In this work, we present a case that Microscopic Black Holes (MBH) of mass 1016kg–3×1019kg experience acceleration as they move within stellar material at low velocities. The accelerating forces are caused by the fact that an MBH moving through stellar material leaves a trail of hot rarefied gas. The rarefied gas behind an MBH exerts a lower gravitational force on the MBH than the dense gas in front of it. The accelerating forces exceed the gravitational drag forces when MBH moves at Mach number M<M0<1. The equilibrium Mach number M0 depends on MBH mass and stellar material characteristics. Our calculations open the possibility of MBH orbiting within stars including the Sun at Mach number M0. At the end of this work, we list some unresolved problems which result from our calculations.
Part of the book: Magnetosphere and Solar Winds, Humans and Communication