Distribution of the literature data evaluated, in terms of the variable studied, highlighting the sample of interest (healthy individuals) and its size in relation to the total amount obtained.
\r\n\tTo viable rural development has a vital role for rural communities. In the design of policies to be successful that affect them rural people have to decide and implement. According to this, it is a critical point to involve the poor and disadvantaged, along with related stakeholders, agricultural and rural development. Hence, for the sustainable development by international initiatives and all other institutions were searched and to be present the agricultural and related research results. To help support the effort, various governmental and non-governmental agencies established fundings for sustainable rural development research and fostered the development of human well-being goals in rural areas via national and international initiatives. In this context, most efforts resulted in successful cases. This book will intend to provide the reader with a comprehensive overview of the theory, approaches, strategies, and cases, and key elements and challenges of sustainable development, and Bioeconomy, Green and Circular economy for sustainability, and UN SDGs-Agenda 2030 and EU Green Deal.
\r\n\r\n\tI believe that this work will be fundamental in the field of SDG, and it will be a guiding, idea-generating key for researchers, practitioners, rural community, and policy decision-makers, and I hope that together we will establish sustainable rural life and development around the world.
\r\n\t
The autonomic nervous system (ANS) is a division of the peripheral nervous system and, based on anatomy and physiology, has three subdivisions: sympathetic nervous system (SNS), parasympathetic nervous system (PNS), and enteric nervous system (ENS). SNS has thoracolumbar distribution, and PNS has a craniosacral distribution, while ENS is the major part of the peripheral nervous system being found throughout the gastrointestinal tract, extending from the esophagus to the rectum, and is also present in the pancreas and in the gallbladder [1, 2, 3, 4].
\nANS has the responsibility to ensure that homeostasis be maintained in the face of disturbances produced by both the external and internal environment [5]. In the heart of rats, ANS begins its development on the embryonic 18.5 day until the twenty-first postnatal day (P21) [6].
\nSympathetic neurons are located in the paravertebral ganglia, have long axonal projections to the organs, and produce excitatory effects mediated by the noradrenergic transmitter norepinephrine (NE). Conversely, parasympathetic neurons are located in ganglia near or on the surface of organs, have shorter axonal projections, and produce inhibitory effects mediated by the cholinergic transmitter acetylcholine (ACh). The enteric nervous system provides the intrinsic innervation of the gut, controlling different aspects of the gut function, such as motility [4].
\nAlthough ANS can actually function autonomously, the central nervous system can contribute to a significant regulatory effect [3].
\nHeart rate variability (HRV) analysis is a practical, noninvasive, reproducible, and cost-effective resource that has been widely applied to study the autonomic behavior of the human organism, being particularly useful for the evaluation of sympathetic and parasympathetic components, although with regard to sympathetic behavior, there is still controversy about the mechanisms involved [7].
\nHigher vagally mediated heart rate variability is associated with better autonomic balance, better health outcomes, and flexible physiological responses. In contrast, lower HRV is associated with disease and all-cause mortality [8].
\nIn [9], some reference values for normality of HRV variables are suggested, although highlighting that “As no comprehensive investigations of all HRV indices in large normal populations have yet been performed, some of the normal values […] were obtained from studies involving small number of subjects.”
\nThe reference values for normality cited and recommended in the Task Force were taken from the work of Bigger et al. (1995). The authors were based on only 274 individuals considered healthy and restricted to be 40–69 years old [10].
\nThe aim of this chapter is restricted to the parasympathetic division of ANS. For the evaluation of this component, there is a well-established consensus that some variables, such as the root mean square of the successive RR interval differences (RMSSD), the percent of normal RR intervals that differed by more than 50 ms (PNN50) both in the time domain, and the absolute power of the high-frequency band component (HF ms2), in the frequency domain, specifically represent vagal modulation, presenting both diagnostic and prognostic properties [11, 12].
\nGenerally speaking, heart rate variability analysis has become the most used noninvasive tool to evaluate autonomic control mechanisms and to predict mortality risk in several clinical conditions, including coronary artery disease, heart failure, diabetes, and hypertension [13].
\nAccording to Goldberger et al. [14], there was some evidence that age influenced the responsiveness of the HRV parameters with changing parasympathetic effect. They studied 29 normal volunteers (15 women; mean age 39 ± 12 years) after β-adrenergic blockade with intravenous propranolol. Five-minute ECG recordings were made during graded infusions of phenylephrine and nitroprusside to achieve baroreflex-mediated increases and decreases in parasympathetic effect, respectively. There was some evidence that age influenced the responsiveness of the HRV parameters with changing parasympathetic effect, with significant association for RMSSD and PNN50.
\nDespite the significant amount of studies in the literature dealing with the HRV and autonomic regulation subject, there is a lack of studies with large series, addressing several variables in different age ranges, from birth to the elderly adult. So, we will evaluate the contribution of these three variables in the study of parasympathetic autonomic behavior throughout the life cycle based on the evaluation of a significant amount of data (835,902 in total) extracted from the literature regarding heart rate variability variables and admittedly related to the parasympathetic nervous system being 53,882 results from healthy individuals.
\nThe inclusion criterion was quite broad in view of the proposed objective, which was to establish reference values, based on the largest amount of information possible. Thus, by searching the available databases (PubMed, Google Scholar, Cochrane Library, ScienceDirect, Wiley Online Library, SciELO, LILACS, and Thesis Banks of Brazilian Universities, among others) and following the PRISMA 2009 flow diagram [15], articles evaluating the values of heart rate variability (Flow Diagram) were included, and after, those directly related to the parasympathetic component of ANS, in the time domains (RMSSD and PNN50) and in the frequency domain (HF ms2), in humans, regardless of age and gender and also regardless of the length of the time series, patient position, and analysis equipment, were selected but provided that the data were always collected from individuals specifically considered to be healthy. Based on this criterion, it is noteworthy that the individuals, who in the original work were cataloged as being from the general population, were not considered to be healthy because there are known comorbidities in this type of sample, and so, they were not included.
\nMean evolutionary behavior of RMSSS values for the different age groups studied. RMSSD (root mean square of the successive RR interval differences in ms; 1, healthy newborns subgroup; 2, children and adolescents (up to 20 years) subgroup; 3, young adults (20–40 years) subgroup; 4, middle-aged adults (40–70 years) subgroup.
Values with evident evidence of extreme outliers (three or more standard deviations below the first quartile or above the third quartile, from the set of values collected for a given variable) were excluded.
\n\nTable 1 informs the studied variable, its domain, and the amount of values collected in the literature.
\nDomain | \nVariable | \nTotal group | \nGeneral population + diseased | \nHealthy | \n
---|---|---|---|---|
Time | \nRMSSD ms | \n208,657 | \n183,155 | \n25,502 | \n
Time | \nPNN50 | \n49,400 | \n35,043 | \n14,357 | \n
Frequency | \nHF ms2 | \n159,894 | \n145,871 | \n14,023 | \n
Distribution of the literature data evaluated, in terms of the variable studied, highlighting the sample of interest (healthy individuals) and its size in relation to the total amount obtained.
RMSSD (root mean square of the successive RR intervals differences, in ms; PNN50 (percent of normal RR intervals that differed by more than 50 ms in %); HF (absolute power of the high-frequency band; 0.15–0.40 Hz, in ms2).
\nGroupings were made by age range to precisely characterize the evolutionary behavior of the parasympathetic system throughout the life cycle. The amounts of data evaluated for each group and their average ages and standard deviations are shown in Table 2.
\nAge range (years) | \nAge mean ± SD | \nRMSSD (ms) | \nPNN50 (%) | \nHF(ms2) | \n
---|---|---|---|---|
Newborns | \n[0 a 3 days] | \n234 | \n78 | \n272 | \n
Up to 20 | \n13.29 ± 4.64 | \n4,419 | \n2,790 | \n4,346 | \n
20–40 | \n25.21 ± 4.88 | \n8,459 | \n1,031 | \n5,721 | \n
40–70 | \n52.74 ± 7.56 | \n12,390 | \n10,468 | \n3,684 | \n
Totals | \n\n | 25,502 | \n14,357 | \n14,023 | \n
Mean and standard deviation of the analyzed age groups and respective amounts of data analyzed, by studied variable..
From all included studies, the mean and the standard deviation values of each variable of interest were extracted. The overall mean value was obtained by weighted average. The global standard deviation was obtained from the individual mean set of each study. As the collected values were the means and standard deviations, the existence of normality was assumed. The values from the different age groups were compared with the aid of the unpaired t-test assuming that the standard deviations of each group were not similar to each other (Welch correction). GraphPad InStat version 3.00 software was used to obtain P-values. A PDF file containing all the 335 references used to mounting the database can be solicited to the correspondent author. The large number of references would make it impossible to include them directly in the present text.
\n\nTable 3 summarizes the results obtained.
\nGroup | \nAge range | \nRMSSD | \nPNN50 | \nHF | \n
---|---|---|---|---|
\n | \n | Mean ± SD | \nMean ± SD | \nMean ± SD | \n
1 | \nNewborns | \n11.6 ± 0.9 | \n1.4 ± 3.7 | \n66.7 ± 85.5 | \n
2 | \nUp to 20 | \n52.0 ± 18.0 | \n25.7 ± 11.6 | \n1124.0 ± 710.8 | \n
3 | \n20–40 | \n53.1 ± 22.2 | \n19.9 ± 12.9 | \n2067.2 ± 1144.7 | \n
4 | \n40–70 | \n28.2 ± 11.8 | \n6.9 ± 0.3 | \n236.3 ± 248.5 | \n
Mean and standard deviation of the variables studied according to the different age groups.
RMSSD (root mean square of the successive RR intervals differences in ms; PNN50 (percent of normal RR intervals that differed by more than 50 ms), HF (absolute power of the high-frequency band; 0.15–0.40 Hz); SD, standard deviation.
\nThe statistical analysis (p-values, t-test unpaired, two-tailed, Welch correction) comparing the mean values for each variable along the age ranges is showed below.
\nGroup | \nRMSSD | \nPNN50 | \nHF | \n
---|---|---|---|
1 versus 2 | \nP < 0.0001 | \nP < 0.0001 | \nP < 0.0001 | \n
1 versus 3 | \nP < 0.0001 | \nP < 0.0001 | \nP < 0.0001 | \n
1 versus 4 | \nP < 0.0001 | \nP < 0.0001 | \nP < 0.0001 | \n
2 versus 3 | \nP = 0.0024 | \nP < 0.0001 | \nP < 0.0001 | \n
2 versus 4 | \nP < 0.0001 | \nP < 0.0001 | \nP < 0.0001 | \n
3 versus 4 | \nP < 0.0001 | \nP < 0.0001 | \nP < 0.0001 | \n
As can be observed, the P-values were extremely robust indicating significant extreme differences for all comparisons.
\nFigures were constructed showing the behavior of each variable along the progressive increase in chronological age, from the healthy newborn group (subgroup 1) to children and adolescents (subgroup 2) and young adults (subgroup 3), until reaching the middle-aged adults (subgroup 4).
\n\nIt is well known that the heart rate variability declines with age. Bonnemeier et al. (2003) [16] obtained 24 h recordings from 166 healthy volunteers (85 men and 81 women) aged 20–70 years. They found the most dramatic HRV parameter decrease between the second and third decades. Almeida-Santos et al. (2016) [17] obtained 24 h ECG recordings of 1743 subjects of 40–100 years of age. They found a linear decline in SDNN, SDANN, and SDNN index. Curiously, they described U-shaped pattern for RMSSD and pNN50 with aging, decreasing from 40 to 60 and then increasing after age 70.
\nThe present study adds new information about this evolutionary behavior. It was quite clear that parasympathetic autonomic development in healthy individuals is peculiar, being reduced at birth, presenting a progressive elevation up to about 20 years of age (for the three variables studied), and typically, after that initial elevation, two different patterns of behavior occur. The RMSSD variable arises a little more until around 40 years of age when it then begins to decline progressively (Figure 1), which we might call as a “‘negatively skewed tent’ behavior.” The PNN50 variable, once reaching its maximum levels around the age of 20, begins to decline progressively until the age of 70 (Figure 2), which would graphically be a “positively skewed tent” behavior. Finally, the HF variable rises from birth to about 40 years, when it begins to decline until 70 years of age being graphically a “negatively skewed tent” behavior (Figure 3).
\nMean evolutionary behavior of PNN50 values for the different age groups studied.PNN50% ((percent of normal R-R intervals that differed by more than 50 ms); 1, healthy newborns subgroup; 2, children and adolescents (up to 20 years) subgroup; 3, young adults (20–40 years) subgroup; 4, middle-aged adults (40–70 years) subgroup.
Mean evolutionary behavior of HF ms2 values for the different age groups studied. HF ms2 (absolute power of the high-frequency band; 0.15–0.40 Hz); 1, healthy newborns subgroup; 2, children and adolescents (up to 20 years) subgroup; 3: Young adults (20–40 years) subgroup; 4, middle-aged adults (40–70 years) subgroup.
We did not find significant studies on heart rate variability in healthy individuals over 70s, probably because above that age, the vast majority of the individuals already have some pathological impairment. Yes, it would exist for the general population, but that was not the focus at this moment. Therefore, a complete definition of HRV behavior in that older group, based on a significant sample like that used here for the other age groups, was not yet possible.
\nThe significant amount of data obtained, together with the extremely significant difference between the values in the different age groups, strongly indicates that this was not a casual finding but a true expression of parasympathetic autonomic behavior.
\nThis is a relevant finding as it sheds new light on the knowledge of normal values in different age groups, since the current gold standard is still established by the Task Force data, based on only 274 cases and exclusively on the age range of 40–69 years.
\nLike every other complex system, in accordance with Chaos Theory, ANS, at least in its parasympathetic component, exhibits a near-parabolic and nonsynchronous behavior for the main variables that evaluates it using heart rate variability, and this fact should be considered in the comparative analysis between healthy individuals and those with different grades of pathological impairment.
\nBased on the largest data set ever available for healthy individuals, the found values can be proposed as reference standards for future studies about heart rate variability.
\nThe authors would like to thank the Brazilian CNPq (National Council for Scientific and Technological Development) [Processes 308759/2015-0 and 308555/2018-0] and to FAPESP (São Paulo Research Foundation) [Process 2017/125297] for the financial support.
\nThe authors declare no conflict of interest.
From the discovery of cylindrical nanometric structures composed of one or several layers of carbon atoms similar to graphite by Iijima in 1991 [1], the scientific community embarked on a fascinating multidisciplinary career in the study, synthesis, characterization, and possible applications of these new carbon nanostructures, excited by the unusual combination of properties that these nanomaterials possess, among which the conduction of electricity and heat, low density, high mechanical resistance and morphology stand out. These nanoparticles have diameters in the range of 1 to 100 nm, lengths of 10 to 1000 nm. They can contain one, two or up to 100 layers rolled on each other with an equidistant separation of 0.34 Å [2, 3, 4]. Later, Novoselov and Geim [5] made an enormous contribution to science with graphene discovery, whose laminar crystalline structure is composed entirely of carbon atoms with an sp2hybridization, with a thickness of only one atom of carbon. Graphene has unusual properties between a metal and a superconductor and high mechanical, elastic, and chemical resistance. Therefore, graphene has been studied and proposed for various applications in electronic, aerospace, automotive, medical, and food industries [6, 7, 8, 9, 10, 11, 12, 13].
Due to the ease of modifying its structure by incorporating other chemical elements, hybridization with functional groups, and decoration with organic molecules, carbon nanoparticle applications have been expanded enormously, leading to countless applications. For example, the miniaturization of electrical circuits composed of one or more carbon nanotubes, chemical and electromechanical sensors based on carbon nanotubes, the storage of hydrogen for fuel cells, the increase in charge capacity in batteries based on graphene or graphene nanoplatelets as well as the filtration capacity at the molecular level using graphene-based membranes, besides the reinforcement of polymeric matrices, to name only a few [4, 7, 11, 14, 15].
Materials science has been searching to generate new materials that possess a balance of properties, making them ideal for new and unexpected applications. Within this vast field are composite materials, which have a continuous phase (metallic, ceramic, or polymeric) and a discontinuous phase (filler or additive), which generally have high filler or additive contents of up to 70%, such as the case of titanium oxide (TiO2) or carbon black concentrates in a polyethylene matrix, since both additives are used as pigments in the plastics industry [16, 17]. With the beginning of nanotechnology and the growing supply of different carbon nanoparticles, a new class of materials has emerged called polymeric nanocomposites whose advantage lies in using a smaller quantity of particles to modify the behavior of the host matrix or continuous phase.
Electroconductive polymeric nanocomposites were originally based on graphite derivatives, later carbon nanofibers, carbon nanotubes (mono or multilayer), and recently on graphene or graphene nanoplatelets, as well as a wide variety of combinations between these and other nanoparticles with different nature and morphology [8, 17, 18, 19, 20]. In order to improve the electrical properties of these materials, combinations of carbon nanotubes have been made with graphite, graphene, clays, copper oxide, titanium oxide, silver nanowires, etc.; in all cases, the aim is to generate three-dimensional networks interconnected to facilitate the passage of electrons or phonons, to generate an electro/thermo-conductive material [21, 22].
In addition to providing the ability to conduct heat and electricity since they can exhibit the Peltier and Seebeck effect, [23, 24] such effects are beneficial in the development of thermoelectric materials, polymeric nanocomposites have also exhibited a noticeable improvement in mechanical properties, a barrier to gases, thermal stability [6, 9, 25, 26] as well as the ability to modify the electrical properties of the host matrix to generate materials for capacitors, electromagnetic and/or radiofrequency shields, have even allowed the development of metamaterials capable of modifying their refractive index, dielectric constant and/or Seebeck effect [27, 28, 29].
There are different methods for preparing polymeric nanocomposites, where the main objective up to now has been to achieve adequate dispersion and distribution of carbon nanoparticles that allow modulating the properties of the resulting material. Because carbon nanoparticles are held tightly together by van der Walls forces, different ways have been sought to separate them individually to combine them with a polymer later and obtain a homogeneous polymeric nanocomposite. The main methods employed to achieve this are briefly described below.
In this method, the polymer is dissolved in a suitable solvent with the aid of magnetic, mechanical and/or heat stirring to facilitate complete dissolution of the polymer. The carbon nanoparticles are suspended in the same liquid (solvent) or a combination of them, and magnetic, mechanical, or ultrasonic stirring is applied to improve the dispersion of the nanoparticles. Subsequently, both solutions are mixed and kept under stirring, then the solvents are evaporated with heat or slowly in an extraction hood (the above will depend on the nature and reactivity of the solvent). Finally, the resulting material, usually a dark-colored powder, is compacted by applying pressure and heat to obtain a useful material. At the laboratory level, it is the most used method for research purposes; however, the large amount of solvents used makes its scaling at an industrial level unfeasible [30, 31, 32].
In this method, one of the monomers or solvents used to obtain the polymer is mixed with the nanoparticles until a homogeneous dispersion is achieved; subsequently, the other reagents, including the corresponding catalysts, are added, and the polymerization reaction is carried out under the conditions of usual temperature and pressure. At the end of the reaction, the product obtained is purified, and the excess solvent is eliminated to recover the polymer formed with the incorporated nanoparticles. Given the complexity of this method, polyethylene’s polymerization in the presence of carbon nanotubes at the laboratory level and of polyamide 6 with nanoclays at an industrial level has been successfully reported [20, 33, 34].
This method is the most widely used at the laboratory level to obtain polymeric nanocomposites; it consists of passing the polymer and nanoparticles through a twin-screw extruder, whereby applying heat, the polymer melts and is transported by the screws that in turn impart shear forces to mix the components, in the different mixing zones that the extruder has. The mixture leaves the extruder, is cooled, and cut to obtain a polymeric nanocomposite. Due to its simplicity, this process can be easily scaled to an industrial level, in addition to the fact that it does not generate waste and does not use solvents [35].
Given the low affinity of polyolefins and in general of polymers for carbon nanoparticles, modifications have been made to the conventional melt mixing method by applying ultrasound waves in some specific sections of the extruder. It has been reported that this method can significantly improve the dispersion of nanoparticles of different nature and geometry, even with high nanoparticle content [36]. Different variants have evolved; the main difference being the mode of generation and application of ultrasound waves; conventionally fixed frequency ultrasound waves are generated, which are applied constantly or intermittently [37]. In another embodiment, the ultrasound waves are applied constantly, gaining a dynamic frequency sweep in a given interval [35, 38, 39].
There are other methods used for the production of polymeric nanocomposites, mainly at the laboratory level. Nevertheless, the choice of method will broadly define the level of dispersion and distribution of the nanoparticles within the polymeric matrix, and therefore the properties of the resulting material.
In Table 1, the most outstanding reports in electro/thermo-conductive polymer nanocomposites of the last five years are presented to have a broader outlook on the subject. By their nature, polyolefins are good electrical insulators exhibiting electrical conductivity in the order of 10−12 to 10−15 S/cm. As can be seen, different techniques have been used for the preparation of polymeric nanocomposites, achieving fascinating results. It can also be seen that the most popular preparation method is melt mixing, which, as mentioned above, is a versatile and easily scalable method. Another variant that can be observed is that depending on the polymeric matrix; the result will change; even more important is the concentration of nanoparticles used. Another aspect that should be highlighted is the modification or doping of the carbon nanoparticles, which slightly increases this property. Finally, as is known, polyolefins are thermal insulators, and their thermal conductivity ranges between 0.1 to 0.4 W/mK. Thermal conductivity has also shown sharp increases, as shown in Aghelinejad and Leung’s reports and Paszkiewicz et al. [45, 50], where the matrix used was polyethylene.
System | σ (S/cm) | Weight (%) | κ (W/mK) | Method of preparation | Ref |
---|---|---|---|---|---|
PS/SSWCNTa | 1.25x105 | 75 | 0.30 | Ball milling | [40] |
PVC/CNT | 2.3x10−1 | 61 | 0.06 | Drop casting | [41] |
PP/MWCNTb,c PP/MWCNTd PP/MWCNTe PP/MWCNTf | 1x10−10 1x10−7 1x10−4 1x10−3 | 8 | — | Melt mixing | [38] |
PS-LDPE/MWCNT | 2.9x10−3 | 1.5 | — | Melt mixing | [42] |
PVC/CNT | 2.4x10−2 | 25 | — | Solution | [24] |
HDPE/CNTg HDPE/CNTh | 2x10−4 5.8x10−5 | 15 | 0.60 0.06 | Melt mixing | [43] |
PP/MWCNTi,c PP/MWCNTd PP/MWCNTe PP/MWCNTf | 1x10−5 1x10−4 1x10−3 1x10−2 | 8 | — | Melt mixing | [39] |
PVC/SG-CNTj | 3.35x102 | 66 | 0.18 | Drop casting | [24] |
LDPE/MWCNT | 2.38x10−2 | 5 | — | Solution | [44] |
LDPE/MWCNT LDPE/GNP | 2x10−2 1x10−6 | 20 | 0.67 0.58 | Melt mixing | [45] |
PP/CNTk PP/CNTl PP/CNTm PP/CNTn PP/CNTo | 1.6x10−2 9.56x10−1 1.21x10−1 1x10−3 1.05x10−1 | 2 | — | Melt mixing | [46] |
mLLDPE/MWCNT | 2.8x10−4 | 10 | — | Melt mixing | [47] |
LDPE/G LDPE/SWCNT | 1.0x10−5 8.3x10−5 | 3 | — | Melt mixing | [48] |
PP/SWCNT PP/B-SWCNTp | 1.21x10−1 3.58x10−1 | 2 | 0.28 | Melt mixing | [49] |
PP/N-MWCNTn | 4 x10−2 | 5 | 0.28 | Melt mixing | [28] |
Electric/thermal parameters of the most relevant polymer nanocomposites with carbon nanoparticles.
SSWCNT small-bundle-diameter-single-walled CNTs.
PP MFI = 34 g/10 min.
Melt extruded without ultrasound.
Melt extruded with ultrasound fixed frequency.
Melt extruded with ultrasound variable frequency.
Melt extruded previously dispersed in gas phase.
Solid.
Foam.
PP MFI = 1200 g/10 min.
SG-CNT supergrowth-CNT.
CNT, NC700.
CNT, CNS-PEG.
CNT, Tuball.
CNT, N-MWCNT A1, Nitrogen doped.
CNT, N-MWCNT IFW, Nitrogen doped.
Boron doped SWCNT.
The motivation of present work was to perform a screening of several carbon nanoparticles to obtain polymeric nanocomposites with a better balance on properties such as electro/thermal conduction, mechanical and thermal stability. For this purpose, different carbon nanoparticles were selected. Their main differences lie in morphology (laminar versus fibrillar), structure (flat versus rolled layers), and functionalization (modified versus un-modified surface, i.e., CNT). Besides, the use of different polyolefins such as polyethylene and polypropylene, which bear significant differences in structure. On the one hand, polyethylene possesses a main chain almost free of pendant groups; meanwhile, polypropylene’s main chain contains one methylene group each three carbon atoms. The best candidate is expected to be used to manufacture prototypes of thermistors (temperature sensors based on a change in electrical resistivity).
In the following section, the preparation of polymeric nanocomposites in high-density polyethylene (PE) and polypropylene (PP) and their combination with four types of carbon nanoparticles (CNP) are presented and discussed. In all cases, a content of 20% wt/wt of each nanoparticle was used. The characterization results by thermogravimetric analysis, mechanical properties in tension and bending, electrical resistivity, and dielectric constant as a function of frequency and thermal conductivity are also presented. The resins used to obtain the polymeric nanocomposites were the following: high-density polyethylene (PE) Alathon H4620 with MFI of 20 g/10 min and density of 0.940 g/cm3 provided by LyondellBasell (TX, USA), also polypropylene (PP) Formolene 4111 T with MFI of 35 g/10 min and density of 0.9 g/cm3 provided by Formosa Plastics, (Tamaulipas, Mexico). The carbon nanoparticles used and their main characteristics are listed in Table 2.
Material | Density (g/cm3) | SSA* (m2/g) | Average length (μ) | Average diameter (nm) | Purity (%) | Supplier |
---|---|---|---|---|---|---|
CNT1 | 2.1 | 200 | 20 | 20 | 90 | CheapTubes, Inc |
MCNT2 | 2.1 | 110 | 20 | 20 | 90 | CheapTubes, Inc |
GNP3 | 2.1 | 600 | 2 | — | 97 | CheapTubes, Inc |
CB4 | 2.1 | 240 | — | 15 | 95 | Cabot Corp. |
Characteristics and properties of the different carbon nanoparticles.
SSA, Specific surface area.
CNT industrial grade.
MCNT, Industrial grade modified CNT with -COOH contain 1.2% of COOH groups.
GNP, industrial grade graphene nanoplatelets.
Carbon Black, Vulcan XC72 grade.
The materials’ processing was carried out in a Thermo Scientific model PRISM 24MC twin-screw extruder; the diameter of the screws is 24 mm with a length/diameter ratio of 40:1. According to the formulation, a controlled feeder for powders and another for the resin were used, which were previously calibrated to dose the required amount. The addition of the nanoparticles and the resin was carried out simultaneously in the extruder. A screw rotational speed of 100 rpm was used, a flat temperature profile of 180 and 200°C for the nanocomposites with PE and PP, respectively. Under these conditions, a production speed of 3.2–3.5 Kg/h was obtained. To improve the nanoparticle’s agglomerates’ dispersion and distribution, a device specially designed to irradiate the extruded material with ultrasound waves was coupled at the extruder exit. The device consists of a chamber with controlled temperature; inside, there is a 12.5 mm diameter titanium catenoid sonotrode (Branson Corp.) connected to a homemade ultrasound wave generator, which can generate ultrasonic waves in the range of 10 to 50 kHz, with a 750 W power [35, 38]. Finally, the material was passed through a water bath and cutter. Subsequently, each material was compression-molded to obtain a 15 X 15 X 0.2 cm plate, and a PHI press was used, a pressure of 20 Tn, with temperatures of 180 and 200°C for the nanocomposites with PE and PP, respectively. Specimens were cut for the characterization of the polymeric nanocomposites.
The characterization of the polymeric nanocomposites was carried out using the following analytical techniques. The thermogravimetric analysis (TGA) was carried out using a thermogravimetric analyzer from TA Instruments model Q500, using a sample of approximately 8 mg, a temperature range of 25–600°C, with a heating rate of 10°C/min and an inert atmosphere with nitrogen gas with a flow of 50 ml/min. The mechanical properties were evaluated in a universal testing machine, Instron model 1000, for tension tests in accordance with the ASTM D638 standard, using V-type specimens and a stretched speed of 50 mm/min and a load cell of 10 kN. The flexion tests were carried out according to the ASTM D790 standard using 12 X 1.25 X 0.2 cm specimens in 3-point bending mode; in both cases, five measurements were made, and the average value was reported. The electrical properties of resistance and capacitance were measured with an LCR analyzer in samples of 1 X 1 X 0.2 cm, both faces of the specimen were covered with silver paint, and a copper wire was placed as an electrode. The measurement was carried out at room temperature using a frequency range from 20 Hz to 2 kHz in increments of one decade; 5 measurements were made, and the average value was reported. The thermal diffusivity determination was carried out in a TA Instruments thermal diffusivity analyzer Discovery Xenon Laser Flash model (DXF-200). The analyzed specimen had circular geometry with 12.5 x 2 mm dimensions; both faces were coated with carbon paint and one of them with silver paint to ensure good contact with the temperature sensors; the measurement was carried out in triplicate at 25°C.
The study of the thermal stability in electrically conductive materials is of great importance because when an electric current circulates through them, they can undergo heating and alter their behavior or ability to conduct electricity. On the other hand, this analysis makes it possible to determine the thermal stability of the materials and the amount of mass that they can lose due to the effect of temperature in a controlled atmosphere. It should be mentioned that if the atmosphere is air, thermo-oxidative degradation will occur. In Figure 1, the corresponding thermograms to the nanocomposites based on PE and PP are presented. While in Table 3, the specific data for the mass loss of T5% and T50% are shown.
Thermal stability by TGA of polymeric nanocomposites with 20% wt/wt of different CNP, (A) PE base, and (B) PP base.
Material | Polyethylene | Polypropylene | ||
---|---|---|---|---|
T5% | T50% | T5% | T50% | |
Polymer | 337.50 | 415.67 | 373.49 | 437.59 |
CNT | 411.28 | 447.81 | 420.09 | 451.99 |
MCNT | 417.68 | 452.17 | 423.69 | 453.15 |
GNP | 416.88 | 446.27 | 402.26 | 445.07 |
CB | 430.27 | 451.89 | 419.47 | 449.98 |
Degradation temperatures at T5%, T50%, of polymeric nanocomposites with different carbon nanoparticles.
It can be observed that PE exhibits a loss of mass from 330°C, while polymeric nanocomposites exhibit this loss at a temperature around 411°C, regardless of the type of nanoparticle used. It is important to note that the nanocomposite containing CB exhibits the highest thermal stability. For PP, degradation begins at a temperature of 370°C, while for polymeric nanocomposites occurs around 420°C, regardless of the type of nanoparticle used. In this case, nanocomposites based on CNT and MCNT exhibit the highest thermal stability of all.
Various reports in the literature suggest that carbon nanoparticles provide greater thermal stability or heat resistance to polymers in general due to a mechanism based on the formation of a carbonaceous layer and a tortuous path similar to a labyrinth on the surface of the material that prevents the release of combustion gases [19, 26]. This analysis is of great importance for flame retardancy applications in aeronautics, automotive, and textile industries and to determine the safety temperature that the material can support before molten and inflamed by the passage of an electrical current.
The mechanical properties of polymeric nanocomposites are of great interest because, as mentioned above, the addition of carbon nanoparticles can improve their performance. In Table 4, the properties of the PE and PP-based nanocomposites with the different carbon nanoparticles are listed.
Material | Polyethylene | Polypropylene | ||||
---|---|---|---|---|---|---|
Tensile modulus (MPa) | Elongation (%) | Flexural modulus (MPa) | Tensile modulus (MPa) | Elongation (%) | Flexural modulus (MPa) | |
Polymer | 23.68 | 747 | 376 | 33.28 | 571 | 289 |
CNT | 41.99 | 1 | 965 | 43.05 | 1 | 862 |
MCNT | 38.84 | 1 | 989 | 38.7 | 1 | 800 |
GNP | 42.03 | 1 | 1052 | 42.13 | 1 | 980 |
CB | 40.47 | 1 | 951 | 44.22 | 1 | 913 |
Mechanical properties of polymeric nanocomposites with different carbon nanoparticles.
As expected, with the addition of nanoparticles, the different properties were modified; firstly, the PE exhibits a tensile modulus of 23.68 MPa, while the nanocomposites present a maximum increase of 180%, this increase in resistance to stress causes the elongation of the material to be markedly reduced, suggesting that the stiffness of the material has changed from a ductile to a brittle material, in which plastic deformation has been suppressed. For its part, the flexural modulus corroborates the above since PE has a value of 376 MPa, and in nanocomposites, this value has increased to 280%. A similar behavior occurs with PP, exhibiting an increase of 130% and 330% in the tensile and flexural modulus, respectively. In this sense, the greatest increase in mechanical properties for polyethylene is obtained with GNP > CNT > CB > MCNT, while for polypropylene, it is CB > CNT > GNP > MCNT. In this sense, it is worth mentioning that the surface modification made to the MCNTs did not improve by itself, the compatibility with the host matrix PE or PP.
In the literature, many reports can be found that mention the improvement in mechanical properties in polymeric nanocomposites reinforced with carbon nanoparticles. However, the addition of compatibilizing agents such as maleic anhydride grafted to the resin is required to achieve a substantial increase in the mechanical properties, even with low amounts of carbon nanoparticles [9, 26, 51, 52]. Due to the lightweight and high modulus obtained by the polymeric nanocomposites reinforced with carbon nanoparticles, aeronautics and automotive industries would be benefited from the development of these materials for different components, which can provide a reduction in weight and lower consumption of fuels.
The evaluation of electrical properties was carried out using an LCR as a function of a frequency interval, as shown in Figure 2. First, the polyethylene-based system allows observing that the PE resin exhibits the highest electrical resistance values at low-frequency values; above 10 kHz, the material becomes polarized and shows a lower electrical resistance, which decreases three orders of magnitude when reaching 2 MHz. With the addition of GNP, the material exhibits a behavior similar to that of PE, one order of magnitude lower in terms of electrical resistance. Meanwhile, the materials that contain MCNT and CNT show a reduction of 7 and 8 orders of magnitude; however, the polarization effect occurs when reaching high frequencies of 100 kHz. The CB-based system exhibits the least electrical resistance with nine orders of magnitude reduction concerning PE alone. In addition to not showing polarization effects as a function of frequency, which suggests that it behaves as an excellent electrical conductor.
Electrical resistance as a function of frequency, of polymeric nanocomposites with 20% wt/wt of different CNP, (A) PE base, and (B) PP base.
For materials based on PP, the behavior is slightly different PP only presents the highest values of electrical resistance at low-frequency values; above 10 kHz, the material is polarized and shows a lower electrical resistance, which decreases three orders of magnitude when reaching 2 MHz, in the same way as the PE. Surprisingly, the CB-based system exhibits an electrical resistance that is completely dependent on the frequency. When it increases, the electrical resistance decreases to four orders of magnitude concerning the PP, suggesting that the material behaves like a semiconductor. On the other hand, the materials that contain CNT and MCNT show a reduction of seven and eight orders of magnitude without presenting the polarization effect in the entire frequency range, which suggests that they behave like a good electrical conductor. Finally, the compound containing GNP shows the lowest electrical resistance with a reduction of nine orders of magnitude and a linear response throughout the entire frequency range used. Based on the above, it can be pointed out that the nature of the polymeric matrix and the type of carbon nanoparticle can notably modify the electrical behavior of the polymeric nanocomposite [8, 31, 53, 54].
The behavior of the dielectric constant of polymeric nanocomposites is presented in Figure 3. Analogously to the behavior of electrical resistance, the dielectric constant follows a similar trend with the addition of carbon nanoparticles. The PE has a value of 3 and a linear behavior in the entire frequency range, while the nanocomposite with GNP shows an increase of 1 order of magnitude and a linear behavior as a function of frequency. Materials containing CNT and MCNT show an increase of three orders of magnitude for PE, with a slight decrease at high frequencies. The material that contains CB exhibits a frequency-dependent behavior since, at 20 Hz, it shows an increase of four orders of magnitude and then it decreases two orders of magnitude from a frequency of 1 kHz; this behavior corresponds to that of a capacitor, capable of storing energy and releasing it suddenly when used in electrical/electronic circuits.
Dielectric constant of polymeric nanocomposites with 20% wt/wt of different CNP, (A) PE base, and (B) PP base.
On the other hand, PP exhibits a dielectric constant of 3 and does not vary as a function of frequency; the nanocomposite with CB shows an increase of one order of magnitude with respect to pure PP, while the nanocomposites with CNT and MCNT show an increase in 3 orders of magnitude and a slight decrease at high-frequency values. Finally, the nanocomposite with GNP presents the highest value of dielectric constant, with an increase of up to four orders of magnitude at a frequency of 20 Hz, and decreases by one order of magnitude for the rest of the frequencies evaluated. Similar to the behavior of PE nanocomposites, PP-based nanocomposites exhibit capacitor-like behavior throughout the evaluated frequency range.
The combination of properties for these new nanocomposite materials results in various applications that had not been previously conceived. For example, supercapacitors can be manufactured for systems that require a precise regulation of the supplied energy and a high energy storage capacity, and that in this way, the energy necessary to drive an electrical component can be supplied without the need to overload the electrical network of the circuit, besides not present a memory effect [25, 31]. Another field of interest for those materials would be the packaging industry, with the development of antistatic, static dissipative or semiconductive packages, for the protection of electronic components during their transportation, even for EMI or RF shielding for aerospace and defense to protect safety- and mission-critical systems from intentional and unintended electronics emissions [44]. The growing industry of electronic textile or smart textiles that develop wearable technology requires integrating textile fibers capable of conducting electrical signals. There are fabrics in which electrical and electronic elements such as microcontrollers, sensors, and actuators have been integrated that allow clothing to react, send information, or interact with the environment [55, 56, 57].
The study of the thermal properties of polymeric nanocomposites intended for electronics applications is of great importance since, as mentioned above, the passage of electric current can induce a temperature gradient in electrical conductors, even in metals. The heat capacity was first determined, as well as the density and thermal diffusivity to determine the thermal conductivity of polymer nanocomposites. Values are shown in Table 5.
Polyethylene | Polypropylene | |||
---|---|---|---|---|
Cp (J/gK) | κ (W/mK) | Cp (J/gK) | κ (W/mK) | |
Polymer | 1.846 | 0.24 | 1.917 | 0.28 |
CNT | 1.671 | 0.43 | 1.672 | 0.32 |
MCNT | 1.643 | 0.25 | 1.639 | 0.34 |
GNP | 1.736 | 0.31 | 1.477 | 0.25 |
CB | 1.495 | 0.28 | 1.569 | 0.30 |
Heat capacity (Cp, J/g K) and thermal conductivity (κ, W/m K) of polymeric nanocomposites with different carbon nanoparticles.
According to the data reported in Table 5, PE has the highest value of Cp; with the addition of the different nanoparticles, the Cp of the nanocomposites decreases significantly, the most notable case being the nanocomposite with CB. Meanwhile, PP exhibits an even higher Cp than PE, while the addition of the different nanoparticles promotes a decrease in this value, with graphene nanoplatelets being the material that most reduces this value. The decrease in Cp of the different nanocomposites can be associated with the ease they present for heat conduction, making the material less thermally insulating.
On the other hand, the thermal conductivity presents substantial improvements; in general, the PE-based nanocomposites exhibit the most significant increase in thermal conductivity 79, 29, 16, and 4% for the nanoparticles in the following order CNT > GNP > CB > MCNT, suggesting that carbon nanotubes are the most effective additive to increase the thermal conductivity of the nanocomposite. The trend is reversed, with increases of 21, 14, 7, and − 11% for MCNT > CNT > CB > GNP for PP-based nanocomposites. Although the Cp of the nanocomposites follows a different trend towards thermal conductivity, it should be mentioned that the type of polymeric matrix, the morphology, distribution, and dispersion of the different nanoparticles play an important role in heat conduction. This phenomenon is carried out through phonons; therefore, if there are spaces in the material in which the nanoparticles are too far apart, the phonons’ passage through the material will find a physical barrier for their passage.
Recent reports suggest that a polymeric nanocomposite’s thermal conductivity can be affected by different factors, including the processing method, the number of defects in the carbon nanoparticles, and, finally, their dispersion within the polymeric matrix [21, 29, 45, 46, 58]. The capability to conduct heat in a polymeric nanocomposite makes an ideal candidate for different applications such as heat exchangers, solar water heaters, thermoelectric materials, electrical heaters, to mention a few [22]. These devices will take advance of the lightweight, mechanical strength, thermal and dimensional stability of these materials, in which automotive, construction, and green industries are interested.
The electrical resistivity of polymeric nanocomposites with carbon nanoparticles shows an anomalous increase near the melting point of the matrix; this effect is known as a positive temperature coefficient (PTC) of resistivity. On the other hand, the negative temperature coefficient (NTC) is a very sharp decrease in resistivity when the temperature is above the melting point of semicrystalline polymers. These kinds of materials have important industrial applications like overcurrent protectors and self-regulating heaters [59, 60].
The polymer nanocomposites obtained were evaluated for their potential use as a thermistor. For this purpose, a prototype will be constructed; it consists of a square piece with dimensions 1 X 1 X 0.2 cm; both sides were cover with silver paste as an electrode and a copper wire. Kapton tape was used to cover the prototype and isolate the wires during the heating cycle. A Mettler Toledo FP82 Hot Stage was used to supply heat in an interval from 40 to 160°C at a heating rate of 5°C/min, the Hot Stage was connected to a Mettler Toledo FP90 Central Processor, the electrical resistivity was measured with a Keithley Source Meter model 2400, in a 4-wire sense mode, to avoid the parasite signal in the circuit.
As seen in Figure 4, all the polymer nanocomposites exhibit thermistor behavior, i.e., an increase of resistivity around 128°C. The intensity of the PTC (the electrical resistivity ratio at the melting point versus room temperature) depends on the type of carbon nanoparticle used. The interval of temperature at which this phenomenon occurs is between 127 and 131°C. In this sense, the intensity of the PTC is in the following order GNP > CNT > MCNT > CB. This behavior could be associated with the capability of the polymer chains to break apart the conductive pathway formed in the polymer nanocomposite, due to the semicrystalline nature of the polymer matrix and the reduction in viscosity, during the heating. It is worth mentioning that PE/CB nanocomposite exhibits the lowest PTC intensity, probably due to the high structure of the CB (CB possess the small average particle size) and could form new conductive pathways in the molten state as stated by Zeng et al. [61].
Temperature versus electrical resistivity of PE base polymeric nanocomposites with 20% wt/wt of different CNP.
The polymer nanocomposites with carbon nanoparticles become an electrically conductive material whit the addition of a certain amount of carbon nanoparticles; this property is fundamental in electrical and electronic applications. For many years, carbon black has been chosen as the best candidate for this purpose; with other carbon nanoparticles such as CNF, CNT, GO, graphene, and their combination with other materials, significant improvements have been made for electrically conductive materials.
In this work, the preparation and characterization of electrically conductive polymeric nanocomposites with different carbon nanoparticles was addressed to screen the type of carbon nanoparticles that allows them to obtain polymeric nanocomposites with a better balance on properties such as electro/thermal conduction, mechanical, and thermal stability. A material with the desired properties for their application in electronics, such as low electrical resistivity, thermal stability, and mechanical strength, besides thermal conductivity, is PE/CB polymeric nanocomposite since it exhibits a better balance of properties. This set of properties makes them candidates for use in various applications. Besides thermistors, they may be candidates for use in electrical heaters, which are a kind of electrical resistor used to converts electrical energy into thermal energy, as thermoelectric materials for their use in the exploitation of renewable energies, in heat exchangers, as EMI and RFI shielding, and as a wearable textile for smart applications.
The authors are grateful for the support of the CIQA technical staff for the preparation and characterization of materials: María G. Méndez Padilla, Gilberto F. Hurtado López, Rodrigo Cedillo García, Juan F. Zendejo Rodríguez and Jesús G. Rodríguez Velazquez. The financial support by SENER-CONACyT-CeMIE-SOL through the 207450-12 project is also appreciated.
The authors declare no ‘conflict of interest’.
",metaTitle:"Open Access Statement",metaDescription:"Book chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0)",metaKeywords:null,canonicalURL:"/page/open-access-statement/",contentRaw:'[{"type":"htmlEditorComponent","content":"
License
\\n\\nBook Chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen maintains a very flexible Copyright Policy that ensures that there is no copyright transfer to the publisher. Therefore, Authors retain exclusive copyright to their work. All Monographs are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) and journal articles are distributed under a Creative Commons 4.0 International Licence.
\\n\\n\\n\\nFormats
\\n\\nBased on your preferences and the stage of your scientific projects, you have multiple options for publishing your scientific research with IntechOpen:
\\n\\nPeer Review Policies
\\n\\nAll scientific Works are subject to Peer Review prior to publishing.
\\n\\n\\n\\nCosts
\\n\\nThe Open Access publishing model followed by IntechOpen eliminates subscription charges and pay-per-view fees, thus enabling readers to access research at no cost to themselves. In order to sustain these operations, and keep our publications freely accessible, we levy an Open Access Publishing Fee on all manuscripts accepted for publication to help cover the costs of editorial work and the production of books.
\\n\\n\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is dedicated to ensuring the long-term preservation and availability of the scholarly research it publishes.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'License
\n\nBook Chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen maintains a very flexible Copyright Policy that ensures that there is no copyright transfer to the publisher. Therefore, Authors retain exclusive copyright to their work. All Monographs are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) and journal articles are distributed under a Creative Commons 4.0 International Licence.
\n\n\n\nFormats
\n\nBased on your preferences and the stage of your scientific projects, you have multiple options for publishing your scientific research with IntechOpen:
\n\nPeer Review Policies
\n\nAll scientific Works are subject to Peer Review prior to publishing.
\n\n\n\nCosts
\n\nThe Open Access publishing model followed by IntechOpen eliminates subscription charges and pay-per-view fees, thus enabling readers to access research at no cost to themselves. In order to sustain these operations, and keep our publications freely accessible, we levy an Open Access Publishing Fee on all manuscripts accepted for publication to help cover the costs of editorial work and the production of books.
\n\n\n\nDigital Archiving Policy
\n\nIntechOpen is dedicated to ensuring the long-term preservation and availability of the scholarly research it publishes.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{id:"965887@"},profiles:[],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6601},{group:"region",caption:"Middle and South America",value:2,count:5906},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12541},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"6"},books:[{type:"book",id:"11643",title:"Genetic Diversity - Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"0b1e679fcacdec2448603a66df71ccc7",slug:null,bookSignature:"Prof. Mahmut Çalışkan and Dr. Sevcan Aydin",coverURL:"https://cdn.intechopen.com/books/images_new/11643.jpg",editedByType:null,editors:[{id:"51528",title:"Prof.",name:"Mahmut",surname:"Çalışkan",slug:"mahmut-caliskan",fullName:"Mahmut Çalışkan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11644",title:"Structural and Molecular Aspects of DNA Repair",subtitle:null,isOpenForSubmission:!0,hash:"83dfefc2400d2d037281f1e25bbc544b",slug:null,bookSignature:"Prof. Subrata Kumar Dey",coverURL:"https://cdn.intechopen.com/books/images_new/11644.jpg",editedByType:null,editors:[{id:"31178",title:"Prof.",name:"Subrata",surname:"Dey",slug:"subrata-dey",fullName:"Subrata Dey"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11645",title:"Neural Tube Defects",subtitle:null,isOpenForSubmission:!0,hash:"08d6ba70d97767769a97cfeeb52dac78",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11645.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11669",title:"Fatty Acids - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"9117bd12dc904ced43404e3383b6591a",slug:null,bookSignature:"Assistant Prof. Erik Froyen",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",editedByType:null,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"69f009be08998711eecfb200adc7deca",slug:null,bookSignature:"Dr. Brajesh Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",editedByType:null,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11672",title:"Chemokines Updates",subtitle:null,isOpenForSubmission:!0,hash:"c00855833476a514d37abf7c846e16e9",slug:null,bookSignature:"Prof. Murat Şentürk",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",editedByType:null,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11673",title:"Stem Cell Research",subtitle:null,isOpenForSubmission:!0,hash:"13092df328080c762dd9157be18ca38c",slug:null,bookSignature:"Ph.D. Diana Kitala",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",editedByType:null,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11674",title:"Updates on Endoplasmic Reticulum",subtitle:null,isOpenForSubmission:!0,hash:"5d7d49bd80f53dad3761f78de4a862c6",slug:null,bookSignature:"Dr. Gaia Favero",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",editedByType:null,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11676",title:"Recent Advances in Homeostasis",subtitle:null,isOpenForSubmission:!0,hash:"63eb775115bf2d6d88530b234a1cc4c2",slug:null,bookSignature:"Dr. Gaffar Sarwar Zaman",coverURL:"https://cdn.intechopen.com/books/images_new/11676.jpg",editedByType:null,editors:[{id:"203015",title:"Dr.",name:"Gaffar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11804",title:"CRISPR Technology",subtitle:null,isOpenForSubmission:!0,hash:"4051570f538bd3315e051267180abe37",slug:null,bookSignature:"Dr. Yuan-Chuan Chen",coverURL:"https://cdn.intechopen.com/books/images_new/11804.jpg",editedByType:null,editors:[{id:"185559",title:"Dr.",name:"Yuan-Chuan",surname:"Chen",slug:"yuan-chuan-chen",fullName:"Yuan-Chuan Chen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11805",title:"Genome-Wide Association Studies - Trends and Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"006916e730c66d3b84d3ec036f769e00",slug:null,bookSignature:"Prof. Rafael Trindade Trindade Maia, Dr. Magnólia De Araújo Campos and Dr. Marco Antônio Alves Schetino",coverURL:"https://cdn.intechopen.com/books/images_new/11805.jpg",editedByType:null,editors:[{id:"212393",title:"Prof.",name:"Rafael",surname:"Trindade Maia",slug:"rafael-trindade-maia",fullName:"Rafael Trindade Maia"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12174",title:"Genetic Polymorphisms",subtitle:null,isOpenForSubmission:!0,hash:"5922df051a2033c98d2edfb31dd84f8c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12174.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:5},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:62},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:10},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:23},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4387},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1417",title:"Metrology",slug:"technology-metrology",parent:{id:"24",title:"Technology",slug:"technology"},numberOfBooks:3,numberOfSeries:0,numberOfAuthorsAndEditors:57,numberOfWosCitations:26,numberOfCrossrefCitations:22,numberOfDimensionsCitations:35,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1417",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10968",title:"Applied Aspects of Modern Metrology",subtitle:null,isOpenForSubmission:!1,hash:"688f4a581f96ea8041bc2dff50f6256e",slug:"applied-aspects-of-modern-metrology",bookSignature:"Oleh Velychko",coverURL:"https://cdn.intechopen.com/books/images_new/10968.jpg",editedByType:"Edited by",editors:[{id:"223340",title:"Prof.",name:"Oleh",middleName:null,surname:"Velychko",slug:"oleh-velychko",fullName:"Oleh Velychko"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7669",title:"Standards, Methods and Solutions of Metrology",subtitle:null,isOpenForSubmission:!1,hash:"29d82c2091fb9ca1c49620000d170f2c",slug:"standards-methods-and-solutions-of-metrology",bookSignature:"Luigi Cocco",coverURL:"https://cdn.intechopen.com/books/images_new/7669.jpg",editedByType:"Edited by",editors:[{id:"112023",title:"Dr.",name:"Luigi",middleName:null,surname:"Cocco",slug:"luigi-cocco",fullName:"Luigi Cocco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6760",title:"Scientometrics",subtitle:null,isOpenForSubmission:!1,hash:"f439a48f9b20628b0dd34b804a061967",slug:"scientometrics",bookSignature:"Mari Jibu and Yoshiyuki Osabe",coverURL:"https://cdn.intechopen.com/books/images_new/6760.jpg",editedByType:"Edited by",editors:[{id:"197098",title:"Dr.",name:"Mari",middleName:null,surname:"Jibu",slug:"mari-jibu",fullName:"Mari Jibu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"61110",doi:"10.5772/intechopen.76874",title:"Altmetrics: State of the Art and a Look into the Future",slug:"altmetrics-state-of-the-art-and-a-look-into-the-future",totalDownloads:1285,totalCrossrefCites:3,totalDimensionsCites:7,abstract:"The development of alternative indicators (altmetrics) can be traced back to a discussion a few years ago where the central question was: does the focus on classical bibliometric indicators still adequately reflect the scientific and social significance of scientific work in the Internet age? In the course of this discussion, the term “altmetrics” was introduced as a collective term for all those indicators that contain previously unnoticed information from the Internet—especially concerning social media. Altmetrics shed light on the reception of scientific publications in news websites as well as in scientific blogs, policy papers, and other web-based content. This chapter deals with the current state of the art of altmetrics, focusing on the present discussion about the informative value of altmetrics. Furthermore, we investigate to what extent altmetrics can be used in scientific evaluations. We conclude our chapter with an outlook on the potential prospects for success of altmetrics in different fields of application.",book:{id:"6760",slug:"scientometrics",title:"Scientometrics",fullTitle:"Scientometrics"},signatures:"Dirk Tunger, Marcel Clermont and Andreas Meier",authors:[{id:"238989",title:"Dr.",name:"Marcel",middleName:null,surname:"Clermont",slug:"marcel-clermont",fullName:"Marcel Clermont"},{id:"239332",title:"Dr.",name:"Dirk",middleName:null,surname:"Tunger",slug:"dirk-tunger",fullName:"Dirk Tunger"},{id:"249751",title:"Mr.",name:"Andreas",middleName:null,surname:"Meier",slug:"andreas-meier",fullName:"Andreas Meier"}]},{id:"66092",doi:"10.5772/intechopen.84853",title:"Metrological Traceability at Different Measurement Levels",slug:"metrological-traceability-at-different-measurement-levels",totalDownloads:1017,totalCrossrefCites:5,totalDimensionsCites:6,abstract:"The international agreements are the basis for establishing the global metrological traceability at different measurement levels. The concepts and concept relations around metrological traceability are presented. An important element of providing the metrological traceability is the evaluation of measurement uncertainty. The procedure of linking of key and supplementary comparison results is described. Linking of key and supplementary comparison results of the Regional Metrology Organization for some quantities according to the described procedure was presented. Results for all participants of presented key and supplementary comparisons are satisfactory for chi-square test and En number. The procedure of linking of key or supplementary comparison and national inter-laboratory comparison results is described. This procedure can be used for practical evaluation of specific inter-laboratory comparison results on a national level in different countries by means of laboratory results of the National Metrology Institute and Designated Institute. This procedure can contribute the mutual recognition of measurement and testing results by different countries. Linking of key comparison and inter-laboratory comparison results for some quantities according to the described procedure was presented. Results for all participants of presented key comparison and inter-laboratory comparison are satisfactory for chi-square test, En number, z scores and ζ scores.",book:{id:"7669",slug:"standards-methods-and-solutions-of-metrology",title:"Standards, Methods and Solutions of Metrology",fullTitle:"Standards, Methods and Solutions of Metrology"},signatures:"Oleh Velychko and Tetyana Gordiyenko",authors:[{id:"94982",title:"Prof.",name:"Tetyana",middleName:null,surname:"Gordiyenko",slug:"tetyana-gordiyenko",fullName:"Tetyana Gordiyenko"},{id:"223340",title:"Prof.",name:"Oleh",middleName:null,surname:"Velychko",slug:"oleh-velychko",fullName:"Oleh Velychko"}]},{id:"61607",doi:"10.5772/intechopen.77951",title:"Scientometrics of Scientometrics: Mapping Historical Footprint and Emerging Technologies in Scientometrics",slug:"scientometrics-of-scientometrics-mapping-historical-footprint-and-emerging-technologies-in-scientome",totalDownloads:1398,totalCrossrefCites:3,totalDimensionsCites:4,abstract:"Scientometrics is the study of quantitative aspects of science, technology, and innovation. This chapter identifies thematic patterns and emerging trends of the published literature in scientometrics using a variety of tools and techniques, including CiteSpace, VOSviewer, and dynamic topic modeling. Using 8098 bibliographic records of published scientometrics research, we explored domain-level citation paths, subject category assignment, keyword co-occurrence, topic models, and document co-citation network to map and characterize the intellectual landscapes of scientometrics. Findings reveal that the domain is multidisciplinary in that a wide range of disciplines contribute to the growth of literature, but only partially interdisciplinary as some works heavily cites from similar domains. Early literature was interested in measuring the impact of a science and evaluating research performance and productivity. Modeling scientometrics laws and indicators is also of greatest interest. Later work explored applications of scientometrics to a variety of domains such as material sciences, medicine, environmental sciences, and social media analytics. Impact measure and science mapping are among the topics receiving consistent attention.",book:{id:"6760",slug:"scientometrics",title:"Scientometrics",fullTitle:"Scientometrics"},signatures:"Meen Chul Kim and Yongjun Zhu",authors:[{id:"239684",title:"Ph.D. Student",name:"Meen Chul",middleName:null,surname:"Kim",slug:"meen-chul-kim",fullName:"Meen Chul Kim"},{id:"247267",title:"Prof.",name:"Yongjun",middleName:null,surname:"Zhu",slug:"yongjun-zhu",fullName:"Yongjun Zhu"}]},{id:"61596",doi:"10.5772/intechopen.77389",title:"Progress of Studies of Citations and PageRank",slug:"progress-of-studies-of-citations-and-pagerank",totalDownloads:829,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"A number of citations have been used to measure the value of paper. However, recently, Google’s PageRank is also extensively applied to quantify the worth of papers. In this chapter, we summarize the recent progress of studies on citations and PageRank. We also show our latest investigations of the citation network consisting of 34,666,719 articles and 591,321,826 citations. We propose the generalized beta distribution of the second kind to explain the distribution of citation and introduce the stochastic model with aging effect and super preferential attachment. Furthermore, we clarify the positive linear relation between citations and Google’s PageRank. By using this relationship as the benchmark to classify papers, we extract extremely prestigious papers, popular papers, and rising papers.",book:{id:"6760",slug:"scientometrics",title:"Scientometrics",fullTitle:"Scientometrics"},signatures:"Wataru Souma and Mari Jibu",authors:[{id:"238741",title:"Dr.",name:"Wataru",middleName:null,surname:"Souma",slug:"wataru-souma",fullName:"Wataru Souma"}]},{id:"61604",doi:"10.5772/intechopen.77130",title:"Exploring Characteristics of Patent-Paper Citations and Development of New Indicators",slug:"exploring-characteristics-of-patent-paper-citations-and-development-of-new-indicators",totalDownloads:1116,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"In this study, the characteristics of “papers cited in patents” are examined and impact indicators of them based on existing bibliometric indicators are developed. First, the nature of patent-paper citations is examined for Japanese scientific papers as the basic knowledge for developing indicators. Second, the patent-paper citation index (PPCI) indicator, which was proposed in the previous study, is revised. Third, a set of indicators, named High Feature Valued Patent-Paper Citation Index, which is based on three feature values of citing patents, is proposed. Evidence using our new indicators is presented and the tendency of patent-paper citations of Japanese three sectors such as university, public institute, and corporation is discussed. Finally, issues to be addressed are discussed.",book:{id:"6760",slug:"scientometrics",title:"Scientometrics",fullTitle:"Scientometrics"},signatures:"Yasuhiro Yamashita",authors:[{id:"239637",title:"M.A.",name:"Yasuhiro",middleName:null,surname:"Yamashita",slug:"yasuhiro-yamashita",fullName:"Yasuhiro Yamashita"}]}],mostDownloadedChaptersLast30Days:[{id:"61607",title:"Scientometrics of Scientometrics: Mapping Historical Footprint and Emerging Technologies in Scientometrics",slug:"scientometrics-of-scientometrics-mapping-historical-footprint-and-emerging-technologies-in-scientome",totalDownloads:1395,totalCrossrefCites:3,totalDimensionsCites:4,abstract:"Scientometrics is the study of quantitative aspects of science, technology, and innovation. This chapter identifies thematic patterns and emerging trends of the published literature in scientometrics using a variety of tools and techniques, including CiteSpace, VOSviewer, and dynamic topic modeling. Using 8098 bibliographic records of published scientometrics research, we explored domain-level citation paths, subject category assignment, keyword co-occurrence, topic models, and document co-citation network to map and characterize the intellectual landscapes of scientometrics. Findings reveal that the domain is multidisciplinary in that a wide range of disciplines contribute to the growth of literature, but only partially interdisciplinary as some works heavily cites from similar domains. Early literature was interested in measuring the impact of a science and evaluating research performance and productivity. Modeling scientometrics laws and indicators is also of greatest interest. Later work explored applications of scientometrics to a variety of domains such as material sciences, medicine, environmental sciences, and social media analytics. Impact measure and science mapping are among the topics receiving consistent attention.",book:{id:"6760",slug:"scientometrics",title:"Scientometrics",fullTitle:"Scientometrics"},signatures:"Meen Chul Kim and Yongjun Zhu",authors:[{id:"239684",title:"Ph.D. Student",name:"Meen Chul",middleName:null,surname:"Kim",slug:"meen-chul-kim",fullName:"Meen Chul Kim"},{id:"247267",title:"Prof.",name:"Yongjun",middleName:null,surname:"Zhu",slug:"yongjun-zhu",fullName:"Yongjun Zhu"}]},{id:"67258",title:"Biotoxicological Monitoring of Organic Solvents in the Tunisian Footwear Industry",slug:"biotoxicological-monitoring-of-organic-solvents-in-the-tunisian-footwear-industry",totalDownloads:776,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Organic solvents (OS) are widely used in Tunisian footwear industry; however, there are no data related to employees’ exposure. The objective of this study was therefore to adjust analytical methods in our laboratory for exposure assessment purposes. The predominant solvents are acetone, cyclohexane, hexane, methyl ethyl ketone, and toluene. Eighteen companies benefited from 55 airborne and 190 urine samples. Quantification of solvents and their metabolites was achieved by analytical methods that were adapted and validated in our laboratory. Airborne solvents were determined using gas chromatography (GC-FID). Urinary solvents or metabolites were measured either by GC or high-performance liquid chromatography (HPLC). Validation criteria were determined and used to judge the methods reliability. For airborne solvents, the concentrations exceeding the threshold limit value are mainly for hexane. For urines, the hippuric acid concentrations exceeded the biological limit value in semi-industrial process. Surprisingly, trans, trans-muconic acid was found in industrial and artisanal processes even though benzene was not among the used products. GC and HPLC methods have been adjusted, optimized, and effectively used to quantify OS and their metabolites in airborne and urine samples. Thus, a process of occupational risk assessment via a biotoxicological and airborne monitoring for solvents is now set.",book:{id:"7669",slug:"standards-methods-and-solutions-of-metrology",title:"Standards, Methods and Solutions of Metrology",fullTitle:"Standards, Methods and Solutions of Metrology"},signatures:"Imed Gargouri, Fatma Omrane and Moncef Khadhraoui",authors:[{id:"186371",title:"Associate Prof.",name:"Imed",middleName:null,surname:"Gargouri",slug:"imed-gargouri",fullName:"Imed Gargouri"},{id:"188100",title:"Dr.",name:"Moncef",middleName:null,surname:"Khadhraoui",slug:"moncef-khadhraoui",fullName:"Moncef Khadhraoui"},{id:"294793",title:"Dr.",name:"Fatma",middleName:null,surname:"Omrane",slug:"fatma-omrane",fullName:"Fatma Omrane"}]},{id:"61604",title:"Exploring Characteristics of Patent-Paper Citations and Development of New Indicators",slug:"exploring-characteristics-of-patent-paper-citations-and-development-of-new-indicators",totalDownloads:1112,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"In this study, the characteristics of “papers cited in patents” are examined and impact indicators of them based on existing bibliometric indicators are developed. First, the nature of patent-paper citations is examined for Japanese scientific papers as the basic knowledge for developing indicators. Second, the patent-paper citation index (PPCI) indicator, which was proposed in the previous study, is revised. Third, a set of indicators, named High Feature Valued Patent-Paper Citation Index, which is based on three feature values of citing patents, is proposed. Evidence using our new indicators is presented and the tendency of patent-paper citations of Japanese three sectors such as university, public institute, and corporation is discussed. Finally, issues to be addressed are discussed.",book:{id:"6760",slug:"scientometrics",title:"Scientometrics",fullTitle:"Scientometrics"},signatures:"Yasuhiro Yamashita",authors:[{id:"239637",title:"M.A.",name:"Yasuhiro",middleName:null,surname:"Yamashita",slug:"yasuhiro-yamashita",fullName:"Yasuhiro Yamashita"}]},{id:"65687",title:"Third-Order Nonlinear Optical Properties of Quantum Dots",slug:"third-order-nonlinear-optical-properties-of-quantum-dots",totalDownloads:1376,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"Quantum dots (QDs) are semiconducting nanocrystalline particles. QDs are attractive photonic media. In this chapter, we introduce third-order nonlinear optical properties and a brief idea about the physics of QDs. Z-scan technique and theoretical analysis adopted to obtain nonlinear parameters will be discussed. Analysis of third-order nonlinear optical parameters for PbS QDs suspended in toluene with radii 2.4 and 5.0 nm under different excitation beam power level and three different wavelengths (488, 514, and 633 nm) will be detailed. Third-order optical susceptibility χ(3) and optical-limiting behavior of PbS QD suspended in toluene are presented. Irrespective of their size, QDs are a good example of optical limiters with low threshold.",book:{id:"7669",slug:"standards-methods-and-solutions-of-metrology",title:"Standards, Methods and Solutions of Metrology",fullTitle:"Standards, Methods and Solutions of Metrology"},signatures:"Khalil Ebrahim Jasim",authors:[{id:"36065",title:"Dr.",name:"Khalil",middleName:"Ebrahim",surname:"Jasim",slug:"khalil-jasim",fullName:"Khalil Jasim"}]},{id:"67358",title:"Analysis of Pulsating White Dwarf Star Light Curves",slug:"analysis-of-pulsating-white-dwarf-star-light-curves",totalDownloads:710,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Analysis techniques are presented for extracting the frequencies contained in the light curves of pulsating white dwarf stars. In several surface temperature regimes, these astronomical objects are unstable to gravity mode pulsations which result in brightness variations corresponding to the periods of the excited modes. There is a rich array of possible periods with values ranging from about 100 to 1000 seconds. Mode periods present in the light curve are detected by undertaking a Fourier analysis of the time series light curve; theoretical models of the star can be refined with this information. The Fourier analysis needs to take into account such things as finite length, data gaps and the presence of noise.",book:{id:"7669",slug:"standards-methods-and-solutions-of-metrology",title:"Standards, Methods and Solutions of Metrology",fullTitle:"Standards, Methods and Solutions of Metrology"},signatures:"Denis J. Sullivan",authors:[{id:"265224",title:"Dr.",name:"Denis",middleName:null,surname:"Sullivan",slug:"denis-sullivan",fullName:"Denis Sullivan"}]}],onlineFirstChaptersFilter:{topicId:"1417",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:0,paginationItems:[]},overviewPageOFChapters:{paginationCount:0,paginationItems:[]},overviewPagePublishedBooks:{paginationCount:0,paginationItems:[]},openForSubmissionBooks:{paginationCount:5,paginationItems:[{id:"11669",title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",hash:"9117bd12dc904ced43404e3383b6591a",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 3rd 2022",isOpenForSubmission:!0,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11672",title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",hash:"c00855833476a514d37abf7c846e16e9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11674",title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",hash:"5d7d49bd80f53dad3761f78de4a862c6",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",hash:"69f009be08998711eecfb200adc7deca",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 26th 2022",isOpenForSubmission:!0,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 8th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:17,paginationItems:[{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81547",title:"Organoids and Commercialization",doi:"10.5772/intechopen.104706",signatures:"Anubhab Mukherjee, Aprajita Sinha, Maheshree Maibam, Bharti Bisht and Manash K. Paul",slug:"organoids-and-commercialization",totalDownloads:33,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81412",title:"Mathematical Morphology and the Heart Signals",doi:"10.5772/intechopen.104113",signatures:"Taouli Sidi Ahmed",slug:"mathematical-morphology-and-the-heart-signals",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81360",title:"Deep Learning Algorithms for Efficient Analysis of ECG Signals to Detect Heart Disorders",doi:"10.5772/intechopen.103075",signatures:"Sumagna Dey, Rohan Pal and Saptarshi Biswas",slug:"deep-learning-algorithms-for-efficient-analysis-of-ecg-signals-to-detect-heart-disorders",totalDownloads:31,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81294",title:"Applications of Neural Organoids in Neurodevelopment and Regenerative Medicine",doi:"10.5772/intechopen.104044",signatures:"Jing Gong, Jiahui Kang, Minghui Li, Xiao Liu, Jun Yang and Haiwei Xu",slug:"applications-of-neural-organoids-in-neurodevelopment-and-regenerative-medicine",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81318",title:"Retinal Organoids over the Decade",doi:"10.5772/intechopen.104258",signatures:"Jing Yuan and Zi-Bing Jin",slug:"retinal-organoids-over-the-decade",totalDownloads:39,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81068",title:"Characteristic Profiles of Heart Rate Variability in Depression and Anxiety",doi:"10.5772/intechopen.104205",signatures:"Toshikazu Shinba",slug:"characteristic-profiles-of-heart-rate-variability-in-depression-and-anxiety",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80691",title:"Applications of Quantum Mechanics, Laws of Classical Physics, and Differential Calculus to Evaluate Source Localization According to the Electroencephalogram",doi:"10.5772/intechopen.102831",signatures:"Kristin S. Williams",slug:"applications-of-quantum-mechanics-laws-of-classical-physics-and-differential-calculus-to-evaluate-so",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},subseriesFiltersForOFChapters:[{caption:"Bioinformatics and Medical Informatics",value:7,count:13,group:"subseries"}],publishedBooks:{paginationCount:0,paginationItems:[]},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{paginationCount:249,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University, Kuwait. His research interests include optimization, computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, and intelligent systems. Prof. Sarfraz has been a keynote/invited speaker at various platforms around the globe. He has advised/supervised more than 110 students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He has authored and/or edited around seventy books. Prof. Sarfraz is a member of various professional societies. He is a chair and member of international advisory committees and organizing committees of numerous international conferences. He is also an editor and editor in chief for various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:"Beijing University of Technology",institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Lakhno Igor Victorovich was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPhD – 1999, Kharkiv National Medical Univesity.\nDSc – 2019, PL Shupik National Academy of Postgraduate Education \nLakhno Igor has been graduated from an international training courses on reproductive medicine and family planning held in Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor of the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s a professor of the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education . He’s an author of about 200 printed works and there are 17 of them in Scopus or Web of Science databases. Lakhno Igor is a rewiever of Journal of Obstetrics and Gynaecology (Taylor and Francis), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for DSc degree \\'Pre-eclampsia: prediction, prevention and treatment”. Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: obstetrics, women’s health, fetal medicine, cardiovascular medicine.",institutionString:"V.N. Karazin Kharkiv National University",institution:{name:"Kharkiv Medical Academy of Postgraduate Education",country:{name:"Ukraine"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"243698",title:"M.D.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:"Shanxi Eye Hospital",institution:{name:"Shanxi Eye Hospital",country:{name:"China"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRZkkQAG/Profile_Picture_2022-05-09T12:55:18.jpg",biography:null,institutionString:null,institution:null},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:null},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"338222",title:"Mrs.",name:"María José",middleName:null,surname:"Lucía Mudas",slug:"maria-jose-lucia-mudas",fullName:"María José Lucía Mudas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}},{id:"147824",title:"Mr.",name:"Pablo",middleName:null,surname:"Revuelta Sanz",slug:"pablo-revuelta-sanz",fullName:"Pablo Revuelta Sanz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}}]}},subseries:{item:{id:"86",type:"subseries",title:"Business and Management",keywords:"Demographic shifts, Innovation, Technology, Next-gen leaders, Worldwide environmental issues and clean technology, Uncertainty and political risks, Radical adjacency, Emergence of new business ecosystem type, Emergence of different leader and leader values types, Universal connector, Elastic enterprise, Business platform, Supply chain complexity",scope:"