List of miRNAs involved in cancer and their respective mRNA targets.
\\n\\n
IntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\\n\\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\\n\\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\\n\\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\\n\\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\\n\\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\\n\\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\\n\\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\\n\\nFeel free to share this news on social media and help us mark this memorable moment!
\\n\\n\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/237"}},components:[{type:"htmlEditorComponent",content:'
After years of being acknowledged as the world's leading publisher of Open Access books, today, we are proud to announce we’ve successfully launched a portfolio of Open Science journals covering rapidly expanding areas of interdisciplinary research.
\n\n\n\nIntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\n\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\n\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\n\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\n\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\n\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\n\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\n\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\n\nFeel free to share this news on social media and help us mark this memorable moment!
\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"1537",leadTitle:null,fullTitle:"Solid State Laser",title:"Solid State Laser",subtitle:null,reviewType:"peer-reviewed",abstract:"This book deals with theoretical and experimental aspects of solid-state lasers, including optimum waveguide design of end pumped and diode pumped lasers. Nonlinearity, including the nonlinear conversion, up frequency conversion and chirped pulse oscillators are discussed. Some new rare-earth-doped lasers, including double borate and halide crystals, and feedback in quantum dot semiconductor nanostructures are included.",isbn:null,printIsbn:"978-953-51-0086-7",pdfIsbn:"978-953-51-4955-2",doi:"10.5772/2004",price:119,priceEur:129,priceUsd:155,slug:"solid-state-laser",numberOfPages:254,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"d1bd2eb05971cc7dd6487b76b2df1279",bookSignature:"Amin H. Al-Khursan",publishedDate:"February 17th 2012",coverURL:"https://cdn.intechopen.com/books/images_new/1537.jpg",numberOfDownloads:23909,numberOfWosCitations:34,numberOfCrossrefCitations:9,numberOfCrossrefCitationsByBook:5,numberOfDimensionsCitations:23,numberOfDimensionsCitationsByBook:4,hasAltmetrics:1,numberOfTotalCitations:66,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 26th 2011",dateEndSecondStepPublish:"June 23rd 2011",dateEndThirdStepPublish:"October 28th 2011",dateEndFourthStepPublish:"November 27th 2011",dateEndFifthStepPublish:"March 26th 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"99105",title:"Prof.",name:"Amin",middleName:"Habbeb",surname:"Al-Khursan",slug:"amin-al-khursan",fullName:"Amin Al-Khursan",profilePictureURL:"https://mts.intechopen.com/storage/users/99105/images/2075_n.jpg",biography:"Amin H. Al-Khursan graduated from the Science College, Basrah University, where he obtained an MSc in Nuclear Track Detectors in 1992,working at the Science College, Thi-Qar University, Nassiriya in 1992, as assistant lecturer. In 1997, he returned to the Science College, Basrah University, as a PhD student and obtained a PhD in physics of “Quantum Dot Semiconductor Lasers” in October 2001, under the supervision of Professor R.S. Fyath, an electrical engineer, he became the first Iraqi researcher to work in the nanostructure field. \n\nDr Al-Khursan worked as a lecturer in 2001, as an assistant professor in 2005, and then as a professor in 2010, all at the Science College, Thi-Qar University. Between 2007 and 2008, he received a fellowship from the Politecnico di Torino, Italy, with Professor Montrosset and M. Gioannini. Dr Al-Khursan founded the “Nassiriya Nanotechnology Research Laboratory (NNRL)” in 2010, where MSc and PhD groups from different Iraqi universities work. He has published 30 papers and has been a member of the editorial board of “Recent Patents in Electrical Engineering”, Bentham Science, since 2007, and “Physics Express”, Simplex Academic Publishers, since 2010, as well as three other Iraqi journals. He is also a member of IEEE Photonics Society and OSA.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Thi Qar University",institutionURL:null,country:{name:"Iraq"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1226",title:"Optoelectronics",slug:"optics-and-lasers-optoelectronics"}],chapters:[{id:"28467",title:"Optimum Design of End-Pumped Solid-State Lasers",doi:"10.5772/38902",slug:"optimum-design-of-end-pumped-solid-state-lasers",totalDownloads:5626,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Gholamreza Shayeganrad",downloadPdfUrl:"/chapter/pdf-download/28467",previewPdfUrl:"/chapter/pdf-preview/28467",authors:[{id:"121092",title:"Dr.",name:"Gholamreza",surname:"Shayeganrad",slug:"gholamreza-shayeganrad",fullName:"Gholamreza Shayeganrad"}],corrections:null},{id:"28468",title:"Diode Pumped Planar Waveguide/Thin Slab Solid-State Lasers",doi:"10.5772/38746",slug:"diode-pumped-planar-waveguide-thin-slab-solid-state-lasers",totalDownloads:3863,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Jianqiu Xu",downloadPdfUrl:"/chapter/pdf-download/28468",previewPdfUrl:"/chapter/pdf-preview/28468",authors:[{id:"119102",title:"Dr.",name:"Ling",surname:"Xiao",slug:"ling-xiao",fullName:"Ling Xiao"},{id:"119232",title:"Prof.",name:"Jianqiu",surname:"Xu",slug:"jianqiu-xu",fullName:"Jianqiu Xu"}],corrections:null},{id:"28469",title:"The Recent Development of Rare Earth-Doped Borate Laser Crystals",doi:"10.5772/38672",slug:"the-study-on-some-new-rare-earth-doped-borate-laser-crystals",totalDownloads:2512,totalCrossrefCites:1,totalDimensionsCites:4,hasAltmetrics:1,abstract:null,signatures:"Chaoyang Tu and Yan Wang",downloadPdfUrl:"/chapter/pdf-download/28469",previewPdfUrl:"/chapter/pdf-preview/28469",authors:[{id:"118647",title:"Prof.",name:"Chaoyang",surname:"Tu",slug:"chaoyang-tu",fullName:"Chaoyang Tu"}],corrections:null},{id:"28470",title:"Rare-Earth-Doped Low Phonon Energy Halide Crystals for Mid-Infrared Laser Sources",doi:"10.5772/38204",slug:"rare-earth-doped-low-phonon-energy-halide-crystals-for-mid-infrared-laser-sources",totalDownloads:3183,totalCrossrefCites:2,totalDimensionsCites:8,hasAltmetrics:0,abstract:null,signatures:"M. Velázquez, A. Ferrier, J.-L. Doualan and R. Moncorgé",downloadPdfUrl:"/chapter/pdf-download/28470",previewPdfUrl:"/chapter/pdf-preview/28470",authors:[{id:"115997",title:"Dr.",name:"Matias",surname:"Velazquez",slug:"matias-velazquez",fullName:"Matias Velazquez"},{id:"116001",title:"Dr.",name:"Alban",surname:"Ferrier",slug:"alban-ferrier",fullName:"Alban Ferrier"},{id:"116004",title:"Prof.",name:"Richard",surname:"Moncorgé",slug:"richard-moncorge",fullName:"Richard Moncorgé"},{id:"116007",title:"Dr.",name:"Jean-Louis",surname:"Doualan",slug:"jean-louis-doualan",fullName:"Jean-Louis Doualan"}],corrections:null},{id:"28471",title:"Chirped-Pulse Oscillators: Route to the Energy-Scalable Femtosecond Pulses",doi:"10.5772/37415",slug:"chirped-pulse-oscillators-a-route-to-the-energy-scalable-femtosecond-pulses",totalDownloads:1975,totalCrossrefCites:4,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Vladimir L. Kalashnikov",downloadPdfUrl:"/chapter/pdf-download/28471",previewPdfUrl:"/chapter/pdf-preview/28471",authors:[{id:"112656",title:"Dr.",name:"Vladimir",surname:"Kalashnikov",slug:"vladimir-kalashnikov",fullName:"Vladimir Kalashnikov"}],corrections:null},{id:"28472",title:"Intra-Cavity Nonlinear Frequency Conversion with Cr3+-Colquiriite Solid-State Lasers",doi:"10.5772/37712",slug:"intra-cavity-nonlinear-frequency-conversion-with-cr3-colquiriite-solid-state-lasers",totalDownloads:2456,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"H. Maestre, A. J. Torregrosa and J. Capmany",downloadPdfUrl:"/chapter/pdf-download/28472",previewPdfUrl:"/chapter/pdf-preview/28472",authors:[{id:"114021",title:"Dr.",name:"Haroldo",surname:"Maestre",slug:"haroldo-maestre",fullName:"Haroldo Maestre"},{id:"117906",title:"Dr.",name:"Adrián J.",surname:"Torregrosa",slug:"adrian-j.-torregrosa",fullName:"Adrián J. Torregrosa"},{id:"117908",title:"Dr.",name:"Juan",surname:"Capmany",slug:"juan-capmany",fullName:"Juan Capmany"}],corrections:null},{id:"28473",title:"Frequency Upconversion in Rare Earth Ions",doi:"10.5772/36197",slug:"frequency-upconversion-in-rare-earth-ions",totalDownloads:2222,totalCrossrefCites:0,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Vineet Kumar Rai",downloadPdfUrl:"/chapter/pdf-download/28473",previewPdfUrl:"/chapter/pdf-preview/28473",authors:[{id:"107442",title:"Dr.",name:"Vineet Kumar",surname:"Rai",slug:"vineet-kumar-rai",fullName:"Vineet Kumar Rai"}],corrections:null},{id:"28474",title:"Parameters Controlling Optical Feedback of Quantum-Dot Semiconductor Lasers",doi:"10.5772/39195",slug:"parameters-controlling-optical-feedback-of-quantum-dot-semiconductor-lasers",totalDownloads:2077,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Basim Abdullattif Ghalib, Sabri J. Al-Obaidi and Amin H. Al-Khursan",downloadPdfUrl:"/chapter/pdf-download/28474",previewPdfUrl:"/chapter/pdf-preview/28474",authors:[{id:"99105",title:"Prof.",name:"Amin",surname:"Al-Khursan",slug:"amin-al-khursan",fullName:"Amin Al-Khursan"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"1505",title:"Scanning Electron Microscopy",subtitle:null,isOpenForSubmission:!1,hash:"3305b759b0efc22e8ed16e9048818817",slug:"scanning-electron-microscopy",bookSignature:"Viacheslav Kazmiruk",coverURL:"https://cdn.intechopen.com/books/images_new/1505.jpg",editedByType:"Edited by",editors:[{id:"100815",title:"Dr.",name:"Viacheslav",surname:"Kazmiruk",slug:"viacheslav-kazmiruk",fullName:"Viacheslav Kazmiruk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2397",title:"Advanced Aspects of Spectroscopy",subtitle:null,isOpenForSubmission:!1,hash:"bcc83fcd6b4bbfdaa677b37d94bdbdb6",slug:"advanced-aspects-of-spectroscopy",bookSignature:"Muhammad Akhyar Farrukh",coverURL:"https://cdn.intechopen.com/books/images_new/2397.jpg",editedByType:"Edited by",editors:[{id:"63182",title:"Dr.",name:"Muhammad Akhyar",surname:"Farrukh",slug:"muhammad-akhyar-farrukh",fullName:"Muhammad Akhyar Farrukh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3166",title:"Optoelectronics",subtitle:"Advanced Materials and Devices",isOpenForSubmission:!1,hash:"b7263978cf34e637a4b9592eb4975f3e",slug:"optoelectronics-advanced-materials-and-devices",bookSignature:"Sergei L. Pyshkin and John M. Ballato",coverURL:"https://cdn.intechopen.com/books/images_new/3166.jpg",editedByType:"Edited by",editors:[{id:"43016",title:"Prof.",name:"Sergei",surname:"Pyshkin",slug:"sergei-pyshkin",fullName:"Sergei Pyshkin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2018",title:"Recent Progress in Optical Fiber Research",subtitle:null,isOpenForSubmission:!1,hash:"c9f4716122beee57c42cff13c357a2cb",slug:"recent-progress-in-optical-fiber-research",bookSignature:"Moh. Yasin, Sulaiman W. Harun and Hamzah Arof",coverURL:"https://cdn.intechopen.com/books/images_new/2018.jpg",editedByType:"Edited by",editors:[{id:"294347",title:"Dr.",name:"Moh",surname:"Yasin",slug:"moh-yasin",fullName:"Moh Yasin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10",title:"Coherence and Ultrashort Pulse Laser Emission",subtitle:null,isOpenForSubmission:!1,hash:"e1bd25a76712d1cb8792820acf2ff001",slug:"coherence-and-ultrashort-pulse-laser-emission",bookSignature:"F. J. Duarte",coverURL:"https://cdn.intechopen.com/books/images_new/10.jpg",editedByType:"Edited by",editors:[{id:"13752",title:"Dr.",name:"F. J.",surname:"Duarte",slug:"f.-j.-duarte",fullName:"F. J. Duarte"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2245",title:"Plasmonics",subtitle:"Principles and Applications",isOpenForSubmission:!1,hash:"e74f79681a8c87bb027f48ad33a3e068",slug:"plasmonics-principles-and-applications",bookSignature:"Ki Young Kim",coverURL:"https://cdn.intechopen.com/books/images_new/2245.jpg",editedByType:"Edited by",editors:[{id:"12009",title:"Dr.",name:"Ki Young",surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3710",title:"Advances in Solid State Lasers",subtitle:"Development and Applications",isOpenForSubmission:!1,hash:null,slug:"advances-in-solid-state-lasers-development-and-applications",bookSignature:"Mikhail Grishin",coverURL:"https://cdn.intechopen.com/books/images_new/3710.jpg",editedByType:"Edited by",editors:[{id:"4862",title:"Mr.",name:"Mikhail",surname:"Grishin",slug:"mikhail-grishin",fullName:"Mikhail Grishin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"256",title:"Optoelectronics",subtitle:"Materials and Techniques",isOpenForSubmission:!1,hash:"2c0d6a2a51ac114edd58f2c667297503",slug:"optoelectronics-materials-and-techniques",bookSignature:"Padmanabhan Predeep",coverURL:"https://cdn.intechopen.com/books/images_new/256.jpg",editedByType:"Edited by",editors:[{id:"36735",title:"Prof.",name:"P.",surname:"Predeep",slug:"p.-predeep",fullName:"P. Predeep"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3581",title:"Recent Optical and Photonic Technologies",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"recent-optical-and-photonic-technologies",bookSignature:"Ki Young Kim",coverURL:"https://cdn.intechopen.com/books/images_new/3581.jpg",editedByType:"Edited by",editors:[{id:"12009",title:"Dr.",name:"Ki Young",surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"525",title:"Optoelectronics",subtitle:"Devices and Applications",isOpenForSubmission:!1,hash:"f444b982565b0c4be6117a35f7810047",slug:"optoelectronics-devices-and-applications",bookSignature:"Padmanabhan Predeep",coverURL:"https://cdn.intechopen.com/books/images_new/525.jpg",editedByType:"Edited by",editors:[{id:"36735",title:"Prof.",name:"P.",surname:"Predeep",slug:"p.-predeep",fullName:"P. Predeep"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"74512",slug:"corrigendum-to-many-core-algorithm-of-the-embedded-zerotree-wavelet-encoder",title:"Corrigendum to: Many-Core Algorithm of the Embedded Zerotree Wavelet Encoder",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/74512.pdf",downloadPdfUrl:"/chapter/pdf-download/74512",previewPdfUrl:"/chapter/pdf-preview/74512",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/74512",risUrl:"/chapter/ris/74512",chapter:{id:"70013",slug:"many-core-algorithm-of-the-embedded-zerotree-wavelet-encoder",signatures:"Jesús Antonio Alvarez-Cedillo, Teodoro Alvarez-Sanchez, Mario Aguilar-Fernandez and Jacobo Sandoval-Gutierrez",dateSubmitted:"May 18th 2019",dateReviewed:"August 22nd 2019",datePrePublished:"December 7th 2019",datePublished:"March 11th 2020",book:{id:"7623",title:"Coding Theory",subtitle:null,fullTitle:"Coding Theory",slug:"coding-theory",publishedDate:"March 11th 2020",bookSignature:"Sudhakar Radhakrishnan and Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/7623.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"118717",title:"Ph.D.",name:"Jesús Antonio",middleName:null,surname:"Álvarez-Cedillo",fullName:"Jesús Antonio Álvarez-Cedillo",slug:"jesus-antonio-alvarez-cedillo",email:"jaalvarez@ipn.mx",position:null,institution:{name:"Instituto Politécnico Nacional",institutionURL:null,country:{name:"Mexico"}}},{id:"305584",title:"Dr.",name:"Teodoro",middleName:null,surname:"Alvarez-Sanchez",fullName:"Teodoro Alvarez-Sanchez",slug:"teodoro-alvarez-sanchez",email:"talvares@citedi.mx",position:null,institution:{name:"Instituto Politécnico Nacional",institutionURL:null,country:{name:"Mexico"}}},{id:"305586",title:"Dr.",name:"Jacobo",middleName:null,surname:"Sandoval-Gutierrez",fullName:"Jacobo Sandoval-Gutierrez",slug:"jacobo-sandoval-gutierrez",email:"jacobosandoval@hotmail.com",position:null,institution:{name:"Universidad Autónoma Metropolitana",institutionURL:null,country:{name:"Mexico"}}},{id:"305587",title:"Dr.",name:"Mario",middleName:null,surname:"Aguilar-Fernandez",fullName:"Mario Aguilar-Fernandez",slug:"mario-aguilar-fernandez",email:"maguilarf@ipn.mx",position:null,institution:{name:"Instituto Politécnico Nacional",institutionURL:null,country:{name:"Mexico"}}}]}},chapter:{id:"70013",slug:"many-core-algorithm-of-the-embedded-zerotree-wavelet-encoder",signatures:"Jesús Antonio Alvarez-Cedillo, Teodoro Alvarez-Sanchez, Mario Aguilar-Fernandez and Jacobo Sandoval-Gutierrez",dateSubmitted:"May 18th 2019",dateReviewed:"August 22nd 2019",datePrePublished:"December 7th 2019",datePublished:"March 11th 2020",book:{id:"7623",title:"Coding Theory",subtitle:null,fullTitle:"Coding Theory",slug:"coding-theory",publishedDate:"March 11th 2020",bookSignature:"Sudhakar Radhakrishnan and Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/7623.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"118717",title:"Ph.D.",name:"Jesús Antonio",middleName:null,surname:"Álvarez-Cedillo",fullName:"Jesús Antonio Álvarez-Cedillo",slug:"jesus-antonio-alvarez-cedillo",email:"jaalvarez@ipn.mx",position:null,institution:{name:"Instituto Politécnico Nacional",institutionURL:null,country:{name:"Mexico"}}},{id:"305584",title:"Dr.",name:"Teodoro",middleName:null,surname:"Alvarez-Sanchez",fullName:"Teodoro Alvarez-Sanchez",slug:"teodoro-alvarez-sanchez",email:"talvares@citedi.mx",position:null,institution:{name:"Instituto Politécnico Nacional",institutionURL:null,country:{name:"Mexico"}}},{id:"305586",title:"Dr.",name:"Jacobo",middleName:null,surname:"Sandoval-Gutierrez",fullName:"Jacobo Sandoval-Gutierrez",slug:"jacobo-sandoval-gutierrez",email:"jacobosandoval@hotmail.com",position:null,institution:{name:"Universidad Autónoma Metropolitana",institutionURL:null,country:{name:"Mexico"}}},{id:"305587",title:"Dr.",name:"Mario",middleName:null,surname:"Aguilar-Fernandez",fullName:"Mario Aguilar-Fernandez",slug:"mario-aguilar-fernandez",email:"maguilarf@ipn.mx",position:null,institution:{name:"Instituto Politécnico Nacional",institutionURL:null,country:{name:"Mexico"}}}]},book:{id:"7623",title:"Coding Theory",subtitle:null,fullTitle:"Coding Theory",slug:"coding-theory",publishedDate:"March 11th 2020",bookSignature:"Sudhakar Radhakrishnan and Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/7623.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"9178",leadTitle:null,title:"Industrial Robotics",subtitle:"New Paradigms",reviewType:"peer-reviewed",abstract:"In this book, a new approach to the Industry 4.0 revolution is given. New policies and challenges appear and education in robotics also needs to be adapted to this new era. Together with new factory conceptualization, novel applications introduce new paradigms and new solutions to old problems. The factory opens its walls and outdoor applications are solved with new robot morphologies and new sensors that were unthinkable before Industry 4.0 era. This book presents nine chapters that propose a new outlook for an unstoppable revolution in industrial robotics, from drones to software robots",isbn:"978-1-83880-734-4",printIsbn:"978-1-83880-733-7",pdfIsbn:"978-1-83880-735-1",doi:"10.5772/intechopen.83174",price:119,priceEur:129,priceUsd:155,slug:"industrial-robotics-new-paradigms",numberOfPages:176,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"45fdf583c1321490f0b4cb966b608343",bookSignature:"Antoni Grau and Zhuping Wang",publishedDate:"September 9th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/9178.jpg",keywords:null,numberOfDownloads:8050,numberOfWosCitations:5,numberOfCrossrefCitations:5,numberOfDimensionsCitations:14,numberOfTotalCitations:24,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 14th 2019",dateEndSecondStepPublish:"September 17th 2019",dateEndThirdStepPublish:"November 16th 2019",dateEndFourthStepPublish:"February 4th 2020",dateEndFifthStepPublish:"April 4th 2020",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"3 years",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"13038",title:"Prof.",name:"Antoni",middleName:null,surname:"Grau",slug:"antoni-grau",fullName:"Antoni Grau",profilePictureURL:"https://mts.intechopen.com/storage/users/13038/images/system/13038.jfif",biography:"Antoni Grau received his M.S. and Ph.D. degrees in computer science from the Technical University of Catalonia (UPC), Barcelona, in 1990 and 1997, respectively. He is currently a Professor with the Department of Automatic Control, UPC, giving lectures on computer vision, digital signal processing, and robotics at the School of Informatics of Barcelona. His research interests include computer vision, pattern recognition, autonomous mobile robots, factory automation, and education on sustainable development. He has chaired several international conferences. He serves as an Associate Editor of the\nIEEE Transactions on Industrial Informatics.",institutionString:"Universitat Politècnica de Catalunya",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Universitat Politècnica de Catalunya",institutionURL:null,country:{name:"Spain"}}}],coeditorOne:{id:"304304",title:"Prof.",name:"Zhuping",middleName:null,surname:"Wang",slug:"zhuping-wang",fullName:"Zhuping Wang",profilePictureURL:"https://mts.intechopen.com/storage/users/304304/images/system/304304.jfif",biography:"Zhuping Wang received her B.Eng. and M.Eng. degrees from the\nDepartment of Automatic Control, Northwestern Polytechnic\nUniversity, China, in 1994 and 1997, respectively; and her Ph.D.\ndegree from National University of Singapore in 2003. Currently,\nshe is a Professor with the School of Electronics and Information\nEngineering, Tongji University, Shanghai, China. Her research\ninterests include intelligent control of robotic systems, self-driving vehicles, and multi-agent systems.",institutionString:"Tongji University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Tongji University",institutionURL:null,country:{name:"China"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"122",title:"Robotics",slug:"engineering-robotics"}],chapters:[{id:"70877",title:"Fourth Industrial Revolution: Opportunities, Challenges, and Proposed Policies",slug:"fourth-industrial-revolution-opportunities-challenges-and-proposed-policies",totalDownloads:2796,totalCrossrefCites:4,authors:[null]},{id:"70693",title:"Training by Projects in an Industrial Robotic Application",slug:"training-by-projects-in-an-industrial-robotic-application",totalDownloads:400,totalCrossrefCites:0,authors:[null]},{id:"71637",title:"Socially Assistive Robotics: State-of-the-Art Scenarios in Mexico",slug:"socially-assistive-robotics-state-of-the-art-scenarios-in-mexico",totalDownloads:658,totalCrossrefCites:0,authors:[null]},{id:"70219",title:"Dynamic Compensation Framework to Improve the Autonomy of Industrial Robots",slug:"dynamic-compensation-framework-to-improve-the-autonomy-of-industrial-robots",totalDownloads:651,totalCrossrefCites:0,authors:[null]},{id:"70117",title:"Cooperative Step Climbing Using Connected Wheeled Robots and Evaluation of Remote Operability",slug:"cooperative-step-climbing-using-connected-wheeled-robots-and-evaluation-of-remote-operability",totalDownloads:652,totalCrossrefCites:0,authors:[null]},{id:"70985",title:"Real-Time Robot Software Platform for Industrial Application",slug:"real-time-robot-software-platform-for-industrial-application",totalDownloads:702,totalCrossrefCites:0,authors:[null]},{id:"71256",title:"Visual-Tactile Fusion for Robotic Stable Grasping",slug:"visual-tactile-fusion-for-robotic-stable-grasping",totalDownloads:768,totalCrossrefCites:0,authors:[null]},{id:"72807",title:"Deep Learning-Based Detection of Pipes in Industrial Environments",slug:"deep-learning-based-detection-of-pipes-in-industrial-environments",totalDownloads:653,totalCrossrefCites:1,authors:[{id:"13038",title:"Prof.",name:"Antoni",surname:"Grau",slug:"antoni-grau",fullName:"Antoni Grau"}]},{id:"70361",title:"Visual-Inertial Indoor Navigation Systems and Algorithms for UAV Inspection Vehicles",slug:"visual-inertial-indoor-navigation-systems-and-algorithms-for-uav-inspection-vehicles",totalDownloads:772,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"184402",firstName:"Romina",lastName:"Rovan",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/184402/images/4747_n.jpg",email:"romina.r@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"10416",title:"Robotics Software Design and Engineering",subtitle:null,isOpenForSubmission:!1,hash:"3c72993bf70b3d895473f4feabd32e6a",slug:"robotics-software-design-and-engineering",bookSignature:"Alejandro Rafael Garcia Ramirez and Augusto Loureiro da Costa",coverURL:"https://cdn.intechopen.com/books/images_new/10416.jpg",editedByType:"Edited by",editors:[{id:"184021",title:"Prof.",name:"Alejandro Rafael",surname:"Garcia Ramirez",slug:"alejandro-rafael-garcia-ramirez",fullName:"Alejandro Rafael Garcia Ramirez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"57916",title:"Post-Transcriptional Control of RNA Expression in Cancer",doi:"10.5772/intechopen.71861",slug:"post-transcriptional-control-of-rna-expression-in-cancer",body:'\n
The word cancer defines a group of diverse diseases, which share unique traits. Tumor cells display mechanisms of sustained proliferation, replicative immortality, evasion of growth suppression and apoptotic signals, angiogenesis, invasion, metastasis, evasion of immune destruction and metabolic re-wiring [1]. These characteristics represent a great challenge to cancer treatment being both a cause and a consequence of an abnormal gene expression profile. Efforts to understand the consequences of these different expression profiles and the mechanisms underlying them contribute to clarify cancer biology and, consequently, to predict response to and optimization of therapeutic approaches [2, 3, 4].
\nThere are several layers of gene expression modulation including epigenetics, transcriptional modulation, RNA expression control, translational regulation and post-translational modifications. All these mechanisms work in an orchestrated manner leading to specific expression signatures and phenotypes. In this chapter, we focus on RNA expression control mechanisms, which take place after RNA polymerase recognition of the gene promoter and start of RNA synthesis, discussing their implications to malignant transformation and cancer progression.
\nRNA processing takes place after the start of transcription, resulting in a mature mRNA which is able to fulfill its function. This process comprises: 5′-Cap addition, splicing and poly(A) addition. RNA splicing is a process in which portions of the pre-RNA, denominated introns, are excised and the remaining portions (exons) are bound to form the mature RNA. Both
The splicing profile of a certain tissue changes dramatically when compared with malignant cells with their normal counterparts [11, 12, 13]. This difference may result from mutations or single-nucleotide polymorphisms (SNPs) on acceptor, donor splice sites, enhancing or silencing sequences which lead to alterations in the exon/intron boundary recognition; or due to deregulated expression or change of function mutation in a
Cell survival outcome is a perfect example of the influence of AS in basic cellular mechanisms, with alternative isoforms of several apoptotic-related gene transcripts displaying opposite roles, when compared to their canonical variant, shifting the cell status from apoptosis-prone to the survival state (reviewed in [24]). Upon an apoptotic stimulus, cytochrome C is released from the mitochondria and forms a complex with Apaf-1. The N-terminal portion of Apaf-1 interacts with the N-terminal pro-domain of pro-caspase-9, leading to Caspase-9 activation, which, in turn, activates the Caspase-3 and -7 effector proteases (reviewed in [25]). Caspase-9, a key player in this process, has an alternative-splicing variant in which exclusion of the exon cassette 3, 4, 5 and 6 leads to a protein isoform which lacks part of its large subunit. This Caspase-9b isoform retains the domain which interacts with Apaf-1, but lacks the Caspase-9 catalytic site, thus acting like a dominant negative and inhibiting the apoptotic pathway [26, 27]. The ratio between these two isoforms modulates the propensity of the cells to respond to death stimuli, altering their chemo-sensitivity and, potentially, the treatment’s outcome. Interestingly, while Akt mediates exclusion of the exon cassette via phosphorylation of the RNA splicing factor SRp30a [28]; in this case, SRSF1 interacts with an intronic enhancer site at intron 6 favoring the exon cassette inclusion, which renders the cells more sensitive to chemotherapeutic agents as the combined therapy with daunorubicin and erlotinib [21]. Taking into account that SRSF1 is upregulated in non-small cell lung cancer cells, this case exemplifies the complexity of splicing as an expression regulator and how it can be explored to optimize therapy efficacy.
\nAnother great source of transcripts variability is alternative polyadenylation (APA), since approximately 30% of human mRNAs display alternative polyadenylation sites [29]. Polyadenylation occurs in almost every mammalian transcript, a process in which an endonucleolytic cleavage is catalyzed by polyadenylation machinery proteins, immediately followed by polyadenylation (200–300 nucleotides, on average, in humans) of the 3′-end by poly(A) polymerases (reviewed in [30]). The resulting alternative transcripts will have different sizes, depending on the localization of the alternative poly(A) site, originating alternative 3′-untranslated regions (3′-UTR). Also, more rarely, when polyadenylation occurs inside the open reading frame region, it may originate truncated forms of the translated protein [31]. The 3′-UTR is extremely important to transcripts stability, localization and regulation by
A shift in the polyadenylation global pattern occurs in tumor cells, with the proximal poly(A) sites being favored, when compared to their normal counterparts [29]. Also, highly proliferative murine T lymphocytes favor shorter 3′-UTRs, which is also observed in colorectal cancer, but only for certain groups of genes, including those involved in cell cycle, nucleic acid-binding and processing factors. It has been proposed that such shortening would restrict miRNA modulation over the transcripts, increasing their expression [32, 33]. Such a mechanism is observed upon treatment of ER+ breast cancer cells with the proliferation stimulant 17β-estradiol. This treatment leads to APA of the
Curiously, mammalian RNAs can also be post-transcriptionally modified through a process called RNA editing. Well-known cases are the RNA editing enzymes adenosine and cytidine deaminases, which catalyze the conversion of adenine into inosine and of cytosine into uracil, respectively [35]. Adenosine deaminases acting on RNA (ADAR) enzymes act on double-stranded RNA regions, usually the secondary structure of a single mRNA molecule. Through a hydrolytic deamination at C6, ADAR enzymes catalyze adenine conversion into inosine, which pairs with cytosine. Cytidine deaminases are much more specific and different members of the APOBEC3 family are transcriptionally regulated by p53 [36]. Altered RNA editing signatures were found in different types of tumors, such as glioblastoma [37], breast [38] and gastric cancers [39, 40]. If located at a coding region, these editing events may cause a missense mutation. One example is ADAR-1 editing of the
The interaction of transcripts with long non-coding RNAs (lncRNAs) and microRNAs are important post-transcriptional regulatory mechanisms which will be further addressed in this chapter. RNA edition adds a layer of complexity to this apparatus. It is estimated that over 70% of potential editing sites within long non-coding RNAs may lead to changes in their secondary structure, a feature which is crucial for its target recognition [45]. If the editing takes place in a precursor miRNA, it can lead to alterations in its biosynthesis and target recognition, increasing their range of action [46, 47, 48]. Alterations in the mRNA 3′-UTR may alter its recognition by a specific miRNA or lncRNA [37, 40, 47]. Furthermore, RNA editing may also modulate RNA expression by regulating RNA decay. This is exemplified by the ADAR-1 interaction with the RNA binding protein HuR, which promotes HuR binding to the target transcript, increasing its stability [49].
\nSeveral RNA-based mechanisms evolved in eukaryotes to modulate gene expression or suppress invading material. In animals, the small non-coding RNAs (18–30 nucleotides) are subdivided into three major classes, namely microRNA (miRNA), small interfering RNA (siRNA) and PIWI-interacting RNA (piRNA). The main purpose of piRNAs are suggested to be silencing of transposable elements in germline cells [45], siRNAs and miRNAs seem to have evolved from an antiviral defense system into an ubiquitous gene expression modulation mechanism [46, 47]. Originally identified in
More than 60% of human protein-coding genes contain at least one conserved miRNA-binding site [57], encompassing every major cellular functional pathway. Therefore, miRNAs biogenesis needs to be under tight temporal and spatial control, and their deregulation is evidently associated with a wide range of human diseases, including cancer [58]. The first instance of the direct involvement of a miRNA in cancer was uncovered in 2002. A critical region at chromosome 13q14, frequently deleted in chronic lymphocytic leukemia (CLL), was shown to harbor miRNA genes miR-15a and miR-16-1. About 70% of CLL cases have null or reduced expression of these miRNAs, which normally control apoptosis by targeting BCL-2 [59, 60]. The following years revealed a remarkable number of additional examples, establishing the association of miRNAs and cancer to be the norm, rather than the exception. Currently, hundreds of human miRNAs are associated to the onset and progression of several malignancies, including lymphomas, colorectal carcinoma, breast cancer, lung cancer, thyroid cancer and hepatocellular carcinomas [61].
\nSeveral miRNAs may be differentially expressed in cancer patients, when compared to normal samples, acting either as oncogenes or tumor suppressors [62] (\nTable 1\n). Most often, miRNAs are detected as tumor suppressors, with reduced expression in tumors when compared to normal tissues [63, 64]. These miRNAs have commonly been shown to negatively regulate protein-coding oncogenes. Thus, HER2 and HER3, two oncogenes which are significantly correlated with decreased disease-specific survival in breast cancer patients [65], are suppressed by miR-125a or miR-125b [66]. Additionally, the let-7 family of miRNAs targets several genes associated with cell cycle and cell division, including the RAS oncogene [67]. Inhibition of epidermal growth factor receptor by miR-128b in non-small cell lung cancer (NSCLC) [68] and miR-7 in glioma [69] are additional pertinent examples of miRNAs acting as tumor suppressors. However, several miRNAs have also been found to be overexpressed in cancer, being classified as oncomiRs, often repressing known tumor suppressors. Thus, overexpression of miR-155 and miR-21 is sufficient to induce lymphomagenesis in mice [70, 71].
\nmiRNA | \nCancer phenotype | \nTarget mRNA | \nCancer association | \nReferences | \n
---|---|---|---|---|
miR-15a | \nTumor suppressor | \n\n | \nChronic lymphocytic leukemia | \n[59, 60] | \n
miR-16-1 | \nTumor suppressor | \n\n | \nChronic lymphocytic leukemia | \n[59, 60] | \n
miR-125a | \nTumor suppressor | \n\n | \nBreast cancer | \n[66] | \n
miR-125b | \nTumor suppressor | \n\n | \nBreast cancer | \n[66] | \n
let-7 | \nTumor suppressor | \n\n | \nLung tumor | \n[67] | \n
miR128-b | \nTumor suppressor | \n\n | \nNon-small lung cancer | \n[68] | \n
miR128-b | \nTumor suppressor | \n\n | \nAcute lymphoblastic leukemia | \n[77] | \n
miR-7 | \nTumor suppressor | \n\n | \nGlioma | \n[69] | \n
miR-155 | \nOncogenic | \n\n | \nLymphoma | \n[70, 71] | \n
miR-21 | \nOncogenic | \n\n | \nLymphoma | \n[70, 71] | \n
miR-127 | \nTumor suppressor | \n\n | \nProstate cancer | \n[75, 76] | \n
miR-372/373 | \nOncogenic | \n\n | \nTesticular germ cell tumor | \n[170] | \n
miR-17 | \nTumor suppressor | \n\n | \nLarge B-cell lymphoma | \n[72, 171] | \n
miR-34 | \nTumor suppressor | \n\n | \nOvarian cancer | \n[73] | \n
miR-210 | \nTumor suppressor | \n\n | \nMultiple myeloma | \n[172] | \n
miR-10b | \nTumor suppressor | \n\n | \nGastric cancer | \n[173] | \n
miR-126 | \nTumor suppressor | \nADAM9 | \nBreast cancer | \n[174] | \n
miR-335 | \nTumor suppressor | \n\n | \nBreast cancer | \n[175] | \n
List of miRNAs involved in cancer and their respective mRNA targets.
Mapping efforts have revealed that many miRNAs are located in fragile regions of the genome, which are deleted, amplified or translocated in cancer, directly altering miRNAs genes expression, hence leading to aberrant expression of downstream target mRNAs [59]. In addition to genomic alterations, miRNA expression is also modulated by tumor suppressor or oncogenic factors, which function as transcriptional activators or repressors to control pre-miRNA transcription. One of the first examples of this interaction is the transcriptional upregulation of the miR-17/92 cluster by the c-
The functional outcomes of miRNAs deregulation coincide with the hallmarks of malignant cells, namely: (1) self-sufficiency in growth signals (let-7 family), (2) insensitivity to anti-growth signals (miR-17-92 cluster), (3) apoptosis evasion (miR-34a), (4) limitless replicative potential (miR-372/373 cluster), (5) angiogenesis (miR-210) and (6) invasion and metastases (miR-10b). miRNAs have also been shown to regulate the generation of cancer stem cells (CSCs) [82, 83] and epithelial-mesenchymal transition (EMT), paramount for the metastatic process [84]. Thus, as breast cancer cells metastasize, expression of miR-126 and miR-335 is lost. Overexpressing these miRNAs in cancer cells decreases lung and bone metastasis in vivo [85].
\nThe high number of human miRNAs, regulating a wide range of cancer-related processes, renders these small non-coding RNAs an ideal profiling tool. miRNA expression profiles can distinguish not only between normal and cancerous tissue, but also help to discriminate different subtypes of a particular cancer, or even specific oncogenic abnormalities [86], increasing the accuracy of tumor classification. These expression profiles were able to classify tumors according to their tissue of origin with accuracy higher than 90%. miRNAs regulation of cancer progression also allows these molecules to serve as efficient predictors of prognosis, tumor metastasis and therapy selection. Specific miRNA signatures have recently been shown to correlate to metastatic breast and colon tumors, arising as potent biomarkers to predict metastatic outcome. miRNA profiles may also be applied to select for more personalized and efficient therapies and to adjust the therapeutic scheme during treatment to achieve a better outcome. Noteworthy, in ovarian cancer, miRNA signatures are able to predict chemo-resistant tumors, while a polymorphism (SNP34091), which creates a new binding site for miR-191, was suggested as a modulator of tumor chemosensitivity [75].
\nmiRNAs are highly stable molecules present in body fluids including plasma, blood, serum, urine, saliva and milk, being potential cancer biomarkers which may be found in different phases of the tumoral process [87, 88]. Although understanding of how miRNAs are selectively released from cells and how circulating miRNAs are related to disease remains largely unclear, circulating miRNAs may serve as novel diagnostic and prognostic biomarkers for human diseases, including cancer [89].
\nRecent studies based on the Encyclopedia of DNA elements (ENCODE) project indicate that more than 80% of the human genome contains functional DNA that includes protein coding genes, non-protein coding regulatory DNA elements and non-coding RNAs (ncRNAs) [90]. Non-coding RNAs is a class of genetic regulators, containing short (<200 nucleotides) and long (>200 nucleotides) transcripts with novel abilities to be used as biomarkers due to their role in disease development and their implications for genomic organization [91, 92]. Short ncRNAs include ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs) and small nucleolar RNAs (snoRNAs). Regulatory long non-coding RNAs (lncRNAs) have been found in a large variety of organisms, ranging from yeasts to mammals, including mice and humans [93]. lncRNAs have emerged as a fundamental molecular class whose members play critical roles in genome regulation and in tissue development and maintenance [92]. Based on their positions relative to the protein coding genes in the genome, lncRNAs can be classified into natural antisense transcripts (NATs), long intronic ncRNAs and long intergenic ncRNAs (lincRNAs) [93].
\nRecent transcriptional profiling of multiple human tissues, including both normal and tumor samples, has led to the assumption that misregulation of lncRNAs could disrupt these delicate processes and lead to tumorigenesis [94, 95, 96, 97]. These studies have validated the tissue-specific expression of lncRNAs in normal tissues, and have identified large sets of lncRNAs which are aberrantly expressed in either a specific cancer or multiple types of cancer, suggesting these RNAs act as master regulators of gene expression [98, 99]. Differential expression of lncRNAs is increasingly recognized as a hallmark feature in cancer [100]. lncRNAs are a novel class of mRNA-like transcripts, which contribute to cancer development and progression, accelerating cancer cells proliferation, apoptosis, invasion and metastasis [101] (\nTable 2\n).
\nLncRNA | \nCancer phenotype | \nMolecular mechanism | \nCancer association | \nReferences | \n
---|---|---|---|---|
\n | \nOncogenic, promotes metastasis and invasion | \nInteracts with PRC2 and LSD1 complex, promotes silencing of HOX genes in | \nOverexpressed in liver, breast, lung and pancreatic tumors | \n[109, 176, 177] | \n
\n | \nTumor suppressor, induces growth arrest and sensitizes cells to apoptosis | \nInhibits and binds glucocorticoid receptor (GR) from activating target genes | \nDownregulated in breast cancer | \n[178, 179] | \n
\n | \nOncogenic, promotes cell proliferation and tumor growth | \nUnknown | \nBreast cancer | \n[180] | \n
\n | \nOncogenic, promotes cell proliferation and metastasis | \nRelated to alternative splicing and active transcription, regulation of gene expression | \nOverexpressed in lung, breast, pancreatic, colon, prostate and hepatocellular carcinomas | \n[117, 181, 182] | \n
\n | \nTumor suppressor, inhibits cell proliferation and induces apoptosis | \nEnhancing p53’s transcriptional activity on its target genes. Controls expression of gene loci through recruitment of PRC2 | \nDownregulated in multiple tumor types | \n[183, 184] | \n
\n | \nTumor suppressor; Inhibits cell proliferation, migration, invasion and tumor growth | \nBinds and inhibits miRNAs from targeting and repressing | \nLocus lost in prostate cancer, colon cancer and melanoma | \n[185, 186, 187] | \n
\n | \nTumor suppressor and inhibits proliferation | \nUnknown | \nBreast cancer and dysregulated in many types of tumors | \n[128, 188] | \n
List of lncRNAs involved in cancer with their proposed functions.
General mechanisms of lncRNA function implicated in cancer progression are associated with a wide-repertoire of biological processes. Among the main biological pathways, lncRNAs may be involved in epigenetic silencing, splicing regulation, translational control, regulation of apoptosis and cell cycle control [102]. Like protein-coding genes, lncRNAs can function as oncogenes or tumor suppressors. Many lncRNAs shuttle between the nucleus and the cytoplasm, suggesting that they may have dual functions, while others are restricted to the nucleus [103]. In the nucleus, lncRNAs are often part of the nuclear architecture and, in some cases, are critical for maintenance of sub-nuclear structures [104].
\nlncRNAs bind to and target chromatin regulators allowing connection between RNA and chromatin, acting on the control of gene expression at the transcriptional level [105]. Moreover, several lncRNAs mechanistic themes have emerged, both at the transcriptional and post-transcriptional levels, such as decoys, scaffolds and guides [106]. Examples of the mechanisms of action of some lncRNAs on the control of gene expression and mammalian cells regulation are described below.
\n\n
lncRNAs can also participate in global cellular behavior by controlling cell growth. The growth-arrest-specific 5 (
\n
The lncRNA
The maternally expressed gene 3 (
The
The lncRNA
The highly specific lncRNA expression signatures render them as attractive markers for accurate disease diagnosis and patients prognosis. In addition, advancement of RNA-based therapeutics opens new avenues for lncRNAs as new targets for cancer therapy.
\nmRNA degradation is an important mechanism for post-transcriptional control of gene expression, controlling both the quality and the abundance of cellular mRNAs. Deadenylation of the mRNA is the default process, often representing a rate-limiting step in cytoplasmic mRNA decay, in which the poly(A) tail of the transcript is degraded through recruitment of deadenylase complexes [130, 131, 132]. In the literature, different deadenylases or poly(A)-specific ribonucleases have been described, namely PARN (poly(A)-specific ribonuclease), Pan2/Pan3 (poly(A) nuclease 2/3) complex and CCR4–NOT (carbon catabolite repression 4) complex [131, 133]. The PARN deadenylase is involved in destabilization of different transcripts related to cell cycle progression and cell proliferation [133, 134], as well as in degradation of oncogenic miRNAs, such as miR-21 [135]. In addition, its expression is altered in different tumors, such as gastric tumors [136] and acute leukemias [137].
\nDifferent proteins are able to interact with each other and promote the recruitment of deadenylases to the mRNA poly(A) tail. Members of BTG/Tob family, associated with anti-proliferative activities [138], are able to associate with both Caf1a and Caf1b (enzymatic subunits of the CCR4-NOT complex) [139], and, also, with PABPC1 (cytoplasmic poly(A)-binding protein) [139, 140], promoting mRNA poly(A) tail removal and cytoplasmic mRNA decay. Expression of the BTG/Tob proteins is classically associated with inhibition of cell cycle progression [138]. The Tob/Caf1 complex is also involved in the negative regulation of c-
AU-rich elements (ARE) are critical
In addition, deadenylase complexes could be recruited to the mRNA poly(A) tail through the action of miRNAs. GW182 proteins, which participate of the miRNA-induced silencing complex (miRISC), directly interact with PAN3 and NOT1 subunits, leading to recruitment of the PAN2-PAN3 and CCR4-CAF1-NOT deadenylase complexes to the 3′-UTR of target mRNAs [159]. Also, it has been described that PARN deadenylase binds to the 3′ UTR of p53 mRNA through recruitment mediated by miR-125b-loaded miRISC, promoting p53 mRNA decay [134]. Interestingly, this effect can be reverted by HuR proteins, which bind to the p53 AREs and increase p53 mRNA stability [134].
\nThe deadenylation machinery is also an important target for antitumor agents and anticancer therapy. Cantharidin (an inhibitor of protein phosphatase 2A) inhibits the invasive ability of pancreatic cancer cells, with concomitant deadenylation-dependent degradation of MMP2 mRNA [20]. Resveratrol (3,5,4′-trihydroxystilbene), a naturally occurring compound, induces TPP expression in U87MG human glioma cells and leads to the decay of urokinase plasminogen activator (uPA) and urokinase plasminogen activator receptor (uPAR) mRNAs, promoting suppression of cell growth and inducing apoptosis [160].
\nAdditionally, several mature mRNAs surveillance mechanisms guarantee quality and fidelity to encode a functional protein in a translation-dependent manner. The nonsense-mediated decay (NMD) pathway is the best understood surveillance mechanism; detecting and degrading transcripts which contain premature termination codons (PTCs), avoiding the expression of semi-functional and truncated proteins [161]. The UPF-1 (up-frameshift1) protein, a key component of the NMD mechanism, interacts with both Dcp2 and PARP, linking NMD with the decapping and deadenylation processes [162]. Low expression levels of UPF-1 protein as well as inactivation of UPF-1 function were described in several types of human cancer, suggesting that NMD downregulation is related to tumorigenesis. Decreased levels of UPF-1 were detected in lung adenocarcinoma in comparison to normal tissues, and its downregulation was correlated to poor prognosis and higher histological grade [163]. The pancreatic adenosquamous carcinoma (ASC) is an aggressive tumor which is associated with high metastatic potential and poor prognosis. In these tumors, a mutation that promotes
NMD can also be inhibited by a wide variety of cellular stresses, some of which are associated to the tumoral context [165]. In response to stress events, phosphorylation of the alpha-subunit of the eukaryotic initiation factor 2 (eIF2α) is able to inhibit NMD. It has been described that phospho-eIF2α is necessary for oncogene c-
Several promising NMD targets mRNAs for cancer therapy have been proposed. The MDM4 protein, which is undetectable in normal tissues, is frequently upregulated in cancer cells, acting by inhibiting the p53 tumor-suppressor function [168]. The abundance of the MDM4 protein is controlled, at least in part, by alternative splicing mechanisms and the NMD pathway. In most normal adult tissues, the lack of exon 6 in the Mdm4-spliced variant leads to the production of an unstable transcript (Mdm4-S), which contains a PTC and is targeted to NMD [168]. On the other hand, the oncogenic splicing-factor SRSF3 supports exon 6 inclusion in the Mdm4 mRNA transcript (full-length Mdm4 variant), which is not efficiently degraded by NMD. Therapeutic strategies which lead to antisense oligonucleotide-mediated (ASO-mediated) Mdm4 exon 6 skipping efficiently decreases MDM4 abundance and inhibits tumor cell growth in melanoma and diffuse large B cell lymphoma models, as well as increases sensitivity to MAPK-targeting therapies [169].
\nDifferent post-transcriptional mechanisms have been associated with gene expression control, leading to complex transcriptional signatures in cancer. The mechanisms presented in this chapter constitute fine regulators of gene expression which influence multiple and highly relevant pathways in cancer development (summarized in \nFigure 1\n). Several splicing variants, miRNAs and lncRNAs, have been shown to act as possible oncoRNAs or as tumor suppressors. The functional roles of these RNAs are only beginning to be elucidated providing an uncharted resource for the development of diagnostic methods and novel cancer therapies.
\nSchematic representation and key roles of different RNA species in the control of gene expression in mammalian cells. This scheme represents a genomic locus and the main molecular mechanisms associated with the control of gene expression pattern. Proximal control elements are located close to the promoter, while distal elements (called enhancers) may be far away from a gene or even located in an intron. Alternative splicing (AS) generates transcriptome diversity. During AS,
ADAR | Adenosine deaminases acting on RNA |
AGO | Argonaut |
Akt/PKB | Protein kinase B |
Apaf-1 | Apoptotic protease activating factor 1 |
APOBEC | Apolipoprotein B Mrna editing enzyme, catalytic polypeptide-like |
ARE | AU-rich elements |
AS | Alternative splicing |
ASC | Pancreatic adenosquamous carcinoma |
ASO | Antisense oligonucleotide |
AZIN1 | Antizyme inhibitor 1 |
BCL | B cell lymphoma gene family |
BrdU | Bromodeoxyuridine (5-bromo-2′-deoxyuridine) |
BTG | BTG anti-proliferation factor |
Caf1 | Chromatin assembly factor-1 complex |
Casp | Caspase |
CCR4 | C-C motif chemokine receptor 4 |
CCR4–NOT | Carbon catabolite repression 4 complex |
CD44 | CD44 molecule (Indian blood group) |
CD6 | Cluster of differentiation 6 |
CDC34 | Cell division cycle 34 |
CDS | Coding DNA sequence |
c-fos | Proto-oncogene c-Fos |
cIAP2 | Cellular inhibitor of apoptosis 2 |
CLL | Chronic lymphocytic leukemia |
c-Myc | Myc proto-oncogene |
CNOT1 | CCR4-NOT transcription complex subunit 1 |
CoREST | REST corepressor 1 |
CSCs | Cancer stem cells |
DBD | DNA-binding domain |
Dcp1 | Decapping protein 1 |
DDX | DEAD-box helixases |
DICER | Dicer 1, ribonuclease III |
DROSHA | Drosha ribonuclease III |
E2F1 | E2F transcription factor 1 |
eIF2α | Eukaryotic initiation factor 2 |
EMT | Epithelial-mesenchymal transition |
ENCODE | Encyclopedia of DNA elements |
ER | Estrogen receptor |
ER+\n | Estrogen receptor-alpha-positive |
ERBB2/HER | Human epidermal growth factor receptor 2 |
EXP5 | Exportin 5 |
GAS5 | Growth-arrest-specific 5 |
GR | Glucocorticoid receptor |
GRE | Glucocorticoid response elements |
H19 | H19, imprinted maternally expressed transcript |
H3K4 | Histone H3 lysine 4 |
hnRNP | Heterologous nuclear ribonuclear particle |
HOTAIR | Hox transcript antisense intergenic RNA |
HOXC | Homeobox C cluster |
HuR | Human antigen R |
IGF2 | Insulin-like growth factor 2 |
lincRNAs | Long intergenic ncRNAs |
lncRNAs | long non-coding RNAs |
LSD1 | Lysine-specific histone demethylase 1 |
MALAT1 | Metastasis associated in lung adenocarcinoma transcript |
MAPK | mitogen-activated kinase-like protein |
MDM4 | MDM4, p53 regulator |
MEG3 | Maternally expressed gene 3 |
miRISC | miRNA-induced silencing complex |
miRNA/miR | microRNA |
MMP2 | Matrix metalloproteinase 2 |
NATs | Natural antisense transcripts |
ncRNAs | Non-coding RNAs |
NMD | Nonsense-mediated decay |
NSCLC | Non-small cell lung cancer |
ODC | Ornithine decarboxylase |
p53 | Tumor protein p53 |
PABPC1 | Cytoplasmic poly(A)-binding protein |
PABPC1 | Poly(A) binding protein cytoplasmic 1 |
Pan2/Pan3 | Poly(A) nuclease 2/3 complex |
PARN | Poly(A)-specific ribonuclease |
piRNA | PIWI-interacting RNA |
Pol II | RNA polymerase II |
PPB | Pleuropulmonary blastoma |
PR | Progesterone receptor |
PRC2 | Polycomb repressive complex 2 |
Pri-miRNA | miRNA primary transcript |
PTCs | Premature termination codons |
PTEN | Phosphatase and tensin homolog |
PTENP1 | Phosphatase and tensin homolog pseudogene 1 |
Ras | HRas proto-oncogene, GTPase |
REST | RE1-silencing transcription factor |
RISC | RNA-induced silencing complex |
rRNAs | Ribosomal RNAs |
siRNA | Small interfering RNA |
SLC7A11 | Solute carrier family 7 member 11 |
Slug | Snail family transcriptional repressor 2 |
Snail1 | Snail family transcriptional repressor 1 |
snoRNAs | Small nucleolar RNAs |
SNPs | Single-nucleotide polymorphisms |
snRNAs | Small nuclear RNAs |
snRNP | Small nuclear ribonucleoprotein particles |
SRP | Serine-rich protein |
SRSF1 | Serine and arginine-rich splicing factor 1 |
TGF-β | Transforming growth factor beta 1 |
Tob | Transducer of ERBB2 |
tRNAs | Transfer RNAs |
TTP | Tristetraprolin |
Twist1 | Twist family BHLH transcription factor 1 |
uPA | Urokinase plasminogen activator |
uPAR | Urokinase plasminogen activator receptor |
UPF-1 | Up-frameshift1 protein |
UTR | Untranslated region |
VEGF | Vascular endothelial growth factor |
XPO5 | Exportin 5 |
Xrn1 | 5′–3′ exoribonuclease 1 |
Zeb1 | Zinc finger E-box binding homeobox 1 |
Zfas1 | Znfx1 sntisense 1 |
Znfx1 | Zinc finger NFX1-type containing 1 |
Amongst the non-communicable diseases, cancer remains to be the major cause of morbidity and mortality globally. As per the GLOBOCAN index 2020, 19.3 million new cancer cases have been reported with around 10.0 million cancer deaths in 2020. Amongst the top 10 cancers, Lung cancer is considered leading cause of mortality with 18.0% of the total cancer deaths, followed by colorectal cancer with the death rate 9.4%, liver with the mortality rate of 8.3%, stomach with 7.7%, and female breast cancer with the death rate of 6.9% (Figure 1) [1]. Cancer, by definition is considered as a condition characterized with uncontrolled division of particular cell type in a definite site anywhere in the body as an aftermath of various triggering factors technically termed as Carcinogens, which have the ability to convert proto - oncogenes to Oncogenes causing cancer. Cancer cells can divert metabolites into anabolic pathways to support their rapid proliferation and to accumulate the cellular building blocks required for tumor growth and differ morphologically from other normal cells. It is reported that only around 5 – 10% total cancer is caused due to genetic defects such as
Global incidence rate and death rate.
WHO has broadly classified these carcinogens into physical (UV and other ionizing radiations), Chemical (alcohol, tobacco smoke, aflatoxins and various laboratory chemicals), Biological (Viruses such as Human Papilloma virus, hepatitis B virus, HIV etc., bacteria such as
Histologically, WHO has broadly classified cancers into following main categories viz.… Carcinoma (Cancer of epithelial tissue), Sarcoma (cancer of connective tissue), Myeloma (cancer of plasma cells of bone marrow), Lymphoma (cancer of lymphatic system), Leukemia (liquid cancer or cancer of blood), melanoma (cancer of pigment cells) and mixed types. Carcinoma accounts for around 180 – 90% of all cancer cases and are further sub divided into two categories such as Adenocarcinoma and squamous cell carcinoma [8, 9].
TNM (Tumor node metastasis) classification system, created in 1958 by the American Joint Committee on Cancer (AJCC) and the Union for International Cancer control (UICC) is yet another widely used system that classifies malignant tumor based on tumor spreading. It usually scores the size of the primary tumor (T), degree of spreading to the lymph node (N) and the presence of distant metastasis (M). Based on different combinations of T, N and M, cancer has been categorized into different stages 0 – IV for the aid of clinicians to establish the anatomic extent of infection. The stage 0 represents carcinoma in situ with the combination Tis, N0, M0 and are considered noncancerous but with the possibility of becoming one. Whereas, Stage I represents localized cancer with the TNM combination of T1-T2, N0, M0. Stage II is referred to locally advanced cancer with early stages and combination of T2-T4, N0, M0. While Stage III is characterized with locally advanced cancer, late stages with the combination T1-T4, N1-N3, M0, here the cancer would have been progressed with respect to the size of the tumor as well as it would have been spread to the adjacent lymph nodes. The stage IV is considered as the most severe stage, which is metastatic cancer with the combination, T1-T4, N1-N3, M1 [7, 10, 11, 12]. It is reported by that the above staging system is associated with severity of the disease and the survival rate of the patients, which is indirectly proportional i. e., higher the cancer stage so will be the severity of the disease and lesser will be the survival rate. For instance, 5-year survival rate of colorectal carcinoma at stage I is around 74% whereas, at stage IV it is only of 5% [10].
The signs and symptoms of cancer includes loss of appetite, extreme fatigue, pain in certain areas, persistent coughing, sudden loss of weight, blood in sputum, urine or stool, lumps on neck, breast, testicle etc. that does not hurt, changes in skin coloration, texture in certain areas etc. These fore said symptoms may not all ways point towards cancer, it could be due to any other pathological conditions too, but are the ones that should not be ignored [13, 14]. Currently there are several diagnostic tools in use for the detection of cancer such as laboratory testing of blood and urine for unusual blood count and for the detection of cancer biomarkers such as CA 125, CA 19-9, CA-15-3, CD117, CD19, CD 20, HE4, alpha-fetoproteins (AFP), bladder tumor antigen (BTA) etc. [15, 16]. Noninvasive Imagining tests includes CT scan, X-ray, mammography, ultrasound, Positron emission tomography (PET) etc. and more invasive method of biopsy which is considered as the golden standard for cancer diagnosis. However these diagnostics tools are not devoid of their own cons as most of them only detect cancer in its later stages leading to poor treatment efficiency [17].
The available treatment options for cancer includes surgical removal of solid tumor, Chemotherapy, Radiation therapy, Gene therapy, hormone therapy, immuno therapy, bone marrow transplantation, targeted drug therapy etc. Based on the severity, resistance of the cancer cells towards any of the above mentioned therapeutic options and in order to avoid cancer relapse, a combination of the fore said therapies will be used as an adjuvant therapy. For instance surgical removal in combination with chemotherapy and radiation therapy are practiced in order to avoid recurrence rate of the cancer [18].
Exosomes, the nanosized extracellular vesicles ranging 30 - 150 nm, are known to be secreted by all most all types of cells into the extracellular space and are present in all body fluids viz.… blood, tears, saliva, sputum, pleural fluid/effusions, cerebrospinal fluid (CSF), breast milk, amniotic fluid, semen, urine etc. [19, 20]. First discovered in the year 1983 by Stahl and Johnstone independently in reticulocytes, these extracellular vesicles were later termed as “Exosomes” by Rose Johnstone in the year 1987 [21, 22, 23]. The exosomes are reported to be encompass bimolecular components such as proteins, lipid, DNA, RNA (both coding as well as non-coding), metabolites and various enzymes etc. recapitulating the parent cell. Morphologically, exosomes are cup shaped extracellular vesicles where the central lumen composing the cargo of variety of fore mentioned biomolecules will be surrounded by the lipid bilayer structure. Accounting for the presence of these cargo, these nano scaled endocytic vesicles has engrossed plethora of attention amongst the scientific community around the globe, for its remarkable role as an efficient diagnostic tool [24, 25, 26].
The exosomes are known to be produced more in cancer cells than that of normal cells. The tumor derived exosomes are mainly involved in the cell–cell communication between cancer cells with both adjacent as well as distant cells as they gets secreted to the extracellular space and travel to a longer distant organ and tissue via blood stream facilitating cancer proliferation, Metastasis, drug resistance and immunomodulation. Apart from being involved in the dynamic crosstalk between the cells exosomes also proves to be an ideal drug delivery system with benefits such as specificity, safety and stability, since they are small and native to animals, they are able to avoid recognition and premature degradation by body’s immune defense mechanism. In recent years, exosomes are emerging as a promising biomarker tool as they carry specific genetic information and influence tumor growth and progression [27, 28].
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas (CRISPR associated endonuclease), a remarkable genome editing tool, has garnered plethora of interest of researchers in the field of modern gene therapy. Ever since the discovery of CRISPR locus in
The CRISPR/Cas system is thought to be evolved from the prokaryotes such as bacteria and archaea as part of their adaptive immune system for combating viral infections. Precisely, they use a fragment of previously invaded viral genome called “spacer” as a source to memorize and defend any future attack by destroying the DNA from the similar viral particle, in association of Cas protein, which is an endonuclease enzyme, a molecular scissor to cut the double stranded DNA at a specific location on the target genome. It is reported that the CRISPR/Cas array is made of AT rich leader sequence, which is fenced by a set of Cas genes encoding the Cas proteins. The CRISPR/Cas is known to act through inducing site-specific DNA double stranded breaks and are known to surpass the other genome editing tools such as meganucleases, zinc finger nucleases (ZFNs), transcription activator like effectors (TALENs) etc., in being more precise, faster, efficient and inexpensive.
To brief out the conventional mechanism through which CRISPR/Cas executes their genome editing the following mechanism of gene editing pertaining to involvement of CRISPR/Cas9 has been described as follows, the CRISPR/Cas9 system is said to be RNA guided DNA targeting endonuclease system, which works through sequence specific manner. The mechanism of CRISPR/Cas9 based genome editing has been divided into three main stages viz.… I) DNA acquisition from the invading phage particle (adaptation). II) Biogenesis of CrRNA or CRISPR/Cas assembly formation and III) target DNA annihilation or interference of the target DNA and Insertion of desired gene sequence (i. e., either knock out or knock in). briefly, a small fragment or scrap of foreign invading genome termed spacer gets incorporated genomic CRISPR array and gets transcribed during the process of adaptation or in the 1st stage leading to the synthesis of crRNA, which in turn gets bound to Cas endonucleases enabling specificity towards the target.
The advantage of CRISPR/Cas system over the other gene editing platforms are, it has the property of multiplicity, simple, easy to prepare and use, as only 20 nucleotides in the guide RNA needs to be changed in order to retarget the Cas in CRISPR/Cas which in case of ZFNs and TALENs goes beyond 500-1500 base pairs. The CRISPR/Cas system can use multiple guide RNAs for targeting multiple target sites simultaneously in the same cell at the same time. This justifies the property of multiplicity of CRISPR/Cas system [29, 30, 31, 32, 33, 34, 35].
Based on the type Cas protein involved and the complexity of components the CRISPR/Cas system is divided into two classes viz.… Class I and Class II and are further classified into six types which are in turn categorized into 22 sub types. The class 1 classification that comprises of type I, III and IV are characterized to be containing the involvement of multiple Cas proteins are whereas, class II classification are reported to comprise types II, V and VI where, only one effector Cas protein will be associated alongside the CRISPR array of processed guide RNA or in other words crRNA. Accounting for their nature of simplicity, the types involved under Class II Classification of CRISPR/Cas are reported to be the easiest in using for effective genome edited and manipulation of nucleic acids devoid of cells. Apart from being involved in gene editing the types of CRISPR/Cas systems derived from Class2 classification i. e., type II, V and VI are said to be instrumental in developing competent diagnostic platform of disease detection [36]. Brief representation of the fore said classification along with their application pertaining to class II CRISPR/Cas is as follows, Figure 2.
Classification of CRISPR/Cas system with their emphasized application.
As mentioned prior in the introduction, exosomes are the nanosized form of extracellular vesicle of 30-150 nm size synthesized through a endosomal pathway via involvement of early, late endosomes and multi vesicular bodies (MVB) and are known to encompass several proteins lipids, nucleic acids etc. as their cargo. The exosomes are said to be involved in several biological processes such as, these are involved in cell–cell communication by the virtue of its cargo of fore mentioned compounds in the introduction both in physiological as well as pathological conditions. In pathological conditions including cancer, the cancer cell derived exosomes are reported to be synthesized or secreted in larger quantity than that from the normal cells, these cancer cell derived exosomes are considered key players in tumor growth and metastasis and are thought to be involved in stimulation of immune response. Apart from these, the exosomes are also suggested to be the part of dynamic cross talk between cancer cells and surrounding normal cells such as fibroblasts, endothelial cells, mesenchymal cells etc., and are considered to play an important role mediating resistance towards therapy [26, 27].
The biomarkers are any biochemical component of the body, whose presence can be used as an indication of certain pathological condition. A cancer biomarker are known to represent any molecule or a process that shows the existence of tumor or cancer in the body. Cancer exosomes are one such components, which in recent years have gained tremendous importance as a liquid biopsy tool as these exosomes are exact representation of their parent cell in terms of their cargo and reflects the altered state of the parent cell. The cancer exosomes are known to contribute to cancer progression via enhancement of intercellular transfer of their cargo within the tumor microenvironment. These minimally invasive biomarkers are more convenient over the conventional tissue biopsy involving surgery in being highly sensitive and specificity and are involved in early detection of cancer as these exosomes are required for the metastatic niche formation that can be accomplished by their release to the circulatory system from where they can be detected [26, 37, 38].
Isolation and characterization of exosomes are consider a very crucial step in diagnostics and biomarker development. Several techniques have been employed for an efficient isolation of these exosomes which includes classical ultracentrifugation (differential ultracentrifugation), precipitation based isolation (exosome isolation kits), using size exclusion chromatography, filtration based isolation, using immunomagnetic isolation method etc. Followed by their isolation these exosomes can be characterized for their number, size and zeta potential value by using instruments such as nano trafficking analysis (NTA), Dynamic light scattering (DLS), and for the morphological feature using SEM, TEM etc. [38, 39, 40, 41, 42].
The subsequent proteomic analysis of the isolated exosomes from the cancer cells have reported to shed light in identification of potent exosomal biomarker in several cancer types such as breast, lung, liver, prostate, ovarian, colorectal cancer, glioblastoma etc., the specific exosomal proteins includes surface proteins, Rab family GTPases, annexins, flotullin, exosome biogenesis proteins such as, Alix, Tsg101 and ESCRT complex. Several other exosomal protein includes, Tetraspanins (CD63, CD9, CD81, CD53etc.), Hsp90, Hsp70, EpCam etc. can serve as an efficient exosomal markers. A study by Rupp et al. Has reported the exosomal CD24 could serve as an efficient circulating biomarker for the detection of breast cancer. Several other exosomal protein biomarkers reported in breast cancer diagnosis are EDIL3 and fibronectin, for early breast cancer detection using ELISA, which can also serve as treatment response marker as the level of these two tremendously decreased after surgery. Likewise the expression of Survivin, a apoptosis inhibitor was found to be higher in prostate cancer exosomes compared to the normal. The urinary exosomes also do possess significant amount of biomarker such as PCA3, TMPRSS2: ERG in prostate cancer [38, 43, 44, 45, 46].
Several recent studies have reported the development of numerous exosome-based diagnostic platform viz.… Exochip, which is a microfluidic device developed by Kanwar and team based on the exosomal tetraspanin protein CD63 where, the exosomes gets bound with CD63 antibody and a fluorescent reporter using which, the exosomes can be quantified. Another type of analytical technique used in exosome diagnostics is ExoScreen, the technique developed by Yoshioka et al., that utilizes CD9 and CD147 antibodies alongside photosensitizing beads. Apart from the above two, yet another exosome diagnosing tool was developed by Zhao and team called Exosearch chip which is a comparatively simpler technique which enables the quantitative isolation of exosomes by the virtue of immunomagnetic beads. The Exosearch technique was successfully used for the quantification of ovarian cancer exosomes using the exosomal markers CA-125, EpCam and CD24 [38, 47, 48, 49].
Apart from exosomal proteins, the use of techniques such as RNA-sequencing and DNA sequencing for the analysis of genomic data of cancer-derived exosomes have shed light on yet another exosomal component as an efficient biomarker use i. e., nucleic acid especially the ncRNAs including miRNAs and lncRNA. The exosomal miRNA are considered a most appropriate exosomal biomarker as they are quite stable against Rnase dependent degradation. Till date numerous exosomal miRNAs have been characterized as a potent tumor marker in several cancer conditions to name a few are, miR-21, miR-141, miR-220a, miR-200b, miR-203, miR-205, miR-214 in case of ovarian cancer as reported by Taylor et al. Other examples for exosomal miRNA biomarkers includes miR-31, miR-196a, miR-1246, miR-191, miR-451a, miR-483-3p, miR-16a etc. in case of pancreatic cancer have also been reported by several studies. Other ncRNAs accounting for exosomal long noncoding RNA, circular RNA have also been reported pertaining to the development of exosomal biomarkers for early cancer detection [38, 50, 51, 52].
Along with its extensive use in the field of genome editing, CRISPR/Cas system has expanded its wings towards diagnostics where it is mainly involved in detection of specific nucleic acid such as genomic DNA, non-genomic DNA, RNA, and pathogenic microbe genomes. This could have been accomplished due to their natural ability of efficient nucleic acid recognition and editing, have been demonstrated to be extraordinary tools for specific nucleic acid detection. The CRISPR diagnostics are reported to have influence the targeting efficiency of the CRISPR guide RNA either in the presence or absence of nucleic acid cleaving potential of the Cas nucleases. The basic principle of CRISPR based diagnostics is, here the CRISPR/Cas components are modified in such a way that, they will emit the color or fluorescence with response to their binding with the target nucleic acid sequence in certain pathological conditions. Based on the involvement of specific effector protein, several CRISPR based diagnostic tools kits have been developed which are mainly belonging to class II of CRISPR/Cas classification viz.… dCas9, SHERLOCK, SHERLOCK v2, DETECTR, HOLMES for an efficient detection of pathological conditions. A brief characterization, mode of action, application and advancement of these CRISPR tool kits in general and with respect to cancer will be discussed in this section.
Being the first effector protein to be characterized, Cas9 not only plays a vital role in genome editing, rather with minor modifications such as in dCas9, which is a nuclease-deactivated Cas9 (also termed as dead Cas9), it is also reported to be involved in nucleic acid detection as a simple and programmed detection tool. The dCas9 system is designed with modification in the basic activity of the conventional Cas9 protein in terms of deactivating the nucleic acid cleavage potential and only retaining the specific binding ability to target dsDNA. This was accomplished by inducing two point mutations H840A and D10A in the HNH and RuvC nuclease domain of the conventional Cas9 effector protein [36, 53].
Alongside classy Cas9, three more novel class 2 effector Cas proteins Cas12a (prior referred as Cpf1), Cas13a (prior referred as C2c2)and Cas14a have been showed to have more potent diagnostic properties and have become the latest interest of the scientific community. Unlike the Cas9 nuclease, the latter mentioned effector proteins have the property of “Collateral cleavage”, the property in which they can induce cleavage of the nearby sequence, which is not complementary to the designed crRNA upon detection and binding to the target nucleic acid sequence. Precisely, the when crRNA along with its effector protein either Cas12a or Cas13a recognize and bind to their target nucleic acid sequence either DNA or RNA followed by their cleavage the activated effector protein also cleaves the nearby non targeted RNAs which does not emit the fluorescence until it is cleaved. With this, they offer a simple, fast, portable and reliable quantitative detection in diagnostics. It is this property of Cas12a and Cas13a, which has enabled effective tracing and detection of specific nucleic acid sequence, where the fluorescent ssDNA/ssRNA reporters are cleaved as a result of collateral cleavage.
Cas12a, which is previously referred to as Cpf1, are the variant of Cas effector protein which are RNA-guided, DNA-targeting enzyme, involved in type V of CRISPR/Cas classification. Unlike Cas9, these are reported to act or detect, bind and cleaves ssDNA. In contrast to this, Cas13a, which is previously referred to as C2c2 are RNA-guided targeting enzymes involved in type VI of CRISPR/Cas system and are specific for ssRNA. Based on the promiscuous Rnase ability of collateral cleavage of Cas12a as well as Cas13a several molecular diagnostic platforms have been developed in the recent years details of which will be discussed further [53, 54, 55, 56, 57].
As said before the collateral cleavage ability of Cas13a nuclease, lead to the development of a versatile
FEATURES | dCas9 | SHERLOCK | DETECTR |
---|---|---|---|
cancer therapy by modifying DNA of target genes, stimulate tumor suppressor genes, knockdown oncogenes and tumor resistance pathways for targeted therapy | efficient, robust method to detect RNA and DNA, quick detection of infectious disease and involved in sensitive genotyping | genome editing tool based on its ability to stimulate genetic alteration in cells at sites of double-stranded DNA cut | |
Breast cancer, prostate cancer | Breast cancer | Cervical cancer | |
AKT | EGFR L858R and BRAF V600E | HPV16, HPV18 | |
[60] | [57, 61, 62] | [53, 59, 63] |
Different CRISPR tools used for diagnosis of cancer malignancy.
The two most important diagnostic markers Exosomes as well as CRISPR/Cas system and their features and advantages have been discussed thoroughly in the above sections. As mentioned before there are several exosome based diagnostic tools (ExoChip, ExoScreen, Exosearch) as well as CRISPR/Cas based diagnostic platforms (SHERLOCK, SHERLOCKv2, DETECTR and HOLMES) for the efficient diagnosis of the pathological conditions. Even though both of the fore said diagnostic platforms offers a greater advantage towards cancer diagnostics, these are not devoid of the cons pertaining to the exosomal detection, these are said to be in requirement of sophisticated sensing methodologies involving expensive equipments, and kits. On the other hand the CRISPR/Cas system, are in requirement of a efficient delivery in order to minimize the degradation by the systemic enzymes. With this insight, we hereby, suggest the use of a combinational technique made of both Exosomes and CRISPR where one can circumvent the drawback of other and becoming a full-fledged diagnostic platform.
In order to achieving efficient delivery of CRISPR/Cas system towards its target is an important step in the process of diagnostics and hence developing novel delivery system with higher efficiency and low immunogenicity and cytotoxicity is essential for the diagnostic applications. Off target effect of CRISPR system might lead to false acquisition of data for getting rid of which, the system has to be properly directed towards the target cell to achieve accuracy and efficiency. Different types of delivery system are available in present days this includes Adeno-associated viruses, Adenoviral vector, Lentiviral vector, Microinjection, electrophoresis, Lipid nanoparticle, cell penetrating peptides mediated and Gold nano particle mediated approaches [64]. Exosome, are reported to act as a promising carrier for CRISPR delivery, have an advantage over the other delivery system due to their natural biocompatible characteristics, high stability, low immunogenicity, and long circulation. Some exosomes can even have a high capacity to escape from degradation or clearance by the immune system [64, 65].
Recent advancement on this combinational approach has been reported by Yi He et al., and team where they have constructed a combinational tool called Aptamer-RPA-TMA-Cas13a Assay (ARTCA), a CRISPR/Cas13 based platform with modification for a significant detection of exosomal PD-L1 i. e., programmed cell death receptor, a promising biomarker for cancer immunotherapy monitoring, directly from the serum. This was accomplished by using an PD-L1 specific DNA aptamer which is further amplified by the aid of recombinase polymerase amplification (RPA) which is intern coupled with TMA (transcription-mediated amplification). By the aid of this tremendous diagnostic tool the expression level of PD-L1 in circulating tumor exosomes was constructed as reliable biomarker detection system. The same team have also reported the use of Cas12a for the construction of yet another CRISPR/Cas strategy, termed the apta-HCR-CRISPR assay, in order to detect nucleolin+ ve and PD-L1 + ve tumor derived exosomes [66, 67, 68]. With this we hereby, summarize the use of Exosome/CRISPR/Cas combo, where the exosomes can be effectively used for the delivery of CRISPR targeting the detection of specific nucleic acid or the array where the CRISPR/Cas system can be efficiently be targeted for the detection of exosomal biomarkers enlisted in the prior sections for early detection of cancer. The precise mechanism of Exosome/CRISPR/Cas system has been depicted in Figure 3 where, the fore said combination can be used for both
Schematic representation of mechanism of action of exosome/CRISPR/Cas system for efficient cancer diagnosis. A) Exosome mediated delivery of CRISPR/Cas for effective detection of cancer. B) CRISPR/Cas based detection of exosomal biomarkers for early cancer diagnosis.
It is generally stated, “The sooner, the better” which is more appropriate when it comes to diagnostics. If any pathological condition is detected in its earlier phases, the options for the effective treatment of that particular disease will be a lot more efficient than that of in the later phases. As mentioned in the fore said introduction, there are several diagnostic techniques available for the detection of cancer. Though these techniques offer a greater aid in the diagnosis of several pathological conditions including cancer, these are not devoid of the disadvantages in being pricey, time consuming and they do pose the threat to cause infections leading to worsening of the condition. For instance, in case of biopsies, even though it is considered the golden standard in the cancer diagnosis, they do have the threat in causing infections as, it is an invasive method. The threat of repetitive exposure to the radiations such as x-rays might also effect otherwise along with being useful in diagnosis of solid tumors.
As mentioned before the greatest drawback of the conventional diagnostic tools when it comes to cancer is, most of these techniques can only detect the disease in its later stages. Such as, in case of laboratory techniques, which uses of blood and urine for the presence of conventional biomarkers enlisted above, can be detected in the later stages when cancer has already become metastatic as these biomarker enters the blood stream in the later stages. This is where the role of exosomes comes into play as an efficient biomarker for early cancer detection as, there are several reports stating that the exosomes from the cancer cells are secreted more compared to the exosomes secreted from the normal cells, in order to aid in further spreading of the disease to the distant sites of the body. Moreover, these exosomes have unleashed the site for lesser - noninvasive method of diagnosis as it is present in all the body fluids enlisted in the introduction section.
Several research reports supports the use of CRISPR/Cas system for its substantial role in diagnosis. In recent years both exosomes as well as CRISPR/Cas per se has proven to be an excellent diagnostic aid. The CRISPR based diagnostics have unmatched advantages over the conventional diagnostic tools, and aided the researchers with its precision targeting efficiency, high specificity and single base specificity enabling early screening and detection of cancer susceptible genes and sensitivity towards the target nucleic acid and with its low time consuming and monetary costs. Here in this book chapter, we have summarized the possible combinatorial effect of these two tools, which might offer an additional competence. Detection of cancer in its early stages might be handy in improving the efficiency of its treatment and might reduce the possibility of cancer relapse as the recurrence rate is reported to be comparatively more in the later stages of cancer making it incurable.
IntechOpen publishes different types of publications
",metaTitle:"Types of publications",metaDescription:"IntechOpen publishes different types of publications",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"IntechOpen Edited Volumes are integrated collections of chapters about particular topics that present new areas of research or novel syntheses of existing research and, as such, represent perspectives from various authors.
\\n\\nEdited Volumes can be comprised of different types of chapters:
\\n\\nRESEARCH CHAPTER – A research chapter reports the results of original research thus contributing to the body of knowledge in a particular area of study.
\\n\\nREVIEW CHAPTER – A review chapter analyzes or examines research previously published by other scientists, rather than reporting new findings thus summarizing the current state of understanding on a topic.
\\n\\nCASE STUDY – A case study involves an in-depth, and detailed examination of a particular topic.
\\n\\nPERSPECTIVE CHAPTER – A perspective chapter offers a new point of view on existing problems, fundamental concepts, or common opinions on a specific topic. Perspective chapters can propose or support new hypotheses, or discuss the significance of newly achieved innovations. Perspective chapters can focus on current advances and future directions on a topic and include both original data and personal opinion.
\\n\\nINTRODUCTORY CHAPTER – An introductory chapter states the purpose and goals of the book. The introductory chapter is written by the Academic Editor.
\\n\\nMonographs is a self-contained work on a particular subject, or an aspect of it, written by one or more authors. Monographs usually have between 130 and 500 pages.
\\n\\nTYPES OF MONOGRAPHS:
\\n\\nSingle or multiple author manuscript
\\n\\nCompacts provide a mid-length publishing format that bridges the gap between journal articles, book chapters, and monographs, and cover content across all scientific disciplines.
\\n\\nCompacts are the preferred publishing option for brief research reports on new topics, in-depth case studies, dissertations, or essays exploring new ideas, issues, or broader topics on the research subject. Compacts usually have between 50 and 130 pages.
\\n\\nCollection of papers presented at conferences, workshops, symposiums, or scientific courses, published in book format
\\n"}]'},components:[{type:"htmlEditorComponent",content:"IntechOpen Edited Volumes are integrated collections of chapters about particular topics that present new areas of research or novel syntheses of existing research and, as such, represent perspectives from various authors.
\n\nEdited Volumes can be comprised of different types of chapters:
\n\nRESEARCH CHAPTER – A research chapter reports the results of original research thus contributing to the body of knowledge in a particular area of study.
\n\nREVIEW CHAPTER – A review chapter analyzes or examines research previously published by other scientists, rather than reporting new findings thus summarizing the current state of understanding on a topic.
\n\nCASE STUDY – A case study involves an in-depth, and detailed examination of a particular topic.
\n\nPERSPECTIVE CHAPTER – A perspective chapter offers a new point of view on existing problems, fundamental concepts, or common opinions on a specific topic. Perspective chapters can propose or support new hypotheses, or discuss the significance of newly achieved innovations. Perspective chapters can focus on current advances and future directions on a topic and include both original data and personal opinion.
\n\nINTRODUCTORY CHAPTER – An introductory chapter states the purpose and goals of the book. The introductory chapter is written by the Academic Editor.
\n\nMonographs is a self-contained work on a particular subject, or an aspect of it, written by one or more authors. Monographs usually have between 130 and 500 pages.
\n\nTYPES OF MONOGRAPHS:
\n\nSingle or multiple author manuscript
\n\nCompacts provide a mid-length publishing format that bridges the gap between journal articles, book chapters, and monographs, and cover content across all scientific disciplines.
\n\nCompacts are the preferred publishing option for brief research reports on new topics, in-depth case studies, dissertations, or essays exploring new ideas, issues, or broader topics on the research subject. Compacts usually have between 50 and 130 pages.
\n\nCollection of papers presented at conferences, workshops, symposiums, or scientific courses, published in book format
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6630},{group:"region",caption:"Middle and South America",value:2,count:5911},{group:"region",caption:"Africa",value:3,count:2404},{group:"region",caption:"Asia",value:4,count:12562},{group:"region",caption:"Australia and Oceania",value:5,count:1009},{group:"region",caption:"Europe",value:6,count:17573}],offset:12,limit:12,total:132971},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish",src:"C-T-0"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11983",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!0,hash:"81ebecb28b5cad564075e6f5b2dc7355",slug:null,bookSignature:"Distinguished Prof. Lulu Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11983.jpg",editedByType:null,editors:[{id:"257388",title:"Distinguished Prof.",name:"Lulu",surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12058",title:"Future Housing",subtitle:null,isOpenForSubmission:!0,hash:"e7f4a1e57fab392b61156956c1247b9e",slug:null,bookSignature:"Dr. Ivan Oropeza-Perez and Dr. Astrid Helena Petzold-Rodríguez",coverURL:"https://cdn.intechopen.com/books/images_new/12058.jpg",editedByType:null,editors:[{id:"282172",title:"Dr.",name:"Ivan",surname:"Oropeza-Perez",slug:"ivan-oropeza-perez",fullName:"Ivan Oropeza-Perez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12006",title:"Advances in Clay Science and Technology",subtitle:null,isOpenForSubmission:!0,hash:"64e16abe1a29e6bf30c582970a5bc1ed",slug:null,bookSignature:"Prof. Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/12006.jpg",editedByType:null,editors:[{id:"7153",title:"Prof.",name:"Gustavo",surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12033",title:"Recent Updates in HVAC Systems",subtitle:null,isOpenForSubmission:!0,hash:"c911b61042fae2c465f4ee69077e0a4b",slug:null,bookSignature:"Dr. César Martín-Gómez",coverURL:"https://cdn.intechopen.com/books/images_new/12033.jpg",editedByType:null,editors:[{id:"76725",title:"Dr.",name:"César",surname:"Martín-Gómez",slug:"cesar-martin-gomez",fullName:"César Martín-Gómez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12034",title:"Underwater Acoustics - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"220f7e2a9580345ffbfaa433f1ca858e",slug:null,bookSignature:"Dr. Jie Deng",coverURL:"https://cdn.intechopen.com/books/images_new/12034.jpg",editedByType:null,editors:[{id:"428272",title:"Dr.",name:"Jie",surname:"Deng",slug:"jie-deng",fullName:"Jie Deng"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12162",title:"Helicobacter pylori Infection - An Up to Date on the Pathogenic Mechanisms, Diagnosis and Clinical Management",subtitle:null,isOpenForSubmission:!0,hash:"03c019e4753a62191c6b0c84cde99283",slug:null,bookSignature:"Dr. Daniela Cornelia Lazar",coverURL:"https://cdn.intechopen.com/books/images_new/12162.jpg",editedByType:null,editors:[{id:"26188",title:"Dr.",name:"Daniela Cornelia",surname:"Lazar",slug:"daniela-cornelia-lazar",fullName:"Daniela Cornelia Lazar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11690",title:"COVID-19 Drug Development - Recent Advances, New Perspectives, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"f8092a491f68ca0b63cc6d40936a010a",slug:null,bookSignature:"Dr. Arli Aditya Parikesit",coverURL:"https://cdn.intechopen.com/books/images_new/11690.jpg",editedByType:null,editors:[{id:"72288",title:"Dr.",name:"Arli Aditya",surname:"Parikesit",slug:"arli-aditya-parikesit",fullName:"Arli Aditya Parikesit"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11952",title:"Response Surface Methodology - Research Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"a22fd44ae22d422a792470bb5c441a81",slug:null,bookSignature:"Prof. Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/11952.jpg",editedByType:null,editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11612",title:"Landraces - Its Productive Conservation",subtitle:null,isOpenForSubmission:!0,hash:"9c3ea2c2248cc3c8a2888e525c732c26",slug:null,bookSignature:"Emeritus Prof. Arnoldo González-Reyna and Dr. Prashant Kaushik",coverURL:"https://cdn.intechopen.com/books/images_new/11612.jpg",editedByType:null,editors:[{id:"470479",title:"Emeritus Prof.",name:"Arnoldo",surname:"González-Reyna",slug:"arnoldo-gonzalez-reyna",fullName:"Arnoldo González-Reyna"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",subtitle:null,isOpenForSubmission:!0,hash:"727e7eb3d4ba529ec5eb4f150e078523",slug:null,bookSignature:"Dr. Ana M.M. Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",editedByType:null,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11918",title:"LabVIEW - Virtual Instrumentation in Education and Industry",subtitle:null,isOpenForSubmission:!0,hash:"789e06b22e11ce2be68ba43311d46abd",slug:null,bookSignature:"Dr. Petru Adrian Cotfas, Dr. Daniel Tudor Cotfas and Dr. Horia Hedesiu",coverURL:"https://cdn.intechopen.com/books/images_new/11918.jpg",editedByType:null,editors:[{id:"460635",title:"Dr.",name:"Petru Adrian",surname:"Cotfas",slug:"petru-adrian-cotfas",fullName:"Petru Adrian Cotfas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:42},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:24},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:18},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:11},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:124},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:3},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:424},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"18",title:"Neuroscience",slug:"life-sciences-neuroscience",parent:{id:"2",title:"Life Sciences",slug:"life-sciences"},numberOfBooks:65,numberOfSeries:0,numberOfAuthorsAndEditors:1649,numberOfWosCitations:1070,numberOfCrossrefCitations:727,numberOfDimensionsCitations:1699,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"18",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10922",title:"Music in Health and Diseases",subtitle:null,isOpenForSubmission:!1,hash:"6a079df045b086b404399c5ed4ac049a",slug:"music-in-health-and-diseases",bookSignature:"Amit Agrawal, Roshan Sutar and Anvesh Jallapally",coverURL:"https://cdn.intechopen.com/books/images_new/10922.jpg",editedByType:"Edited by",editors:[{id:"100142",title:"Prof.",name:"Amit",middleName:null,surname:"Agrawal",slug:"amit-agrawal",fullName:"Amit Agrawal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10554",title:"Proprioception",subtitle:null,isOpenForSubmission:!1,hash:"e104e615fbd94caa987df3a8d8b3fb8b",slug:"proprioception",bookSignature:"José A. Vega and Juan Cobo",coverURL:"https://cdn.intechopen.com/books/images_new/10554.jpg",editedByType:"Edited by",editors:[{id:"59892",title:"Prof.",name:"José A.",middleName:null,surname:"Vega",slug:"jose-a.-vega",fullName:"José A. Vega"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9853",title:"Connectivity and Functional Specialization in the Brain",subtitle:null,isOpenForSubmission:!1,hash:"79f611488f3217579b5c84978f870863",slug:"connectivity-and-functional-specialization-in-the-brain",bookSignature:"Thomas Heinbockel and Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9853.jpg",editedByType:"Edited by",editors:[{id:"70569",title:"Dr.",name:"Thomas",middleName:null,surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}],equalEditorOne:{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",biography:"Yongxia Zhou obtained a Ph.D. in Biomedical Imaging from the University of Southern California. Her research interest is radiology and neuroscience technology and application. She had been trained as an imaging scientist at several prestigious institutes including Columbia University, the University of Pennsylvania, and the National Institutes of Health (NIH). Her research focuses on multi-modal neuroimaging integration such as MRI/PET and EEG/MEG instrumentation to make the best use of multiple modalities for better interpretation of underlying disease mechanisms. She is the author and editor of more than twelve books for well-known publishers including IntechOpen and Nova Science. She has published more than 100 papers and abstracts in many reputed international journals and conferences and served as reviewer and editor for several academic associations.",institutionString:"University of Southern California",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editedByType:"Edited by",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10475",title:"Smart Biofeedback",subtitle:"Perspectives and Applications",isOpenForSubmission:!1,hash:"8d2bd9997707c905959eaa41e55ba8f1",slug:"smart-biofeedback-perspectives-and-applications",bookSignature:"Edward Da-Yin Liao",coverURL:"https://cdn.intechopen.com/books/images_new/10475.jpg",editedByType:"Edited by",editors:[{id:"3875",title:"Dr.",name:"Edward Da-Yin",middleName:null,surname:"Liao",slug:"edward-da-yin-liao",fullName:"Edward Da-Yin Liao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8059",title:"Neurostimulation and Neuromodulation in Contemporary Therapeutic Practice",subtitle:null,isOpenForSubmission:!1,hash:"8cc2c649900edf37ff3374fdc96a1586",slug:"neurostimulation-and-neuromodulation-in-contemporary-therapeutic-practice",bookSignature:"Denis Larrivee and Seyed Mansoor Rayegani",coverURL:"https://cdn.intechopen.com/books/images_new/8059.jpg",editedByType:"Edited by",editors:[{id:"206412",title:"Prof.",name:"Denis",middleName:null,surname:"Larrivee",slug:"denis-larrivee",fullName:"Denis Larrivee"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8851",title:"Advances in Neural Signal Processing",subtitle:null,isOpenForSubmission:!1,hash:"a44ac118b233b29a3d5b57d61680ec38",slug:"advances-in-neural-signal-processing",bookSignature:"Ramana Vinjamuri",coverURL:"https://cdn.intechopen.com/books/images_new/8851.jpg",editedByType:"Edited by",editors:[{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",slug:"ramana-vinjamuri",fullName:"Ramana Vinjamuri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8751",title:"Somatosensory and Motor Research",subtitle:null,isOpenForSubmission:!1,hash:"86191c18f06e524e0f97a5534fdb2b4c",slug:"somatosensory-and-motor-research",bookSignature:"Toshiaki Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/8751.jpg",editedByType:"Edited by",editors:[{id:"70872",title:"Prof.",name:"Toshiaki",middleName:null,surname:"Suzuki",slug:"toshiaki-suzuki",fullName:"Toshiaki Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9347",title:"Neuroimaging",subtitle:"Neurobiology, Multimodal and Network Applications",isOpenForSubmission:!1,hash:"a3479e76c6ac538aac76409c9efb7e41",slug:"neuroimaging-neurobiology-multimodal-and-network-applications",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9347.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8938",title:"Inhibitory Control Training",subtitle:"A Multidisciplinary Approach",isOpenForSubmission:!1,hash:"bd82354f3bba4af5421337cd42052f86",slug:"inhibitory-control-training-a-multidisciplinary-approach",bookSignature:"Sara Palermo and Massimo Bartoli",coverURL:"https://cdn.intechopen.com/books/images_new/8938.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6998",title:"Synucleins",subtitle:"Biochemistry and Role in Diseases",isOpenForSubmission:!1,hash:"2b4b802fec508928ce8ab9deebd1375f",slug:"synucleins-biochemistry-and-role-in-diseases",bookSignature:"Andrei Surguchov",coverURL:"https://cdn.intechopen.com/books/images_new/6998.jpg",editedByType:"Edited by",editors:[{id:"266540",title:"Dr.",name:"Andrei",middleName:null,surname:"Surguchov",slug:"andrei-surguchov",fullName:"Andrei Surguchov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:65,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"46296",doi:"10.5772/57398",title:"Physiological Role of Amyloid Beta in Neural Cells: The Cellular Trophic Activity",slug:"physiological-role-of-amyloid-beta-in-neural-cells-the-cellular-trophic-activity",totalDownloads:5886,totalCrossrefCites:18,totalDimensionsCites:31,abstract:null,book:{id:"3846",slug:"neurochemistry",title:"Neurochemistry",fullTitle:"Neurochemistry"},signatures:"M. del C. Cárdenas-Aguayo, M. del C. Silva-Lucero, M. Cortes-Ortiz,\nB. Jiménez-Ramos, L. Gómez-Virgilio, G. Ramírez-Rodríguez, E. Vera-\nArroyo, R. Fiorentino-Pérez, U. García, J. Luna-Muñoz and M.A.\nMeraz-Ríos",authors:[{id:"42225",title:"Dr.",name:"Jose",middleName:null,surname:"Luna-Muñoz",slug:"jose-luna-munoz",fullName:"Jose Luna-Muñoz"},{id:"114746",title:"Dr.",name:"Marco",middleName:null,surname:"Meraz-Ríos",slug:"marco-meraz-rios",fullName:"Marco Meraz-Ríos"},{id:"169616",title:"Dr.",name:"Maria del Carmen",middleName:null,surname:"Cardenas-Aguayo",slug:"maria-del-carmen-cardenas-aguayo",fullName:"Maria del Carmen Cardenas-Aguayo"},{id:"169857",title:"Dr.",name:"Maria del Carmen",middleName:null,surname:"Silva-Lucero",slug:"maria-del-carmen-silva-lucero",fullName:"Maria del Carmen Silva-Lucero"},{id:"169858",title:"Dr.",name:"Maribel",middleName:null,surname:"Cortes-Ortiz",slug:"maribel-cortes-ortiz",fullName:"Maribel Cortes-Ortiz"},{id:"169859",title:"Dr.",name:"Berenice",middleName:null,surname:"Jimenez-Ramos",slug:"berenice-jimenez-ramos",fullName:"Berenice Jimenez-Ramos"},{id:"169860",title:"Dr.",name:"Laura",middleName:null,surname:"Gomez-Virgilio",slug:"laura-gomez-virgilio",fullName:"Laura Gomez-Virgilio"},{id:"169861",title:"Dr.",name:"Gerardo",middleName:null,surname:"Ramirez-Rodriguez",slug:"gerardo-ramirez-rodriguez",fullName:"Gerardo Ramirez-Rodriguez"},{id:"169862",title:"Dr.",name:"Eduardo",middleName:null,surname:"Vera-Arroyo",slug:"eduardo-vera-arroyo",fullName:"Eduardo Vera-Arroyo"},{id:"169863",title:"Dr.",name:"Rosana Sofia",middleName:null,surname:"Fiorentino-Perez",slug:"rosana-sofia-fiorentino-perez",fullName:"Rosana Sofia Fiorentino-Perez"},{id:"169864",title:"Dr.",name:"Ubaldo",middleName:null,surname:"Garcia",slug:"ubaldo-garcia",fullName:"Ubaldo Garcia"}]},{id:"58070",doi:"10.5772/intechopen.72427",title:"MRI Medical Image Denoising by Fundamental Filters",slug:"mri-medical-image-denoising-by-fundamental-filters",totalDownloads:2564,totalCrossrefCites:17,totalDimensionsCites:30,abstract:"Nowadays Medical imaging technique Magnetic Resonance Imaging (MRI) plays an important role in medical setting to form high standard images contained in the human brain. MRI is commonly used once treating brain, prostate cancers, ankle and foot. The Magnetic Resonance Imaging (MRI) images are usually liable to suffer from noises such as Gaussian noise, salt and pepper noise and speckle noise. So getting of brain image with accuracy is very extremely task. An accurate brain image is very necessary for further diagnosis process. During this chapter, a median filter algorithm will be modified. Gaussian noise and Salt and pepper noise will be added to MRI image. A proposed Median filter (MF), Adaptive Median filter (AMF) and Adaptive Wiener filter (AWF) will be implemented. The filters will be used to remove the additive noises present in the MRI images. The noise density will be added gradually to MRI image to compare performance of the filters evaluation. The performance of these filters will be compared exploitation the applied mathematics parameter Peak Signal-to-Noise Ratio (PSNR).",book:{id:"6144",slug:"high-resolution-neuroimaging-basic-physical-principles-and-clinical-applications",title:"High-Resolution Neuroimaging",fullTitle:"High-Resolution Neuroimaging - Basic Physical Principles and Clinical Applications"},signatures:"Hanafy M. Ali",authors:[{id:"213318",title:"Dr.",name:"Hanafy",middleName:"M.",surname:"Ali",slug:"hanafy-ali",fullName:"Hanafy Ali"}]},{id:"41589",doi:"10.5772/50323",title:"The Role of the Amygdala in Anxiety Disorders",slug:"the-role-of-the-amygdala-in-anxiety-disorders",totalDownloads:9671,totalCrossrefCites:4,totalDimensionsCites:28,abstract:null,book:{id:"2599",slug:"the-amygdala-a-discrete-multitasking-manager",title:"The Amygdala",fullTitle:"The Amygdala - A Discrete Multitasking Manager"},signatures:"Gina L. Forster, Andrew M. Novick, Jamie L. Scholl and Michael J. Watt",authors:[{id:"145620",title:"Dr.",name:"Gina",middleName:null,surname:"Forster",slug:"gina-forster",fullName:"Gina Forster"},{id:"146553",title:"BSc.",name:"Andrew",middleName:null,surname:"Novick",slug:"andrew-novick",fullName:"Andrew Novick"},{id:"146554",title:"MSc.",name:"Jamie",middleName:null,surname:"Scholl",slug:"jamie-scholl",fullName:"Jamie Scholl"},{id:"146555",title:"Dr.",name:"Michael",middleName:null,surname:"Watt",slug:"michael-watt",fullName:"Michael Watt"}]},{id:"26258",doi:"10.5772/28300",title:"Excitotoxicity and Oxidative Stress in Acute Ischemic Stroke",slug:"excitotoxicity-and-oxidative-stress-in-acute-ischemic-stroke",totalDownloads:7157,totalCrossrefCites:6,totalDimensionsCites:25,abstract:null,book:{id:"931",slug:"acute-ischemic-stroke",title:"Acute Ischemic Stroke",fullTitle:"Acute Ischemic Stroke"},signatures:"Ramón Rama Bretón and Julio César García Rodríguez",authors:[{id:"73430",title:"Prof.",name:"Ramon",middleName:null,surname:"Rama",slug:"ramon-rama",fullName:"Ramon Rama"},{id:"124643",title:"Prof.",name:"Julio Cesar",middleName:null,surname:"García",slug:"julio-cesar-garcia",fullName:"Julio Cesar García"}]},{id:"62072",doi:"10.5772/intechopen.78695",title:"Brain-Computer Interface and Motor Imagery Training: The Role of Visual Feedback and Embodiment",slug:"brain-computer-interface-and-motor-imagery-training-the-role-of-visual-feedback-and-embodiment",totalDownloads:1439,totalCrossrefCites:13,totalDimensionsCites:23,abstract:"Controlling a brain-computer interface (BCI) is a difficult task that requires extensive training. Particularly in the case of motor imagery BCIs, users may need several training sessions before they learn how to generate desired brain activity and reach an acceptable performance. A typical training protocol for such BCIs includes execution of a motor imagery task by the user, followed by presentation of an extending bar or a moving object on a computer screen. In this chapter, we discuss the importance of a visual feedback that resembles human actions, the effect of human factors such as confidence and motivation, and the role of embodiment in the learning process of a motor imagery task. Our results from a series of experiments in which users BCI-operated a humanlike android robot confirm that realistic visual feedback can induce a sense of embodiment, which promotes a significant learning of the motor imagery task in a short amount of time. We review the impact of humanlike visual feedback in optimized modulation of brain activity by the BCI users.",book:{id:"6610",slug:"evolving-bci-therapy-engaging-brain-state-dynamics",title:"Evolving BCI Therapy",fullTitle:"Evolving BCI Therapy - Engaging Brain State Dynamics"},signatures:"Maryam Alimardani, Shuichi Nishio and Hiroshi Ishiguro",authors:[{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro"},{id:"231131",title:"Dr.",name:"Maryam",middleName:null,surname:"Alimardani",slug:"maryam-alimardani",fullName:"Maryam Alimardani"},{id:"231134",title:"Dr.",name:"Shuichi",middleName:null,surname:"Nishio",slug:"shuichi-nishio",fullName:"Shuichi Nishio"}]}],mostDownloadedChaptersLast30Days:[{id:"29764",title:"Underlying Causes of Paresthesia",slug:"underlying-causes-of-paresthesia",totalDownloads:192666,totalCrossrefCites:3,totalDimensionsCites:7,abstract:null,book:{id:"1069",slug:"paresthesia",title:"Paresthesia",fullTitle:"Paresthesia"},signatures:"Mahdi Sharif-Alhoseini, Vafa Rahimi-Movaghar and Alexander R. Vaccaro",authors:[{id:"91165",title:"Prof.",name:"Vafa",middleName:null,surname:"Rahimi-Movaghar",slug:"vafa-rahimi-movaghar",fullName:"Vafa Rahimi-Movaghar"}]},{id:"63258",title:"Anatomy and Function of the Hypothalamus",slug:"anatomy-and-function-of-the-hypothalamus",totalDownloads:4558,totalCrossrefCites:6,totalDimensionsCites:12,abstract:"The hypothalamus is a small but important area of the brain formed by various nucleus and nervous fibers. Through its neuronal connections, it is involved in many complex functions of the organism such as vegetative system control, homeostasis of the organism, thermoregulation, and also in adjusting the emotional behavior. The hypothalamus is involved in different daily activities like eating or drinking, in the control of the body’s temperature and energy maintenance, and in the process of memorizing. It also modulates the endocrine system through its connections with the pituitary gland. Precise anatomical description along with a correct characterization of the component structures is essential for understanding its functions.",book:{id:"6331",slug:"hypothalamus-in-health-and-diseases",title:"Hypothalamus in Health and Diseases",fullTitle:"Hypothalamus in Health and Diseases"},signatures:"Miana Gabriela Pop, Carmen Crivii and Iulian Opincariu",authors:null},{id:"57103",title:"GABA and Glutamate: Their Transmitter Role in the CNS and Pancreatic Islets",slug:"gaba-and-glutamate-their-transmitter-role-in-the-cns-and-pancreatic-islets",totalDownloads:3478,totalCrossrefCites:3,totalDimensionsCites:9,abstract:"Glutamate and gamma-aminobutyric acid (GABA) are the major neurotransmitters in the mammalian brain. Inhibitory GABA and excitatory glutamate work together to control many processes, including the brain’s overall level of excitation. The contributions of GABA and glutamate in extra-neuronal signaling are by far less widely recognized. In this chapter, we first discuss the role of both neurotransmitters during development, emphasizing the importance of the shift from excitatory to inhibitory GABAergic neurotransmission. The second part summarizes the biosynthesis and role of GABA and glutamate in neurotransmission in the mature brain, and major neurological disorders associated with glutamate and GABA receptors and GABA release mechanisms. The final part focuses on extra-neuronal glutamatergic and GABAergic signaling in pancreatic islets of Langerhans, and possible associations with type 1 diabetes mellitus.",book:{id:"6237",slug:"gaba-and-glutamate-new-developments-in-neurotransmission-research",title:"GABA And Glutamate",fullTitle:"GABA And Glutamate - New Developments In Neurotransmission Research"},signatures:"Christiane S. Hampe, Hiroshi Mitoma and Mario Manto",authors:[{id:"210220",title:"Prof.",name:"Christiane",middleName:null,surname:"Hampe",slug:"christiane-hampe",fullName:"Christiane Hampe"},{id:"210485",title:"Prof.",name:"Mario",middleName:null,surname:"Manto",slug:"mario-manto",fullName:"Mario Manto"},{id:"210486",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Mitoma",slug:"hiroshi-mitoma",fullName:"Hiroshi Mitoma"}]},{id:"35802",title:"Cross-Cultural/Linguistic Differences in the Prevalence of Developmental Dyslexia and the Hypothesis of Granularity and Transparency",slug:"cross-cultural-linguistic-differences-in-the-prevalence-of-developmental-dyslexia-and-the-hypothesis",totalDownloads:3601,totalCrossrefCites:2,totalDimensionsCites:7,abstract:null,book:{id:"673",slug:"dyslexia-a-comprehensive-and-international-approach",title:"Dyslexia",fullTitle:"Dyslexia - A Comprehensive and International Approach"},signatures:"Taeko N. Wydell",authors:[{id:"87489",title:"Prof.",name:"Taeko",middleName:"N.",surname:"Wydell",slug:"taeko-wydell",fullName:"Taeko Wydell"}]},{id:"58597",title:"Testosterone and Erectile Function: A Review of Evidence from Basic Research",slug:"testosterone-and-erectile-function-a-review-of-evidence-from-basic-research",totalDownloads:1331,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Androgens are essential for male physical activity and normal erectile function. Hence, age-related testosterone deficiency, known as late-onset hypogonadism (LOH), is considered a risk factor for erectile dysfunction (ED). This chapter summarizes relevant basic research reports examining the effects of testosterone on erectile function. Testosterone affects several organs and is especially active on the erectile tissue. The mechanism of testosterone deficiency effects on erectile function and the results of testosterone replacement therapy (TRT) have been well studied. Testosterone affects nitric oxide (NO) production and phosphodiesterase type 5 (PDE-5) expression in the corpus cavernosum through molecular pathways, preserves smooth muscle contractility by regulating both contraction and relaxation, and maintains the structure of the corpus cavernosum. Interestingly, testosterone deficiency has relationship to neurological diseases, which leads to ED. Testosterone replacement therapy is widely used to treat patients with testosterone deficiency; however, this treatment might also induce some problems. Basic research suggests that PDE-5 inhibitors, L-citrulline, and/or resveratrol therapy might be effective therapeutic options for testosterone deficiency-induced ED. Future research should confirm these findings through more specific experiments using molecular tools and may shed more light on endocrine-related ED and its possible treatments.",book:{id:"5994",slug:"sex-hormones-in-neurodegenerative-processes-and-diseases",title:"Sex Hormones in Neurodegenerative Processes and Diseases",fullTitle:"Sex Hormones in Neurodegenerative Processes and Diseases"},signatures:"Tomoya Kataoka and Kazunori Kimura",authors:[{id:"219042",title:"Ph.D.",name:"Tomoya",middleName:null,surname:"Kataoka",slug:"tomoya-kataoka",fullName:"Tomoya Kataoka"},{id:"229066",title:"Prof.",name:"Kazunori",middleName:null,surname:"Kimura",slug:"kazunori-kimura",fullName:"Kazunori Kimura"}]}],onlineFirstChaptersFilter:{topicId:"18",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81646",title:"Cortical Plasticity under Ketamine: From Synapse to Map",slug:"cortical-plasticity-under-ketamine-from-synapse-to-map",totalDownloads:14,totalDimensionsCites:0,doi:"10.5772/intechopen.104787",abstract:"Sensory systems need to process signals in a highly dynamic way to efficiently respond to variations in the animal’s environment. For instance, several studies showed that the visual system is subject to neuroplasticity since the neurons’ firing changes according to stimulus properties. This dynamic information processing might be supported by a network reorganization. Since antidepressants influence neurotransmission, they can be used to explore synaptic plasticity sustaining cortical map reorganization. To this goal, we investigated in the primary visual cortex (V1 of mouse and cat), the impact of ketamine on neuroplasticity through changes in neuronal orientation selectivity and the functional connectivity between V1 cells, using cross correlation analyses. We found that ketamine affects cortical orientation selectivity and alters the functional connectivity within an assembly. These data clearly highlight the role of the antidepressant drugs in inducing or modeling short-term plasticity in V1 which suggests that cortical processing is optimized and adapted to the properties of the stimulus.",book:{id:"11374",title:"Sensory Nervous System - Computational Neuroimaging Investigations of Topographical Organization in Human Sensory Cortex",coverURL:"https://cdn.intechopen.com/books/images_new/11374.jpg"},signatures:"Ouelhazi Afef, Rudy Lussiez and Molotchnikoff Stephane"},{id:"81582",title:"The Role of Cognitive Reserve in Executive Functioning and Its Relationship to Cognitive Decline and Dementia",slug:"the-role-of-cognitive-reserve-in-executive-functioning-and-its-relationship-to-cognitive-decline-and",totalDownloads:23,totalDimensionsCites:0,doi:"10.5772/intechopen.104646",abstract:"In this chapter, we explore how cognitive reserve is implicated in coping with the negative consequences of brain pathology and age-related cognitive decline. Individual differences in cognitive performance are based on different brain mechanisms (neural reserve and neural compensation), and reflect, among others, the effect of education, occupational attainment, leisure activities, and social involvement. These cognitive reserve proxies have been extensively associated with efficient executive functioning. We discuss and focus particularly on the compensation mechanisms related to the frontal lobe and its protective role, in maintaining cognitive performance in old age or even mitigating the clinical expression of dementia.",book:{id:"11742",title:"Neurophysiology",coverURL:"https://cdn.intechopen.com/books/images_new/11742.jpg"},signatures:"Gabriela Álvares-Pereira, Carolina Maruta and Maria Vânia Silva-Nunes"},{id:"81488",title:"Aggression and Sexual Behavior: Overlapping or Distinct Roles of 5-HT1A and 5-HT1B Receptors",slug:"aggression-and-sexual-behavior-overlapping-or-distinct-roles-of-5-ht1a-and-5-ht1b-receptors",totalDownloads:19,totalDimensionsCites:0,doi:"10.5772/intechopen.104872",abstract:"Distinct brain mechanisms for male aggressive and sexual behavior are present in mammalian species, including man. However, recent evidence suggests a strong connection and even overlap in the central nervous system (CNS) circuitry involved in aggressive and sexual behavior. The serotonergic system in the CNS is strongly involved in male aggressive and sexual behavior. In particular, 5-HT1A and 5-HT1B receptors seem to play a critical role in the modulation of these behaviors. The present chapter focuses on the effects of 5-HT1A- and 5-HT1B-receptor ligands in male rodent aggression and sexual behavior. Results indicate that 5-HT1B-heteroreceptors play a critical role in the modulation of male offensive behavior, although a definite role of 5-HT1A-auto- or heteroreceptors cannot be ruled out. 5-HT1A receptors are clearly involved in male sexual behavior, although it has to be yet unraveled whether 5-HT1A-auto- or heteroreceptors are important. Although several key nodes in the complex circuitry of aggression and sexual behavior are known, in particular in the medial hypothalamus, a clear link or connection to these critical structures and the serotonergic key receptors is yet to be determined. This information is urgently needed to detect and develop new selective anti-aggressive (serenic) and pro-sexual drugs for human applications.",book:{id:"10195",title:"Serotonin and the CNS - New Developments in Pharmacology and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg"},signatures:"Berend Olivier and Jocelien D.A. Olivier"},{id:"81093",title:"Prehospital and Emergency Room Airway Management in Traumatic Brain Injury",slug:"prehospital-and-emergency-room-airway-management-in-traumatic-brain-injury",totalDownloads:49,totalDimensionsCites:0,doi:"10.5772/intechopen.104173",abstract:"Airway management in trauma is critical and may impact patient outcomes. Particularly in traumatic brain injury (TBI), depressed level of consciousness may be associated with compromised protective airway reflexes or apnea, which can increase the risk of aspiration or result in hypoxemia and worsen the secondary brain damage. Therefore, patients with TBI and Glasgow Coma Scale (GCS) ≤ 8 have been traditionally managed by prehospital or emergency room (ER) endotracheal intubation. However, recent evidence challenged this practice and even suggested that routine intubation may be harmful. This chapter will address the indications and optimal method of securing the airway, prehospital and in the ER, in patients with traumatic brain injury.",book:{id:"11367",title:"Traumatic Brain Injury",coverURL:"https://cdn.intechopen.com/books/images_new/11367.jpg"},signatures:"Dominik A. Jakob, Jean-Cyrille Pitteloud and Demetrios Demetriades"},{id:"81011",title:"Amino Acids as Neurotransmitters. The Balance between Excitation and Inhibition as a Background for Future Clinical Applications",slug:"amino-acids-as-neurotransmitters-the-balance-between-excitation-and-inhibition-as-a-background-for-f",totalDownloads:19,totalDimensionsCites:0,doi:"10.5772/intechopen.103760",abstract:"For more than 30 years, amino acids have been well-known (and essential) participants in neurotransmission. They act as both neuromediators and metabolites in nervous tissue. Glycine and glutamic acid (glutamate) are prominent examples. These amino acids are agonists of inhibitory and excitatory membrane receptors, respectively. Moreover, they play essential roles in metabolic pathways and energy transformation in neurons and astrocytes. Despite their obvious effects on the brain, their potential role in therapeutic methods remains uncertain in clinical practice. In the current chapter, a comparison of the crosstalk between these two systems, which are responsible for excitation and inhibition in neurons, is presented. The interactions are discussed at the metabolic, receptor, and transport levels. Reaction-diffusion and a convectional flow into the interstitial fluid create a balanced distribution of glycine and glutamate. Indeed, the neurons’ final physiological state is a result of a balance between the excitatory and inhibitory influences. However, changes to the glycine and/or glutamate pools under pathological conditions can alter the state of nervous tissue. Thus, new therapies for various diseases may be developed on the basis of amino acid medication.",book:{id:"10890",title:"Recent Advances in Neurochemistry",coverURL:"https://cdn.intechopen.com/books/images_new/10890.jpg"},signatures:"Yaroslav R. Nartsissov"},{id:"80821",title:"Neuroimmunology and Neurological Manifestations of COVID-19",slug:"neuroimmunology-and-neurological-manifestations-of-covid-19",totalDownloads:41,totalDimensionsCites:0,doi:"10.5772/intechopen.103026",abstract:"Infection with SARS-CoV-2 is causing coronavirus disease in 2019 (COVID-19). Besides respiratory symptoms due to an attack on the broncho-alveolar system, COVID-19, among others, can be accompanied by neurological symptoms because of the affection of the nervous system. These can be caused by intrusion by SARS-CoV-2 of the central nervous system (CNS) and peripheral nervous system (PNS) and direct infection of local cells. In addition, neurological deterioration mediated by molecular mimicry to virus antigens or bystander activation in the context of immunological anti-virus defense can lead to tissue damage in the CNS and PNS. In addition, cytokine storm caused by SARS-CoV-2 infection in COVID-19 can lead to nervous system related symptoms. Endotheliitis of CNS vessels can lead to vessel occlusion and stroke. COVID-19 can also result in cerebral hemorrhage and sinus thrombosis possibly related to changes in clotting behavior. Vaccination is most important to prevent COVID-19 in the nervous system. There are symptomatic or/and curative therapeutic approaches to combat COVID-19 related nervous system damage that are partly still under study.",book:{id:"10890",title:"Recent Advances in Neurochemistry",coverURL:"https://cdn.intechopen.com/books/images_new/10890.jpg"},signatures:"Robert Weissert"}],onlineFirstChaptersTotal:17},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:288,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 24th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:9,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",slug:"ana-isabel-flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",slug:"christian-palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",slug:"azhar-rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",slug:"anca-pantea-stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",slug:"attilio-rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",slug:"yanfei-(jacob)-qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",slug:"arli-aditya-parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",slug:"cesar-lopez-camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",slug:"shymaa-enany",fullName:"Shymaa Enany",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRqB9QAK/Profile_Picture_1626163237970",institutionString:null,institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]},overviewPageOFChapters:{paginationCount:18,paginationItems:[{id:"81778",title:"Influence of Mechanical Properties of Biomaterials on the Reconstruction of Biomedical Parts via Additive Manufacturing Techniques: An Overview",doi:"10.5772/intechopen.104465",signatures:"Babatunde Olamide Omiyale, Akeem Abiodun Rasheed, Robinson Omoboyode Akinnusi and Temitope Olumide Olugbade",slug:"influence-of-mechanical-properties-of-biomaterials-on-the-reconstruction-of-biomedical-parts-via-add",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:null,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:1,paginationItems:[{id:"11601",title:"Econometrics - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11601.jpg",hash:"bc8ab49e2cf436c217a49ca8c12a22eb",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 13th 2022",isOpenForSubmission:!0,editors:[{id:"452331",title:"Dr.",name:"Brian",surname:"Sloboda",slug:"brian-sloboda",fullName:"Brian Sloboda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:50,paginationItems:[{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"81681",title:"Immunomodulatory Effects of a M2-Conditioned Medium (PRS® CK STORM): Theory on the Possible Complex Mechanism of Action through Anti-Inflammatory Modulation of the TLR System and the Purinergic System",doi:"10.5772/intechopen.104486",signatures:"Juan Pedro Lapuente",slug:"immunomodulatory-effects-of-a-m2-conditioned-medium-prs-ck-storm-theory-on-the-possible-complex-mech",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81580",title:"Graft-Versus-Host Disease: Pathogenesis and Treatment",doi:"10.5772/intechopen.104450",signatures:"Shin Mukai",slug:"graft-versus-host-disease-pathogenesis-and-treatment",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81533",title:"Prenylation of Natural Products: An Overview",doi:"10.5772/intechopen.104636",signatures:"Kantharaju Kamanna and Aravind Kamath",slug:"prenylation-of-natural-products-an-overview",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kantharaju",surname:"Kamanna"}],book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"81067",title:"Encapsulation of Essential Oils and Their Use in Food Applications",doi:"10.5772/intechopen.103147",signatures:"Hamdy A. Shaaban and Amr Farouk",slug:"encapsulation-of-essential-oils-and-their-use-in-food-applications",totalDownloads:50,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:3,group:"subseries"},{caption:"Metabolism",value:17,count:10,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:17,group:"subseries"},{caption:"Chemical Biology",value:15,count:19,group:"subseries"}],publishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"9883",title:"Biosensors",subtitle:"Current and Novel Strategies for Biosensing",coverURL:"https://cdn.intechopen.com/books/images_new/9883.jpg",slug:"biosensors-current-and-novel-strategies-for-biosensing",publishedDate:"May 5th 2021",editedByType:"Edited by",bookSignature:"Luis Jesús Villarreal-Gómez and Ana Leticia Iglesias",hash:"028f3e5dbf9c32590183ac4b4f0a2825",volumeInSeries:11,fullTitle:"Biosensors - Current and Novel Strategies for Biosensing",editors:[{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",slug:"biomedical-signal-and-image-processing",publishedDate:"April 14th 2021",editedByType:"Edited by",bookSignature:"Yongxia Zhou",hash:"22b87a09bd6df065d78c175235d367c8",volumeInSeries:10,fullTitle:"Biomedical Signal and Image Processing",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",institutionString:"University of Southern California",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9973",title:"Data Acquisition",subtitle:"Recent Advances and Applications in Biomedical Engineering",coverURL:"https://cdn.intechopen.com/books/images_new/9973.jpg",slug:"data-acquisition-recent-advances-and-applications-in-biomedical-engineering",publishedDate:"March 17th 2021",editedByType:"Edited by",bookSignature:"Bartłomiej Płaczek",hash:"75ea6cdd241216c9db28aa734ab34446",volumeInSeries:9,fullTitle:"Data Acquisition - Recent Advances and Applications in Biomedical Engineering",editors:[{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9905",title:"Biometric Systems",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9905.jpg",slug:"biometric-systems",publishedDate:"February 10th 2021",editedByType:"Edited by",bookSignature:"Muhammad Sarfraz",hash:"c730560dd2e3837a03407b3a86b0ef2a",volumeInSeries:8,fullTitle:"Biometric Systems",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",institutionString:"Kuwait University",institution:{name:"Kuwait University",institutionURL:null,country:{name:"Kuwait"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8622",title:"Peptide Synthesis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8622.jpg",slug:"peptide-synthesis",publishedDate:"December 18th 2019",editedByType:"Edited by",bookSignature:"Jaya T. Varkey",hash:"de9fa48c5248dbfb581825b8c74f5623",volumeInSeries:0,fullTitle:"Peptide Synthesis",editors:[{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",institutionString:"St. Teresa’s College",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7497",title:"Computer Vision in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7497.jpg",slug:"computer-vision-in-dentistry",publishedDate:"September 18th 2019",editedByType:"Edited by",bookSignature:"Monika Elzbieta Machoy",hash:"1e9812cebd46ef9e28257f3e96547f6a",volumeInSeries:7,fullTitle:"Computer Vision in Dentistry",editors:[{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",editedByType:"Edited by",bookSignature:"Anna Nowinska",hash:"da2c90e8db647ead30504defce3fb5d3",volumeInSeries:6,fullTitle:"Novel Diagnostic Methods in Ophthalmology",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska",profilePictureURL:"https://mts.intechopen.com/storage/users/261466/images/system/261466.jpeg",institutionString:"Medical University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7437",title:"Nanomedicines",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7437.jpg",slug:"nanomedicines",publishedDate:"February 13th 2019",editedByType:"Edited by",bookSignature:"Muhammad Akhyar Farrukh",hash:"0e1f5f6258f074c533976c4f4d248568",volumeInSeries:5,fullTitle:"Nanomedicines",editors:[{id:"63182",title:"Dr.",name:"Muhammad Akhyar",middleName:null,surname:"Farrukh",slug:"muhammad-akhyar-farrukh",fullName:"Muhammad Akhyar Farrukh",profilePictureURL:"https://mts.intechopen.com/storage/users/63182/images/system/63182.png",institutionString:"Forman Christian College",institution:{name:"Forman Christian College",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",institutionString:"University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",value:9,count:1},{group:"subseries",caption:"Bioinspired Technology and Biomechanics",value:8,count:2},{group:"subseries",caption:"Bioinformatics and Medical Informatics",value:7,count:9}],publicationYearFilters:[{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2019",value:2019,count:5},{group:"publicationYear",caption:"2018",value:2018,count:3}],authors:{paginationCount:617,paginationItems:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",biography:"Prof. Dr. Yusuf Tutar conducts his research at the Hamidiye Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Division of Biochemistry, University of Health Sciences, Turkey. He is also a faculty member in the Molecular Oncology Program. He obtained his MSc and Ph.D. at Oregon State University and Texas Tech University, respectively. He pursued his postdoctoral studies at Rutgers University Medical School and the National Institutes of Health (NIH/NIDDK), USA. His research focuses on biochemistry, biophysics, genetics, molecular biology, and molecular medicine with specialization in the fields of drug design, protein structure-function, protein folding, prions, microRNA, pseudogenes, molecular cancer, epigenetics, metabolites, proteomics, genomics, protein expression, and characterization by spectroscopic and calorimetric methods.",institutionString:"University of Health Sciences",institution:null},{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",biography:"Hiroyuki Kagechika received his bachelor’s degree and Ph.D. in Pharmaceutical Sciences from the University of Tokyo, Japan, where he served as an associate professor until 2004. He is currently a professor at the Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU). From 2010 to 2012, he was the dean of the Graduate School of Biomedical Science. Since 2012, he has served as the vice dean of the Graduate School of Medical and Dental Sciences. He has been the director of the IBB since 2020. Dr. Kagechika’s major research interests are the medicinal chemistry of retinoids, vitamins D/K, and nuclear receptors. He has developed various compounds including a drug for acute promyelocytic leukemia.",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",country:{name:"Japan"}}},{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",biography:"Dr. Rizwan Ahmad is a University Professor and Coordinator, Quality and Development, College of Medicine, Imam Abdulrahman bin Faisal University, Saudi Arabia. Previously, he was Associate Professor of Human Function, Oman Medical College, Oman, and SBS University, Dehradun. Dr. Ahmad completed his education at Aligarh Muslim University, Aligarh. He has published several articles in peer-reviewed journals, chapters, and edited books. His area of specialization is free radical biochemistry and autoimmune diseases.",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",country:{name:"Saudi Arabia"}}},{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",biography:"Farid A. Badria, Ph.D., is the recipient of several awards, including The World Academy of Sciences (TWAS) Prize for Public Understanding of Science; the World Intellectual Property Organization (WIPO) Gold Medal for best invention; Outstanding Arab Scholar, Kuwait; and the Khwarizmi International Award, Iran. He has 250 publications, 12 books, 20 patents, and several marketed pharmaceutical products to his credit. He continues to lead research projects on developing new therapies for liver, skin disorders, and cancer. Dr. Badria was listed among the world’s top 2% of scientists in medicinal and biomolecular chemistry in 2019 and 2020. He is a member of the Arab Development Fund, Kuwait; International Cell Research Organization–United Nations Educational, Scientific and Cultural Organization (ICRO–UNESCO), Chile; and UNESCO Biotechnology France",institutionString:"Mansoura University",institution:{name:"Mansoura University",country:{name:"Egypt"}}},{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",biography:"Dr. Singh received a BPharm (2003) and MPharm (2005) from Panjab University, Chandigarh, India, and a Ph.D. (2013) from Punjab Technical University (PTU), Jalandhar, India. He has more than sixteen years of teaching experience and has supervised numerous postgraduate and Ph.D. students. He has to his credit more than seventy papers in SCI- and SCOPUS-indexed journals, fifty-five conference proceedings, four books, six Best Paper Awards, and five projects from different government agencies. He is currently an editorial board member of eight international journals and a reviewer for more than fifty scientific journals. He received Top Reviewer and Excellent Peer Reviewer Awards from Publons in 2016 and 2017, respectively. He is also on the panel of The International Reviewer for reviewing research proposals for grants from the Royal Society. He also serves as a Publons Academy mentor and Bentham brand ambassador.",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",country:{name:"India"}}},{id:"142388",title:"Dr.",name:"Thiago",middleName:"Gomes",surname:"Gomes Heck",slug:"thiago-gomes-heck",fullName:"Thiago Gomes Heck",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/142388/images/7259_n.jpg",biography:null,institutionString:null,institution:{name:"Universidade Regional do Noroeste do Estado do Rio Grande do Sul",country:{name:"Brazil"}}},{id:"336273",title:"Assistant Prof.",name:"Janja",middleName:null,surname:"Zupan",slug:"janja-zupan",fullName:"Janja Zupan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/336273/images/14853_n.jpeg",biography:"Janja Zupan graduated in 2005 at the Department of Clinical Biochemistry (superviser prof. dr. Janja Marc) in the field of genetics of osteoporosis. Since November 2009 she is working as a Teaching Assistant at the Faculty of Pharmacy, Department of Clinical Biochemistry. In 2011 she completed part of her research and PhD work at Institute of Genetics and Molecular Medicine, University of Edinburgh. She finished her PhD entitled The influence of the proinflammatory cytokines on the RANK/RANKL/OPG in bone tissue of osteoporotic and osteoarthritic patients in 2012. From 2014-2016 she worked at the Institute of Biomedical Sciences, University of Aberdeen as a postdoctoral research fellow on UK Arthritis research project where she gained knowledge in mesenchymal stem cells and regenerative medicine. She returned back to University of Ljubljana, Faculty of Pharmacy in 2016. She is currently leading project entitled Mesenchymal stem cells-the keepers of tissue endogenous regenerative capacity facing up to aging of the musculoskeletal system funded by Slovenian Research Agency.",institutionString:null,institution:{name:"University of Ljubljana",country:{name:"Slovenia"}}},{id:"357453",title:"Dr.",name:"Radheshyam",middleName:null,surname:"Maurya",slug:"radheshyam-maurya",fullName:"Radheshyam Maurya",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/357453/images/16535_n.jpg",biography:null,institutionString:null,institution:{name:"University of Hyderabad",country:{name:"India"}}},{id:"311457",title:"Dr.",name:"Júlia",middleName:null,surname:"Scherer Santos",slug:"julia-scherer-santos",fullName:"Júlia Scherer Santos",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/311457/images/system/311457.jpg",biography:"Dr. Júlia Scherer Santos works in the areas of cosmetology, nanotechnology, pharmaceutical technology, beauty, and aesthetics. Dr. Santos also has experience as a professor of graduate courses. Graduated in Pharmacy, specialization in Cosmetology and Cosmeceuticals applied to aesthetics, specialization in Aesthetic and Cosmetic Health, and a doctorate in Pharmaceutical Nanotechnology. Teaching experience in Pharmacy and Aesthetics and Cosmetics courses. She works mainly on the following subjects: nanotechnology, cosmetology, pharmaceutical technology, aesthetics.",institutionString:"Universidade Federal de Juiz de Fora",institution:{name:"Universidade Federal de Juiz de Fora",country:{name:"Brazil"}}},{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNVJQA4/Profile_Picture_2022-03-07T13:23:04.png",biography:"Dr. Kükürt graduated from Uludağ University in Turkey. He started his academic career as a Research Assistant in the Department of Biochemistry at Kafkas University. In 2019, he completed his Ph.D. program in the Department of Biochemistry at the Institute of Health Sciences. He is currently working at the Department of Biochemistry, Kafkas University. He has 27 published research articles in academic journals, 11 book chapters, and 37 papers. He took part in 10 academic projects. He served as a reviewer for many articles. He still serves as a member of the review board in many academic journals.",institutionString:null,institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"178366",title:"Associate Prof.",name:"Volkan",middleName:null,surname:"Gelen",slug:"volkan-gelen",fullName:"Volkan Gelen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178366/images/system/178366.jpg",biography:"Volkan Gelen is a Physiology specialist who received his veterinary degree from Kafkas University in 2011. Between 2011-2015, he worked as an assistant at Atatürk University, Faculty of Veterinary Medicine, Department of Physiology. In 2016, he joined Kafkas University, Faculty of Veterinary Medicine, Department of Physiology as an assistant professor. Dr. Gelen has been engaged in various academic activities at Kafkas University since 2016. There he completed 5 projects and has 3 ongoing projects. He has 60 articles published in scientific journals and 20 poster presentations in scientific congresses. His research interests include physiology, endocrine system, cancer, diabetes, cardiovascular system diseases, and isolated organ bath system studies.",institutionString:"Kafkas University",institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"418963",title:"Dr.",name:"Augustine Ododo",middleName:"Augustine",surname:"Osagie",slug:"augustine-ododo-osagie",fullName:"Augustine Ododo Osagie",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/418963/images/16900_n.jpg",biography:"Born into the family of Osagie, a prince of the Benin Kingdom. I am currently an academic in the Department of Medical Biochemistry, University of Benin. Part of the duties are to teach undergraduate students and conduct academic research.",institutionString:null,institution:{name:"University of Benin",country:{name:"Nigeria"}}},{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",biography:"Prof. Shagufta Perveen is a Distinguish Professor in the Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. Dr. Perveen has acted as the principal investigator of major research projects funded by the research unit of King Saud University. She has more than ninety original research papers in peer-reviewed journals of international repute to her credit. She is a fellow member of the Royal Society of Chemistry UK and the American Chemical Society of the United States.",institutionString:"King Saud University",institution:{name:"King Saud University",country:{name:"Saudi Arabia"}}},{id:"49848",title:"Dr.",name:"Wen-Long",middleName:null,surname:"Hu",slug:"wen-long-hu",fullName:"Wen-Long Hu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49848/images/system/49848.jpg",biography:"Wen-Long Hu is Chief of the Division of Acupuncture, Department of Chinese Medicine at Kaohsiung Chang Gung Memorial Hospital, as well as an adjunct associate professor at Fooyin University and Kaohsiung Medical University. Wen-Long is President of Taiwan Traditional Chinese Medicine Medical Association. He has 28 years of experience in clinical practice in laser acupuncture therapy and 34 years in acupuncture. He is an invited speaker for lectures and workshops in laser acupuncture at many symposiums held by medical associations. He owns the patent for herbal preparation and producing, and for the supercritical fluid-treated needle. Dr. Hu has published three books, 12 book chapters, and more than 30 papers in reputed journals, besides serving as an editorial board member of repute.",institutionString:"Kaohsiung Chang Gung Memorial Hospital",institution:{name:"Kaohsiung Chang Gung Memorial Hospital",country:{name:"Taiwan"}}},{id:"298472",title:"Prof.",name:"Andrey V.",middleName:null,surname:"Grechko",slug:"andrey-v.-grechko",fullName:"Andrey V. Grechko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/298472/images/system/298472.png",biography:"Andrey Vyacheslavovich Grechko, Ph.D., Professor, is a Corresponding Member of the Russian Academy of Sciences. He graduated from the Semashko Moscow Medical Institute (Semashko National Research Institute of Public Health) with a degree in Medicine (1998), the Clinical Department of Dermatovenerology (2000), and received a second higher education in Psychology (2009). Professor A.V. Grechko held the position of Сhief Physician of the Central Clinical Hospital in Moscow. He worked as a professor at the faculty and was engaged in scientific research at the Medical University. Starting in 2013, he has been the initiator of the creation of the Federal Scientific and Clinical Center for Intensive Care and Rehabilitology, Moscow, Russian Federation, where he also serves as Director since 2015. He has many years of experience in research and teaching in various fields of medicine, is an author/co-author of more than 200 scientific publications, 13 patents, 15 medical books/chapters, including Chapter in Book «Metabolomics», IntechOpen, 2020 «Metabolomic Discovery of Microbiota Dysfunction as the Cause of Pathology».",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",biography:'Natalia Vladimirovna Beloborodova was educated at the Pirogov Russian National Research Medical University, with a degree in pediatrics in 1980, a Ph.D. in 1987, and a specialization in Clinical Microbiology from First Moscow State Medical University in 2004. She has been a Professor since 1996. Currently, she is the Head of the Laboratory of Metabolism, a division of the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russian Federation. N.V. Beloborodova has many years of clinical experience in the field of intensive care and surgery. She studies infectious complications and sepsis. She initiated a series of interdisciplinary clinical and experimental studies based on the concept of integrating human metabolism and its microbiota. Her scientific achievements are widely known: she is the recipient of the Marie E. Coates Award \\"Best lecturer-scientist\\" Gustafsson Fund, Karolinska Institutes, Stockholm, Sweden, and the International Sepsis Forum Award, Pasteur Institute, Paris, France (2014), etc. Professor N.V. Beloborodova wrote 210 papers, five books, 10 chapters and has edited four books.',institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"354260",title:"Ph.D.",name:"Tércio Elyan",middleName:"Azevedo",surname:"Azevedo Martins",slug:"tercio-elyan-azevedo-martins",fullName:"Tércio Elyan Azevedo Martins",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/354260/images/16241_n.jpg",biography:"Graduated in Pharmacy from the Federal University of Ceará with the modality in Industrial Pharmacy, Specialist in Production and Control of Medicines from the University of São Paulo (USP), Master in Pharmaceuticals and Medicines from the University of São Paulo (USP) and Doctor of Science in the program of Pharmaceuticals and Medicines by the University of São Paulo. Professor at Universidade Paulista (UNIP) in the areas of chemistry, cosmetology and trichology. Assistant Coordinator of the Higher Course in Aesthetic and Cosmetic Technology at Universidade Paulista Campus Chácara Santo Antônio. Experience in the Pharmacy area, with emphasis on Pharmacotechnics, Pharmaceutical Technology, Research and Development of Cosmetics, acting mainly on topics such as cosmetology, antioxidant activity, aesthetics, photoprotection, cyclodextrin and thermal analysis.",institutionString:null,institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"334285",title:"Ph.D. Student",name:"Sameer",middleName:"Kumar",surname:"Jagirdar",slug:"sameer-jagirdar",fullName:"Sameer Jagirdar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334285/images/14691_n.jpg",biography:"I\\'m a graduate student at the center for biosystems science and engineering at the Indian Institute of Science, Bangalore, India. I am interested in studying host-pathogen interactions at the biomaterial interface.",institutionString:null,institution:{name:"Indian Institute of Science Bangalore",country:{name:"India"}}},{id:"329795",title:"Dr.",name:"Mohd Aftab",middleName:"Aftab",surname:"Siddiqui",slug:"mohd-aftab-siddiqui",fullName:"Mohd Aftab Siddiqui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329795/images/15648_n.jpg",biography:"Dr. Mohd Aftab Siddiqui is currently working as Assistant Professor in the Faculty of Pharmacy, Integral University, Lucknow for the last 6 years. He has completed his Doctor in Philosophy (Pharmacology) in 2020 from Integral University, Lucknow. He completed his Bachelor in Pharmacy in 2013 and Master in Pharmacy (Pharmacology) in 2015 from Integral University, Lucknow. He is the gold medalist in Bachelor and Master degree. He qualified GPAT -2013, GPAT -2014, and GPAT 2015. His area of research is Pharmacological screening of herbal drugs/ natural products in liver and cardiac diseases. He has guided many M. Pharm. research projects. He has many national and international publications.",institutionString:"Integral University",institution:null},{id:"255360",title:"Dr.",name:"Usama",middleName:null,surname:"Ahmad",slug:"usama-ahmad",fullName:"Usama Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255360/images/system/255360.png",biography:"Dr. Usama Ahmad holds a specialization in Pharmaceutics from Amity University, Lucknow, India. He received his Ph.D. degree from Integral University. Currently, he’s working as an Assistant Professor of Pharmaceutics in the Faculty of Pharmacy, Integral University. From 2013 to 2014 he worked on a research project funded by SERB-DST, Government of India. He has a rich publication record with more than 32 original articles published in reputed journals, 3 edited books, 5 book chapters, and a number of scientific articles published in ‘Ingredients South Asia Magazine’ and ‘QualPharma Magazine’. He is a member of the American Association for Cancer Research, International Association for the Study of Lung Cancer, and the British Society for Nanomedicine. Dr. Ahmad’s research focus is on the development of nanoformulations to facilitate the delivery of drugs that aim to provide practical solutions to current healthcare problems.",institutionString:"Integral University",institution:{name:"Integral University",country:{name:"India"}}},{id:"30568",title:"Prof.",name:"Madhu",middleName:null,surname:"Khullar",slug:"madhu-khullar",fullName:"Madhu Khullar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/30568/images/system/30568.jpg",biography:"Dr. Madhu Khullar is a Professor of Experimental Medicine and Biotechnology at the Post Graduate Institute of Medical Education and Research, Chandigarh, India. She completed her Post Doctorate in hypertension research at the Henry Ford Hospital, Detroit, USA in 1985. She is an editor and reviewer of several international journals, and a fellow and member of several cardiovascular research societies. Dr. Khullar has a keen research interest in genetics of hypertension, and is currently studying pharmacogenetics of hypertension.",institutionString:"Post Graduate Institute of Medical Education and Research",institution:{name:"Post Graduate Institute of Medical Education and Research",country:{name:"India"}}},{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",biography:"Xianquan Zhan received his MD and Ph.D. in Preventive Medicine at West China University of Medical Sciences. He received his post-doctoral training in oncology and cancer proteomics at the Central South University, China, and the University of Tennessee Health Science Center (UTHSC), USA. He worked at UTHSC and the Cleveland Clinic in 2001–2012 and achieved the rank of associate professor at UTHSC. Currently, he is a full professor at Central South University and Shandong First Medical University, and an advisor to MS/PhD students and postdoctoral fellows. He is also a fellow of the Royal Society of Medicine and European Association for Predictive Preventive Personalized Medicine (EPMA), a national representative of EPMA, and a member of the American Society of Clinical Oncology (ASCO) and the American Association for the Advancement of Sciences (AAAS). He is also the editor in chief of International Journal of Chronic Diseases & Therapy, an associate editor of EPMA Journal, Frontiers in Endocrinology, and BMC Medical Genomics, and a guest editor of Mass Spectrometry Reviews, Frontiers in Endocrinology, EPMA Journal, and Oxidative Medicine and Cellular Longevity. He has published more than 148 articles, 28 book chapters, 6 books, and 2 US patents in the field of clinical proteomics and biomarkers.",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",country:{name:"China"}}},{id:"297507",title:"Dr.",name:"Charles",middleName:"Elias",surname:"Assmann",slug:"charles-assmann",fullName:"Charles Assmann",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/297507/images/system/297507.jpg",biography:"Charles Elias Assmann is a biologist from Federal University of Santa Maria (UFSM, Brazil), who spent some time abroad at the Ludwig-Maximilians-Universität München (LMU, Germany). He has Masters Degree in Biochemistry (UFSM), and is currently a PhD student at Biochemistry at the Department of Biochemistry and Molecular Biology of the UFSM. His areas of expertise include: Biochemistry, Molecular Biology, Enzymology, Genetics and Toxicology. He is currently working on the following subjects: Aluminium toxicity, Neuroinflammation, Oxidative stress and Purinergic system. Since 2011 he has presented more than 80 abstracts in scientific proceedings of national and international meetings. Since 2014, he has published more than 20 peer reviewed papers (including 4 reviews, 3 in Portuguese) and 2 book chapters. He has also been a reviewer of international journals and ad hoc reviewer of scientific committees from Brazilian Universities.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",country:{name:"Brazil"}}},{id:"217850",title:"Dr.",name:"Margarete Dulce",middleName:null,surname:"Bagatini",slug:"margarete-dulce-bagatini",fullName:"Margarete Dulce Bagatini",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/217850/images/system/217850.jpeg",biography:"Dr. Margarete Dulce Bagatini is an associate professor at the Federal University of Fronteira Sul/Brazil. She has a degree in Pharmacy and a PhD in Biological Sciences: Toxicological Biochemistry. She is a member of the UFFS Research Advisory Committee\nand a member of the Biovitta Research Institute. She is currently:\nthe leader of the research group: Biological and Clinical Studies\nin Human Pathologies, professor of postgraduate program in\nBiochemistry at UFSC and postgraduate program in Science and Food Technology at\nUFFS. She has experience in the area of pharmacy and clinical analysis, acting mainly\non the following topics: oxidative stress, the purinergic system and human pathologies, being a reviewer of several international journals and books.",institutionString:"Universidade Federal da Fronteira Sul",institution:{name:"Universidade Federal da Fronteira Sul",country:{name:"Brazil"}}},{id:"226275",title:"Ph.D.",name:"Metin",middleName:null,surname:"Budak",slug:"metin-budak",fullName:"Metin Budak",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/226275/images/system/226275.jfif",biography:"Metin Budak, MSc, PhD is an Assistant Professor at Trakya University, Faculty of Medicine. He has been Head of the Molecular Research Lab at Prof. Mirko Tos Ear and Hearing Research Center since 2018. His specializations are biophysics, epigenetics, genetics, and methylation mechanisms. He has published around 25 peer-reviewed papers, 2 book chapters, and 28 abstracts. He is a member of the Clinical Research Ethics Committee and Quantification and Consideration Committee of Medicine Faculty. His research area is the role of methylation during gene transcription, chromatin packages DNA within the cell and DNA repair, replication, recombination, and gene transcription. His research focuses on how the cell overcomes chromatin structure and methylation to allow access to the underlying DNA and enable normal cellular function.",institutionString:"Trakya University",institution:{name:"Trakya University",country:{name:"Turkey"}}},{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",slug:"anca-pantea-stoian",fullName:"Anca Pantea Stoian",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",biography:"Anca Pantea Stoian is a specialist in diabetes, nutrition, and metabolic diseases as well as health food hygiene. She also has competency in general ultrasonography.\n\nShe is an associate professor in the Diabetes, Nutrition and Metabolic Diseases Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania. She has been chief of the Hygiene Department, Faculty of Dentistry, at the same university since 2019. Her interests include micro and macrovascular complications in diabetes and new therapies. Her research activities focus on nutritional intervention in chronic pathology, as well as cardio-renal-metabolic risk assessment, and diabetes in cancer. She is currently engaged in developing new therapies and technological tools for screening, prevention, and patient education in diabetes. \n\nShe is a member of the European Association for the Study of Diabetes, Cardiometabolic Academy, CEDA, Romanian Society of Diabetes, Nutrition and Metabolic Diseases, Romanian Diabetes Federation, and Association for Renal Metabolic and Nutrition studies. She has authored or co-authored 160 papers in national and international peer-reviewed journals.",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",country:{name:"Romania"}}},{id:"279792",title:"Dr.",name:"João",middleName:null,surname:"Cotas",slug:"joao-cotas",fullName:"João Cotas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/279792/images/system/279792.jpg",biography:"Graduate and master in Biology from the University of Coimbra.\n\nI am a research fellow at the Macroalgae Laboratory Unit, in the MARE-UC – Marine and Environmental Sciences Centre of the University of Coimbra. My principal function is the collection, extraction and purification of macroalgae compounds, chemical and bioactive characterization of the compounds and algae extracts and development of new methodologies in marine biotechnology area. \nI am associated in two projects: one consists on discovery of natural compounds for oncobiology. The other project is the about the natural compounds/products for agricultural area.\n\nPublications:\nCotas, J.; Figueirinha, A.; Pereira, L.; Batista, T. 2018. An analysis of the effects of salinity on Fucus ceranoides (Ochrophyta, Phaeophyceae), in the Mondego River (Portugal). Journal of Oceanology and Limnology. in press. DOI: 10.1007/s00343-019-8111-3",institutionString:"Faculty of Sciences and Technology of University of Coimbra",institution:null},{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/279788/images/system/279788.jpg",biography:"Leonel Pereira has an undergraduate degree in Biology, a Ph.D. in Biology (specialty in Cell Biology), and a Habilitation degree in Biosciences (specialization in Biotechnology) from the Faculty of Science and Technology, University of Coimbra, Portugal, where he is currently a professor. In addition to teaching at this university, he is an integrated researcher at the Marine and Environmental Sciences Center (MARE), Portugal. His interests include marine biodiversity (algae), marine biotechnology (algae bioactive compounds), and marine ecology (environmental assessment). Since 2008, he has been the author and editor of the electronic publication MACOI – Portuguese Seaweeds Website (www.seaweeds.uc.pt). He is also a member of the editorial boards of several scientific journals. Dr. Pereira has edited or authored more than 20 books, 100 journal articles, and 45 book chapters. He has given more than 100 lectures and oral communications at various national and international scientific events. He is the coordinator of several national and international research projects. In 1998, he received the Francisco de Holanda Award (Honorable Mention) and, more recently, the Mar Rei D. Carlos award (18th edition). He is also a winner of the 2016 CHOICE Award for an outstanding academic title for his book Edible Seaweeds of the World. In 2020, Dr. Pereira received an Honorable Mention for the Impact of International Publications from the Web of Science",institutionString:"University of Coimbra",institution:{name:"University of Coimbra",country:{name:"Portugal"}}},{id:"61946",title:"Dr.",name:"Carol",middleName:null,surname:"Bernstein",slug:"carol-bernstein",fullName:"Carol Bernstein",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61946/images/system/61946.jpg",biography:"Carol Bernstein received her PhD in Genetics from the University of California (Davis). She was a faculty member at the University of Arizona College of Medicine for 43 years, retiring in 2011. Her research interests focus on DNA damage and its underlying role in sex, aging and in the early steps of initiation and progression to cancer. In her research, she had used organisms including bacteriophage T4, Neurospora crassa, Schizosaccharomyces pombe and mice, as well as human cells and tissues. She authored or co-authored more than 140 scientific publications, including articles in major peer reviewed journals, book chapters, invited reviews and one book.",institutionString:"University of Arizona",institution:{name:"University of Arizona",country:{name:"United States of America"}}},{id:"182258",title:"Dr.",name:"Ademar",middleName:"Pereira",surname:"Serra",slug:"ademar-serra",fullName:"Ademar Serra",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/182258/images/system/182258.jpeg",biography:"Dr. Serra studied Agronomy on Universidade Federal de Mato Grosso do Sul (UFMS) (2005). He received master degree in Agronomy, Crop Science (Soil fertility and plant nutrition) (2007) by Universidade Federal da Grande Dourados (UFGD), and PhD in agronomy (Soil fertility and plant nutrition) (2011) from Universidade Federal da Grande Dourados / Escola Superior de Agricultura Luiz de Queiroz (UFGD/ESALQ-USP). Dr. Serra is currently working at Brazilian Agricultural Research Corporation (EMBRAPA). His research focus is on mineral nutrition of plants, crop science and soil science. Dr. Serra\\'s current projects are soil organic matter, soil phosphorus fractions, compositional nutrient diagnosis (CND) and isometric log ratio (ilr) transformation in compositional data analysis.",institutionString:"Brazilian Agricultural Research Corporation",institution:{name:"Brazilian Agricultural Research Corporation",country:{name:"Brazil"}}}]}},subseries:{item:{id:"41",type:"subseries",title:"Water Science",keywords:"Water, Water resources, Freshwater, Hydrological processes, Utilization, Protection",scope:"