Particle displacement.
--\x3eE400\n
Equation of the
Equation of the
where
The wall conditions are set for the gas at the side walls of the channel based on the control volume method by [27, 28] in a similar way as in the case of the coincidence of shear of the mean flow velocity and gravity.
\nThe numerical simulation considers the turbulent dispersion of solid particles in horizontal channel uniform shear turbulent flow for two different cases: i) shear of the mean flow velocity is along the direction of gravity (Figure 1a) and ii) shear of the mean flow velocity is directed normally to gravity (Figure 1b). Therefore, two sets of the boundary conditions are used for the calculations.
\nThe boundary conditions for the particulate phase are set at the flow axis as follows:
\nCase 1 for
Case 2 for
The boundary conditions for the particulate phase are set at the channel walls according to [9]:
\nCase 1 for
and applying the expression
Case 2 for z = 0.5
Here, the parameter
The conditions for the transverse and spanwise components of the gas velocity are set at the channel walls in terms of impenetrability and no-slip.
\nThe set of boundary conditions for gas and particulate phase at the exit of the channel is written, respectively, as follows:\n
The control volume method was applied to solve the 3D partial differential equations written for the unladen flow and the particulate phase (Eqs. (1)–(11)), taking into account the boundary conditions (Eqs. (12)–(21)). The governing equations were solved using the implicit lower and upper (ILU) matrix decomposition method with the flux-blending-differed correction and upwind-differencing schemes by [27]. This method is utilized for the calculations of the particulate turbulent flows in channels of the rectangular and square cross sections. The calculations were performed in the dimensional form for all the flow conditions. The number of the control volumes was 1120000.
\nThe obtained numerical results have been verified and validated in comparison with the data obtained by the experimental facility of Tallinn University of Technology.
\nThe experimental method for the determination of the particle dispersion was based on recording the particle trajectories by means of a high-speed video camera on separate regions of a flow that locate at various distances from a point source of particles, and the subsequent processing of the frames [30].
\nThe experimental setup for the investigations of particle dispersion (Figure 2) allowed to generate the shear flow similarly to [31] by means of flat plates installed with a varied pitch. The test section was 2 m long with 400 × 200 mm cross section.
\nExperimental setup.
Two cases of spatial orientation of shear of the mean flow velocity were investigated. Figure 2 shows the top view of the setup for the case when shear is along the direction of gravity (Figure 1a). For investigations of the particle dispersion when shear is directed normally to gravity (Figure 1b), the setup was turned sideways as a whole at an angle of
The mean flow velocity was 5.1 m/s. Glass spherical particles (physical density of 2500 kg/m3) with an average diameter of 55 μm were used in the experiment runs. The root-mean-square deviation of the diameter of particles did not exceed 0.1. The particles were entered into the flow through the source point which was the L-shaped tubule of 200 μm inner diameter.
\nAll measurements and data processing were carried out at the flow location
The data processing technique [30] was applied to determine the particle spatial displacement along the
The numerical results presented below have been obtained at two locations of the flow: initial location signed “ini” and disposed at the exit of the particle source point and the location 2
Figures 3–15 show the numerical data obtained by the presented model for two cases of spatial orientation of shear of the mean flow velocity: shear is along the direction of gravity (case 1), and shear is directed normally to gravity (case 2).
\nTransverse distributions of axial velocities of gas and particles, case 1. Here and below
Spanwise distributions of axial velocities of gas and particles, case 2.
Transverse distributions of a turbulence kinetic energy; cases 1 and 2.
Spanwise distributions of a turbulence kinetic energy, cases 1 and 2.
Transverse distributions of
Spanwise distributions of
Transverse distributions of x-normal components of the Reynolds stress of gas and particles, case 1. Here
Transverse distributions of particles mass concentration, case 1.
Spanwise distributions of axial velocities of gas and particles, case 1, location 2
Spanwise distribution of particles mass concentration, case 1.
Transverse distribution of particles mass concentration, case 2.
Spanwise distribution of particles mass concentration, case 2.
Transverse distributions of axial velocities of gas and particles, cases 1 and 2, location 2
Figure 3 shows the transverse distributions of axial velocities of gas and particles for case 1. It is evident that the linear profiles of the averaged axial velocity components of gas and particulate phase across the flow are almost preserved starting from the initial cross section till the pipe exit. Besides, they occupy almost the whole turbulent core of the flow with slight increase of the values in the turbulent core and decrease near the walls due to the effect of a viscous dissipation. The similar profiles are observed with respect of distribution of the same averaged axial velocity components for gas and particulate phase along the spanwise direction (Figure 4).
\nSince the axial velocity increases toward the bottom wall, the profiles of a turbulence kinetic energy have their higher values near the bottom wall area (Figure 5). However, along the spanwise direction, the profiles of the turbulence kinetic energy are symmetrical, since there is no change of the axial velocity along this direction (Figure 6).
\nThe profiles of the Reynolds shear stresses of gas and particulate phase are shown in Figures 7 and 8. Here it is evident that there is some kind of plateau in the turbulent core. This confirms that we deal with the shear flow; hence, it must be the constant value of the Reynolds shear stresses observed for cases 1 and 2, i.e., for the
Figure 9 show the transverse distributions of x-normal components of the Reynolds stress of gas and particulate phase obtained for case 1. It can be seen that unlike
Figures 10–13 present the transverse and spanwise distributions of the particle mass concentration
Since in case 1 there is symmetrical distribution of parameters along the spanwise direction (Figures 6 and 11), the symmetrical distribution of the mass concentration along this direction (Figure 12) can be observed, both at the initial and exit cross sections.
\nA similar situation is observed for case 2, when the linear change of the axial velocity takes place along the spanwise direction. Here the particles go down due to gravity (see Figure 13), and simultaneously there is no shift of the distribution of the mass concentration along the spanwise direction (Figure 14).
\nTable 1 presents the values of the particle spatial displacement
\n | Case 1 | \nCase 2 | \n||
---|---|---|---|---|
Experiment | \nModeling | \nExperiment | \nModeling | \n|
46.0 | \n43.7 | \n48.2 | \n50.0 | \n
Particle displacement.
Table 1 shows that the particle dispersion in case 1 is smaller than in case 2. This fact can be explained by the particle axial velocity taking place in case 2 is smaller than the one for case 1 in the same y location (Figures 10, 13, and 15).
\nThe 3D Reynolds stress turbulence model (RSTM) based on the 3D RANS and statistical PDF approaches has been elaborated for the turbulent dispersion of solid particles in particulate horizontal channel shear flow domain.
\nThe main distinctive feature of the given model is in use of the same closure for both the carrier flow and particulate phase, namely the Reynolds differential equation.
\nThe presented model has several important advantages over the Lagrangian approach:
\ndirect simulation of the particle concentration;
direct simulation of the particles influence on a carrier flow;
there is no basic limit for the parameters of a particulate flow, namely the flow Reynolds number and value of the particle concentration.
Based on the given model, two cases of spatial orientation of shear of the mean flow velocity have been examined. It has been obtained that the effect of orientation of shear appears through decrease of the particle dispersion in case of directional coincidence between shear and gravity as compared with the case of their mutual perpendicularity.
\nThe validity of the elaborated model has been confirmed by experimental investigations of effect of shear of the mean flow velocity on the turbulent particle dispersion.
\nThe authors are grateful for the technical support of Texas Advanced Computing Center (TACC) in Austin, USA. The authors are grateful for the fulfilled research to the Estonia-Norway project EMP230 support. This study is related to the activity of the European network action COST MP1106 “Smart and green interfaces—from single bubbles and drops to industrial, environmental, and biomedical applications.”
\nThis chapter investigates the relationship of varying pedagogical definitions alongside observations of teaching practice within different vocational areas. These pedagogical concepts include Technological Pedagogical Content Knowledge (TPCK), Signature Pedagogies and expansive vocational education. Originally Shulman [1] defined pedagogy in distinct ways that incorporated concepts such as Content Knowledge (CK) and Pedagogical Content Knowledge (PCK) and both relate to both academic and vocational pedagogy. However, for now the emphasis is on a consideration of signature pedagogies in vocational learning and its importance in professional learning.
According to Shulman [2] Content Knowledge arises from the knowledge of the discipline being taught and here he uses the example of Biology as the subject in question. In terms of teaching, he raises some interesting questions such as “How does the novice teacher (or even the seasoned veteran) draw on expertise in the subject matter in the process of teaching?” (p. 8). Ultimately this is about the amount and organisation of knowledge that the teacher has. Pedagogical Content Knowledge on the other hand refers to the way that the teacher organises specific topics and ranks them according to difficulty in learning. In this way he or she is able to build up a coherent scheme of work that builds knowledge and scaffolds it so that it becomes more accessible to learners. Here Shulman means the most frequently taught topics and the most accessible forms of representation and illustrations of that topic, again with the desire to make it more accessible to learners. In the past these would have been ‘cut and pasted’, photocopied and reproduced for the learners, nowadays the internet has allowed a different form of cut and paste. Hence in the light of technology Shulman’s original definitions of teacher knowledge have been revised and here a different dimension has been added to these concepts, that of Technological Pedagogical Content Knowledge (TPCK). Several authors (Koehler and Mishra [3] and Harris et al. [4]) discuss this concept and define the term as the effective use of technology in teaching and learning. Here it assumes that a teacher has some technical content knowledge, that is some knowledge of technology available to teaching as resources to illustrate and represent topics. Here the Content Knowledge, and PCK as advocated by Shulman come together as Technological Content Knowledge in other words, the knowledge of how technological aids can enhance these representations. However, this is all very well if the technology also aids pedagogically or if it is chosen just because it is there. Here the new concept of TPCK presents different challenges to teachers today.
TPCK can be viewed as the basis of good teaching with technology and requires an understanding of the way concepts can be represented through using emerging technologies and by using the correct pedagogical principles that use that technology in a constructive way to allow access to content. This is different for example than knowing that Padlet is an ‘app’ (application), it also involves cognition as to how this technology can help in pedagogical ways as well. Here Padlet can be used in collating student ideas and as collaboration in learning. It allows a more student-centred approach to construction of knowledge and hence application and analysis of that specific subject knowledge.
However more recently another concept of pedagogy has emerged in the literature, that of ‘signature pedagogies’ which is defined as “types of teaching that organise the fundamental ways in which future practitioners are educated for their new professions” Shulman [1]. This concept is of particular importance in a vocational context as here students are being prepared for specific professional careers such as Hairdressing, Engineering and Construction amongst others. Recent literature has revolved around the concept of vocational pedagogies and how students in vocational education and training are taught differently from more academic courses based on theory alone. As a concept signature pedagogy is an idea that Shulman [1] applied to vocational areas of learning and noted here that the learner is ‘trained’ in three areas of the professional work involved. These are:
Thinking as a professional
Performing as a professional
Acting as a professional
Shulman [1] goes onto note three dimensions to signature pedagogy, these being ‘surface structure’, ‘deep structure’ and an ‘implicit structure’. The surface structure he argues is the operational aspects of teaching and learning such as questioning students and demonstrating specific techniques important to those professions. In Hairdressing these would be demonstration of specific skills such as cutting hair and for example in Engineering, underpinning health and safety around the correct use of large lathes. The deep structure involved a set of assumptions about how to impart the specific knowledge within that profession and again in Engineering, this would be how to solve problems and find solutions. Finally, the implicit structure according to Shulman involves the moral aspects of that profession such as attitude, values and dispositions. Here he uses law as an example of legal reasoning and moral judgements.
Lucas and Hanson [5], as does Shulman, go one step further and refer to signature pedagogies as defining habits of hearts, mind and hands. Shulman [1] notes “One thing is clear: signature pedagogies make a difference. They form habits of the mind, habits of the heart, and habits of the hand”. For Lucas and Hanson these habits of mind can be described in Engineering as EHoM (Engineering Habits of Mind) and this involves as the following:
Systems thinking (seeing whole, systems and parts, and how they connect, pattern-sniffing, recognising interdependencies, synthesising)
Problem finding (clarifying needs, checking existing solutions, investigating, contexts, verifying)
Visualising (move from abstract to concrete, manipulating materials, mental rehearsal of physical space and of practical design solutions)
Improving (relentlessly trying to make things better by experimenting, designing, sketching, guessing, conjecturing, thought-experimenting, prototyping)
Creative problem solving (applying techniques from other traditions, generating, ideas and solutions with others, generous but rigorous critiquing, seeing engineering as a “team sport”)
Adapting (testing, analysing, reflecting, re-thinking)
Lucas and Hanson [5] conclude that those involved in engineering teaching and learning need to consider redesigning engineering education and start from the premise that they are trying to “cultivate learners who think like engineers, and we have suggested that a clearer articulation of the signature pedagogies of engineering may support this aim.” (p. 12).
Whilst not within an engineering context Claxton [6] too refers to Habits of mind as specific skills and attitudes to learning such as “resilience, creativity, communication, team working, leadership, flexibility, resourcefulness, reflection and metacognition” (p. 6). Lucas et al. [7] also use the term ‘expansive education’ as a means of redefining vocational or ‘real-world learning’ and here we see terms such as resourcefulness, self-belief and ‘wider dispositions for lifelong learning’ (p. 138). Lucas et al. [7] go onto unpick this concept further to look at the part that the teacher has on learning, through being ‘feedback-rich’ (p. 133). By this they mean ‘critical reflection on progress’ and how feedback provides learning with purpose and progression.
It is clear from the literature that signature pedagogies make a difference and as Shulman noted in 2005, they inform habits of the mind, heart, and hands. It follows therefore that teachers need to use these more in vocational learning to enable students to think like professionals with resilience and resourcefulness at the heart of what they do. The following section therefore looks to practice to see how vocational teachers do use signature pedagogies in practice.
In order to research the way that vocational teachers integrate the concepts of signature pedagogies into their day-to-day teaching, data was taken from a series of classroom observations within a vocational college in the Southeast of England. Staff here are routinely observed either within a theory classroom-based lesson or in a practical workshop involving skill-based learning. Observations are part of the quality assurance process and are recorded as a narrative report rather than a tick box approach. These are not graded but teachers are given specific targets for improvement based on what was observed in that session. Data was collected over two academic terms and here both practical and theory sessions were observed. There were 13 lessons observed in total, of these 11 were theory-based sessions with 2 practical ones. The vocational subjects seen were a Construction practical session, two Hairdressing sessions, one practical and one theory based. The other observations came from Engineering, two different theory lessons, Gas, two theory lessons, two Health and Social Care theory lessons, two Media theory sessions and two Plumbing theory sessions. All teachers seen were experienced in their vocational subject having been practitioners first and teachers later in life. In terms of demographics most were middle aged and had been teaching for several years. The Hairdressing and Health and Social Care teachers were female as was one of the Engineering teachers. The Media sessions was split between one male and one female and here the female teacher was a novice teacher in her first year of teaching having spent some years in broadcasting. All the Gas, Construction and Plumbing teachers were male. The observations were written up in full and comments were extracted from the observation feedback and analysed according to the following concepts relating to signature pedagogies in both practical and theory lessons. These were:
a surface structure – where there was a reference to teaching methods
a deep structure – where there was a reference to specific professional learning
an implicit structure – where there was a reference to the moral or value judgements of that profession
Using this data allowed an overall view of how signature pedagogy is incorporated in teaching of vocational learning. The following section outlines the findings of the observed sessions.
Table 1 shows the thirteen sessions observed with a breakdown of theory or practical. The comments in column two have been extracted from the full observation feedback as they show aspects of signature pedagogy. Column three shows the analysis of the comment in the light of Shulman’s [1] dimensions of signature pedagogy, these being surface/deep/implicit. All lessons observed showed deep or implicit dimensions of signature pedagogy in practice, these being references to specific professional learning or moral or value judgements.
Vocational subject | Observation comment that relates to the way that the teacher is demonstrating signature pedagogies | Dimension: surface/deep/implicit |
---|---|---|
Hairdressing theory lesson 1 | Wonderful, you talked about training as a hairdresser rather than just passing the exam. Good demonstrations seen that helped the learners to see a professional in practice. | Deep |
Hairdressing practical lesson 2 | Whole group is managed well and there is a brisk pace which is reinforced with reference to ‘hairdressing pace’, excellent standards required here | implicit |
Engineering theory lesson 1 | Reinforcement of key rules such as the need for the equation, excellent practice for their future as engineers. | deep |
Engineering theory lesson 2 | Here the project was linked to the real world of project management and the skills needed here (S). Linked to money and budgets as well. Well done. | Deep/implicit |
Health and Social Care theory lesson 1 | Made relevant to the real world of work and what they want to do in the future. | deep |
Health and Social Care theory lesson 2 | The topic was linked well to being a professional and the need for CPD, formative assessment via using whiteboards, here students write their ideas about how to complete CPD | deep |
Gas theory lesson 1 | The topic was gas decommissioning, and it began with consideration of the Duty of Care involved in any gas work undertaken. Excellent analogy provided which clearly highlighted the need to refer work that was not safe to the correct person/authority (S). This really showed the students the importance of never leaving work with a possible gas leak. This was reinforced with the legislation (RIDDOR) and the need to report any gas leaks immediately. The major strength seen here was the constant reference to the professional approach that needs to be taken when dealing with gas. This was done through the repeated reference to Duty of Care and the possibility of killing someone if gas explodes! | implicit |
Gas theory lesson 2 | Excellent use of own experiences and local knowledge with regard to the damage gas fires can do and you respond well to student questions here as well. You made it relevant to the exam that the students need to take and above all a strength here was the constant reference to the professional approach needed with regard to Duty of Care and the possibility of 7 years for manslaughter. This was reinforced several times as was the competence required for different equipment and ongoing need to continuous professional development as a gas engineer. | implicit |
Construction practical lesson 1 | Excellent use of humour and how to learn from mistakes and to move on. All this is good grounding for professional practice. Students rated this and it was then made clear to them as to the importance of this technique as practice for being a master craftsperson. Well done here, this showed the need for a professional approach to the trade. | implicit |
Plumbing theory lesson 1 | Discussion then moved to being a professional, although you did not mention this word. You did note the need for CPD and the regulations for renewal of the card at 5-year intervals. | Implicit/deep |
Plumbing theory lesson 2 | This was also well related to actual work as a plumber and you made good use of a past student to illustrate key points | deep |
Media theory lesson 1 | However, it was a useful exercise as it allowed you to evaluate the brief as well as being a chance to emphasize the need for some practical procedures that they would need in industry, this part was excellent as it really linked to the world of work | deep |
Media theory lesson 2 | This was also related to merit/distinction etc and again related to which area of the industry they might like to focus on in future. Logbooks were related to interview skills and you made it clear that even if they did not like doing them, they needed to! Linked to Btec rules of working with more than one person and again to real work ie getting a script and being creative. | deep |
To show the observation data analysed in terms of the way that vocational teachers use signature pedagogies in practice.
Interestingly the strongest lessons showing aspects of an implicit structure for a signature pedagogy came from the plumbing and construction teams. This was seen as implicit due to the references concerning health and safety and craftmanship. There were three lessons observed in this department, two theory-based lessons and one practical. Clearly the issue of dealing with a potential gas hazard can be considered as a moral judgement as did the comment made about being a master craftsman. In these instances, the teachers were drawing on their own experience as master craftsman to highlight the professional aspects of their trades. The comment regarding a ‘hairdressing pace’ was seen in a practical session in which the teacher was getting the learners to work at a pace appropriate to a real hairdressing salon even though they were still training. A point worth making here is that both gas and hairdressing involve working directly with customers and that in both health and safety is vital to a professional approach.
The lessons which were deemed to show deep structures rather than implicit ones were because they did not touch on the moral aspects of the craft but rather were aspects of specific knowledge relating to that subject. Here there were several references to the real world of work and being a professional. Here as well the teachers were modelling good practice as in for example, the hairdressing teacher who was demonstrating techniques in a professional way so as to enable students to observe a professional person in action. This resonates with Claxton’s [6] ideas of habits of mind where teamworking, creativity and communication are important skills required for that profession.
To some degree it can be argued that in Engineering there were elements of habits of mind as the reference to the need for ‘equation’ does highlight the need for students in this discipline to be able to visualise or ‘move from abstract to concrete’ as Lucas and Hanson [5] indicate as being an EHoM for this subject. Finally, it is clear from all the observations undertaken that there were deep structures of teachers using signature pedagogies as part of professional vocational learning.
To return to the literature, Shulman [1] applied the concept of signature pedagogy as one in which the learner is ‘trained’ to think, perform and act like a professional. The outcome he argued, would be that through the implicit structure of the pedagogical approach, learners would gain the valued dispositions for that profession. From this data it can be seen quite clearly that the vocational staff involved in teaching students today do use signature pedagogies in their day-to-day teaching, both in theory and practical sessions. The repeated reference to Health and Safety in working with gas was reinforcing the moral judgements that a professional must exercise at all times, the implicit structure that Shulman claims is part of signature pedagogy. Similarly, reference to the ‘pace of hairdressing’ shows how the trained professional must act and perform when working on real clients.
In terms of cultivating the habits of mind, heart and hand, there is evidence that the teachers were developing these by role modelling as seen in hairdressing, learning from mistakes as seen in the practical construction class and reinforcement of the ‘rules of equation’ seen in engineering. Unfortunately, the EHom that Lucas and Hanson [5] refer to was not really seen in the data, this is intended to be further research within this particular vocational area in the future.
The authors declare no conflict of interest.
Book - collection of Works distributed in a book format, whose selection, coordination, preparation, and arrangement has been performed and published by IntechOpen, and in which the Work is included in its entirety in an unmodified form along with one or more other contributions, each constituting separate and independent sections, but together assembled into a collective whole.
",metaTitle:"Attribution Policy",metaDescription:"DEFINITION OF TERMS",metaKeywords:null,canonicalURL:"/page/attribution-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"Work - a book Chapter (as well as Conference Papers), including any and all content, graphics, images and/or other materials forming part of, or accompanying, the Chapter/Conference Paper.
\\n\\nAttribution – appropriate credit for the used Work or book.
\\n\\nCreative Commons licenses – enable licensors to retain copyright while allowing others to use their Works in an appropriate way.
\\n\\nWith the purpose of protecting Authors' copyright and the transparent reuse of OA (Open Access) content, IntechOpen has developed Rules of Attribution of Works licensed under Creative Commons licenses.
\\n\\nIn case you reuse or republish any of the Works licensed under CC licenses, you must abide by the guidelines outlined below:
\\n\\nAll rights to Books and other compilations published on the IntechOpen platform and in print are reserved by IntechOpen. The Copyright to Books and other compilations is subject to a separate Copyright from any that exists in the included Works.
\\n\\nA Book in its entirety or a significant part of a Book cannot be translated freely without specific written consent by the publisher. Further information can be obtained at permissions@intechopen.com.
\\n\\nIn instances where permission is obtained from the publisher for reusing or republishing the Book, or significant parts of the Book, all of the following conditions apply:
\\n\\nEvery single Work that is used has to be attributed in the way described. If you are unsure about proper attribution, please write to permissions@intechopen.com.
\\n\\nIndividual Works originally published in IntechOpen books are licensed under Creative Commons licenses and can be freely used under terms of the respective CC license, if properly attributed. In order to properly attribute the Work you must respect all the conditions outlined below:
\\n\\nEvery single Work that is used has to be attributed in the way as described. If you are unsure about proper attribution, please contact Us at permissions@intechopen.com.
\\n\\nIn the event that you use more than one of IntechOpen's Works published in one or more books (but not a significant part of the book that is under separate Copyright), each of these have to be properly attributed in the way described.
\\n\\nIntechOpen does not have any claims on newly created copyrighted Works, but the Works originally published by IntechOpen must be properly attributed.
\\n\\nAll these rules apply to BOTH online and offline use.
\\n\\nParts of the Rules of Attribution are based on Work Attributing Creative Commons Materials published by the Australian Research Council Centre of Excellence for Creative Industries and Innovation, in partnership with Creative Commons Australia, which can be found at creativecommons.org.au licensed under Creative Commons Attribution 2.5 Australia license, and Best practices for attribution published by Creative Commons, which can be found at wiki.creativecommons.org under the Creative Commons Attribution 4.0 license.
\\n\\nAll the above rules are subject to change, IntechOpen reserves the right to take appropriate action if any of the conditions outlined above are not met.
\\n\\nPolicy last updated: 2016-06-09
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Work - a book Chapter (as well as Conference Papers), including any and all content, graphics, images and/or other materials forming part of, or accompanying, the Chapter/Conference Paper.
\n\nAttribution – appropriate credit for the used Work or book.
\n\nCreative Commons licenses – enable licensors to retain copyright while allowing others to use their Works in an appropriate way.
\n\nWith the purpose of protecting Authors' copyright and the transparent reuse of OA (Open Access) content, IntechOpen has developed Rules of Attribution of Works licensed under Creative Commons licenses.
\n\nIn case you reuse or republish any of the Works licensed under CC licenses, you must abide by the guidelines outlined below:
\n\nAll rights to Books and other compilations published on the IntechOpen platform and in print are reserved by IntechOpen. The Copyright to Books and other compilations is subject to a separate Copyright from any that exists in the included Works.
\n\nA Book in its entirety or a significant part of a Book cannot be translated freely without specific written consent by the publisher. Further information can be obtained at permissions@intechopen.com.
\n\nIn instances where permission is obtained from the publisher for reusing or republishing the Book, or significant parts of the Book, all of the following conditions apply:
\n\nEvery single Work that is used has to be attributed in the way described. If you are unsure about proper attribution, please write to permissions@intechopen.com.
\n\nIndividual Works originally published in IntechOpen books are licensed under Creative Commons licenses and can be freely used under terms of the respective CC license, if properly attributed. In order to properly attribute the Work you must respect all the conditions outlined below:
\n\nEvery single Work that is used has to be attributed in the way as described. If you are unsure about proper attribution, please contact Us at permissions@intechopen.com.
\n\nIn the event that you use more than one of IntechOpen's Works published in one or more books (but not a significant part of the book that is under separate Copyright), each of these have to be properly attributed in the way described.
\n\nIntechOpen does not have any claims on newly created copyrighted Works, but the Works originally published by IntechOpen must be properly attributed.
\n\nAll these rules apply to BOTH online and offline use.
\n\nParts of the Rules of Attribution are based on Work Attributing Creative Commons Materials published by the Australian Research Council Centre of Excellence for Creative Industries and Innovation, in partnership with Creative Commons Australia, which can be found at creativecommons.org.au licensed under Creative Commons Attribution 2.5 Australia license, and Best practices for attribution published by Creative Commons, which can be found at wiki.creativecommons.org under the Creative Commons Attribution 4.0 license.
\n\nAll the above rules are subject to change, IntechOpen reserves the right to take appropriate action if any of the conditions outlined above are not met.
\n\nPolicy last updated: 2016-06-09
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",topicId:"23"},books:[{type:"book",id:"11438",title:"Fake News in the Era of Pandemics",subtitle:null,isOpenForSubmission:!0,hash:"bc9e4cab86c76f35cd70b39086d9b69e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11438.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11472",title:"21st Century Slavery",subtitle:null,isOpenForSubmission:!0,hash:"b341f3fc3411ced881e43ce007a892b8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11472.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11473",title:"Social Inequality",subtitle:null,isOpenForSubmission:!0,hash:"20307129f7fb39aa443d5449acb6a784",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11770",title:"Feminism",subtitle:null,isOpenForSubmission:!0,hash:"008be465c708a6fde48c8468757a40af",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11770.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11771",title:"Photography",subtitle:null,isOpenForSubmission:!0,hash:"466454ffeb31a0953c5120379ffece18",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11771.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11773",title:"Archaeology - Challenges and Updates",subtitle:null,isOpenForSubmission:!0,hash:"17d91462fa926279f65164ac0d5641cd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11773.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12124",title:"Criminal Behavior",subtitle:null,isOpenForSubmission:!0,hash:"b0c407228070f8876b24ceb718516ed7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12124.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12115",title:"European Politics",subtitle:null,isOpenForSubmission:!0,hash:"274a7fe06bb1c3cf128bf7ad081c7c12",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12115.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12116",title:"Youth and Youth Work",subtitle:null,isOpenForSubmission:!0,hash:"5fcd245b25b23db90b3fd0430d61e168",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12116.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12117",title:"Terrorism",subtitle:null,isOpenForSubmission:!0,hash:"6e88a48205eb81b8374e9e8efac25f6e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12117.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12118",title:"Demographic Data",subtitle:null,isOpenForSubmission:!0,hash:"b705a14a738532bab213b9d89765e069",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12118.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12119",title:"Multilingualism",subtitle:null,isOpenForSubmission:!0,hash:"eea6bdfe13e423a793fe42c262e0ae64",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12119.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:39},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:16},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:31},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:11},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:99},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:7},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:32},{group:"topic",caption:"Technology",value:24,count:1}],offset:12,limit:12,total:32},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[],latestBooks:[]},subject:{topic:{id:"18",title:"Neuroscience",slug:"life-sciences-neuroscience",parent:{id:"2",title:"Life Sciences",slug:"life-sciences"},numberOfBooks:65,numberOfSeries:0,numberOfAuthorsAndEditors:1649,numberOfWosCitations:1070,numberOfCrossrefCitations:727,numberOfDimensionsCitations:1699,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"18",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10922",title:"Music in Health and Diseases",subtitle:null,isOpenForSubmission:!1,hash:"6a079df045b086b404399c5ed4ac049a",slug:"music-in-health-and-diseases",bookSignature:"Amit Agrawal, Roshan Sutar and Anvesh Jallapally",coverURL:"https://cdn.intechopen.com/books/images_new/10922.jpg",editedByType:"Edited by",editors:[{id:"100142",title:"Prof.",name:"Amit",middleName:null,surname:"Agrawal",slug:"amit-agrawal",fullName:"Amit Agrawal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10554",title:"Proprioception",subtitle:null,isOpenForSubmission:!1,hash:"e104e615fbd94caa987df3a8d8b3fb8b",slug:"proprioception",bookSignature:"José A. Vega and Juan Cobo",coverURL:"https://cdn.intechopen.com/books/images_new/10554.jpg",editedByType:"Edited by",editors:[{id:"59892",title:"Prof.",name:"José A.",middleName:null,surname:"Vega",slug:"jose-a.-vega",fullName:"José A. Vega"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9853",title:"Connectivity and Functional Specialization in the Brain",subtitle:null,isOpenForSubmission:!1,hash:"79f611488f3217579b5c84978f870863",slug:"connectivity-and-functional-specialization-in-the-brain",bookSignature:"Thomas Heinbockel and Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9853.jpg",editedByType:"Edited by",editors:[{id:"70569",title:"Dr.",name:"Thomas",middleName:null,surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}],equalEditorOne:{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",biography:"Yongxia Zhou obtained a Ph.D. in Biomedical Imaging from the University of Southern California. Her research interest is radiology and neuroscience technology and application. She had been trained as an imaging scientist at several prestigious institutes including Columbia University, the University of Pennsylvania, and the National Institutes of Health (NIH). Her research focuses on multi-modal neuroimaging integration such as MRI/PET and EEG/MEG instrumentation to make the best use of multiple modalities for better interpretation of underlying disease mechanisms. She is the author and editor of more than twelve books for well-known publishers including IntechOpen and Nova Science. She has published more than 100 papers and abstracts in many reputed international journals and conferences and served as reviewer and editor for several academic associations.",institutionString:"University of Southern California",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editedByType:"Edited by",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10475",title:"Smart Biofeedback",subtitle:"Perspectives and Applications",isOpenForSubmission:!1,hash:"8d2bd9997707c905959eaa41e55ba8f1",slug:"smart-biofeedback-perspectives-and-applications",bookSignature:"Edward Da-Yin Liao",coverURL:"https://cdn.intechopen.com/books/images_new/10475.jpg",editedByType:"Edited by",editors:[{id:"3875",title:"Dr.",name:"Edward Da-Yin",middleName:null,surname:"Liao",slug:"edward-da-yin-liao",fullName:"Edward Da-Yin Liao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8059",title:"Neurostimulation and Neuromodulation in Contemporary Therapeutic Practice",subtitle:null,isOpenForSubmission:!1,hash:"8cc2c649900edf37ff3374fdc96a1586",slug:"neurostimulation-and-neuromodulation-in-contemporary-therapeutic-practice",bookSignature:"Denis Larrivee and Seyed Mansoor Rayegani",coverURL:"https://cdn.intechopen.com/books/images_new/8059.jpg",editedByType:"Edited by",editors:[{id:"206412",title:"Prof.",name:"Denis",middleName:null,surname:"Larrivee",slug:"denis-larrivee",fullName:"Denis Larrivee"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8851",title:"Advances in Neural Signal Processing",subtitle:null,isOpenForSubmission:!1,hash:"a44ac118b233b29a3d5b57d61680ec38",slug:"advances-in-neural-signal-processing",bookSignature:"Ramana Vinjamuri",coverURL:"https://cdn.intechopen.com/books/images_new/8851.jpg",editedByType:"Edited by",editors:[{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",slug:"ramana-vinjamuri",fullName:"Ramana Vinjamuri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8751",title:"Somatosensory and Motor Research",subtitle:null,isOpenForSubmission:!1,hash:"86191c18f06e524e0f97a5534fdb2b4c",slug:"somatosensory-and-motor-research",bookSignature:"Toshiaki Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/8751.jpg",editedByType:"Edited by",editors:[{id:"70872",title:"Prof.",name:"Toshiaki",middleName:null,surname:"Suzuki",slug:"toshiaki-suzuki",fullName:"Toshiaki Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9347",title:"Neuroimaging",subtitle:"Neurobiology, Multimodal and Network Applications",isOpenForSubmission:!1,hash:"a3479e76c6ac538aac76409c9efb7e41",slug:"neuroimaging-neurobiology-multimodal-and-network-applications",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9347.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8938",title:"Inhibitory Control Training",subtitle:"A Multidisciplinary Approach",isOpenForSubmission:!1,hash:"bd82354f3bba4af5421337cd42052f86",slug:"inhibitory-control-training-a-multidisciplinary-approach",bookSignature:"Sara Palermo and Massimo Bartoli",coverURL:"https://cdn.intechopen.com/books/images_new/8938.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6998",title:"Synucleins",subtitle:"Biochemistry and Role in Diseases",isOpenForSubmission:!1,hash:"2b4b802fec508928ce8ab9deebd1375f",slug:"synucleins-biochemistry-and-role-in-diseases",bookSignature:"Andrei Surguchov",coverURL:"https://cdn.intechopen.com/books/images_new/6998.jpg",editedByType:"Edited by",editors:[{id:"266540",title:"Dr.",name:"Andrei",middleName:null,surname:"Surguchov",slug:"andrei-surguchov",fullName:"Andrei Surguchov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:65,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"46296",doi:"10.5772/57398",title:"Physiological Role of Amyloid Beta in Neural Cells: The Cellular Trophic Activity",slug:"physiological-role-of-amyloid-beta-in-neural-cells-the-cellular-trophic-activity",totalDownloads:5886,totalCrossrefCites:18,totalDimensionsCites:31,abstract:null,book:{id:"3846",slug:"neurochemistry",title:"Neurochemistry",fullTitle:"Neurochemistry"},signatures:"M. del C. Cárdenas-Aguayo, M. del C. Silva-Lucero, M. Cortes-Ortiz,\nB. Jiménez-Ramos, L. Gómez-Virgilio, G. Ramírez-Rodríguez, E. Vera-\nArroyo, R. Fiorentino-Pérez, U. García, J. Luna-Muñoz and M.A.\nMeraz-Ríos",authors:[{id:"42225",title:"Dr.",name:"Jose",middleName:null,surname:"Luna-Muñoz",slug:"jose-luna-munoz",fullName:"Jose Luna-Muñoz"},{id:"114746",title:"Dr.",name:"Marco",middleName:null,surname:"Meraz-Ríos",slug:"marco-meraz-rios",fullName:"Marco Meraz-Ríos"},{id:"169616",title:"Dr.",name:"Maria del Carmen",middleName:null,surname:"Cardenas-Aguayo",slug:"maria-del-carmen-cardenas-aguayo",fullName:"Maria del Carmen Cardenas-Aguayo"},{id:"169857",title:"Dr.",name:"Maria del Carmen",middleName:null,surname:"Silva-Lucero",slug:"maria-del-carmen-silva-lucero",fullName:"Maria del Carmen Silva-Lucero"},{id:"169858",title:"Dr.",name:"Maribel",middleName:null,surname:"Cortes-Ortiz",slug:"maribel-cortes-ortiz",fullName:"Maribel Cortes-Ortiz"},{id:"169859",title:"Dr.",name:"Berenice",middleName:null,surname:"Jimenez-Ramos",slug:"berenice-jimenez-ramos",fullName:"Berenice Jimenez-Ramos"},{id:"169860",title:"Dr.",name:"Laura",middleName:null,surname:"Gomez-Virgilio",slug:"laura-gomez-virgilio",fullName:"Laura Gomez-Virgilio"},{id:"169861",title:"Dr.",name:"Gerardo",middleName:null,surname:"Ramirez-Rodriguez",slug:"gerardo-ramirez-rodriguez",fullName:"Gerardo Ramirez-Rodriguez"},{id:"169862",title:"Dr.",name:"Eduardo",middleName:null,surname:"Vera-Arroyo",slug:"eduardo-vera-arroyo",fullName:"Eduardo Vera-Arroyo"},{id:"169863",title:"Dr.",name:"Rosana Sofia",middleName:null,surname:"Fiorentino-Perez",slug:"rosana-sofia-fiorentino-perez",fullName:"Rosana Sofia Fiorentino-Perez"},{id:"169864",title:"Dr.",name:"Ubaldo",middleName:null,surname:"Garcia",slug:"ubaldo-garcia",fullName:"Ubaldo Garcia"}]},{id:"58070",doi:"10.5772/intechopen.72427",title:"MRI Medical Image Denoising by Fundamental Filters",slug:"mri-medical-image-denoising-by-fundamental-filters",totalDownloads:2564,totalCrossrefCites:17,totalDimensionsCites:30,abstract:"Nowadays Medical imaging technique Magnetic Resonance Imaging (MRI) plays an important role in medical setting to form high standard images contained in the human brain. MRI is commonly used once treating brain, prostate cancers, ankle and foot. The Magnetic Resonance Imaging (MRI) images are usually liable to suffer from noises such as Gaussian noise, salt and pepper noise and speckle noise. So getting of brain image with accuracy is very extremely task. An accurate brain image is very necessary for further diagnosis process. During this chapter, a median filter algorithm will be modified. Gaussian noise and Salt and pepper noise will be added to MRI image. A proposed Median filter (MF), Adaptive Median filter (AMF) and Adaptive Wiener filter (AWF) will be implemented. The filters will be used to remove the additive noises present in the MRI images. The noise density will be added gradually to MRI image to compare performance of the filters evaluation. The performance of these filters will be compared exploitation the applied mathematics parameter Peak Signal-to-Noise Ratio (PSNR).",book:{id:"6144",slug:"high-resolution-neuroimaging-basic-physical-principles-and-clinical-applications",title:"High-Resolution Neuroimaging",fullTitle:"High-Resolution Neuroimaging - Basic Physical Principles and Clinical Applications"},signatures:"Hanafy M. Ali",authors:[{id:"213318",title:"Dr.",name:"Hanafy",middleName:"M.",surname:"Ali",slug:"hanafy-ali",fullName:"Hanafy Ali"}]},{id:"41589",doi:"10.5772/50323",title:"The Role of the Amygdala in Anxiety Disorders",slug:"the-role-of-the-amygdala-in-anxiety-disorders",totalDownloads:9671,totalCrossrefCites:4,totalDimensionsCites:28,abstract:null,book:{id:"2599",slug:"the-amygdala-a-discrete-multitasking-manager",title:"The Amygdala",fullTitle:"The Amygdala - A Discrete Multitasking Manager"},signatures:"Gina L. Forster, Andrew M. Novick, Jamie L. Scholl and Michael J. Watt",authors:[{id:"145620",title:"Dr.",name:"Gina",middleName:null,surname:"Forster",slug:"gina-forster",fullName:"Gina Forster"},{id:"146553",title:"BSc.",name:"Andrew",middleName:null,surname:"Novick",slug:"andrew-novick",fullName:"Andrew Novick"},{id:"146554",title:"MSc.",name:"Jamie",middleName:null,surname:"Scholl",slug:"jamie-scholl",fullName:"Jamie Scholl"},{id:"146555",title:"Dr.",name:"Michael",middleName:null,surname:"Watt",slug:"michael-watt",fullName:"Michael Watt"}]},{id:"26258",doi:"10.5772/28300",title:"Excitotoxicity and Oxidative Stress in Acute Ischemic Stroke",slug:"excitotoxicity-and-oxidative-stress-in-acute-ischemic-stroke",totalDownloads:7157,totalCrossrefCites:6,totalDimensionsCites:25,abstract:null,book:{id:"931",slug:"acute-ischemic-stroke",title:"Acute Ischemic Stroke",fullTitle:"Acute Ischemic Stroke"},signatures:"Ramón Rama Bretón and Julio César García Rodríguez",authors:[{id:"73430",title:"Prof.",name:"Ramon",middleName:null,surname:"Rama",slug:"ramon-rama",fullName:"Ramon Rama"},{id:"124643",title:"Prof.",name:"Julio Cesar",middleName:null,surname:"García",slug:"julio-cesar-garcia",fullName:"Julio Cesar García"}]},{id:"62072",doi:"10.5772/intechopen.78695",title:"Brain-Computer Interface and Motor Imagery Training: The Role of Visual Feedback and Embodiment",slug:"brain-computer-interface-and-motor-imagery-training-the-role-of-visual-feedback-and-embodiment",totalDownloads:1439,totalCrossrefCites:13,totalDimensionsCites:23,abstract:"Controlling a brain-computer interface (BCI) is a difficult task that requires extensive training. Particularly in the case of motor imagery BCIs, users may need several training sessions before they learn how to generate desired brain activity and reach an acceptable performance. A typical training protocol for such BCIs includes execution of a motor imagery task by the user, followed by presentation of an extending bar or a moving object on a computer screen. In this chapter, we discuss the importance of a visual feedback that resembles human actions, the effect of human factors such as confidence and motivation, and the role of embodiment in the learning process of a motor imagery task. Our results from a series of experiments in which users BCI-operated a humanlike android robot confirm that realistic visual feedback can induce a sense of embodiment, which promotes a significant learning of the motor imagery task in a short amount of time. We review the impact of humanlike visual feedback in optimized modulation of brain activity by the BCI users.",book:{id:"6610",slug:"evolving-bci-therapy-engaging-brain-state-dynamics",title:"Evolving BCI Therapy",fullTitle:"Evolving BCI Therapy - Engaging Brain State Dynamics"},signatures:"Maryam Alimardani, Shuichi Nishio and Hiroshi Ishiguro",authors:[{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro"},{id:"231131",title:"Dr.",name:"Maryam",middleName:null,surname:"Alimardani",slug:"maryam-alimardani",fullName:"Maryam Alimardani"},{id:"231134",title:"Dr.",name:"Shuichi",middleName:null,surname:"Nishio",slug:"shuichi-nishio",fullName:"Shuichi Nishio"}]}],mostDownloadedChaptersLast30Days:[{id:"29764",title:"Underlying Causes of Paresthesia",slug:"underlying-causes-of-paresthesia",totalDownloads:192666,totalCrossrefCites:3,totalDimensionsCites:7,abstract:null,book:{id:"1069",slug:"paresthesia",title:"Paresthesia",fullTitle:"Paresthesia"},signatures:"Mahdi Sharif-Alhoseini, Vafa Rahimi-Movaghar and Alexander R. Vaccaro",authors:[{id:"91165",title:"Prof.",name:"Vafa",middleName:null,surname:"Rahimi-Movaghar",slug:"vafa-rahimi-movaghar",fullName:"Vafa Rahimi-Movaghar"}]},{id:"63258",title:"Anatomy and Function of the Hypothalamus",slug:"anatomy-and-function-of-the-hypothalamus",totalDownloads:4558,totalCrossrefCites:6,totalDimensionsCites:12,abstract:"The hypothalamus is a small but important area of the brain formed by various nucleus and nervous fibers. Through its neuronal connections, it is involved in many complex functions of the organism such as vegetative system control, homeostasis of the organism, thermoregulation, and also in adjusting the emotional behavior. The hypothalamus is involved in different daily activities like eating or drinking, in the control of the body’s temperature and energy maintenance, and in the process of memorizing. It also modulates the endocrine system through its connections with the pituitary gland. Precise anatomical description along with a correct characterization of the component structures is essential for understanding its functions.",book:{id:"6331",slug:"hypothalamus-in-health-and-diseases",title:"Hypothalamus in Health and Diseases",fullTitle:"Hypothalamus in Health and Diseases"},signatures:"Miana Gabriela Pop, Carmen Crivii and Iulian Opincariu",authors:null},{id:"57103",title:"GABA and Glutamate: Their Transmitter Role in the CNS and Pancreatic Islets",slug:"gaba-and-glutamate-their-transmitter-role-in-the-cns-and-pancreatic-islets",totalDownloads:3478,totalCrossrefCites:3,totalDimensionsCites:9,abstract:"Glutamate and gamma-aminobutyric acid (GABA) are the major neurotransmitters in the mammalian brain. Inhibitory GABA and excitatory glutamate work together to control many processes, including the brain’s overall level of excitation. The contributions of GABA and glutamate in extra-neuronal signaling are by far less widely recognized. In this chapter, we first discuss the role of both neurotransmitters during development, emphasizing the importance of the shift from excitatory to inhibitory GABAergic neurotransmission. The second part summarizes the biosynthesis and role of GABA and glutamate in neurotransmission in the mature brain, and major neurological disorders associated with glutamate and GABA receptors and GABA release mechanisms. The final part focuses on extra-neuronal glutamatergic and GABAergic signaling in pancreatic islets of Langerhans, and possible associations with type 1 diabetes mellitus.",book:{id:"6237",slug:"gaba-and-glutamate-new-developments-in-neurotransmission-research",title:"GABA And Glutamate",fullTitle:"GABA And Glutamate - New Developments In Neurotransmission Research"},signatures:"Christiane S. Hampe, Hiroshi Mitoma and Mario Manto",authors:[{id:"210220",title:"Prof.",name:"Christiane",middleName:null,surname:"Hampe",slug:"christiane-hampe",fullName:"Christiane Hampe"},{id:"210485",title:"Prof.",name:"Mario",middleName:null,surname:"Manto",slug:"mario-manto",fullName:"Mario Manto"},{id:"210486",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Mitoma",slug:"hiroshi-mitoma",fullName:"Hiroshi Mitoma"}]},{id:"35802",title:"Cross-Cultural/Linguistic Differences in the Prevalence of Developmental Dyslexia and the Hypothesis of Granularity and Transparency",slug:"cross-cultural-linguistic-differences-in-the-prevalence-of-developmental-dyslexia-and-the-hypothesis",totalDownloads:3601,totalCrossrefCites:2,totalDimensionsCites:7,abstract:null,book:{id:"673",slug:"dyslexia-a-comprehensive-and-international-approach",title:"Dyslexia",fullTitle:"Dyslexia - A Comprehensive and International Approach"},signatures:"Taeko N. Wydell",authors:[{id:"87489",title:"Prof.",name:"Taeko",middleName:"N.",surname:"Wydell",slug:"taeko-wydell",fullName:"Taeko Wydell"}]},{id:"58597",title:"Testosterone and Erectile Function: A Review of Evidence from Basic Research",slug:"testosterone-and-erectile-function-a-review-of-evidence-from-basic-research",totalDownloads:1331,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Androgens are essential for male physical activity and normal erectile function. Hence, age-related testosterone deficiency, known as late-onset hypogonadism (LOH), is considered a risk factor for erectile dysfunction (ED). This chapter summarizes relevant basic research reports examining the effects of testosterone on erectile function. Testosterone affects several organs and is especially active on the erectile tissue. The mechanism of testosterone deficiency effects on erectile function and the results of testosterone replacement therapy (TRT) have been well studied. Testosterone affects nitric oxide (NO) production and phosphodiesterase type 5 (PDE-5) expression in the corpus cavernosum through molecular pathways, preserves smooth muscle contractility by regulating both contraction and relaxation, and maintains the structure of the corpus cavernosum. Interestingly, testosterone deficiency has relationship to neurological diseases, which leads to ED. Testosterone replacement therapy is widely used to treat patients with testosterone deficiency; however, this treatment might also induce some problems. Basic research suggests that PDE-5 inhibitors, L-citrulline, and/or resveratrol therapy might be effective therapeutic options for testosterone deficiency-induced ED. Future research should confirm these findings through more specific experiments using molecular tools and may shed more light on endocrine-related ED and its possible treatments.",book:{id:"5994",slug:"sex-hormones-in-neurodegenerative-processes-and-diseases",title:"Sex Hormones in Neurodegenerative Processes and Diseases",fullTitle:"Sex Hormones in Neurodegenerative Processes and Diseases"},signatures:"Tomoya Kataoka and Kazunori Kimura",authors:[{id:"219042",title:"Ph.D.",name:"Tomoya",middleName:null,surname:"Kataoka",slug:"tomoya-kataoka",fullName:"Tomoya Kataoka"},{id:"229066",title:"Prof.",name:"Kazunori",middleName:null,surname:"Kimura",slug:"kazunori-kimura",fullName:"Kazunori Kimura"}]}],onlineFirstChaptersFilter:{topicId:"18",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81646",title:"Cortical Plasticity under Ketamine: From Synapse to Map",slug:"cortical-plasticity-under-ketamine-from-synapse-to-map",totalDownloads:14,totalDimensionsCites:0,doi:"10.5772/intechopen.104787",abstract:"Sensory systems need to process signals in a highly dynamic way to efficiently respond to variations in the animal’s environment. For instance, several studies showed that the visual system is subject to neuroplasticity since the neurons’ firing changes according to stimulus properties. This dynamic information processing might be supported by a network reorganization. Since antidepressants influence neurotransmission, they can be used to explore synaptic plasticity sustaining cortical map reorganization. To this goal, we investigated in the primary visual cortex (V1 of mouse and cat), the impact of ketamine on neuroplasticity through changes in neuronal orientation selectivity and the functional connectivity between V1 cells, using cross correlation analyses. We found that ketamine affects cortical orientation selectivity and alters the functional connectivity within an assembly. These data clearly highlight the role of the antidepressant drugs in inducing or modeling short-term plasticity in V1 which suggests that cortical processing is optimized and adapted to the properties of the stimulus.",book:{id:"11374",title:"Sensory Nervous System - Computational Neuroimaging Investigations of Topographical Organization in Human Sensory Cortex",coverURL:"https://cdn.intechopen.com/books/images_new/11374.jpg"},signatures:"Ouelhazi Afef, Rudy Lussiez and Molotchnikoff Stephane"},{id:"81582",title:"The Role of Cognitive Reserve in Executive Functioning and Its Relationship to Cognitive Decline and Dementia",slug:"the-role-of-cognitive-reserve-in-executive-functioning-and-its-relationship-to-cognitive-decline-and",totalDownloads:22,totalDimensionsCites:0,doi:"10.5772/intechopen.104646",abstract:"In this chapter, we explore how cognitive reserve is implicated in coping with the negative consequences of brain pathology and age-related cognitive decline. Individual differences in cognitive performance are based on different brain mechanisms (neural reserve and neural compensation), and reflect, among others, the effect of education, occupational attainment, leisure activities, and social involvement. These cognitive reserve proxies have been extensively associated with efficient executive functioning. We discuss and focus particularly on the compensation mechanisms related to the frontal lobe and its protective role, in maintaining cognitive performance in old age or even mitigating the clinical expression of dementia.",book:{id:"11742",title:"Neurophysiology",coverURL:"https://cdn.intechopen.com/books/images_new/11742.jpg"},signatures:"Gabriela Álvares-Pereira, Carolina Maruta and Maria Vânia Silva-Nunes"},{id:"81488",title:"Aggression and Sexual Behavior: Overlapping or Distinct Roles of 5-HT1A and 5-HT1B Receptors",slug:"aggression-and-sexual-behavior-overlapping-or-distinct-roles-of-5-ht1a-and-5-ht1b-receptors",totalDownloads:19,totalDimensionsCites:0,doi:"10.5772/intechopen.104872",abstract:"Distinct brain mechanisms for male aggressive and sexual behavior are present in mammalian species, including man. However, recent evidence suggests a strong connection and even overlap in the central nervous system (CNS) circuitry involved in aggressive and sexual behavior. The serotonergic system in the CNS is strongly involved in male aggressive and sexual behavior. In particular, 5-HT1A and 5-HT1B receptors seem to play a critical role in the modulation of these behaviors. The present chapter focuses on the effects of 5-HT1A- and 5-HT1B-receptor ligands in male rodent aggression and sexual behavior. Results indicate that 5-HT1B-heteroreceptors play a critical role in the modulation of male offensive behavior, although a definite role of 5-HT1A-auto- or heteroreceptors cannot be ruled out. 5-HT1A receptors are clearly involved in male sexual behavior, although it has to be yet unraveled whether 5-HT1A-auto- or heteroreceptors are important. Although several key nodes in the complex circuitry of aggression and sexual behavior are known, in particular in the medial hypothalamus, a clear link or connection to these critical structures and the serotonergic key receptors is yet to be determined. This information is urgently needed to detect and develop new selective anti-aggressive (serenic) and pro-sexual drugs for human applications.",book:{id:"10195",title:"Serotonin and the CNS - New Developments in Pharmacology and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg"},signatures:"Berend Olivier and Jocelien D.A. Olivier"},{id:"81093",title:"Prehospital and Emergency Room Airway Management in Traumatic Brain Injury",slug:"prehospital-and-emergency-room-airway-management-in-traumatic-brain-injury",totalDownloads:49,totalDimensionsCites:0,doi:"10.5772/intechopen.104173",abstract:"Airway management in trauma is critical and may impact patient outcomes. Particularly in traumatic brain injury (TBI), depressed level of consciousness may be associated with compromised protective airway reflexes or apnea, which can increase the risk of aspiration or result in hypoxemia and worsen the secondary brain damage. Therefore, patients with TBI and Glasgow Coma Scale (GCS) ≤ 8 have been traditionally managed by prehospital or emergency room (ER) endotracheal intubation. However, recent evidence challenged this practice and even suggested that routine intubation may be harmful. This chapter will address the indications and optimal method of securing the airway, prehospital and in the ER, in patients with traumatic brain injury.",book:{id:"11367",title:"Traumatic Brain Injury",coverURL:"https://cdn.intechopen.com/books/images_new/11367.jpg"},signatures:"Dominik A. Jakob, Jean-Cyrille Pitteloud and Demetrios Demetriades"},{id:"81011",title:"Amino Acids as Neurotransmitters. The Balance between Excitation and Inhibition as a Background for Future Clinical Applications",slug:"amino-acids-as-neurotransmitters-the-balance-between-excitation-and-inhibition-as-a-background-for-f",totalDownloads:19,totalDimensionsCites:0,doi:"10.5772/intechopen.103760",abstract:"For more than 30 years, amino acids have been well-known (and essential) participants in neurotransmission. They act as both neuromediators and metabolites in nervous tissue. Glycine and glutamic acid (glutamate) are prominent examples. These amino acids are agonists of inhibitory and excitatory membrane receptors, respectively. Moreover, they play essential roles in metabolic pathways and energy transformation in neurons and astrocytes. Despite their obvious effects on the brain, their potential role in therapeutic methods remains uncertain in clinical practice. In the current chapter, a comparison of the crosstalk between these two systems, which are responsible for excitation and inhibition in neurons, is presented. The interactions are discussed at the metabolic, receptor, and transport levels. Reaction-diffusion and a convectional flow into the interstitial fluid create a balanced distribution of glycine and glutamate. Indeed, the neurons’ final physiological state is a result of a balance between the excitatory and inhibitory influences. However, changes to the glycine and/or glutamate pools under pathological conditions can alter the state of nervous tissue. Thus, new therapies for various diseases may be developed on the basis of amino acid medication.",book:{id:"10890",title:"Recent Advances in Neurochemistry",coverURL:"https://cdn.intechopen.com/books/images_new/10890.jpg"},signatures:"Yaroslav R. Nartsissov"},{id:"80821",title:"Neuroimmunology and Neurological Manifestations of COVID-19",slug:"neuroimmunology-and-neurological-manifestations-of-covid-19",totalDownloads:41,totalDimensionsCites:0,doi:"10.5772/intechopen.103026",abstract:"Infection with SARS-CoV-2 is causing coronavirus disease in 2019 (COVID-19). Besides respiratory symptoms due to an attack on the broncho-alveolar system, COVID-19, among others, can be accompanied by neurological symptoms because of the affection of the nervous system. These can be caused by intrusion by SARS-CoV-2 of the central nervous system (CNS) and peripheral nervous system (PNS) and direct infection of local cells. In addition, neurological deterioration mediated by molecular mimicry to virus antigens or bystander activation in the context of immunological anti-virus defense can lead to tissue damage in the CNS and PNS. In addition, cytokine storm caused by SARS-CoV-2 infection in COVID-19 can lead to nervous system related symptoms. Endotheliitis of CNS vessels can lead to vessel occlusion and stroke. COVID-19 can also result in cerebral hemorrhage and sinus thrombosis possibly related to changes in clotting behavior. Vaccination is most important to prevent COVID-19 in the nervous system. There are symptomatic or/and curative therapeutic approaches to combat COVID-19 related nervous system damage that are partly still under study.",book:{id:"10890",title:"Recent Advances in Neurochemistry",coverURL:"https://cdn.intechopen.com/books/images_new/10890.jpg"},signatures:"Robert Weissert"}],onlineFirstChaptersTotal:17},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],testimonialsList:[]},series:{item:{},subseries:{},overviewPageOFChapters:[],overviewPagePublishedBooks:[],openForSubmissionBooks:{},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{}},subseries:{item:{id:"12",type:"subseries",title:"Human Physiology",keywords:"Anatomy, Cells, Organs, Systems, Homeostasis, Functions",scope:"Human physiology is the scientific exploration of the various functions (physical, biochemical, and mechanical properties) of humans, their organs, and their constituent cells. The endocrine and nervous systems play important roles in maintaining homeostasis in the human body. Integration, which is the biological basis of physiology, is achieved through communication between the many overlapping functions of the human body's systems, which takes place through electrical and chemical means. Much of the basis of our knowledge of human physiology has been provided by animal experiments. Because of the close relationship between structure and function, studies in human physiology and anatomy seek to understand the mechanisms that help the human body function. The series on human physiology deals with the various mechanisms of interaction between the various organs, nerves, and cells in the human body.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}},series:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261"},editorialBoard:[{id:"213786",title:"Dr.",name:"Henrique P.",middleName:null,surname:"Neiva",slug:"henrique-p.-neiva",fullName:"Henrique P. Neiva",profilePictureURL:"https://mts.intechopen.com/storage/users/213786/images/system/213786.png",institutionString:null,institution:{name:"University of Beira Interior",institutionURL:null,country:{name:"Portugal"}}},{id:"39275",title:"Prof.",name:"Herbert Ryan",middleName:null,surname:"Marini",slug:"herbert-ryan-marini",fullName:"Herbert Ryan Marini",profilePictureURL:"https://mts.intechopen.com/storage/users/39275/images/9459_n.jpg",institutionString:null,institution:{name:"University of Messina",institutionURL:null,country:{name:"Italy"}}},{id:"196218",title:"Dr.",name:"Pasquale",middleName:null,surname:"Cianci",slug:"pasquale-cianci",fullName:"Pasquale Cianci",profilePictureURL:"https://mts.intechopen.com/storage/users/196218/images/system/196218.png",institutionString:null,institution:{name:"University of Foggia",institutionURL:null,country:{name:"Italy"}}}]},onlineFirstChapters:{},publishedBooks:{},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/44151",hash:"",query:{},params:{id:"44151"},fullPath:"/profiles/44151",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var m;(m=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(m)}()