\r\n\tThe aim of this book will be to describe the most common forms of dermatitis putting emphasis on the pathophysiology, clinical appearance and diagnostic of each disease. We also will aim to describe the therapeutic management and new therapeutic approaches of each condition that are currently being studied and are supposed to be used in the near future.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,hash:"278931ae110500350d8b64805c70f193",bookSignature:"Dr. Eleni Papakonstantinou",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/7934.jpg",keywords:"Atopic eczema, Interleukin, Topical corticosteroids, Hand eczema, Blisters, Pruritus, Irritant contact dermatitis, Allergic contact dermatitis, Discoid eczema, Sebaceous glands, Inflammatory dermatitis, Facial rash",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 5th 2019",dateEndSecondStepPublish:"March 19th 2019",dateEndThirdStepPublish:"May 18th 2019",dateEndFourthStepPublish:"August 6th 2019",dateEndFifthStepPublish:"October 5th 2019",remainingDaysToSecondStep:"3 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"203520",title:"Dr.",name:"Eleni",middleName:null,surname:"Papakonstantinou",slug:"eleni-papakonstantinou",fullName:"Eleni Papakonstantinou",profilePictureURL:"https://mts.intechopen.com/storage/users/203520/images/system/203520.jpg",biography:"Dr. Eleni Papakonstantinou, MD, is a board-certified dermatologist-venereologist. She studied medicine at the Aristotle University of Thessaloniki, Greece, and continued with her dermatology specialty at the University of Magdeburg and Hannover Medical School, Germany (2012–2017), where she completed her dissertation in 2016 with research work on atopic dermatitis in children. During this time, Dr. Papakonstantinou gained wide experience in the dermatological field with a special focus on the diagnosis and treatment of chronic inflammatory skin diseases and the prevention and treatment of melanocytic and non-melanocytic skin tumors. Her research interests include atopic dermatitis, pruritus, and the pathophysiology of blistering dermatoses. In addition to lectures at national and international congresses, Dr. Papakonstantinou has published more than thirty scientific papers in international medical journals and her work has been recognized with various prizes (poster prize of the German Dermatological Society, Leipzig, 2016), the Michael Hornstein Memorial Scholarship (EADV Athens 2016), and a travel grant (EAACI Vienna, 2016). Since 2017, she has been a specialist dermatologist-venereologist in Germany and a fellow of the European Board of Dermatology-Venereology (FEBDV). She is currently working as a specialist dermatologist in a dermatological practice in Dortmund, Germany, and she co-administrates an international dermatologic network, Wikiderm International, which is an online learning platform presenting news from the world of dermatology.",institutionString:"Private Dermatological Practice Hautärzte am Markt Dortmund",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"270941",firstName:"Sandra",lastName:"Maljavac",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/270941/images/7824_n.jpg",email:"sandra.m@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"10307",title:"Urticaria",subtitle:"Diagnosis and Management",isOpenForSubmission:!1,hash:"fb202eb1a1e092d3f660d4a1434a3692",slug:"urticaria-diagnosis-and-management",bookSignature:"Eleni Papakonstantinou",coverURL:"https://cdn.intechopen.com/books/images_new/10307.jpg",editedByType:"Edited by",editors:[{id:"203520",title:"Dr.",name:"Eleni",surname:"Papakonstantinou",slug:"eleni-papakonstantinou",fullName:"Eleni Papakonstantinou"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9500",title:"Recent Advances in Bone Tumours and Osteoarthritis",subtitle:null,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",slug:"recent-advances-in-bone-tumours-and-osteoarthritis",bookSignature:"Hiran Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"41597",title:"Adaptive Optics and Optical Vortices",doi:"10.5772/53328",slug:"adaptive-optics-and-optical-vortices",body:'\n\t\tThe achievement of minimal angular divergence of a laser beam is one of the most important problems in laser physics since many laser applications demand extreme concentration of radiation. Under the beam formation in the laser oscillator or amplifier with optically inhomogeneous gain medium and optical elements, the divergence usually exceeds the diffraction limit, and the phase surface of the laser beam differs from the plane surface. However, even if one succeeds in realizing the close-to-plane radiation wavefront at the laser output, the laser radiation experiences increasing phase disturbances under the propagation of the beam in an environment with optical inhomogeneities (atmosphere). These disturbances appear with the wavefront receiving smooth, regular distortions, the transverse intensity distribution becomes inhomogeneous, and the beam broadens out.
\n\t\t\tThe correction of the laser radiation phase, which is a smooth continuous spatial function, can be performed using a conventional adaptive optical system including a wavefront sensor and a wavefront corrector. The wavefront sensor performs the measurement (in other words, reconstruction) of the radiation phase surface; then, on the basis of these data, the wavefront corrector (for example, a reflecting mirror with deformable surface) transforms the phase front in the proper way. If all components of the adaptive optical system are involved in the common circuit with the feedback, then the adaptive system is known as a closed-loop system. The adaptive correction of the wavefront with smooth distortions has a somewhat long history and considerable advances [1, 2, 3, 4, 5, 6].
\n\t\t\tWhen a laser beam passes a sufficiently long distance in a turbulent atmosphere, the so-called regime of strong scintillations (intensity fluctuations) is realized. Under such conditions the optical field becomes speckled, lines appear in the space along the beam axis where the intensity vanishes and the surrounding zones of the wavefront attain a helicoidal (screw) shape. If the intensity in an acnode of the transverse plane is zero, then the phase in this point is not defined. In view of its screw form, the phase surface in the vicinity of such point has a break, the height of which is divisible by the wavelength. Since the phase is defined accurate to the addend that is aliquot to 2
Scintillations in the atmosphere especially decrease the efficiency of light energy transportation and distort the information carried by a laser beam in issues of astronomy and optical communications. Scintillation effects present special difficulty for adaptive optics, and their correction is one of key trends in the development of state-of-the-art adaptive optical systems.
\n\t\t\tHowever it should be noted that the possibility to control the optical vortices (including the means of adaptive optics) presents interest not only for atmospheric optics but for a new optical field, namely, singular optics [7, 8, 9]. The fact is that optical vortices have very promising applications in optical data processing, micro-manipulation, coronagraphy, etc. where any type of management of the singular phase could be required.
\n\t\t\tThis chapter is dedicated to wavefront reconstruction and adaptive phase correction of a vortex laser beam, which is generated in the form of the Laguerre-Gaussian
The singularity of the radiation field phase
Investigations of waves with screw wavefront and methods of their generation were reported as early as by Bryngdahl [11]. The theory of waves carrying phase singularities was developed in detail by Nye and Berry [12, 10], prompting a series of publications dealing with the problem (see [13, 14, 7, 8] and the lists of references therein). The term “optical vortex” was introduced in [15]. Along with the term “optical vortex”, the phenomenon is also referred to as “wavefront screw dislocation”. The latter appeared because of similarities between distorted wavefront and the crystal lattice with defects. The following terms are also used: “topological defects”, “phase singularities”, “phase cuts”, and “branch cuts”.
\n\t\t\tThus the indication of the existence of an optical vortex in an optical field is the presence of an isolated point {
where
The propagation of slowly-varying complex amplitude of the scalar wave field
where
Laguerre-Gaussian laser beams
The typical transverse size of the beam
In addition to an item responsible for wavefront curvature and transversely-uniform Gouy phase, the angular factor Φ
where Ω
Let’s consider two cases of the angular function Φ
On the optical axis, in the vortex center, the intensity is zero, resulting from the behavior of the radial dependence of (3) and generalized Laguerre polynomial (4). The beam intensity distribution in the transverse plane, as it is seen from (3), is axially-symmetrical (modulus of
Phase surface shape of a Laguerre-Gaussian beam carrying an optical vortex.
The intensity distribution in the Laguerre-Gaussian laser beam
The intensity distribution in the Laguerre-Gaussian laser beam
Let’s consider one more case when
Light beams with optical vortices currently attract considerable attention. This attention is encouraged by the extraordinary properties of such beams and by the important manifestations of these properties in many applications of science and technology.
\n\t\t\tIt is known for a long time that light with circular polarization possesses an orbital moment. For the single photon its quantity equals ±
The concept of orbital moment is not new. It is well known that multipole quantum jumps can results in the emission of radiation with orbital moment. However, such processes are infrequent and correspond to some forbidden atomic and molecular transitions. However, generating the beam carrying the optical vortex, one can readily obtain the light radiation beam with quantum orbital moment. Such beams can be used in investigations of all kinds of polarized light. For example, the photon analogy of spin-orbital interaction of electrons can be studied and in general it is possible to organize the search for new optical interactions. As the
The next practical application of optical vortices is optical micromanipulations and construction of so called optical traps, i.e. areas where the small (a few micrometers) particles can be locked in [25, 26]. Progress in the development of such traps allows the capture of particles of low and large refraction indexes [27]. Presently, this direction of research finds further continuation [28, 29, 30].
\n\t\t\tIt is also possible to use optical vortices to register objects with small luminosity located near a bright companion. Shadowing the bright object by a singular phase screen results in the formation of a window, in which the dim object is seen. The optical vortex filtration of such a kind was proposed in [31]. Using this method the companion located at 0.19 arcsec near the object was theoretically differentiated with intensity of radiation 2×105 times greater [32]. The possibility to use this method to detect planets orbiting bright stars was also illustrated by astronomers [33, 34]. Vortex coronagraphy is now undergoing further development [35, 36]. There are a number of examples of non-astronomical applications [37, 38].
\n\t\t\tIt was proposed to use optical vortices to improve optical measurements and increase the fidelity of optical testing [39, 40], for investigations in high-resolution fluorescence microscopy [41], optical lithography [42, 43], quantum entanglement [44, 45, 46], Bose–Einstein condensates [47].
\n\t\t\tOptical vortices show interesting properties in nonlinear optics [48]. For example, in [49, 50, 51] it was predicted that the phase conjugation at SBS of vortex beams is impossible due to the failure of selection of the conjugated mode. For a rather wide class of the vortex laser beams a novel and interesting phenomenon takes place which can be called the phase transformation at SBS. In essence there is only one Stokes mode, the amplification coefficient of which is maximal and higher than that of the conjugated mode. In other words, the non-conjugated mode is selected of in the Stokes beam. The principal Gaussian mode, which is orthogonal to the laser vortex mode, is an example of such an exceptional Stokes mode. The cause of this phenomenon is in the specific radial and azimuth distribution of the vortex laser beam. It is interesting that the hypersound vortices are formed in the SBS medium in accordance with the law of topologic charge conservation. The predicted effects have been completely confirmed experimentally [52, 53, 54].
\n\t\tIn early investigations [12] it was shown that the presence of optical vortices is a distinctive property of the so called speckled fields, which form when the laser beam propagates in the scattering media. Experimental evidence of the existence of screw dislocations in the laser beam, passed through a random phase plate, were obtained in [55, 56, 57] where topological limitations were also noted of adaptive control of the laser beams propagating in inhomogeneous media.
\n\t\t\tTurbulent atmosphere can be represented as the consequence of random phase screens. Under propagation in the turbulent atmosphere the regular optical field acquires rising aberrations. These aberrations manifest themselves in the broadening and random wandering of laser beams; the intensity distribution becomes non-regular and the wavefront deviates from initially set surface. These deformations of the wavefront can be corrected using adaptive optics. To this end, effective sensors and correctors of wavefront were designed [1-6]. The problem becomes more complicated when the laser beam passes a relatively long distance in a weak turbulent medium or if the turbulence becomes too strong. In this case optical vortices develop in the beam; the shape of the wavefront changes qualitatively and singularities appear.
\n\t\t\tThe influence of the scintillation effects are determined (see, for example, [2, 4]) by the closeness to unity of the Rytov variance
\n\t\t\twhere
Figure 4 demonstrates the results of numerical simulation of propagation of a Gaussian laser beam (
where \n\t\t\t\t\t
The fragment of speckled distribution of optical field intensity after the propagation is shown in Figure 4. Dark spots are seen where the intensity vanishes. As it has been noted before, the presence of optical vortices in the beam is easily detected, based on the picture of its interference with an obliquely incident plane wave. The correspondent picture is shown in Figure 4 as well. In the centers of screw dislocations the fringe branching is observed, i.e. the birth or disappearance of the fringes takes place with formation of typical “forks” in the interferogram (compare with Figure 2). There are also zones of edge dislocations (compare with Figure 3). The number, allocation and helicity of the vortices in the beam are random in nature but the vortices are born as well as annihilated in pairs. If the initial beam is regular (vortex-free), then the total topological charge of the vortices in the beam will be equal to zero in each transverse section of the beam along the propagation path in accordance with the conservation law of topological charge (or orbital angular moment) [7-9].
\n\t\t\tOptical vortices in the laser beam after atmospheric propagation: the speckled intensity distribution and the picture of interference of the beam with the obliquely incident plane wave including “forks” denoted by light circles.
One of the first papers dealing with the appearance of optical vortices in laser beams propagating in randomly inhomogeneous medium was published by Fried and Vaughn in 1992 [62]. They pointed out that the presence of dislocations makes registration of the wavefront more difficult and they considered methods for solving the problem. In 1995 the authors of Ref. [63] encountered this problem in experimental investigations of laser beam propagation in the atmosphere. It was shown that the existence of light vortices is an obstacle for atmospheric adaptive optical systems. After that it was theoretically shown that screw dislocations give rise to errors in the procedure of wavefront registration by the Shack-Hartmann sensor [64, 65]. Due to zero amplitude of the signal in singular points, the information carried by the beam becomes less reliable and the compensation for turbulent aberrations is less effective [66]. Along with [63], the experimental investigation [67] can be taken here as an example where the results of adaptive correction are presented for distortions of beams propagating in the atmosphere.
\n\t\t\tSince one of the key elements of an adaptive optical system is the wavefront sensor of laser radiation, there is a pressing need to create sensors that are capable of ensuring the required spatial resolution and maximal accuracy of the measurements. In this connection there is necessity need to develop algorithms for measurement of wavefront with screw dislocations, which are sufficiently precise, efficient and economical given the computing resources, and resistant to measurement noises. The traditional methods of wave front measurements [1-6] in the event of the above-mentioned conditions are in fact of no help. The wavefront sensors have been not able to restore the phase under the conditions of strong scintillations [68]. The experimental determination of the location of phase discontinuities itself already generates serious difficulties [69]. In spite of the fact that the construction features of algorithms of wavefront recovery in the presence of screw dislocations were set forth in a number of theoretical papers [68, 69, 70, 71, 72, 73, 74, 75], there were not many published experimental works in this direction. Thus, phase distribution has been investigated in different diffraction orders for a laser beam passed through a specially synthesized hologram, designed for generating higher-order Laguerre-Gaussian modes [76]. An interferometer with high spatial resolution was used to measure transverse phase distribution and localization of phase singularities. The interferometric wavefront sensor was applied also in a high-speed adaptive optical system to compensate phase distortions under conditions of strong scintillations of the coherent radiation in the turbulent atmosphere [77] as well as when modelling the turbulent path under laboratory conditions [78]. In [77, 78] the local phase was measured, without reconstructing the global wavefront that is much less sensitive to the presence of phase residues. The interferometric methods of phase determination are rather complicated and require that several interferograms are obtained at various phase shifts between a plane reference wave and a signal wave. It is noteworthy, however, that in the adaptive optical systems [1-6] the Hartmann-Shack wavefront sensor [79, 80] has a wider application compared with the interferometric sensors including the lateral shearing interferometers [81, 82], the curvature sensor [83, 84, 85], and the pyramidal sensor [86, 87]. The cause of this is just in a simpler and more reliable arrangement and construction of the Hartmann-Shack sensor. However, there have been practically no publications of the results of experimental investigations connected with applications of this sensor for measurements of singular phase distributions.
\n\t\t\tThe problem of a wavefront corrector (adaptive mirror) suitable for controlling a singular phase surface is also topical. In the adaptive optical systems [77, 78] the wavefront correctors were based on the micro-electromechanical system (MEMS) spatial light modulators with the large number of actuators. The results of [77, 78] shown that continuous MEMS mirrors with high dynamic response bandwidth, combined with the interferometric wavefront sensor, can ensure a noticeable correction of scintillation. However, the MEMS mirrors are characterized by low laser damage resistance that can considerably limit applications. The bimorph or pusher-type piezoceramics-based flexible mirrors with the modal response functions of control elements have a much higher laser damage threshold [3-5]. Recently [88] a complicated cascaded imaging adaptive optical system with a number of bimorph piezoceramic mirrors was used to mitigate turbulence effect basing, in particular, on conventional Hartmann-Shack wavefront sensor data. Conventional adaptive compensation was obtained in [88] which proved to be very poor at deep turbulence. The scintillation and vortices may be one of the causes of this.
\n\t\t\tIn the investigations, the results of which are described in this chapter, the development of an algorithm of the Hartmann-Shack reconstruction of vortex wavefront of the laser beam plays a substantial role. The creation of efficient algorithms for the wavefront sensor of vortex beams implies the experiments under modeling conditions when the optical vortices are artificially generated by special laboratory means. Moreover, as long as the matter concerns the creation of a new algorithm of wavefront reconstruction, it is possible to estimate its accuracy only under operation with the beam, the singular phase structure of which is known in detail beforehand. The formation of optical beams with the given configuration of phase singularities and their transformations is one of main trends in the novel advanced optical branch – singular optics [7-9].
\n\t\t\tThus, the first stage of the research sees the generation of a vortex laser beam with the given topological charge. In our case the role of this beam is played by the single optical vortex, namely, the Laguerre-Gaussian mode. Further, at the second stage, with the help of the Hartmann-Shack wavefront sensor, the task of registration of the vortex beam phase surface is solved using the new algorithm of singular wavefront reconstruction. Finally, at the third stage, the correction of the singular wavefront is undertaken in a closed-loop adaptive optical system, including the Hartmann-Shack wavefront sensor and the wavefront corrector in the form of a piezoelectric-based bimorph mirror.
\n\t\tAs it has been indicated above, to examine the accuracy of the wavefront reconstruction algorithm and its efficiency in the experiment itself a “reference” vortex beam has to be formed with a predetermined phase surface. This is important as, otherwise, it would be impossible to make sure that the algorithm recovers the true phase surface under conditions when robust alternative methods of its reconstruction are missing or unavailable. The Laguerre-Gaussian vortex modes
To create a beam with phase singularities artificially from an initial plane or Gaussian wave, a number of experimental techniques have been elaborated. There are many papers concerning the various aspects of generation of beams with phase singularities (see, for example, [89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104]). Among other possibilities, we can also refer to several methods for phase singularity creation in the optical beams based on nonlinear effects [105, 106, 107, 108]. The generation of optical vortices is also possible in the waveguides [109, 110, 111]. The adaptive mirrors themselves can be used for the formation of optical vortices [112, 113]. In this chapter, though, we dwell only on a number of ways to generate the vortex beams, which allow one to form close-to-“reference” vortices with well-determined singular phase structure that is necessary for the accuracy analysis of the new algorithm of Hartmann-Shack wavefront reconstruction.
\n\t\t\tOne method for generation of the screw dislocations is by forming the vortex beam immediately inside a laser cavity. The authors of [114] were the first to report that the generation of wavefront vortices is possible using a cw laser source. It was shown in [115] that insertion of a non-axisymmetric transparency into the cavity results in generation of a vortex beam. It was reported in [116] that a pure spiral mode can be obtained by introducing a spiral phase element (SPE) into the laser cavity, which selects the chosen mode. The geometry of the cavity intended for generation of such laser beams from [116] is shown in Figure 5. Here a rear mirror is replaced by a reflecting spiral phase element, which adds the phase change +2
This method was tested with a linearly polarized CO2-laser. The reflecting spiral phase element was made of silicon by multilevel etching. It had 32 levels with the entire height of break
Configuration of a laser cavity intended for generation of spiral beams [
Intensity distribution of vortex beam generated in the laser cavity in near (left) and far (right) zone [
A ring cavity with the Dove’s prism can also be used to generate vortex beams. It was shown [117] that modes of such a resonator are singular beams.
\n\t\t\tThe next way to generate the optical vortex uses a phase (or a mode) converter. Usually it transforms a Hermit-Gaussian mode, generated in the laser, into a corresponding Laguerre-Gaussian mode. This method was first proposed in [118]. In the experiment the authors used a cylindrical lens, the axis of which was placed at an angle of 45º with respect to the
In Ref. [91] an expression was derived for an integral transformation of Hermit-Gaussian modes into Laguerre-Gaussian modes in the astigmatic optical system, and it was shown theoretically that passing the beam through the cylindrical lens can perform the conversion. The theory of a
Even in the absence of the required initial
It was reported in [123] that in the event of ideal conversion, the efficiency of Hermit-Gaussian mode transformation into Laguerre-Gaussian mode is about 99.9%. The spherical aberration does not reduce the efficiency factor. Typically cylindrical lenses are not perfect and their defects give rise to several Laguerre-Gaussian modes. The superposition of components can be unstable and this means a dependence of intensity on the longitudinal coordinate. If special means are not employed the precision of lens fabrication is about 5%, in this case the efficiency of beam transformation into Laguerre-Gaussian mode is 95%. Imperfections of 10% result in drop of efficiency down to 80%.
\n\t\t\tIn [124, 54] the formation of the Laguerre-Gaussian
To study the phase structure of radiation, in [54] use was made of a special interferometer scheme, where the reference beam was produced from a part of the original Laguerre–Gaussian
The peculiarity of the interference of two Laguerre–Gaussian modes, having the opposite helicity of the phase, manifests itself in the branching of a fringe in the middle of the beam and formation of a characteristic “fork” with an additional fringe appearing in the centre, as compared with the case of a vortex mode interfering with a plane reference wave (see Figure 2). Such branching of fringes indicates the vortex nature of the investigated beam, while the absence of branching is a manifestation of the regular character of the beam phase surface.
\n\t\t\tFigure 8 displays the experimental distributions of intensity of the laser mode
The optical scheme for registration of the phase portrait of a laser beam [
The experimental distribution of intensity and phase portrait of the laser mode
The invention of a branched hologram [89, 93] uncovered a relatively easy way to produce beams with optical vortices from an ordinary wave by using its diffraction on the amplitude diffraction grating. The idea of singular beam formation is based on the holographic principle: a readout beam restores the wave, which has participated in the hologram recording. Instead of writing a hologram with two actual optical waves, it is sufficient to calculate the interference pattern numerically and, for example, print the picture in black-and-white or grey scale. The amplitude grating after transverse scaling can, when illuminated by a regular wave, reproduce singular beams in diffraction orders.
\n\t\t\tUsing the description of the singular wave amplitude (2), one can easily calculate the pattern of interference of such wave with a coherent plane wave tilted by the angle
Under interference between the plane wave and the optical vortex with unity topologic charge the transmittance of amplitude diffraction grating varies according to
\n\t\t\twhere Λ=
The two simplest ways to fabricate the amplitude diffraction gratings in the form of computer-synthesized holograms are as follows. The first involves the printing of an image onto a transparency utilized in laserjet printers. The second approach consists in photographing an inverted image, printed on a sheet of white paper, onto photo-film. Fragments of images of the gratings with the profile (8) obtained upon usage of the laser transparency with the resolution of 1200 ppi as well as the photo-film are shown in Figure 9 [129, 130, 131]. The usage of the photo-film is more preferable since it gives higher quality of the vortex to be formed and greater power conversion coefficient into the required diffraction order.
\n\t\t\tMagnified fragment of the amplitude grating in the experiment with laser transparency (left) and photo-film (right).
The set-up scheme for formation of the optical vortex:
1 – He-Ne laser; 2 – collimator; 3 – optical plane plate, 4 – reflecting plane mirror; 5 – amplitude grating forming the optical vortex; 6 – lens; 7 – CCD camera.
The experimental set-up scheme for formation of the optical vortex with the help of computer-synthesized amplitude grating is shown in Figure 10. The experimental set-up consists of a system for forming the collimated laser beam (
After passing the beam through the optical scheme, the central peak (0-th diffraction order) is formed in the far-field zone. It concerns the non-scattered component of the beam that has passed through the grating. Less intensive two doughnut-shaped lateral peaks are formed symmetrically from the central peak. The lateral peaks represent the optical vortices and have a topological charge equal to the value and opposite to the sign. In the 1st order of diffraction there is only 16.7 % of energy penetrating the grating in an ideal scenario. In the experiment this part of energy is equal to about 10% owing to the imperfect structure of the grating and its incomplete transmittance.
\n\t\t\tFor registration of the optical vortex it is necessary to cut off the unnecessary diffraction orders. The pictures of doughnut-like intensity distribution of the optical vortex (the lateral peak) in far field and its interference pattern are shown in Figure 11. The rigorous proof of that the obtained lateral peaks bear the optical vortices is the availability of typical "fork" in the interference pattern. The formed vortex in Figure 11, as the vortices in Figures 6 and 8, is rather different from the ideal
The intensity of the lateral diffraction order in the far field and interference pattern with the plane wave in the case of computer-synthesized amplitude diffraction grating.
Phase transparencies can be used to generate optical vortices. Application of the phase modulator results in phase changes and, after that, in amplitude changes with deep intensity modulation and the advent of zeros. In [132] the optical schematic was described, in which the wave carrying the optical vortex is recorded on thick film (Bregg’s hologram) that is used to reproduce the vortex beam. The diffraction efficiency in this schematic is about 99%. A relatively thin transparency with thickness varied gradually in one of the half planes is used in the other method [133]. The efficiency of this method is greater than 90%. A similar method was proposed in [134], but a dielectric wedge was used as the phase modulator. In general, a chain of several vortices is formed as the product of this process. The shape deformation of each vortex depends on the wedge angle and on the diameter of the beam waist on the wedge surface. Varying the waist radius, one can obtain the required number of vortices (even a single vortex).
\n\t\t\tOne more method of the optical vortex generation was proposed in [95]. In this method a phase transparency is used, which immediately adds the artificial vortex component into the phase profile. One such phase modulator is a transparent plate, one surface of which has a helical profile, repeating the singular phase distribution. To obtain Laguerre-Gaussian mode the depth of break onto the surface should be equal to
We note that the manufacture of phase modulators is a special branch of optics called kinoform optics. At the heart of this branch lays the possibility to realize the phase control of radiation by a step-like change of the thickness or the refraction index of some structures [138]. Light weight, small size, and low cost are the most attractive features of kinoform phase elements, when compared with lenses, prisms, mirrors, and other optical devices. The kinoforms can be described as optical elements performing phase modulation with a depth not greater than the wavelength of light. This aim is realized by jumps of the optical path length not less than the even number of half wavelengths. These jumps form the lines dividing the kinoform into several zones. In boundaries of each zone the optical path length can be constant (there are two levels of binary phase elements), they can change discretely (
The fabrication of spiral (or helicoidal) phase plates techniques has progressed in recent years [139, 140, 141]. We will describe the generation of a doughnut Laguerre-Gaussian
The fabrication of a kinoform spiral phase plate of fused quartz is performed as follows [142]. A quartz plate, 3 cm in diameter and 3 mm in thickness, is taken as the substrate. Both surfaces of the substrate are mechanically polished with a nanodiamond suspension up to the flatness better than
The 3D image of the central part of a 32-level spiral phase plate designed for
The photo-image of the 32-level spiral phase plate.
The image of surface in the near-axis region of the 32-level phase plate designed for
It should be noted that a laser beam in the form of a principal Gaussian mode with a plane wavefront that passes through a spiral phase plate maximally resembles the
To generate a vortex beam with the help of a spiral phase plate, the experimental setup shown in Figure 10 is used. The spiral phase plate is installed into the scheme instead of the amplitude diffraction grating. In this case a vortex is formed in the 0th diffraction order in far field. Figure 14 demonstrates the experimental distributions of laser intensity in the far field and the pattern of interference of this beam with a obliquely reference plane wave. It is seen that the beam intensity distribution has a true doughnut-like shape. The wavefront singularity appears, as before, by fringe branching in the beam center with the forming of a “fork” typical for screw dislocation with unity topological charge.
\n\t\t\tExperimental distribution of intensity of a vortex beam in far field and its interference pattern with obliquely incident reference plane wave in an experiment with a kinoform spiral phase plate.
The experimental data are in good agreement with the results of numerical simulation of the optical system, taking into account the stepped structure of spiral phase plate. The results barely differ from the distribution shown in Figure 2. It should be noted that the vortex quality (similarity to
The problem of phase reconstruction using the Shack-Hartmann technique was successfully solved for optical fields with smooth wavefronts [145, 146, 147]. In the simplest case, to obtain the phase
where r={
where
The approaches to the solution of variation problem (10) are well known [146, 147] and actually mean the solution of the Poisson equation written with partial derivatives. Allowing for the weighting function W(
where ∂
There are a wide variety of methods [145, 146, 147, 148] which can be used to solve the discrete variants of equation (11). For example, one can use the representation of (11) as a system of algebraic equations, the fast Fourier transform, or the Gauss-Zeidel iteration method applied to the multi-grid algorithm. This group of methods is equally well adopted for the application of centroid coordinates measured by the Shack-Hartmann sensor as input data:
\n\t\t\twhere the integration is performed over the square of the subaperture,
The sensing of wavefront with screw phase dislocations by the least mean square method is not agreeable. With this technique (along with other methods based on the assumption that phase surface is a continuous function of coordinates) it is possible to reconstruct only a fraction of the entire phase function. As it turned out [68, 149], the differential properties of the vector field of phase gradients help to find some similarity between this field and the field of potential flow of a liquid penetrated by vortex strings. It is also possible to represent this vector field as a sum of potential and solenoid components:
\n\t\t\twhere \n\t\t\t\t\t
However, if the quantity \n\t\t\t\t\t
where
The searching for dislocation located positions, which is required in algorithms of phase reconstruction [72, 150, 151], is a sufficiently difficult problem. Because of the infinite phase gradients in the points of zero intensity, the application of methods based on solution of (13) [74, 152] is also not straightforward. Presently there is no such an algorithm, which guarantees the required fidelity of wavefront reconstruction in the presence of dislocations [64]. However, according to some estimations [154, 155, 156] the accurate detection of vortex coordinates and their topological charges insures the sensing of wavefronts with high precision. Therefore we expect a future improvement in reconstruction algorithms by involving more sophisticated methods into the consideration of gradient fields, insuring more accurate detection of dislocation positions and their topological charges.
\n\t\t\tAnalysis shows that from the point of view of experimental realization, of the considered approaches of wavefront reconstruction the algorithm of D. Fried [74] is one of the best algorithms (with respect to accuracy, effectiveness and resistance to measurement noises) of recovery of phase surface
In Fried’s algorithm the differential phasors are unit vectors. The operation of normalization of a complex vector is applied to provide for this requirement. However, the amplitudes of differential phasors and phasors, obtained under reduction and reconstruction, contain information about measurement errors of phase differences in the actual experiment. Based on this reason the algorithm in question has been modified [157, 158, 159]. The modification involves exclusion of the operation of complex vector normalization and allows an increase in algorithm accuracy.
\n\t\t\tThe experimental setup for registration of an optical vortex wavefront consists of a system for formation of collimated laser beam, the Mach-Zehnder interferometer (as in the scheme in Figure 10), and the additionally induced the Hartmann-Shack wavefront sensor [160, 161]. It is shown in Figure 15. The system of formation of collimated beam includes a He-Ne laser 1 (
Experimental setup for wavefront sensing of optical vortex in far field: 1 – He-Ne laser; 2 – collimator; 3 – optical plate; 4 – plane mirror; 5 – spiral phase plate; 6 – the lens F=6 m; 7 – the objective; 8 and 8’ - focal plane of lens 6 and its optically conjugated plane, respectively; 9 – lenslet array; 10 – CCD camera.
A technical feature of the Hartmann-Shack wavefront sensor used involves the employment of a raster of 8-level diffraction Fresnel lenses as the lenslet array (see Figure 16). The raster is fabricated from fused quartz by kinoform technology, similar to the aforesaid spiral phase plate, with the minimum size of microlens
Photo image of a fragment of the lenslet array and image of surface profile of a microlens.
Under the registration of phase front the reference beam in the second arm of the interferometer is blocked. In the beginning the wavefront sensor is calibrated by a reference beam with plane phase front (the spiral phase plate is removed from the scheme). Then the spiral phase plate is inserted, and the picture of focal spots correspondent to singular phase front is registered. From the values of displacement of focal spots from initial positions, the local tilts of wave front on the sub-apertures of lenslet array are determined.
\n\t\t\tExperiments with a different number of registration spots on the hartmannogram have been carried out [160, 161]. When using a lenslet array with subaperture size
The picture of displacements of focal spots of the hartmannogram in experiment (black arrows) and calculation (grey arrows).
In Ref. [163] the vortex-like structure of displacements of spots in the hartmannogram was registered for the
In Figure 18 we present the wave front surface of optical vortex reconstructed by the Hartmann-Shack sensor [161, 164] with software incorporating the code of restoration of singular phase surfaces [157-159]. Comparison of experimental data with calculated results shows that the wave front surface is restored by the actual Hartmann Shack wavefront sensor with good quality despite the rather small size of the matrix of wave front tilts (spots in the hartmannogram). The reconstructed wave front has the characteristic spiral form with a break of the surface about 2
Experimental vortex phase surface reconstructed using modified Fried’s (left) and conventional least-squares (right) procedure.
In Figure 19 we show the calculation results [165] of phase front reconstruction of the beam passed through the turbulent atmosphere in the case of
The phase surface fragment of the beam after the turbulent path reconstructed using the modified Fried’s algorithm.
Next we consider the possibility to transform the wavefronts of the vortex beam by means of the closed-loop adaptive optical system with a wavefront sensor and a flexible deformable wavefront corrector. We can use the bimorph [166] as well as pusher-type [167, 168] piezoceramic-based adaptive mirrors as a wavefront corrector. In the experiments a flexible bimorph mirror [166] and the Hartmann-Shack wavefront sensor with a new reconstruction algorithm [157-159] are employed. An attempt is made to correct the laser beam carrying the optical vortex (namely, the Laguerre-Gaussian
A closed-loop adaptive system intended for performance of the necessary correction of vortex wavefront is shown in Figure 20 [169]. A reference laser beam is formed using a He-Ne laser 1, a collimator 2, and a square pinhole 3, which restricts the beam aperture to a size of 10×10 mm2. Next the laser beam passes through a 32-level spiral phase plate 5 of a diameter of 2 cm, a fourfold telescope 6 and comes to an adaptive deformable mirror 7. It should be noted that the laser beam with the plane phase front that passes through the spiral phase plate maximally resembles the Laguerre-Gaussian
The close-loop adaptive system for optical vortex correction:1 – He-Ne laser; 2 – collimator; 3 – pinhole 10×10 mm; 4, 8, 9 – optical plates; 5 -spiral phase plate; 6, 10, 15 – telescopes; 7 – deformable adaptive mirror; 11 –lenslet array; 12, 18– CCD cameras; 13 –computer; 14 – control unit of adaptive mirror, 16 – plane mirror; 17 – lens.
The wavefront corrector (the bimorph adaptive mirror) 7 [166] is shown in Figure 21. It is composed of a substrate of LK-105 glass with reflecting coating and two foursquare piezoceramic plates, each measuring 45x45 mm and 0.4 mm thick. The first piezoplate is rigidly glued to rear side of the substrate. It is complete, meaning it serves as one electrode, and is intended to compensate for the beam defocusing if need be. The second piezoplate destined to transform the vortex phase surface is glued to the first one. The 5x5=25 electrodes are patterned on the surface of the second piezoplate in the check geometry (close square packing). Each electrode has the shape of a square, with each side measuring 8.5 mm. The full thickness of the adaptive mirror is 4.5 mm. The wavefront corrector is fixed in a metal mounting with a square 45x45 mm window. The surface deformation of the adaptive mirror under the maximal voltage ±300 V applied to any one electrode reaches ±1.5 μm.
\n\t\t\tThe deformable bimorph mirror and the scheme of arrangement of control elements on the second piezoplate.
The radiation beam reflected from the adaptive mirror 7 (see Figure 20) is directed by a plane mirror 8 through a reducing telescope 10 to a Hartmann-Shack sensor including a lenslet array 11 with
A beam part is derived by a dividing plate 9 to a CCD camera 18 for additional characterization (see Figure 20). In addition, the wavefront corrector 7, plates 4, 8 and rear mirror 16 form a Mach-Zehnder interferometer. On blocking the reference beam from the mirror 16, the CCD cameras 12 and 18 simultaneously register, respectively, the hartmannogram and intensity picture of the beam going from the adaptive mirror. Upon admission of the reference beam from the mirror 16, the CCD camera 18 registers the interference pattern of the beam going from the adaptive mirror with an obliquely incident reference beam. Screen of CCD camera 18 is situated at a focal distance from the lens 17 or in a plane of the adaptive mirror image (like the lenslet array) thus registering the intensity/interferogram of the beam in far or near field, respectively.
\n\t\t\tThe wavefront has no singularity upon removal of the spiral phase plate 5 from the scheme in the Figure 20 and when switching off the wavefront corrector. The reference beam phase surface in the corrector plane is shown in Figure 22a. It is not an ideal plane (PV=0.33 μ) but it is certainly regular. Therefore the picture of diffraction at the square diaphragm 3 (see Figure 20) roughly takes place in far field in Figure 23a.
\n\t\t\tExperimental phase surface in near field: (a) reference beam and beam (b) before and (c) after correction.
Experimental far field intensity: (a) reference beam and beam (b) before and (c) after correction.
After inserting the spiral phase plate 5 and when switching off the adaptive mirror, the wavefront in near field in Figure 22b acquires the spiral form with
In order to correct the vortex wavefront in the closed loop, the recovered phase surface in Figure 22b is decomposed on the response functions of control elements of the deformable mirror. The response function of a control element is the changing of the shape of the deformable mirror surface upon the energizing of this control element with zero voltages applied to the others actuators. The expansion coefficients on response functions are proportional to voltages to be applied from control unit 14 to appropriate elements of the deformable mirror. When applying control voltages to the adaptive mirror its surface is deformed to reproduce the measured vortex wavefront maximally and thus to obtain a wavefront close to a plane one upon reflection from the corrector. However, each superposition of the response functions of a flexible wavefront corrector is a smooth function, and the corrector is not able to exactly reproduce the phase discontinuity of a depth of 2
The beam interferograms in near field before and after correction are shown in Figure 24. Unlike the former, the latter contains no resolved singularities (at least, under the given fringe density). The vortices, however, may appear under beam propagation from the adaptive mirror plane as it was in the case of combined propagation of the vortex beam with a regular beam [170]. The experimental and calculated (at the reflection of an ideal
Experimental pattern of interference of the beam with an obliquely incident regular wave in the near field (left) before and (right) after correction.
The pattern of interference of the corrected beam with an obliquely incident regular wave in the far field in (left) calculation and (right) experiment.
Thus, the phase surface of the distorted
This chapter is dedicated to research of the possibility to control the phase front of a laser beam carrying an optical vortex by means of linear adaptive optics, namely, in the classic closed-loop adaptive system including a Hartmann-Shack wavefront sensor and a deformable mirror. On the one hand, the optical vortices appear randomly under beam propagation in the turbulent atmosphere, and the correction of singular phase front presents a considerable problem for tasks in atmospheric optics, astronomy, and optical communication. On the other hand, the controllable optical vortices have very attractive potential applications in optical data processing and many other scientific and practical fields where the regulation of singular phase is needed. This chapter discusses the main properties and applications of optical vortices, the problem of adaptive correction of singular phase in turbulent atmosphere, the issues of generating the “reference” laser vortex beam, its wavefront sensing and phase correction in the widespread adaptive optical system including a Hartmann-Shack wavefront sensor and a flexible deformable mirror.
\n\t\t\tThe vortex beam is generated with help of a spiral phase plate made of fused quartz by kinoform technology. Provided that the optical quality of the spiral phase plate is good, such a means of vortex formation seems to be more preferable as compared with other considered methods of vortex generation with a well-determined phase surface. As a result, it becomes possible to obtain a singular beam very close to a Laguerre-Gaussian
The vortex phase surface measurement is carried out by a Hartmann-Shack wavefront sensor which is simpler in design and construction, more reliable and more widespread in various fields of adaptive optics when compared with other types of sensors. The commonly accepted Hartmann-Shack wavefront reconstruction is performed on the basis of the least-mean-square approach. This approach works well in the case of continuous phase distributions but is completely unsuitable for singular phase distributions. Therefore a new reconstruction technique has been developed for the reconstruction of singular phase surface, starting from the measured phase gradients. The measured shifts of focal spots in the hartmannogram are in good agreement with the calculation results. Using new software in the Hartmann-Shack sensor, the reconstruction of the “reference” vortex phase surface has been carried out to a high degree of accuracy.
\n\t\t\tThe vortex laser beam (distorted
The investigations described above consolidate the actual birth of the experimental field of novel scientific branch – singular adaptive optics.
\n\t\tA major goal of sustainable energy system using renewable energy is to provide clean, affordable, accessible energy with efficient energy storage with depleting the earth resources. There is a need to develop reliable energy systems that do not depend on fossil fuel to preserve the environment while powering the present and the future. This has led to the development of power generating systems utilizing renewables (photovoltaics and wind) [1]. There has being rapid increase in the power generation from PV over there the years [2]. Due to the rapid increase in PV generation, energy storage is serves as a storage medium for excess generation which can use when needed. Energy storage systems also serve as a means of increasing the power utilization and consumption rate. Implementing battery storage is limited due to relatively high cost. In some grid connected systems, Plug in Hybrid Electric Vehicles (PHEV) is use as storage which can function as double use systems [1, 3, 4, 5, 6, 7, 8]. Future smart and micro grids could benefit from the double use functionality of electric vehicles as part of the energy network to provide vehicle-to-grid services (V2G) as described in [1]. Research shows that the average car is parked 15 hours a day and can provide storage and or grid services 60% of the time [1]. The idea of integration renewable energy (photovoltaics) with energy storage devices for a double use is illustrated.
\nDetailed diagram of the integration module.
The system block diagram shown in Figure 1 consist of renewable energy source (RES), power and energy management system (PEMS), grid, energy storage devices (ESD), residential load. The system is design to integrate RES and ESD using the PEMS.
\nThe renewable energy source in the design above is solar photovoltaics (PV) use for power generation. Solar cells also called PV convert sunlight directly to electricity. The power generated from solar highly depend on the amount of sun light. Maximum generation is usually achieved during peaks of day light, if sufficient enough, excess generation is stored in energy storage devices such as lithium ion batteries for later use during off peak hours usually in the early morning and late in the evening to mid-night. Considering a renewable source rated at 3 kW, roof mounted system with the area of the solar cells approximately 20 m2 with an efficiency of 15%. The power from the PV system is determined using a linear model based on the irradiance level. The equation representing the simplified model is given in [4]:
\nwhere GHI(t) is the global horizontal irradiation in W/m2, S is the total area for the PV modules in m2 and PVη is the efficiency of the PV modules.
\nThe PV generator is connected to the system via a DC to AC inverter with maximum power point tracking and constant efficiency. The change in efficiency of the inverter depending on the input and required output are not considered. The generation of electricity for PV is also temperature sensitive and that is also not considered in this project. This however does not significantly hamper the system and this simplification has been applied successfully in previous works including [4, 9].
\nThe PV system was implemented and simulated using the System Advisor Model (SAM) developed and distributed by the National Renewable Energy Lab (NREL) [9]. A detailed residential PV model was developed. The PV generator size was chosen to cover our peak load requirement of 2.5 kW while being reasonably priced and having a footprint that can easily fit on the rooftop of an average-sized house. The SAM simulation, using the GHI data for the south side of Tallahassee, provided the expected power production from the PV generator for the period of a year. This is shown inFigure 2 along with the expected AC production.
\nPV production over the period of 1 year based on SAM simulation [
The PEMS in the system design serve as control for energy flow and conversion from RES, grid and energy storage. It contains the power electronics required to interface the power systems and the load. The PV generator is connected to the AC bus via an inverter and the energy storage device is connected the AC bus via a bi-directional controller as shown if Figure 1. Net metering is in effect to account for excess flow of power to the grid and the meter is smart to monitor the power usage of different components. Two DC-DC boost converters and a single inverter is use in the power and energy management system. This is due to the differences in the output of the PV and the storage device voltage. This PV array converter also function as maximum power point tracking (MPPT). The power flow in the circuit is been monitored and controlled by the operation mode control logic which is embedded in the PEMS.
\nEnergy storage devices plays a vital role in the transition to clean, efficient and reliable power source for energy sustainability. In this chapter, lithium ion battery (LIB) is used as the ESD. LIBs are highly in demand for portable electrical/electronic devices and commercial application. It is currently gaining traction as backup power source for residential. This follows the lunch of Tesla power wall which consist of lithium ion batteries.
\nA typical residential house load is illustrated in Figure 3.
\nResidential load for system analysis with hourly resolution.
The integration of renewable energy source and energy storage devices is growing immensely to reduce overdependence on grid power generation. In this section, various mode of integration principles and operation will be discussed. These modes of operations account for different conditions that can affects the RES, ESD and Grid during a 24 hours’ period which observes the morning, afternoon, evening and night times.
\nThis mode of operation topology is showed in Figure 4. The figure describes the cases when the PV is generating but not sufficient to power the residential load. The grid is used to supplement the required power for the residential load. The ESD used due to cases of low state of charge or off-peak grid price. During this period of off peak grid pricing, the ESD also can be charge and not discharge because of the losses due to the round-trip efficiency from the AC bus to the battery and back to the AC bus in Figure 1.
\nGrid and PV supplying the residential load.
The mode of operation describes cases when the PV generation is below the residential load requirement and need to supplement with both power from the energy storage and the grid before meeting the load required. Figure 5 illustrates this mode of operation.
\nThe grid, ESD and PV supplying the residential load.
This mode describes when the PV power is not sufficient to power the load and the ESD is available. In this scenario, the load is power by the PV and the ESD. This mainly happens during on-peak grid pricing times when the ESD is charged during off-peak grid pricing times (Figure 6).
\nThe PV and ESD supplying the residential load.
Figure 7 shows mode 4, this mode of operation generally occurs during the peak hours of PV generation. In this scenario, the PV powers the load, charges the ESD and supplies power to the grid for credit. The process of supplying power back to grid is called net metering.
\nThe PV supplying the residential load, grid and charging the ESD.
This mode of operation describes cases when the PV is not generating any power. The power needed by the load is supplied from the grid. The grid also charges the ESD when the state of charge is less than the thresh hold (maximum charge). Charging is usually done on off-peak grid hours to save cost (Figure 8).
\nThe grid supplying the residential and charging the ESD.
To effectively have a safe and reliable sustainable energy systems. Safety is highly imperative in the integration of the RES and ESD. Energy storage devices (ESD) such as lithium ion battery a high-performance storage device is used but has a drawback in its safety based on their material and chemical composition. Lithium ion batteries are the enabling technology for storage solutions in many applications. A typical Li-ion cell consists; positive electrode, negative electrode, electrolyte, and separator. Like all electrochemical batteries, the chemical energy is converted into electrical energy. According to the second law of thermodynamics, any conversion between two forms of energy occurs with an energy loss. This energy loss increases the temperature of the cell, which, negatively, affects the battery life, and possibly exceeds safety limits. The safety issues related to Li-ion batteries are caused by abuse conditions which are basically divide into electrical, mechanical and environmental, can result in abrupt behavior of the batteries. The electrical abuse conditions include, short circuiting and overcharge with an over-charging current rate and charging time. The mechanical abuse conditions include crush test, nail penetration test and external heating. These off-nominal operating conditions can lead to critical failure of lithium ion batteries. Safety of lithium ion battery has been the technical obstacle for high power demand applications in RES and ESD integration, hybrid electric vehicles (HEV) and electric vehicles (EV). These abuse conditions can initiate thermal runaway in LIB wherein chain exothermic reaction can cause the battery to attain temperature of over >500°C. The major response of the cells to the abuse conditions is usually increased in temperature due to decomposition of the electrolyte, melting of separator which in turn leads to exothermic reaction. Most of these responses eventually leads to thermal runaway before resulting into explosion or fire. The safety of LIB directly related to the type of material chemistry and their thermal stability.
\nThe unforeseen battery failure potential has created public awareness for battery safety, particularly because of very large product recalls involving battery failures. Typical battery failure response can be energetic and non-energetic. Both energetic and non-energetic failures of Li-ion batteries often occur for due to poor cell design (electrochemical or mechanical), cell manufacturing flaws, external abuse of cells (thermal, mechanical, or electrical), poor battery pack design or manufacture, poor protection electronics design or manufacture [10]. Thus, Li-ion battery reliability and safety are generally considered a function of the design and manufacturing process. Standard performance regulation has been designed to test cell and battery pack designs to pass compliance with Underwriter Laboratories (UL), United Nations (UN) organizations standards. Failures that occur in the field are seldom related to cell design; rather, they are predominantly the result of manufacturing defects or subtle abuse scenarios that result in the development of latent cell internal faults. The failure modes can be classified into Energetic and Non-energetic failures.
Energetic failure: This type of failures often leads to thermal runaway. Thermal runaway refers to excessive heating of a cell due to exothermic chemical reaction, this is a major occurrence with batteries when abused [10]. During this failure, the energy stored in the cell is rapidly removed. The rate of thermal runaway is proportional to the amount of energy stored. The thermal runaway reactions level is also related to the cell content such as electrolyte and electrode material chemistry [11].
Non-Energetic failure: This type of failure mode which is usually considered benign result to loss of capacity, internal impedance increase. The ideal lithium ion battery failure mode is slow capacity fading and internal impedance increase caused by normal aging of the cells within the battery [11].
Temperature is a major hazard response of lithium ion battery when subject to an abuse condition. Most lithium ion batteries should operate in temperature range of −10 to 50°C. During low temperature, reactions rate is slower according to Arrhenius law, which also reduce the transfer rate of ions and electron and causes reduction in the capacity. Lithium ion batteries at high temperature, are more vulnerable to high risk of failure than at lower temperature. Major failure response resulting in destruction of batteries are due to relatively high temperature. This could be because of electrolyte decomposition, melting of separator which in turns leads to thermal runaway after exothermal reactions before eventually resulting into explosion and/or fire. Thermal runaway is an adverse condition that is caused by a battery charging or other process that produces more internal heat than it can dissipate which refers to a situation where an increase in temperature changes the condition of the battery that further increases the temperature, often lead to explosion and/or fire. The type of abuse condition and the cell chemistry as well as the design affect the cell reaction. The onset temperature of the thermal runaway depends on the chemistry of the battery. This reaction is sustained by battery’s oxygen content which varies by different cathode materials. The occurrence of a cell thermal runaway event depend on factors including; the state of charge of a cell (volume of electrical energy stored in the form of chemical potential energy), the ambient temperature, the cell electrochemical design (cell chemistry), and the mechanical design of the cell (cell size, electrolyte volume, etc.) [12]. The most severe thermal runaway reaction will be achieved when the cell is at 100% SOC, or subject to an abuse conditions such as overcharge, short circuiting, crushing etc. The following occurs when a cell undergoes thermal runaway;
Cell internal temperature increases.
Cell internal pressure increases
Cell undergoes venting
Cell content may be ejected.
The general root cause of energetic battery failure is; electrical abuse, mechanical abuse, poor electrochemical design and thermal abuse. Each of these failure modes have an impact on the environment.
\nThe lithium ion battery relatively has large volume with a small surface area which makes the extraction of heat from the battery very important. There is an increase in the battery temperature if the heat generated is not removed which can lead to thermal runaway. Abuse by overcharge adds energy to the battery due to the input of electric power while in short circuit test no energy is added to the cell [13]. This could also affect the amount of energy delivered by the battery. To get optimum performance and effectively maximize the battery, it is imperative to operate the battery within the specify temperature range by the battery’s manufacturer [15]. For instance, the preferred operating temperature for most lithium ion battery is −20 to 50°C. The second law of thermodynamics limits the rate of energy conversion during charging and discharging, leading to a non-ideal process with energy loss in the form of heat [14]. Bernadi et al. [14] classic work, estimates the heat generated from batteries using a mathematical model. According to their study, the heat is generated due to four main reasons; the irreversible resistive heating, the reversible entropic heat, the heat change of chemical side reactions, and heat of mixing due to the generation and relaxation of concentration gradients. The irreversible resistive (ohmic loss) occurs during both charge and discharge when the battery current flows through an internal resistance. The irreversible resistive heat occurs following the deviation of the battery potential from its equilibrium potential due to internal resistances. Therefore, the differences between the terminal voltage and the open circuit voltage is converted into heat [15].
\nThe reversible entropic heat is the heat absorbed by the battery itself through a temperature change. Heat generated from the battery can also be determined experimentally by methods such as temperature measurements, thermal imaging, and calorimeter. A Calorimeter is a device that measures the amount of heat released and/or absorbed during a process. Differential Scanning Calorimetry (DSC) provides method of determining thermal stability by an induced heat and the subsequent heat generated by different materials is measured.
\nThis chapter discussed safe integration of renewable energy with energy storage devices which is needed to have a reliable and efficient sustainable energy systems. Proper implementation of the different modes of operation which considers the working state of RES, ESD and grid will immensely reduce the over dependence on grid especially during on peak grid pricing. The ever increasing environmental problem will reduce drastically when renewable source of power is used with adequate storage capacity for energy sustainability. Improving the energy storage device capacity is necessary but also poses safety risk as well because the higher the capacity of energy storage device, the higher the safety risk associated with it. Therefore, there is need to effectively balance these tradeoffs in order to have both safe and high performing systems.
\nSupporting women in scientific research and encouraging more women to pursue careers in STEM fields has been an issue on the global agenda for many years. But there is still much to be done. And IntechOpen wants to help.
",metaTitle:"IntechOpen Women in Science Program",metaDescription:"Supporting women in scientific research and encouraging more women to pursue careers in STEM fields has been an issue on the global agenda for many years. But there is still much to be done. And IntechOpen wants to help.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"At IntechOpen, we’re laying the foundations for the future by publishing the best research by women in STEM – Open Access and available to all. Our Women in Science program already includes six books in progress by award-winning women scientists on topics ranging from physics to robotics, medicine to environmental science. Our editors come from all over the globe and include L’Oreal–UNESCO For Women in Science award-winners and National Science Foundation and European Commission grant recipients.
\\n\\nWe aim to publish 100 books in our Women in Science program over the next three years. We are looking for books written, edited, or co-edited by women. Contributing chapters by men are welcome. As always, the quality of the research we publish is paramount.
\\n\\nAll project proposals go through a two-stage peer review process and are selected based on the following criteria:
\\n\\nPlus, we want this project to have an impact beyond scientific circles. We will publicize the research in the Women in Science program for a wider general audience through:
\\n\\nInterested? If you have an idea for an edited volume or a monograph, we’d love to hear from you! Contact Ana Pantar at book.idea@intechopen.com.
\\n\\n“My scientific path has given me the opportunity to work with colleagues all over Europe, including Germany, France, and Norway. Editing the book Graph Theory: Advanced Algorithms and Applications with IntechOpen emphasized for me the importance of providing valuable, Open Access literature to our scientific colleagues around the world. So I am highly enthusiastic about the Women in Science book collection, which will highlight the outstanding accomplishments of women scientists and encourage others to walk the challenging path to becoming a recognized scientist." Beril Sirmacek, TU Delft, The Netherlands
\\n\\nAdvantages of Publishing with IntechOpen
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'At IntechOpen, we’re laying the foundations for the future by publishing the best research by women in STEM – Open Access and available to all. Our Women in Science program already includes six books in progress by award-winning women scientists on topics ranging from physics to robotics, medicine to environmental science. Our editors come from all over the globe and include L’Oreal–UNESCO For Women in Science award-winners and National Science Foundation and European Commission grant recipients.
\n\nWe aim to publish 100 books in our Women in Science program over the next three years. We are looking for books written, edited, or co-edited by women. Contributing chapters by men are welcome. As always, the quality of the research we publish is paramount.
\n\nAll project proposals go through a two-stage peer review process and are selected based on the following criteria:
\n\nPlus, we want this project to have an impact beyond scientific circles. We will publicize the research in the Women in Science program for a wider general audience through:
\n\nInterested? If you have an idea for an edited volume or a monograph, we’d love to hear from you! Contact Ana Pantar at book.idea@intechopen.com.
\n\n“My scientific path has given me the opportunity to work with colleagues all over Europe, including Germany, France, and Norway. Editing the book Graph Theory: Advanced Algorithms and Applications with IntechOpen emphasized for me the importance of providing valuable, Open Access literature to our scientific colleagues around the world. So I am highly enthusiastic about the Women in Science book collection, which will highlight the outstanding accomplishments of women scientists and encourage others to walk the challenging path to becoming a recognized scientist." Beril Sirmacek, TU Delft, The Netherlands
\n\n\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{id:"965887@"},profiles:[],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6601},{group:"region",caption:"Middle and South America",value:2,count:5906},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12541},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",src:"ECM",topicId:"23,21,7"},books:[{type:"book",id:"11436",title:"Beauty",subtitle:null,isOpenForSubmission:!0,hash:"0e15ba86bab1a64f950318f3ab2584ed",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11436.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11438",title:"Fake News in the Era of Pandemics",subtitle:null,isOpenForSubmission:!0,hash:"bc9e4cab86c76f35cd70b39086d9b69e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11438.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11472",title:"21st Century Slavery",subtitle:null,isOpenForSubmission:!0,hash:"b341f3fc3411ced881e43ce007a892b8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11472.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11473",title:"Social Inequality",subtitle:null,isOpenForSubmission:!0,hash:"20307129f7fb39aa443d5449acb6a784",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11774",title:"International Law",subtitle:null,isOpenForSubmission:!0,hash:"9e629251ba38b83f6bf406dd93511c61",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11774.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11775",title:"Global Peace and Security",subtitle:null,isOpenForSubmission:!0,hash:"90d8b5fdb1297222c88ab85dd900297a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11775.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11776",title:"Fashion Industry",subtitle:null,isOpenForSubmission:!0,hash:"e8d53d1029a7bccf825aa55d43fecc68",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11776.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11770",title:"Feminism",subtitle:null,isOpenForSubmission:!0,hash:"008be465c708a6fde48c8468757a40af",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11770.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11771",title:"Photography",subtitle:null,isOpenForSubmission:!0,hash:"466454ffeb31a0953c5120379ffece18",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11771.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11773",title:"Archaeology - Challenges and Updates",subtitle:null,isOpenForSubmission:!0,hash:"17d91462fa926279f65164ac0d5641cd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11773.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12109",title:"Occupational Stress",subtitle:null,isOpenForSubmission:!0,hash:"2dc8ab0bc980393022adbacd9a23d219",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12109.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12117",title:"Terrorism",subtitle:null,isOpenForSubmission:!0,hash:"6e88a48205eb81b8374e9e8efac25f6e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12117.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:41},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:16},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:32},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:11},{group:"topic",caption:"Materials Science",value:14,count:11},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:106},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:8},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:32},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:47},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4387},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1406",title:"Mineralogy",slug:"earth-and-planetary-sciences-soil-science-mineralogy",parent:{id:"108",title:"Soil Science",slug:"earth-and-planetary-sciences-soil-science"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:20,numberOfWosCitations:12,numberOfCrossrefCitations:9,numberOfDimensionsCitations:17,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1406",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6236",title:"Contributions to Mineralization",subtitle:null,isOpenForSubmission:!1,hash:"82b66946017dcdc1ea6ac17e0bf766a4",slug:"contributions-to-mineralization",bookSignature:"Ali Ismail Al-Juboury",coverURL:"https://cdn.intechopen.com/books/images_new/6236.jpg",editedByType:"Edited by",editors:[{id:"58570",title:"Prof.",name:"Ali",middleName:"Ismail",surname:"Al-Juboury",slug:"ali-al-juboury",fullName:"Ali Al-Juboury"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"57250",doi:"10.5772/intechopen.71335",title:"Trace Elements in Coal Gangue: A Review",slug:"trace-elements-in-coal-gangue-a-review",totalDownloads:1206,totalCrossrefCites:4,totalDimensionsCites:5,abstract:"Coal gangue is one of the largest industrial residues. It has high ash content, low carbonaceous content, and heating value. Meanwhile, it has some trace elements. Large quantities of coal gangue cause serious environmental problems by polluting the air, water, and soil as well as occupying a tremendous amount of land. Now, coal gangue utilization is a matter of great concern and has attracted wide interest. However, some toxic trace elements in coal gangue should be paid more attention during the utilization of coal gangue. In this article, the modes of occurrence and the leaching characters of trace elements in coal gangue were introduced according to the result of the sequential extraction method and the leaching method. The release character of trace elements during combustion of coal gangue and the environmental implication of trace elements in coal gangue were also discussed. The sulfide-bound trace elements are dominant form in coal gangue. Leaching behavior of trace elements from coal gangue is affected by many factors. Different trace elements presented different transformation behaviors. Trace elements in coal gangue could release out and produce environmental implication in various degrees, depending on the type of trace elements.",book:{id:"6236",slug:"contributions-to-mineralization",title:"Contributions to Mineralization",fullTitle:"Contributions to Mineralization"},signatures:"Shaoqing Guo",authors:[{id:"209067",title:"Prof.",name:"Shaoqing",middleName:null,surname:"Guo",slug:"shaoqing-guo",fullName:"Shaoqing Guo"}]},{id:"57812",doi:"10.5772/intechopen.71674",title:"Geology, Textural Study, Ore Genesis and Processing of the Tabuaço Tungsten Deposit (Northern Portugal)",slug:"geology-textural-study-ore-genesis-and-processing-of-the-tabua-o-tungsten-deposit-northern-portugal-",totalDownloads:1568,totalCrossrefCites:2,totalDimensionsCites:4,abstract:"The Tabuaço tungsten deposit (Northern Portugal) is hosted in the Cambrian Douro Group metasediments, at the northern margin of the Beira-Tabuaço granitic complex. The hosting schisto-calcareous Lower Cambrian Bateiras Formation underwent a contact metamorphism induced by the intrusion of the granitic complex. The skarnification led to the crystallisation of scheelite (CaWO4). Two different skarn facies are encountered: ‘Lower Skarn’ and ‘Main Skarn’ both corresponding to the exoskarn. The ‘Main Skarn’ is mainly composed of vesuvianite (Ca10Mg2Al4(SiO4)5(Si2O7)2(OH)4), feldspars and fluorite. Zoisite, grossular, fluorapatite and scheelite are also present, as well as malayaite and cassiterite. Scheelite is disseminated and often occurs in association with fluorite, albite and vesuvianite. The ‘Lower Skarn’ level contains predominantly diopsidic pyroxene, quartz, zoisite, grossular and feldspars. Scheelite appears both laminated and disseminated, in association with fluorite and vesuvianite in minor proportions. The ‘Main Skarn’ is located in the Garnet, Pyroxene zone, while the ‘Lower Skarn’ corresponds to the Pyroxene, Garnet zone. Pyroxene has a global hedenbergite Hd40 composition. A major phase of albitisation destabilised fluorite, scheelite, vesuvianite, garnet and pyroxene. A late stage of chloritisation is associated with the exhumation. The processing of the Tabuaço ore has been adapted to the Ca-bearing rich paragenesis and to the scheelite mean size.",book:{id:"6236",slug:"contributions-to-mineralization",title:"Contributions to Mineralization",fullTitle:"Contributions to Mineralization"},signatures:"Yann Foucaud, Bénédicte Lechenard, Philippe Marion, Inna\nFilippova and Lev Filippov",authors:[{id:"212457",title:"Ph.D. Student",name:"Yann",middleName:null,surname:"Foucaud",slug:"yann-foucaud",fullName:"Yann Foucaud"},{id:"212458",title:"Prof.",name:"Lev",middleName:null,surname:"Filippov",slug:"lev-filippov",fullName:"Lev Filippov"},{id:"214497",title:"Dr.",name:"Inna",middleName:null,surname:"Filippova",slug:"inna-filippova",fullName:"Inna Filippova"},{id:"220945",title:"Prof.",name:"Philippe",middleName:null,surname:"Marion",slug:"philippe-marion",fullName:"Philippe Marion"},{id:"220947",title:"Mrs.",name:"Bénédicte",middleName:null,surname:"Lechenard",slug:"benedicte-lechenard",fullName:"Bénédicte Lechenard"}]},{id:"57241",doi:"10.5772/intechopen.71187",title:"Petrology, Geochemistry and Mineralogy of Greisens Associated with Tin-Tungsten Mineralisation: Hub Stock Deposit at Krásno–Horní Slavkov Ore District, Czech Republic",slug:"petrology-geochemistry-and-mineralogy-of-greisens-associated-with-tin-tungsten-mineralisation-hub-st",totalDownloads:1587,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"The greisens evolved in the apical part of the Hub stock, formed by weakly greisenised topaz granites, are predominantly represented by Li-mica-topaz and topaz-Li-mica greisens. These greisens, relative to weakly greisenised topaz granites, are enriched in Ca, F, Fe, Li, Si, Sn and W and depleted in Al, K, Mg, Na, Ti, Y, Zr and ΣREE. Weakly greisenised topaz granites show convex tetrads in the normalised REE patterns. Compared to topaz granites, the greisens display lower ΣREE concentrations, partly higher negative Eu anomaly, high Y/Ho and low Zr/Hf ratios. Li-micas occurring in greisens are represented by zinnwaldite. Chemical composition of cassiterite is near to ideal SnO2 (>99 wt.% SnO2). The wolframite is represented by manganoan ferberite.",book:{id:"6236",slug:"contributions-to-mineralization",title:"Contributions to Mineralization",fullTitle:"Contributions to Mineralization"},signatures:"Miloš René",authors:[{id:"142108",title:"Dr.",name:"Miloš",middleName:null,surname:"René",slug:"milos-rene",fullName:"Miloš René"}]},{id:"58190",doi:"10.5772/intechopen.71607",title:"Statistical Approach to Mineral Engineering and Optimization",slug:"statistical-approach-to-mineral-engineering-and-optimization",totalDownloads:1855,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Mineral depositions are basic sources for obtaining metal production. Increasing metal demand based on increasing world population and decreasing grade value of mineral deposition make the evaluation to mineral processing more important, so that all metal production stages must be economical. Because of this important requirement, many researchers and practitioners have focused to the optimization of all processes. The optimization of metal production processes provide some advantages such as reducing the influence of experimental errors, statistical analysis, determining important parameters and trivial parameters, and measuring interactions between parameters. Although there are many design methods, choosing the most appropriate method is of great importance in terms of the results to be achieved. In this chapter, presumed experimental data about hydrometallurgical copper extraction accompanied by three parameters were applied to two different design models to compare the results.",book:{id:"6236",slug:"contributions-to-mineralization",title:"Contributions to Mineralization",fullTitle:"Contributions to Mineralization"},signatures:"Mehmet Deniz Turan",authors:[{id:"212505",title:"Associate Prof.",name:"M. Deniz",middleName:null,surname:"Turan",slug:"m.-deniz-turan",fullName:"M. Deniz Turan"}]},{id:"58500",doi:"10.5772/intechopen.72560",title:"Zechstein-Kupferschiefer Mineralization Reconsidered as a Product of Ultra-Deep Hydrothermal, Mud-Brine Volcanism",slug:"zechstein-kupferschiefer-mineralization-reconsidered-as-a-product-of-ultra-deep-hydrothermal-mud-bri",totalDownloads:1584,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"The Kupferschiefer is a copper-, polymetallic-, hydrocarbon-bearing black shale of the lowermost Zechstein Group of Permo-Triassic age (252 Ma) in Germany and Poland. It is usually 1 m thick and underlies 600,000 km2, extending from Great Britain to Belarus for a distance of over 1500 km. At a district scale, copper has been mined for over 800 years since its discovery circa 1200 A.D. Mineralogical, chemical, and geological analyses of the combined Zechstein-Kupferschiefer show strong chemical and paragenetic relationships between the Zechstein salines, Kupferschiefer, and Weissliegend sandstones that lead to a broader, more unified, genetically linked model related to deep-sourced, hot, hydrothermal, mud-brine volcanism. The overall Zechstein-Kupferschiefer chemical stratigraphy suggests density-/composition-driven fractionation of deep-sourced, metal-rich, alkali-rich, silica-aluminum-rich, halogen-rich, high-density brines. The ultimate brine source is interpreted to be serpentinized peridotite in the lower crust near the Moho transition to the mantle. Dehydration of the serpentinite source to talc (steatization) by mantle heat during failed, intra-continental rifting of the Pangaea supercontinent at the end of Permian time released vast amounts of element-laden, high-density brines into deep-basement fractures, depositing them into and above the Rotliegend Sandstone in the shallow Kupferschiefer Sea, which is analogous to the modern northern Caspian Sea.",book:{id:"6236",slug:"contributions-to-mineralization",title:"Contributions to Mineralization",fullTitle:"Contributions to Mineralization"},signatures:"Stanley B. Keith, Volker Spieth and Jan C. Rasmussen",authors:[{id:"209366",title:"Dr.",name:"Jan",middleName:null,surname:"Rasmussen",slug:"jan-rasmussen",fullName:"Jan Rasmussen"},{id:"209499",title:"Dr.",name:"Volker",middleName:null,surname:"Spieth",slug:"volker-spieth",fullName:"Volker Spieth"},{id:"209500",title:"Dr.",name:"Stanley",middleName:null,surname:"Keith",slug:"stanley-keith",fullName:"Stanley Keith"}]}],mostDownloadedChaptersLast30Days:[{id:"58500",title:"Zechstein-Kupferschiefer Mineralization Reconsidered as a Product of Ultra-Deep Hydrothermal, Mud-Brine Volcanism",slug:"zechstein-kupferschiefer-mineralization-reconsidered-as-a-product-of-ultra-deep-hydrothermal-mud-bri",totalDownloads:1576,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"The Kupferschiefer is a copper-, polymetallic-, hydrocarbon-bearing black shale of the lowermost Zechstein Group of Permo-Triassic age (252 Ma) in Germany and Poland. It is usually 1 m thick and underlies 600,000 km2, extending from Great Britain to Belarus for a distance of over 1500 km. At a district scale, copper has been mined for over 800 years since its discovery circa 1200 A.D. Mineralogical, chemical, and geological analyses of the combined Zechstein-Kupferschiefer show strong chemical and paragenetic relationships between the Zechstein salines, Kupferschiefer, and Weissliegend sandstones that lead to a broader, more unified, genetically linked model related to deep-sourced, hot, hydrothermal, mud-brine volcanism. The overall Zechstein-Kupferschiefer chemical stratigraphy suggests density-/composition-driven fractionation of deep-sourced, metal-rich, alkali-rich, silica-aluminum-rich, halogen-rich, high-density brines. The ultimate brine source is interpreted to be serpentinized peridotite in the lower crust near the Moho transition to the mantle. Dehydration of the serpentinite source to talc (steatization) by mantle heat during failed, intra-continental rifting of the Pangaea supercontinent at the end of Permian time released vast amounts of element-laden, high-density brines into deep-basement fractures, depositing them into and above the Rotliegend Sandstone in the shallow Kupferschiefer Sea, which is analogous to the modern northern Caspian Sea.",book:{id:"6236",slug:"contributions-to-mineralization",title:"Contributions to Mineralization",fullTitle:"Contributions to Mineralization"},signatures:"Stanley B. Keith, Volker Spieth and Jan C. Rasmussen",authors:[{id:"209366",title:"Dr.",name:"Jan",middleName:null,surname:"Rasmussen",slug:"jan-rasmussen",fullName:"Jan Rasmussen"},{id:"209499",title:"Dr.",name:"Volker",middleName:null,surname:"Spieth",slug:"volker-spieth",fullName:"Volker Spieth"},{id:"209500",title:"Dr.",name:"Stanley",middleName:null,surname:"Keith",slug:"stanley-keith",fullName:"Stanley Keith"}]},{id:"57241",title:"Petrology, Geochemistry and Mineralogy of Greisens Associated with Tin-Tungsten Mineralisation: Hub Stock Deposit at Krásno–Horní Slavkov Ore District, Czech Republic",slug:"petrology-geochemistry-and-mineralogy-of-greisens-associated-with-tin-tungsten-mineralisation-hub-st",totalDownloads:1585,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"The greisens evolved in the apical part of the Hub stock, formed by weakly greisenised topaz granites, are predominantly represented by Li-mica-topaz and topaz-Li-mica greisens. These greisens, relative to weakly greisenised topaz granites, are enriched in Ca, F, Fe, Li, Si, Sn and W and depleted in Al, K, Mg, Na, Ti, Y, Zr and ΣREE. Weakly greisenised topaz granites show convex tetrads in the normalised REE patterns. Compared to topaz granites, the greisens display lower ΣREE concentrations, partly higher negative Eu anomaly, high Y/Ho and low Zr/Hf ratios. Li-micas occurring in greisens are represented by zinnwaldite. Chemical composition of cassiterite is near to ideal SnO2 (>99 wt.% SnO2). The wolframite is represented by manganoan ferberite.",book:{id:"6236",slug:"contributions-to-mineralization",title:"Contributions to Mineralization",fullTitle:"Contributions to Mineralization"},signatures:"Miloš René",authors:[{id:"142108",title:"Dr.",name:"Miloš",middleName:null,surname:"René",slug:"milos-rene",fullName:"Miloš René"}]},{id:"57812",title:"Geology, Textural Study, Ore Genesis and Processing of the Tabuaço Tungsten Deposit (Northern Portugal)",slug:"geology-textural-study-ore-genesis-and-processing-of-the-tabua-o-tungsten-deposit-northern-portugal-",totalDownloads:1565,totalCrossrefCites:2,totalDimensionsCites:4,abstract:"The Tabuaço tungsten deposit (Northern Portugal) is hosted in the Cambrian Douro Group metasediments, at the northern margin of the Beira-Tabuaço granitic complex. The hosting schisto-calcareous Lower Cambrian Bateiras Formation underwent a contact metamorphism induced by the intrusion of the granitic complex. The skarnification led to the crystallisation of scheelite (CaWO4). Two different skarn facies are encountered: ‘Lower Skarn’ and ‘Main Skarn’ both corresponding to the exoskarn. The ‘Main Skarn’ is mainly composed of vesuvianite (Ca10Mg2Al4(SiO4)5(Si2O7)2(OH)4), feldspars and fluorite. Zoisite, grossular, fluorapatite and scheelite are also present, as well as malayaite and cassiterite. Scheelite is disseminated and often occurs in association with fluorite, albite and vesuvianite. The ‘Lower Skarn’ level contains predominantly diopsidic pyroxene, quartz, zoisite, grossular and feldspars. Scheelite appears both laminated and disseminated, in association with fluorite and vesuvianite in minor proportions. The ‘Main Skarn’ is located in the Garnet, Pyroxene zone, while the ‘Lower Skarn’ corresponds to the Pyroxene, Garnet zone. Pyroxene has a global hedenbergite Hd40 composition. A major phase of albitisation destabilised fluorite, scheelite, vesuvianite, garnet and pyroxene. A late stage of chloritisation is associated with the exhumation. The processing of the Tabuaço ore has been adapted to the Ca-bearing rich paragenesis and to the scheelite mean size.",book:{id:"6236",slug:"contributions-to-mineralization",title:"Contributions to Mineralization",fullTitle:"Contributions to Mineralization"},signatures:"Yann Foucaud, Bénédicte Lechenard, Philippe Marion, Inna\nFilippova and Lev Filippov",authors:[{id:"212457",title:"Ph.D. Student",name:"Yann",middleName:null,surname:"Foucaud",slug:"yann-foucaud",fullName:"Yann Foucaud"},{id:"212458",title:"Prof.",name:"Lev",middleName:null,surname:"Filippov",slug:"lev-filippov",fullName:"Lev Filippov"},{id:"214497",title:"Dr.",name:"Inna",middleName:null,surname:"Filippova",slug:"inna-filippova",fullName:"Inna Filippova"},{id:"220945",title:"Prof.",name:"Philippe",middleName:null,surname:"Marion",slug:"philippe-marion",fullName:"Philippe Marion"},{id:"220947",title:"Mrs.",name:"Bénédicte",middleName:null,surname:"Lechenard",slug:"benedicte-lechenard",fullName:"Bénédicte Lechenard"}]},{id:"58223",title:"Mineralization: Evidence from Fission Track Thermochronology",slug:"mineralization-evidence-from-fission-track-thermochronology",totalDownloads:1231,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Ore deposits were the product of the Earth’s material movement in a certain historical stage and tend to experience different forms and different degrees of change until being found, exploited and utilized. We should attach importance to conservation and changes of ore deposits besides metallogenic environment, ore deposit model and origin research. The conservation is closely related to uplifting and denudation so that to recover histories of uplifting and denudation for ore districts could reveal conservation and changes of mineral deposits. By applying fission track thermochronology, this chapter presents a research sample to discuss the issue, especially the relative technical method, and provides evidences for both deep ore prospecting and mineralizing potentiality evaluation. Meanwhile, dating mineralizing age is another frontier topic in the world. The author successfully applied fission track thermochronology to determining the mineralizing ages and epochs of the hydrothermal deposits. Steps and methods of achieving these goals are shown in detail. Geologists could take this chapter as a reference tool.",book:{id:"6236",slug:"contributions-to-mineralization",title:"Contributions to Mineralization",fullTitle:"Contributions to Mineralization"},signatures:"Wanming Yuan and Ke Wang",authors:[{id:"16797",title:"Prof.",name:"Wanming",middleName:null,surname:"Yuan",slug:"wanming-yuan",fullName:"Wanming Yuan"},{id:"220230",title:"Dr.",name:"Ke",middleName:null,surname:"Wang",slug:"ke-wang",fullName:"Ke Wang"}]},{id:"58502",title:"Expected Return on Capital in Mining Industry",slug:"expected-return-on-capital-in-mining-industry",totalDownloads:1392,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Capital is a necessary element of each economic activity. In the enterprises functioning in capital-consuming industries, such as mining industry, the problem of capital becomes more complex and is followed by a number of problems. Investors (both owners and creditors) expect the return on invested capital, taking into consideration the risk level connected with the activity that is to be financed by them. The problem raised in this work is related to the determination of the ways of calculation of the expected return on capital from the point of view of capital provider, with the inclusion of the specificity of mining industry. The universal calculation methods in use are difficult to be applied in the enterprises from mining industry because of the specific character of risk emerging in these enterprises, unique character, and high capital consumption. The author suggests modification of one of the most popular methods and presents her own, new solutions in this area, adjusted to the specificity of mining enterprises. The solutions presented allow a more realistic look on the issue of financing mining activity.",book:{id:"6236",slug:"contributions-to-mineralization",title:"Contributions to Mineralization",fullTitle:"Contributions to Mineralization"},signatures:"Aneta Michalak",authors:[{id:"213401",title:"Ph.D.",name:"Aneta",middleName:null,surname:"Michalak",slug:"aneta-michalak",fullName:"Aneta Michalak"}]}],onlineFirstChaptersFilter:{topicId:"1406",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261",scope:"Modern physiology requires a comprehensive understanding of the integration of tissues and organs throughout the mammalian body, including the cooperation between structure and function at the cellular and molecular levels governed by gene and protein expression. While a daunting task, learning is facilitated by identifying common and effective signaling pathways mediated by a variety of factors employed by nature to preserve and sustain homeostatic life. \r\nAs a leading example, the cellular interaction between intracellular concentration of Ca+2 increases, and changes in plasma membrane potential is integral for coordinating blood flow, governing the exocytosis of neurotransmitters, and modulating gene expression and cell effector secretory functions. Furthermore, in this manner, understanding the systemic interaction between the cardiovascular and nervous systems has become more important than ever as human populations' life prolongation, aging and mechanisms of cellular oxidative signaling are utilised for sustaining life. \r\nAltogether, physiological research enables our identification of distinct and precise points of transition from health to the development of multimorbidity throughout the inevitable aging disorders (e.g., diabetes, hypertension, chronic kidney disease, heart failure, peptic ulcer, inflammatory bowel disease, age-related macular degeneration, cancer). With consideration of all organ systems (e.g., brain, heart, lung, gut, skeletal and smooth muscle, liver, pancreas, kidney, eye) and the interactions thereof, this Physiology Series will address the goals of resolving (1) Aging physiology and chronic disease progression (2) Examination of key cellular pathways as they relate to calcium, oxidative stress, and electrical signaling, and (3) how changes in plasma membrane produced by lipid peroxidation products can affect aging physiology, covering new research in the area of cell, human, plant and animal physiology.",coverUrl:"https://cdn.intechopen.com/series/covers/10.jpg",latestPublicationDate:"May 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:11,editor:{id:"35854",title:"Prof.",name:"Tomasz",middleName:null,surname:"Brzozowski",slug:"tomasz-brzozowski",fullName:"Tomasz Brzozowski",profilePictureURL:"https://mts.intechopen.com/storage/users/35854/images/system/35854.jpg",biography:"Prof. Dr. Thomas Brzozowski works as a professor of Human Physiology and is currently Chairman at the Department of Physiology and is V-Dean of the Medical Faculty at Jagiellonian University Medical College, Cracow, Poland. His primary area of interest is physiology and pathophysiology of the gastrointestinal (GI) tract, with the major focus on the mechanism of GI mucosal defense, protection, and ulcer healing. He was a postdoctoral NIH fellow at the University of California and the Gastroenterology VA Medical Center, Irvine, Long Beach, CA, USA, and at the Gastroenterology Clinics Erlangen-Nuremberg and Munster in Germany. He has published 290 original articles in some of the most prestigious scientific journals and seven book chapters on the pathophysiology of the GI tract, gastroprotection, ulcer healing, drug therapy of peptic ulcers, hormonal regulation of the gut, and inflammatory bowel disease.",institutionString:null,institution:{name:"Jagiellonian University",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"10",title:"Animal Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",isOpenForSubmission:!0,annualVolume:11406,editor:{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"11",title:"Cell Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/11.jpg",isOpenForSubmission:!0,annualVolume:11407,editor:{id:"133493",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/133493/images/3091_n.jpg",biography:"Prof. Dr. Angel Catalá \r\nShort Biography Angel Catalá was born in Rodeo (San Juan, Argentina). He studied \r\nchemistry at the Universidad Nacional de La Plata, Argentina, where received aPh.D. degree in chemistry (Biological Branch) in 1965. From\r\n1964 to 1974, he worked as Assistant in Biochemistry at the School of MedicineUniversidad Nacional de La Plata, Argentina. From 1974 to 1976, he was a Fellowof the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor oBiochemistry at the Universidad Nacional de La Plata, Argentina. He is Member ofthe National Research Council (CONICET), Argentina, and Argentine Society foBiochemistry and Molecular Biology (SAIB). His laboratory has been interested for manyears in the lipid peroxidation of biological membranes from various tissues and different species. Professor Catalá has directed twelve doctoral theses, publishedover 100 papers in peer reviewed journals, several chapters in books andtwelve edited books. Angel Catalá received awards at the 40th InternationaConference Biochemistry of Lipids 1999: Dijon (France). W inner of the Bimbo PanAmerican Nutrition, Food Science and Technology Award 2006 and 2012, South AmericaHuman Nutrition, Professional Category. 2006 award in pharmacology, Bernardo\r\nHoussay, in recognition of his meritorious works of research. Angel Catalá belongto the Editorial Board of Journal of lipids, International Review of Biophysical ChemistryFrontiers in Membrane Physiology and Biophysics, World Journal oExperimental Medicine and Biochemistry Research International, W orld Journal oBiological Chemistry, Oxidative Medicine and Cellular Longevity, Diabetes and thePancreas, International Journal of Chronic Diseases & Therapy, International Journal oNutrition, Co-Editor of The Open Biology Journal.",institutionString:null,institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}},editorTwo:null,editorThree:null},{id:"12",title:"Human Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",isOpenForSubmission:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}}},{id:"13",title:"Plant Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/13.jpg",isOpenForSubmission:!0,annualVolume:11409,editor:{id:"332229",title:"Prof.",name:"Jen-Tsung",middleName:null,surname:"Chen",slug:"jen-tsung-chen",fullName:"Jen-Tsung Chen",profilePictureURL:"https://mts.intechopen.com/storage/users/332229/images/system/332229.png",biography:"Dr. Jen-Tsung Chen is currently a professor at the National University of Kaohsiung, Taiwan. He teaches cell biology, genomics, proteomics, medicinal plant biotechnology, and plant tissue culture. Dr. Chen\\'s research interests include bioactive compounds, chromatography techniques, in vitro culture, medicinal plants, phytochemicals, and plant biotechnology. He has published more than ninety scientific papers and serves as an editorial board member for Plant Methods, Biomolecules, and International Journal of Molecular Sciences.",institutionString:"National University of Kaohsiung",institution:{name:"National University of Kaohsiung",institutionURL:null,country:{name:"Taiwan"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:0,paginationItems:[]},overviewPagePublishedBooks:{paginationCount:0,paginationItems:[]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11675",title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",hash:"e1d9662c334dd78ab35bfb57c3bf106e",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 19th 2022",isOpenForSubmission:!0,editors:[{id:"281317",title:"Dr.",name:"Fabio",surname:"Iannotti",slug:"fabio-iannotti",fullName:"Fabio Iannotti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11677",title:"New Insights in Mammalian Endocrinology",coverURL:"https://cdn.intechopen.com/books/images_new/11677.jpg",hash:"c59dd0f87bbf829ca091c485f4cc4e68",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"321396",title:"Prof.",name:"Muhammad Subhan",surname:"Qureshi",slug:"muhammad-subhan-qureshi",fullName:"Muhammad Subhan Qureshi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11676",title:"Recent Advances in Homeostasis",coverURL:"https://cdn.intechopen.com/books/images_new/11676.jpg",hash:"63eb775115bf2d6d88530b234a1cc4c2",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 10th 2022",isOpenForSubmission:!0,editors:[{id:"203015",title:"Dr.",name:"Gaffar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:4,paginationItems:[{id:"81821",title:"Pneumococcal Carriage in Jordanian Children and the Importance of Vaccination",doi:"10.5772/intechopen.104999",signatures:"Adnan Al-Lahham",slug:"pneumococcal-carriage-in-jordanian-children-and-the-importance-of-vaccination",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"81813",title:"Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development",doi:"10.5772/intechopen.104738",signatures:"Andressa Barban do Patrocinio",slug:"schistosomiasis-discovery-of-new-molecules-for-disease-treatment-and-vaccine-development",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"81644",title:"Perspective Chapter: Ethics of Using Placebo Controlled Trials for Covid-19 Vaccine Development in Vulnerable Populations",doi:"10.5772/intechopen.104776",signatures:"Lesley Burgess, Jurie Jordaan and Matthew Wilson",slug:"perspective-chapter-ethics-of-using-placebo-controlled-trials-for-covid-19-vaccine-development-in-vu",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"80546",title:"Streptococcal Skin and Skin-Structure Infections",doi:"10.5772/intechopen.102894",signatures:"Alwyn Rapose",slug:"streptococcal-skin-and-skin-structure-infections",totalDownloads:48,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},subseriesFiltersForOFChapters:[{caption:"Parasitic Infectious Diseases",value:5,count:1,group:"subseries"},{caption:"Viral Infectious Diseases",value:6,count:1,group:"subseries"},{caption:"Bacterial Infectious Diseases",value:3,count:2,group:"subseries"}],publishedBooks:{paginationCount:0,paginationItems:[]},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{paginationCount:249,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University, Kuwait. His research interests include optimization, computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, and intelligent systems. Prof. Sarfraz has been a keynote/invited speaker at various platforms around the globe. He has advised/supervised more than 110 students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He has authored and/or edited around seventy books. Prof. Sarfraz is a member of various professional societies. He is a chair and member of international advisory committees and organizing committees of numerous international conferences. He is also an editor and editor in chief for various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:"Beijing University of Technology",institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Lakhno Igor Victorovich was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPhD – 1999, Kharkiv National Medical Univesity.\nDSc – 2019, PL Shupik National Academy of Postgraduate Education \nLakhno Igor has been graduated from an international training courses on reproductive medicine and family planning held in Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor of the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s a professor of the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education . He’s an author of about 200 printed works and there are 17 of them in Scopus or Web of Science databases. Lakhno Igor is a rewiever of Journal of Obstetrics and Gynaecology (Taylor and Francis), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for DSc degree \\'Pre-eclampsia: prediction, prevention and treatment”. Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: obstetrics, women’s health, fetal medicine, cardiovascular medicine.",institutionString:"V.N. Karazin Kharkiv National University",institution:{name:"Kharkiv Medical Academy of Postgraduate Education",country:{name:"Ukraine"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"243698",title:"M.D.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:"Shanxi Eye Hospital",institution:{name:"Shanxi Eye Hospital",country:{name:"China"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRZkkQAG/Profile_Picture_2022-05-09T12:55:18.jpg",biography:null,institutionString:null,institution:null},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:null},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"338222",title:"Mrs.",name:"María José",middleName:null,surname:"Lucía Mudas",slug:"maria-jose-lucia-mudas",fullName:"María José Lucía Mudas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}},{id:"147824",title:"Mr.",name:"Pablo",middleName:null,surname:"Revuelta Sanz",slug:"pablo-revuelta-sanz",fullName:"Pablo Revuelta Sanz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}}]}},subseries:{item:{id:"18",type:"subseries",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11414,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",slug:"arli-aditya-parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",slug:"cesar-lopez-camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",slug:"shymaa-enany",fullName:"Shymaa Enany",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRqB9QAK/Profile_Picture_1626163237970",institutionString:null,institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]},onlineFirstChapters:{paginationCount:8,paginationItems:[{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81471",title:"Semantic Map: Bringing Together Groups and Discourses",doi:"10.5772/intechopen.103818",signatures:"Theodore Chadjipadelis and Georgia Panagiotidou",slug:"semantic-map-bringing-together-groups-and-discourses",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79491",title:"Fuzzy Perceptron Learning for Non-Linearly Separable Patterns",doi:"10.5772/intechopen.101312",signatures:"Raja Kishor Duggirala",slug:"fuzzy-perceptron-learning-for-non-linearly-separable-patterns",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Raja Kishor",surname:"Duggirala"}],book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81331",title:"Machine Learning Algorithm-Based Contraceptive Practice among Ever-Married Women in Bangladesh: A Hierarchical Machine Learning Classification Approach",doi:"10.5772/intechopen.103187",signatures:"Iqramul Haq, Md. Ismail Hossain, Md. Moshiur Rahman, Md. Injamul Haq Methun, Ashis Talukder, Md. Jakaria Habib and Md. Sanwar Hossain",slug:"machine-learning-algorithm-based-contraceptive-practice-among-ever-married-women-in-bangladesh-a-hie",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"80937",title:"Assessing Heterogeneity of Two-Part Model via Bayesian Model-Based Clustering with Its Application to Cocaine Use Data",doi:"10.5772/intechopen.103089",signatures:"Ye-Mao Xia, Qi-Hang Zhu and Jian-Wei Gou",slug:"assessing-heterogeneity-of-two-part-model-via-bayesian-model-based-clustering-with-its-application-t",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"78846",title:"Clustering Algorithms: An Exploratory Review",doi:"10.5772/intechopen.100376",signatures:"R.S.M. Lakshmi Patibandla and Veeranjaneyulu N",slug:"clustering-algorithms-an-exploratory-review",totalDownloads:136,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"78463",title:"Clustering by Similarity of Brazilian Legal Documents Using Natural Language Processing Approaches",doi:"10.5772/intechopen.99875",signatures:"Raphael Souza de Oliveira and Erick Giovani Sperandio Nascimento",slug:"clustering-by-similarity-of-brazilian-legal-documents-using-natural-language-processing-approaches",totalDownloads:142,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"7437",title:"Nanomedicines",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7437.jpg",slug:"nanomedicines",publishedDate:"February 13th 2019",editedByType:"Edited by",bookSignature:"Muhammad Akhyar Farrukh",hash:"0e1f5f6258f074c533976c4f4d248568",volumeInSeries:5,fullTitle:"Nanomedicines",editors:[{id:"63182",title:"Dr.",name:"Muhammad Akhyar",middleName:null,surname:"Farrukh",slug:"muhammad-akhyar-farrukh",fullName:"Muhammad Akhyar Farrukh",profilePictureURL:"https://mts.intechopen.com/storage/users/63182/images/system/63182.png",institutionString:"Forman Christian College",institution:{name:"Forman Christian College",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/39312",hash:"",query:{},params:{id:"39312"},fullPath:"/profiles/39312",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var t;(t=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(t)}()