0,hash:"1d8ae1b3b3a208c2b16c1ff852e14207",slug:null,bookSignature:"Dr. Sameh Zaghloul",coverURL:"https://cdn.intechopen.com/books/images_new/8031.jpg",editedByType:null,editors:[{id:"269407",title:"Dr.",name:"Sameh",surname:"Zaghloul",slug:"sameh-zaghloul",fullName:"Sameh Zaghloul"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7997",title:"Autophagy in Injury, Infection and Cancer Diseases",subtitle:null,isOpenForSubmission:!0,hash:"3daed6048bc8ff8368c4279558f109d7",slug:null,bookSignature:"Dr. Nikolai Gorbunov",coverURL:"https://cdn.intechopen.com/books/images_new/7997.jpg",editedByType:null,editors:[{id:"180960",title:"Dr.",name:"Nikolai",surname:"Gorbunov",slug:"nikolai-gorbunov",fullName:"Nikolai Gorbunov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9010",title:"Ion Channel Dysfunction in Disease",subtitle:null,isOpenForSubmission:!0,hash:"2bc87751cc961a9d348958e2ebb8b3a7",slug:null,bookSignature:"Dr. Saverio Gentile",coverURL:"https://cdn.intechopen.com/books/images_new/9010.jpg",editedByType:null,editors:[{id:"181463",title:"Dr.",name:"Saverio",surname:"Gentile",slug:"saverio-gentile",fullName:"Saverio Gentile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:34},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:33},{group:"topic",caption:"Business, Management and Economics",value:7,count:10},{group:"topic",caption:"Chemistry",value:8,count:30},{group:"topic",caption:"Computer and Information Science",value:9,count:25},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:74},{group:"topic",caption:"Environmental Sciences",value:12,count:13},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:38},{group:"topic",caption:"Mathematics",value:15,count:14},{group:"topic",caption:"Medicine",value:16,count:137},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:6},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:8},{group:"topic",caption:"Physics",value:20,count:20},{group:"topic",caption:"Psychology",value:21,count:2},{group:"topic",caption:"Robotics",value:22,count:6},{group:"topic",caption:"Social Sciences",value:23,count:13},{group:"topic",caption:"Technology",value:24,count:10},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3},{group:"topic",caption:"Genesiology",value:300,count:1},{group:"topic",caption:"Machine Learning and Data Mining",value:521,count:1},{group:"topic",caption:"Intelligent System",value:535,count:1}],offset:12,limit:12,total:505},popularBooks:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8416",title:"Non-Equilibrium Particle Dynamics",subtitle:null,isOpenForSubmission:!1,hash:"2c3add7639dcd1cb442cb4313ea64e3a",slug:"non-equilibrium-particle-dynamics",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/8416.jpg",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,isOpenForSubmission:!1,hash:"76361b4061e830906267933c1c670027",slug:"antioxidants",bookSignature:"Emad Shalaby",coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4396},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8463",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",subtitle:null,isOpenForSubmission:!1,hash:"23f39beea4d557b0ae424e2eaf82bf5e",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",bookSignature:"Sameh Shehata",coverURL:"https://cdn.intechopen.com/books/images_new/8463.jpg",editedByType:"Edited by",editors:[{id:"37518",title:"Prof.",name:"Sameh",middleName:null,surname:"Shehata",slug:"sameh-shehata",fullName:"Sameh Shehata"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7187",title:"Osteosarcoma",subtitle:"Diagnosis, Mechanisms, and Translational Developments",isOpenForSubmission:!1,hash:"89096359b754beb806eca4c6d8aacaba",slug:"osteosarcoma-diagnosis-mechanisms-and-translational-developments",bookSignature:"Matthew Gregory Cable and Robert Lawrence Randall",coverURL:"https://cdn.intechopen.com/books/images_new/7187.jpg",editedByType:"Edited by",editors:[{id:"265693",title:"Dr.",name:"Matthew Gregory",middleName:null,surname:"Cable",slug:"matthew-gregory-cable",fullName:"Matthew Gregory Cable"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editedByType:"Edited by",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editedByType:"Edited by",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"e7ea7e74ce7a7a8e5359629e07c68d31",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",editedByType:"Edited by",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8256",title:"Distillation",subtitle:"Modelling, Simulation and Optimization",isOpenForSubmission:!1,hash:"c76af109f83e14d915e5cb3949ae8b80",slug:"distillation-modelling-simulation-and-optimization",bookSignature:"Vilmar Steffen",coverURL:"https://cdn.intechopen.com/books/images_new/8256.jpg",editedByType:"Edited by",editors:[{id:"189035",title:"Dr.",name:"Vilmar",middleName:null,surname:"Steffen",slug:"vilmar-steffen",fullName:"Vilmar Steffen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7240",title:"Growing and Handling of Bacterial Cultures",subtitle:null,isOpenForSubmission:!1,hash:"a76c3ef7718c0b72d0128817cdcbe6e3",slug:"growing-and-handling-of-bacterial-cultures",bookSignature:"Madhusmita Mishra",coverURL:"https://cdn.intechopen.com/books/images_new/7240.jpg",editedByType:"Edited by",editors:[{id:"204267",title:"Dr.",name:"Madhusmita",middleName:null,surname:"Mishra",slug:"madhusmita-mishra",fullName:"Madhusmita Mishra"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editedByType:"Edited by",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editedByType:"Edited by",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editedByType:"Edited by",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"328",title:"Food Technology",slug:"agricultural-and-biological-sciences-bromatology-food-technology",parent:{title:"Bromatology",slug:"agricultural-and-biological-sciences-bromatology"},numberOfBooks:16,numberOfAuthorsAndEditors:470,numberOfWosCitations:67,numberOfCrossrefCitations:165,numberOfDimensionsCitations:421,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"agricultural-and-biological-sciences-bromatology-food-technology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6723",title:"Polyphenols",subtitle:null,isOpenForSubmission:!1,hash:"1844b27c0c7a6c102522f7428d96e3b6",slug:"polyphenols",bookSignature:"Janica Wong",coverURL:"https://cdn.intechopen.com/books/images_new/6723.jpg",editedByType:"Edited by",editors:[{id:"124788",title:"Ph.D.",name:"Janica",middleName:"C.",surname:"Wong",slug:"janica-wong",fullName:"Janica Wong"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6300",title:"The Yeast Role in Medical Applications",subtitle:null,isOpenForSubmission:!1,hash:"28bdc16fb0cb1dba54968cca24422659",slug:"the-yeast-role-in-medical-applications",bookSignature:"Waleed Mohamed Hussain Abdulkhair",coverURL:"https://cdn.intechopen.com/books/images_new/6300.jpg",editedByType:"Edited by",editors:[{id:"175713",title:"Dr.",name:"Waleed Mohamed Hussain",middleName:null,surname:"Abdulkhair",slug:"waleed-mohamed-hussain-abdulkhair",fullName:"Waleed Mohamed Hussain Abdulkhair"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6007",title:"Old Yeasts",subtitle:"New Questions",isOpenForSubmission:!1,hash:"4214dcadd46b262a55f53d855b3b60de",slug:"old-yeasts-new-questions",bookSignature:"Candida Lucas and Celia Pais",coverURL:"https://cdn.intechopen.com/books/images_new/6007.jpg",editedByType:"Edited by",editors:[{id:"95655",title:"Prof.",name:"Cândida",middleName:null,surname:"Lucas",slug:"candida-lucas",fullName:"Cândida Lucas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6293",title:"Yeast",subtitle:"Industrial Applications",isOpenForSubmission:!1,hash:"46632cf5c744c601f5c36175e8dc8dc4",slug:"yeast-industrial-applications",bookSignature:"Antonio Morata and Iris Loira",coverURL:"//cdnintech.com/web/frontend/www/assets/cover.jpg",editedByType:"Edited by",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5705",title:"Future Foods",subtitle:null,isOpenForSubmission:!1,hash:"3e0407db8b07ae39128d6454b67bc690",slug:"future-foods",bookSignature:"Heimo Mikkola",coverURL:"https://cdn.intechopen.com/books/images_new/5705.jpg",editedByType:"Edited by",editors:[{id:"144330",title:"Dr.",name:"Heimo",middleName:"Juhani",surname:"Mikkola",slug:"heimo-mikkola",fullName:"Heimo Mikkola"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5781",title:"Phytohormones",subtitle:"Signaling Mechanisms and Crosstalk in Plant Development and Stress Responses",isOpenForSubmission:!1,hash:"054eaa85c13ebe3d04fb8852005d2bad",slug:"phytohormones-signaling-mechanisms-and-crosstalk-in-plant-development-and-stress-responses",bookSignature:"Mohamed El-Esawi",coverURL:"https://cdn.intechopen.com/books/images_new/5781.jpg",editedByType:"Edited by",editors:[{id:"191770",title:"Dr.",name:"Mohamed A.",middleName:null,surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5706",title:"The Question of Caffeine",subtitle:null,isOpenForSubmission:!1,hash:"42f89febd9092e77c8edd4f8ca9da8f8",slug:"the-question-of-caffeine",bookSignature:"Jolanta Natalia Latosinska and Magdalena Latosinska",coverURL:"https://cdn.intechopen.com/books/images_new/5706.jpg",editedByType:"Edited by",editors:[{id:"77808",title:"Dr.",name:"Jolanta Natalia",middleName:null,surname:"Latosińska",slug:"jolanta-natalia-latosinska",fullName:"Jolanta Natalia Latosińska"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5688",title:"Rice",subtitle:"Technology and Production",isOpenForSubmission:!1,hash:"7d595f7b12ce6b947505477073a29b16",slug:"rice-technology-and-production",bookSignature:"Amanullah and Shah Fahad",coverURL:"https://cdn.intechopen.com/books/images_new/5688.jpg",editedByType:"Edited by",editors:[{id:"178825",title:"Dr.",name:"Dr.",middleName:null,surname:"Amanullah",slug:"dr.-amanullah",fullName:"Dr. Amanullah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5305",title:"Fermentation Processes",subtitle:null,isOpenForSubmission:!1,hash:"ade563b4042ed9674f6413b4ac8883f3",slug:"fermentation-processes",bookSignature:"Angela Faustino Jozala",coverURL:"https://cdn.intechopen.com/books/images_new/5305.jpg",editedByType:"Edited by",editors:[{id:"174371",title:"Dr.",name:"Angela",middleName:"Faustino",surname:"Jozala",slug:"angela-jozala",fullName:"Angela Jozala"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5217",title:"Advances in Silage Production and Utilization",subtitle:null,isOpenForSubmission:!1,hash:"74a9d90a738f4237f986bfc897dec332",slug:"advances-in-silage-production-and-utilization",bookSignature:"Thiago da Silva and Edson Mauro Santos",coverURL:"https://cdn.intechopen.com/books/images_new/5217.jpg",editedByType:"Edited by",editors:[{id:"144240",title:"Dr.",name:"Thiago",middleName:"Carvalho",surname:"Da Silva",slug:"thiago-da-silva",fullName:"Thiago Da Silva"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5100",title:"Fungal Pathogenicity",subtitle:null,isOpenForSubmission:!1,hash:"1a1402153a3f4f476ac29fd76d2cfbed",slug:"fungal-pathogenicity",bookSignature:"Sadia Sultan",coverURL:"https://cdn.intechopen.com/books/images_new/5100.jpg",editedByType:"Edited by",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5083",title:"Significance, Prevention and Control of Food Related Diseases",subtitle:null,isOpenForSubmission:!1,hash:"fb85a37391ab251574d0f2ad6cd3e805",slug:"significance-prevention-and-control-of-food-related-diseases",bookSignature:"Hussaini Anthony Makun",coverURL:"https://cdn.intechopen.com/books/images_new/5083.jpg",editedByType:"Edited by",editors:[{id:"59728",title:"Dr.",name:"Hussaini",middleName:"Anthony",surname:"Makun",slug:"hussaini-makun",fullName:"Hussaini Makun"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:16,mostCitedChapters:[{id:"40090",doi:"10.5772/52945",title:"Drought Stress and Tolerance in Soybean",slug:"drought-stress-and-tolerance-in-soybean",totalDownloads:4825,totalCrossrefCites:9,totalDimensionsCites:33,book:{slug:"a-comprehensive-survey-of-international-soybean-research-genetics-physiology-agronomy-and-nitrogen-relationships",title:"A Comprehensive Survey of International Soybean Research",fullTitle:"A Comprehensive Survey of International Soybean Research - Genetics, Physiology, Agronomy and Nitrogen Relationships"},signatures:"Yee-Shan Ku, Wan-Kin Au-Yeung, Yuk-Lin Yung, Man-Wah Li, Chao-Qing Wen, Xueyi Liu and Hon-Ming Lam",authors:[{id:"18448",title:"Prof.",name:"Hon-Ming",middleName:null,surname:"Lam",slug:"hon-ming-lam",fullName:"Hon-Ming Lam"},{id:"21943",title:"Mr.",name:"Man-Wah",middleName:null,surname:"Li",slug:"man-wah-li",fullName:"Man-Wah Li"},{id:"154164",title:"Ms.",name:"Yee Shan",middleName:null,surname:"Ku",slug:"yee-shan-ku",fullName:"Yee Shan Ku"},{id:"154165",title:"Ms.",name:"Yuk Lin",middleName:null,surname:"Yung",slug:"yuk-lin-yung",fullName:"Yuk Lin Yung"},{id:"154166",title:"Ms.",name:"Chao Qing",middleName:null,surname:"Wen",slug:"chao-qing-wen",fullName:"Chao Qing Wen"},{id:"154167",title:"Prof.",name:"Xueyi",middleName:null,surname:"Liu",slug:"xueyi-liu",fullName:"Xueyi Liu"},{id:"164136",title:"Dr.",name:"Wan-Kin",middleName:null,surname:"Au-Yeung",slug:"wan-kin-au-yeung",fullName:"Wan-Kin Au-Yeung"},{id:"164755",title:"Mr.",name:"Wan-Kin",middleName:null,surname:"Au-Yeung",slug:"wan-kin-au-yeung",fullName:"Wan-Kin Au-Yeung"}]},{id:"40180",doi:"10.5772/50568",title:"Plant Tissue Culture: Current Status and Opportunities",slug:"plant-tissue-culture-current-status-and-opportunities",totalDownloads:59245,totalCrossrefCites:18,totalDimensionsCites:31,book:{slug:"recent-advances-in-plant-in-vitro-culture",title:"Recent Advances in Plant in vitro Culture",fullTitle:"Recent Advances in Plant in vitro Culture"},signatures:"Altaf Hussain, Iqbal Ahmed Qarshi, Hummera Nazir and Ikram Ullah",authors:[{id:"147617",title:"Dr.",name:"Altaf",middleName:null,surname:"Hussain",slug:"altaf-hussain",fullName:"Altaf Hussain"}]},{id:"40179",doi:"10.5772/50367",title:"Somaclonal Variation in Tissue Culture: A Case Study with Olive",slug:"somaclonal-variation-in-tissue-culture-a-case-study-with-olive",totalDownloads:24033,totalCrossrefCites:14,totalDimensionsCites:29,book:{slug:"recent-advances-in-plant-in-vitro-culture",title:"Recent Advances in Plant in vitro Culture",fullTitle:"Recent Advances in Plant in vitro Culture"},signatures:"A.R. Leva, R. Petruccelli and L.M.R. Rinaldi",authors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}]}],mostDownloadedChaptersLast30Days:[{id:"40180",title:"Plant Tissue Culture: Current Status and Opportunities",slug:"plant-tissue-culture-current-status-and-opportunities",totalDownloads:59245,totalCrossrefCites:18,totalDimensionsCites:31,book:{slug:"recent-advances-in-plant-in-vitro-culture",title:"Recent Advances in Plant in vitro Culture",fullTitle:"Recent Advances in Plant in vitro Culture"},signatures:"Altaf Hussain, Iqbal Ahmed Qarshi, Hummera Nazir and Ikram Ullah",authors:[{id:"147617",title:"Dr.",name:"Altaf",middleName:null,surname:"Hussain",slug:"altaf-hussain",fullName:"Altaf Hussain"}]},{id:"40181",title:"Plant Tissue Culture Media",slug:"plant-tissue-culture-media",totalDownloads:99835,totalCrossrefCites:2,totalDimensionsCites:10,book:{slug:"recent-advances-in-plant-in-vitro-culture",title:"Recent Advances in Plant in vitro Culture",fullTitle:"Recent Advances in Plant in vitro Culture"},signatures:"Abobkar I.M. Saad and Ahmed M. Elshahed",authors:[{id:"144204",title:"Prof.",name:"Abobkar",middleName:null,surname:"Mohamed",slug:"abobkar-mohamed",fullName:"Abobkar Mohamed"}]},{id:"50189",title:"Food Safety – Problems and Solutions",slug:"food-safety-problems-and-solutions",totalDownloads:4436,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"significance-prevention-and-control-of-food-related-diseases",title:"Significance, Prevention and Control of Food Related Diseases",fullTitle:"Significance, Prevention and Control of Food Related Diseases"},signatures:"Aslı Uçar, Mustafa Volkan Yilmaz and Funda Pınar Çakıroğlu",authors:[{id:"80923",title:"Prof.",name:"Aslı",middleName:null,surname:"Uçar",slug:"asli-ucar",fullName:"Aslı Uçar"},{id:"176587",title:"M.Sc.",name:"Mustafa Volkan",middleName:null,surname:"Yılmaz",slug:"mustafa-volkan-yilmaz",fullName:"Mustafa Volkan Yılmaz"},{id:"176588",title:"Prof.",name:"Funda Pınar",middleName:null,surname:"Çakıroğlu",slug:"funda-pinar-cakiroglu",fullName:"Funda Pınar Çakıroğlu"}]},{id:"49838",title:"Risk Factors and Outcomes of Food Poisoning in Africa",slug:"risk-factors-and-outcomes-of-food-poisoning-in-africa",totalDownloads:5035,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"significance-prevention-and-control-of-food-related-diseases",title:"Significance, Prevention and Control of Food Related Diseases",fullTitle:"Significance, Prevention and Control of Food Related Diseases"},signatures:"Ntambwe Malangu",authors:[{id:"84773",title:"Prof.",name:"Ntambwe",middleName:null,surname:"Malangu",slug:"ntambwe-malangu",fullName:"Ntambwe Malangu"}]},{id:"51614",title:"Environmental Factors Affecting Corn Quality for Silage Production",slug:"environmental-factors-affecting-corn-quality-for-silage-production",totalDownloads:1647,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"advances-in-silage-production-and-utilization",title:"Advances in Silage Production and Utilization",fullTitle:"Advances in Silage Production and Utilization"},signatures:"Gonzalo Ferreira and Alston N. Brown",authors:[{id:"180479",title:"Dr.",name:"Gonzalo",middleName:null,surname:"Ferreira",slug:"gonzalo-ferreira",fullName:"Gonzalo Ferreira"},{id:"185277",title:"MSc.",name:"Alston",middleName:null,surname:"Brown",slug:"alston-brown",fullName:"Alston Brown"}]},{id:"51512",title:"Production Processes for Monoclonal Antibodies",slug:"production-processes-for-monoclonal-antibodies",totalDownloads:4238,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"fermentation-processes",title:"Fermentation Processes",fullTitle:"Fermentation Processes"},signatures:"Lucas Silva Carvalho, Otávio Bravim da Silva, Gabriela Carneiro de\nAlmeida, Juliana Davies de Oliveira, Nadia Skorupa Parachin and\nTalita Souza Carmo",authors:[{id:"182512",title:"Prof.",name:"Nádia",middleName:null,surname:"Parachin",slug:"nadia-parachin",fullName:"Nádia Parachin"},{id:"183188",title:"Prof.",name:"Talita",middleName:"Souza",surname:"Carmo",slug:"talita-carmo",fullName:"Talita Carmo"},{id:"187912",title:"MSc.",name:"Lucas",middleName:null,surname:"Silva Carvalho",slug:"lucas-silva-carvalho",fullName:"Lucas Silva Carvalho"},{id:"187913",title:"MSc.",name:"Otávio",middleName:null,surname:"Bravim Da Silva",slug:"otavio-bravim-da-silva",fullName:"Otávio Bravim Da Silva"},{id:"187914",title:"BSc.",name:"Gabriela",middleName:null,surname:"Carneiro De Almeida",slug:"gabriela-carneiro-de-almeida",fullName:"Gabriela Carneiro De Almeida"},{id:"187916",title:"Dr.",name:"Juliana",middleName:null,surname:"Davies Oliveira",slug:"juliana-davies-oliveira",fullName:"Juliana Davies Oliveira"}]},{id:"54262",title:"Nano-Silicate from Paddy Waste as Natural Corrosion Inhibitor",slug:"nano-silicate-from-paddy-waste-as-natural-corrosion-inhibitor",totalDownloads:1233,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"rice-technology-and-production",title:"Rice",fullTitle:"Rice - Technology and Production"},signatures:"Norinsan Kamil Othman, Denni Asra Awizar and Zulhusni Dasuki",authors:[{id:"189476",title:"Associate Prof.",name:"Norinsan Kamil",middleName:null,surname:"Othman",slug:"norinsan-kamil-othman",fullName:"Norinsan Kamil Othman"},{id:"197109",title:"MSc.",name:"Denni Asra",middleName:null,surname:"Awizar",slug:"denni-asra-awizar",fullName:"Denni Asra Awizar"},{id:"197110",title:"MSc.",name:"Zulhusni",middleName:null,surname:"Dasuki",slug:"zulhusni-dasuki",fullName:"Zulhusni Dasuki"}]},{id:"50256",title:"Cholera – Epidemiology, Prevention and Control",slug:"cholera-epidemiology-prevention-and-control",totalDownloads:4042,totalCrossrefCites:4,totalDimensionsCites:4,book:{slug:"significance-prevention-and-control-of-food-related-diseases",title:"Significance, Prevention and Control of Food Related Diseases",fullTitle:"Significance, Prevention and Control of Food Related Diseases"},signatures:"Saulat Jahan",authors:[{id:"85323",title:"Dr.",name:"Saulat",middleName:null,surname:"Jahan",slug:"saulat-jahan",fullName:"Saulat Jahan"}]},{id:"40179",title:"Somaclonal Variation in Tissue Culture: A Case Study with Olive",slug:"somaclonal-variation-in-tissue-culture-a-case-study-with-olive",totalDownloads:24033,totalCrossrefCites:14,totalDimensionsCites:29,book:{slug:"recent-advances-in-plant-in-vitro-culture",title:"Recent Advances in Plant in vitro Culture",fullTitle:"Recent Advances in Plant in vitro Culture"},signatures:"A.R. Leva, R. Petruccelli and L.M.R. Rinaldi",authors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}]},{id:"56515",title:"Yeast as a Versatile Tool in Biotechnology",slug:"yeast-as-a-versatile-tool-in-biotechnology",totalDownloads:1236,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"yeast-industrial-applications",title:"Yeast",fullTitle:"Yeast - Industrial Applications"},signatures:"Ewa Żymańczyk-Duda, Małgorzata Brzezińska-Rodak, Magdalena\nKlimek-Ochab, Maciej Duda and Agata Zerka",authors:[{id:"203728",title:"Prof.",name:"Ewa",middleName:null,surname:"Żymańczyk-Duda",slug:"ewa-zymanczyk-duda",fullName:"Ewa Żymańczyk-Duda"},{id:"203729",title:"Dr.",name:"Małgorzata",middleName:null,surname:"Brzezińska-Rodak",slug:"malgorzata-brzezinska-rodak",fullName:"Małgorzata Brzezińska-Rodak"},{id:"203730",title:"Prof.",name:"Magdalena",middleName:null,surname:"Klimek-Ochab",slug:"magdalena-klimek-ochab",fullName:"Magdalena Klimek-Ochab"},{id:"203731",title:"MSc.",name:"Maciej",middleName:null,surname:"Duda",slug:"maciej-duda",fullName:"Maciej Duda"},{id:"203732",title:"MSc.",name:"Agata",middleName:null,surname:"Zerka",slug:"agata-zerka",fullName:"Agata Zerka"}]}],onlineFirstChaptersFilter:{topicSlug:"agricultural-and-biological-sciences-bromatology-food-technology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"6837",title:"Lithium-ion Batteries - Thin Film for Energy Materials and Devices",subtitle:null,isOpenForSubmission:!0,hash:"ea7789260b319b9a4b472257f57bfeb5",slug:null,bookSignature:"Prof. Mitsunobu Sato, Dr. Li Lu and Dr. Hiroki Nagai",coverURL:"https://cdn.intechopen.com/books/images_new/6837.jpg",editedByType:null,editors:[{id:"179615",title:"Prof.",name:"Mitsunobu",middleName:null,surname:"Sato",slug:"mitsunobu-sato",fullName:"Mitsunobu Sato"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9423",title:"Applications of Artificial Intelligence in Process Industry Automation, Heat and Power Generation and Smart Manufacturing",subtitle:null,isOpenForSubmission:!0,hash:"10ac8fb0bdbf61044395963028653d21",slug:null,bookSignature:"Prof. Konstantinos G. Kyprianidis and Prof. Erik Dahlquist",coverURL:"https://cdn.intechopen.com/books/images_new/9423.jpg",editedByType:null,editors:[{id:"35868",title:"Prof.",name:"Konstantinos",middleName:"G.",surname:"Kyprianidis",slug:"konstantinos-kyprianidis",fullName:"Konstantinos Kyprianidis"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9428",title:"New Trends in the Use of Artificial Intelligence for the Industry 4.0",subtitle:null,isOpenForSubmission:!0,hash:"9e089eec484ce8e9eb32198c2d8b34ea",slug:null,bookSignature:"Dr. Luis Romeral Martinez, Dr. Roque A. Osornio-Rios and Dr. Miguel Delgado Prieto",coverURL:"https://cdn.intechopen.com/books/images_new/9428.jpg",editedByType:null,editors:[{id:"86501",title:"Dr.",name:"Luis",middleName:null,surname:"Romeral Martinez",slug:"luis-romeral-martinez",fullName:"Luis Romeral Martinez"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10107",title:"Artificial Intelligence in Oncology Drug Discovery & Development",subtitle:null,isOpenForSubmission:!0,hash:"043c178c3668865ab7d35dcb2ceea794",slug:null,bookSignature:"Dr. John Cassidy and Dr. Belle Taylor",coverURL:"https://cdn.intechopen.com/books/images_new/10107.jpg",editedByType:null,editors:[{id:"244455",title:"Dr.",name:"John",middleName:null,surname:"Cassidy",slug:"john-cassidy",fullName:"John Cassidy"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10080",title:"Vortex Dynamics",subtitle:null,isOpenForSubmission:!0,hash:"ea97962e99b3e0ebc9b46b48ba5bea14",slug:null,bookSignature:"Dr. Zambri Harun",coverURL:"https://cdn.intechopen.com/books/images_new/10080.jpg",editedByType:null,editors:[{id:"243152",title:"Dr.",name:"Zambri",middleName:null,surname:"Harun",slug:"zambri-harun",fullName:"Zambri Harun"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8903",title:"Carbon Based Material for Environmental Protection and Remediation",subtitle:null,isOpenForSubmission:!0,hash:"19da699b370f320eca63ef2ba02f745d",slug:null,bookSignature:"Dr. Mattia Bartoli and Dr. Marco Frediani",coverURL:"https://cdn.intechopen.com/books/images_new/8903.jpg",editedByType:null,editors:[{id:"188999",title:"Dr.",name:"Mattia",middleName:null,surname:"Bartoli",slug:"mattia-bartoli",fullName:"Mattia Bartoli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8771",title:"Raman Scattering",subtitle:null,isOpenForSubmission:!0,hash:"1354b3097eaa5b27d9d4bd29d3150b27",slug:null,bookSignature:"Dr. Samir Kumar and Dr. Prabhat Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/8771.jpg",editedByType:null,editors:[{id:"296661",title:"Dr.",name:"Samir",middleName:null,surname:"Kumar",slug:"samir-kumar",fullName:"Samir Kumar"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10073",title:"Recent Advances in Nanophotonics-Fundamentals and Applications",subtitle:null,isOpenForSubmission:!0,hash:"aceca7dfc807140870a89d42c5537d7c",slug:null,bookSignature:"Dr. Mojtaba Kahrizi and Ms. Parsoua Abedini Sohi",coverURL:"https://cdn.intechopen.com/books/images_new/10073.jpg",editedByType:null,editors:[{id:"113045",title:"Dr.",name:"Mojtaba",middleName:null,surname:"Kahrizi",slug:"mojtaba-kahrizi",fullName:"Mojtaba Kahrizi"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:19},humansInSpaceProgram:{},teamHumansInSpaceProgram:{},route:{name:"profile.detail",path:"/profiles/47498/steve-goheen",hash:"",query:{},params:{id:"47498",slug:"steve-goheen"},fullPath:"/profiles/47498/steve-goheen",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var t;(t=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(t)}()