Vegetation indices used in this study.
\r\n\tDigital images can be easily distorted by noise during the acquisition, processing, and transmission. Noise level is an important parameter to consider in image processing algorithms, including denoising, compression, feature extraction, motion estimation, optical flow, segmentation, super-resolution, and image quality assessment. Their performance depends on the accuracy of the noise level estimate.
\r\n\r\n\tImage denoising is an important stage to improve the accuracy of many image processing techniques, such as image segmentation and recognition. Image segmentation is another important stage in computer vision applications. Many methodologies utilize both stages in a unique algorithm to solve the problem of the segmentation of noisy images to provide better classification and recognition compared to algorithms that independently use these two stages.
\r\n\tThe goal of this book will be to collect original research chapters that develop or apply new theories and/or hardware or software to process the acquired noisy images to solve the problem of Segmentation of noisy images in the field of medical imaging, remote sensing, engineering, and other research applications.
The decrease of water availability is a major global problem that is increasing in intensity. Since water resources have been substantially reduced over the past years, control over water distribution is now considered imperative. For this reason, water supply networks are more closely monitored and significant efforts are made to reduce the effects of leakages. In addition to the design and maintenance of water distribution systems, researchers are also focused on the improvement of early detection and rapid response of a leakage. Research indicates that water supply network may lose up to 20-30% of water, with the main cause being water leaks (Cheong, LC 1991). In some networks, the loss can reach more than 50% (AWWA, 1987).
Systematic leakages can lead to significant losses in both water as well as financial resources. Water pipe networks, regardless of age, often present problems of water leakage, resulting in large losses of precious drinking water. Therefore, there is an urgent need to design and build systems that can detect the presence and location of leaks in water pipes networks. The detection of hidden leaks in underground water supply networks requires the use of instruments designed specifically for this purpose by a trained operator.
The most widely applied technique for the detection of hidden leaks is the acoustic method. Additional methods for leak detection also include thermography, remote sensing, geophysics etc. Leaks from pipelines under pressure create a whistling characteristic noise, which is transmitted by the water itself. Hunaidi and Chu (1999) used the acoustic method for leakage detection, which focused on various types of leaks under controlled conditions. Hunaidi and Giamou (1998) conducted a survey on the effectiveness of acoustic methods and the dynamics of alternative non-acoustic methods for leak detection in plastic pipes, using penetrating ground radar to assess the potential leakage. The survey was conducted in a specially constructed facility where different types of leaks could be simulated under controlled conditions. The facility had a 200m long tube made from PVC, 150mm diameter, which was buried in soft muddy soil to a depth 2.4m. The research was performed using a radar antenna with frequencies of 50, 100, 200, and 450 MHZ.
Pickerill and Malthus (1998) study of water leakage detection using airborne remote sensing data used the analysis of soil moisture and vegetation biomass based on thematic maps. The researchers were able to detect two leaks from the surrounding environment of the Aqueduct of the North West England. Huang and Fipps (2002) used an airborne thermal sensor, including GPS receiver, for leakage detection over irrigation canals and pipelines. The sensor was able to record surface temperature as digital values ranging from 0-255 (8 bit). Based on the data, 45 areas where identified as potential leakage sites. Each site was mapped using Geographical Information System of the area. From the 45 areas, 11 sites were examined in-situ, with a success rate of 91%. The other sites were specific channels with cracks that were likely sources of leaks. The study concluded that the thermal imaging method was a very promising technology for the evaluation of irrigation channels and leakage as it is a rapid and cost effective method of leak detection for irrigation channels. In a similar study, Huang and Fipps (2002) conducted a study in the Rio Grande Valley of Texas using airborne multispectral remote sensing for leak detection and possible identification of an irrigation network. A multispectral imaging system combining red, NIR and thermal sensors was used to collect image data in over 24 selected. During the flight, the three cameras (red, NIR and thermal) were synchronized to obtain the same area. Image processing included both image fusion as well as image geo-registration. The combination of red, NIR and thermal sensors were effective for the determination of leakage areas. The study found that airborne multispectral imaging can be used for assessing both the conditions of the channel as well for the detection of leaks in irrigation distribution networks.
Shih and Jordan (1993) examined soil moisture detection using Landsat satellite images. The methodology involved daily temperature data and soil moisture measurements recorded with ground-based observations. The results indicated that the percentage content of soil moisture was inversely proportional to the temperature at the soil surface. The thermal infrared (IR) data from Landsat band 6 was classified into four land use classes using GIS data. The four main categories were agriculture, irrigation, urban and forest-wetlands. The thermal data were also used to evaluate four soil moisture conditions (water, very wet, wet, dry) and were used in each of the four classes mentioned above. The integration of Landsat images using GIS can be used to assess regional soil moisture conditions which can be adapted to identify water leak detection. Naimullah (2009) used satellite images for pipeline leak detection, further to the classification of land use in Mempatih, Pahang, Malaysia. The objective of the study was the evaluation of vegetation indices such as NDVI images using SPOT-5 satellite data. The final results showed a correlation of 81.02% for NDVI to identify the leakage problem.
The research presented above, along with the studies discussed in this book, highlight the significant contribution of satellite imagery for the detection of leakages. In this chapter, further investigation of the use of ground remote sensing to identify water leakage in Cyprus is presented.
In the study of leakage detection in Cyprus, ground spectroradiometers and a digital infrared thermometer were the main tools used to monitor and investigate potential leakage events. In order to use ground spectroscopy for the detection of leakage problems, several measurements were made in a controlled environment. The experiment was conducted at the Agricultural Research Institute, located in Acheleia, Cyprus. The area of interest measured approximately 11 x 7 meter, as indicated in Figure 1. A grid of 1 x 1 meter was created to take measurements. Measurements were taken with a ground spectroradiometer before and after the flooding of the pipeline in order to compare the difference observed in the spectral signatures profiles. Due to weather conditions, frequent calibration of the incoming solar radiation using the Spectralon panel was necessary. The Spectralon panel is a Lambertian surface with 99.99% reflectance. Areas with shadows were excluded in this study in order to avoid misleading results. The measurements were taken on clean and dry ground.
Area of interest. A pipeline was buried at a depth of approximately 1 meter.
In this area, a pipeline was buried 1 meter below surface. Cracks were produced in the pipeline in order to create an artificial leakage event. The end of the pipeline was connected to a valve. Figure 2 shows the area of interest approximately one hour after the artificial leakage event.
Leakage as observed from the surface
The GER 1500 PC Graphing Application Software was used for the analysis of the measurements and to plot the spectral signatures. For the calculation of the vegetation indices, a Matlab code was applied. The maps were created using the ArcGIS software. Based on the Relative Response Filters of the Landsat 7 ETM+sensor, the narrow band reflectance recorded from the spectroradiometer was recalculated into the above satellite sensor. By using the broadband reflectance values (Bands 1 – 4; Blue / Green / Red / Near Infrared) several vegetation indices were calculated as shown in table 1.
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
1 | \n\t\t\tEVI (Enhanced Vegetation Index) | \n\t\t\t2.5 (pNIR – pred)/(pNIR +6 pred – 7.5 pblue +1) | \n\t\t
2 | \n\t\t\tGreen NDVI (Green Normalized Difference Vegetation Index) | \n\t\t\t(pNIR – pgreen)/( pNIR + pgreen) | \n\t\t
3 | \n\t\t\tNDVI (Normalized Difference Vegetation Index) | \n\t\t\tpNIR – pred)/(pNIR + pred) | \n\t\t
4 | \n\t\t\tSR (Simple Ratio) | \n\t\t\tpNIR/pred\n\t\t\t | \n\t\t
5 | \n\t\t\tMSR (Modified Simple Ratio) | \n\t\t\tpred/(pNIR/pred +1)^0.5 | \n\t\t
6 | \n\t\t\tRDVI (Renormalized Difference Vegetation Index) | \n\t\t\t(pNIR – pred)/(pNIR + pred)^1/2 | \n\t\t
7 | \n\t\t\tIRG (Red Green Ratio Index) | \n\t\t\tpRed – pgreen\n\t\t\t | \n\t\t
8 | \n\t\t\tRVI (Ratio Vegetation Index) | \n\t\t\tpred/pNIR\n\t\t\t | \n\t\t
9 | \n\t\t\tMSAVI (Modified Soil Adjusted Vegetation Index) | \n\t\t\t[2 pNIR+1-[(2 pNIR+1)^2 -8(pNIR - pred)]^1/2]/ 2 | \n\t\t
10 | \n\t\t\tARVI (Atmospherically Resistant Vegetation Index) | \n\t\t\t(pNIR - prb)/( pNIR + prb), prb = pred – γ (pblue – pred) | \n\t\t
11 | \n\t\t\tGEMI (Global Environment Monitoring Index) | \n\t\t\tn(1-0.25n)( pred -0.125)/(1 − pred ) n = [2(pNIR^2- pred^2)+1.5 pNIR+0.5 pred]/(pNIR+ pred +0.5) | \n\t\t
12 | \n\t\t\tSARVI (Soil and Atmospherically Resistant Vegetation Index) | \n\t\t\t(1+0.5) (pNIR - prb)/( pNIR + prb +0.5) prb = pred – γ (pblue – pred) | \n\t\t
13 | \n\t\t\tOSAVI (Optimized Soil Adjusted Vegetation Index) | \n\t\t\t(pNIR – pred)/(pNIR + pred +0.16) | \n\t\t
14 | \n\t\t\tDVI (Difference Vegetation Index) | \n\t\t\tpNIR - pred\n\t\t\t | \n\t\t
15 | \n\t\t\tSR × NDVI (Simple Ratio x Normalized Difference Vegetation Index) | \n\t\t\t(pNIR^2– pred)/(pNIR + pred^2) | \n\t\t
Vegetation indices used in this study.
A handheld digital infrared thermometer was also used to measure the ground temperature of the area. By using the laser sighting, measurements were taken at 1 meter intervals, before the leakage, during the leakage as well after the leakage event. Although the weather may have varied before, during and after the leakage, this had no impact on the results since the maps presented and discussed are based on relative differences in temperature. After the recording of the measurements, the ArcGIS was used to plot the data. Several interpolation methods were used, including the inverse distance to the power (IDW).
Unmanned aerial vehicles (UAVs) have been used for monitoring purposes of leakages events in several semi-arid areas of Cyprus. Due to the low cost and high quality image provided, UAVs are increasingly being used for field work. Research indicates that aerial remote sensing and imaging can be conducted using large scale low-altitude imagining and geospatial information (Colomina and Molina, 2014; Cho et al, 2013; Mayr, 2013; Petrie, 2013). In this study, a UAV platform was used to take aerial images of the study site. The UAV was equipped with RGB and VNIR cameras in order to document and detect water leakages from a low-altitude position. In this study, an octo-copter with 8 motorized propellers, including a GPS, piezo gyros, compass, altitude control, telemetry, acceleration and barometric sensor was used (figure 3.) The copter was used to take photographs of the water leakage events. Figure 4 features an aerial view of the Mandria water leakage site, while Figure 5 clearly shows the Lakatameia underground pipeline via aerial photography, with the continuation of the pipeline in yellow.
Oktocopter UAV
Leakage event in Mandria as observed from UAV
Lakatameia underground pipeline as observed from UAV
It was found that, in some cases, the UAV can identify water leakages and water pipelines in different ways such as increased vegetation along the pipeline where the water leakage occurs, change of soil characteristics along the pipeline route (Figure 5), as well as changes in the reflectance value of soils in the water leakage area. UAVs can also be used with thermal and infrared cameras to identify changes in temperature due to water leakage. An additional benefit of UAV platforms is that they can be used to survey large areas to provide overall coverage of the area or it can be used for areas that are inaccessible. The integration of UAV with other techniques is a useful method to cross-validate the leakage event.
Figure 6 indicates the results from the ground temperature measurements before the leakage event. The results show that the minimum temperature values are recorded around the pipeline. This is most likely due to the presence of soil moisture resulting from a prior leakage, which occurred a month prior to the measurements. Similar results were also observed in the top of Figure 6, since the olive trees present in the area tend to hold moisture in the soil. In comparing the soil temperature over the pipeline against surrounding area, a relative difference of 2 °C was observed. This difference is logical, since from the last leakage event the soil temperature tends to be close to its original (background) value.
Ground temperature over the area of interest as recorded from the digital laser thermometer, before the leakage event. Rectangle indicates the location of the buried pipeline. Blue values indicates temperatures 14-16oC while the cyan colour temperatures 16-18oC.
Figure 7 demonstrates the results during the leakage event. The lowest surface temperature is shown in the western part area over the pipeline. In this section, the leak was initially observed during the leakage event. The soil temperature for the rest of the area was relatively high. These values indicate that moisture was not detected. The soil temperature also indicated a relative difference of about 6 °C of the leakage event and the rest dry area. Figure 8 features a photograph taken during the leakage event, as well the results from this area. The temperature measurements were able to map the problematic area with high accuracy and thereby define the leakage event. After the leakage event, the soil temperature decreased in the area over the buried pipeline. As shown in Figure 9, the entire pipeline had a tendency to present lower temperature values, including the leakage zone. The difference recorded in this step was estimate to be 8oC.
In comparing the above figures, it appears that the soil temperature over the buried pipeline provided lower values before, during and after the leakage event. The relative temperature difference in this zone in relation to rest of the study area was initially small, then subsequently decreased and finally further decreased. The relative difference temperature of this zone prior to and after the leakage indicates a 60% reduction in relation to the surrounding area.
Ground temperature over the area of interest as recorded from the digital laser thermometer, during the leakage event. Rectangle indicates the location of the buried pipeline. Blue values indicates temperatures 14-16oC, 24-26oC are shown in yellow while orange colour highlight values from 34-36oC
Detail of
Ground temperature over the area of interest as recorded from the digital laser thermometer, during the leakage event. Rectangle indicates the location of the buried pipeline. Blue values indicates temperatures 14-16oC, 24-26oC are shown in yellow while orange colour highlight values from 34-36oC
Figure 10 features the spectral signatures profiles from some regions of the study area before and after the leakage event. Using this figure, some preliminary conclusions can be drawn in relation with the reflectivity values of the same regions prior and after the leakage. The near infrared part of the spectrum (Band 4) tends to give the highest deviations. The reflectance values after the leakage is lower than prior to the event. Regarding the measurements over the pipeline there is a difference in the reflectance values before and after the leakage (spectral signature red and yellow).
Spectral signatures profiles before and after the leakage event. The differences are maximized in the near infrared part of the spectrum (Band 4)
Several vegetation indices were used in this study as shown in Table 1. Fifteen different broadband indices were calculated based on the RSR filters of Landsat 7 ETM+and applied in the area of interest. Some indices tended to provide poor results in contrast to other indices, which were able to detect the leakage. Several figures were created showing the area prior and after the leakage, as well maps showing the vegetation index difference.
As indicated in Figure 11, the EVI index was able to detect the leakage occurred over the buried pipeline with great success. As shown in figure 11, the highest negative values (blue colour) are observed in the area over the pipeline. In order to create this map, the EVI index was calculated before and after the leakage event and then these two indexes were subtracted. In a similar manner, the RDVI index was also able to show this leakage. A cross section from North to South was performed to see the vertical profile of the index. As demonstrated in Figure 12, the highest difference is recorded as the section pass through the pipeline (points A and B in Figure 12).
Several vegetation indices presented in Figures 13-25 were able to highlight the leakage as well as the area around the buried pipeline before and after the leakage (table 2). The buried pipeline is indicted by the black triangle in each figure. However, in addition to the leakage event, there were other parameters that played a significant role for the detection of the problem. As the results indicate, vegetation indices, including the NDVI index, were able to identify the leakage, yet there were some problems related to the atmospheric conditions. In contrast, the ARVI index was able to map the leakage with no difficulties since it is an atmospheric resistance index. EVI was another index with can be applied for this purposes as well.
Figure | \n\t\t\tVegetation indice used | \n\t\t
Figure 13 | \n\t\t\tSRxNDVI | \n\t\t
Figure 14 | \n\t\t\tSR | \n\t\t
Figure 15 | \n\t\t\tSarvi | \n\t\t
Figure 16 | \n\t\t\tRVI | \n\t\t
Figure 17 | \n\t\t\tOSAVI | \n\t\t
Figure 18 | \n\t\t\tNDVI | \n\t\t
Figure 19 | \n\t\t\tMSR | \n\t\t
Figure 20 | \n\t\t\tMSAVI | \n\t\t
Figure 21 | \n\t\t\tIRG | \n\t\t
Figure 22 | \n\t\t\tGNDVI | \n\t\t
Figure 23 | \n\t\t\tGEMI | \n\t\t
Figure 24 | \n\t\t\tDVI | \n\t\t
Figure 25 | \n\t\t\tARVI | \n\t\t
Vegetation indices used in this study, by figure
Difference values as calculated for EVI index (before and after the leakage). The buried pipeline is indicated in the rectangle.
Difference values as calculated for RDVI index (before and after the leakage). A cross section passing through the pipeline (A-B) is also drawn.
Difference values as calculated for SRxNDVI index
Difference values as calculated for SR index
Difference values as calculated for SARVI index
Difference values as calculated for RVI index
Difference values as calculated for OSAVI index
Difference values as calculated for NDVI index
Difference values as calculated for MSR index
Difference values as calculated for MSAVI index
Difference values as calculated for IRG index
Difference values as calculated for GNDVI index
Difference values as calculated for GEMI index
Difference values as calculated for DVI index
Difference values as calculated for ARVI index
During the study, a methodology was developed for the local authorities and other end users regarding the early warning system. The early warning system was based on the study by Agapiou et al. (2014) and from the results of this controlled experiment. The system was built in the ArcGIS software with the objective to extract useful information from remote sensing satellite images. The methodology applied is divided into two different scenarios according to the amount of satellite images available to end users (see Figure 26).
Methodology followed for the early warning system (Agapiou et al. 2014).
Detection of leakage problem using high resolution satellite data (Agapiou et al. 2014)
The first scenario aims to detect “suspicious areas” and therefore validate a hypothesis of a water-leakage event while the second scenario aims to detect unknown leakages events.
The first scenario is briefly outlined by the next steps:
Define the broader zone of “suspicious” leakages areas
Radiometric and Geometric corrections of the image, including atmospheric correction. In this study, the Darkest Pixel image based algorithm was applied since is a fast and accurate method for removing atmospheric effects
Calculation of the NDVI index in the area of interest
Definition of thresholds for the NDVI values. These thresholds were defined a-priori after field spectroradiometric campaigns
Masking of areas within thresholds boundaries
Application of other vegetation indices and PCA analysis as well as spatial filters for the detection of vegetated areas
Definition of areas with possible leakage problem
For the second scenario the steps are:
Radiometric and Geometric corrections of the images
Creation of buffer zones around the joints of the water pipeline
Masking of images
Calculation of NDVI index in the area of interest in the whole dataset
Calculation of NDVI difference between the two images
Definition of thresholds for the NDVI values based on pre-defined thresholds.
Definition of areas with possible leakage problems using spatial filters
The modeler was built into the ArcGIS environment and successfully applied using several satellite data. Previous studies of the authors (Agapiou et al. 2014) the detection of leakage events was possible (see Figure 27).
Leakage detection is very important for water management. As presented in this chapter, research has indicated that remote sensing techniques can identify leakage detection. Remote sensing techniques can provide useful data, both for the detection of the water pipes and for the detection of water leakages. This study was conducted in a controlled environment using ground remote sensing techniques. The use of ground spectroradiometers has shown that several broadband vegetation indices may be applied for the detection of leakages events. The different maps created in this chapter indicate that some indices such as ARVI or EVI are favourable for this purpose. The results demonstrated that digital thermometers may be used for the detection of leakages events. Therefore, either airborne or satellite systems equipped with thermal sensors and with a high resolution may be possible detect areas with leakage problems. As well, UAVs can be used successfully to identify water leakages, through the use of aerial photography and other sensors. The results of this study indicate that remote sensing techniques are able to detect areas of the pipeline with water leakages. The resulting data can be integrated into a GIS which can be used by local authorities as an early warning system.
The results reported here are based on findings of the Cyprus Research Promotion Foundation project “ΑΕΙΦΟΡΙΑ/ΦΥΣΗ/0311(ΒΙΕ)/21”: Integrated use of space, geophysical and hyperspectral technologies intended for monitoring water leakages in water supply networks in Cyprus. The project is co-funded by the Republic of Cyprus and the European Regional Development Funds of the EU. Thanks are also given to the Remote Sensing and Geo-Environment Laboratory of the Department of Civil Engineering & Geomatics at the Cyprus University of Technology for its continuous support (http://www.cut.ac.cy).
Mortars are among the first building materials used in constructions, even from prehistoric times. Their study reveals a great source of information regarding the evolution of their technological characteristics and application techniques, the availability and exploitation of raw materials, as well as the wider socioeconomic aspects of each era. In any case, it seems that ancient masons were fully aware of the significant role of mortars in constructions and could exploit the raw materials that were available along with the application techniques [1]. In particular, the role of the quality of aggregates on the properties of old mortars has been known since, at least, Roman times. Natural sands of different origins and nature (river, quarry, sea) and crushed bricks combined with binders which were usually lime-based, were used for many centuries (Figure 1). These mortars were of different types and served as bedding, renders or plasters, floors, and mosaics’ substates forming masterpieces of the world cultural heritage [2].
Coarse aggregates of natural origin in bedding mortars of the fourth century AD (left) and crushed brick as aggregates in a bedding mortar of the sixth century AD (right).
It is evident from the classic authors that the Romans preferred sharp sands to rounded sands, as they knew that these would produce stronger mortars; for example, Palladius, Pliny, and Vitruvius refer to recipes and guidelines for criteria that can be used for sand selection in the mixtures [3, 4, 5]. Among the requirements they mention, the origin, the shape, and the cleanness of the sand are the ones that prevail. They noticed the direct relation of the sand quality to the setting and strength of the mortars, and they gave precise directions to avoid, for example, sea sand due to salt contamination that can accelerate the weathering of the mortar. Manufacturing mortar was the first milestone in building history which has been continuously evolved up to the modern concrete. The materials used for mortar manufacture since antiquity were binders (clay, lime, pozzolan, brick/tile dust), aggregates (sand, gravel, crushed brick, pumice), and materials that were less frequently found and used (such as chopped straw, egg whites, reeds, blood, palm fibers, milk, and goat hair.). In Akrotiri of Thera, Greece (1700–1400 BC), structural mortars were made of local origin clay, mixed with gravel, charcoal, and straw [6]. In Hellenistic monuments, such as Dilos residences (second century BC), lime-pozzolan mortars were mainly found, with aggregates of natural origin and of granulometry mainly 0–8 mm [7]. During the Roman period (second century BC–third century AD), the use of lime and pozzolan dominated in constructions, while brick dust and crushed brick also started to be used [8]. The systematic and in high proportion use of brick dust and crushed brick in lime or lime-pozzolan mortars were expanded during the Byzantine era fourth–fifteenth century AD [9]. Aggregates (natural origin and crushed brick) were of gradation 0–8 mm to 0–16 mm, with a B/A ratio 1/2–1/3 [10]. The effectiveness of the adhesion between the binder and the crushed brick aggregates achieved in those cases was impressive. During the Ottoman period (fifteenth–nineteenth century AD), structural mortars were manufactured by using the available raw materials [11]. They were mainly lime-based (pure lime or lime with clay), while in specific constructions demanded in resistance to humidity (baths, cisterns), pozzolan and brick dust were also added. Aggregates were of natural origin (in some cases crushed brick was also added), of 0–8 mm granulometry, and of B/A ratio 1/2 [12]. In Medieval times (fifteenth–nineteenth century AD), structural mortars mainly consisted of lime (in some cases pozzolan was added), natural or crushed aggregates, and crushed brick in gradations 0–4 mm to 0–8 mm and B/A ratio 1/1–1/2 [13]. During the nineteenth and beginning of the twentieth century, structural mortars varied depending on the building type and the local constructional tradition. Aggregates were usually of the natural origin of 0–8 mm gradation [14]. Later, scholars such as Lanas [15] referred to the importance of the binder/aggregate interface as a zone that requires special attention. From the historic research of the components of mortars, it is obvious that the presence of sand was catalytic and continuous. In relation to the origin of the sand used, it was mainly local, from streams or rivers, and in special cases, crushed bricks or tiles in different gradation were added [16, 17]. Aggregates are the most ubiquitous materials in construction. Nowadays, the building industry uses aggregates as materials for construction, mainly in their bound state with cement to form concrete, bitumen to form asphalt, or as components for composite materials. Nevertheless, the utilization of aggregates has a long history in construction technology and especially in mortars. Over the last decades, due to the increasing cost of raw materials and the continuous reduction of natural resources, the recycling of industrial waste has become an interesting option for the building industry. Nowadays, many large industries use manufactured sand alone for producing mortar by partially replacing river sand. In these complex systems, the aim seems to be first, the utilization of low-cost materials from local resources and second ensuring the quality and performance of materials for specific applications. Therefore, there is still a continuous usage of sand in construction works. Alternative approaches to completely replacing sand in mortars have intensified over the last decades [18]. At the moment, the increasing awareness of society about safeguarding heritage buildings and at the same time protecting the environment promotes strategies of combining principles of restoration with environmental friendly materials and techniques.
Composites are materials made by combining two or more other materials. These materials are important in the construction sector as building technology has been favored by the advanced properties that composites can offer. The development of composite materials along with related design and manufacturing technologies constitute one of the most important advances in the history of materials. Composites are multifunctional materials having unprecedented mechanical and physical properties that can be tailored to meet the requirements of a particular application [19]. Thus, new achievements have been constructed as the innovative composites could add new possibilities to the engineers’ imagination.
Mortars are a specific type of composite material, which consists mainly of three phases—paste as the matrix, interface transition zone (ITZ), and aggregates. The properties of mortars are influenced by:
Aggregates (type, percentage, shape)
Binders (activity, percentage)
Their contact surface area
Mixing water
The maintenance conditions of the applied specimens
At fresh state, mortar should be workable (do not break and do not flow), plastic (to have consistency to hold and not flow on overload loads) and it should show volume stability (do not cause contractions or expansions). At harden state, it should have the required strength and the required porosity. Aggregates constitute the strongest phase, hold a significant percentage in the volume of mortar and are frequently used in sand size (up to 4 mm). Conditions for the use of aggregates in mortars is the health of both the parent rock and the grains (without breaks, cracks, impurities), low porosity—small absorption index, homogeneous granulometric grade, percentage of the fines (<0.075 mm) should not exceed 5% [20]. The presence of fines in lime-based mortars can cause considerable alterations to the properties of the mortars. Their presence significantly reduces the strength and increases the volume shrinkage of mortars [21]. Furthermore, the porosity can be increased, and the same can also happen with capillarity when fine aggregates are participating in excess. Additionally, the type of fines also seems to play a role in their behavior in relation to the basic binder. For example, the strength is decreased in compositions with clay fines while porosity is affected mainly by limestone fines [22]. Capillarity also seems to be affected by the type of fines as the compositions containing fines 10–15% presented low absorption probably because fines block capillary pores [23].
In the case of mortars, as composite materials and keeping in mind that aggregates retain the inherent properties of the rocks from which they are derived, it can explain that the color, the chemical and physical characteristics of the aggregates directly affect the specific weight, the measure of elasticity, the volume stability, the appearance, and the mechanical and physical properties of mortars. The addition of sand to a binding system in mortars technology has proved to confer technical advantages as they contribute to volume stability, durability, and structural performance [16]. The gradation of the aggregates was wide, but the most adequate part was sand of 0–4 mm. Coarse aggregates up to 1 cm were used in thick joints [10] and also combined with sand for structural mortars while sand or finer aggregates (0–2 mm) are usually the constituents of the renders or plasters [24]. Usually, aggregates are obtained after the gentle grinding and sieving (based on EN1015-1) [25]. Even homogeneous distribution of grains is usually obtained as shown in Figure 2 in a typical bedding mortar.
Typical gradation of old structural mortar.
The ratio of binder to aggregates (B/A) ranges widely but it could be said that for most of the structural mortars, it is 1:2.5 or 1:3 while for the renders and plasters are richer in binder content and the ratio is mostly 1:1 or 1:1.5 [23]. Apart from the different types of aggregates, as their mineralogy and origin are concerned, the volume content in the mixture, the maximum size, and their gradation influences the structure of a binder—aggregate mixture and the performance of mortars overall [10]. The added aggregates strengthen the composite, and the associated interface weakens it. These two opposite effects offset each other, and the combination of them leads to declined strength. Generally, a strong cohesion between the mortar binder and coarse aggregate confirms the good masonry properties. On the other hand, the increase of aggregate content reduces the workability of a mix and thus, reduces the strength as well [26]. It has been mentioned before that aggregate plays a role in restraining the shrinkage of cement paste, and that the shrinkage of the aggregate itself can be neglected [27]. It has been found in various composite materials that a certain amount and proper size of the aggregate are beneficial to the strength and fracture energy of the composite [28]. For mortar specimens, aggregates have a significant influence on both rheological and mechanical properties. Their specific gravity, particle size distribution, shape, and surface texture influence markedly the properties of mortars in the fresh state. On the other hand, the mineralogical composition, toughness, elastic modulus, and degree of alteration of aggregates are generally found to affect the properties of mortars and in the hardened state [29]. The drying shrinkage strains in investigated mortars are changed significantly by different kinds of fine aggregate materials. The water content of the mortar mix proportion is a major factor in drying shrinkage evolution. Increasing the unit water content can result in an increase in the amount of capillary water, and hence more shrinkage strain would be obtained. The bonding stress of the weak interface zone between the coarse aggregate and paste can be improved when a chemical reaction between the aggregates and the paste [30].
More recently, the role of the recycled sand from waste demolition, when examined in mortars, revealed that it was more beneficial in lime mortars rather than in stronger lime-pozzolan or lime-pozzolan and cement mortars as a decrease in their performance were recorded in the latter cases due to the mortars’ structure [31]. It seems that two competitive mechanisms acted in these mortars; high porosity (due to high water content and the nature of the aggregates) which assists toward low strength and durability and the chemical reaction due to the presence of reactive components which creates a strong structure. This chemical reaction is a stronger mechanism in the case of lime mortars and prevails in relation to the competitive mechanisms of the higher porosity [32].
In an effort to test different aggregate-related properties to hydraulic lime mortar, Pavia et al. suggested [33] that an increase in the calcite content of the aggregate lowers the flexural and compressive strength of the mortar. At the same time, they proved that sharp aggregate, as well as aggregate with small average particle size, tends to increase the mechanical strength and bulk density of a mortar simultaneously reducing porosity, water absorption, and capillary suction. Additionally, they concluded that aggregates containing particles of a wide size range can increase the mechanical strength and bulk density of the hardened mortar diminishing porosity, water absorption, and capillary suction.
The role of aggregates on the structure and behavior of lime-based mortars is examined by studying the influence of the aggregate content, type, and grain size on the strength, porosity, and volume stability of the mortars. Trying to understand how the properties of the sands influence important macroscopic properties of pure lime mortar, threes sands that were available in the market were selected and analyzed in the laboratory. All of them were river origins of siliceous content (Figure 3).
(a) Black sand, (b) yellow sand, and (c) blonde sand.
X-ray diffraction analysis (XRD) using a D2 Phaser 2nd generation, Bruker instruments, indicated that blonde sand was containing quartz, feldspar, magnetite, calcite, hornblende. Yellow sand contained quartz, feldspar, magnetite and black contained quartz, feldspars, biotite, and hornblende. Physical properties, such as water absorption, specific gravity, and sand equivalent (S.E.), are shown in Table 1 while the chemical analysis revealed the silicic nature of the sands (Table 2).
Water absorption % | Specific gravity g/cm3 | S.E. | |
---|---|---|---|
Blonde | 0.70 | 2.36 | 90.5 |
Black | 1.46 | 2.35 | 98.0 |
Yellow | 1.09 | 2.34 | 75.0 |
Physical properties of sands.
Soluble in acids % b.w. | Soluble salts % b.w. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sample | Na2O | K2O | CaO | MgO | Fe2O3 | Al2O3 | SiO2 | L.I.% | Cl− | NO3− | SO42− |
Black sand | 3.24 | 2.63 | 3.05 | 1.28 | 3.66 | 13.83 | 68.37 | 3.45 | 0.19 | 0.08 | <0.01 |
Blonde sand | 2.97 | 1.76 | 3.16 | 1.87 | 5.69 | 14.17 | 66.00 | 4.23 | 0.09 | 0.11 | 0.04 |
Yellow sand | 7.82 | 0.94 | 0.73 | 0.46 | 1.02 | 18.71 | 67.14 | 2.88 | 0.01 | <0.01 | 0.31 |
Chemical analysis of sands.
Lime mortars were prepared using lime CL90 (based on EN459) [34] and the compositions were produced, as shown in Table 3. The workability was measured with a flow table as described in EN1015-3 [35].
Composition | Lime | Blond sand | Black sand | Yellow sand | W/B | Workability (cm) |
---|---|---|---|---|---|---|
L-blond | 1 | 3 | — | — | 0.758 | 15.0 |
L-black | 1 | — | 3 | — | 0.800 | 14.5 |
L-yellow | 1 | — | — | 3 | 0.750 | 14.8 |
Composition of trial mortar mixtures.
The samples were cured based on EN456 and at 28 days, the compressive strength and the open porosity were recorded (Table 4).
Composition | Compressive strength (MPa) | Porosity % (RILEM CPC11.3) |
---|---|---|
L-blond | 1.14 | 26.42 |
L-black | 1.03 | 27.11 |
L-yellow | 0.98 | 30.79 |
Properties of the produced mortars at 28 days.
The results show that there are different properties recorded in the produced mortars even when siliceous sands are used. The different properties, such as S.E. and the water absorption capacity of the sand grains, influence both the fresh (workability) and the hardened properties (porosity, strength) of the produced mortars.
The natural sands can be of similar origin with the crushed but weathering not only rounded the particles but also changed the proportions and removed most of the light minerals, such as the flaky micas. Due to these differences, mixtures with crushed sand often display higher water demand and lower workability than the corresponding composite with glaciofluvial sand. Additionally, crushed sand has a positive impact on long-term strength. It seems that, when rough-grained sand is used, strong cohesion with the binder can be achieved, as shown in Figure 4, where mortars with rounded and crushed sand were examined under scanning electron microscopy (SEM) [17].
SEM examination of rounded sand grain (left) where there is a gap in the contact zone and angular grain with strong cohesion (right).
The mechanical features, particle shape, grading, and physical properties, such as moisture absorption, sand equivalent value, are what can be labeled as properties of interest in the aggregates when used in mortars. Some of these most important properties are shown in Table 5.
Property | Regulation |
---|---|
Determination of rock compressive strength | ASTM C170 |
Determination of disintegration resistance (health) of aggregates (sodium sulfate method). | ASTM C88 AASHΤO Τ104) |
Determination of mineral hardness | the MOHS scale |
Determination of specific gravity of aggregates | BS 812/ ΑΑSΗΤΟ T 19. |
Determination of moisture absorption of aggregates. | AASHTO Τ85 |
Determination of granulometric analysis | AASHTO Τ27/ AASHTO T11/ ΕΝ933-1 |
Determination of ultra-fine crushed material by rinsing | Α8ΤΜ 0117 (AASHTO Τ37) |
Determination of equivalent sand | AASHTO Τ176 |
Determination of abrasion resistance of aggregates | BS 812/75 |
Determination of wear in aggregate crushing | BS 812/75 |
Determination of wear on the impact of aggregates | BS 812/75 |
Determination of plaque index | 88,812/75 Section 105.1 |
Important properties of aggregates to be used in mortar production.
The bond behavior in the interface between the binder and the aggregates has a strong effect on the mortar properties since the effectiveness of the reinforcement provided by the addition of particles depends on the interfacial bond (Figure 5). This is since the size, shape, and content of the particles predominantly control the morphological features of the internal structure of the composite.
Macroscopic examination of contact zones of natural aggregates and binders in old mortars. Despite the presence of cracks in the binder in the left image, the cohesion is strong. On the right, there are pores on the interface probably due to the high content in aggregates in relation to the binder.
The test results showed that with increasing volume fraction of aggregate, the compressive strength of the composite decreases, which is different from the prediction of conventional composite theories. The possible explanation of this result is based on the interface transition zone (ITZ) around the aggregate, which is the weak zone in composites (Figure 6) [15]. With more aggregate added into the mixtures, more interfaces are formed in the hardened material. The compatibility between the aggregate of the paste affects the development of strong cohesion at the aggregate-matrix interface in many cases and that usually indicates the good performance of the mortar. As aggregates are, by weight or by volume, the major component of mortars, they can be a source of silica, which can react in certain conditions with the binder, leading to the formation of reaction rims at the edge of the grains and recrystallization along with the pre-existing cracks (Figure 7).
Examination under SEM of natural aggregate and lime binder with weak ITZ (left) and crushed brick as aggregate and lime-pozzolan binder with strong ITZ (right).
Old mortars under the polarized microscope (x10). Reaction rim in the interfacial zone of the binders and the aggregates used.
Apart from the different types of aggregates as their mineralogy is concerned, the volume content in the mixture, the maximum size, and their gradation influences the structure of a binder—aggregate mixture [3, 5]. The analysis of mortars reveals that higher strength values are attained for lime mortars of low binder/aggregate (B/A) ratio (1:1.5, 1:2.5, and 1:3) which contained sand (0–4 mm). Coarse aggregates have contributed positively to the volume stability of lime mortars. The microstructure has recorded the restriction of volume changes in cases where coarse aggregates have been used in the structure of lime mortars (Figure 8).
Pores and cracks in the structure of lime mortar with coarse aggregates (polarized microscope, x15).
However, it is well recognized that coarse aggregate particles can act as crack arresters, as they restrict the shrinkage of the binder so that under an increasing load, extra energy is absorbed for the formation of a new crack (Figure 9) [36].
Cracks inside the binder where they meet the aggregate volume as the obstacle.
Usually, a detailed analysis of the authentic building materials is performed to establish an opinion about the materials and techniques used during the construction phase [2]. Based on the results of this analysis, the design and laboratory production of some materials follows [14, 37]. The destructive consequences from the use of incompatible repair materials are related to different physical, chemical, and elastic characteristics that many new materials possess in relation to the old lime-based ones. For this reason, the quality of the materials used in intervention works is of primary importance for the longevity and economy of interventions. However, standard test methods and recommendations have not yet been developed despite the effort at the European level.
As river sand remains as one of the most widely used fine aggregates due to its desirable properties an increased tendency to use and it is observed. With an increase in construction activities, the demand for river sand has also been increasing. As a result, it has been mined at a high rate, depleting its natural resources and causing serious environmental issues. Also, owing to the excess cost of transportation, the natural river sand has become expensive. Hence, industries are shifting to other materials, such as crushed sand. But as the demand for building materials will continue to increase, their sources for crushed sand might also get exhausted. Therefore, there is a need to replace the fine aggregate either completely or partially with an alternative material that can satisfy the properties required for concrete, which is cost-effective and at the same time sustainable. Finding an alternative material to river sand has now become imperative.
The incentive to use sand from building demolition in repairing mortars derives from different needs. Natural sand originating from rivers is becoming rare, while the extraction of aggregates from quarries carries an increased administrative cost due to new strict legislations.
Both practices are not considered environmental friendly and, thus, the criteria and legislation for sand extraction are becoming stricter and demanding, while in some places, good quality natural sands are not available. On the other hand, the increased waste production offers the availability of large volumes of recycled materials and public concern about the environment pushes toward their utilization. The possibility of incorporating fine recycled sand originating from construction and demolition waste in lime-based traditional mortars. The study showed that the recycled sand had an even grain distribution, without any hazardous material and low content of soluble salts [38]. The mortars mixtures with recycled sand showed increased water demand and reduced workability compared to mortars with natural sands, even when superplasticizer was used [39]. The mechanical strength measured at 28 and 90 days showed good results as the mortars with lime and recycled sand had higher compressive strength compared to mortars with natural sands [40].
Additionally, several industrial wastes, (fly ash, demolition waste, slag, glass, brick waste, and plastic), have been shown to be suitable as construction materials and readily follow the design requirements. The substitution of the siliceous aggregate with plastic sand leads to a decrease in mechanical properties, opportunities in the use of these materials are not affected, especially for applications that do not require a structural function [41].
The mechanical and physical properties of a mortar both at fresh state, but also long-term, depend on multiple factors, including binder type, curing time, binder—aggregate and binder—water ratios, nature, shape, and grading of aggregates, the compaction degree, and also the environment in which they function. As mortars are composite materials, each component has a special role in the ultimate quality of the material. Aggregates, being of great volume in the mortar mass, significantly influence the structure and the properties achieved in all states of mortar production. The analyses of old mortars revealed the continued presence of sand in the mortars from pre-history up to the cement era. Coarser grains were also used in the technology of mortars. Generally, it is accepted that the strongest mortar mixes are produced from well-graded, clean, and angular aggregates. Usually, they were of local origin following principles of ecology and economy.
The same principles should be applied today having the technological evolution as an alley to protect the environment and work on the benefit of the constructions. Understanding the mechanisms of action and the parameters affecting significant properties in mortars, a well-engineered mixture can be achieved utilizing alternative solutions to protect natural resources and at the same time bring to the market high-quality innovative mortars. Recycled sands are promising materials in construction as after specific tests, they can be utilized either in repairing old structures or even in preparing new cement-based mortars.
If your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).
\n\nIMPORTANT: You must be a member or grantee of the listed funders in order to apply for their Open Access publication funds. Do not attempt to contact the funders if this is not the case.
",metaTitle:"List of Funders by Country",metaDescription:"If your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"/page/open-access-funding-funders-list",contentRaw:'[{"type":"htmlEditorComponent","content":"Book Chapters and Monographs
\\n\\nMonographs Only
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nMonographs Only
\\n\\nLITHUANIA
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nSWITZERLAND
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\n\nMonographs Only
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nMonographs Only
\n\n\n\nLITHUANIA
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nSWITZERLAND
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\r\n\tThis book series will offer a comprehensive overview of recent research trends as well as clinical applications within different specialties of dentistry. Topics will include overviews of the health of the oral cavity, from prevention and care to different treatments for the rehabilitation of problems that may affect the organs and/or tissues present. The different areas of dentistry will be explored, with the aim of disseminating knowledge and providing readers with new tools for the comprehensive treatment of their patients with greater safety and with current techniques. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This series of books will focus on various aspects of the properties and results obtained by the various treatments available, whether preventive or curative.
",coverUrl:"https://cdn.intechopen.com/series/covers/3.jpg",latestPublicationDate:"August 4th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"419588",title:"Ph.D.",name:"Sergio",middleName:"Alexandre",surname:"Gehrke",slug:"sergio-gehrke",fullName:"Sergio Gehrke",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038WgMKQA0/Profile_Picture_2022-06-02T11:44:20.jpg",biography:"Dr. Sergio Alexandre Gehrke is a doctorate holder in two fields. The first is a Ph.D. in Cellular and Molecular Biology from the Pontificia Catholic University, Porto Alegre, Brazil, in 2010 and the other is an International Ph.D. in Bioengineering from the Universidad Miguel Hernandez, Elche/Alicante, Spain, obtained in 2020. In 2018, he completed a postdoctoral fellowship in Materials Engineering in the NUCLEMAT of the Pontificia Catholic University, Porto Alegre, Brazil. He is currently the Director of the Postgraduate Program in Implantology of the Bioface/UCAM/PgO (Montevideo, Uruguay), Director of the Cathedra of Biotechnology of the Catholic University of Murcia (Murcia, Spain), an Extraordinary Full Professor of the Catholic University of Murcia (Murcia, Spain) as well as the Director of the private center of research Biotecnos – Technology and Science (Montevideo, Uruguay). Applied biomaterials, cellular and molecular biology, and dental implants are among his research interests. He has published several original papers in renowned journals. In addition, he is also a Collaborating Professor in several Postgraduate programs at different universities all over the world.",institutionString:null,institution:{name:"Universidad Católica San Antonio de Murcia",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:2,paginationItems:[{id:"89",title:"Education",coverUrl:"https://cdn.intechopen.com/series_topics/covers/89.jpg",isOpenForSubmission:!1,annualVolume:null,editor:{id:"260066",title:"Associate Prof.",name:"Michail",middleName:null,surname:"Kalogiannakis",slug:"michail-kalogiannakis",fullName:"Michail Kalogiannakis",profilePictureURL:"https://mts.intechopen.com/storage/users/260066/images/system/260066.jpg",biography:"Michail Kalogiannakis is an Associate Professor of the Department of Preschool Education, University of Crete, and an Associate Tutor at School of Humanities at the Hellenic Open University. He graduated from the Physics Department of the University of Crete and continued his post-graduate studies at the University Paris 7-Denis Diderot (D.E.A. in Didactic of Physics), University Paris 5-René Descartes-Sorbonne (D.E.A. in Science Education) and received his Ph.D. degree at the University Paris 5-René Descartes-Sorbonne (PhD in Science Education). His research interests include science education in early childhood, science teaching and learning, e-learning, the use of ICT in science education, games simulations, and mobile learning. He has published over 120 articles in international conferences and journals and has served on the program committees of numerous international conferences.",institutionString:"University of Crete",institution:{name:"University of Crete",institutionURL:null,country:{name:"Greece"}}},editorTwo:{id:"422488",title:"Dr.",name:"Maria",middleName:null,surname:"Ampartzaki",slug:"maria-ampartzaki",fullName:"Maria Ampartzaki",profilePictureURL:"https://mts.intechopen.com/storage/users/422488/images/system/422488.jpg",biography:"Dr Maria Ampartzaki is an Assistant Professor in Early Childhood Education in the Department of Preschool Education at the University of Crete. Her research interests include ICT in education, science education in the early years, inquiry-based and art-based learning, teachers’ professional development, action research, and the Pedagogy of Multiliteracies, among others. She has run and participated in several funded and non-funded projects on the teaching of Science, Social Sciences, and ICT in education. She also has the experience of participating in five Erasmus+ projects.",institutionString:"University of Crete",institution:{name:"University of Crete",institutionURL:null,country:{name:"Greece"}}},editorThree:null},{id:"90",title:"Human Development",coverUrl:"https://cdn.intechopen.com/series_topics/covers/90.jpg",isOpenForSubmission:!0,annualVolume:11974,editor:{id:"191040",title:"Dr.",name:"Tal",middleName:null,surname:"Dotan Ben-Soussan",slug:"tal-dotan-ben-soussan",fullName:"Tal Dotan Ben-Soussan",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBf1QAG/Profile_Picture_2022-03-18T07:56:11.jpg",biography:"Tal Dotan Ben-Soussan, Ph.D., is the director of the Research Institute for Neuroscience, Education and Didactics (RINED) – Paoletti Foundation. Ben-Soussan leads international studies on training and neuroplasticity from neurophysiological and psychobiological perspectives. As a neuroscientist and bio-psychologist, she has published numerous articles on neuroplasticity, movement and meditation. She acts as an editor and reviewer in several renowned journals and coordinates international conferences integrating theoretical, methodological and practical approaches on various topics, such as silence, logics and neuro-education. She lives in Assisi, Italy.",institutionString:"Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation",institution:null},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:20,paginationItems:[{id:"82991",title:"Diseases of the Canine Prostate Gland",doi:"10.5772/intechopen.105835",signatures:"Sabine Schäfer-Somi",slug:"diseases-of-the-canine-prostate-gland",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82956",title:"Potential Substitutes of Antibiotics for Swine and Poultry Production",doi:"10.5772/intechopen.106081",signatures:"Ho Trung Thong, Le Nu Anh Thu and Ho Viet Duc",slug:"potential-substitutes-of-antibiotics-for-swine-and-poultry-production",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"82905",title:"A Review of Application Strategies and Efficacy of Probiotics in Pet Food",doi:"10.5772/intechopen.105829",signatures:"Heather Acuff and Charles G. Aldrich",slug:"a-review-of-application-strategies-and-efficacy-of-probiotics-in-pet-food",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"82773",title:"Canine Transmissible Venereal Tumor: An Infectious Neoplasia in Dogs",doi:"10.5772/intechopen.106150",signatures:"Chanokchon Setthawongsin, Somporn Techangamsuwan and Anudep Rungsipipat",slug:"canine-transmissible-venereal-tumor-an-infectious-neoplasia-in-dogs",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}}]},overviewPagePublishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}]},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}]},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",biography:"Naceur M’HAMDI is Associate Professor at the National Agronomic Institute of Tunisia, University of Carthage. He is also Member of the Laboratory of genetic, animal and feed resource and member of Animal science Department of INAT. He graduated from Higher School of Agriculture of Mateur, University of Carthage, in 2002 and completed his masters in 2006. Dr. M’HAMDI completed his PhD thesis in Genetic welfare indicators of dairy cattle at Higher Institute of Agronomy of Chott-Meriem, University of Sousse, in 2011. He worked as assistant Professor of Genetic, biostatistics and animal biotechnology at INAT since 2013.",institutionString:null,institution:null}]},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón Poggi",slug:"juan-carlos-gardon-poggi",fullName:"Juan Carlos Gardón Poggi",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",biography:"Juan Carlos Gardón Poggi received University degree from the Faculty of Agrarian Science in Argentina, in 1983. Also he received Masters Degree and PhD from Córdoba University, Spain. He is currently a Professor at the Catholic University of Valencia San Vicente Mártir, at the Department of Medicine and Animal Surgery. He teaches diverse courses in the field of Animal Reproduction and he is the Director of the Veterinary Farm. He also participates in academic postgraduate activities at the Veterinary Faculty of Murcia University, Spain. His research areas include animal physiology, physiology and biotechnology of reproduction either in males or females, the study of gametes under in vitro conditions and the use of ultrasound as a complement to physiological studies and development of applied biotechnologies. Routinely, he supervises students preparing their doctoral, master thesis or final degree projects.",institutionString:null,institution:{name:"Valencia Catholic University Saint Vincent Martyr",institutionURL:null,country:{name:"Spain"}}}]}]},openForSubmissionBooks:{paginationCount:1,paginationItems:[{id:"11478",title:"Recent Advances in the Study of Dyslexia",coverURL:"https://cdn.intechopen.com/books/images_new/11478.jpg",hash:"26764a18c6b776698823e0e1c3022d2f",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 30th 2022",isOpenForSubmission:!0,editors:[{id:"294281",title:"Prof.",name:"Jonathan",surname:"Glazzard",slug:"jonathan-glazzard",fullName:"Jonathan Glazzard"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:47,paginationItems:[{id:"82938",title:"Trauma from Occlusion: Practical Management Guidelines",doi:"10.5772/intechopen.105960",signatures:"Prashanth Shetty, Shweta Hegde, Shubham Chelkar, Rahul Chaturvedi, Shruti Pochhi, Aakanksha Shrivastava, Dudala Lakshmi, Shreya Mukherjee, Pankaj Bajaj and Shahzada Asif Raza",slug:"trauma-from-occlusion-practical-management-guidelines",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82654",title:"Atraumatic Restorative Treatment: More than a Minimally Invasive Approach?",doi:"10.5772/intechopen.105623",signatures:"Manal A. Ablal",slug:"atraumatic-restorative-treatment-more-than-a-minimally-invasive-approach",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82608",title:"Early Management of Dental Trauma in the Era of COVID-19",doi:"10.5772/intechopen.105992",signatures:"Khairul Bariah Chi Adam, Haszelini Hassan, Pram Kumar Subramaniam, Izzati Nabilah Ismail, Nor Adilah Harun and Naziyah Shaban Mustafa",slug:"early-management-of-dental-trauma-in-the-era-of-covid-19",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82767",title:"Teeth Avulsion",doi:"10.5772/intechopen.105846",signatures:"Manal Abdalla Eltahir, Randa Fath Elrahman Ibrahim and Hanan Alharbi",slug:"teeth-avulsion",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82735",title:"The Influence of Salivary pH on the Prevalence of Dental Caries",doi:"10.5772/intechopen.106154",signatures:"Laura-Cristina Rusu, Alexandra Roi, Ciprian-Ioan Roi, Codruta Victoria Tigmeanu and Lavinia Cosmina Ardelean",slug:"the-influence-of-salivary-ph-on-the-prevalence-of-dental-caries",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82288",title:"Dental Emergency and Conditions",doi:"10.5772/intechopen.105495",signatures:"Navneet Kaur",slug:"dental-emergency-and-conditions",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"81961",title:"Antioxidants as an Adjuncts to Periodontal Therapy",doi:"10.5772/intechopen.105016",signatures:"Sura Dakhil Jassim and Ali Abbas Abdulkareem",slug:"antioxidants-as-an-adjuncts-to-periodontal-therapy",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82357",title:"Caries Management Aided by Fluorescence-Based Devices",doi:"10.5772/intechopen.105567",signatures:"Atena Galuscan, Daniela Jumanca and Aurora Doris Fratila",slug:"caries-management-aided-by-fluorescence-based-devices",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"81894",title:"Diet and Nutrition and Their Relationship with Early Childhood Dental Caries",doi:"10.5772/intechopen.105123",signatures:"Luanna Gonçalves Ferreira, Giuliana de Campos Chaves Lamarque and Francisco Wanderley Garcia Paula-Silva",slug:"diet-and-nutrition-and-their-relationship-with-early-childhood-dental-caries",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80963",title:"Pain Perception in Patients Treated with Ligating/Self-Ligating Brackets versus Patients Treated with Aligners",doi:"10.5772/intechopen.102796",signatures:"Farid Bourzgui, Rania Fastani, Salwa Khairat, Samir Diouny, Mohamed El Had, Zineb Serhier and Mohamed Bennani Othmani",slug:"pain-perception-in-patients-treated-with-ligating-self-ligating-brackets-versus-patients-treated-wit",totalDownloads:31,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}}]},subseriesFiltersForOFChapters:[{caption:"Prosthodontics and Implant Dentistry",value:2,count:22,group:"subseries"},{caption:"Oral Health",value:1,count:25,group:"subseries"}],publishedBooks:{paginationCount:33,paginationItems:[{type:"book",id:"10840",title:"Benzimidazole",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",slug:"benzimidazole",publishedDate:"July 13th 2022",editedByType:"Edited by",bookSignature:"Pravin Kendrekar and Vinayak Adimule",hash:"e28c770013e7a8dd0fc37aea6aa9def8",volumeInSeries:34,fullTitle:"Benzimidazole",editors:[{id:"310674",title:"Dr.",name:"Pravin",middleName:null,surname:"Kendrekar",slug:"pravin-kendrekar",fullName:"Pravin Kendrekar",profilePictureURL:"https://mts.intechopen.com/storage/users/310674/images/system/310674.jpg",institutionString:"Visiting Scientist at Lipid Nanostructures Laboratory, Centre for Smart Materials, School of Natural Sciences, University of Central Lancashire",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:4},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:9},{group:"subseries",caption:"Chemical Biology",value:15,count:14}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:9},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:302,paginationItems:[{id:"280338",title:"Dr.",name:"Yutaka",middleName:null,surname:"Tsutsumi",slug:"yutaka-tsutsumi",fullName:"Yutaka Tsutsumi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/280338/images/7961_n.jpg",biography:null,institutionString:null,institution:{name:"Fujita Health University",country:{name:"Japan"}}},{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"322007",title:"Dr.",name:"Maria Elizbeth",middleName:null,surname:"Alvarez-Sánchez",slug:"maria-elizbeth-alvarez-sanchez",fullName:"Maria Elizbeth Alvarez-Sánchez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",country:{name:"Mexico"}}},{id:"337443",title:"Dr.",name:"Juan",middleName:null,surname:"A. Gonzalez-Sanchez",slug:"juan-a.-gonzalez-sanchez",fullName:"Juan A. Gonzalez-Sanchez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico System",country:{name:"United States of America"}}},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}},{id:"338856",title:"Mrs.",name:"Nur Alvira",middleName:null,surname:"Pascawati",slug:"nur-alvira-pascawati",fullName:"Nur Alvira Pascawati",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universitas Respati Yogyakarta",country:{name:"Indonesia"}}}]}},subseries:{item:{id:"26",type:"subseries",title:"Machine Learning and Data Mining",keywords:"Intelligent Systems, Machine Learning, Data Science, Data Mining, Artificial Intelligence",scope:"The scope of machine learning and data mining is immense and is growing every day. It has become a massive part of our daily lives, making predictions based on experience, making this a fascinating area that solves problems that otherwise would not be possible or easy to solve. This topic aims to encompass algorithms that learn from experience (supervised and unsupervised), improve their performance over time and enable machines to make data-driven decisions. It is not limited to any particular applications, but contributions are encouraged from all disciplines.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11422,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}},{id:"16614",title:"Prof.",name:"Juan Ignacio",middleName:null,surname:"Guerrero Alonso",slug:"juan-ignacio-guerrero-alonso",fullName:"Juan Ignacio Guerrero Alonso",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6HB8QAM/Profile_Picture_1627901127555",institutionString:null,institution:{name:"University of Seville",institutionURL:null,country:{name:"Spain"}}},{id:"3095",title:"Prof.",name:"Kenji",middleName:null,surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/3095/images/1592_n.jpg",institutionString:null,institution:{name:"University of Chicago",institutionURL:null,country:{name:"United States of America"}}},{id:"214067",title:"Dr.",name:"W. David",middleName:null,surname:"Pan",slug:"w.-david-pan",fullName:"W. David Pan",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSEI9QAO/Profile_Picture_1623656213532",institutionString:null,institution:{name:"University of Alabama in Huntsville",institutionURL:null,country:{name:"United States of America"}}},{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk",profilePictureURL:"https://mts.intechopen.com/storage/users/72920/images/system/72920.jpeg",institutionString:"Dalarna University, Faculty of Data and Information Sciences",institution:{name:"Dalarna University",institutionURL:null,country:{name:"Sweden"}}}]},onlineFirstChapters:{paginationCount:10,paginationItems:[{id:"82804",title:"Psychiatric Problems in HIV Care",doi:"10.5772/intechopen.106077",signatures:"Seggane Musisi and Noeline Nakasujja",slug:"psychiatric-problems-in-hiv-care",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82817",title:"Perspective Chapter: Microfluidic Technologies for On-Site Detection and Quantification of Infectious Diseases - The Experience with SARS-CoV-2/COVID-19",doi:"10.5772/intechopen.105950",signatures:"Andres Escobar and Chang-qing Xu",slug:"perspective-chapter-microfluidic-technologies-for-on-site-detection-and-quantification-of-infectious",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82667",title:"Perspective Chapter: Analysis of SARS-CoV-2 Indirect Spreading Routes and Possible Countermeasures",doi:"10.5772/intechopen.105914",signatures:"Cesare Saccani, Marco Pellegrini and Alessandro Guzzini",slug:"perspective-chapter-analysis-of-sars-cov-2-indirect-spreading-routes-and-possible-countermeasures",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82559",title:"Perspective Chapter: Bioinformatics Study of the Evolution of SARS-CoV-2 Spike Protein",doi:"10.5772/intechopen.105915",signatures:"Črtomir Podlipnik, Radostina Alexandrova, Sebastian Pleško, Urban Bren and Marko Jukič",slug:"perspective-chapter-bioinformatics-study-of-the-evolution-of-sars-cov-2-spike-protein",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82521",title:"Challenges in Platelet Functions in HIV/AIDS Management",doi:"10.5772/intechopen.105731",signatures:"Gordon Ogweno",slug:"challenges-in-platelet-functions-in-hiv-aids-management",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82552",title:"Perspective Chapter: SARS-CoV-2 Variants - Two Years Post-Onset of the Pandemic",doi:"10.5772/intechopen.105913",signatures:"Adekunle Sanyaolu, Aleksandra Marinkovic, Stephanie Prakash, Chuku Okorie, Abdul Jan, Priyank Desai, Abu Fahad Abbasi, Jasmine Mangat, Zaheeda Hosein, Kareem Hamdy, Nafees Haider, Nasar Khan, Rochelle Annan, Olanrewaju Badaru, Ricardo Izurieta and Stella Smith",slug:"perspective-chapter-sars-cov-2-variants-two-years-post-onset-of-the-pandemic",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82367",title:"Spatial Variation and Factors Associated with Unsuppressed HIV Viral Load among Women in an HIV Hyperendemic Area of KwaZulu-Natal, South Africa",doi:"10.5772/intechopen.105547",signatures:"Adenike O. Soogun, Ayesha B.M. Kharsany, Temesgen Zewotir and Delia North",slug:"spatial-variation-and-factors-associated-with-unsuppressed-hiv-viral-load-among-women-in-an-hiv-hype",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82207",title:"Management Strategies in Perinatal HIV",doi:"10.5772/intechopen.105451",signatures:"Kayla Aleshire and Rima Bazzi",slug:"management-strategies-in-perinatal-hiv",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82013",title:"Streamlining Laboratory Tests for HIV Detection",doi:"10.5772/intechopen.105096",signatures:"Ramakrishna Prakash and Mysore Krishnamurthy Yashaswini",slug:"streamlining-laboratory-tests-for-hiv-detection",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"81644",title:"Perspective Chapter: Ethics of Using Placebo Controlled Trials for Covid-19 Vaccine Development in Vulnerable Populations",doi:"10.5772/intechopen.104776",signatures:"Lesley Burgess, Jurie Jordaan and Matthew Wilson",slug:"perspective-chapter-ethics-of-using-placebo-controlled-trials-for-covid-19-vaccine-development-in-vu",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}}]},publishedBooks:{paginationCount:2,paginationItems:[{type:"book",id:"9525",title:"Insights Into Drug Resistance in Staphylococcus aureus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9525.jpg",slug:"insights-into-drug-resistance-in-staphylococcus-aureus",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Amjad Aqib",hash:"98bb6c1ddb067da67185c272f81c0a27",volumeInSeries:10,fullTitle:"Insights Into Drug Resistance in Staphylococcus aureus",editors:[{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:{name:"University of Agriculture Faisalabad",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9614",title:"Advances in Candida albicans",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9614.jpg",slug:"advances-in-candida-albicans",publishedDate:"November 17th 2021",editedByType:"Edited by",bookSignature:"Xinhui Wang",hash:"31d6882518ca749b12715266eed0a018",volumeInSeries:9,fullTitle:"Advances in Candida albicans",editors:[{id:"296531",title:"Dr.",name:"Xinhui",middleName:null,surname:"Wang",slug:"xinhui-wang",fullName:"Xinhui Wang",profilePictureURL:"https://mts.intechopen.com/storage/users/296531/images/system/296531.jpg",institutionString:"Qinghai Normal University",institution:{name:"University of Luxembourg",institutionURL:null,country:{name:"Luxembourg"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:18,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:111,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 3rd, 2022",hasOnlineFirst:!0,numberOfOpenTopics:3,numberOfPublishedChapters:107,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},subseries:[{id:"7",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",annualVolume:11403,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:"Shenzhen Technology University",institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',annualVolume:11404,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",annualVolume:11405,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/47091",hash:"",query:{},params:{id:"47091"},fullPath:"/profiles/47091",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()