Simulated parameters
\\n\\n
IntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\\n\\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\\n\\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\\n\\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\\n\\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\\n\\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\\n\\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\\n\\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\\n\\nFeel free to share this news on social media and help us mark this memorable moment!
\\n\\n\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/237"}},components:[{type:"htmlEditorComponent",content:'
After years of being acknowledged as the world's leading publisher of Open Access books, today, we are proud to announce we’ve successfully launched a portfolio of Open Science journals covering rapidly expanding areas of interdisciplinary research.
\n\n\n\nIntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\n\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\n\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\n\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\n\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\n\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\n\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\n\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\n\nFeel free to share this news on social media and help us mark this memorable moment!
\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"4720",leadTitle:null,fullTitle:"Flow Cytometry - Select Topics",title:"Flow Cytometry",subtitle:"Select Topics",reviewType:"peer-reviewed",abstract:"Flow cytometry - Select Topics is a collection of chapters that illustrate the constantly evolving application of flow cytometry to diverse areas of research or clinical investigations. It includes chapters on the utilization of flow cytometry in the fields of human reproduction and fertility, platelet function, apoptosis, inflammation research, leukemia immunophenotyping, and transplantation.",isbn:"978-953-51-2551-8",printIsbn:"978-953-51-2550-1",pdfIsbn:"978-953-51-5445-7",doi:"10.5772/59733",price:119,priceEur:129,priceUsd:155,slug:"flow-cytometry-select-topics",numberOfPages:164,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"5a842a00d86bc7f956a5fd1fe6d62b8a",bookSignature:"Ingrid Schmid",publishedDate:"August 24th 2016",coverURL:"https://cdn.intechopen.com/books/images_new/4720.jpg",numberOfDownloads:14885,numberOfWosCitations:5,numberOfCrossrefCitations:7,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:11,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:23,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 21st 2015",dateEndSecondStepPublish:"October 12th 2015",dateEndThirdStepPublish:"January 8th 2016",dateEndFourthStepPublish:"February 7th 2016",dateEndFifthStepPublish:"March 8th 2016",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"109787",title:"M.Sc.",name:"Ingrid",middleName:null,surname:"Schmid",slug:"ingrid-schmid",fullName:"Ingrid Schmid",profilePictureURL:"https://mts.intechopen.com/storage/users/109787/images/system/109787.jpg",biography:"Ingrid Schmid, Mag. Pharm. is an Academic Research Specialist in the Department of Medicine at the University of California at Los Angeles and the technical director of the UCLA Flow Cytometry Resource which she established in 1989 in conjunction with Dr. Janis Giorgi. She received her Pharmaceutical Sciences degree from the University of Vienna, Austria. Ms. Schmid has a broad perspective on applications of various flow cytometry techniques and has developed numerous flow cytometry methods. She has published twenty-seven first-author papers, reviews, and book chapters, has co-authored an additional thirty-one publications, and has edited two books. Ms. Schmid is a member of the International Society for the Advancement of Cytometry Biosafety Committee and has served as its Chair between 1997 and 2007.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"University of California Los Angeles",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"403",title:"Microbial Genetics",slug:"karyology-microbial-genetics"}],chapters:[{id:"51694",title:"Sperm Flow Cytometry: Beyond Human Fertilization and Embryo Development",doi:"10.5772/64344",slug:"sperm-flow-cytometry-beyond-human-fertilization-and-embryo-development",totalDownloads:1679,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:1,abstract:"Male infertily is a contributing factor in up to 50% of all infertility cases, a solo cause in about 30% of them. Therefore, new and improved diagnostic methods that reduce operator variability regarding sperm defects that are not accesible by the conventional microscope scoring should be evaluated. Assisted reproductive technology (ART) has been involved in the description of alternative pathways in basic cellular functions. it is important to know that it is also related to the peri-implantatory processes that involve the sperm-oocyte interaction, cellular changes observed during fertilization, and the early and late embryo development. Several pathways have been involved at the early stages of human gametogenesis. The spermatozoon has demonstrated an intricate correlation during the fertilization process, as a transfected vector on genetic material, and as interacting with other inner components (RNAm, mitochondrial organelles, etc.). Spermatogenesis is affected by programmed death cell pathways from its packaging process through the elongated cytoplasmic structures during spermiogenesis. Flow cytometry (FC) has been an outstanding tool with the capability to select human gametes to achieve a better reproductive condition. It has been applied as a diagnostic and therapeutic tool allowing a measurable and objective selection and discrimination of spermatozoa from subfertile subjects. Using FC, we are able to know that early distribution of organelles such as mitochondria has an impact in embryo quality before genetic activation on the eight-cell stages occurs. This chapter will let the readers know the current knowledge on sperm fertilization and the relation between the embryo development and the offspring and all the tools now available for an early diagnosis and to identify therapeutic options with FC.",signatures:"Gerardo Barroso, Alexia Alvarez and Carlos Valdespin",downloadPdfUrl:"/chapter/pdf-download/51694",previewPdfUrl:"/chapter/pdf-preview/51694",authors:[{id:"111878",title:"Dr.",name:"Gerardo",surname:"Barroso",slug:"gerardo-barroso",fullName:"Gerardo Barroso"}],corrections:null},{id:"50807",title:"The Role of Cytometry for Male Fertility Assessment in Toxicology",doi:"10.5772/62965",slug:"the-role-of-cytometry-for-male-fertility-assessment-in-toxicology",totalDownloads:1862,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Infertility is nowadays a major concern, affecting approximately 8–12% of the couples and the male factor accounts for about 50% of the cases. Occupational and/or environmental exposure to heavy metals and other pollutants is the main cause of male infertility. Lead, cadmium and chromium are heavy metals widely used in industry and quite persistent in the environment, raising major concerns over the possible effects on the reproductive health of workers and the general population. Sperm DNA integrity is essential for the accurate transmission of paternal genetic information, and normal sperm chromatin structure is important for sperm fertilizing ability. Flow cytometry can be to characterize multiple physical characteristics of the population of spermatozoa in the sperm, including sperm concentration, viability, mitochondrial mass and function, acrosome integrity, capacitation, membrane fluidity, DNA content and status, etc. This chapter elucidates the role of cytometry in the study of male fertility under toxicological insult by pollutants such as chromium, cadmium and lead. Some representative examples are presented using in vivo studies with rodents. In addition, complementary techniques to cytometry and future perspectives will be mentioned in an interdisciplinary point of view to gain knowledge on this subject.",signatures:"Maria de Lourdes Pereira, Helena Oliveira, Henrique M.A.C.\nFonseca, Fernando Garcia e Costa and Conceição Santos",downloadPdfUrl:"/chapter/pdf-download/50807",previewPdfUrl:"/chapter/pdf-preview/50807",authors:[{id:"79715",title:"Prof.",name:"Maria De Lourdes",surname:"Pereira",slug:"maria-de-lourdes-pereira",fullName:"Maria De Lourdes Pereira"},{id:"174419",title:"Prof.",name:"Fernando",surname:"Garcia E Costa",slug:"fernando-garcia-e-costa",fullName:"Fernando Garcia E Costa"},{id:"185982",title:"Prof.",name:"Helena",surname:"Oliveira",slug:"helena-oliveira",fullName:"Helena Oliveira"},{id:"185983",title:"Prof.",name:"Henrique M.A.C.",surname:"Fonseca",slug:"henrique-m.a.c.-fonseca",fullName:"Henrique M.A.C. Fonseca"},{id:"185984",title:"Prof.",name:"Conceição",surname:"Santos",slug:"conceicao-santos",fullName:"Conceição Santos"}],corrections:null},{id:"51423",title:"Only the Truth Would Enlighten Us — The Advantages and Disadvantages of Flow Cytometry as a Method of Choice in the Study of Mouse and Rat Platelets",doi:"10.5772/63473",slug:"only-the-truth-would-enlighten-us-the-advantages-and-disadvantages-of-flow-cytometry-as-a-method-of-",totalDownloads:1847,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Increasing number of transgenic and knockout strains of laboratory rodents has been developed to provide reliable models of human cardiovascular diseases. Due to apparent differences in platelet physiology, morphology, biochemistry, etc. between rodents and men, methods employed to study blood platelets in rodents should always consider these differences in a reasonably critical way. Flow cytometry is a convenient tool that enables to easily cope with the minute amounts of the available biological material and providing an extremely versatile information. This review focuses on the practical and methodological aspects of flow cytometry, pointing to the key elements of the commonly used protocols for determining of multiple parameters of blood platelet (patho)physiology in mice and rats. We summarized and critically reviewed the available procedures, as well as figured out how to overcome possible obstacles, shortcomings, drawbacks or artefacts that a researcher may encounter when monitoring various phenomena intimately associated with blood platelet biology. Flow cytometry assays have been also collated with some alternative techniques (intravital fluorescence microscopy, in vitro platelet adhesion under flow conditions). We hope that our paper may further facilitate other researchers to study mouse and rat platelets with the use of the most optimal and the least artefact-prone procedures.",signatures:"Hassan Kassassir, Karolina Siewiera, Tomasz Przygodzki, Magdalena Labieniec‐Watala and Cezary Watala",downloadPdfUrl:"/chapter/pdf-download/51423",previewPdfUrl:"/chapter/pdf-preview/51423",authors:[{id:"31394",title:"Dr.",name:"Magdalena",surname:"Labieniec-Watala",slug:"magdalena-labieniec-watala",fullName:"Magdalena Labieniec-Watala"},{id:"51050",title:"Ms.",name:"Karolina",surname:"Siewiera",slug:"karolina-siewiera",fullName:"Karolina Siewiera"},{id:"95368",title:"Dr.",name:"Tomasz",surname:"Przygodzki",slug:"tomasz-przygodzki",fullName:"Tomasz Przygodzki"},{id:"178693",title:"Ph.D.",name:"Hassan",surname:"Kassassir",slug:"hassan-kassassir",fullName:"Hassan Kassassir"},{id:"184177",title:"Prof.",name:"Cezary",surname:"Watala",slug:"cezary-watala",fullName:"Cezary Watala"}],corrections:null},{id:"48399",title:"The Multiplexing of Assays for the Measurement of Early Stages of Apoptosis by Polychromatic Flow Cytometry",doi:"10.5772/60549",slug:"the-multiplexing-of-assays-for-the-measurement-of-early-stages-of-apoptosis-by-polychromatic-flow-cy",totalDownloads:1743,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:0,abstract:"The detection of apoptosis has been a stalwart application for flow cytometric analysis for decades and this review of flow cytometric methods to detect early stages of apoptosis includes the use of the pivotal assay to detect early and late apoptosis, the Annexin V assay which when multiplexed with biologically functional fluorescent dyes to measure mitochondrial function and Reactive Oxygen Species (ROS) generation allows further identification of functionally different subsets within apoptotic populations. Here we show how this polychromatic approach can be used to demonstrate which subset of cells show changes in mitochondrial function and when ROS is generated in a time dependent manner. This polychromatic approach to flow cytometry leads to the identification of over ten sub-populations of cells during classic apoptosis or programmed cell death (PCD).",signatures:"G. Warnes",downloadPdfUrl:"/chapter/pdf-download/48399",previewPdfUrl:"/chapter/pdf-preview/48399",authors:[{id:"108846",title:"Dr.",name:"Gary",surname:"Warnes",slug:"gary-warnes",fullName:"Gary Warnes"}],corrections:null},{id:"49202",title:"Effects of WF10 on Glycosaminoglycan Sulphation in Proinflammatory Monocytes and Macrophages",doi:"10.5772/60862",slug:"effects-of-wf10-on-glycosaminoglycan-sulphation-in-proinflammatory-monocytes-and-macrophages",totalDownloads:1346,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The chlorite-based drug solution WF10 has been successfully applied to dampen strong inflammatory disease states and to improve wound healing processes. However, the molecular mechanisms of this drug are not well understood. This study is directed to investigate how WF10 and its components affect the expression of surface markers and sulphated proteoglycans and glycosaminoglycans in proinflammatory-stimulated monocytes and macrophages.",signatures:"Maria Schönberg, Denise Schlorke and Jürgen Arnhold",downloadPdfUrl:"/chapter/pdf-download/49202",previewPdfUrl:"/chapter/pdf-preview/49202",authors:[{id:"115238",title:"Prof.",name:"Juergen",surname:"Arnhold",slug:"juergen-arnhold",fullName:"Juergen Arnhold"},{id:"174787",title:"Ph.D. Student",name:"Maria",surname:"Schönberg",slug:"maria-schonberg",fullName:"Maria Schönberg"},{id:"174897",title:"MSc.",name:"Denise",surname:"Schlorke",slug:"denise-schlorke",fullName:"Denise Schlorke"}],corrections:null},{id:"49878",title:"Immunophenotyping of Acute Leukemias – From Biology to Clinical Application",doi:"10.5772/62332",slug:"immunophenotyping-of-acute-leukemias-from-biology-to-clinical-application",totalDownloads:3285,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:"Immunophenotyping is an essential part of the modern diagnostic workup of acute leukemias and thus for an appropriate treatment of these complex and heterogeneous diseases. It provides a lot of useful information in this setting that transfers directly from laboratory to clinical management of patients. Lineage definition is the first goal leading to proper initial therapy. Some phenotypic patterns define specific subsets correlating with poor (mixed phenotype, dendritic cell neoplasm) or favorable (cortical T-lymphoblastic leukemia) outcome, thus guiding the application of treatment modalities. An advanced analysis of phenotypic data can address specific issues, such as the still debated role of multilineage dysplasia. The quality of response to chemotherapy is monitored by the detection of minimal residual disease and peripheral blast clearance during chemotherapy delivering. That allows a sharp discrimination of prognosis and again can drive the intensity of therapies proportionally to the disease chemosensitivity.",signatures:"Francesco Mannelli",downloadPdfUrl:"/chapter/pdf-download/49878",previewPdfUrl:"/chapter/pdf-preview/49878",authors:[{id:"178848",title:"M.D.",name:"Francesco",surname:"Mannelli",slug:"francesco-mannelli",fullName:"Francesco Mannelli"}],corrections:null},{id:"50878",title:"Detection of Anti-HLA Antibodies by Flow Cytometer",doi:"10.5772/62553",slug:"detection-of-anti-hla-antibodies-by-flow-cytometer",totalDownloads:3125,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Lives of patients with solid organ failure depend physically, emotionally, and economically on others. Improvement in organ transplantation is one of the most important medical breakthroughs of the twenty-first century. Being healthy upon organ transplantation is the second chance to live the life. This is frequently observed in heart-, lung-, and liver-transplanted patients. For instance, upon kidney transplantation, dialysis dependence terminates and life quality of the patients increases. The major difficulty in organ transplantation is the low number of organ donation. Thus, the number of patients in the waiting list for the cadaveric transplantation increases day by day. Under these limited circumstances, required conditions should be further provided for the long survival rates of recipients with allogeneic graft without any problem. Human leukocyte antigen (HLA) tissue typing and anti-HLA antibodies produced before and after the transplantation adversely affect the graft survival and thus the survival of an individual. Investigation of pretransplantation immune status of recipients is significant. Particularly, donor-specific anti-HLA antibodies determine early and long-term graft survival. Flow cytometer is one of the most important devices used in anti-HLA antibody detection and also for other clinical and scientific purposes. Compared to conventional methods, it supports transplantation clinics due to its high sensitivity and specificity. The use of flow cytometer dependent methods in transplantation field increases progressively.",signatures:"Tülay Kılıçaslan Ayna and Aslı Özkızılcık Koçyiğit",downloadPdfUrl:"/chapter/pdf-download/50878",previewPdfUrl:"/chapter/pdf-preview/50878",authors:[{id:"178265",title:"Dr.",name:"Tulay",surname:"Kilicaslan Ayna",slug:"tulay-kilicaslan-ayna",fullName:"Tulay Kilicaslan Ayna"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"1578",title:"Flow Cytometry",subtitle:"Recent Perspectives",isOpenForSubmission:!1,hash:"fccad401cbcf998ea4de62d524abf82d",slug:"flow-cytometry-recent-perspectives",bookSignature:"Ingrid Schmid",coverURL:"https://cdn.intechopen.com/books/images_new/1578.jpg",editedByType:"Edited by",editors:[{id:"109787",title:"M.Sc.",name:"Ingrid",surname:"Schmid",slug:"ingrid-schmid",fullName:"Ingrid Schmid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2291",title:"Clinical Flow Cytometry",subtitle:"Emerging Applications",isOpenForSubmission:!1,hash:"a5414617aafe62d7c6ec8205028f6967",slug:"clinical-flow-cytometry-emerging-applications",bookSignature:"Ingrid Schmid",coverURL:"https://cdn.intechopen.com/books/images_new/2291.jpg",editedByType:"Edited by",editors:[{id:"109787",title:"M.Sc.",name:"Ingrid",surname:"Schmid",slug:"ingrid-schmid",fullName:"Ingrid Schmid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3536",title:"Chromatin Remodelling",subtitle:null,isOpenForSubmission:!1,hash:"31abe97fe35989e4547bab854b38e03a",slug:"chromatin-remodelling",bookSignature:"Danuta Radzioch",coverURL:"https://cdn.intechopen.com/books/images_new/3536.jpg",editedByType:"Edited by",editors:[{id:"165250",title:"Dr.",name:"Danuta",surname:"Radzioch",slug:"danuta-radzioch",fullName:"Danuta Radzioch"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5085",title:"Telomere",subtitle:"A Complex End of a Chromosome",isOpenForSubmission:!1,hash:"2a8f40859d7bc312dea327fd9b058a20",slug:"telomere-a-complex-end-of-a-chromosome",bookSignature:"Marcelo L. Larramendy",coverURL:"https://cdn.intechopen.com/books/images_new/5085.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66304",slug:"corrigendum-to-pulsating-flow-effects-on-hydrodynamics-in-a-desalination-membrane-filled-with-spacer",title:"Corrigendum to: Pulsating Flow Effects on Hydrodynamics in a Desalination Membrane Filled with Spacers",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66304.pdf",downloadPdfUrl:"/chapter/pdf-download/66304",previewPdfUrl:"/chapter/pdf-preview/66304",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66304",risUrl:"/chapter/ris/66304",chapter:{id:"55536",slug:"pulsating-flow-effects-on-hydrodynamics-in-a-desalination-membrane-filled-with-spacers",signatures:"Armando A. Soares, João Silva, Eliseu Monteiro and Abel Rouboa",dateSubmitted:"September 25th 2016",dateReviewed:"March 27th 2017",datePrePublished:null,datePublished:"August 30th 2017",book:{id:"5768",title:"Desalination",subtitle:null,fullTitle:"Desalination",slug:"desalination",publishedDate:"August 30th 2017",bookSignature:"Taner Yonar",coverURL:"https://cdn.intechopen.com/books/images_new/5768.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"32956",title:"Dr.",name:"Taner",middleName:null,surname:"Yonar",slug:"taner-yonar",fullName:"Taner Yonar"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"59885",title:"PhD.",name:"Abel",middleName:null,surname:"Rouboa",fullName:"Abel Rouboa",slug:"abel-rouboa",email:"rouboa@utad.pt",position:null,institution:null}]}},chapter:{id:"55536",slug:"pulsating-flow-effects-on-hydrodynamics-in-a-desalination-membrane-filled-with-spacers",signatures:"Armando A. Soares, João Silva, Eliseu Monteiro and Abel Rouboa",dateSubmitted:"September 25th 2016",dateReviewed:"March 27th 2017",datePrePublished:null,datePublished:"August 30th 2017",book:{id:"5768",title:"Desalination",subtitle:null,fullTitle:"Desalination",slug:"desalination",publishedDate:"August 30th 2017",bookSignature:"Taner Yonar",coverURL:"https://cdn.intechopen.com/books/images_new/5768.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"32956",title:"Dr.",name:"Taner",middleName:null,surname:"Yonar",slug:"taner-yonar",fullName:"Taner Yonar"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"59885",title:"PhD.",name:"Abel",middleName:null,surname:"Rouboa",fullName:"Abel Rouboa",slug:"abel-rouboa",email:"rouboa@utad.pt",position:null,institution:null}]},book:{id:"5768",title:"Desalination",subtitle:null,fullTitle:"Desalination",slug:"desalination",publishedDate:"August 30th 2017",bookSignature:"Taner Yonar",coverURL:"https://cdn.intechopen.com/books/images_new/5768.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"32956",title:"Dr.",name:"Taner",middleName:null,surname:"Yonar",slug:"taner-yonar",fullName:"Taner Yonar"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11369",leadTitle:null,title:"RNA Viruses",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tAn RNA virus is a virus that contains ribonucleic acid called RNA, it plays a crucial role in carrying genetic information from one generation to the next. RNA viruses usually have a single-stranded RNA (ssRNA) but also pose a double-stranded RNA (dsRNA). Most the RNA viruses replicate and are assembled in the cytoplasm, but DNA viruses replicate and are assembled in the nucleus of the host cell.
\r\n\r\n\tHuman infections caused by RNA virus include Hepatitis A, C and E, Nipah virus, Ebola, HIV, polio, measles, Rabies, SARS-CoV2, Dengue Fever, West Nile fever, Zika virus, Influenza, Hantavirus, etc.
\r\n\tThis book chapter’s main theme will be focused on transmission dynamics, pathogenesis, mechanisms of host interaction and response, epigenetics and markers, molecular diagnosis, RNA interacting proteins, RNA binding proteins, advanced development of tools for diagnosis, possible development of concepts for vaccines and anti drugs for RNA viruses, immunological mechanisms, treatment, prevention and control.
\r\n\t
The constant evolution of technologies for future wireless networks, along with the demand for new multimedia applications (voice, video,...) have led to the creation of new technologies for wireless communications. This is becoming one of the main challenges for this second decade of the third millennium, where new communications technologies must be sensitive to the need for bandwidth with high speed access, broadband in large coverage areas and the provision of services to an increasing number of users to ensure the next generation networks support for the content of new multimedia applications. Moreover, new technologies are an effective way of reducing physical barriers to the transmission of knowledge and transaction costs over fixed networks [1] [2]. Along with the creation of these wireless technologies, one of the current operating modes that is emerging is the mesh mode.
WMNs (Wireless Mesh Networks) are a special kind of MANET (Mobile Ad Hoc Network) and this research started out from the study and development of the MANETs. Compared with traditional networks, WMNs have many useful characteristics and peculiarities, such as dynamic self-organization, self-configuring, self-healing, high scalability and reliable services and are able to balance traffic and provide support to drop connections to fixed or mobile clients. In this way, it can prevent the decline of its services and avoid problems with flows where there is a need for bandwidth and high rates that are constantly required. This is achieved through a reconfiguration that always seeks the best alternative path to a better distribution of network traffic. Currently, many standard groups are improving the specifications of mesh networks from IEEE 802.11s to Wi-Fi (Wireless Fidelity), IEEE 802.15.4 to Bluetooth and IEEE 802.16j to WiMAX (Worldwide Interoperability for Microwave Access) to multi-hop relay that will be the subject under study in this chapter.
The mobile WiMAX (Figure 1) is a technology based on IEEE 802.16 standard [3] developed as a feasible and attractive solution to these problems. It provides access to wireless broadband, especially an enabling context-sensitive network for the FI (Future Internet) with new multimedia applications, connectivity services for handover scenarios, long distances reaching the last mile, mobility management and mechanisms that improve communications with support for bandwidth and throughput metrics. These influence the network QoS (Quality of Service) with a certain level of end-to-end quality for multimedia applications through the management of layer 2 (Link Layer / MAC) and layer 3 (Network Layer / IP) for the provision of better services that give support to multimedia applications such as video stream and VoIP (Voice over Internet Protocol) that require real-time data delivery [4] [5].
IEEE 802.16 / WiMAX network architecture
However, it is not clear enough how far the behavior of the WiMAX mesh network can support real-time services such as video streaming and VoIP, especially in mesh operation mode. Thus, this study provides an analysis of this question by analyzing network performance measurements through the properties of an IEEE 802.16 mesh network in several real-time applications. The chapter helps investigate the influence of routing protocols and the benefits of QoS to the network, as well as measurements for clients in a WiMAX wireless mesh environment, by showing their impact on flows and the final quality of multimedia applications.
QoS metrics, known as the rate of packet loss, delay and throughput, are generally used to measure the impact of multimedia streams on the level of quality of service, viewed from the perspective of the network, but do not reflect the user experience or the quality. As a result, these QoS parameters do not reflect subjective factors associated with human perception. In order to overcome the limitations of the existing schemes to guarantee QoS in networks with multimedia streaming that take account objective and subjective factors, the tests also address the impact of QoS and routing protocols on final quality through the QoE (Quality of Experience) concepts. This is carried out by addressing the user\'s perspective as the end-to-end quality of the video stream, by studying, evaluating and validating the results of QoS and QoE incidents on the routing metrics [6].
This chapter will provide an overview of the main challenges of the WiMAX mesh mode with a focus on routing protocols and the effect of quality of service mechanisms on scenarios with mobile clients. The chapter will describe the importance of mesh networks and how they can provide quality service and quality of experience for customers. It will also explain the impact of multimedia applications on this network and the importance of choosing the best route to ensure the network provides higher quality communications.
This section has provided a brief introduction to the main aims of this chapter. The second section will describe the mesh networks and explain their topology and operations. The third section will examine the QoS in WiMAX mesh networks. The fourth section will focus on routing protocols and draw attention to their main advantages and disadvantages. The fifth section will show the results of simulation tests obtained from analyzing the routing protocols with QoS and QoE. The sixth section explains the significance of the findings and conclusions, and this is followed by the seventh section with the main references.
Wireless mesh operation mode is one of the most effective network branches among the emerging technologies. This network can connect multiple wireless access points (known as nodes) and form a mesh network, which is a network of connections that provides broad coverage and enables multiple paths and routes of communication. It is able to balance the traffic load and provide support for fault tolerance, so that if a node goes down, the network can self-configure and self-heal to find alternative routes of access [7].
WMNs can be seen as one type of MANETs [8]. An ad-hoc network (possibly mobile) is a set of network devices that want to communicate, but have no fixed infrastructure available and no pre-determined pattern of available communication links. The individual nodes of the network are responsible for a dynamic discovery of the other nodes that can communicate directly with them, i.e. what are their neighbors (forming a multi-hop network). Ad-hoc networks are chosen so that they can be used in situations where the infrastructure is not available or unreliable, or even in emergency situations. A mesh network is composed of multiple nodes / routers, which starts to behave like a single large network, enabling the client to connect to any of them. In this way it is possible to transmit messages from one node to another in different ways. Mesh type networks have the advantage of being low cost, easy to deploy and reasonably fault tolerant.
In another analogy, a wireless mesh network can be regarded as a set of antennas, which are spaced a certain distance from each other so that each covers a portion or area of a goal or region. A first antenna covers an area, the second antenna covers a continuous area after the first and so on, as if it were a tissue cell, or a spider web that interconnects various points and wireless clients. What is inside these cells and covers the span of the antennas, can take advantage of the network services, provided that the client has a wireless card with the interface technology.
Mesh networks are networks with a dynamic topology that show a variable and constant change with growth or decline, and consist of nodes whose communication at the physical level occurs through variants of the IEEE 802.11 and IEEE 802.16 standard, and whose routing is dynamic. The image below (Figure 2) shows an example of a mesh network. In mesh networks, the access point / base stations area is usually fixed.
Mesh network
To achieve these goals, WiMAX networks can be structured into two operating modes: PMP (Point-to-Multipoint) and mesh networks, and the second is the focus of this chapter. Mesh mode is a type of operation that can interconnect multiple mobile clients together with many WiMAX base stations (nodes) and form a network of connections so as to provide a wide coverage area for mobile clients. All the clients can communicate with each other and there is no need for an intermediate node to act as the mediator of the network. In this mode, the IEEE 802.16 can provide broadband access with wireless support both single-hop and multi-hop settings [2].
The basic topology of an IEEE 802.16 mesh network consists of two participating entities, called Base Station (BS) and Subscriber Station (SS), displayed below (Figure 3). The BS is the central node, responsible for coordinating all the communication and providing connectivity to the client stations (fixed or mobile).
Basic topology of a WiMAX network network
Mesh networks reverse the idea of using a wired network to the backbone network and wireless access in the last mile. The backbone of a wireless mesh network comprises the router nodes that interconnect with the customers. As the nodes in the backbone network of this type have a fixed location and only the clients can be mobile, they may readily be fed, since they have no limiting power, and thus can rid themselves of many of the constraints of ad-hoc networks.
The most effective way to discover the operation of the mesh network is the routing protocol, which scans the different possible routes / paths of data flow, on the basis of a pivot table where devices such as BS select the most efficient route to follow to reach a goal, while taking into account that the greater the speed, the packet loss, or the faster the access to the Internet (and others). This scan is carried out several times per second and is transparent to the user, even when it occurs at re-routing access gateways, which are the nodes that have direct access to the internet.
An important feature of mesh networks is the concept of roaming, also known as a transparent handoff mobility scheme offering fast handoff in wireless networks. This makes it feasible for users to become mobile clients who can move around between network nodes without losing the connection at the time of exchange. The practical consequence is that the system allows geographical mobility. The system will always know which jumps are required for the request of a customer at any point in the network so that it can reach the Internet in the most efficient manner possible.
The growing interest in multimedia applications in mesh networks is accompanied by challenges that make the provision of QoS and group communication (multicasting) a more complex task. This complexity is the result, among other factors such as high mobility of the stations, which implies that there is a need to manage their locations and the environment and cope with the limitations of the devices involved, such as transmission quality in a wireless environment, bandwidth scarcity, etc.
Mesh networks have good prospects of being the solution to a series of problems in the provision of access services, since they are flexible, dynamic and potentially low cost [9]. However, for this to become effective there is much that needs to be improved and developed.
Besides routing, the major problems in mesh networks are scalability and security. The first can be defined as the level of acceptable service packages in the presence of a large number of nodes in the network. An important factor is the potential reduction in performance when there are an increased number of nodes. Hence, any protocol layers involved should be scalable. The security schemes proposed for ad hoc networks can be adopted for mesh networks, although most of these solutions have not been studied in depth and there are still problems that prevent them from providing authentication and reliability to clients.
Today the provision of QoS to any network is mandatory. When the mesh networks follow these steps, with the growth of multimedia applications, the services often seek a guaranteed bandwidth and QoS requirements, as a result of the growth of multimedia applications [2] [10]. In addition, they know that choosing the best path routing is an important decision for the WMNs to enable them to provide a wide range of services to different client types, each with their own peculiar characteristics. Provisioning QoS in mesh networks is not devoted to a single task layer. It requires the joint effort of all the layers, and specific strategies for signaling quality of service using resource reservation and QoS for the data link layer.
Owing to this and a number of other problems, when compared with other wireless network models, the mesh networks pose a special challenge, because the wireless environment is shared by adjacent nodes and the topology may change dynamically in the same way as the mobility of the nodes and input / output in the same network. As a result, QoS has become a key area of research of comparable importance to algorithms.
WiMAX has been developed with QoS in mind. Five different service classes have been introduced for different applications and packets from different service classes and are being handled on the basis of their QoS constraints. However, this mechanism can only be used in the PMP (Point-to-Multipoint) mode. In the Mesh mode, QoS is maintained on a message-by-message basis.
In PMP mode, the WiMAX MAC layer uses a scheduling service to deliver and handle SDUs (Service Data Units) and MAC PDUs (Protocol Data Units) with different QoS requirements. A scheduling service uniquely determines the mechanism the network uses to allocate UL (UpLink) and DL (DownLink) transmission opportunities for the PDUs. WiMAX defines five scheduling services:
Unsolicited grant service (UGS): This is designed for the real-time constant bit rate (CBR) applications such as T1/E1 and VoIP. Unsolicited data grants are allocated to eliminate the overhead and latency of the request/grant process. During the connection establishment phase, maximum sustained traffic rate is declared and BS assigns fixed bandwidth grants in each frame accordingly.
Real-time polling service (rtPS): This is designed to support real-time services that generate variable-size data packets on a periodic basis, such as MPEG (Motion Pictures Experts Group) video. In this scheduling service, the BS provides unicast polling opportunities for the MS to request bandwidth. The unicast polling opportunities are frequent enough to ensure that latency requirements of real-time services are met.
Extended real-time polling service (ertPS): This scheduling service combines features from UGS and rtPS service classes. An initial ensured bandwidth allocation is carried out as in UGS and then this allocated bandwidth can be decreased or increased as in the case of rtPS.
Non-real-time polling service (nrtPS): This scheduling service is the most appropriate for the delay tolerant applications. As in rtPS, dedicated periodic slots are used for the bandwidth request opportunity, but with much longer periods. In nrtPS, it is allowable to have unicast polling opportunities, but the average duration between two such opportunities is in the order of a few seconds, which is large compared to rtPS. All the MSs belonging to the group can also request resources during the contention-based polling opportunity, which can often result in collisions and additional attempts.
Best effort (BE): This provides very little QoS support and is applicable only for services that do not have strict QoS requirements. It is for the traffic with no minimum level of service requirements. Like in nrtPS, contention slots are used for bandwidth request opportunities as long as there is space available [1] [2].
Classifiers are also present in the MAC layer of both the Base Station and Subscriber Station, whose goal is classify and map service flow into a particular connection for transmission between the MAC peers. The mapping process associates a data packet with a connection, which also creates a link with the service flow characteristics of this connection [11].
In this architecture there are schedulers in both the Base Station (BS) and Subscriber Station (SS), whose goal is to determine the burst profile and the transmission periods for each connection, while taking into account the QoS parameters associated with the service flow, the bandwidth requirements of the subscriber stations and the parameters for coding and modulation. Figure 4 illustrates the WiMAX QoS Architecture in PMP mode.
Architecture for IEEE 802.16 QoS
In a WiMAX mesh network, a “Mesh BS” (MBS – mesh base station) provides the external backhaul link. The backhaul links connect the WiMAX network to other communication networks. There may be multiple Mesh BSs in a network; other nodes are known as ‘‘Mesh SSs” (MSS – mesh subscriber stations). In point-to-multipoint mode, the SSs are under the direct control of the BS. In Mesh mode, the uplink and downlink is not clearly separated and SSs can communicate with each other without communicating with the BS.
In the mesh mode, bidirectional links can be established between any of the WiMAX nodes, and the information is transmitted on a hop-by-hop basis. The system access follows a frame-based approach where each channel is divided in time into a series of frames. The number of frames in a series is defined during process of creating the network..
A frame is divided into two subframes: a control subframe and data subframe (Figure 5). The control subframes are used for carrying the information necessary for access control systems, bandwidth allocations, connection establishment and connection maintenance. The data subframes are used for carrying the packets of upper layers. The control subframe is divided into a number of transmission opportunities. The data subframe is similarly divided into a number of minislots.
There are two types of control subframes depending on their function. The first type of control subframe is the scheduling subframe in which nodes transmit scheduling messages. The second is the network configuration subframe in which nodes broadcast network configuration packets containing topology information, network provisioning information, and network management messages.
Mesh frame structure
The IEEE 802.16 mesh standard uses a combination of a 16-bit mesh node identifier (node ID) and a 16-bit connection identifier (CID) to identify the source and destination of every transmission. The CID in mesh mode is a combination of an 8-bit link ID and an 8-bit QoS description for the connection. All the communications occur in the context of a link, which is established between two nodes. One link will be used for all the data transmissions between two nodes. QoS is provisioned over links on a message-by-message basis. No services or QoS parameter are associated with a link, but each unicast message has service parameters in the header. Figure 6 shows the Mesh connection identifier (CID) construction which contains these service parameter fields.
QoS bits in the mesh CID
The 8-bit QoS in the CID contains three definable fields: Reliability, Priority/Class, and Drop Precedence. Reliability refers to retransmit or not (0 indicates no retransmit while 1 indicates retransmit). Priority/Class refers to the priority of the packet. Drop Precedence refers to the probability of dropping the packet when congestion occurs [12] [13].
In the mesh mode, a special MAC is defined in the IEEE 802.16, which provides two different types of scheduling mechanisms – centralized and distributed scheduling.
Centralized Scheduling (Mesh CS): the Mesh-BS is responsible for supplying resources for each link in response to resource requests. Mesh centralized scheduling messages transmitted in a scheduled control subframe are used for this purpose.
In centralized scheduling, when a node has packets to send to either other MSS or the MBS, it sends a request packet in the control subframe, using the Mesh Centralized Scheduling Message (MSH-CSCH message) to the MBS. The node sends one bandwidth request for each link it has and all requests belonging to that node are sent in one MSH-CSCH message. After receiving requests from all the MSSs in the network, the MBS applies its traffic scheduler to these requests, including its own traffic requests.
Based on the scheduler used in the MBS, these requests are granted, either wholly or partially. Then the MBS broadcasts these grants in a MSH-CSCH message. A grant packet describes the data subframe usage of a frame. This data subframe description belongs to a frame after the frame from which the grant is sent. Each MSS forwards this grant message to its children. However, these requests and grants only include the amount of data that a node can transmit [14]. Figure 7 illustrates how it works in mesh mode.
Overview of scheduling in the mesh mode
Distributed Scheduling (Mesh DS): The neighboring Mesh SS responds to a request with a corresponding grant for a link between two Mesh SSs. Mesh distributed scheduling messages are exchanged to perform this operation.
The scheduling policy for accessing data slots in coordinated distributed fashion, is not specified in the IEEE 802.16 standard. The standard only defines the Mesh Distributed Scheduling Message (MSH-DSCH message), and specifies the scheduling to avoid collisions between messages of different nodes. The MSH-DSCH message contains the scheduling information organized in Information Elements (IE): Request IE, Availability IE, Grant IE and Scheduling IE.
The scheduling procedure follows a three-way handshake to reserve the minislots. First, a node sends an MSH-DSCH message to one of its 1-hop neighbors, requesting a set of data slots. In the message, the node also includes the set of data slots that it has available for reservation. The 1-hop neighbor grants the request by replying with another MSH-DSCH message that specifies a set of data slots that confirms the availability of data slots at both nodes. Finally, the first node confirms the reservation of this set of data slots by repeating the grant in another MSH-DSCH message.
In contrast with point-to-multipoint WiMAX networks, the standard does not define scheduling services for Mesh WiMAX networks [13].
Currently, one of the main areas of mesh networks that is being studied, is the routing protocol used to find the best path to the base stations (or access points). This allows customers who use this type of technology to take advantage of their services in a more effective way and with efficient communication, as well as transferring their data stream through the wireless communication environment [15]. Routing is a service in which the router evaluates the possible paths to transmit packets to their destination, and determines the best route this packet should follow [16].
The concept of network performance optimization is carried out through the construction of the routing tree selection which is characterized by the topological properties that are independent when the network is being formed. The construction of the tree and arrangement of the nodes allows a distribution of the nodes that leads to a better chance of routing and optimization. The correlations between the topological parameters of the tree and the efficiency of the network must be estimated, and those that show the strongest correlations should allow the creation of the best trees and thus provide some routing and topology optimization [17].
Currently there are a number of routing protocols with several differences and similarities between them, that show the particular advantages and disadvantages when applied to mesh networks. Among these various routing protocols, there is no exists single protocol that can be claimed as the best. The reason for this is that they have several peculiarities and there not exists a protocol that is considered to be optimal for all scenarios. Each protocol has a unique characteristic, which makes it either suitable for a particular application.
By studying the scientific and academic papers in mesh networks, it is clear there has been a notable growth in the number of research studies in this area [18] [19]. There are currently several projects spread across the networks, some on a large scale. This is because of the benefits that can be derived from this mode operation, including the cost-effective deployment of broadband, and ease of access. Another potential element of fundamental importance is digital inclusion and the Future Internet which can provide services and comprehensive long-range topology wireless, suitable for specific topologies, with the implementation of QoS to meet the requirements of situations such as the next generation networks and the ever-increasing demand for multimedia applications and real-time.
As discussed earlier, mesh networks are a promising technology. However, to develop their full potential as a product, mesh networks require research in fields related to all the layers of the TCP / IP stack. Specifically in the routing area, there is a need for new protocols and critical metrics. However, the adoption of routing protocols of ad hoc networks in mesh networks, although possible, causes a number of problems and has drawbacks, such as the large number of control packets used for these protocols. The dynamics of an ad hoc network requires the constant assessment of the network topology, which is different from a mesh network with a static topology. Thus, a mesh routing protocol should be a more stable and less costly network.
However, before understanding routing protocol operations, it is necessary to understand the operation of routing algorithms that are of two kinds: non-adaptive algorithms (static) that calculate the route when the network is initialized and not based on a network topology and adaptive algorithms (dynamic) that take into account the topology and where to search for information.
Adaptive routing algorithms can in turn be classified in two ways:
Distance Vector (DV): Due to its applicability to packet routing on the Internet, this became known as Routing Information Protocol (RIP) or Distributed Bellman-Ford (DBF). This algorithm operates by enabling each router to maintain a table (i.e. a vector) which provides the smallest distance to each known destination and determines which line should be followed to get there. In a distance vector. routing is defined as a metric unit that will be the cost value of a path between nodes of a network. This metric unit could be the physical distance between nodes, the amount of hops (hops), the delay in transmission, the node congestion and other factors.
Link State (LS): This dynamic algorithm was devised with the purpose of solving the problem of distance vector routing, since it used the number of hops to the destination, although a packet could reach a destination by going a short way, ie with few hops. However, the link bandwidth could be small and the delay be greater. As a result,, the link state has arisen to find efficient routes, and is not concerned about the number of hops or the conditions under which the network is located.
Among the ad-hoc networks, there are three basic types of routing protocols: proactive, reactive and hybrid [20] [21]. The proactive type requires us to maintain the route network for all possible destinations when there is a need to send a data packet. In reactive protocols, the nodes discover the destinations on demand. The hybrid protocols are those where there is only one set of nodes that provides periodically updated information on possible destinations.
This protocol requires all the network nodes to maintain routes to all possible destinations so that, when the need arises to send a data packet, the route that must be taken is known immediately. These protocols operate through their routing tables by exchanging messages continuously. Examples of proactive protocols are: : OLSR (Optimized Link State Routing Protocol), DSDV (Destination-Sequenced Distance-Vector) and WRP (Wireless Routing Protocol), the first, the OLSR is the representative of the protocols used for the following tests of this chapter.
The OLSR is a routing protocol developed for MANETs, and is an optimized link state protocol. The OLSR reduces the control packet size and the number of these packets that are sent to the network. This reduction in the number of control packets is achieved through the use of Multipoint Relays (MPR), which characterizes the OLSR. MPR is a node chosen from among the neighbors to send control packets, and the choice is made by the neighbors when there are only a hop of the node [22].
In the reactive protocols, the nodes discover the on-demand destinations, i.e. they do not require a route to the destinations where they have to send data, and seek the efficient use of resources like energy and bandwidth. Examples of reactive protocols are : AODV (Ad-Hoc On-Demand Distance Vector), DSR (Dynamic Source Routing) and TORA (Temporally Ordered Routing Algorithm). An examination of he AODV protocol, which is the representative of the reactive protocols used for testing, follows in this chapter.
The AODV routing protocol is a reactive protocol, i.e. the route to a destination node is discovered only when it wants to send a packet (data) to this node., This protocol enables dynamic routing, where the route of the packet can be changed in accordance with the route that the data is following, if the route used is unavailable. This discovery quickly results in new destinations [20] [23].
The AODV protocol is a protocol based on the Destination-Sequenced DistanceVector (DSDV) [19], and is created primarily to eliminate errors in DSDV, on account of the constant changes of topology and the large number of control messages between the network components. During the route discovery, the AODV protocol uses a traditional routing table as a storage mechanism. This only stores one entry, i.e. it only stores the next hop to the destination, unlike the DSR that stores multiple routes to the same destination and also stores the entire route from the source to a destination. The AODV is designed to be used in ad-hoc networks which have provided small numbers of nodes (up to thousands). The main purpose of the protocol is to adapt quickly and dynamically to the changing conditions of the network links, and find routes which can allow it to provide a desirable QoS. In this way it, avoids wasting bandwidth, minimizing memory usage and processing the nodes that act as routers.
The hybrid is a protocol where a certain set of nodes, (only a limited number of nodes) periodically updates the information nodes / routes of possible destinations, and attempts to make a suitable use of the two previous approaches. Examples of hybrid protocols are : HWMP (Hybrid Wireless Mesh Protocol), ZRP (Zone Routing Protocol) and FSR (Fisheye State Routing); the HWMP protocol is the representative of the hybrid protocols used for the following tests of this chapter. HWMP is based on AODV [22] and also has an optional routing protocol, called RAOLSR (Radio Aware OLSR) based on OLSR [23] [24].
HWMP is a hybrid routing protocol. It has both re-active and proactive components. The creation of HWMP is an adaptation of AODV to radio-aware link metrics and MAC addresses. It is the basic, reactive component of HWMP. The on-demand path setup is achieved through the path discovery mechanism that is very similar to that of AODV. If a mesh point needs a path to the destination, it broadcasts a path request message (PREQ) into the mesh network. The hybrid routing protocols combine the best features.
QoS routing is an important parameter for the provision of guaranteed QoS in mesh networks. This issue has been exhaustively studied in wireless mesh networks. The aim of QoS routing for these networks is twofold: to find a best feasible path for each incoming connection in the presence of the underlying link interference and to optimize the usage of the network by balancing the load.
This chapter evaluates the routing problem in the IEEE 802.16 mesh networks. Unlike other routing strategies, this chapter is concerned with providing paths, mainly at certain QoS levels that guarantee traffic flows. The simulations will evaluate multimedia applications such as VOIP, video conference and other multimedia streams that have grown over the Internet, and verify the best qualifications between QoS and routing protocols by evaluating the major impacts on these two important factors in the WMNs.
The number of hops is the most common criterion that is adopted by traditional routing protocols. However, it is clear that these protocols are inadequate for multimedia applications, such as VoIP and video conferencing, which require QoS guarantees. Routing protocols with QoS, not only need to find the route with the shortest path, but the best route that meets the requirements of end-to-end QoS, regardless of the number of hops or how the routing protocols need to find the best routes through multiple hops. It, is necessary and important that the new protocols and routing algorithms also take into account the parameters and other measurements such as power consumption, the closeness of the backbone network output and especially the quality over quantity link for users and the quality of wireless communications, while taking into account attenuation, signal quality and interference.
The Simulations experiments were carried out with the aid of Network Simulator version 2 [25] to show the performance of some routing protocols with QoS as network measure in WiMAX Mesh Network. For the WiMAX Mesh simulations it was used a module developed by the Network and Distributed System Laboratory [26] with extensions to use on PMP and mesh mode. The results compare four routing protocols: AODV, OLSR, HWMP Proactive and HWMP Reactive. Figure tal show the topology used for the tests, a random topology.
The simulation scenario chosen for the experiments were formed in a randomly generated with sixteen nodes, but that could easily represent a pre-existing base stations in a city, a rural area or a group of cities in proximity.The base stations act as routers through which network traffic will be routed through them choosing the best path according to its algorithms so that traffic is routed between source and destination.
The scenario (Figure 8) aims to test the choices of the best routes according to the algorithms / routing protocols and verify the flow and the delay due to these choices. The results are found in the simulations are evaluated along with the following analysis of these.
Simulated Topology
Faced with this scenario, routing protocols, based on their algorithms must choose the best route for that traffic out of the source node (node 2/BS 2) and reaches the destination node (node 16/BS16) and there is the question. What\'s the best route? The red route or blue route? Will would other routes? Perhaps green route. Certainly there are several routes and choosing each one behind certain characteristics and particular outcomes to the performance of this network and its communication. Simulated parameters presented below (Table 1).
Cover Area | \n\t\t\t1km | \n\t\t
Frequency | \n\t\t\t3,5GHz | \n\t\t
Standard | \n\t\t\tIEEE 802.16 (MESH) | \n\t\t
Modulation | \n\t\t\tOFDM | \n\t\t
Router WiMAX Mesh Number | \n\t\t\t16 | \n\t\t
Simulation Time | \n\t\t\t60s | \n\t\t
Traffic | \n\t\t\tVideo and CBR | \n\t\t
Simulated parameters
In the first situation, the simulations were conducted with CBR traffic (1 MB), the transmission consists hop-by-hop by four routing protocols: AODV, OLSR, HWMP Proactive and HWMP Reactive. By the analyze of the throughput, achieved better performance result by HWMP Reactive (Figure 9). This result is because of the protocol in this scenario constantly keep checking the best route and always find a solution when faced with a new, always managing to optimize the flow through the best link at any given time.
Comparison of CBR traffic throughput for the four routing protocols
The result of the hybrid routing protocol show the better results in comparison with other protocols presented here. In other protocols, it takes a long time to find a best route for data flow and sometimes, take congested routes, which reduces the throughput of the network.
In the second situation, the simulations were conducted with Video and CBR traffic (as background traffic). The transmission consists hop-by-hop by four routing protocol: AODV, HWMP Proactive, HWMP Reactive, OLSR. When we analyze the throughput, we observed a better performance by AODV. This case was carried out by using the Evalvid tool [27] that allows control of real video quality called “Grandma”. The video simulations parameters presented below (Table 2).
In this particular case the transmitted traffic behind will focus on some decrease in the quality of connections that take the main traffic to the destination and make the hybrid routing algorithms are flawed when compared to non-hybrid and in this case, can best AODV results in selecting the best route and consequently better results regarding the flow, providing a certain QoS to the end customer and the quality of multimedia applications used. The AODV establishes the route more faster than other protocols, for this reason it had better throughput and better video performance.
Resolution | \n\t\t\t352 x 288 | \n\t\t
Frame Rate | \n\t\t\t30 Frame/sec | \n\t\t
Color Scale | \n\t\t\tY, U, V | \n\t\t
Packet Length | \n\t\t\t1052 | \n\t\t
Packet Fragmentation | \n\t\t\t1024 | \n\t\t
Video simulation parameters
Traditionally, the performance of network archictetures have been evaluated through Quality of Service (QoS) metrics. QoS is defined as the ability of the network to provide a service at an assured service level. QoS is also a commonly used metric set (e.g., throughput, packet loss, delay, jitter, handoff dropping and blocking probability) to represent the capability of a network to provide guarantees to selected network traffic. QoS considers parameters of a network that can be easily measured, but do not tell how the service is perceived by users. To satisfy the user-centric approaches, QoE is used to quantify the perception of the user about the quality of a particular service or network. The QoEmetrics confirm the previous statement.
The PSNR (Peak Signal to Noise Ratio) [6] [28] is the most traditional QoE/video metric, which estimates the video quality in decibels, comparing the original video with the video received by the user considering the aspects of luminosity. Figure 10 shows the better video quality using the PSNR statistics (Table 3).
For each PSNR range values, there is a qualification for the received video by the user. The Table II shows the PSNR range quality:
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
> 37 | \n\tExcellent | \n
31 – 37 | \n\tGood | \n
25 – 31 | \n\tFair | \n
20 – 25 | \n\tPoor | \n
< 20 | \n\tBad | \n
PSNR range
PSNR
The Structural Similarity (SSIM) [6] [28] metric evaluates the received video by the user taking into account the characteristics of the HVS (Human Visual System). The SSIM examines the color, light and structure similarity. The SSIM value is expressed by a number between 0 and 1, where 0 means zero correlation with the original image and 1 means the exact same video. As can be noted (Figure 11) by analyzing the QoS metrics, AODV has the best closeness in quality compared to the original video and HWMP Proactive worse.
SSIM
The Video Quality Metrics (VQM) [6] [28] as MSU VQM metric also compares the original video with the video received by the user. They are considered the most complete metrics because compare the following aspects: noise, distortion and color. Again, AODV (Figure 12) has the best values because the smaller the value of this metric, better the video quality.
VQM
The evaluation of routing protocols are clear when we look at the frames in Figures. The frame number 100 was selected to compare the quality. As we can see, the AODV presents the best results, followed by hybrid reactive, OLSR and hybrid proactive protocols respectively (Figure 13).
Result of frame 100 for the four routing protocols
The Figure 14 shows the delay average over time for the four routing protocols, showing their results in this network metric. AODV and HWMP reactive had the lowest delay.
Delay average over time
If a routing protocol takes longer time to find the best route and took and thus decide to use your communication path, in normal situations, present a lower performance as measures of network for those with a behavior in choosing the fastest route.
This chapter showed an initial study on wireless mesh networks, pointing out the main goals of interest, challenges and issues encountered, highlighting the advantages and disadvantages of this mode of operation. During the work, focused on the IEEE 802.16 popularly known as WiMAX, a technology standardized by the WiMAX Forum as an alternative wireless communication with wide area coverage and bandwidth, providing high speed and mobility, important peculiarities in the context of next-generation networks in Future Internet.
The chapter provides a more detailed study of the WiMAX mesh mode, pointing to two very important points for this type of network the next generation of wireless communications: algorithms / routing protocols and QoS, mainly to meet the demands for new multimedia applications as VoIP, telemedicine, videoconferencing and other real-time applications that require a large bandwidth with constant to meet the constant flow needs, providing quality network metrics such as throughput and delay and qualitative results regarding the perception of the end user when evaluated on the QoE metrics, with valid results on human perception of quality in real end user.
The studies and validated through simulation showing what the main advantages of routing protocols when incidents of random scenario presented here, however, it is noteworthy that these results are specific to this scenario, not ensuring that the protocols achieve similar results in any type of scenario. It is important to mention that the protocols have different results as there is a variability of scenarios or data flow, increasing them or decreased them and so, some protocols may have better results in some scenarios and worse in others, there is certain variability.
Conclusively, routing protocols have advantages and disadvantages and present very particular results, and there is a protocol that presents the best results ever, nor how to choose the best route, nor as to the best results of QoS and QoE.
Simulation results shown that the AODV protocol provides the best results when analyzed on the scenario shown to video traffic, however, the hybrid routing protocol that operates in a reactive mode, gives good results and operates in hybrid form, could be better than AODV depending on some parameter variations. This makes us believe that the hybrid reactive would be a protocol that can be relatively good in all cases, although not an optimal model, can be efficiently and effectively providing a good alternative routes and relative quality to the end user about the prospect of QoS and QoE. The hybrid reactive and AODV protocol gave good results as the data flow rate and video quality, but could have different results in other settings and with other simulation parameters.
In some future work, the authors intend to make optimizations in routing protocols and mechanisms include your choice between a more complete analysis taking into account other important points beyond the amount of jumps as energy consumption and output communications to the Internet outside the backbone of the mesh network with algorithms that also take into consideration the proximity.
Shale gas refers to a kind of self-generating and self-preserving natural gas, which gathers mainly in a free or adsorbed state in the organic-rich dark shale or high-carbon mud shale [1]. With vast reserves and the potential to offset the gradually depleted conventional resources worldwide and cut down carbon emissions at the same time, shale gas is playing an increasingly important role in ensuring global energy safety. Because shale matrix is characterized by various nanopores, where the gas flow is of high nonlinearity and complexity, an in-depth study of the mathematical model for the gas flow capacity in shale matrix is in urgent demand.
\nThe mechanisms considered in different literature are listed in Table 1. It is obvious that opinions vary greatly on the flow mechanism scheme applied. The noteworthy aspects include the following: what the relationship among the various flow mechanisms of shale gas, e.g., slippage, Fick diffusion, Knudsen diffusion, etc., is; whether there is a repeated superposition of these mechanisms for specific flow calculation; and how to deal with the relationship among the various flow mechanisms, etc. There is no clear answer to these problems in current literature.
\nLiterature | \nMechanisms considered | \n
---|---|
Klinkenberg [2] | \nSlip flow | \n
Javadpour [3], Haghshenas et al. [4], Wu et al. [5], Sun et al. [6] | \nKnudsen diffusion and slippage | \n
Veltzke and Thöming [7] | \nViscous flow and Knudsen diffusion | \n
Li et al. [8] | \nContinuum flow, slip flow, transition flow, and free molecular flow | \n
Mi et al. [9] | \nDiffusion and slippage, where the form of diffusion varies according to the Knudsen number range, including Fick diffusion, transitional diffusion, and Knudsen diffusion | \n
Song et al. [10] | \nViscous flow, Knudsen diffusion, and surface diffusion, with surface diffusion not considered for inorganic pores | \n
Different flow mechanism schemes in literature.
\nFigure 1 shows the common research methodology of the flow models used in different literature. It indicates that because the method of the continuum model with a boundary condition based on the molecular one is considered inconsistent and the limitations and drawbacks of first-order, second-order, and 1.5-order slip models are described, some studies, which are listed in Figure 1, are inclined to add related flow mechanisms linearly. Furthermore, the mathematical models of viscous flow and various types of diffusion do not fully agree with common flow cognition as these theories and models were experimentally verified or developed for a limited range of conditions [27]. For this reason, coupling coefficients are introduced to rectify this kind of limitation, so as to enhance the correspondence between the flow model and Knudsen number (Kn). Finally, because the secondhand average method, e.g., assuming the pore space of shale to be composed of a certain number of isodiametric pores regardless of the pore size distribution, is widely used in the research of shale gas flow, more explicit means, like taking the existence of various pore sizes in shale into account, should be adopted for transforming the flow model in nanopores to that in macroscopic-scale shale matrix.
\nA brief summary of the common methodology used in different research [
Based on the literature survey for shale gas flow in shale matrix, we know that the flow mechanism scheme with its corresponding coupling method is very crucial and has not yet been solved. In addition, although the integration method using specific functions has been proposed to facilitate the consideration of various pore sizes in shale matrix, real shale experiments are rarely involved to realize this point with definitely determined parameters.
\nFirstly, in this chapter, the concept of wall-associated diffusion is presented to clarify the relationship between slippage effect and several types of diffusion. Secondly, a physically sound flow mechanism scheme, which considers both division of mechanical mechanisms in nanopores and partition of flow space, has been proposed by virtue of the proposition of wall-associated diffusion. Thirdly, the coupling coefficients corresponding to the flow mechanisms considered are deduced to comply with the basic flow regime cognition, so as to establish a new coupled flow model in nanopores. Fourthly, the pore size distribution experiments for real shale samples from a gas field are utilized to realize the upscaling transformation of the flow model in nanopores into that in the macroscopic-scale shale matrix, with definitely determined fitting parameters for the establishment of a unified model for the gas flow prediction in shale matrix. Finally, a case study is presented to show how the lab-scale results are translated into field-scale ones.
\nThere are many types of flow mechanisms in shale matrix, including slippage effect, Fick diffusion, transition diffusion, Knudsen diffusion, surface diffusion, etc. It can be seen from the literature survey in Section 1 that different flow mechanism schemes have formed aiming at establishing a calculation model to properly characterize the nanoscale shale gas flow. There may be views that the more flow mechanisms are taken into account, the more precise the established models are. However, this is not the opinion in this chapter.
\nAs is known, Klinkenberg [33] first discovered in 1941 the phenomenon that, when measuring the gas permeability of rock, not only the measurement result is higher than the liquid measurement value but also it has strong pressure dependence and attributed it to the slippage behavior of gas in the rock pores. Specifically, gas slippage refers to the phenomenon that the near-wall gas molecules move relative to the wall surface when flowing through the medium channels [34]. In essence, the gas slip flow results from the interaction of gas molecules and pore walls, so the gas molecules in the vicinity of walls are in motion and contribute an additional flux, which is macroscopically characterized by the non-zero gas velocities on channel walls, thus resulting in slip flow [35, 36]. The jump model assumes that the adsorbed gas molecules jump from one adsorption site to the adjacent adsorption site on the pore surface, which is considered to be suitable for the research on the surface diffusion of the adsorbed gas in shale nanopores [37]. Meanwhile, when the molecular mean free path is obviously larger than the pore diameter, the gas-wall collision dominates, and the collision between gas molecules is secondary, which is characterized by Knudsen diffusion [9, 38, 39].
\nIn brief, both Knudsen diffusion and surface diffusion lead to non-zero moving speeds of the gas molecules around walls. Furthermore, from the viewpoint of microscopic motion mechanisms, they are both related to gas–solid interactions, which is consistent with slippage phenomenon in essence. Therefore, a new concept named “wall-associated diffusion” [40] is proposed, which characterizes the overall role of surface diffusion and Knudsen diffusion, as shown in Figure 2.
\nRelationship between wall-associated diffusion and slippage effect [
The proposition of wall-associated diffusion has practical significance and multiple research significance as follows [40].
\nTo begin with, in terms of mechanical mechanisms, since wall-associated diffusion describes the diffusion mechanisms of shale gas related to gas-wall interactions, it bridges the relationship between slippage effect and several types of diffusion, which prevents reduplicated superposition of shale gas flow mechanisms in nanoscale pores. This is where the practical significance lies. Besides, wall-associated diffusion can be regarded as a detailed form of slippage effect, dividing slippage effect into two distinct parts, i.e., surface diffusion and Knudsen diffusion. The two parts differ obviously in their mechanical mechanisms and motion patterns. Accordingly, the research significance of wall-associated diffusion involves not only the function of morphological descriptions but also the possibility of slip phenomenon research by different mechanical mechanisms. Lastly, another research significance is that wall-associated diffusion breaks through the limitation that the concept of slippage does not apply for high Knudsen number, with, however, the fact that wall effects still contribute to gas flow for high Knudsen number. Therefore, in extremely small nanopores, for example, where slip flow regime is not applicable, the wall-associated diffusion derived from physical morphology can well be used to explore the so-called slip phenomenon in other flow regimes apart from slip flow regime.
\nBy virtue of the concept of wall-associated diffusion, the flow mechanism scheme used in this work is to be discussed next.
\nThere is no doubt that all the mechanisms, such as continuum flow, slip flow, Knudsen diffusion, bulk diffusion, etc., have been studied in previous literature for the exploration of shale gas flow. However, it is a determinative flow mechanism scheme that is vital. According to the literature survey, apart from combining the Navier-Stokes solution with slip boundary condition whose deficiency has been mentioned in Section 1, there is also a trend in literature to assume a combination of certain flow mechanisms and check the consistency of the model results with experimental data. This method is favorable from an engineering point of view but meanwhile leads to the status that coincidence often exists and no commonly accepted consensus has formed currently. In this work, we discuss the issue physically. Firstly, due to the multiple advantages of wall-associated diffusion over the concept of slippage effect, slippage effect is replaced with wall-associated diffusion in the following discussion. On the one hand, the flow space in nanopores can be divided into two parts: the bulk phase region and the Knudsen layer [41]. On the other hand, the microscopic mechanical mechanisms can be divided into the gas–gas and gas-wall interactions. If a new comprehensive flow scheme, including viscous flow and bulk diffusion which belong to bulk phase flow and surface diffusion and Knudsen diffusion which are associated with gas-wall interactions causing non-zero flow velocities near pore walls, is proposed, the considerations of the division of flow space and mechanical mechanisms can be both realized.
\nIt should be noted that with the help of the methodology applied here, some flow mechanisms that are easily omitted are now included, such as bulk diffusion, an important diffusion process which is controlled by a mechanical mechanism obviously different from Knudsen diffusion. Furthermore, because the individual flow expressions, e.g., those for viscous flow and diffusion, were experimentally verified or developed for a limited range of conditions [27], the proposed physical flow mechanism scheme avoids unnecessary attempts to fit the mathematical models to experimental data so as to determine which flow mechanisms should be considered, laying a solid foundation for the research on the coupled flow model in nanopores discussed below.
\nTo conclude, taking both division of mechanical mechanisms in nanopores and partition of flow space into account, viscous flow and bulk diffusion, which belong to bulk phase flow and result from gas–gas interactions, and surface diffusion and Knudsen diffusion, which are associated with gas-solid interactions and result in non-zero flow velocities near pore walls, are included in the proposed flow mechanism scheme.
\nBased on the flow scheme proposed in Section 2, the flow mechanisms considered include viscous flow, bulk diffusion, surface diffusion, and Knudsen diffusion. Considering the influence of adsorption layers, in which the system is assumed to reach dynamic adsorption equilibrium state instantaneously, the mass flow of the four mechanisms can be expressed, respectively, as:
\nwhere
\n
\n
\n
\n
\n
\n
\n
\n
\n
d
\n
\n
\n
\n
\n
\n
\n
\n
The expression of Fick diffusion (2) is referred to as bulk diffusion and represented by
The case study in literature [42] shows that although the equations of viscous flow and diffusion already contain variables varying with temperature, pressure, and other factors, they make sense within only a certain range of flow regimes and deviate from the actual situation within other range that is not taken into account. Introducing coupling coefficients to different flow mechanisms can help modify the correspondence between the mathematical models (i.e., those of viscous flow and diffusion) and Knudsen number and establish generalized models without segment processing as Kn varies.
\nIn contrast to the coupling coefficients reported in published literatures [29, 31, 43, 44], the derivation of new coupling coefficients corresponding to the proposed flow mechanism scheme is performed, and the coupling coefficient of one certain flow mechanism will not be optionally set as 100%. The coupling coefficients of viscous flow, bulk diffusion, Knudsen diffusion, and surface diffusion are represented by
Let
When Kn equals to 0, only viscous flow is assumed to exist [45], i.e.,
It is transition flow when 10−1 < Kn < 10, and several diffusion processes play roles at the same time ([31, 46]; thus,
As Kn approaches to 0 or is sufficiently large,
\n
In the whole range of flow regimes,
Based on the above narrations, it physically defines that
Hence, the mass flow in nanopores can be expressed as:
\nwhere
The variation curves of the four coupling coefficients and
Variation curves of the coupling coefficients (dimensionless) of viscous flow, bulk diffusion, Knudsen diffusion, and surface diffusion with Kn (dimensionless) [
Variations of viscous flow and diffusion with Kn (dimensionless) after introducing coupling coefficients for the gas flow in pores of (a) 5 nm, (b) 10 nm, (c) 20 nm, and (d) 40 nm at 353 K. f1*ND, f2*Nb, f3*NK, and f4*Ns denote the results of viscous flow, bulk diffusion, Knudsen diffusion, and surface diffusion, respectively [
The benefits of introducing the above coupling coefficients to viscous flow and diffusion are significant:
It is clear that because
\nEq. (5) bridges the gaps between different flow regimes, i.e., the jumps of flow rates at the critical points between different regimes have vanished. Furthermore, the mathematical models are further constrained by virtue of the molecular collision theory to better reflect the basic flow regime knowledge.
Taking the viewpoints of Refs. [30, 32] as examples for comparison with this work, it should be noted that slip flow refers to the enhanced flow, including the part of original viscous flow and the other part called slippage effect which is represented by the non-zero velocities of the near-wall molecules due to gas-wall interactions. Therefore, it is more suitable to regard the ratio of gas–gas collision frequency to total collision frequency as the total coupling coefficient of viscous flow and bulk diffusion rather than that of the slip flow [30, 32].
The same examples [30, 32] are used for comparison. It is continuum flow when Kn approximates to 0. However, the coupling coefficient of slip flow is 1 when Kn = 0 in papers [30, 32], implying slip flow dominates in continuum flow regime, which contradicts the flow regime knowledge. This issue has been solved in this chapter.
In this section, the experimental results of full-scale pore size distributions of real shale samples from a gas field are combined with the coupled flow model in nanopores to realize the upscaling transformation of the flow model into that in macroscopic-scale shale matrix by integration.
\nIn the unitary model which is widely used for the flow estimation on a macroscopic scale [12, 18, 19, 20, 21, 22], indirect averaging methods are applied, e.g., the pore space of shale is assumed to be composed of a certain number of isodiametric pores, regardless of the pore size distributions. Some research [15, 47] used specific functions to characterize the probability density function of shale pore size distributions, with, however, assumed parameters for the purpose of conducting parameter sensitivity analysis. Here, the fitting parameters needed for the macroscopic form of the derived coupled flow model in nanopores are obtained by performing the experiments of pore size distributions of real shale samples from a gas field.
\nMichel et al. [15] and Xiong et al. [47] described the probability density function of shale pore size distributions as logarithmic normal distribution. Enlightened by their studies, the following expression is used to fit the experimental data of full-scale shale pore size distributions:
\nwhere
\n
Three kinds of experiments, i.e., the high-pressure mercury intrusion experiment, the liquid nitrogen adsorption experiment, and the low-temperature carbon dioxide adsorption experiment, were performed, and the full-scale pore size distribution data of the three shale samples from the Well “Ning 203”, Longmaxi formation of Changning-Weiyuan district, Sichuan Basin of China, were obtained by stitching the three results together according to the effective range of each experiment, where the total volume of pores greater than 100 nm is attributed to the pore whose radius is closest to 100 nm in the experiments allowing for the difficulty of curve fitting caused by the severe fluctuations of the pore size data [42]. The values of
Samples | \n\n | \n\n | \n
---|---|---|
Ning 203-219 | \n0.9428 | \n1.0890 | \n
Ning 203-240 | \n1.3530 | \n1.2100 | \n
Ning 203-250 | \n0.1207 | \n0.4189 | \n
Average | \n0.8055 | \n0.9060 | \n
Fitting results of η and σ.
The number of single pipes in shale with the radius range of
where
\n
\n
\n
The macroscopic-scale mathematical model of shale gas flow can be obtained by substituting Eqs. (5) and (6) into Eq. (8) as:
\nLiterature survey shows that there are several main upscaling methods of flow models from microscopic to macroscopic scale, i.e.:
\nMethod (1): the commonly used unitary model [12, 18, 19, 20, 21, 22] as already mentioned.
\nMethod (2): the sum method of calculating the permeability of every straight capillary tube [27].
\nMethod (3): the statistical sum method of the individual permeability from each shape type [49, 50].
\nMethod (4): the 3D fractal model with variable pore sizes [51].
\nMethod (5): the homogenization method to upscale gas flow through two distinct constituents, a mineral matrix and organic matter [52, 53].
\nMethod (6): the pore network model including pore size distribution, anisotropy, and low connectivity of the pore structure, etc. in shale [54, 55].
\nThe comparison among them is summarized in Table 3.
\nMethod | \nDescription/equation | \nAdvantages | \nShortcomings | \n
---|---|---|---|
Unitary pipe model [12] | \n\n\n | \nSimple in formula and easy for calculation | \nNegligence of pore structure, e.g., different pore shapes, pore connectivity, etc. | \n
Integral pipe model (this chapter) | \n\n\n | \nMake the consideration of various pore sizes happen; easy for calculation | \nNegligence of pore structure, e.g., different pore shapes, pore connectivity, etc. | \n
Total addition model [27] | \n\n\n ( | \nConsider the flow rate in every single pipe | \nImpractical to implement; negligence of pore structure, e.g., different pore shapes, pore connectivity, etc. | \n
Model of statistical sum of permeability from each shape type [49, 50] | \n\n\n ( | \nPore shapes, i.e., rectangular slits and cylindrical tubes, are taken into account | \nThe quantification of the percentages of different pore types using image analysis tools is hard to implement; negligence of various pore sizes | \n
3D fractal model [51] | \nPlease refer to Eqs. (24)–(27) in literature [51] for the specific expressions where the formulas are complex | \nMulti-scale pore size distribution and tortuous flow line in 3D space of shale matrix are characterized | \nMany parameters to be determined; negligence of different pore shapes | \n
Homogenization model [52, 53] | \nThe homogenization method is used to upscale gas flow through two distinct constituents, a mineral matrix and organic matter. A gas flow in a two-constituent composite porous medium is considered, in which a microscopic unit cell is periodically repeated | \nThe constituents, i.e., mineral matrix and organic matter, in shale are taken into account | \nMultiple assumptions; redundant processing for model establishment and solution | \n
Pore network model [54, 55] | \nGenerate pore network models by extracting pore structure information from real images or generate porous media by simulating the sedimentation and diagenesis processes and then incorporate relevant flow mechanisms into the gas flow models | \nPore size distribution, anisotropy and low connectivity of the pore structure, etc. can be taken into account | \nSubstantial work for model establishment; representativeness and verisimilitude of pore network models to the real pore structures remain a challenge | \n
Comparison of upscaling methods from microscopic to macroscopic scale.
After reviewing the upscaling methods in Table 3, it is obvious that the method used in this work is not a bad compromise when compared to method (1) which is too simple and coarse, methods (2) and (3) where it is impractical and daunting to count the size/shape of every single pore with huge computational efforts, method (5) where complex processing for the model establishment and solution is needed, and methods (4) and (6) where redundant parameters/information about pore structure need to be assumed or obtained from multiple ways. Therefore, on the one hand, only the pore size distribution experiment is needed for the determination of the upscaling parameters in this chapter to make the consideration of various pore sizes happen. On the other hand, the derived model in this chapter is practical to operate, and the results can thus be readily obtained. However, it does not necessarily mean that there is no drawback for the upscaling method used. For example, although SEM images of the shale samples show that the pores in the organic matter are mostly circular [56], various types of pore shapes, e.g., cylindrical, triangular, rectangular shaped, etc., can be detected in shale samples [50, 57]. Singh et al. [50] concluded that the geometry of pores significantly influences apparent permeability of shale and diffusive flux. The study of effective liquid permeability in a shale system by Afsharpoor and Javadpour [58] confirmed that the assumption of simplified circular pore causes apparent permeability to be significantly overestimated and the discrepancy between the realistic multi-geometry pore model and the simplified circular pore model becomes more pronounced when pore sizes reduce and liquid slip on the inner pore wall is taken into account. Xu et al. [59] developed a model for gas transport in tapered noncircular nanopores of shale rocks and found the following: (1) pore proximity induces faster gas transport, and omitting pore proximity leads to the enlargement of the adsorbed gas-dominated region; (2) increasing taper ratio (ratio of inlet size to outlet size) and aspect ratio weakens real gas effect and lowers free gas transport; (3) moreover, it lowers the total transport capacity of the nanopore, and the tapered circular nanopore owns the greatest transport capacity, followed by tapered square, elliptical, and rectangular nanopores. To conclude, there is still much room for improvement of the upscaling method in this work in multiple aspects in future research.
\nWith the properties of multi-scale pore structures and various reservoir modes, the shale gas reservoir is complex in reservoir space and occurrence modes, which in turn leads to different flow mechanisms in multi-scale spaces. Therefore, adopting single-scale equations and flow simulation methods will not accurately reveal the flow mechanism in complex shale gas reservoirs [60]. Jiao et al. [61] established an effective conversion relation between physical simulation parameters and field parameters based on similarity criterion to better simulate gas reservoir development. The ideas in literature [61] are narrated as follows.
\nFirst, considering the flow mechanism of shale gas in the reservoir, the selected characteristic physical parameters are permeability
Number | \nSimilarity criterion | \nSimilar attributes | \nPhysical significance | \nValue of physical simulation | \nActual value of reservoir | \n
---|---|---|---|---|---|
1 | \nπ1 = | \nPorosity similarity | \nDetermine porosity | \n0.02–0.2 | \n0.02–0.2 | \n
2 | \nπ2 = | \nCompression similarity | \nDetermine model gas | \n0.9–1.2 | \n0.9–1.2 | \n
3 | \nπ3 = | \nTemperature similarity | \nDetermine model temperature | \n1–1.1 | \n1.1–1.3 | \n
4 | \nπ4 = | \nGeometric similarity | \nDetermine model size | \n0.3–1 | \n0.3–1 | \n
5 | \nπ5 = | \nDynamic similarity | \nDetermine original pressure of model | \n0.002–0.01 | \n0.002–0.005 | \n
6 | \nπ6 = | \nDynamic similarity | \nDetermine conversion relation for bottom hole pressure | \n0–1.0 | \n0.1–1.0 | \n
7 | \nπ7\n\n | \nMovement similarity | \nDetermine production rate | \n0–0.5 | \n0.1–0.3 | \n
Similarity criterion numerals of the gas reservoir physical simulation.
Second, based on the similarity criterion, the conversion relation between physical simulation parameters and field parameters can be established, which is expressed as:
\nwhere
Finally, choose the core sample “Ning 211-1” for an example to conduct dynamic physical experiment under different conditions, which is used to verify the rationality of the similarity criterion. The related parameters, values of physical simulation (
\n | \n293.15 | \n||||||
\n | \n5.6% | \n||||||
\n | \n0.0127 | \n||||||
\n | \n40 | \n||||||
\n | \n0.0557 | \n||||||
\n | \n20 | \n||||||
\n | \n298.15 | \n||||||
\n | \n353.15 | \n||||||
\n | \n3.0745 | \n4.0995 | \n5.0800 | \n6.5750 | \n7.6500 | \n10.2300 | \n12.5900 | \n
\n | \n1.1560 | \n1.1785 | \n1.2030 | \n1.2461 | \n1.2817 | \n1.3830 | \n1.4944 | \n
\n | \n0.9481 | \n0.9316 | \n0.9163 | \n0.8942 | \n0.8795 | \n0.8493 | \n0.8294 | \n
\n | \n0.9747 | \n0.9670 | \n0.9602 | \n0.9507 | \n0.9445 | \n0.9326 | \n0.9254 | \n
\n | \n0.0344 | \n0.0466 | \n0.0570 | \n0.0746 | \n0.0877 | \n0.1205 | \n0.1450 | \n
\n | \n785.5063 | \n1055.4281 | \n1278.7645 | \n1649.5661 | \n1919.8761 | \n2579.8383 | \n3055.2185 | \n
\n | \n748.2798 | \n1021.0548 | \n1255.2453 | \n1601.7201 | \n1902.6402 | \n2529.7590 | \n3038.9881 | \n
Parameters for application.
\nFigure 5 displays the curves of actual values of reservoir and predicted field results based on similarity conversion, the latter of which are calculated from the physical experiment. The results calculated by similarity criterion are basically consistent with the on-site tested data. It is expected that applying the similarity translation from physical simulation of gas reservoirs is capable of predicting the development performance effectively, showing the rationality of the translation method.
\nComparison of actual values of reservoir and predicted field results based on similarity conversion.
Based on our study in this chapter, the following conclusions have been reached:
A new concept “wall-associated diffusion” was introduced to the study of gas flow in shale nanopores, which has practical significance and multiple research significance. By virtue of this concept, viscous flow, bulk diffusion, surface diffusion, and Knudsen diffusion were considered in the proposed flow mechanism scheme for nanoscale shale gas flow, with both division of mechanical mechanisms in nanopores and partition of flow space taken into account. Viscous flow and bulk diffusion belong to the bulk phase flow, which result from gas-gas interactions. In addition, surface diffusion and Knudsen diffusion are of boundary layer flow, which are associated with gas-wall interactions.
An easy-to-operate coupling method of the flow mechanism scheme containing four coupling coefficients and thus a coupled shale gas flow model in nanopores, which applies within the scope of full flow regimes and avoids segment processing, was proposed.
Based on the experimental data of pore size distributions of real shale samples from a gas field, a new coupled upscaling flow model in macroscopic-scale shale matrix with the experimentally determined fitting parameters was established. The model uses smooth functions to fit the full-scale pore size distribution results to facilitate the upscaling transformation of the model in nanopores into that in the macroscopic matrix.
A case study was presented to show how the lab-scale results are translated into field-scale ones, revealing the rationality of the translation method used.
In summary, sounder in theoretical bases and better in application effects, the proposed model is expected to be of practical significance for evaluating the gas flow capacity in shale matrix and guiding gas reservoir development in gas fields.
\nThis work was supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (grant number 2017ZX05037 − 001); the Demonstration Project of the National Science and Technology Major Project of the Ministry of Science and Technology of China (grant number 2016ZX05062 − 002 − 001); and the Science and Technology Major Project of PetroChina (grant number 2016E−0611).
\nIn line with the Principles of Transparency and Best Practice in Scholarly Publishing, below is a more detailed description of IntechOpen's Advertising Policy.
",metaTitle:"Advertising Policy",metaDescription:"IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.",metaKeywords:null,canonicalURL:"/page/advertising-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"1. IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.
\\n\\n2. All advertisements and commercially sponsored publications are independent from editorial decisions.
\\n\\n3. IntechOpen does not endorse any product or service marked as an advertisement on IntechOpen website.
\\n\\n4. IntechOpen has blocked all the inappropriate types of advertising.
\\n\\n5. IntechOpen has blocked advertisement of harmful products or services.
\\n\\n6. Advertisements and editorial content are clearly distinguishable.
\\n\\n7. Editorial decisions will not be influenced by current or potential advertisers and will not be influenced by marketing decisions.
\\n\\n8. Advertisers have no control or influence over the results of searches a user may conduct on the website by keyword or topic search.
\\n\\n9. Types of advertisments:
\\n\\n- Advertisements in the Physical Sciences, Engineering and Technology, and Social Sciences and Humanities sections of the IntechOpen website are programmatic (based on user behaviour such as web pages visited, content viewed, etc.)
\\n\\n- Advertisements in the Life Sciences and Health Sciences sections of the IntechOpen website are programmatic as well as contextual based on the content of the respective books and chapters. IntechOpen's third party partner eHealthcare Solutions (EHS) is a unique marketing platform that specializes in connecting niche audiences with healthcare brands.
\\n\\nYou may view their privacy policy here: https://ehealthcaresolutions.com/privacy-policy/
\\n\\n10. IntechOpen Advertising Sales department makes the decisions about the types of advertisements to include or exclude. Placement of advertising is at the discretion of IntechOpen. IntechOpen retains the right to reject and/or request modifications to the advertisement. An advertisement that is visible online, will be withdrawn from the site at any time if the Editor(s) or Author(s) request its removal.
\\n\\n11. Users can make decisions about accepting advertisements. Users can block all the advertisements by using ad blockers. Users can send all the complaints about advertising to: info@intechopen.com.
\\n\\nPolicy last updated: 2021-04-28
\\n"}]'},components:[{type:"htmlEditorComponent",content:'1. IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.
\n\n2. All advertisements and commercially sponsored publications are independent from editorial decisions.
\n\n3. IntechOpen does not endorse any product or service marked as an advertisement on IntechOpen website.
\n\n4. IntechOpen has blocked all the inappropriate types of advertising.
\n\n5. IntechOpen has blocked advertisement of harmful products or services.
\n\n6. Advertisements and editorial content are clearly distinguishable.
\n\n7. Editorial decisions will not be influenced by current or potential advertisers and will not be influenced by marketing decisions.
\n\n8. Advertisers have no control or influence over the results of searches a user may conduct on the website by keyword or topic search.
\n\n9. Types of advertisments:
\n\n- Advertisements in the Physical Sciences, Engineering and Technology, and Social Sciences and Humanities sections of the IntechOpen website are programmatic (based on user behaviour such as web pages visited, content viewed, etc.)
\n\n- Advertisements in the Life Sciences and Health Sciences sections of the IntechOpen website are programmatic as well as contextual based on the content of the respective books and chapters. IntechOpen's third party partner eHealthcare Solutions (EHS) is a unique marketing platform that specializes in connecting niche audiences with healthcare brands.
\n\nYou may view their privacy policy here: https://ehealthcaresolutions.com/privacy-policy/
\n\n10. IntechOpen Advertising Sales department makes the decisions about the types of advertisements to include or exclude. Placement of advertising is at the discretion of IntechOpen. IntechOpen retains the right to reject and/or request modifications to the advertisement. An advertisement that is visible online, will be withdrawn from the site at any time if the Editor(s) or Author(s) request its removal.
\n\n11. Users can make decisions about accepting advertisements. Users can block all the advertisements by using ad blockers. Users can send all the complaints about advertising to: info@intechopen.com.
\n\nPolicy last updated: 2021-04-28
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6601},{group:"region",caption:"Middle and South America",value:2,count:5906},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12541},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:12,limit:12,total:132763},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",topicId:"13"},books:[{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11797",title:"Clostridium",subtitle:null,isOpenForSubmission:!0,hash:"4cb066b44bb8d4a8b93a627de26e3ebf",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11797.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12145",title:"Yeasts",subtitle:null,isOpenForSubmission:!0,hash:"262e4f155a168f8953bdbe9eb517127d",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12145.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12160",title:"DNA Viruses",subtitle:null,isOpenForSubmission:!0,hash:"5a948eb875a3a62c3abf115c4b5ace84",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12160.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12161",title:"Retroviruses",subtitle:null,isOpenForSubmission:!0,hash:"0cd85c9ce7748f1211685d5add521ebb",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12161.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12162",title:"Helicobacter pylori",subtitle:null,isOpenForSubmission:!0,hash:"1d5df6d5558615ea58030bb3e50ad9dd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12162.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12163",title:"Escherichia coli",subtitle:null,isOpenForSubmission:!0,hash:"23a6ce1ea4992eca56018c9e85bad165",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12163.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12164",title:"Advances in Probiotics",subtitle:null,isOpenForSubmission:!0,hash:"cc0a28c4126b8d6fd1a5ebead8a0421f",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12164.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12291",title:"Acidophiles",subtitle:null,isOpenForSubmission:!0,hash:"830753134a4180a8e6cf05774aefb9fb",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12291.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12292",title:"New Findings on Human Papillomavirus",subtitle:null,isOpenForSubmission:!0,hash:"d2e7304c38c5e293e509ae9bd1ce8b33",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12292.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12294",title:"Updates on Adenoviruses",subtitle:null,isOpenForSubmission:!0,hash:"9346d0ed80380776aab0a8ac9e503414",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12294.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:41},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:16},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:32},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:11},{group:"topic",caption:"Materials Science",value:14,count:11},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:106},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:8},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:32},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:11},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4383},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"124",title:"Vehicle Engineering",slug:"vehicle-engineering",parent:{id:"11",title:"Engineering",slug:"engineering"},numberOfBooks:27,numberOfSeries:0,numberOfAuthorsAndEditors:699,numberOfWosCitations:1077,numberOfCrossrefCitations:777,numberOfDimensionsCitations:1501,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"124",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10969",title:"New Perspectives on Electric Vehicles",subtitle:null,isOpenForSubmission:!1,hash:"ac30eed50ea83d4284f11d72791aa15a",slug:"new-perspectives-on-electric-vehicles",bookSignature:"Marian Găiceanu",coverURL:"https://cdn.intechopen.com/books/images_new/10969.jpg",editedByType:"Edited by",editors:[{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10810",title:"Modern Ship Engineering, Design and Operations",subtitle:null,isOpenForSubmission:!1,hash:"579a9da63aca2172c0f0584328ae91c1",slug:"modern-ship-engineering-design-and-operations",bookSignature:"Carlos Reusser",coverURL:"https://cdn.intechopen.com/books/images_new/10810.jpg",editedByType:"Edited by",editors:[{id:"209816",title:"Dr.",name:"Carlos",middleName:"Alberto",surname:"Reusser",slug:"carlos-reusser",fullName:"Carlos Reusser"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10007",title:"Propulsion",subtitle:"New Perspectives and Applications",isOpenForSubmission:!1,hash:"042ab0c0a8270b1bacf6a8e385601863",slug:"propulsion-new-perspectives-and-applications",bookSignature:"Kazuo Matsuuchi and Hiroaki Hasegawa",coverURL:"https://cdn.intechopen.com/books/images_new/10007.jpg",editedByType:"Edited by",editors:[{id:"42387",title:"Prof.",name:"Kazuo",middleName:null,surname:"Matsuuchi",slug:"kazuo-matsuuchi",fullName:"Kazuo Matsuuchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8840",title:"Intelligent and Efficient Transport Systems",subtitle:"Design, Modelling, Control and Simulation",isOpenForSubmission:!1,hash:"74ab35ec9e85ba37428df986d3a280ff",slug:"intelligent-and-efficient-transport-systems-design-modelling-control-and-simulation",bookSignature:"Truong Quang Dinh",coverURL:"https://cdn.intechopen.com/books/images_new/8840.jpg",editedByType:"Edited by",editors:[{id:"181747",title:"Dr.",name:"Truong Quang",middleName:null,surname:"Dinh",slug:"truong-quang-dinh",fullName:"Truong Quang Dinh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7377",title:"Diesel and Gasoline Engines",subtitle:null,isOpenForSubmission:!1,hash:"dab9fe312a28dd603ac4b21628070d59",slug:"diesel-and-gasoline-engines",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/7377.jpg",editedByType:"Edited by",editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7408",title:"Transportation Systems Analysis and Assessment",subtitle:null,isOpenForSubmission:!1,hash:"1a950b01c0e05eda01c6d2364c7af3aa",slug:"transportation-systems-analysis-and-assessment",bookSignature:"Stefano De Luca, Roberta Di Pace and Boban Djordjevic",coverURL:"https://cdn.intechopen.com/books/images_new/7408.jpg",editedByType:"Edited by",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7198",title:"Propulsion Systems",subtitle:null,isOpenForSubmission:!1,hash:"fd56f1620b0b201a3de0cd3f7e04d15c",slug:"propulsion-systems",bookSignature:"Alessandro Serpi and Mario Porru",coverURL:"https://cdn.intechopen.com/books/images_new/7198.jpg",editedByType:"Edited by",editors:[{id:"217145",title:"Dr.",name:"Alessandro",middleName:null,surname:"Serpi",slug:"alessandro-serpi",fullName:"Alessandro Serpi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6767",title:"New Trends in Electrical Vehicle Powertrains",subtitle:null,isOpenForSubmission:!1,hash:"92949d7c2133b98bbddb02a9037c1dc7",slug:"new-trends-in-electrical-vehicle-powertrains",bookSignature:"Luis Romeral Martínez and Miguel Delgado Prieto",coverURL:"https://cdn.intechopen.com/books/images_new/6767.jpg",editedByType:"Edited by",editors:[{id:"86501",title:"Dr.",name:"Luis",middleName:null,surname:"Romeral Martinez",slug:"luis-romeral-martinez",fullName:"Luis Romeral Martinez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6065",title:"Modern Railway Engineering",subtitle:null,isOpenForSubmission:!1,hash:"77a5fae5e9451d4e52e9f7cd8f39bdcb",slug:"modern-railway-engineering",bookSignature:"Ali Hessami",coverURL:"https://cdn.intechopen.com/books/images_new/6065.jpg",editedByType:"Edited by",editors:[{id:"108303",title:"Prof.",name:"Ali G.",middleName:null,surname:"Hessami",slug:"ali-g.-hessami",fullName:"Ali G. Hessami"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5910",title:"Hybrid Electric Vehicles",subtitle:null,isOpenForSubmission:!1,hash:"92354b49c166c70707d576852b82a9f1",slug:"hybrid-electric-vehicles",bookSignature:"Teresa Donateo",coverURL:"https://cdn.intechopen.com/books/images_new/5910.jpg",editedByType:"Edited by",editors:[{id:"139190",title:"Prof.",name:"Teresa",middleName:null,surname:"Donateo",slug:"teresa-donateo",fullName:"Teresa Donateo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5423",title:"Urban Transport Systems",subtitle:null,isOpenForSubmission:!1,hash:"222b5d90a7014dbff7e33f3dcde6bc1d",slug:"urban-transport-systems",bookSignature:"Hamid Yaghoubi",coverURL:"https://cdn.intechopen.com/books/images_new/5423.jpg",editedByType:"Edited by",editors:[{id:"103965",title:"Dr.",name:"Hamid",middleName:null,surname:"Yaghoubi",slug:"hamid-yaghoubi",fullName:"Hamid Yaghoubi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5299",title:"Modeling and Simulation for Electric Vehicle Applications",subtitle:null,isOpenForSubmission:!1,hash:"42a1e112f18751417613cf1524500467",slug:"modeling-and-simulation-for-electric-vehicle-applications",bookSignature:"Mohamed Amine Fakhfakh",coverURL:"https://cdn.intechopen.com/books/images_new/5299.jpg",editedByType:"Edited by",editors:[{id:"35742",title:"Dr.",name:"Mohamed Amine",middleName:null,surname:"Fakhfakh",slug:"mohamed-amine-fakhfakh",fullName:"Mohamed Amine Fakhfakh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:27,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"13349",doi:"10.5772/14086",title:"High Mn TWIP Steels for Automotive Applications",slug:"high-mn-twip-steels-for-automotive-applications",totalDownloads:12712,totalCrossrefCites:53,totalDimensionsCites:149,abstract:null,book:{id:"19",slug:"new-trends-and-developments-in-automotive-system-engineering",title:"New Trends and Developments in Automotive System Engineering",fullTitle:"New Trends and Developments in Automotive System Engineering"},signatures:"B. C. De Cooman, Kwang-geun Chin and Jinkyung Kim",authors:[{id:"16743",title:"Prof.",name:"Bruno Charles",middleName:null,surname:"De Cooman",slug:"bruno-charles-de-cooman",fullName:"Bruno Charles De Cooman"}]},{id:"13343",doi:"10.5772/13286",title:"Materials in Automotive Application, State of the Art and Prospects",slug:"materials-in-automotive-application-state-of-the-art-and-prospects",totalDownloads:64751,totalCrossrefCites:45,totalDimensionsCites:97,abstract:null,book:{id:"1355",slug:"new-trends-and-developments-in-automotive-industry",title:"New Trends and Developments in Automotive Industry",fullTitle:"New Trends and Developments in Automotive Industry"},signatures:"Elaheh Ghassemieh",authors:[{id:"13695",title:"Dr.",name:"Elaheh",middleName:null,surname:"Ghassemieh",slug:"elaheh-ghassemieh",fullName:"Elaheh Ghassemieh"}]},{id:"42787",doi:"10.5772/55492",title:"Smart Vehicles, Technologies and Main Applications in Vehicular Ad hoc Networks",slug:"smart-vehicles-technologies-and-main-applications-in-vehicular-ad-hoc-networks",totalDownloads:6858,totalCrossrefCites:17,totalDimensionsCites:59,abstract:null,book:{id:"3328",slug:"vehicular-technologies-deployment-and-applications",title:"Vehicular Technologies",fullTitle:"Vehicular Technologies - Deployment and Applications"},signatures:"Anna Maria Vegni, Mauro Biagi and Roberto Cusani",authors:[{id:"19747",title:"Dr.",name:"Anna Maria",middleName:null,surname:"Vegni",slug:"anna-maria-vegni",fullName:"Anna Maria Vegni"},{id:"19749",title:"Prof.",name:"Roberto",middleName:null,surname:"Cusani",slug:"roberto-cusani",fullName:"Roberto Cusani"},{id:"159351",title:"Dr.",name:"Mauro",middleName:null,surname:"Biagi",slug:"mauro-biagi",fullName:"Mauro Biagi"}]},{id:"19571",doi:"10.5772/20271",title:"Electrical Vehicle Design and Modeling",slug:"electrical-vehicle-design-and-modeling",totalDownloads:14304,totalCrossrefCites:45,totalDimensionsCites:56,abstract:null,book:{id:"447",slug:"electric-vehicles-modelling-and-simulations",title:"Electric Vehicles",fullTitle:"Electric Vehicles - Modelling and Simulations"},signatures:"Erik Schaltz",authors:[{id:"38188",title:"MSc",name:"Erik",middleName:null,surname:"Schaltz",slug:"erik-schaltz",fullName:"Erik Schaltz"}]},{id:"19583",doi:"10.5772/17048",title:"DC/DC Converters for Electric Vehicles",slug:"dc-dc-converters-for-electric-vehicles",totalDownloads:23217,totalCrossrefCites:16,totalDimensionsCites:48,abstract:null,book:{id:"447",slug:"electric-vehicles-modelling-and-simulations",title:"Electric Vehicles",fullTitle:"Electric Vehicles - Modelling and Simulations"},signatures:"Monzer Al Sakka, Joeri Van Mierlo and Hamid Gualous",authors:[{id:"27098",title:"Dr.",name:"Monzer",middleName:null,surname:"Al Sakka",slug:"monzer-al-sakka",fullName:"Monzer Al Sakka"},{id:"40637",title:"Prof.",name:"Joeri",middleName:null,surname:"Van Mierlo",slug:"joeri-van-mierlo",fullName:"Joeri Van Mierlo"},{id:"40638",title:"Prof.",name:"Hamid",middleName:null,surname:"Gualous",slug:"hamid-gualous",fullName:"Hamid Gualous"}]}],mostDownloadedChaptersLast30Days:[{id:"19583",title:"DC/DC Converters for Electric Vehicles",slug:"dc-dc-converters-for-electric-vehicles",totalDownloads:23202,totalCrossrefCites:16,totalDimensionsCites:48,abstract:null,book:{id:"447",slug:"electric-vehicles-modelling-and-simulations",title:"Electric Vehicles",fullTitle:"Electric Vehicles - Modelling and Simulations"},signatures:"Monzer Al Sakka, Joeri Van Mierlo and Hamid Gualous",authors:[{id:"27098",title:"Dr.",name:"Monzer",middleName:null,surname:"Al Sakka",slug:"monzer-al-sakka",fullName:"Monzer Al Sakka"},{id:"40637",title:"Prof.",name:"Joeri",middleName:null,surname:"Van Mierlo",slug:"joeri-van-mierlo",fullName:"Joeri Van Mierlo"},{id:"40638",title:"Prof.",name:"Hamid",middleName:null,surname:"Gualous",slug:"hamid-gualous",fullName:"Hamid Gualous"}]},{id:"19571",title:"Electrical Vehicle Design and Modeling",slug:"electrical-vehicle-design-and-modeling",totalDownloads:14300,totalCrossrefCites:43,totalDimensionsCites:56,abstract:null,book:{id:"447",slug:"electric-vehicles-modelling-and-simulations",title:"Electric Vehicles",fullTitle:"Electric Vehicles - Modelling and Simulations"},signatures:"Erik Schaltz",authors:[{id:"38188",title:"MSc",name:"Erik",middleName:null,surname:"Schaltz",slug:"erik-schaltz",fullName:"Erik Schaltz"}]},{id:"64509",title:"Options and Evaluations on Propulsion Systems of LNG Carriers",slug:"options-and-evaluations-on-propulsion-systems-of-lng-carriers",totalDownloads:4195,totalCrossrefCites:5,totalDimensionsCites:11,abstract:"The LNG carriers are undergoing a period of rapid and profound change, with much larger size ships and novel propulsion systems emerging for fulfilling the market trends of LNG shipping industry. There are various proposed propulsion solutions for LNG carriers, ranging from the conventional steam turbine and dual fuel diesel electric propulsion, until more innovative ideas such as slow speed dual fuel diesel engine, combined gas turbine electric & steam system, and hybrid propulsion based on steam turbine and gas engine. Since propulsion system significantly influenced the ship’s capital, emission regulation compliance and navigation safety, the selection of a proper propulsion option with technical feasibility and economic viability for LNG carriers is currently a major concern from the shipping industry and thus must be comprehensively assessed. In this context, this chapter investigated the main characteristics of these propulsion options in terms of BOG treatment, fuel consumption, emission standards compliance, and plant reliability. Furthermore, comparisons among different propulsion system were also carried out and related evaluation was presented.",book:{id:"7198",slug:"propulsion-systems",title:"Propulsion Systems",fullTitle:"Propulsion Systems"},signatures:"Tu Huan, Fan Hongjun, Lei Wei and Zhou Guoqiang",authors:[{id:"265951",title:"Mr.",name:"Huan",middleName:null,surname:"Tu",slug:"huan-tu",fullName:"Huan Tu"}]},{id:"19573",title:"Control of Hybrid Electrical Vehicles",slug:"control-of-hybrid-electrical-vehicles",totalDownloads:15620,totalCrossrefCites:5,totalDimensionsCites:13,abstract:null,book:{id:"447",slug:"electric-vehicles-modelling-and-simulations",title:"Electric Vehicles",fullTitle:"Electric Vehicles - Modelling and Simulations"},signatures:"Gheorghe Livinţ, Vasile Horga, Marcel Răţoi and Mihai Albu",authors:[{id:"25879",title:"Prof.",name:"Gheorghe",middleName:null,surname:"Livint",slug:"gheorghe-livint",fullName:"Gheorghe Livint"},{id:"40500",title:"Dr.",name:"Vasile",middleName:null,surname:"Horga",slug:"vasile-horga",fullName:"Vasile Horga"},{id:"40501",title:"Prof.",name:"Marcel",middleName:null,surname:"Ratoi",slug:"marcel-ratoi",fullName:"Marcel Ratoi"},{id:"40502",title:"Dr.",name:"Mihai",middleName:null,surname:"Albu",slug:"mihai-albu",fullName:"Mihai Albu"}]},{id:"41416",title:"Energy Efficiency of Electric Vehicles",slug:"energy-efficiency-of-electric-vehicles",totalDownloads:7634,totalCrossrefCites:5,totalDimensionsCites:8,abstract:null,book:{id:"3196",slug:"new-generation-of-electric-vehicles",title:"New Generation of Electric Vehicles",fullTitle:"New Generation of Electric Vehicles"},signatures:"Zoran Stevic and Ilija Radovanovic",authors:[{id:"30692",title:"Dr.",name:"Zoran",middleName:"M.",surname:"Stevic",slug:"zoran-stevic",fullName:"Zoran Stevic"}]}],onlineFirstChaptersFilter:{topicId:"124",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"May 13th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"38",title:"Pollution",coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",isOpenForSubmission:!0,editor:{id:"110740",title:"Dr.",name:"Ismail M.M.",middleName:null,surname:"Rahman",slug:"ismail-m.m.-rahman",fullName:"Ismail M.M. Rahman",profilePictureURL:"https://mts.intechopen.com/storage/users/110740/images/2319_n.jpg",biography:"Ismail Md. Mofizur Rahman (Ismail M. M. Rahman) assumed his current responsibilities as an Associate Professor at the Institute of Environmental Radioactivity, Fukushima University, Japan, in Oct 2015. He also has an honorary appointment to serve as a Collaborative Professor at Kanazawa University, Japan, from Mar 2015 to the present. \nFormerly, Dr. Rahman was a faculty member of the University of Chittagong, Bangladesh, affiliated with the Department of Chemistry (Oct 2002 to Mar 2012) and the Department of Applied Chemistry and Chemical Engineering (Mar 2012 to Sep 2015). Dr. Rahman was also adjunctly attached with Kanazawa University, Japan (Visiting Research Professor, Dec 2014 to Mar 2015; JSPS Postdoctoral Research Fellow, Apr 2012 to Mar 2014), and Tokyo Institute of Technology, Japan (TokyoTech-UNESCO Research Fellow, Oct 2004–Sep 2005). \nHe received his Ph.D. degree in Environmental Analytical Chemistry from Kanazawa University, Japan (2011). He also achieved a Diploma in Environment from the Tokyo Institute of Technology, Japan (2005). Besides, he has an M.Sc. degree in Applied Chemistry and a B.Sc. degree in Chemistry, all from the University of Chittagong, Bangladesh. \nDr. Rahman’s research interest includes the study of the fate and behavior of environmental pollutants in the biosphere; design of low energy and low burden environmental improvement (remediation) technology; implementation of sustainable waste management practices for treatment, handling, reuse, and ultimate residual disposition of solid wastes; nature and type of interactions in organic liquid mixtures for process engineering design applications.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"201020",title:"Dr.",name:"Zinnat Ara",middleName:null,surname:"Begum",slug:"zinnat-ara-begum",fullName:"Zinnat Ara Begum",profilePictureURL:"https://mts.intechopen.com/storage/users/201020/images/system/201020.jpeg",biography:"Zinnat A. Begum received her Ph.D. in Environmental Analytical Chemistry from Kanazawa University in 2012. She achieved her Master of Science (M.Sc.) degree with a major in Applied Chemistry and a Bachelor of Science (B.Sc.) in Chemistry, all from the University of Chittagong, Bangladesh. Her work affiliations include Fukushima University, Japan (Visiting Research Fellow, Institute of Environmental Radioactivity: Mar 2016 to present), Southern University Bangladesh (Assistant Professor, Department of Civil Engineering: Jan 2015 to present), and Kanazawa University, Japan (Postdoctoral Fellow, Institute of Science and Engineering: Oct 2012 to Mar 2014; Research fellow, Venture Business Laboratory, Advanced Science and Social Co-Creation Promotion Organization: Apr 2018 to Mar 2021). The research focus of Dr. Zinnat includes the effect of the relative stability of metal-chelator complexes in the environmental remediation process designs and the development of eco-friendly soil washing techniques using biodegradable chelators.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorThree:null},{id:"39",title:"Environmental Resilience and Management",coverUrl:"https://cdn.intechopen.com/series_topics/covers/39.jpg",isOpenForSubmission:!0,editor:{id:"137040",title:"Prof.",name:"Jose",middleName:null,surname:"Navarro-Pedreño",slug:"jose-navarro-pedreno",fullName:"Jose Navarro-Pedreño",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRAXrQAO/Profile_Picture_2022-03-09T15:50:19.jpg",biography:"Full professor at University Miguel Hernández of Elche, Spain, previously working at the University of Alicante, Autonomous University of Madrid and Polytechnic University of Valencia. Graduate in Sciences (Chemist), graduate in Geography and History (Geography), master in Water Management, Treatment, master in Fertilizers and Environment and master in Environmental Management; Ph.D. in Environmental Sciences. His research is focused on soil-water and waste-environment relations, mainly on soil-water and soil-waste interactions under different management and waste reuse. His work is reflected in more than 230 communications presented in national and international conferences and congresses, 29 invited lectures from universities, associations and government agencies. Prof. Navarro-Pedreño is also a director of the Ph.D. Program Environment and Sustainability (2012-present) and a member of several societies among which are the Spanish Society of Soil Science, International Union of Soil Sciences, European Society for Soil Conservation, DessertNet and the Spanish Royal Society of Chemistry.",institutionString:"Miguel Hernández University of Elche, Spain",institution:null},editorTwo:null,editorThree:null},{id:"40",title:"Ecosystems and Biodiversity",coverUrl:"https://cdn.intechopen.com/series_topics/covers/40.jpg",isOpenForSubmission:!0,editor:{id:"209149",title:"Prof.",name:"Salustiano",middleName:null,surname:"Mato",slug:"salustiano-mato",fullName:"Salustiano Mato",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLREQA4/Profile_Picture_2022-03-31T10:23:50.png",biography:"Salustiano Mato de la Iglesia (Santiago de Compostela, 1960) is a doctor in biology from the University of Santiago and a Professor of zoology at the Department of Ecology and Animal Biology at the University of Vigo. He has developed his research activity in the fields of fauna and soil ecology, and in the treatment of organic waste, having been the founder and principal investigator of the Environmental Biotechnology Group of the University of Vigo.\r\nHis research activity in the field of Environmental Biotechnology has been focused on the development of novel organic waste treatment systems through composting. The result of this line of work are three invention patents and various scientific and technical publications in prestigious international journals.",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}},editorTwo:{id:"60498",title:"Prof.",name:"Josefina",middleName:null,surname:"Garrido",slug:"josefina-garrido",fullName:"Josefina Garrido",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRj1VQAS/Profile_Picture_2022-03-31T10:06:51.jpg",biography:"Josefina Garrido González (Paradela de Abeleda, Ourense 1959), is a doctor in biology from the University of León and a Professor of Zoology at the Department of Ecology and Animal Biology at the University of Vigo. She has focused her research activity on the taxonomy, fauna and ecology of aquatic beetles, in addition to other lines of research such as the conservation of biodiversity in freshwater ecosystems; conservation of protected areas (Red Natura 2000) and assessment of the effectiveness of wetlands as priority areas for the conservation of aquatic invertebrates; studies of water quality in freshwater ecosystems through biological indicators and physicochemical parameters; surveillance and research of vector arthropods and invasive alien species.",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}},editorThree:{id:"464288",title:"Dr.",name:"Francisco",middleName:null,surname:"Ramil",slug:"francisco-ramil",fullName:"Francisco Ramil",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003RI7lHQAT/Profile_Picture_2022-03-31T10:15:35.png",biography:"Fran Ramil Blanco (Porto de Espasante, A Coruña, 1960), is a doctor in biology from the University of Santiago de Compostela and a Professor of Zoology at the Department of Ecology and Animal Biology at the University of Vigo. His research activity is linked to the taxonomy, fauna and ecology of marine benthic invertebrates and especially the Cnidarian group. Since 2004, he has been part of the EcoAfrik project, aimed at the study, protection and conservation of biodiversity and benthic habitats in West Africa. He also participated in the study of vulnerable marine ecosystems associated with seamounts in the South Atlantic and is involved in training young African researchers in the field of marine research.",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}}},{id:"41",title:"Water Science",coverUrl:"https://cdn.intechopen.com/series_topics/covers/41.jpg",isOpenForSubmission:!0,editor:{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang",profilePictureURL:"https://mts.intechopen.com/storage/users/349630/images/system/349630.jpg",biography:"Prof. Dr. Yizi Shang is a pioneering researcher in hydrology and water resources who has devoted his research career to promoting the conservation and protection of water resources for sustainable development. He is presently associate editor of Water International (official journal of the International Water Resources Association). He was also invited to serve as an associate editor for special issues of the Journal of the American Water Resources Association. He has served as an editorial member for international journals such as Hydrology, Journal of Ecology & Natural Resources, and Hydro Science & Marine Engineering, among others. He has chaired or acted as a technical committee member for twenty-five international forums (conferences). Dr. Shang graduated from Tsinghua University, China, in 2010 with a Ph.D. in Engineering. Prior to that, he worked as a research fellow at Harvard University from 2008 to 2009. Dr. Shang serves as a senior research engineer at the China Institute of Water Resources and Hydropower Research (IWHR) and was awarded as a distinguished researcher at National Taiwan University in 2017.",institutionString:"China Institute of Water Resources and Hydropower Research",institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:0,paginationItems:[]},overviewPagePublishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",biography:"Prof. Mohamed Nageeb Rashed is Professor of Analytical and Environmental Chemistry and former vice-dean for environmental affairs, Faculty of Science, Aswan University, Egypt. He received his Ph.D. in Environmental Analytical Chemistry from Assiut University, Egypt, in 1989. His research interest is in analytical and environmental chemistry with special emphasis on: (1) monitoring and assessing biological trace elements and toxic metals in human blood, urine, water, crops, vegetables, and medicinal plants; (2) relationships between environmental heavy metals and human diseases; (3) uses of biological indicators for monitoring water pollution; (4) environmental chemistry of lakes, rivers, and well water; (5) water and wastewater treatment by adsorption and photocatalysis techniques; (6) soil and water pollution monitoring, control, and treatment; and (7) advanced oxidation treatment. Prof. Rashed has supervised several MSc and Ph.D. theses in the field of analytical and environmental chemistry. He served as an examiner for several Ph.D. theses in analytical chemistry in India, Kazakhstan, and Botswana. He has published about ninety scientific papers in peer-reviewed international journals and several papers in national and international conferences. He participated as an invited speaker at thirty international conferences. Prof. Rashed is the editor-in-chief and an editorial board member for several international journals in the fields of chemistry and environment. He is a member of several national and international societies. He received the Egyptian State Award for Environmental Research in 2001 and the Aswan University Merit Award for Basic Science in 2020. Prof. Rashed was recognized in Stanford University’s list of the World’s Top 2% Scientists in 2020 and 2021.",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}]}]},openForSubmissionBooks:{paginationCount:1,paginationItems:[{id:"11601",title:"Econometrics - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11601.jpg",hash:"bc8ab49e2cf436c217a49ca8c12a22eb",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 13th 2022",isOpenForSubmission:!0,editors:[{id:"452331",title:"Dr.",name:"Brian",surname:"Sloboda",slug:"brian-sloboda",fullName:"Brian Sloboda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:19,paginationItems:[{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79909",title:"Cryopreservation Methods and Frontiers in the Art of Freezing Life in Animal Models",doi:"10.5772/intechopen.101750",signatures:"Feda S. Aljaser",slug:"cryopreservation-methods-and-frontiers-in-the-art-of-freezing-life-in-animal-models",totalDownloads:170,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"79782",title:"Avian Reproduction",doi:"10.5772/intechopen.101185",signatures:"Kingsley Omogiade Idahor",slug:"avian-reproduction",totalDownloads:151,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kingsley O.",surname:"Idahor"}],book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"78802",title:"Intraovarian Gestation in Viviparous Teleosts: Unique Type of Gestation among Vertebrates",doi:"10.5772/intechopen.100267",signatures:"Mari-Carmen Uribe, Gabino De la Rosa-Cruz, Adriana García-Alarcón and Juan Carlos Campuzano-Caballero",slug:"intraovarian-gestation-in-viviparous-teleosts-unique-type-of-gestation-among-vertebrates",totalDownloads:184,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:137,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78849",title:"Application of Vermicompost Fertilizer in Aquaculture Nutrition: Review",doi:"10.5772/intechopen.100326",signatures:"Sonnia Nzilani Musyoka and Rita Nairuti",slug:"application-of-vermicompost-fertilizer-in-aquaculture-nutrition-review",totalDownloads:67,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Nutrition - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11416.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"78617",title:"Doppler Ultrasound in the Reproduction of Mares",doi:"10.5772/intechopen.98951",signatures:"Camila Silva Costa Ferreira and Rita de Cássia Lima Morais",slug:"doppler-ultrasound-in-the-reproduction-of-mares",totalDownloads:123,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",doi:"10.5772/intechopen.100051",signatures:"Chan I-Ping and Hsueh Tung",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:171,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",doi:"10.5772/intechopen.99067",signatures:"Christophe Casteleyn and Jaco Bakker",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:308,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},subseriesFiltersForOFChapters:[{caption:"Animal Nutrition",value:20,count:1,group:"subseries"},{caption:"Animal Reproductive Biology and Technology",value:28,count:7,group:"subseries"},{caption:"Animal Science",value:19,count:11,group:"subseries"}],publishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"9883",title:"Biosensors",subtitle:"Current and Novel Strategies for Biosensing",coverURL:"https://cdn.intechopen.com/books/images_new/9883.jpg",slug:"biosensors-current-and-novel-strategies-for-biosensing",publishedDate:"May 5th 2021",editedByType:"Edited by",bookSignature:"Luis Jesús Villarreal-Gómez and Ana Leticia Iglesias",hash:"028f3e5dbf9c32590183ac4b4f0a2825",volumeInSeries:11,fullTitle:"Biosensors - Current and Novel Strategies for Biosensing",editors:[{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",slug:"biomedical-signal-and-image-processing",publishedDate:"April 14th 2021",editedByType:"Edited by",bookSignature:"Yongxia Zhou",hash:"22b87a09bd6df065d78c175235d367c8",volumeInSeries:10,fullTitle:"Biomedical Signal and Image Processing",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",institutionString:"University of Southern California",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9973",title:"Data Acquisition",subtitle:"Recent Advances and Applications in Biomedical Engineering",coverURL:"https://cdn.intechopen.com/books/images_new/9973.jpg",slug:"data-acquisition-recent-advances-and-applications-in-biomedical-engineering",publishedDate:"March 17th 2021",editedByType:"Edited by",bookSignature:"Bartłomiej Płaczek",hash:"75ea6cdd241216c9db28aa734ab34446",volumeInSeries:9,fullTitle:"Data Acquisition - Recent Advances and Applications in Biomedical Engineering",editors:[{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9905",title:"Biometric Systems",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9905.jpg",slug:"biometric-systems",publishedDate:"February 10th 2021",editedByType:"Edited by",bookSignature:"Muhammad Sarfraz",hash:"c730560dd2e3837a03407b3a86b0ef2a",volumeInSeries:8,fullTitle:"Biometric Systems",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",institutionString:"Kuwait University",institution:{name:"Kuwait University",institutionURL:null,country:{name:"Kuwait"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8622",title:"Peptide Synthesis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8622.jpg",slug:"peptide-synthesis",publishedDate:"December 18th 2019",editedByType:"Edited by",bookSignature:"Jaya T. Varkey",hash:"de9fa48c5248dbfb581825b8c74f5623",volumeInSeries:0,fullTitle:"Peptide Synthesis",editors:[{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",institutionString:"St. Teresa’s College",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7497",title:"Computer Vision in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7497.jpg",slug:"computer-vision-in-dentistry",publishedDate:"September 18th 2019",editedByType:"Edited by",bookSignature:"Monika Elzbieta Machoy",hash:"1e9812cebd46ef9e28257f3e96547f6a",volumeInSeries:7,fullTitle:"Computer Vision in Dentistry",editors:[{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",editedByType:"Edited by",bookSignature:"Anna Nowinska",hash:"da2c90e8db647ead30504defce3fb5d3",volumeInSeries:6,fullTitle:"Novel Diagnostic Methods in Ophthalmology",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska",profilePictureURL:"https://mts.intechopen.com/storage/users/261466/images/system/261466.jpeg",institutionString:"Medical University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7437",title:"Nanomedicines",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7437.jpg",slug:"nanomedicines",publishedDate:"February 13th 2019",editedByType:"Edited by",bookSignature:"Muhammad Akhyar Farrukh",hash:"0e1f5f6258f074c533976c4f4d248568",volumeInSeries:5,fullTitle:"Nanomedicines",editors:[{id:"63182",title:"Dr.",name:"Muhammad Akhyar",middleName:null,surname:"Farrukh",slug:"muhammad-akhyar-farrukh",fullName:"Muhammad Akhyar Farrukh",profilePictureURL:"https://mts.intechopen.com/storage/users/63182/images/system/63182.png",institutionString:"Forman Christian College",institution:{name:"Forman Christian College",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",institutionString:"University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",value:9,count:1},{group:"subseries",caption:"Bioinspired Technology and Biomechanics",value:8,count:2},{group:"subseries",caption:"Bioinformatics and Medical Informatics",value:7,count:9}],publicationYearFilters:[{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2019",value:2019,count:5},{group:"publicationYear",caption:"2018",value:2018,count:3}],authors:{paginationCount:33,paginationItems:[{id:"424419",title:"Dr.",name:"Matthew",middleName:"Ayorinde",surname:"Ayorinde Adebayo",slug:"matthew-ayorinde-adebayo",fullName:"Matthew Ayorinde Adebayo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/424419/images/17356_n.jpg",biography:null,institutionString:null,institution:null},{id:"354033",title:"Dr.",name:"Ahmed",middleName:null,surname:"Nasri",slug:"ahmed-nasri",fullName:"Ahmed Nasri",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"435702",title:"Dr.",name:"Amel",middleName:null,surname:"Hannachi",slug:"amel-hannachi",fullName:"Amel Hannachi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"420857",title:"Prof.",name:"Ezzeddine",middleName:null,surname:"Mahmoudi",slug:"ezzeddine-mahmoudi",fullName:"Ezzeddine Mahmoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"420856",title:"Prof.",name:"Hamouda",middleName:null,surname:"Beyrem",slug:"hamouda-beyrem",fullName:"Hamouda Beyrem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"435703",title:"Dr.",name:"Hary",middleName:null,surname:"Demey",slug:"hary-demey",fullName:"Hary Demey",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Polytechnic University of Cartagena",country:{name:"Spain"}}},{id:"425026",title:"Mr.",name:"Kholofelo",middleName:null,surname:"Clifford Malematja",slug:"kholofelo-clifford-malematja",fullName:"Kholofelo Clifford Malematja",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Tshwane University of Technology",country:{name:"South Africa"}}},{id:"435701",title:"Dr.",name:"Mohamed",middleName:null,surname:"Allouche",slug:"mohamed-allouche",fullName:"Mohamed Allouche",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"420855",title:"Prof.",name:"Patricia",middleName:null,surname:"Aïssa",slug:"patricia-aissa",fullName:"Patricia Aïssa",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"435699",title:"Dr.",name:"Takoua",middleName:null,surname:"Mhadhbi",slug:"takoua-mhadhbi",fullName:"Takoua Mhadhbi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"442300",title:"Prof.",name:"Véronique",middleName:null,surname:"Perrier",slug:"veronique-perrier",fullName:"Véronique Perrier",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Montpellier",country:{name:"France"}}},{id:"445179",title:"Mr.",name:"Aman",middleName:null,surname:"Jaiswal",slug:"aman-jaiswal",fullName:"Aman Jaiswal",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Science Education and Research Mohali",country:{name:"India"}}},{id:"445178",title:"Mr.",name:"Dhiraj",middleName:null,surname:"Dutta",slug:"dhiraj-dutta",fullName:"Dhiraj Dutta",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Defence Research Laboratory",country:{name:"India"}}},{id:"445180",title:"Dr.",name:"Rama",middleName:null,surname:"Dubey",slug:"rama-dubey",fullName:"Rama Dubey",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Defence Research Laboratory",country:{name:"India"}}},{id:"424992",title:"Dr.",name:"Mohamed",middleName:null,surname:"Helal",slug:"mohamed-helal",fullName:"Mohamed Helal",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Institute of Oceanography and Fisheries",country:{name:"Egypt"}}},{id:"428329",title:"Mr.",name:"Collet",middleName:null,surname:"Maswanganyi",slug:"collet-maswanganyi",fullName:"Collet Maswanganyi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Limpopo",country:{name:"South Africa"}}},{id:"428546",title:"MSc.",name:"Ndivhuwo",middleName:null,surname:"Shumbula",slug:"ndivhuwo-shumbula",fullName:"Ndivhuwo Shumbula",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"352155",title:"Dr.",name:"Poslet",middleName:"Morgan",surname:"Shumbula",slug:"poslet-shumbula",fullName:"Poslet Shumbula",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Limpopo",country:{name:"South Africa"}}},{id:"435064",title:"Dr.",name:"Mohammadtaghi",middleName:null,surname:"Vakili",slug:"mohammadtaghi-vakili",fullName:"Mohammadtaghi Vakili",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yangtze Normal University",country:{name:"China"}}},{id:"437268",title:"Dr.",name:"Linda Lunga",middleName:null,surname:"Sibali",slug:"linda-lunga-sibali",fullName:"Linda Lunga Sibali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437269",title:"Dr.",name:"Peter P.",middleName:null,surname:"Ndibewu",slug:"peter-p.-ndibewu",fullName:"Peter P. Ndibewu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"424106",title:"Ph.D. Student",name:"Siyabonga",middleName:null,surname:"Aubrey Mhlongo",slug:"siyabonga-aubrey-mhlongo",fullName:"Siyabonga Aubrey Mhlongo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"424233",title:"Ph.D. Student",name:"Ifeoluwa Oluwafunmilayo",middleName:null,surname:"Daramola",slug:"ifeoluwa-oluwafunmilayo-daramola",fullName:"Ifeoluwa Oluwafunmilayo Daramola",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446429",title:"Dr.",name:"Dev Vrat",middleName:null,surname:"Kamboj",slug:"dev-vrat-kamboj",fullName:"Dev Vrat Kamboj",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"425585",title:"Dr.",name:"NISHA",middleName:null,surname:"GAUR",slug:"nisha-gaur",fullName:"NISHA GAUR",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"226635",title:"Prof.",name:"Amany",middleName:null,surname:"El-Sikaily",slug:"amany-el-sikaily",fullName:"Amany El-Sikaily",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"435668",title:"Dr.",name:"Sara",middleName:null,surname:"Ghanem",slug:"sara-ghanem",fullName:"Sara Ghanem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"426808",title:"Associate Prof.",name:"Yesim",middleName:null,surname:"Gucbilmez",slug:"yesim-gucbilmez",fullName:"Yesim Gucbilmez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"423291",title:"Assistant Prof.",name:"Giovanni",middleName:null,surname:"Cagnetta",slug:"giovanni-cagnetta",fullName:"Giovanni Cagnetta",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"22",type:"subseries",title:"Applied Intelligence",keywords:"Machine Learning, Intelligence Algorithms, Data Science, Artificial Intelligence, Applications on Applied Intelligence",scope:"This field is the key in the current industrial revolution (Industry 4.0), where the new models and developments are based on the knowledge generation on applied intelligence. The motor of the society is the industry and the research of this topic has to be empowered in order to increase and improve the quality of our lives.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11418,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"13633",title:"Prof.",name:"Abdelhamid",middleName:null,surname:"Mellouk",slug:"abdelhamid-mellouk",fullName:"Abdelhamid Mellouk",profilePictureURL:"https://mts.intechopen.com/storage/users/13633/images/1567_n.jpg",institutionString:null,institution:{name:"Paris 12 Val de Marne University",institutionURL:null,country:{name:"France"}}},{id:"109268",title:"Dr.",name:"Ali",middleName:null,surname:"Al-Ataby",slug:"ali-al-ataby",fullName:"Ali Al-Ataby",profilePictureURL:"https://mts.intechopen.com/storage/users/109268/images/7410_n.jpg",institutionString:null,institution:{name:"University of Liverpool",institutionURL:null,country:{name:"United Kingdom"}}},{id:"3807",title:"Dr.",name:"Carmelo",middleName:"Jose Albanez",surname:"Bastos-Filho",slug:"carmelo-bastos-filho",fullName:"Carmelo Bastos-Filho",profilePictureURL:"https://mts.intechopen.com/storage/users/3807/images/624_n.jpg",institutionString:null,institution:{name:"Universidade de Pernambuco",institutionURL:null,country:{name:"Brazil"}}},{id:"38850",title:"Dr.",name:"Efren",middleName:null,surname:"Gorrostieta Hurtado",slug:"efren-gorrostieta-hurtado",fullName:"Efren Gorrostieta Hurtado",profilePictureURL:"https://mts.intechopen.com/storage/users/38850/images/system/38850.jpg",institutionString:null,institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},{id:"239041",title:"Prof.",name:"Yang",middleName:null,surname:"Yi",slug:"yang-yi",fullName:"Yang Yi",profilePictureURL:"https://mts.intechopen.com/storage/users/239041/images/system/239041.jpeg",institutionString:"Virginia Tech",institution:{name:"Virginia Tech",institutionURL:null,country:{name:"United States of America"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"81831",title:"Deep Network Model and Regression Analysis using OLS Method for Predicting Lung Vital Capacity",doi:"10.5772/intechopen.104737",signatures:"Harun Sümbül",slug:"deep-network-model-and-regression-analysis-using-ols-method-for-predicting-lung-vital-capacity",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Decision Science - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11604.jpg",subseries:{id:"86",title:"Business and Management"}}}]},publishedBooks:{paginationCount:8,paginationItems:[{type:"book",id:"7999",title:"Free Radical Medicine and Biology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7999.jpg",slug:"free-radical-medicine-and-biology",publishedDate:"July 15th 2020",editedByType:"Edited by",bookSignature:"Kusal Das, Swastika Das, Mallanagouda Shivanagouda Biradar, Varaprasad Bobbarala and S. Subba Tata",hash:"083e5d427097d368a3f8a02bd6c76bf8",volumeInSeries:10,fullTitle:"Free Radical Medicine and Biology",editors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",institutionString:"BLDE (Deemed to be University), India",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8762",title:"Melatonin",subtitle:"The Hormone of Darkness and its Therapeutic Potential and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/8762.jpg",slug:"melatonin-the-hormone-of-darkness-and-its-therapeutic-potential-and-perspectives",publishedDate:"June 24th 2020",editedByType:"Edited by",bookSignature:"Marilena Vlachou",hash:"bfbc5538173f11acb0f9549a85b70489",volumeInSeries:9,fullTitle:"Melatonin - The Hormone of Darkness and its Therapeutic Potential and Perspectives",editors:[{id:"246279",title:"Associate Prof.",name:"Marilena",middleName:null,surname:"Vlachou",slug:"marilena-vlachou",fullName:"Marilena Vlachou",profilePictureURL:"https://mts.intechopen.com/storage/users/246279/images/system/246279.jpg",institutionString:"National and Kapodistrian University of Athens",institution:{name:"National and Kapodistrian University of Athens",institutionURL:null,country:{name:"Greece"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8002",title:"Tumor Progression and Metastasis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8002.jpg",slug:"tumor-progression-and-metastasis",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Ahmed Lasfar and Karine Cohen-Solal",hash:"db17b0fe0a9b6e80ff02b81a93bafa4e",volumeInSeries:8,fullTitle:"Tumor Progression and Metastasis",editors:[{id:"32546",title:"Dr.",name:"Ahmed",middleName:null,surname:"Lasfar",slug:"ahmed-lasfar",fullName:"Ahmed Lasfar",profilePictureURL:"https://mts.intechopen.com/storage/users/32546/images/system/32546.png",institutionString:"Rutgers, The State University of New Jersey",institution:{name:"Rutgers, The State University of New Jersey",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6897",title:"Biophysical Chemistry",subtitle:"Advance Applications",coverURL:"https://cdn.intechopen.com/books/images_new/6897.jpg",slug:"biophysical-chemistry-advance-applications",publishedDate:"February 19th 2020",editedByType:"Edited by",bookSignature:"Mohammed A. A. Khalid",hash:"0ad18ab382e2ffb9ff202d15282297eb",volumeInSeries:7,fullTitle:"Biophysical Chemistry - Advance Applications",editors:[{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",institutionString:"Taif University",institution:{name:"Taif University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",slug:"antioxidants",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Emad Shalaby",hash:"76361b4061e830906267933c1c670027",volumeInSeries:5,fullTitle:"Antioxidants",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby",profilePictureURL:"https://mts.intechopen.com/storage/users/63600/images/system/63600.png",institutionString:"Cairo University",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6924",title:"Adenosine Triphosphate in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6924.jpg",slug:"adenosine-triphosphate-in-health-and-disease",publishedDate:"April 24th 2019",editedByType:"Edited by",bookSignature:"Gyula Mozsik",hash:"04106c232a3c68fec07ba7cf00d2522d",volumeInSeries:3,fullTitle:"Adenosine Triphosphate in Health and Disease",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",institutionString:"University of Pécs",institution:{name:"University of Pecs",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",slug:"endoplasmic-reticulum",publishedDate:"April 17th 2019",editedByType:"Edited by",bookSignature:"Angel Català",hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",volumeInSeries:2,fullTitle:"Endoplasmic Reticulum",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7264",title:"Calcium and Signal Transduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7264.jpg",slug:"calcium-and-signal-transduction",publishedDate:"October 24th 2018",editedByType:"Edited by",bookSignature:"John N. Buchholz and Erik J. Behringer",hash:"e373a3d1123dbd45fddf75d90e3e7c38",volumeInSeries:1,fullTitle:"Calcium and Signal Transduction",editors:[{id:"89438",title:"Dr.",name:"John N.",middleName:null,surname:"Buchholz",slug:"john-n.-buchholz",fullName:"John N. Buchholz",profilePictureURL:"https://mts.intechopen.com/storage/users/89438/images/6463_n.jpg",institutionString:null,institution:{name:"Loma Linda University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"4",title:"Fungal Infectious Diseases",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment"},{id:"5",title:"Parasitic Infectious Diseases",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology"},{id:"6",title:"Viral Infectious Diseases",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:287,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRqB9QAK/Profile_Picture_1626163237970",institutionString:null,institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/418255",hash:"",query:{},params:{id:"418255"},fullPath:"/profiles/418255",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()