Measurement characteristics of three surface profiling instruments (after [10]).
\r\n\tEqually, the interlinkages that the adrenal gland has in the human body create the premises both for the description of the intimate mechanisms that induce adrenal diseases on other tissues and organs and also for strategic considerations when it comes to treatment.
\r\n\r\n\tThis book, which is aimed at both endocrinologists and practitioners in other medical fields, therefore offers an insight into the mysteries of adrenal disease and a comprehensive overview of the current state of knowledge of this gland, providing an easy-to-follow format that focuses on the most important developments in the field of etiopathogenesis, clinical and paraclinical diagnosis, and treatment of these conditions.
",isbn:"978-1-80356-687-0",printIsbn:"978-1-80356-686-3",pdfIsbn:"978-1-80356-688-7",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,hash:"86c26879d83ac24206ed5476b6cde7fd",bookSignature:"Dr. Diana Loreta Paun",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11853.jpg",keywords:"Cushing Syndrome, Etiopathogenesis, Diagnosis, Treatment, Minimally Invasive Technique, Adrenalectomy, Adrenal Diseases, Perioperative Management, Adrenal Cancer, Genetics, Adrenal Mass, Imaging",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 22nd 2022",dateEndSecondStepPublish:"May 26th 2022",dateEndThirdStepPublish:"July 25th 2022",dateEndFourthStepPublish:"October 13th 2022",dateEndFifthStepPublish:"December 12th 2022",remainingDaysToSecondStep:"8 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Practitioner endocrinologist, associate professor, researcher, and manager of the National Institute of Endocrinology in Romania, coordinator of investment research and training projects, funded by European funds. Dr. Paun is a member of The Romanian Association of Clinical Endocrinology, member and president(2011-2012, 2017-2019) of The Romanian Chapter of the AACE (American Association of Clinical Endocrinologists). Dr. Păun was appointed State Advise (2015) and was appointed Presidental Advisor (2019).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"190860",title:"Dr.",name:"Diana Loreta",middleName:null,surname:"Paun",slug:"diana-loreta-paun",fullName:"Diana Loreta Paun",profilePictureURL:"https://mts.intechopen.com/storage/users/190860/images/system/190860.jpg",biography:"PĂUN DIANA LORETA, MD, PhD, FACE\r\nBorn on: February 1st, 1968 on Bucharest\r\nEmployed to: “Carol Davila”, University of Medicine and Pharmacy\r\nPosition: endocrinologist, Ph.D, Associate Professor of Endocrinology\r\nFellow of the American College of Endocrinology\r\nExperience: General Manager of “CI Parhon” Institute of Endocrinology, Bucharest, 2006-2015.\r\nMaster in Public Health\r\nQualifications in: Diabetology, Osteoporosis, Endocrine Ultrasonography, Public Health. Training in molecular biology laboratory techniques – Max-Planck-Institut für Psychiatrie, Dept. of Chemie u. Endokrinologie, München, 2002\r\nOccupational field: Clinical, Educational and Research activities, Management, Healthcare services.\r\nPostgraduate courses in: Informatics, Clinical Endocrinology, Infertility, Sexology, Public Health etc.\r\nProfessional career:\r\nChemistry-Biology High School graduated on 1986, Faculty of Medicine graduated on 1992, Th.Burghele Hospital doctor on probation during 1993–1994\r\nendocrinology resident to CI Parhon Institute of Endocrinology 1994-1998\r\nendocrinologist since 1998\r\nAssistant Professor, Lecturer, Associated Professor of Endocrinology, Carol Davila University of Medicine and Pharmacy, Bucuresti, Romania\r\nPublications: papers presented on national and international meetings, articles publishised in well-known journals, author and coauthor in monographs and clinical guides book.\r\nParticipation on research projects and clinical trials: Director and member of the team in research projects and in clinical trials.",institutionString:"Carol Davila University of Medicine and Pharmacy",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"455410",firstName:"Dajana",lastName:"Jusic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/455410/images/20500_n.jpeg",email:"dajana.j@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9500",title:"Recent Advances in Bone Tumours and Osteoarthritis",subtitle:null,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",slug:"recent-advances-in-bone-tumours-and-osteoarthritis",bookSignature:"Hiran Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"76394",title:"Diffraction Grating Groove Metrology Using AFM & STM",doi:"10.5772/intechopen.97257",slug:"diffraction-grating-groove-metrology-using-afm-stm",body:'Scanning Tunneling Microscopy (STM) and Atomic Force Microscopy (AFM) metrology as parts of more general Scanning Probe Microscopy has been around for a long time, and especially intense since it has been awarded by the Nobel Prize in Physics in 1986. In 1988, our team was one the first who designed, manufactured, and used the specialized scanning tunneling microscope to measure newly developed big-size surface-relief holographic diffraction gratings obtained in non-organic photoresist and having in an order lower roughness (Figure 1) [1]. For today, STM & AFM profile measurements on surface-relief diffraction gratings are presented as a matter of routine, see, e.g., in Refs [2, 3]. On the other side, precise microscopic surface-relief patterns are used as grating standards to calibrate atomic force microscopes (see, i.e., in [4]).
STM images of holographic relief grating surfaces (Au-coated) obtained by (a) organic and (b) non-organic photoresists (after [
However, a wide analysis of the use of the STM and AFM methods for surface relief grating groove metrology has not really been undertaken in details. The following problems are discussed here: the tip deconvolution, geometry, and radius; groove shapes and abrupt groove slopes; roughness; PSD functions; other. The author demonstrates examples of AFM & STM data and comparisons with other widely-used metrology techniques for bulk, coated, and multilayer-coated ruled, or holographic, or laser-lithographic, or electron-lithographic gratings having lamellar, or sinusoidal, or blazed, or other realistic groove profiles. These gratings were chosen because high quality efficiency data exists, in particular, for flight gratings or/and X-ray gratings characterized by synchrotron radiation sources; and their groove profiles, together with random nanoroughness, were measured by AFM or STM to be included in rigorous efficiency and scattered light intensity calculus.
Here the author briefly compares various standard techniques for exact determining the digital profile and 3D topography of a surface relief grating. Several widely used direct (or semi-direct – ‘imaging’) methods and respective instruments applicable for this purpose are compared. The advantage of using direct and exact groove metrology to predict efficiency and polarization characteristics of gratings now is well-known and widely used. The main purpose of such modern approach is rejecting unusable samples on earlier stages and decreasing expenses for their production and research. This is much more effective in compare to the earlier approaches, wherein: (1) a master grating is fabricated, whether by mechanical burnishing with a ruling engine, or holographic writing (interferometry), or direct laser recording (DWL), or various newer writing techniques, like as electron-beam lithography (EBL) and Si-etching, or their combinations; then, (2) it is replicated or/and coated, and, finally, (3) tested for the diffraction efficiency and scattering light intensity. For mechanically ruled gratings, a ‘test’ ruling can quickly be checked with this approach, whereas a complete ruling sometimes requires several days or even weeks of continuous use of expensive ruling machines [5]. Even for holographic or EBL gratings, considerable efforts of writing, etching and coating the grating with specialized coatings, especially multilayer coatings, can be decreased additionally if metrology validates that an intermediate product is suitable in the planned application.
The author briefly discusses and compares in the first part of this chapter several basic, among many others, direct metrology techniques: microinterferometry (as one of optical methods) [6], stylus (mechanical) profilometry [7], scanning electron microscopy (SEM) [8], and AFM [9]. Several examples of groove metrology results are presented and discussed further including those obtained very recently.
Any method for measuring the profile of a surface relief grating requires some calibration procedure [10]. The considered here methods are also widely used for surface microroughness determination on a nanometer or sub-nanometer level. Measuring main groove parameters of a grating, in particular, the actual groove depth or blaze angle, adds to the requirements for the specific metrology method. The depth of the groove profile, defined depending on the accuracy of a vertical calibration, basically determine the wavelength for the peak efficiency in a given optical mounting geometry (classical or conical) [11]. The common error of the order of a few percent in the lateral calibration can affect the prediction of the blaze wavelength that should be within hard tolerance for many practical applications. This is because the groove vertical geometry is often expressed relatively to the grating period, in dimensionless units. Any lateral error becomes vertical error in the respective topographical transformation. Fortunately, lateral errors can be fairly determined because the grating period is well known beforehand with high accuracy and, thus, the grating data itself gives a calibration factor to correct the lateral scale unit. The accurate lateral calibration is also required for rigorous efficiency modeling codes, in which the use of the average groove profile shape is very important to obtain exact efficiency data in all significant diffraction orders.
The microinterferometer is sometimes called as ‘optical profilometer’. It is essentially an interferometric head on a microscope, where the reference arm of the interferometer views a small, highly polished reference plate [6]. Such a reference can be removed from the results of measurements on highly polished surfaces that is important for grating measurements because many state-of-the-art gratings, especially for X-ray and Extreme Ultraviolet (EUV) applications, have the root-mean-square (RMS) roughness of the same order as the best reference plates. A Phase Shift Instruments model MicroXAM [12] has been used in the discussed work [10]. It has variable magnification from 2× to 100×; values of range and resolution for the 50× magnification is listed in Table 1. The instrument uses the zero path difference calculations independently for each pixel from a series of images obtained during a vertical sweep. This increases the available vertical range and the available slope angle range substantially, however any microinterferometer has two lateral resolution-restricted factors, which are not limitations in the other considered methods. Namely, the optical resolution is due to the diffraction limit and pixel sampling is due to different magnifications and focusing. The theoretical limit on lateral resolution in such instruments is a half of the working wavelength, or, typically, about 0.1–0.3 μm. Thus, this method generally is not suitable to measure high-frequency (short-period) and/or low-depth diffraction grating.
Instrument | Microinterferometer 50× | Stylus profilometer | Atomic-force microscope | Units |
---|---|---|---|---|
Vertical resolution | 0.05 | 0.1 | 0.05 | nm |
Vertical range | 100 | 130 | ∼5 | μm |
Lateral resolution | ∼0.3 | ∼0.3 | 0.015 | μm |
Lateral range | 163 (more w/stitching) | > 25000 | 100 | μm |
Limiting factor(s) for lateral resolution | MTF, sampling, need for retroreflection over the whole profile | Tip radius & angle | Tip radius | |
Upper slope limit | – | 45 | ∼70 | deg. |
Measurement characteristics of three surface profiling instruments (after [10]).
The stylus profilometer has a diamond tip to brought into direct contact with the surface, with calibrated contact force. As the tip moves across the surface, the motion of the tip is amplified, filtered, and detected. The basic limits inherent to such metrology devices are well-discussed, e.g., in [7]. Care must be exercised to prevent indentations of the surface by the tip, depending on materials and forces used, as well as accounting the tip size. The model used in this work is a Tencor P-10 [13]. Table 1 presents the basic lateral and vertical ranges and resolutions typical for the instrument. Typical measurement parameters are: the tip radius of 0.1 μm (in the plane of dispersion), the tip speed of 5 μm/s, the digital sampling of 2 kHz, the tip force of 0.25 mg, and profile lengths of at least 100 μm (depending on the groove period). Note that in the last model of this instrument, KLA-Tencor HRP-260, the tip radius can be up to 25 nm and it has a high-resolution stage that produces scanning results similar to an AFM device. In the recent investigation we have used another model, namely, ХР-1 Stylus (Ambios Тechnology, USA) [14].
The AFM instrument model that has been used in the discussed earlier work was a Digital Instruments Nanoscope III [15]. The recent investigation was carried out using the atomic-force microscope model NT-MDT NTEGRA Aura [16]. NTEGRA Aura is a Scanning Probe Microscope for studies in the conditions of controlled environment and low vacuum. The Q-factor of the cantilever in vacuum increases, thus gaining the sensitivity, reliability and accuracy of ‘probe-sample’ light forces measurements. At that, the change from atmosphere pressure to 10−3 Torr vacuum provides the tenfold gain of Q-factor. By further vacuum pumping, Q-factor reaches its plateau and changes insignificantly. Thus, NTEGRA Aura comparing to the high-vacuum devices it needs much less time, about a minute, to get the vacuum that is needed for the tenfold Q-factor increase. NTEGRA Aura has built-in closed loop control for all the axes, optical system with 1 μm resolution and ability to work with more than 40 different AFM regimes.
We have used for the Si-grating technology investigation a flexible Carl Zeiss SUPRA 25 SEM system with a versatile analytical specimen chamber that can be easily expanded with a choice of optional detectors and a full range of accessories [17]. Utilizing the unique GEMINI field emission column, it delivers superb resolution over the complete high voltage range with the magnification of up to 500000. The large 5-axes motorized cartesian stage is particularly useful for handling a number of smaller specimens simultaneously. It is equally useful for accommodating bulky or irregular shaped specimens.
Table 1 summarizes the capabilities and limits of the three metrology devices, which have been characterized earlier for grating metrology. As one can see, the atomic-force microscope has the finest lateral and perfect vertical resolutions. The stylus profilometer and the microinterferometer have comparable vertical ranges, however, without a possibility to determine superfine (atomic-scale) structures, i.e., nanoroughness, and abrupt slopes (see, e.g., Figures 3–5). On the other hand, the stylus profilometer has significantly larger lateral range for probing to the millimeter spatial range. Also, the AFM data gives a typical example of non-linearity that should be accounted and described further.
In the groove profile experiment, a series of step height calibration standards [18] has been used [10]. The vertical axis was calibrated using one of the smallest steps of 10 nm. Then the rest of the step height series was measured. Small errors, up to 8%, were observed for heights much higher than that used to calibrate the atomic-force microscope. The fit to correct such nonlinearity was used when the nonlinearity gives a significant difference. The obtained results are summarized in Table 2.
Nominal height, nm | Microinterferometer | Stylus profilometer | Atomic-force microscope |
---|---|---|---|
8.7 | 7.92 | 8.1 | — |
25.8 | — | — | 25.7 |
42.7 | 43.4 | 42.4 | — |
530 | — | — | 520 |
1046 | — | — | 1005 |
1590 | — | — | 1469 |
960 | — | — | — |
Note No. | 3, 4 | 2 | 1 |
Step height data (after [10]).
1. Nonlinear at ∼8% at highest step when calibrated to a 10 nm step.
2. Using 0.1 μm tip, could not resolve depth of 3.3 μm period, AFM step height standard.
3. Used at 50× magnification.
4. At 100× did not have lateral resolution to see the 3 μm period samples tested using AFM.
In the manufacture and analysis of diffraction gratings, it is necessary to control certain of their parameters at each stage of the process. A SEM research [19] is permissible only at the stage of development of the manufacturing technology, because after each technological operation, see, e.g., [20] or Section 4.5, the sample of the Si-etched grating becomes less and less, since a fragment is separated from the sample to obtain a SEM image of a transverse cleavage (CS). In contrast to this, AFM studies are non-destructive; therefore, control of parameters in the manufacture of gratings is usually carried out with the help of AFM. We made a comparison between AFM (NTEGRA Aura microscope) topographies and SEM (SUPRA 25 system) images of Si-etched grating samples with the period of 2 μm. Table 3 shows the results of AFM and SEM investigations of Si-etched gratings obtained at different stages of their fabrication. Table also presents the numerical comparing between the AFM and SEM results of the measured groove geometric parameters for the samples studied. The calculated value of the blaze (working facet) angle from the SEM studies was obtained from the sine determined by dividing the experimental values of the groove depth by the width of the working facet.
Sample No. | Groove depth, nm | Working facet width, nm | Working facet angle, deg. | |||
---|---|---|---|---|---|---|
SEM | АFM | SEM | АFM | SEM | АFM | |
1 | 151 (47)* | 133 (38)* | 1571 | — | — | — |
2 | 149 (37)* | 141 (44)* | — | — | — | — |
3 | 111 | 121 | 1630 | 1710 | 3.90 | 4.05 |
4 | 111 | 111 | 1603 | 1594 | 3.97 | — |
5 | 105 | 114 | 1590 | 1580 | 3.89 | 4.13 |
AFM and SEM data for blaze Si-etched gratings.
Height of Si-nubs.
To measure the roughness of Si(100) plates etched through a DWL mask in KOH and intended for developing the technology of manufacturing Si-etched gratings, several high quality samples were selected using white light optical microscopy. The roughness of the etched bottom and the non-etched area was measured by two compared methods: Stylus Profilometry (XP-1 Stylus profilometer) and AFM (NTEGRA Aura microscope). Our studies were carried out on an atomic force microscope in the semi-contact or tapping mode; all scans had 512 × 512 points. We used TipsNano [4] silicon cantilevers with a typical radius of tips ∼6 nm. The results of roughness measurement by two methods on topological elements (stripes) of 50 μm wide are presented in Table 4. As follows from the presented data, the RMS roughness obtained by different methods may differ by more than an order of magnitude. This is due to the radius of the stylus and the scanning length, which in that case were 2 μm and 80 μm, respectively. However, this device is equipped with a stylus with a radius of 0.2 μm, which, in principle, allows one to measure low- and mid-frequency gratings with smaller roughness. Note that for the etched bottom, where the average roughness is several times higher, the scatter of results is much smaller and ranges from several tens of percent to several times.
Sample No. | RMS roughness, nm | |||
---|---|---|---|---|
Non-etched field | Etched bottom | |||
Profilometer | AFM | Profilometer | AFM | |
1 | 2.6 | 0.2 | 2.8 | 0.8 |
2 | 3.2 | 1.6 | 4.0 | 2.5 |
3 | 3.4 | 0.2 | 4.5 | 1.8 |
4 | 2.8 | 1.7 | 2.9 | 4.9 |
5 | 2.4 | 1.5 | 3.5 | 4.3 |
AFM and stylus Profilometry data for Si-etched plates.
A cantilever tip convolution, which limits the resolution of both the atomic-force microscope and the stylus profilometer, has been much studied and various algorithms to account for this effect has been developed and intensively used (see, e.g., [21] and also in this book). In the results presented in Table 2 such algorithms have not be used. However, the general used rule is that the known tip radius should be much less than the measured periods of gratings. Typically, the radius of a fresh AFM cantilever tip is about 5–15 nm; so, the rule of thumb is that for groove profiles of mid- and high-frequency gratings (say, periods of 100–300 nm and less) tip deconvolution algorithms should be used. In the vertical direction, the depth parameter is smaller, and, apparently, the groove profiles recorded somewhat non-correctly for high-frequency gratings only. However, it depends also on absolute values of the groove profile depth, which can vary in two orders of magnitude.
Another important and general AFM problem, in particular for fine-structure gratings with steep slopes and high aspect ratios of grooves, is the shape and the radius of AFM cantilever tips. Tip size has the major impact on the resolution of images obtained by any atomic-force microscope. The knowledge of the tip radius and shape is essential for the quantitative interpretation of nano-scale lateral steps, in particular, for roughness having short correlation lengths. Tip wear is therefore a key limitation in the application of AFM [22]. The results of nanoindentation experiments with diffraction gratings permanently confirm this conclusion. The measurement of the tip radius before and after measuring groove profiles of gratings was performed in Ref. [10], and they found that the radius to be in the range of 10–20 nm. One measurement found a fresh tip to be ∼10 nm radius and a used one to be ∼20 nm. Therefore, one should restrict an AFM-profiling work to gratings of period much longer than 10–20 nm, as it has been discussed above.
One more problem in AFM measurements of diffraction gratings is the grooves with steep facet slopes, which can be 80 degrees and more for echelle gratings [2]. This problem is similar to measurements of the rectangular (lamellar) groove profile in microelectronics [23]. To accurately measure such general trapezoidal profiles with steep or even negative sidewalls, a large change in the angle of inclination of a cantilever (or scanner, or sample) and/or special cantilever (tip) shape are required, as well as taking into account the aspect ratio of measured grooves [24]. Several studies applied to periodic structures demonstrate that some combination of the tilted probe, special orientations of AFM images and appropriate deconvolution algorithms allows the precise groove shape reconstruction at any aspect ratio [25]. An example of such problem successfully solved is the average groove profile (two grooves) of a 112/mm echelle R5 grating (blaze angle ∼78°) derived from AFM images and presented in Figure 2.
Average AFM groove profile for 112/mm echelle R5 grating.
In Figure 3, typical power spectral density (PSD) 1D functions for Si(111) substrate and Si-etched grating samples (see also Section 4.5) are shown. An estimator of the PSD function is factually the periodogram for any periodic, or quasiperiodic, or random profile, or some combination. Assuming the ergodicity of a stochastic process connected with a random generation of asperities, the PSD function can be found as the Fourier transform of the autocorrelation function [26]. Although these functions are mathematically equivalent, one can analyze easy any corrugations of the profile shape simultaneously, i.e., random roughness and groove depth variations, using the 1D or 2D PSD function. Then, the RMS roughness is directly calculated through PSD as the root square of the integral over an effective range of allowed spatial frequencies. Thus, a wide lateral scanning range may require for an AFM instrument to take into account in the evaluated RMS roughness all spatial frequencies (or correlation lengths). It is especially important for low-frequency (long-period) gratings having additionally large correlation lengths of random roughnesses. A good discussion related to this problem and devoted of the use of AFM and similar instruments for measurements of PSD functions of smooth mirrors for imaging systems working in the X-ray–EUV range can be found in [27]. So, if one need to use images with a scanning area of about 100 × 100 μm2 then thermal drifts, hysteresis, and essential scanner nonlinearities should be accounted.
PSD function: (left) for Si(111) substrate; (right) for Si-etched grating with 500/mm and 4° blaze angle.
The abovementioned metrology techniques were applied to validate the efficiency of a chosen grating from an ordered grating set which is mounted in the Space Telescope Imaging Spectrograph (STIS) flown aboard the Hubble Space Telescope (HST) [28]. A − 1-order reflection grating with 67.556/mm blazed for 750 nm (1.44° nominal blaze angle) working in the range from 500 to 1000 nm at 8° incidence angle was chosen by us for a certification [29]. The pattern size was 1.5 inches by 1.5 inches, and the ruled area was 30 mm by 30 mm. A sister-replica to this grating, designated ‘Ng41M’ or by its manufacturers’ (Richardson Gratings of Newport Corp.) serial number, 1528, is in use on the HST/STIS as a red survey grating (blazed in the red visible and near infrared range) [10]. In its flight application, this grating had a reflective overcoating of 100 nm Al plus 25 nm MgF2. However, in these wavelengths the effect of the MgF2 layer is minor and simulations have showed no valuable difference, within a small part of the accuracy in the measured diffraction efficiency) with such coating or without it. This grating was chosen as an example because: (1) high quality efficiency data exists for it, including rigorous efficiency calculus using the realistic groove profile shape; and (2) groove profiles can be measurable by the mentioned above three methods for a direct comparison.
Portion of a trace of grating No. 1528 taken with the microinterferometer is shown in Figure 4. Both the depth and the profile shape are somewhat distorted in compare with the groove profiles in Figures 5,6 obtained by the other considered methods. However, as one can see, the overall groove depth and profile are evident. It is clear from the all figures that the profile roughness is higher on the upper sloped portion than on the steep edges. Difficulties in holding the sample steady during ‘flyback’ prevented reproducibility of measurements for that microinterferometric study.
Portion of a microinterferometer trace of ruled grating No. 1528 (after [
Portion of a stylus profilometer trace of ruled grating No. 1528 (after [
AFM image of two grooves of ruled grating No. 1528 (after [
The groove profile was characterized in details AFM measurements. The tips used here were 10 or 20 nm in radius. An example of the typical groove profile of No. 1528 grating is presented in Figure 6. Figure 6 shows an example of AFM data for a portion of the surface of the investigated ruled grating. The basic groove profile shape is clearly evident, along with portions of the profile that are rougher than others, and some roughness along the grooves is indicated as well. Figure 6 shows that the minimum of the grooves is clearly visible in the AFM image. If, as usually, one selects the bottom of the groove as the minimum value, there are two complete grooves in each scan.
The resulting average groove profile – with averaging performed both across the grooves and along as well – is shown in Figure 7. The solid line is based on the AFM data, and the dotted line is based on the stylus profilometer data: the groove tops are aligned for the purpose of this comparison; the relatively sharp groove bottom is not as well resolved by the stylus profilometer. The periodicity of the profile is shown by comparing a model of the averaged scan based on the average groove profile shape to the average scan. This is demonstrated by dotted lines plotted against the initial data in Figure 4 (microinterferometer) and Figure 5 (stylus profilometer). Once the average profile has been determined, the fitting routine finds the sawtooth and two-angle shape fits by the method of least squares. It is found in the considered case the blaze angle of 1.45° and the anti-blaze angle of 30° (Figure 8). The efficiency in general is fairly insensitive to the anti-blaze angle, and the fitting procedure does not fit it as consistently as it does a case of the blaze angle. Thus, the final average groove profile derived from AFM measurements for efficiency modeling purposes is shown in Figure 8 with 100 discretization points [29].
Average groove profile for grating No. 1528 based on AFM and stylus profilometer data.
Models of normalized to period groove profiles of No. 1528 grating.
The surface of gratings, namely, the master [30] and replica [31] gratings, as examples of ‘good’ products, were characterized using a Topometrix Explorer Scanning Probe microscope [32], a type of atomic-force microscopes. The gratings have 2400/mm, a concave radius of curvature of 2.0 m, and a patterned area of size 45 mm by 35 mm. The master grating was fabricated by Spectrogon UK Limited (formerly Tayside Optical Technology). The groove pattern was developed in fused silica by a holographic technique using ion-beam etching to produce an approximately triangular, blazed groove profile. Ion-beam etching results in a groove profile much closer to triangular than the ideal blazed (sawtooth) profile with the apex angle of ∼90°. The master grating was uncoated. The replica of the master grating was produced by Hyperfine, Inc. As a result of the replication process, the replica grating had an aluminum surface. A thin SiO2 coating was applied to the Al surface for the purpose of reducing the nanoroughness and protecting the surface from an additional oxidation.
The AFM images typically had 500 × 500 pixels and a scan range of 1 to 20 μm (pixel size 20 to 400 Å). The silicon probe had a pyramid shape. The base of the pyramid was 3 to 6 μm in size, the height of the pyramid was 10 to 20 μm, and the height to base ratio was approximately 3. The tip of the pyramid had a radius of curvature 100 to 200 Å. The AFM scans were performed using the non-contact resonating mode, where the change in the oscillation amplitude of the probe is sensed by the instrument. A surface topology reference sample was used to optimize the AFM scanning parameters, to calibrate the height scaling of the instrument, and to evaluate the performance of the AFM. This was essential for the accurate characterization of the gratings. The surface topology reference sample consisted of an array of approximately square holes fabricated on the silicon dioxide surface of a silicon die by VLSI Standards, Inc. [18]. The top surface of the die was coated with a thin layer of Pt. The hole array had a pitch of 3 μm and a hole depth of 180 Å.
One typical AFM image of the master grating measured using 16-Å pixels is shown in Figure 9, where the vertical scale has been scaled to reveal the texture of the groove surface. The RMS roughness, determined by integrating the PSD function over 2–40 μm−1 range, was 3.2 Å. Most of the roughness is concentrated at low spatial frequencies as is apparent from the analysis of the PSD function. The central portion of the AFM image shown in Figure 9 that covers one period of the grating pattern was selected for further investigations. An analysis program was written in the Interactive Display Language (IDL) for this purpose and it is discussed in detail in Ref. [31].
AFM image of 2400/mm holographic (master) grating (after [
The histogram of the pixel heights, for one period of the grating pattern, is shown in Figure 10. The maxima at 10 Å and 85 Å in Figure 10 are caused by rounding of the groove profile at the peaks and the troughs which is a result of the pattern fabrication process. An ideal groove profile, either sawtooth or triangular, would have a flat height histogram. The separation between the peaks in Figure 10 represents the average groove height, approximately 75 Å. The local blaze angle at each pixel was determined by using a least squares algorithm to fit a linear curve to the data points in a sliding window. The window was 25 pixels (400 Å) long in the direction perpendicular to the grooves and one pixel wide parallel to the grooves. The blaze angle is the arctangent of the fitted slope. The histogram of the blaze angles, for all rows of data in one period of the grating, is shown in Figure 11. The peak at 2.5 deg. represents the classical blaze angle, and the peak at 5.5 deg. represents the steep facet of the ideal sawtooth profile as modified by the ion-beam etching process. For a density of 2400/mm and for facet angles of 2.5 deg. and 5.5 deg., an ideal grating would have a groove height of 125 Å. However, the measured value of 75 Å (Figure 10) indicates a significant degree of rounding at the peaks and troughs of the groove profile. In addition, the measured ratio of the heights of the 2.5 deg. and 5.5 deg. features in the angle histogram (Figure 11) is approximately 3, greater than the ratio of approximately 2 that is expected based on the average facet angles.
Histogram of pixel heights from AFM image of 2400/mm holographic grating (after [
Histogram of blaze angles from AFM image of 2400/mm holographic grating (after [
The interpretation of the widths of the features in Figure 11 is difficult because they are complicated functions of the surface roughness, the width of the sliding window, and the probe geometry. This is addressed in the publications [30, 33, 34]. The feature at −2 deg. in Figure 11 results from the fits to the peaks and troughs of the groove profile, where the local slope is changing rapidly but has an average value near zero. Simulations show that the −2-deg offset of this feature from zero is a consequence of the unequal average blaze angles of the two facets. To provide a groove profile for the efficiency calculation, a representative AFM scan perpendicular to the grooves was chosen at random and scaled to the average groove height. The resulting groove profile is shown in Figure 12. This groove profile has 210 points.
Average groove profile from AFM image of 2400/mm grating: (1) 7.5-nm- deep master; (2) 9.0-nm-deep replica; (3) 6.6-nm-deep scaled replica (after [
AFM image of 2400/mm replica grating (after [
An AFM image of two grooves of the replica grating is shown in Figure 13. The scan was performed across the grooves over a range of 1 μm (20-Å pixels). The vertical scale in Figure 13 has been expanded to reveal the texture the texture of the grating surface. The PSD function derived from a 2 μm-size image spanning nearly 5 grooves is shown in Figure 14. The peak in the 2 to 3 μm−1 frequency range results from the 0.4167 μm groove period. The RMS roughness is 7 Å in the 4–40 μm−1 frequency range. By comparison, the RMS roughness of the master grating measured by the same type of AFM instrument was 3.2 Å, and this implies that the replica grating is significantly rougher than the master grating. This may result from the replication process, which for a concave grating is at least a two-step process. Furthermore, the master grating was fabricated on a fused silica surface by a holographic technique and was ion-beam polished, while the Al surface of the replica grating may contribute to its larger nanoroughness. The replica grating without the SiO2 coating was not characterized by AFM. Typical average groove profile derived from the AFM image (1 μm in size) of the replica grating is shown in Figure 15. The groove profile is approximately triangular in shape with rounded corners and troughs and with facet angles of 3.4 deg. and 6.2 deg. The average groove depths derived from the AFM images are in the range 85 to 95 Å. These values of the facet angles and the groove depth are larger than the corresponding values for the master grating, 2.5 deg. and 5.5 deg. facet angles and 75 Å average groove depth (Figure 12). Thus, the grooves of the replica grating are deeper and the facet angles are steeper compared to those of the master grating.
PSD function of 2400/mm replica grating from AFM image (after [
Average groove profile from AFM image of 2400/mm Mo4Ru6/Be grating (after [
Multilayer gratings were produced by application of Mo4Ru6/Be multilayer coatings [35, 36] to two replicas of the described holographic master grating. Beryllium-based multilayer coatings can provide substantial reflectance at wavelengths near 11 nm. Such a Mo4Ru6/Be multilayer coating with 50 bi-layers was applied to the grating substrate. The coating was deposited by the magnetron-sputtering technique. Here we describe one of the multilayer gratings.
The surface of the multilayer grating was also characterized using the same Topometrix Explorer scanning probe microscope. The grating topography was measured merely for the master, replica, and multilayer gratings. The scan was performed across the grooves over a range of 1 μm (2-nm pixels). Typical groove profiles derived from the AFM image (1 μm in size) of the master, replica, and multilayer gratings are shown in Figures 9,13,15, respectively. These groove profiles have from 120 to 210 points. The groove profiles are approximately triangular in shape with rounded corners and troughs and with facet angles of 2.5° & 5.5°, 3.4° & 6.2°, and 3.0° & 4.1°, respectively. The average groove depths derived from the AFM images are in the range 7 to 8 nm, 8.5 to 9.5 nm, and 8 to 9 nm, respectively. Within the AFM groove-to-groove variation of the facet angles, the border shapes did not significantly change after multilayer coating. As determined above the average surface of the multilayer grating was characterized using a scaled replica AFM profile (Figure 12).
The aforementioned AFM method was applied to simulate the efficiency of a 5870/mm G185M grating intended for operation at vacuum-ultraviolet (VUV) wavelengths below 200 nm [37]. This grating has the highest groove density and the shortest operational wavelength range of all Cosmic Origins Spectrograph (COS gratings planned for the last servicing mission to the HST) [38]. The G185M master grating was recorded holographically on 40 mm by 15 mm rectangular fused silica blank and the Pt coated at HORIBA Jobin Yvon Inc. [3]. An adhesive Cr coating, a working Al coating, and a protective (from oxidation) MgF2 coating were deposited on Au-coated replica gratings at NASA/GSFC.
Resonance efficiency anomalies associated with waveguide funneling modes inside the MgF2 dielectric layer degrading the G185M COS NUV grating performance were measured and qualitatively described at NASA/GSFC [39]. We used PCGrate-SX v. 6.1 [40] to model the efficiency of the G185M subwavelength grating with real boundary profiles (measured by AFM) and refractive indices (RIs) taken from different sources, including best fits of the calculated efficiency data to experimental ones [37].
The border profiles were characterized using AFM measurements. The profile of the G185M grating (replica C) intended for operation in the 170–200-nm range was AFM-measured before and after deposition of the Cr/Al/MgF2 coating (Figure 16). As seen from the figure, after the deposition the profile depth decreased by about a factor of 2.05 (46.4 nm against 22.6 nm), and the profile shape changed noticeably too, thus evidencing the case of nonconformal layering of the grating. For the reason that all G185M gratings were manufactured from the same master and by the same technology, one may suggest that all of them share before- and after-coating profiles. The average before-coating groove profile had 165 points and the average after-coating profile had 163 points.
G185M AFM-measured surfaces before (left) and after (right) coating Al plus MgF2 (after [
To determine which of the two AFM-measured boundary profiles, MgF2 (border profile 1 measured after Cr/Al/MgF2 coating) or (Cr)-Au (border profile 2 measured before Cr/Al/MgF2 coating), is closer to the MgF2-Al boundary, we started with modeling the non-polarized (NP) efficiency of a two-boundary grating. We assume a conformal MgF2 layer (the lower MgF2-Al boundary is identical in shape to the MgF2 one) with the 40.1 nm thickness. The calculated efficiencies (Figure 17, pink curve) differ from the measured values in time throughout the whole wavelength range, thus implying invalidity of a model with a conformal layer. All calculated efficiency data presented in Figure 17 were obtained with the RIs of Al and MgF2 taken from the handbook of Palik [41]. Although hereinafter the experimental efficiency data of two grating replicas (A and B) are displayed, we will focus primarily on discussing the grating A data (solid dark blue squares in Figure 17), because replica A is the grating on which more measurements were performed.
G185M –1st-order NP efficiency measured and calculated for different layer shapes.
The next step is to use two models with nonconformal layers, one with the lower boundary being the same as border 2 (Figure 17, yellow curve) and the other with the boundary scaled from border 2 at all points by a factor of 0.488 to the profile depth of border 1 (Figure 17, bright green curve). In both cases, a vertical displacement of one boundary with respect to the other (shift of the boundary reference levels) was 40.1 nm, as in the conformal model. As evident from Figure 17, the nonconformal model with unscaled lower boundary yields a noticeably superior qualitative agreement with experimental data. This suggests that the MgF2-Al boundary more closely resembles border profile 2 than border profile 1. The model takes into account the fact that the thickness difference of 23.8 nm between the lower and upper boundaries should be added to the conformal vertical displacement (40.1 nm) to obtain an adequate vertical displacement for the nonconformal MgF2 layer. In this way the period-averaged thickness of the nonconformal MgF2 layer is kept approximately equal to 40.1 nm within the boundary shape distortion.
To determine the effect of profile shape, we set up models with equal depths and vertical shifts. The first one has border 1 scaled to the depth of border 2 (making it grater by a factor of 2.05) and a vertical displacement between the zero boundary levels equal to 63.9 nm. As seen from Figure 17, the efficiency of this model (orange curve) is close to that of another model with unscaled border 2 and a vertical shift of 63.9 nm (sky blue curve), while it is inferior by 40% or more as far as matching the experimental efficiencies. The latter suggests that, to set up an exact model, one has not only to determine the depth of the MgF2-Al boundary but also to take into account the shape of its profile – see Figure 18.
Average G185M AFM border profiles before and after coating Cr/Al/MgF2.
Having determined the type of the MgF2-Al boundary profile, we have to refine it by scaling the shape in depth and then comparing the efficiencies obtained for each model with experimental data. Another fitting parameter is the vertical displacement of the boundaries. By automatic modeling of the efficiency over a small-meshed grid of these two parameters and wavelength, one can determine the average thickness of the MgF2 layer from the best fit between the calculated and the experimental efficiencies. Even slight changes (with a few nanometers) in profile depth and vertical displacement give a noticeable rise to the efficiency at fixed wavelengths, particularly in resonance regions. Figure 17 presents an efficiency curve (heavy dark blue) for the model with a lower-boundary scaling factor of 1.04 and a vertical displacement of 68.5 nm. The model with these parameters of the layer geometry provides the better least-squares fit (not worse than 20%) of calculated efficiency to experimental data, both in the medium and in the long-wavelength ranges. As to the short-wavelength part, no variations in the lower boundary profile chosen within our approach yield theoretical values of the efficiency close enough to the measured ones.
Five-boundary G185M grating model. Horizontal and vertical scales are different (after [
What only remains is to check whether the average-thickness parameters of the MgF2 nonconformal layer used in the final model provide a better fit between the calculated and experimental values of efficiency throughout the wavelength range with a new MgF2 RI library (Keski-Kuha–Goray) [37]. To do this, we scale the vertical displacement and boundary parameters for the final model. Graphical results of this three-parameter optimization (scale, shift, and wavelength) are displayed in Figure 19. The final geometrical model of border shapes and layer thicknesses is demonstrated in Figure 18. The optimization procedure using different thicknesses for all the layers accounted has been applied using the least-square method. An analysis of these results shows that the parameters of the final model do indeed provide the best agreement between the measured and calculated values of efficiency throughout the wavelength range. The relative deviation of experiment from theory for all wavelengths at which grating A was studied does not exceed 10% throughout the wavelength range. Figure 21 presents also an efficiency curve (sky blue curve) calculated by use of the approximate values of the MgF2 absorption index; all other parameters of the final model remain intact. A comparison of the curve efficiencies based on scaled (sky blue curve) and exactly calculated (heavy dark blue curve) values of absorption shows that the efficiency changes at the wavelengths where the RI imaginary values scale only slightly are indeed appreciable.
Grazing-incidence off-plane gratings have been suggested for the International X-ray Observatory (IXO) [42]. Compared with gratings in the classical in-plane mount, X-ray gratings in the off-plane mount have the potential for superior resolution and efficiency for the IXO mission [43]. The results of efficiency calculations for such a 5000/mm gold-blazed soft-X-ray grating in a conical (off-plane) mount using the average groove profile derived from AFM measurements was presented in [44].
An AFM study of the grooved area confirmed the larger than expected blaze angle. The AFM scans across the grooves near the center of the grating are shown in Figure 20(a), where each scan is displaced vertically by 1 nm for ease of viewing. The standard deviation of the data points from the average scan curve is 0.89 nm and is a measure of the roughness of the groove profile. The histogram of the angles between each pair of scan points is shown in Figure 20(b), where a Gaussian curve is fitted to the angle distribution. The top corners of the groove profiles are rounded, and this results in a rather broad distribution of angles with a centroid value of 13°.
(a) AFM scans across the grooves near the center of the grating; (b) histogram of the angles of pairs of points on the AFM scans giving a measure of the average blaze angle (after [
The average values of the blaze angles measured at seven points distributed on the grooved area ranged from 8.9° to 15°, and the RMS roughness values ranged from 0.66 to 0.92 nm. Thus, there was considerable variation of the grooves over the 5 cm patterned area. AFM data that were taken before the titanium and gold coating of the imprinted grating showed RMS roughness of approximately 0.2 nm and blaze angles of around 8°, which indicate that deposition of the metal films onto the polymer-based imprint resist led to the observed changes in groove profile [45]. High diffraction efficiencies of the Au-imprinted 5000/mm grating using the average groove profile with 123 nodes of the polygonal groove profile derived from the AFM measurements (Figure 21) are demonstrated in Refs [44, 46].
Normalized average groove profile of an Au-imprinted 5000/mm grating measured by AFM (after [
For medium- and high-frequency diffraction gratings, classical (in-plane) diffraction gives acceptable values of the efficiency of working orders only in the soft X-ray and EUV ranges [47]. However, grazing conical (off-plane) diffraction schemes have great advantages in efficiency when such gratings operate in short-wavelength regions of the X-ray spectrum (hard X-rays and tender X-rays), including in high orders and to obtain high dispersion and resolution. With such a mount, record efficiency, close to that of a respective mirror, can be obtained for sawtooth gratings with blaze angles of several degrees, which are much easier to manufacture. For a theoretical analysis of the diffraction efficiency of such gratings, the use of rigorous electromagnetic theories is required [48, 49].
The manufacturing process of a reflective Si-etched grating of a triangular groove profile (sawtooth or blaze) can be conventionally divided into four main steps: (1) obtaining a pattern of a protective mask for etching grooves (DWL or EBL, in our case); (2) anisotropic etching of grooves in a solution of potassium hydroxide (KOH); (3) etching to smooth the grating profile and polish the surface of the reflective (working) facets; (4) coating to increase reflectivity. In turn, each step consists of several operations that should be controlled using AFM and, if possible, SEM. Some AFM results (NTEGRA Aura microscope) obtained during the grating manufacturing process are considered further in detail.
To transfer the grating pattern directly to a silicon wafer (stage 2), it is etched in KOH with various concentrations at a temperature from room temperature to 50°C with vigorous stirring of the solution [20, 50, 51]. KOH etches the {111} planes more slowly than the rest of silicon, which leads to angular facets with a facet tilt determined by the orientation of the {111} planes relative to the surface plane (i.e., vicinal Si(111) plates). Therefore, KOH etches the pattern of the grooves in the Si while simultaneously setting the blaze angle of grating facets. The author uses here the results of our original Si-etched grating production technique, however, with references to the similar methods for mastering such gratings.
In our AFM studies, the following was performed: measurement of the surface roughness of the working facet on an area of 1 × 1 and 10 × 10 μm2 and measurement of the grating profile, etching depth and blaze angle of the working facet when scanning 10 × 10 μm2. The measurements were made in the tapping mode using scans of 512 × 512 pixels. We used TipsNano [4] silicon cantilevers with a typical radius of tips ∼6 nm. Examples of the AFM topography of Si-etched grating samples with a smoothed profile on the area of 1 × 1 and 10 × 10 μm2 are shown in Figure 22a,b for sample No. 5.
Surface topography obtained by AFM scanning of area of sample No. 5: a) 1 × 1 μm2; b) 10 × 10 μm2.
Figure 23a shows the topography profile of specimen No. 5 along line 1 (black curve) and the blaze angle of the working facet (blue curve). The angle is calculated as the arctan of the coordinate derivative and converted to degrees. Figure 23b shows the profile of the slope of the non-working facet along line 1 for sample No. 3/1.
Profile topography obtained by AFM scanning of area of 10 × 10 μm: a) surface and blaze angle of the working facet, sample No. 5; b) anti-blaze angle of the non-working facet, sample No. 3/1.
The results of AFM studies of the geometrical groove parameters of the samples of Si-etched gratings with a period of 2 μm are presented in Table 5. In the results presented in Table 5 the deconvolution algorithms have been used, although we evaluated mid-frequency gratings. The histogram (normalized density of probability) of blaze, anti-blaze, and apex angles of grooves of the grating with 500/mm and 4° blaze angle is demonstrated in Figure 24 (left). The three peaks on this curve are clearly associated with the corresponding working and non-working facet angles, as well as with the angle of the smoothed top of the groove profile. The average groove profile topography and the respective angles one can see in Figure 24 (right). The peak corresponding to the blaze angle is pronounced and indicates a high quality of the developed sawtooth grating. The average groove profile derived from AFM data for one grating was used then for rigorous calculus of 3D diffraction efficiencies of orders vs. incidence angle and wavelength in the soft-X-ray–EUV range and classical mount (Figure 25). The other AFM groove profile data for similar Si-etched gratings produced by DWL, or EBL, or holographic recording can be found in [52, 53] and references there in.
Sample No. | Groove depth/Si-nub height, nm | Working/non-working facet width, nm | Working facet RMS roughness, nm | Blaze angle, deg. | Anti-blaze angle, deg. |
---|---|---|---|---|---|
1 | 95/38 | 1512/340 | 0.462 | — | — |
2 | 97/44 | 1544/340 | 0.345 | — | — |
3/1 | 121 | 1710 | 0.278 | 4.05 | 20 |
3/2 | 111 | 1594 | 0.340 | — | — |
5 | 114 | 1580 | 0.337 | 4.13 | 20 |
Groove geometrical parameters of Si-etched grating samples according to AFM.
AFM groove parameters of 500/mm and 4° blaze grating: (left) histogram of groove angles including smoothed groove top (‘transition’); (right) average groove topography and respective angles.
3D diffraction efficiency in principal orders of 500/mm Au-coated Si-etched grating rigorously calculated using the realistic groove profile vs. incidence angle and wavelength.
In order to reduce the roughness of the grating surface, the authors of [54] use a nine-cycle RCA-1/HF etching procedure to remove any irregularities and roughness, i.e., perform both smoothing and polishing etching; and they report submicron roughness. To reduce the roughness of the working facet at the polishing stage, several etchants have been tested, including tetramethylammonium hydroxide (TMAH) and the isotropic silicon etchant HF: HNO3: H2O. Table 6 shows the AFM results of processing in different etchants of the surface of samples, punctured from the same grating immediately after anisotropic etching in KOH. As one can see from Table 6, the RMS roughness of working facets can be reduced to <0.3 nm for a few etching processes. The initial RMS roughness (before a polishing process) was ∼1.2 nm (compare with results in Table 5).
Sample No. | Working facet RMS roughness, nm | Polishing etchant/etching time, s |
---|---|---|
1 | 0.269 | Isotropic/30 s |
2 | 0.244 | Isotropic/20 s |
3 | 0.271 | Isotropic, using HF before/60 s |
4 | 0.315 | Isotropic/60 s |
5 | 0.246 | TMAH/2 min |
6 | 0.291 | TMAH/4 min |
7 | 0.336 | TMAH/6 min |
8 | 0.312 | TMAH/8 min |
76KDB Si(111)4°- substrate, ∅76.2 mm | 0.149 | No process |
Groove roughness of Si-grating samples according to AFM after polishing.
In the chapter, some earlier and recent results of the use of AFM & STM methods for groove metrology of various surface relief (ruled, holographic, lithographic, imprinted) diffraction gratings, mostly intended for short wavelengths, were described and discussed. Examples of a few comparisons with the other widely-used direct metrology techniques, such as SEM, stylus profilometry and microinterferometry, were also demonstrated and compared. In addition, the most critical problems connected with AFM methods for groove metrology of bulk, thin-film-coated and multilayer-coated gratings were discussed, such as: the tip deconvolution and its radius; groove shape and abrupt groove slopes; RMS nano-roughness and PSD functions.
The detailed AFM groove metrology results were presented by the author for several important grating samples: the Space Telescope Imaging Spectrograph grating flown aboard the HST and working in the Visible–NIR; the similar master, replica and multilayer soft-X-ray–EUV blaze gratings; the Cosmic Origins Spectrograph grating used in the last servicing mission to the HST and working in the VUV–NUV; imprinted off-plane blaze grating planned for the International X-ray Observatory and working in the soft X-rays; and recently developed Si-etched blaze diffraction gratings indented to work in the X-rays–EUV at high efficiency and a very low level of scattering light. These gratings were chosen because high quality efficiency data exists, in particular, for space gratings or/and X-ray gratings characterized by synchrotron radiation sources; and their groove profiles, together with random nanoroughness, were measured by AFM to be included in rigorous efficiency and scattered light intensity calculus.
The rigorous calculation accounts for the real profile of the grooves and their thickness as well as suitable refractive indices. It was not possible earlier to achieve such good agreements between measured and calculated efficiencies of high- and mid-frequency gratings working in the short spectral ranges due to the lack of realistic, i.e., measured using the AFM technique, groove profile shapes, as it has been demonstrated in the present study. Today, using an appropriate AFM instrument and the respective method one has a possibility to determine with a superfine (atomic-scale) spatial resolution grating-like structures, i.e., their groove profiles including abrupt slopes and random nanoroughness. Moreover, such non-destructive AFM analysis is the only suitable one to apply to current production and evaluation of such complicated and expensive devices like as most of X-ray diffraction gratings are.
I thank David A. Content, John F. Seely, Tamara N. Berezovskaya, Vladislav A. Sharov for the information provided.
This work was partially supported by the Russian Foundation for Basic Research (RFBR) (Grant No. 20-02-00326) and the Russian Science Foundation (RSF) (Grant No. 19-12-00270) in the theoretical part.
Creativity has been repeatedly identified as an important factor in the growth and development of organizations and society as a whole, yet is a complex and difficult subject to examine and understand [1]. Managers and leaders of modern organizations need to be able to facilitate creativity and innovation in uncertain environments. Taha et al. [2] said, “creativity is seen almost as a prerequisite to manage change and renewal, it is a key skill for leaders and organizations” (p. 1921). It has been said that creativity loves constraints [3] and so at a time when many organizations feel under increasing pressure and constraints seem aplenty, creativity offers one means of relieving some pressure and navigating an uncertain future. Yet creativity alone, generally defined as the generation of novel and useful ideas [4], is not sufficient. This is because novel and useful ideas by themselves do not create and capture value for a business, its stakeholders or society. In order to do this creative ideas need to be implemented in practice and in so doing become innovation [5]. In the words of Robinson [6], noted for his work on creativity in education, “Innovation is applied creativity” (p. 142). Creativity itself can be viewed as a process [7] and is clearly an essential part of innovation, but it is just one part of a broader process. In order to help managers and leaders get the most out of creativity, particularly in challenging times, we need to do more to help them understand both the process of creativity, but also how this is applied in practice and therefore how it relates to the broader process of innovation.
Most management education, including MBA programmes, still focus on discipline specific knowledge, largely developed through analysis that draws on theories that were created in the relatively stable environments of the last century. Today’s managers and leaders face more turbulent environments and so need to develop skills based on synthesis, creativity [8, 9], experimentation [10], and learning from intelligent failure [11, 12, 13]. Walsh and Powell [14] said, “solutions to the wicked problems offered in contemporary society require creativity and innovation—aspects that may be difficult to incorporate into the curriculum of a functionally oriented MBA programme” (p. 150). More creative approaches to modern management education are therefore required.
In order to educate managers and leaders to have a better understanding of creativity and innovation we need to first look upstream to what enables creativity. Creativity within organizations is notoriously stifled when restrictive organizational culture does not support, or even suppresses, novel thinking. Such cultures do not encourage questioning the status quo, itself defined as a key factor in encouraging innovation [15]. An inherent assumption that we know what we are doing and we have done this before is ultimately what can spell trouble for organizations when they encounter volatile, uncertain, complex or ambiguous situations (VUCA) [10]. The thinking and approaches that were successful in the past do not necessarily translate to success in the future in such conditions. One of the key attributes or mindsets that enable organizations to better navigate these conditions is curiosity [16]. Having an open and enquiring mind enables people to challenge long held assumptions that come under strain when conditions change. Simply asking why is sometimes seen as challenging authority but is more often a sign of healthy curiosity. Asking such questions enables people to discover what sits beyond the obvious and brings new understanding. Nurturing curiosity in organizations is necessary for enabling more creative and ultimately innovative solutions to wicked problems.
Similarly we also need to better understand and educate managers on how to apply creativity in order to drive innovation. In other words how to implement creative solutions in order to create and capture value. Successful innovation rates continue to remain low and frequently it is this implementation link that is the major barrier [17]. A mindset that helps enable implementation of creative solutions is clarity [16]. Having clarity of purpose and being able to communicate this succinctly makes it much simpler for others to understand the relevance of any innovation for them and therefore decide when to support the change. Again this becomes more relevant in VUCA environments because implementing change in new situations often involves drawing resources from beyond an organization’s current asset base. Being able to draw on open approaches to innovation and form mutually beneficial partnerships are often required [18]. As a result designing for implementation should be considered an essential element of the innovation process, rather than something that is carried out afterwards, as with many current innovation process models. Again this is something that is enabled by clarity.
This chapter will fist look into curiosity, creativity and clarity in further detail including their relevance for leaders and managers. It will then bring them together to describe an overall innovation process based on phases of discovering, understanding, creating, testing, resourcing and implementing (DUCTRI). An illustrative case will then describe how this process has been fruitfully deployed and refined in an MBA course over the past 5 years.
Curiosity has been described as being essential for human learning and achievement. As broadly defined by Kashdan et al. [19] curiosity is “the recognition, pursuit, and desire to explore novel, uncertain, complex, and ambiguous events” (p. 130). In order to help leaders and managers get curious about curiosity, recent research suggests there are five distinct types of curiosity [19]. Firstly there is the pleasurable experience of discovering something new and finding it intriguing. This is referred to as joyous exploration. This is where people have a love of learning and are generally fascinated about new things. While this aspect of curiosity is therefore associated with positive emotions, the next is more closely associated with negative emotions. This second type of curiosity is known as deprivation sensitivity. This is the sense of frustration caused by the awareness that there is something unknown that is desired to be known. Here people may be annoyed or anxious until they are able to resolve the information gap. The third aspect of curiosity is stress tolerance. This is the result of first noticing that an event is new in some way and worthy of attention, but then being able to cope with the stress associated with navigating the potential uncertainty. The fourth type of curiosity is the reverse of stress tolerance, where rather than just tolerate this stress people actively seek it. This is referred to as thrill seeking and is where the arousal from a novel situation is not something to be reduced but instead is amplified and what makes the situation desirable. The fifth type of curiosity is social curiosity. This is where we are seek information about other people and enables us to empathize with others. This comes about in two ways. Firstly through direct interactions with others we satisfy overt social curiosity to find out about others. And secondly, by indirect means we can have covert social curiosity which is most often used as a means of building self-esteem by comparison with others.
Research into curiosity in organizational settings has found that increased curiosity in an organization leads to greater levels of creativity and innovation [20, 21, 22, 23]. But it also supports better decision making, reduced conflicts and allows more open communication [24]. However, while the benefits are well established, organizational culture still often gets in the way. One study found that while 83% of executives say they encourage curiosity, only 52% of employees agreed [25]. Gino [24] suggests that two key reasons for this is that leaders think allowing employees to follow their curiosity will make the organization harder to manage. And secondly, particularly established managers tend to focus on efficiency improvements rather than exploratory efforts. Similarly Kashdan [26] suggests that to encourage greater curiosity in organizations managers need to encourage rather than supress questions internally, emphasize user observations rather than relying on customer surveys, and actively seek different perspectives when making decisions.
In helping leaders and managers think about creativity as a process we can look back to a very early model of creativity which was proposed by G. Wallas [27] which was based on his analysis of the thought processes of physicist Hermann von Helmholtz, mathematician Henri Poincaré, and several other artists, when generating their significant new works. He identified four common phases they each went through and described the psychology of each phase. The first step was described as preparation, where an individual focusses on the problem at hand and builds conscious knowledge based on what currently exists in the field, leveraging curiosity. Secondly he suggested there is an incubation phase during which the problem is internalized and the subconscious works on the issue for some time. This is often the most difficult to allow for in organizational settings where time pressure is ever present. But when seeking creative solutions to wicked problems this is a key reason not to rush the creative process. It takes some time for the subconscious to process and create novel connections. Then there is an intimation or feeling that the solution is near. The third phase is the illumination where the creative solution is forthcoming to the conscious mind. Finally then there is a verification phase where the solution is checked, tested and modified by the conscious. This model of the creative process has stood the test of time and while there has been some debate over the nature of some of the elements remains one of the standards in the psychology of creativity [28].
Another model of creative thinking that is helpful for managers and leaders is based on divergent and convergent thinking. In 1950 in his address as the President of the American Psychological Association, J.P. Guilford decried the lack of studies scientifically examining creativity stating that such neglect was appalling given the importance of creativity to societal wellbeing [29]. He went on to develop a model of intelligence in which he identified divergent production, or the ability to generate multiple options, as a key operation in creative ability [30]. This is then coupled with convergent thinking where we make decisions on a range of options. Basadur et al. [31] proposed a three stage model of the complete creative problem solving process in which each stage consists of a divergent-convergent thinking pair. The three stages are problem finding, problem solving and solution implementation. This inclusion of implementation in the process means by current definitions we would refer to this as innovation. Again in organizational settings there are challenges particularly in encouraging true divergent thinking. Management education has something to answer to here as most subjects and disciplines have been dominated by analysis and theories which help managers narrow their options and make decisions with the information they have, which is classic convergent thinking. Most managers and leaders then have spent much of their careers in convergent thinking modes at the expense of divergent thinking. Management education can learn from arts based education [14] and needs to encourage tools and techniques to promote divergent thinking.
An alternative creativity process that is also helpful for managers and leaders to understand is creative synthesis [32], which can also be referred to as integration or bisociation [33, 34]. Synthesis comes about when the intersection of diverse fields of knowledge come together to create a new amalgamation that is in itself novel and valuable. Particularly in organizations this has significant implications about the value of diversity and the nature of conflict in the creative process. Having diverse views, skills and experiences in the organization enables greater creativity because it is when these different planes of knowledge can be bought together is where more creative solutions can result. This is particularly true for wicked problems where if a group all has similar perspectives on a problem they will tend to approach the problem in the same way, and so all get stuck at the same point. By having diverse perspectives involved it often means problems can be approached from multiple different angles providing different ways around obstructions and more creative solutions are uncovered as a result. But managing diverse views can mean dealing with conflict. Creative conflict should be seen as a healthy part of the process and organizations that manage this well ensure that ideas are regularly challenged but avoid it becoming personal [35]. When seeking synthesis, opposing views should be bought together to create unique shared understanding. Again organizational leaders and managers have often been trained out of using synthesis as opposed to analysis. In his influential critique of the formulaic approach to strategic planning and analysis in large organizations H. Mintzberg [36] stated that, “Strategic thinking, in contrast, is about synthesis. It involves intuition and creativity” (p. 108).
In terms of organizational creativity many researchers have been focussed on the apparent tensions between aspects of organizations that may hinder employee creativity, such as structure, direction and predictability, with those that may enhance it such as challenge, autonomy and experimentation [4, 37]. However this notion of structure and creativity being polar opposites is itself being challenged by viewing organizational processes and practices themselves as being dynamic factors that are in a constant state of change over time. Organizational structures and routines that both constrain and enable action are in themselves being created, enhanced or undermined by people’s actions within the organization [7].
Design thinking is a term that has been broadly used to describe a designerly approach to creativity and innovation and is seen as describing a user centric innovation process with phases of inspiration, ideation and implementation [38]. Design thinking has become increasingly popular in industry as a means of addressing complex problems and draws explicitly on many creativity processes. In particular having conscious phases of divergent and convergent thinking are often depicted as a part of the process, including the UK Design council’s well used double diamond [39]. However, contrasting the double diamond to the three stage model of a “complete creative problem solving process”, discussed earlier [31] highlights that the double diamond and many design thinking process do not pay particular attention to the implementation phase. This is a surprising omission due to the fact that implementation is often one of the most challenging parts of the innovation process [17]. Arguably then many design thinking processes could be described as organizational creativity processes rather than full innovation.
Clarity can be thought of in several ways and each have relevance to implementing creative solutions in organizations. Firstly there is clarity of purpose. Dobni et al. [40] state, “no company can escape the fact that present management principles are becoming a less reliable guide to the future. Clarity is essential” (p. 20). An organization or even individual needs to be able to describe exactly why they do what they do. Increasingly organizations are being called on to define their purpose and articulate their strategy and impact of their operations. When it comes to implementing creative solutions then, clear alignment with purpose is a significant factor in determining the successful adoption of any new change. This is true for both internal and external stakeholders when trying to build support and gather resources, particularly social capital. If others cannot clearly see how a new initiative supports the stated purpose then they are naturally less likely to engage or support it. If however it has clear alignment with the purpose and this is well communicated then gathering support is much more likely. This also assumes that an organization or individual in question has a clearly defined purpose. If not then often a new initiative is a way of exploring and better defining what this should be. A key tool to help in this endeavor is the use of double loop learning [41]. So often both organizations, and the individuals within them, are tied up in execution of their plans, correcting for any errors or deviance from the plan, they forget to step back and check if this is even the right plan to be executing. Discipline specific knowledge helps us become more efficient in doing things right, building skills in solving specific problems faster and improving processes to eliminate waste. But sometimes this focus on doing things right means that we forget to take time to step back and check if we are doing the right things. This double loop learning means having clarity about why we are doing these things and if necessary challenging the inherent assumptions in place.
Another aspect of clarity is communicating the vision for where the solution will take us which is needed to help overcome resistance to change. As described by C. Heath and D. Heath [42], “Clarity dissolves resistance” (p. 72). In order to affect change there needs to be clear direction that people’s rational thinking can see and support. They suggest this comes through showing positive examples of change, as opposed to our natural tendency to focusing on correcting the downside. Alongside this is the need to paint a clear picture of the future state so people can see where this change is leading. There also needs to be a clearly communicated expectation of what specific behavior is required. They refer to this as scripting the critical moves. Resistance to change is often a result of either decision paralysis or decision exhaustion. This may be counterintuitive when generally we think of providing as much choice as possible is beneficial but research has proven that too much choice can lead to people actually opting out of any decision [43]. Alongside these means of appealing to the rational aspects of change they also highlight the need to motivate the emotional drivers for change along with shaping the environment to nudge behavior in the intended direction [44].
In response to the need for tools, theories and methods to help people with creative problem solving in uncertain environments design thinking has been widely adopted in industry, and has slowly made its way into many management higher education programmes. Yet many of the existing models that are in use, both in industry and existing management education, do not incorporate the complete creative problem solving process as defined by Basadur [31] and described earlier. The three phases, each with divergent-convergent thinking, should include problem finding, problem solving and solution implementation. While most design process models do a very good job on the first two areas they generally do not include much if any detail on the final phase. In fact some explicitly stop after the first two phases, for example the UK design council’s double diamond. Given implementation is where so many initiatives fail [17] this is a significant shortcoming. These three phases have some broad alignment with desirability, feasibility and viability that are proposed as needing to each be considered in designing solutions [45]. As with implementation, the viability aspects are often not a significant focus of most design thinking models.
This became apparent when the author was asked to take over a new executive MBA design thinking course which had run for a single semester in 2015. The author ran the course for the first time in 2016 using one of the typical design thinking models of the day. The student feedback from these 2 years was broadly positive about the concepts, tools and methods as used in the course but there was a common question being asked that, yes it’s good in theory, but how do we implement this in our organization? This led to reexamining the tools and models that were fundamental to the course and alongside ongoing research into the mindsets innovators in industry use [16], a large gap was identified with respect to lack of focus on implementation. The author was also not happy with some of the wordy descriptions for the phases that some models employed which needed simplifying. He also felt that the models needed to highlight the mindsets that support each phase in the process, namely curiosity, creativity and clarity as described above. As a result the DUCTRI (duck-tree) model was created, shown below in Figure 1, in 2017 and was used for the MBA class that year. It has been used it as the basis of the course each year with minor refinements in the 5 years since. It has also been used for several consulting projects with industry, and has subsequently been adopted as the core framework for an undergraduate innovation course.
The DUCTRI model of creative problem solving.
Student feedback is now overwhelmingly positive about this course, the DUCTRI process, and the direct applicability to industry situations. The course was originally an elective but has now become a compulsory course in the MBA structure. Example comments from anonymous student surveys conducted after the 2021 course completed:
Given that a design based approach to creative problem solving should have a bias for action [45], the DUCTRI model uses gerunds, the noun forms of verbs, to describe the actions that should be being undertaken in each main phase. It also overlays the primary mindsets that should be nurtured in each phase to enable these actions, namely curiosity, creativity and clarity. These also align with the focus in each phase in terms of desirability, feasibility and viability. The model retains the pairs of divergent and convergent modes of thinking as the process unfolds which creates more options and then makes decisions on these to narrow the focus in each cycle. Repeat is mentioned at the end because while a clean linear process can be explained on paper in execution it is rarely so clear cut and loop backs are to be expected and some phases will inevitably need to be repeated, if not the whole process.
The first phase of the process is where we are discovering as much as we can about the problem, who is affected, their world, the background and context of the situation. In this phase curiosity should be encouraged and tools such as empathetic interviews, ethnography, talking with extreme users, analogous empathy, focus groups, card sorts and drawing with users can all be valuable in discovering as much as possible about what is happening. This relies on divergent thinking to explore widely.
The second phase is then understanding what is really going on, making sense of the volume of data from the discovering phase and generating insights into the issues at hand. Again curiosity is the driver and tools such as affinity mapping, empathy maps, developing persona, journey maps, reframing, two-by-two matrices, and defining jobs to be done, can all be useful to help generate insights. This phase engages convergent thinking to ultimately come down to a small number of point of view statements and guiding principles which should be able to capture the new understanding of the core problem.
The third phase is creating where creativity should be unleashed and divergent thinking is employed to generate a large number of options for how the problem could be tackled. How might we statements provide the springboard for tools such as nominal group technique brainstorming, lateral thinking, question storming, five whys, walking for creativity, mashups or working in reverse.
The fourth phase is testing where a sub-set of the range of potential solutions are actively tested to generate further insight and converge on the most feasible solutions. This phase still utilizes creativity where prototyping is used with experimental techniques such as A/B tests, storyboards, wizard of Oz prototypes, role plays and dark horse models may be used.
The fifth phase is resourcing which is a divergent phase because by engaging with open innovation [18] the range of options available for gathering resources, including economic, social, cultural and symbolic capital are significant. Such approaches include crowd sourcing, crowd funding, strategic partnerships, prizes or competitions, and engaging with incubators. Tools such as business model canvas [46] and pre-mortems [47] should be used to promote clarity and define required resources including fit with existing business models and overall viability.
Finally implementing is a convergent phase where change management considerations should be designed into the solution to enable successful implementation to take place. Again this requires clarity. Tools and models such as the switch framework [42] with the components required to direct the analytic rider, motivate the emotional elephant and shape the path, including nudge theory [44] and behavioral insights [48], help with this phase.
As with any theory, tool or model it is important to acknowledge its limitations. The DUCTRI process is well suited to complex or chaotic problems where cause and effect relationships are unknown, difficult to untangle or have complex interrelationships. The process does take time and effort particularly in the early stages to try and get to the deeper understanding of these causes. So in situations where the cause and effect relationships are well understood then this may be an inefficient process to solve those types of problems.
In order to encourage curiosity and diversity in class projects the author employs a method called the project marketplace [49] where all students pitch a problem they are passionate about to the whole class prior to forming project teams. The class then all vote on the problems they are most interested in helping solve and groups form around the most interesting problems. During this process in the 2021 MBA class, one student who works in diabetes health pitched a specific problem from her experience that many people when diagnosed with diabetes suffer from avoidable complications due to treatment inertia. Simply put, they delay treatment of the condition and often suffer irreversible damage to their health because of this delay. A number of her classmates were also curious about this problem and so a group of four students with diverse backgrounds including education, marketing, emergency services and health, formed around the problem.
They started by discovering as much as they could about this issue. They engaged in empathetic interviews and spoke with healthcare professionals, diabetics, members of the public and a close contact who had a chronic health condition but not diabetes. They delved into exiting research and data on diagnosis and treatment rates. In total they carried out 51 interviews and gathered 297 individual statements, problems, opportunities or pieces of data.
From their broad and deep discovering work they started to build a greater understanding of the core issues behind the problem. In the understanding phase they created a persona, “Alex”, to help define the characteristics of the human at the center of their problem. They used affinity mapping to collate the swathes of data into 20 overarching themes covering issues such as “Prognosis”, “Why me?” and “Motivation.” They created 12 guiding principles that any solution must try and cover, such as “Reduce stigma”, “Demonstrate the seriousness”, “Link in my support network.” They also developed a new point of view statement based on their new understanding of the core issue, “Alex needs a way to understand what is happening now, and is likely to happen in the future because there is damage being done to their body that could minimized.”
To engage their creativity and start creating lots of potential solutions, the group generated an opportunity statement, “How might we enable Alex to live a full and healthy life with Type 2 Diabetes?” They use nominal group technique to generate ideas individually and then collectively. They also employed question storming and created 39 potential solutions. These ranged from the weird and wonderful; such as a “naughty food taser” and “diabetes dog”; to technology based solutions, such as “a support app” and “diabetes smartwatch”; to various support services, such as “call center” and “personal assistant.”
To narrow down their range of possible solutions and begin testing some of the ideas the group used a two-by-two selection matrix to organize the ideas according to likely effort and likely impact. They also compared the most promising ideas against their earlier guiding principles to ensure there was alignment. From this process they selected two ideas to prototype and test with their user groups. The first being a new “Live well with diabetes” app. This would be a place for the user to record, measure and share their treatment related information and habits. The group created a sketched wireframe using a freely available template to show the possible user screens with the options available to a user accessing it on a smartphone and how they might flow from one aspect of the app to another. They tested this by putting it in front of a small range of some of the participants from the discovering phase research. They conducted one iteration to add in some ideas from the first round of testing and engaged in a second round of tests. In doing so they received further feedback and ultimately came to the valuable insight that:
The second idea the group decided to prototype and test was coined “Glucose Guardians.” This would be a free to the user, telecare health coach service where the user is checked on regularly by a trained guardian. A guardian could help with goal setting, motivational and emotional support, help remove any other barriers for example connecting with transport or financial support services. They would not be a replacement for the primary medical care which would remain with existing healthcare professionals. The group created an infographic as a mock pamphlet for the service and tested the concept with a range of participants from the earlier discovering phase. This met with very positive reactions and highlighted issues such as having good cultural connections between guardians and users which would be invaluable. The team leader who had initially proposed the problem was able to take the prototype to a national health conference and gain additional feedback from a broad base of healthcare professionals, who were also very supportive of the concept. Based on this testing the group progressed with the “Glucose Guardians” concept.
In the resourcing phase the group needed to identify with clarity how the service could be funded and also how it might leverage existing social capital of other organizations already active in diabetes health. They uncovered complications related to the different funding models of different regional health authorities which meant that in some regions they may be able to access funding for initiatives such as this, but this was not possible everywhere. They identified how the role of the guardian would be trained and staffed. They also identified how referrals from healthcare professionals would work. They build two business models with different resourcing options. One where as a stand-alone service they would need to attract some funding, and proposed a small pilot requiring only three guardians to be funded. A second business model was also created where the service would fit within the existing national support organization for diabetes and be largely staffed by volunteers from that organization’s network.
In the implementing phase the group needed to consider how the service would be adopted in practice. They employed the switch framework [42] to identify aspects of clearly communicating and directing the rational mind of the users by having very clear and simple outlines and infographics showing clearly what the service would and would not do. They also tried to motivate the emotions of the users by having relatable coaches that would reduce the barriers to engagement. They also tried to shape the environment to nudge the behavior in the positive direction by making sure the service was connected with existing health professionals so they would be able to refer users directly to the service.
The group were passionate about the problem and so devoted significant effort into this project and were able to achieve a great amount in the relatively short 12 weeks of the course, only a portion of which was available for the project. Subsequent to the course finishing the leader of the group reports that the concept has progressed further into implementing but has evolved into a different format, integrating with another new health coaching service that was created mainly for other long term conditions.
In helping managers and leaders understand and manage the process of innovation in VUCA conditions we need to empower them and their organizations with the tools, techniques and mind-sets needed to solve the complex problems they face. They first need to have an appreciation and desire to engage in problems with curiosity. They then need to be able to unleash creativity in themselves and those around them. Finally, they need to be able to find and communicate with clarity on the solutions that they implement. The DUCTRI model described here was designed to give structure to a process of innovation that has proven to be successful in not only generating creative solutions that deal with the core problems in the world, but also designing them to be implemented and therefore being able to have an impact. It has proven to be a successful means of helping leaders and managers from a wide range of disciplines bring effective innovation to their organizations. The author is hopeful this encourages other management educators to adopt and adapt this process as necessary.
My thanks goes to all the students who have taken an active part in helping refine the DUCTRI model over the past 5 years in the various courses it has been a part of. In particular thanks go to team “The Keytones” for giving permission to use their project as an illustrative case of how this can be applied in practice.
None.
You have been successfully unsubscribed.
",metaTitle:"Unsubscribe Successful",metaDescription:"You have been successfully unsubscribed.",metaKeywords:null,canonicalURL:"/page/unsubscribe-successful",contentRaw:'[{"type":"htmlEditorComponent","content":""}]'},components:[{type:"htmlEditorComponent",content:""}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"58592",title:"Dr.",name:"Arun",middleName:null,surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58592/images/1664_n.jpg",biography:"Arun K. Shanker is serving as a Principal Scientist (Plant Physiology) with the Indian Council of Agricultural Research (ICAR) at the Central Research Institute for Dryland Agriculture in Hyderabad, India. He is working with the ICAR as a full time researcher since 1993 and has since earned his Advanced degree in Crop Physiology while in service. He has been awarded the prestigious Member of the Royal Society of Chemistry (MRSC), by the Royal Society of Chemistry, London in 2015. Presently he is working on systems biology approach to study the mechanism of abiotic stress tolerance in crops. His main focus now is to unravel the mechanism of drought and heat stress response in plants to tackle climate change related threats in agriculture.",institutionString:null,institution:{name:"Indian Council of Agricultural Research",country:{name:"India"}}},{id:"4782",title:"Prof.",name:"Bishnu",middleName:"P",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4782/images/system/4782.jpg",biography:"Bishnu P. Pal is Professor of Physics at Mahindra École\nCentrale Hyderabad India since July 1st 2014 after retirement\nas Professor of Physics from IIT Delhi; Ph.D.’1975 from IIT\nDelhi; Fellow of OSA and SPIE; Senior Member IEEE;\nHonorary Foreign Member Royal Norwegian Society for\nScience and Arts; Member OSA Board of Directors (2009-\n11); Distinguished Lecturer IEEE Photonics Society (2005-\n07).",institutionString:null,institution:{name:"Indian Institute of Technology Delhi",country:{name:"India"}}},{id:"69653",title:"Dr.",name:"Chusak",middleName:null,surname:"Limsakul",slug:"chusak-limsakul",fullName:"Chusak Limsakul",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Prince of Songkla University",country:{name:"Thailand"}}},{id:"23804",title:"Dr.",name:"Hamzah",middleName:null,surname:"Arof",slug:"hamzah-arof",fullName:"Hamzah Arof",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/23804/images/5492_n.jpg",biography:"Hamzah Arof received his BSc from Michigan State University, and PhD from the University of Wales. Both degrees were in electrical engineering. His current research interests include signal processing and photonics. Currently he is affiliated with the Department of Electrical Engineering, University of Malaya, Malaysia.",institutionString:null,institution:{name:"University of Malaya",country:{name:"Malaysia"}}},{id:"41989",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"East China University of Science and Technology",country:{name:"China"}}},{id:"33351",title:null,name:"Hendra",middleName:null,surname:"Hermawan",slug:"hendra-hermawan",fullName:"Hendra Hermawan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/33351/images/168_n.jpg",biography:null,institutionString:null,institution:{name:"Institut Teknologi Bandung",country:{name:"Indonesia"}}},{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRglaQAC/Profile_Picture_1626411846553",biography:"Hiroshi Ishiguro is an award-winning roboticist and innovator. As the Director of the Intelligent Robotics Laboratory, which is part of the Department of Systems Innovation in the Graduate School of Engineering Science at Osaka University, Japan, Ishiguro concentrates on making robots that are similar as possible to humans to understand the human species. A notable project of his laboratory is the Actroid, a humanoid robot with a lifelike appearance and observable behavior such as facial movements. (Sources: http://www.geminoid.jp/en/index.html, https://en.wikipedia.org/wiki/Hiroshi_Ishiguro)",institutionString:null,institution:{name:"Osaka University",country:{name:"Japan"}}},{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Chiayi University",country:{name:"Taiwan"}}},{id:"61581",title:"Dr.",name:"Joy Rizki Pangestu",middleName:null,surname:"Djuansjah",slug:"joy-rizki-pangestu-djuansjah",fullName:"Joy Rizki Pangestu Djuansjah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61581/images/237_n.jpg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"94249",title:"Prof.",name:"Junji",middleName:null,surname:"Kido",slug:"junji-kido",fullName:"Junji Kido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yamagata University",country:{name:"Japan"}}},{id:"12009",title:"Dr.",name:"Ki Young",middleName:null,surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12009/images/system/12009.jpg",biography:"Http://m80.knu.ac.kr/~doors",institutionString:null,institution:{name:"National Cheng Kung University",country:{name:"Taiwan"}}},{id:"132595",title:"Prof.",name:"Long",middleName:null,surname:"Wang",slug:"long-wang",fullName:"Long Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Peking University",country:{name:"China"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6583},{group:"region",caption:"Middle and South America",value:2,count:5888},{group:"region",caption:"Africa",value:3,count:2381},{group:"region",caption:"Asia",value:4,count:12511},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17529}],offset:12,limit:12,total:12514},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"56121318"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:42},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:21},{group:"topic",caption:"Computer and Information Science",value:9,count:20},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:60},{group:"topic",caption:"Environmental Sciences",value:12,count:8},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:27},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:123},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:11},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:0},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4386},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,isOpenForSubmission:!1,hash:"49cce3f548da548c718c865feb343509",slug:"rabies-virus-at-the-beginning-of-21st-century",bookSignature:"Sergey Tkachev",coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10861",title:"Furan Derivatives",subtitle:"Recent Advances and Applications",isOpenForSubmission:!1,hash:"fdfc39cecd82f91b0effac994f75c877",slug:"furan-derivatives-recent-advances-and-applications",bookSignature:"Anish Khan, Mohammed Muzibur Rahman, M. Ramesh, Salman Ahmad Khan and Abdullah Mohammed Ahmed Asiri",coverURL:"https://cdn.intechopen.com/books/images_new/10861.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"293058",title:"Dr.",name:"Anish",middleName:null,surname:"Khan",slug:"anish-khan",fullName:"Anish Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10870",title:"Ultrasound Imaging",subtitle:"Current Topics",isOpenForSubmission:!1,hash:"2f0bc3733ab226d67fa73759ef0e12ad",slug:"ultrasound-imaging-current-topics",bookSignature:"Felix Okechukwu Erondu",coverURL:"https://cdn.intechopen.com/books/images_new/10870.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"68312",title:"Prof.",name:"Felix",middleName:null,surname:"Okechukwu Erondu",slug:"felix-okechukwu-erondu",fullName:"Felix Okechukwu Erondu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",isOpenForSubmission:!1,hash:"86a6d33cf601587e591064ce92effc02",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10400",title:"The Application of Ant Colony Optimization",subtitle:null,isOpenForSubmission:!1,hash:"f4fdfd07ee1ab99fb7c740d6d0c144c6",slug:"the-application-of-ant-colony-optimization",bookSignature:"Ali Soofastaei",coverURL:"https://cdn.intechopen.com/books/images_new/10400.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"257455",title:"Dr.",name:"Ali",middleName:null,surname:"Soofastaei",slug:"ali-soofastaei",fullName:"Ali Soofastaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10915",title:"Leadership",subtitle:"New Insights",isOpenForSubmission:!1,hash:"0d72e79892f2a020cee66a52d09de5a4",slug:"leadership-new-insights",bookSignature:"Mário Franco",coverURL:"https://cdn.intechopen.com/books/images_new/10915.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"105529",title:"Dr.",name:"Mário",middleName:null,surname:"Franco",slug:"mario-franco",fullName:"Mário Franco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10683",title:"Technological Innovations and Advances in Hydropower Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ce7ad8768bd2cad155470fe1fd883f4",slug:"technological-innovations-and-advances-in-hydropower-engineering",bookSignature:"Yizi Shang, Ling Shang and Xiaofei Li",coverURL:"https://cdn.intechopen.com/books/images_new/10683.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7102",title:"Pneumonia",subtitle:null,isOpenForSubmission:!1,hash:"9fd70142814192dcec58a176749f1b60",slug:"pneumonia",bookSignature:"Nima Rezaei",coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"353",title:"Agrotechnology",slug:"agrotechnology",parent:{id:"41",title:"Plant Biology",slug:"agricultural-and-biological-sciences-plant-biology"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:23,numberOfWosCitations:46,numberOfCrossrefCitations:26,numberOfDimensionsCitations:65,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"353",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5841",title:"Chlorophyll",subtitle:null,isOpenForSubmission:!1,hash:"7acaad1163902b52fa8ed4bb78902645",slug:"chlorophyll",bookSignature:"Eduardo Jacob-Lopes, Leila Queiroz Zepka and Maria Isabel Queiroz",coverURL:"https://cdn.intechopen.com/books/images_new/5841.jpg",editedByType:"Edited by",editors:[{id:"171980",title:"Dr.",name:"Eduardo",middleName:null,surname:"Jacob-Lopes",slug:"eduardo-jacob-lopes",fullName:"Eduardo Jacob-Lopes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"54493",doi:"10.5772/67887",title:"How Does Chloroplast Protect Chlorophyll Against Excessive Light?",slug:"how-does-chloroplast-protect-chlorophyll-against-excessive-light-",totalDownloads:2134,totalCrossrefCites:7,totalDimensionsCites:19,abstract:"Chlorophylls (Chls) are the most abundant plant pigments on Earth. Chls are located in the membrane of thylakoids where they constitute the two photosystems (PSII and PSI) of terrestrial plants, responsible for both light absorption and transduction of chemical energy via photosynthesis. The high efficiency of photosystems in terms of light absorption correlates with the need to protect themselves against absorption of excess light, a process that leads to the so-called photoinhibition. Dynamic photoinhibition consists of the downregulation of photosynthesis quantum yield and a series of photo-protective mechanisms aimed to reduce the amount of light reaching the chloroplast and/or to counteract the production of reactive oxygen species (ROS) that can be grouped in: (i) the first line of chloroplast defence: non-photochemical quenching (NPQ), that is, the dissipation of excess excitation light as heat, a process that takes place in the external antennae of PSII and in which other pigments, that is carotenoids, are directly involved; (ii) the second line of defence: enzymatic antioxidant and antioxidant molecules that scavenge the generated ROS; alternative electron transport (cyclic electron transport, pseudo-cyclic electron flow, chlororespiration and water-water cycle) can efficiently prevent the over-reduction of electron flow, and reduced ferredoxin (Fd) plays a key role in this context.",book:{id:"5841",slug:"chlorophyll",title:"Chlorophyll",fullTitle:"Chlorophyll"},signatures:"Lucia Guidi, Massimiliano Tattini and Marco Landi",authors:[{id:"198635",title:"Prof.",name:"Lucia",middleName:null,surname:"Guidi",slug:"lucia-guidi",fullName:"Lucia Guidi"},{id:"199774",title:"Dr.",name:"Massimiliano",middleName:null,surname:"Tattini",slug:"massimiliano-tattini",fullName:"Massimiliano Tattini"},{id:"199775",title:"Dr.",name:"Marco",middleName:null,surname:"Landi",slug:"marco-landi",fullName:"Marco Landi"}]},{id:"54601",doi:"10.5772/67955",title:"Chlorophyll as Photosensitizer in Dye-Sensitized Solar Cells",slug:"chlorophyll-as-photosensitizer-in-dye-sensitized-solar-cells",totalDownloads:2911,totalCrossrefCites:8,totalDimensionsCites:14,abstract:"Chlorophyll, being the most abundant pigment that commonly found in plants, bacteria, bryophytes and algae, plays a vital role in photosynthesis. Chlorophylls are natural pigments and therefore safe, environmental friendly, easily available and cheap. Chlorophyll has been experimented to function as a photosensitizer in dye-sensitized solar cells (DSSCs) as DSSCs mimic the photosynthesis process in green plants. DSSC was first developed by Gratzel in 1991 and since then has gained tremendous attention as its fabrication is cheap and easy. A DSSC basically comprises a semiconductor that has been soaked in sensitizing dye (chlorophyll), a counter electrode, and an electrolyte containing a redox mediator. The dye absorbs light, which is transformed into electricity. Chlorophyll can be extracted from the leaves of pomegranate, bougainvillea, papaya, Pandanus amaryllifolius, spinach, green grasses, seaweeds, algae and bryophytes. Chlorophyll from these sources has been studied as possible photosensitizers for DSSCs. Most researches done in chlorophyll DSSC use the extracted natural pigments. The type of solvent and pH of the dye solution will also affect the stability of chlorophyll and subsequently the performance of the DSSCs. This chapter will present an inexhaustive overview on DSSCs using chlorophyll as dye.",book:{id:"5841",slug:"chlorophyll",title:"Chlorophyll",fullTitle:"Chlorophyll"},signatures:"Abdul Kariem Arof and Teo Li Ping",authors:[{id:"186084",title:"Dr.",name:"Abdul Kariem",middleName:null,surname:"Arof",slug:"abdul-kariem-arof",fullName:"Abdul Kariem Arof"},{id:"199862",title:"Dr.",name:"L.P.",middleName:null,surname:"Teo",slug:"l.p.-teo",fullName:"L.P. Teo"}]},{id:"54681",doi:"10.5772/67991",title:"Effects on the Photosynthetic Activity of Algae after Exposure to Various Organic and Inorganic Pollutants: Review",slug:"effects-on-the-photosynthetic-activity-of-algae-after-exposure-to-various-organic-and-inorganic-poll",totalDownloads:2644,totalCrossrefCites:6,totalDimensionsCites:13,abstract:"Algal studies remain necessary for risk assessment and their utility in ecotoxicology is the evaluation of lethal and sub-lethal toxic effects of potential toxicants on inhabitants of several ecosystems. Effects on algal photosynthetic apparatus caused by various chemical species have been extensively studied. The present chapter summarizes the published data concerning the toxicity of various organic and inorganic pollutants such as oils, pesticides, antifoulants and metals on photosynthesis of aquatic primary producers. Biochemical mode of action resulting in the disruption of photosynthesis depends on the chemical’s nature and the characteristics of the exposed microorganism. Observed differences in response and sensitivity by different species to the same toxicant were attributed to several algal characteristics including photosynthetic capacity, pigment type, cellular lipid and protein content, and cell size. Single species bioassays either for one chemical alone or in mixture have been well reported and tolerance of both marine and freshwater water-column phytoplaktonic species has been examined. Adequate published information on multispecies tests (communities) in laboratory and field studies exists. However, risk assessment on photosynthesis of microbenthic periphyton is inadequate, though it is essential especially for hydrophobic organic molecules. Further studies are required to evaluate the adverse effects of metabolites on aquatic microalgae.",book:{id:"5841",slug:"chlorophyll",title:"Chlorophyll",fullTitle:"Chlorophyll"},signatures:"Andreas S. Petsas and Maria C. Vagi",authors:[{id:"200196",title:"Dr.",name:"Andreas",middleName:null,surname:"Petsas",slug:"andreas-petsas",fullName:"Andreas Petsas"},{id:"200198",title:"Dr.",name:"Maria",middleName:null,surname:"Vagi",slug:"maria-vagi",fullName:"Maria Vagi"}]},{id:"54510",doi:"10.5772/67913",title:"Light‐Emitting Diodes: Progress in Plant Micropropagation",slug:"light-emitting-diodes-progress-in-plant-micropropagation",totalDownloads:2140,totalCrossrefCites:2,totalDimensionsCites:12,abstract:"In commercial micropropagation laboratories, the light source is one of the most important factors controlling plant morphogenesis and metabolism of plant cells and tissue and organ cultures. Lamp manufacturers have begun to rate lamps specifically for plant needs. The traditional light source used for in vitro propagation is fluorescent lamps (FLs). However, power consumption in FL use is expensive and produces a wide range of wavelengths (350–750 nm) unnecessary for plant development. Light‐emitting diodes (LEDs) have recently emerged as an alternative for commercial micropropagation. The flexibility of matching LED wavelengths to plant photoreceptors may provide more optimal production, influencing plant morphology and chlorophyll content. Although previous reports have confirmed physiological effects of LED light quality on morphogenesis and growth of several plantlets in vitro, these study results showed that LED light is more suitable for plant morphogenesis and growth than FLs. However, the responses vary according to plant species. This chapter describes the applications and benefits of LED lamps on chlorophyll in plant micropropagation. Two study cases are exposed, Anthurium (Anthurium andreanum) and moth orchids (Phalaenopsisis sp.), both species with economic importance as ornamental plants, where LEDs have a positive effect on in vitro development and chlorophyll content.",book:{id:"5841",slug:"chlorophyll",title:"Chlorophyll",fullTitle:"Chlorophyll"},signatures:"Jericó J. Bello‐Bello, Juan A. Pérez‐Sato, Carlos A. Cruz‐Cruz and\nEduardo Martínez‐Estrada",authors:[{id:"197218",title:"Dr.",name:"Jericó Jabín",middleName:null,surname:"Bello Bello",slug:"jerico-jabin-bello-bello",fullName:"Jericó Jabín Bello Bello"},{id:"197368",title:"MSc.",name:"Eduardo",middleName:null,surname:"Martínez Estrada",slug:"eduardo-martinez-estrada",fullName:"Eduardo Martínez Estrada"},{id:"197369",title:"Dr.",name:"Carlos Alberto",middleName:null,surname:"Cruz Cruz",slug:"carlos-alberto-cruz-cruz",fullName:"Carlos Alberto Cruz Cruz"},{id:"205358",title:"Dr.",name:"Juan Antonio",middleName:null,surname:"Pérez-Sato",slug:"juan-antonio-perez-sato",fullName:"Juan Antonio Pérez-Sato"}]},{id:"54702",doi:"10.5772/67610",title:"Effects of pH and Phosphorus Concentrations on the Chlorophyll Responses of Salvia chamelaeagnea (Lamiaceae) Grown in Hydroponics",slug:"effects-of-ph-and-phosphorus-concentrations-on-the-chlorophyll-responses-of-salvia-chamelaeagnea-lam",totalDownloads:1475,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"Salvia chamelaeagnea (Lamiaceae) is a slow growing water‐wise evergreen shrub originating from the western province of South Africa. It is an attractive landscape, and S. chamelaeagnea is a medicinal plant. It is important to develop enhanced cultivation protocols that could result in high yield and high‐quality medicinal materials. Chlorophyll is a fundamental part of the light‐dependent reactions of the photosynthesis process. This chapter investigates the effects of four phosphorus concentrations and three pH levels of supplied irrigated water on the production of chlorophyll A, chlorophyll B, total chlorophyll, leaf colour and the nutrient uptake of S. chamelaeagnea grown in hydroponics over an 8‐week period at the Cape Peninsula University of Technology. The treatments of pH 4, pH 6 and pH 8 at 31, 90, 150 and 210 ppm of phosphorus were received by 12 groups of plants and were replicated 10 times. The results indicated that at pH 4, P fertilization significantly (P < 0.05) induced a higher chlorophyll production of S. chamelaeagnea grown in hydroponics compared to other pH treatments (pH 8 and pH 6).",book:{id:"5841",slug:"chlorophyll",title:"Chlorophyll",fullTitle:"Chlorophyll"},signatures:"Kerwin Lefever, Charles P. Laubscher, Patrick A. Ndakidemi and Felix\nNchu",authors:[{id:"200292",title:"Dr.",name:"Felix",middleName:null,surname:"Nchu",slug:"felix-nchu",fullName:"Felix Nchu"},{id:"200819",title:"Prof.",name:"Charles",middleName:"Petrus",surname:"Petrus Laubscher",slug:"charles-petrus-laubscher",fullName:"Charles Petrus Laubscher"},{id:"201292",title:"Mr.",name:"Kerwin",middleName:null,surname:"Lefever",slug:"kerwin-lefever",fullName:"Kerwin Lefever"},{id:"201293",title:"Prof.",name:"Patrick A.",middleName:null,surname:"Ndakedemi",slug:"patrick-a.-ndakedemi",fullName:"Patrick A. Ndakedemi"}]}],mostDownloadedChaptersLast30Days:[{id:"54681",title:"Effects on the Photosynthetic Activity of Algae after Exposure to Various Organic and Inorganic Pollutants: Review",slug:"effects-on-the-photosynthetic-activity-of-algae-after-exposure-to-various-organic-and-inorganic-poll",totalDownloads:2645,totalCrossrefCites:6,totalDimensionsCites:13,abstract:"Algal studies remain necessary for risk assessment and their utility in ecotoxicology is the evaluation of lethal and sub-lethal toxic effects of potential toxicants on inhabitants of several ecosystems. Effects on algal photosynthetic apparatus caused by various chemical species have been extensively studied. The present chapter summarizes the published data concerning the toxicity of various organic and inorganic pollutants such as oils, pesticides, antifoulants and metals on photosynthesis of aquatic primary producers. Biochemical mode of action resulting in the disruption of photosynthesis depends on the chemical’s nature and the characteristics of the exposed microorganism. Observed differences in response and sensitivity by different species to the same toxicant were attributed to several algal characteristics including photosynthetic capacity, pigment type, cellular lipid and protein content, and cell size. Single species bioassays either for one chemical alone or in mixture have been well reported and tolerance of both marine and freshwater water-column phytoplaktonic species has been examined. Adequate published information on multispecies tests (communities) in laboratory and field studies exists. However, risk assessment on photosynthesis of microbenthic periphyton is inadequate, though it is essential especially for hydrophobic organic molecules. Further studies are required to evaluate the adverse effects of metabolites on aquatic microalgae.",book:{id:"5841",slug:"chlorophyll",title:"Chlorophyll",fullTitle:"Chlorophyll"},signatures:"Andreas S. Petsas and Maria C. Vagi",authors:[{id:"200196",title:"Dr.",name:"Andreas",middleName:null,surname:"Petsas",slug:"andreas-petsas",fullName:"Andreas Petsas"},{id:"200198",title:"Dr.",name:"Maria",middleName:null,surname:"Vagi",slug:"maria-vagi",fullName:"Maria Vagi"}]},{id:"54510",title:"Light‐Emitting Diodes: Progress in Plant Micropropagation",slug:"light-emitting-diodes-progress-in-plant-micropropagation",totalDownloads:2142,totalCrossrefCites:2,totalDimensionsCites:12,abstract:"In commercial micropropagation laboratories, the light source is one of the most important factors controlling plant morphogenesis and metabolism of plant cells and tissue and organ cultures. Lamp manufacturers have begun to rate lamps specifically for plant needs. The traditional light source used for in vitro propagation is fluorescent lamps (FLs). However, power consumption in FL use is expensive and produces a wide range of wavelengths (350–750 nm) unnecessary for plant development. Light‐emitting diodes (LEDs) have recently emerged as an alternative for commercial micropropagation. The flexibility of matching LED wavelengths to plant photoreceptors may provide more optimal production, influencing plant morphology and chlorophyll content. Although previous reports have confirmed physiological effects of LED light quality on morphogenesis and growth of several plantlets in vitro, these study results showed that LED light is more suitable for plant morphogenesis and growth than FLs. However, the responses vary according to plant species. This chapter describes the applications and benefits of LED lamps on chlorophyll in plant micropropagation. Two study cases are exposed, Anthurium (Anthurium andreanum) and moth orchids (Phalaenopsisis sp.), both species with economic importance as ornamental plants, where LEDs have a positive effect on in vitro development and chlorophyll content.",book:{id:"5841",slug:"chlorophyll",title:"Chlorophyll",fullTitle:"Chlorophyll"},signatures:"Jericó J. Bello‐Bello, Juan A. Pérez‐Sato, Carlos A. Cruz‐Cruz and\nEduardo Martínez‐Estrada",authors:[{id:"197218",title:"Dr.",name:"Jericó Jabín",middleName:null,surname:"Bello Bello",slug:"jerico-jabin-bello-bello",fullName:"Jericó Jabín Bello Bello"},{id:"197368",title:"MSc.",name:"Eduardo",middleName:null,surname:"Martínez Estrada",slug:"eduardo-martinez-estrada",fullName:"Eduardo Martínez Estrada"},{id:"197369",title:"Dr.",name:"Carlos Alberto",middleName:null,surname:"Cruz Cruz",slug:"carlos-alberto-cruz-cruz",fullName:"Carlos Alberto Cruz Cruz"},{id:"205358",title:"Dr.",name:"Juan Antonio",middleName:null,surname:"Pérez-Sato",slug:"juan-antonio-perez-sato",fullName:"Juan Antonio Pérez-Sato"}]},{id:"54559",title:"Introductory Chapter: Chlorophyll Molecules and Their Technological Relevance",slug:"introductory-chapter-chlorophyll-molecules-and-their-technological-relevance",totalDownloads:1626,totalCrossrefCites:1,totalDimensionsCites:2,abstract:null,book:{id:"5841",slug:"chlorophyll",title:"Chlorophyll",fullTitle:"Chlorophyll"},signatures:"Maria Isabel Queiroz, Andrêssa Silva Fernandes, Mariany Costa\nDeprá, Eduardo Jacob-Lopes and Leila Queiroz Zepka",authors:[{id:"171980",title:"Dr.",name:"Eduardo",middleName:null,surname:"Jacob-Lopes",slug:"eduardo-jacob-lopes",fullName:"Eduardo Jacob-Lopes"},{id:"200454",title:"Dr.",name:"Andrêssa",middleName:null,surname:"Fernandes",slug:"andressa-fernandes",fullName:"Andrêssa Fernandes"},{id:"200455",title:"Dr.",name:"Mariany",middleName:null,surname:"Deprá",slug:"mariany-depra",fullName:"Mariany Deprá"},{id:"200457",title:"Prof.",name:"Maria Isabel",middleName:null,surname:"Queiroz",slug:"maria-isabel-queiroz",fullName:"Maria Isabel Queiroz"},{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka"}]},{id:"54601",title:"Chlorophyll as Photosensitizer in Dye-Sensitized Solar Cells",slug:"chlorophyll-as-photosensitizer-in-dye-sensitized-solar-cells",totalDownloads:2913,totalCrossrefCites:8,totalDimensionsCites:15,abstract:"Chlorophyll, being the most abundant pigment that commonly found in plants, bacteria, bryophytes and algae, plays a vital role in photosynthesis. Chlorophylls are natural pigments and therefore safe, environmental friendly, easily available and cheap. Chlorophyll has been experimented to function as a photosensitizer in dye-sensitized solar cells (DSSCs) as DSSCs mimic the photosynthesis process in green plants. DSSC was first developed by Gratzel in 1991 and since then has gained tremendous attention as its fabrication is cheap and easy. A DSSC basically comprises a semiconductor that has been soaked in sensitizing dye (chlorophyll), a counter electrode, and an electrolyte containing a redox mediator. The dye absorbs light, which is transformed into electricity. Chlorophyll can be extracted from the leaves of pomegranate, bougainvillea, papaya, Pandanus amaryllifolius, spinach, green grasses, seaweeds, algae and bryophytes. Chlorophyll from these sources has been studied as possible photosensitizers for DSSCs. Most researches done in chlorophyll DSSC use the extracted natural pigments. The type of solvent and pH of the dye solution will also affect the stability of chlorophyll and subsequently the performance of the DSSCs. This chapter will present an inexhaustive overview on DSSCs using chlorophyll as dye.",book:{id:"5841",slug:"chlorophyll",title:"Chlorophyll",fullTitle:"Chlorophyll"},signatures:"Abdul Kariem Arof and Teo Li Ping",authors:[{id:"186084",title:"Dr.",name:"Abdul Kariem",middleName:null,surname:"Arof",slug:"abdul-kariem-arof",fullName:"Abdul Kariem Arof"},{id:"199862",title:"Dr.",name:"L.P.",middleName:null,surname:"Teo",slug:"l.p.-teo",fullName:"L.P. Teo"}]},{id:"54702",title:"Effects of pH and Phosphorus Concentrations on the Chlorophyll Responses of Salvia chamelaeagnea (Lamiaceae) Grown in Hydroponics",slug:"effects-of-ph-and-phosphorus-concentrations-on-the-chlorophyll-responses-of-salvia-chamelaeagnea-lam",totalDownloads:1478,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"Salvia chamelaeagnea (Lamiaceae) is a slow growing water‐wise evergreen shrub originating from the western province of South Africa. It is an attractive landscape, and S. chamelaeagnea is a medicinal plant. It is important to develop enhanced cultivation protocols that could result in high yield and high‐quality medicinal materials. Chlorophyll is a fundamental part of the light‐dependent reactions of the photosynthesis process. This chapter investigates the effects of four phosphorus concentrations and three pH levels of supplied irrigated water on the production of chlorophyll A, chlorophyll B, total chlorophyll, leaf colour and the nutrient uptake of S. chamelaeagnea grown in hydroponics over an 8‐week period at the Cape Peninsula University of Technology. The treatments of pH 4, pH 6 and pH 8 at 31, 90, 150 and 210 ppm of phosphorus were received by 12 groups of plants and were replicated 10 times. The results indicated that at pH 4, P fertilization significantly (P < 0.05) induced a higher chlorophyll production of S. chamelaeagnea grown in hydroponics compared to other pH treatments (pH 8 and pH 6).",book:{id:"5841",slug:"chlorophyll",title:"Chlorophyll",fullTitle:"Chlorophyll"},signatures:"Kerwin Lefever, Charles P. Laubscher, Patrick A. Ndakidemi and Felix\nNchu",authors:[{id:"200292",title:"Dr.",name:"Felix",middleName:null,surname:"Nchu",slug:"felix-nchu",fullName:"Felix Nchu"},{id:"200819",title:"Prof.",name:"Charles",middleName:"Petrus",surname:"Petrus Laubscher",slug:"charles-petrus-laubscher",fullName:"Charles Petrus Laubscher"},{id:"201292",title:"Mr.",name:"Kerwin",middleName:null,surname:"Lefever",slug:"kerwin-lefever",fullName:"Kerwin Lefever"},{id:"201293",title:"Prof.",name:"Patrick A.",middleName:null,surname:"Ndakedemi",slug:"patrick-a.-ndakedemi",fullName:"Patrick A. Ndakedemi"}]}],onlineFirstChaptersFilter:{topicId:"353",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:286,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:101,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188",scope:"This series will provide a comprehensive overview of recent research trends in various Infectious Diseases (as per the most recent Baltimore classification). Topics will include general overviews of infections, immunopathology, diagnosis, treatment, epidemiology, etiology, and current clinical recommendations for managing infectious diseases. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This book series will focus on various aspects and properties of infectious diseases whose deep understanding is essential for safeguarding the human race from losing resources and economies due to pathogens.",coverUrl:"https://cdn.intechopen.com/series/covers/6.jpg",latestPublicationDate:"May 17th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:13,editor:{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"3",title:"Bacterial Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/3.jpg",isOpenForSubmission:!1,annualVolume:null,editor:null,editorTwo:null,editorThree:null},{id:"4",title:"Fungal Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",isOpenForSubmission:!0,annualVolume:11400,editor:{id:"174134",title:"Dr.",name:"Yuping",middleName:null,surname:"Ran",slug:"yuping-ran",fullName:"Yuping Ran",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9d6QAC/Profile_Picture_1630330675373",biography:"Dr. Yuping Ran, Professor, Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China. Completed the Course Medical Mycology, the Centraalbureau voor Schimmelcultures (CBS), Fungal Biodiversity Centre, Netherlands (2006). International Union of Microbiological Societies (IUMS) Fellow, and International Emerging Infectious Diseases (IEID) Fellow, Centers for Diseases Control and Prevention (CDC), Atlanta, USA. Diploma of Dermatological Scientist, Japanese Society for Investigative Dermatology. Ph.D. of Juntendo University, Japan. Bachelor’s and Master’s degree, Medicine, West China University of Medical Sciences. Chair of Sichuan Medical Association Dermatology Committee. General Secretary of The 19th Annual Meeting of Chinese Society of Dermatology and the Asia Pacific Society for Medical Mycology (2013). In charge of the Annual Medical Mycology Course over 20-years authorized by National Continue Medical Education Committee of China. Member of the board of directors of the Asia-Pacific Society for Medical Mycology (APSMM). Associate editor of Mycopathologia. Vice-chief of the editorial board of Chinses Journal of Mycology, China. Board Member and Chair of Mycology Group of Chinese Society of Dermatology.",institutionString:null,institution:{name:"Sichuan University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null},{id:"5",title:"Parasitic Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",isOpenForSubmission:!0,annualVolume:11401,editor:{id:"67907",title:"Dr.",name:"Amidou",middleName:null,surname:"Samie",slug:"amidou-samie",fullName:"Amidou Samie",profilePictureURL:"https://mts.intechopen.com/storage/users/67907/images/system/67907.jpg",biography:"Dr. Amidou Samie is an Associate Professor of Microbiology at the University of Venda, in South Africa, where he graduated for his PhD in May 2008. He joined the Department of Microbiology the same year and has been giving lectures on topics covering parasitology, immunology, molecular biology and industrial microbiology. He is currently a rated researcher by the National Research Foundation of South Africa at category C2. He has published widely in the field of infectious diseases and has overseen several MSc’s and PhDs. His research activities mostly cover topics on infectious diseases from epidemiology to control. His particular interest lies in the study of intestinal protozoan parasites and opportunistic infections among HIV patients as well as the potential impact of childhood diarrhoea on growth and child development. He also conducts research on water-borne diseases and water quality and is involved in the evaluation of point-of-use water treatment technologies using silver and copper nanoparticles in collaboration with the University of Virginia, USA. He also studies the use of medicinal plants for the control of infectious diseases as well as antimicrobial drug resistance.",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},{id:"6",title:"Viral Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",isOpenForSubmission:!0,annualVolume:11402,editor:{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:26,paginationItems:[{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81557",title:"Object Tracking Using Adapted Optical Flow",doi:"10.5772/intechopen.102863",signatures:"Ronaldo Ferreira, Joaquim José de Castro Ferreira and António José Ribeiro Neves",slug:"object-tracking-using-adapted-optical-flow",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81558",title:"Thresholding Image Techniques for Plant Segmentation",doi:"10.5772/intechopen.104587",signatures:"Miguel Ángel Castillo-Martínez, Francisco Javier Gallegos-Funes, Blanca E. Carvajal-Gámez, Guillermo Urriolagoitia-Sosa and Alberto J. Rosales-Silva",slug:"thresholding-image-techniques-for-plant-segmentation",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}}]},overviewPagePublishedBooks:{paginationCount:8,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:5,paginationItems:[{id:"11576",title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",hash:"5a01644fb0b4ce24c2f947913d154abe",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 26th 2022",isOpenForSubmission:!0,editors:[{id:"76041",title:"Prof.",name:"Pier Paolo",surname:"Piccaluga",slug:"pier-paolo-piccaluga",fullName:"Pier Paolo Piccaluga"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11577",title:"Tick-Borne Diseases - A Review and an Update of Knowledge on Infections in Human and Animal Population",coverURL:"https://cdn.intechopen.com/books/images_new/11577.jpg",hash:"3d72ae651ee2a04b2368bf798a3183ca",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 29th 2022",isOpenForSubmission:!0,editors:[{id:"51521",title:"Prof.",name:"Elisa",surname:"Pieragostini",slug:"elisa-pieragostini",fullName:"Elisa Pieragostini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11570",title:"Influenza - New Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11570.jpg",hash:"157b379b9d7a4bf5e2cc7a742f155a44",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11569",title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",hash:"069d6142ecb0d46d14920102d48c0e9d",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 31st 2022",isOpenForSubmission:!0,editors:[{id:"189561",title:"Dr.",name:"Mihaela Laura",surname:"Vica",slug:"mihaela-laura-vica",fullName:"Mihaela Laura Vica"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11568",title:"Staphylococcal Infections - Recent Advances and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11568.jpg",hash:"92c881664d1921c7f2d0fee34b78cd08",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"59719",title:"Dr.",name:"Jaime",surname:"Bustos-Martínez",slug:"jaime-bustos-martinez",fullName:"Jaime Bustos-Martínez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:25,paginationItems:[{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"80187",title:"Potential Utilization of Insect Meal as Livestock Feed",doi:"10.5772/intechopen.101766",signatures:"Sipho Moyo and Busani Moyo",slug:"potential-utilization-of-insect-meal-as-livestock-feed",totalDownloads:101,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Feed Science and Nutrition - Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"79909",title:"Cryopreservation Methods and Frontiers in the Art of Freezing Life in Animal Models",doi:"10.5772/intechopen.101750",signatures:"Feda S. Aljaser",slug:"cryopreservation-methods-and-frontiers-in-the-art-of-freezing-life-in-animal-models",totalDownloads:160,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"79866",title:"Ruminal Microbiome Manipulation to Improve Fermentation Efficiency in Ruminants",doi:"10.5772/intechopen.101582",signatures:"Yosra Ahmed Soltan and Amlan Kumar Patra",slug:"ruminal-microbiome-manipulation-to-improve-fermentation-efficiency-in-ruminants",totalDownloads:216,totalCrossrefCites:0,totalDimensionsCites:1,authors:null,book:{title:"Animal Feed Science and Nutrition - Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"79782",title:"Avian Reproduction",doi:"10.5772/intechopen.101185",signatures:"Kingsley Omogiade Idahor",slug:"avian-reproduction",totalDownloads:149,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kingsley O.",surname:"Idahor"}],book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"78802",title:"Intraovarian Gestation in Viviparous Teleosts: Unique Type of Gestation among Vertebrates",doi:"10.5772/intechopen.100267",signatures:"Mari-Carmen Uribe, Gabino De la Rosa-Cruz, Adriana García-Alarcón and Juan Carlos Campuzano-Caballero",slug:"intraovarian-gestation-in-viviparous-teleosts-unique-type-of-gestation-among-vertebrates",totalDownloads:183,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:136,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78849",title:"Application of Vermicompost Fertilizer in Aquaculture Nutrition: Review",doi:"10.5772/intechopen.100326",signatures:"Sonnia Nzilani Musyoka and Rita Nairuti",slug:"application-of-vermicompost-fertilizer-in-aquaculture-nutrition-review",totalDownloads:67,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Nutrition - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11416.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"78998",title:"Effect of Various Feed Additives on the Methane Emissions from Beef Cattle Based on an Ammoniated Palm Frond Feeds",doi:"10.5772/intechopen.100142",signatures:"Mardiati Zain, Rusmana Wijaya Setia Ningrat, Heni Suryani and Novirman Jamarun",slug:"effect-of-various-feed-additives-on-the-methane-emissions-from-beef-cattle-based-on-an-ammoniated-pa",totalDownloads:143,totalCrossrefCites:0,totalDimensionsCites:1,authors:null,book:{title:"Animal Feed Science and Nutrition - Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",subseries:{id:"20",title:"Animal Nutrition"}}}]},subseriesFiltersForOFChapters:[{caption:"Animal Nutrition",value:20,count:7,group:"subseries"},{caption:"Animal Reproductive Biology and Technology",value:28,count:7,group:"subseries"},{caption:"Animal Science",value:19,count:11,group:"subseries"}],publishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9753",title:"Terpenes and Terpenoids",subtitle:"Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/9753.jpg",slug:"terpenes-and-terpenoids-recent-advances",publishedDate:"July 28th 2021",editedByType:"Edited by",bookSignature:"Shagufta Perveen and Areej Mohammad Al-Taweel",hash:"575689df13c78bf0e6c1be40804cd010",volumeInSeries:21,fullTitle:"Terpenes and Terpenoids - Recent Advances",editors:[{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9403",title:"Human Microbiome",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9403.jpg",slug:"human-microbiome",publishedDate:"June 16th 2021",editedByType:"Edited by",bookSignature:"Natalia V. Beloborodova and Andrey V. Grechko",hash:"c31366ba82585ba3ac91d21eb1cf0a4d",volumeInSeries:20,fullTitle:"Human Microbiome",editors:[{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",slug:"oxidoreductase",publishedDate:"February 17th 2021",editedByType:"Edited by",bookSignature:"Mahmoud Ahmed Mansour",hash:"852e6f862c85fc3adecdbaf822e64e6e",volumeInSeries:19,fullTitle:"Oxidoreductase",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour",profilePictureURL:"https://mts.intechopen.com/storage/users/224662/images/system/224662.jpg",institutionString:"King Saud bin Abdulaziz University for Health Sciences",institution:{name:"King Saud bin Abdulaziz University for Health Sciences",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",slug:"ubiquitin-proteasome-pathway",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"af6880d3a5571da1377ac8f6373b9e82",volumeInSeries:18,fullTitle:"Ubiquitin - Proteasome Pathway",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9002",title:"Glutathione System and Oxidative Stress in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9002.jpg",slug:"glutathione-system-and-oxidative-stress-in-health-and-disease",publishedDate:"August 26th 2020",editedByType:"Edited by",bookSignature:"Margarete Dulce Bagatini",hash:"127defed0a50ad5ed92338dc96e1e10e",volumeInSeries:17,fullTitle:"Glutathione System and Oxidative Stress in Health and Disease",editors:[{id:"217850",title:"Dr.",name:"Margarete Dulce",middleName:null,surname:"Bagatini",slug:"margarete-dulce-bagatini",fullName:"Margarete Dulce Bagatini",profilePictureURL:"https://mts.intechopen.com/storage/users/217850/images/system/217850.jpeg",institutionString:"Universidade Federal da Fronteira Sul",institution:{name:"Universidade Federal da Fronteira Sul",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:3},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:8},{group:"subseries",caption:"Chemical Biology",value:15,count:10}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:301,paginationItems:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}},{id:"338856",title:"Mrs.",name:"Nur Alvira",middleName:null,surname:"Pascawati",slug:"nur-alvira-pascawati",fullName:"Nur Alvira Pascawati",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universitas Respati Yogyakarta",country:{name:"Indonesia"}}},{id:"441116",title:"Dr.",name:"Jovanka M.",middleName:null,surname:"Voyich",slug:"jovanka-m.-voyich",fullName:"Jovanka M. Voyich",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Montana State University",country:{name:"United States of America"}}},{id:"330412",title:"Dr.",name:"Muhammad",middleName:null,surname:"Farhab",slug:"muhammad-farhab",fullName:"Muhammad Farhab",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"349495",title:"Dr.",name:"Muhammad",middleName:null,surname:"Ijaz",slug:"muhammad-ijaz",fullName:"Muhammad Ijaz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Veterinary and Animal Sciences",country:{name:"Pakistan"}}}]}},subseries:{item:{id:"23",type:"subseries",title:"Computational Neuroscience",keywords:"Single-Neuron Modeling, Sensory Processing, Motor Control, Memory and Synaptic Pasticity, Attention, Identification, Categorization, Discrimination, Learning, Development, Axonal Patterning and Guidance, Neural Architecture, Behaviours and Dynamics of Networks, Cognition and the Neuroscientific Basis of Consciousness",scope:"Computational neuroscience focuses on biologically realistic abstractions and models validated and solved through computational simulations to understand principles for the development, structure, physiology, and ability of the nervous system. This topic is dedicated to biologically plausible descriptions and computational models - at various abstraction levels - of neurons and neural systems. This includes, but is not limited to: single-neuron modeling, sensory processing, motor control, memory, and synaptic plasticity, attention, identification, categorization, discrimination, learning, development, axonal patterning, guidance, neural architecture, behaviors, and dynamics of networks, cognition and the neuroscientific basis of consciousness. Particularly interesting are models of various types of more compound functions and abilities, various and more general fundamental principles (e.g., regarding architecture, organization, learning, development, etc.) found at various spatial and temporal levels.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",hasOnlineFirst:!0,hasPublishedBooks:!1,annualVolume:11419,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"13818",title:"Dr.",name:"Asim",middleName:null,surname:"Bhatti",slug:"asim-bhatti",fullName:"Asim Bhatti",profilePictureURL:"https://mts.intechopen.com/storage/users/13818/images/system/13818.jpg",institutionString:null,institution:{name:"Deakin University",institutionURL:null,country:{name:"Australia"}}},{id:"151889",title:"Dr.",name:"Joao Luis Garcia",middleName:null,surname:"Rosa",slug:"joao-luis-garcia-rosa",fullName:"Joao Luis Garcia Rosa",profilePictureURL:"https://mts.intechopen.com/storage/users/151889/images/4861_n.jpg",institutionString:null,institution:{name:"University of Sao Paulo",institutionURL:null,country:{name:"Brazil"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",institutionURL:null,country:{name:"Turkey"}}}]},onlineFirstChapters:{paginationCount:8,paginationItems:[{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81471",title:"Semantic Map: Bringing Together Groups and Discourses",doi:"10.5772/intechopen.103818",signatures:"Theodore Chadjipadelis and Georgia Panagiotidou",slug:"semantic-map-bringing-together-groups-and-discourses",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79491",title:"Fuzzy Perceptron Learning for Non-Linearly Separable Patterns",doi:"10.5772/intechopen.101312",signatures:"Raja Kishor Duggirala",slug:"fuzzy-perceptron-learning-for-non-linearly-separable-patterns",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Raja Kishor",surname:"Duggirala"}],book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81331",title:"Machine Learning Algorithm-Based Contraceptive Practice among Ever-Married Women in Bangladesh: A Hierarchical Machine Learning Classification Approach",doi:"10.5772/intechopen.103187",signatures:"Iqramul Haq, Md. Ismail Hossain, Md. Moshiur Rahman, Md. Injamul Haq Methun, Ashis Talukder, Md. Jakaria Habib and Md. Sanwar Hossain",slug:"machine-learning-algorithm-based-contraceptive-practice-among-ever-married-women-in-bangladesh-a-hie",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"80937",title:"Assessing Heterogeneity of Two-Part Model via Bayesian Model-Based Clustering with Its Application to Cocaine Use Data",doi:"10.5772/intechopen.103089",signatures:"Ye-Mao Xia, Qi-Hang Zhu and Jian-Wei Gou",slug:"assessing-heterogeneity-of-two-part-model-via-bayesian-model-based-clustering-with-its-application-t",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"78846",title:"Clustering Algorithms: An Exploratory Review",doi:"10.5772/intechopen.100376",signatures:"R.S.M. Lakshmi Patibandla and Veeranjaneyulu N",slug:"clustering-algorithms-an-exploratory-review",totalDownloads:136,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"78463",title:"Clustering by Similarity of Brazilian Legal Documents Using Natural Language Processing Approaches",doi:"10.5772/intechopen.99875",signatures:"Raphael Souza de Oliveira and Erick Giovani Sperandio Nascimento",slug:"clustering-by-similarity-of-brazilian-legal-documents-using-natural-language-processing-approaches",totalDownloads:140,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"7437",title:"Nanomedicines",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7437.jpg",slug:"nanomedicines",publishedDate:"February 13th 2019",editedByType:"Edited by",bookSignature:"Muhammad Akhyar Farrukh",hash:"0e1f5f6258f074c533976c4f4d248568",volumeInSeries:5,fullTitle:"Nanomedicines",editors:[{id:"63182",title:"Dr.",name:"Muhammad Akhyar",middleName:null,surname:"Farrukh",slug:"muhammad-akhyar-farrukh",fullName:"Muhammad Akhyar Farrukh",profilePictureURL:"https://mts.intechopen.com/storage/users/63182/images/system/63182.png",institutionString:"Forman Christian College",institution:{name:"Forman Christian College",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:286,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:101,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"4",title:"Fungal Infectious Diseases",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment"},{id:"5",title:"Parasitic Infectious Diseases",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology"},{id:"6",title:"Viral Infectious Diseases",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"May 7th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:3,numberOfPublishedChapters:96,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},subseries:[{id:"7",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",annualVolume:11403,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:null,institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda",middleName:"R.",surname:"Gharieb",fullName:"Reda Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',annualVolume:11404,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",annualVolume:11405,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/422770",hash:"",query:{},params:{id:"422770"},fullPath:"/profiles/422770",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()