Summary of nonclinical study for safety and efficacy of bioengineered sphincters in C57BL/6J mice.
\r\n\tApplied and basic studies - Field studies and lab assays of fungicides can be discussed. We also look for examples of application methods, which may include timing of application, tools for application, fungicide compatibility, phytotoxicity, etc. Field trials have to have at least two years of data;
\r\n\tAdaptation of Integrated Plant Disease Management - How the IPM practice has been adapted in the field. Application of disease risk models, or use of fungicide application aids, which can be hardware or software. The introduction of a new tool for growers can also be included;
\r\n\tNovel fungicides - In addition to the traditional chemical approach, alternative materials (enzymes, oils, extracts, etc.), biological control agents, or plant defense activators can be discussed;
\r\n\tAdaptation of new technologies - Examples will be the use of unmanned vehicles, sensor technologies, advanced sprayers, or disease forecast systems for precision agriculture;
\r\n\tFungicide resistance - Unfortunately, we cannot ignore the fact that fungicide-resistant strains are widespread. Documentation of fungicide-resistant strains, the introduction of new technologies and methods can be discussed.
A healthy anorectal functionality is a coordinated interplay between the enteric nervous system, smooth muscle of internal anal sphincter (IAS), striated external anal sphincter and puborectalis muscles [1]. Anomalies in any of this individual or group of tissues may lead to anorectal irregularities and diseases [2]. Fecal incontinence (FI) is devastating from a hygiene perspective due to involuntary soiling of liquid and solid stool and results in the distressing psychosocial impact on the patient [3]. Injury to the perineum may also result in the complete or partial destruction of the anal sphincter and distal rectum potentially resulting in persistent incontinence [4]. The resulting psychological stress, social stigma, decreased self-esteem and productivity can be overwhelming. In the USA, men and women suffer from FI equally with a range of 2–6% in people aged 20–30 years. The prevalence increases to over 15% in people older than 70 years [5].
Clinical characteristics of FI have been correlated with underlying sphincter pathology [1]. In the classical FI, the pelvic floor muscles are dysfunctional (due to muscle or nerve damage) and result in the frequent urge of incontinence. The urge of incontinence is mainly due to external anal sphincter defects and lower anorectal squeeze pressures. Patients with the urge of incontinence have FI episodes with awareness of the event but cannot prevent it because of the inability to increase anorectal pressures [1, 6, 7].
The passive FI caused an isolated or combined loss of smooth muscle function (IAS), skeletal muscle function (EAS), anorectal sensory mechanisms or neural control [8, 9]. It leads to loss of the sense that rectum is full and results in unknowingly leakage of stools, mucus, and flatus. Passive incontinence occurs without the patient’s awareness of the event until after incontinence has occurred [6]. Patients with passive incontinence are more likely to have internal anal sphincter defects and lower anorectal resting pressures. The anal resting tone is produced by the internal anal sphincter (IAS) and the external anal sphincter. The IAS contributes 60–70% of the anal tone [10]. In addition, patients with passive incontinence have been shown to have more frequent and exaggerated IAS relaxation compared to continent controls [11]. Patients with FI have been shown to have variable loss of the Recto Anal Inhibitory Reflex (RAIR) [12].
Currently, there is no satisfactory long-term treatment for FI. Epidemiological studies indicated that most patients suffering from FI do not consult to clinicians and depend on self-management or rely on the use of adult diapers. The classical treatment of FI becomes more involved in accordance with the extent and severity of the incidences of incontinence.
Conservative management of FI is usually initiated with educating the patients with behavioral techniques. These techniques such as scheduling toileting and preventive strategies [13]. The next step is the incorporation of dietary changes using fiber supplements or laxative to normalize stool consistency [14]. Along with dietary modulations, antidiarrheal drugs, alpha (1 and 2) receptor agonists could also be used to control the frequency of FI episodes [15]. Pelvic floor muscle exercise and biofeedback are other conservative methods to manage initial stages of FI. Biofeedback methods are behavioral management that incorporates electronic and mechanical devices to emphasize bowel and muscle retraining. Pelvic floor muscle exercises with biofeedback improve sense and strength of pelvic floor muscles for contraction during rectal distention and uncontrollable urge of FI [16, 17]. According to an observational study, these conservative methods resulted in 50% reduction in the frequency of FI and 21% adequate relief in FI [13]. The effectiveness and success of these measures may help in the management of mild cases of FI.
If the patient does not improve with the mentioned conservative methods, the patient is offered advanced therapies. Advanced therapies are more invasive and involve different levels of surgical interventions such as electrical stimulation, sphincteroplasty, injection of bulking agents, and implantable devices. Sacral nerve and tibial nerve stimulation found to be more effective than electrical stimulation of muscles [18, 19, 20]. In a randomized controlled trial on patients with structurally intact and innervated sphincters, the implantation of a battery-operated stimulator was found to be effective from 36 to 50% [18, 19]. The frequency of episodes of FI was reduced during stimulation, but unaffected without stimulation or similar to sham [13]. The implantable devices such as artificial bowel sphincter [21], magnetic beads [22] and synthetic polymer rings are implanted around the anal canal to augment the pressure. There is a lack of randomized controlled trial towards long-term safety and efficacy of these procedures. The sphincteroplasties (suturing of the separated sphincter) and graciloplasty (wrapping of gracilis muscle around the anal canal) are another class of surgical procedures to treat FI. These procedures have shown varying rates of success and high chances of obstructed defecation. Inert materials (silicone elastomers, ceramic beads) or biopolymers (polycaprolactam beads) as bulking agents injected around the anal canal to increase resting pressure [23]. There was no specific success reported regarding long-term efficacy. However, a 3-month follow up study of injection of dextranomer microspheres resulted in a 50% reduction in FI frequency in 52% patients [24].
Cell delivery is advanced translation method for long-term efficacy in FI. Stem cell constructs were developed, and were able to generate smooth muscle tone but lacked innervation [25]. Autologous transplantation of muscle progenitor cells into the sphincters exhibited potentials for re-stabilization of myogenic functionality in the anal sphincters [26]. Delivery of autologous human adipose-derived stem cells in poorly functioning sphincter muscle as replacement of fibrous tissues acted as a mechanical support for physiological functions [27]. Injection of autologous myoblasts into the external anal sphincter defect also resulted as a safe and promising approach to improve symptoms of FI induced owing to obstetric anal sphincter trauma [28]. Sphincters are complex organs for cell delivery. There are several challenges to overcome in direct cell delivery, such as specific types and dosages of cells, circular distribution and orientation of cells around the anal canal after injection, functional integration with host cells and long-term effects such as biodistribution, tumorigenicity.
Current cell delivery technologies focus either on the reinstatement of the striated muscle of the external anal sphincter or mechanical support to the sphincter, with little attention on the reinstatement of IAS function [29, 30, 31, 32]. The terminal gut function requires coordinated contraction and relaxation of the smooth muscle of rectum mediated through the enteric nervous system of IAS [2, 6]. To remedy an injured anus, it is imperative to reinstate both smooth muscle and intrinsic neural components of IAS. We describe the evolution of a regenerative medicine approach proposed to provide critical components to reinstate function in the anorectum and remedy passive fecal incontinence caused by injury to the IAS. According to this hypothesis, implantation of engineered autologous BioSphincters reinstate IAS function and restore fecal continence. Autologous smooth muscle and neural progenitor cells from gut biopsies were used to bioengineer intrinsically innervated IAS [33, 34]. Autologous functional intrinsically innervated IAS construct was successfully implanted into healthy animal models. Following implantation in rodents, the engineered sphincters became vascularized and maintained their phenotype and functionality [35, 36, 37, 38]. A large animal model of passive fecal incontinence was developed and demonstrated sustained restoration of fecal continence, and restoration of basal tone and restoration of RAIR after implantation of engineered autologous, intrinsically innervated internal anal sphincter (IAS) BioSphincters [10, 39] (Figure 1).
Regenerative medicine approach to treat fecal incontinence using autologous bioengineered BioSphincter.
This chapter summarizes the regenerative medicine approach of bioengineering of BioSphincters, including developmental stages of the technology, challenges, process optimization, characterization, detail pre-clinical evaluation of the BioSphincter towards the treatment of FI.
This chapter encompasses both in vitro and in vivo studies designed to support the safety and efficacy of bioengineered sphincters. Studies performed in vitro include the generation of three-dimensional internal anal sphincter models using rabbit IAS smooth muscle cells and human IAS smooth muscle cells. The in vitro studies also describe the intrinsical innervation of bioengineered IAS sphincters. Studies performed in vivo are described in two parts, small animal rodent studies and a large animal, rabbit fecal incontinent model. Small animal rodent studies included: (1) generation and implantation of IAS smooth muscle cell sphincter into a C57BL/6 J rodent; (2) generation and implantation of human innervated bioengineered sphincters into an athymic rodent model, at subcutaneous and peri-anal sites. Large animal studies demonstrating successful implantation of intrinsically innervated autologous IAS BioSphincters were conducted in a rabbit model of fecal incontinent.
The objective of the early studies was to develop an in-vitro three-dimensional (3-D) physiological model of the IAS smooth muscle cells. In this initial attempt, rabbit origin IAS smooth muscles were cultured on top of a loose fibrin gel; subsequently, these cells migrated and self-assembled in circumferential alignment. As the cells matured, the fibrin gel contracted around a 5-mm-diameter silicon mold, resulting in a 3-D cylindrical ring of sphincteric tissue [40].
Histological analysis exhibited a gradient of cell alignment in the bioengineered IAS sphincters. The engineered sphincters were analyzed for physiological functionality using an isometric force transducer. Constructs were placed between a stationary central pin and the measuring arm of the organ bath transducer (Harvard Apparatus, Holliston, MA). The bioengineered sphincter generated a spontaneous basal tone, and treatment with 8-bromo-cAMP (8-Br-cAMP) resulted in relaxation. In the next step, agonist-induced stimulation (using acetylcholine) resulted in calcium- and concentration-dependent peak contraction. This effect was diminished by the addition of 8-Br-cAMP. Similar bioengineered IAS sphincters were also generated using colonic smooth muscle cells. IAS constructs display significant differences in functionality compared to colonic smooth muscle cells constructs, which confirmed tissue specificity and functionally to IAS [40].
This was the first successful attempt to develop 3-D in vitro model of engineered IAS sphincters using smooth muscle cells of IAS. Bioengineered IAS sphincters displayed circular cell alignment and physiological functionality. The functionality and physiological response in engineered tissues exhibited similarity to IAS smooth muscle in vivo [38].
After successful bioengineering an IAS specific sphincter tissues, the next goal was to evaluate the in vivo biocompatibility and adverse reaction. The objective of these studies was to test the post-implantation functionality of bioengineered sphincters engineered using IAS smooth muscle cells. Table 1 summarized the detail study design.
Steps | Study objective(s) | Test article | Animal model | Key outcome (e.g., safety (tumor/tox/biodistribution), efficacy, characterization, stability, degradation) |
---|---|---|---|---|
Isolation of SMC | To isolate IAS smooth muscle cells (SMC) and characterization of smooth muscle | In vitro expanded IAS smooth muscle cells | C57BL/6J mice | Smooth muscle cells expressed cell lineage appropriate phenotype markers |
Bioengineering sphincters with smooth muscle | Characterize the bioengineered sphincters | Bioengineered sphincters | C57BL/6J mice | Formation of stable sphincters |
Implantation of bioengineered sphincters | Optimization of the implantation procedure | Bioengineered sphincters | C57BL/6J mice | Bioengineered sphincters were implanted subcutaneously on syngeneic mice (C57BL/6J) model |
Bioengineered sphincters histopathology | Analysis of fibrosis/inflammation and functional activity | Implanted bioengineered sphincters | C57BL/6J mice | No fibrosis or inflammation was observed in bioengineered sphincter implants |
Summary of nonclinical study for safety and efficacy of bioengineered sphincters in C57BL/6J mice.
In this endeavor, smooth muscle cells were isolated from the IAS of donor C57BL/6 mice. Smooth muscle cell constructs were engineered on Sylgard coated plates using fibrin gel, as described previously [40]. The engineered constructs were successfully implanted into the subcutaneous region of same strain mice and treated with either fibroblastic growth factor-2 or saline as controls using a micro-osmotic pump. Mice were euthanized after 4 weeks, and the implant was harvested. The implant was intact, healthy in color without any degradation, and interestingly displayed muscle attachment to the back of the mouse, with neovascularization. Constructs exhibited no external sign of inflammation, fibrosis, or infection, because of the use of syngeneic tissue. The supplement of FGF-2 also helped in tissue viability, cellular integrity, and vascularization. The harvested tissues maintained smooth muscle alignment and phenotype [37, 38].
The post-implant harvested constructs were analyzed for force generation. The harvested implants generated and maintained the spontaneous basal tone in the absence of any external stimuli. The developed tone confirmed the integrity of ionic membrane characteristics, membrane receptors and their intracellular signaling mechanisms for contraction and relaxation. On treatment of a relaxing stimulant such as a vasoactive intestinal peptide (VIP), the force and magnitude of relaxation were consistent before and after implantation. The rapid, and dose-dependent sustained (over 30 min without signs of muscle fatigue) contractions on the treatment of acetylcholine and phorbol dibutyrate was elicited as well. The physiological studies confirmed that implanted bioengineered sphincters maintain IAS physiological functionality after implantation [37, 38].
In summary, IAS sphincters using smooth muscle tissue could be bioengineered. The bioengineered sphincters were cytocompatibility, functional, without any adverse reaction and had potential to be used as a graft for dysfunctional internal anal sphincter [37, 38].
The preliminary work in the previous sections using SMCs harvested from animal models confirmed the feasibility of engineering functional physiologic IAS constructs and initial biocompatibility. [40]. The next objective was to validate the feasibility of engineering IAS sphincter constructs from SMCs of human IAS origin.
Human IAS was received from NDRI and SMCs were harvested following previously described protocol. At confluency, SMCs were seeded on Sylgard coated plates with fibrin gel. Cells migrated and aligned circularly around the Sylgard mold located at the center of the plate. All the 3-D bioengineered sphincter constructs successfully formed within 5–10 days of seeding of Human IAS SMCs [34].
The developed human IAS constructs displayed the essential characteristics of a native functional IAS; the bioengineered IAS constructs able to generate the spontaneous myogenic basal tone and respond to different pharmacological agents. Bioengineered human IAS sphincters also exhibited dose-dependent force generation in response to different stimulants. The IAS smooth muscle constructs displayed a tissue-specific basal tone compared to colonic muscle cells. The basal tone, acetylcholine-induced contraction and PdBU generated were reduced by calphostin-C but not with Y-27632. The detailed functionality resulted that the protein kinase C (PKC) pathway (independent of the Rho/ROCK pathway) appeared to be responsible for IAS specific tone and contractions [34].
The process of bioengineering IAS constructs using human IAS smooth muscles was highly reproducible. The developed IAS muscle constructs were functionally similar to native IAS sphincters. This was the first report demonstrating the generation of a functional in vitro model of human IAS that may be used for the elucidation of mechanisms associated with smooth muscle sphincter myogenic malfunction and for the investigation of treatments for fecal incontinence [34].
In the previous sections, IAS muscle constructs were successfully bioengineered with animal and human origin IAS circular muscles. The bioengineered mouse IAS muscle constructs displayed physiological functionality after implantation in wild type mice. However, compare to anatomy and physiology of native IAS sphincters, the bioengineered muscle constructs lacked innervation of the neuronal population. Therefore, the next target in these studies was to intrinsically innervation of bioengineered IAS muscle constructs and evaluation of cellular viability, physiological functionality, and safety after implantation. Table 2 summarized the detail study design.
Steps | Study objective(s) | Test article | Animal model | Key outcome (e.g., safety (tumor/tox/biodistribution), efficacy, characterization, stability, degradation) |
---|---|---|---|---|
Isolation of SMC | To isolate IAS smooth muscle cells (SMC) and characterization | In vitro expanded IAS smooth muscle cells | Cadaver human | Smooth muscle cells expressed cell lineage appropriate phenotype markers |
Isolation of neural cells from embryo of immortomouse | To isolate neural cells and characterization | In vitro expanded neural cells | h-2kb-tsA58 immortomouse | Neural cells expressed cell lineage appropriate phenotype markers |
Bioengineered Sphincters with smooth muscle and neural cells | Characterize the bioengineered sphincters | Bioengineered sphincters | Cadaver human and h-2kb-tsA58 immortomouse |
|
Implantation of bioengineered sphincters | Optimization of the implantation procedure | Bioengineered sphincters | RAG1−/−mice | Bioengineered sphincters were implanted subcutaneously on athymic mice (RAG1−/−) model |
Bioengineered sphincters histopathology | Analysis of fibrosis/inflammation and functional activity | Implanted bioengineered sphincters | RAG1−/− mice |
|
Summary of nonclinical study for safety and efficacy of bioengineered sphincters in athymic rodent model.
In this effort, the human IAS muscles were harvested and cultured as described previously. The neuronal cell line was isolated from a D13 embryo from H-2Kb-tsA58 immortomouse. The bioengineering of constructs was divided into two steps. In the first step, the isolated neuronal stem cells were mixed with hydrogel and plated in the Sylgard coated plates. After gelation, IAS origin smooth muscle cells were mixed with the collagen gel and overlaid to the previous cell-hydrogel. A fully compacted sphincter-like construct were developed in the first 60 h [35].
The neuronal stem cells differentiation towards functional neurons was carried out in a specific media targeted to neural differentiation. The bioengineering process took 9 days to generate an intrinsically innervated muscle constructs mimicking physiological functionality to native IAS tissues. The neural cell differentiation was further confirmed by positive expression of mature excitatory (choline acetyltransferase; ChAT) and inhibitory (VIP) motor neurons in the quantitative analysis using PCR. The cross-sections of engineered sphincters were demonstrated positive immunoreactivity against ChAT and VIP markers. After physiological functional analysis, the bioengineered sphincter were implanted subcutaneously into immune suppressed RAG1−/− mice for 4 weeks [35].
At harvest, the implanted construct exhibited neo-vascularization without any symptom of fibrosis or immunogenic reaction. The immuno-histological analysis confirmed that the sections of the harvested implant displayed reticulated neural network innervated into intact aligned muscles. The section displayed microvasculature and several blood vessels embedded within the implanted smooth muscles [35].
The myogenic and neuronal components were preserved after implantation. All the bioengineered constructs were able to generate myogenic spontaneous basal tone pre- and post-implantation. A rapid and robust relaxation response was observed against VIP. This relaxation was 50–70% attenuated on pre-treatment of TTX, indicated that VIP-induced relaxation has both neuronal, as well as myogenic component. The relaxation was further validated with EFS and resulted in transient relaxation ultimately recovered to basal tone. The inhibition of nitrergic and VIP-ergic EFS-induced relaxation (by antagonizing nitric oxide synthesis or receptor interaction) confirmed the relaxation of enteric nerves results in nitrergic as well as VIP-ergic inhibitory neurotransmission in the implants. The excitatory neurotransmitter Ach (and partial inhibition on pre-treatment with TTX)-induced contraction response emulated before and after implantation, confirmed synergistic involvement of both neuronal and myogenic components. Fundamental electromechanical coupling of smooth muscle was also maintained during implantation, rendering the implanted IAS physiologically similar to in vivo IAS [35].
This was the first attempt of bioengineering of intrinsically innervated human IAS constructs. Both of myogenic and neuronal components of constructs were stable, sustained, viable and synergistically responsive after implantation in immune-suppressed mice. The study also concluded that bioengineering of intrinsically innervated sphincter is feasible, scalable, and customizable to match specific size and cell population. This leads to one step closer towards bioengineering of human engineered BioSphincters.
In previous studies, IAS smooth muscle constructs were engineered [34, 40] and implanted for cytocompatibility and physiological analysis. These preliminary studies were proof of concept using human origin SMCs and immortomouse-origin neural stem cells. To translate the bioengineered sphincter to the clinical realm, it was essential to use human origin neural cells to engineer IAS sphincters.
The next objective was to develop bioengineering physiologically functional, intrinsically innervated human IAS tissues, using human origin neural cells and IAS muscle cells. Therefore, a method was optimized for the isolation of neuronal progenitor cells (NPCs) from intestinal biopsies of adult human donors. The cell culture and characterization protocol were standardized to yield an un-differentiated pure population of enteric neural progenitor cells [33].
Several matrix compositions were evaluated as a carrier for differentiation of adult enteric NPCs to functional neurons. The type-1 collagen with laminin was optimized as hydrogel for neural differentiation [41, 42]. The collagen acts as a matrix for mechanical strength and laminin is important for neuronal development. The SMCs has the ability to reform the collagen hydrogel into 3D structure due to matrix metalloproteinase activity [43]. During this restructure of hydrogel from 2D to 3D, SMCs came into close proximities of NPCs and enhanced the NPCs differentiation. Detail NPCs-SMCs interactions were studied, and it was observed that mature smooth muscle was essential for the direct differentiation of adult enteric NPCs [33]. The ratio of NPCs and SMCs were also studied and concluded that 200,000 NPCs/construct with 500,000 SMC/constructs were optimum do generate a native physiological response [33].
The constructs responded appropriately to physiologically relevant stimulatory and inhibitory neurotransmitters during functional analysis. It was validated in immunocytochemistry, the intrinsically innervated bioengineered construct exhibited excitatory and inhibitory motor neuronal population. The constructs displayed characteristics of functional mature contractile IAS smooth muscle as well. Overall, the human innervated functional IAS sphincter like tissues were successfully bioengineered and characterized [33].
After successful bioengineering of human IAS sphincter-like tissues, it was essential to evaluate the in vivo safety and functionality. In the next part of the study, a method was developed for isolation of rectal verge in an athymic rodent model. Athymic nude mice were larger animal compared to normal mice. The selection of immune deficient rat for implantation studies of human-origin bioengineered constructs was to avoid any immune rejection.
The intrinsically innervated human IAS Sphincter were bioengineered using IAS origin SMCs and enteric NPCs. The developed surgical models were used to implant bioengineered sphincter into the perianal region of athymic rats for 4 weeks, following assessment of viability and functionality [36]. All the rats survived till respective time points without any obstruction or difficulty with defecation or fecal accumulation. Histopathology analysis concluded the absence of any abscess formations, infection, or adverse reaction. The implanted constructs were stable and intact at perirectal tissue of the rat, without any sign of fibrosis or neoplasia. Immuno-histological analysis with endothelial-specific antigen, von Willebrand’s factor confirmed neovascularization and formation of several blood vessels. The contractile smooth muscle phenotype was maintained by exhibiting positive expression to human reactive muscle specific antibodies. Table 3 summarized the detail study design [36].
Steps | Study objective(s) | Test article | Animal model | Key outcome (e.g., safety (tumor/tox/biodistribution), efficacy, characterization, stability, degradation) |
---|---|---|---|---|
Isolation of SMC | To isolate IAS smooth muscle cells (SMC) and characterization | In vitro expanded IAS smooth muscle cells | Cadaver human | Smooth muscle cells expressed cell lineage appropriate phenotype markers |
Isolation of neural progenitor cells | To isolate neural progenitor cells and characterization | In vitro expanded neural progenitor cells | Cadaver human | Neural progenitor cells expressed cell lineage appropriate phenotype markers |
Bioengineered sphincters with smooth muscle and neural progenitor cells | Characterize the bioengineered sphincters | Bioengineered sphincters | Cadaver human |
|
Implantation of bioengineered sphincters | Optimization of the implantation procedure | Bioengineered sphincters | athymic nude rats | Bioengineered sphincters were implanted peri-anal site on athymic nude rats model |
Bioengineered sphincters histopathology | Analysis of fibrosis/inflammation and functional activity | Implanted bioengineered sphincters | athymic nude rats |
|
Summary of nonclinical study of safety and efficacy of peri-anal implantation of human origin bioengineered sphincters into athymic rodent model.
Pre- and post-implant physiological force measurement studies confirmed distinct characteristics like native sphincters. The engineered IAS sphincter exhibited stable spontaneous myogenic basal tone. There was a robust response to different relaxant and excitatory stimulants, which was persistent after implantation.
This study concluded that for clinical application the bioengineered sphincter could be used in an additive manner rather than in a replacement manner, where native compromised IAS sphincter can be supported by transplantation of additional bioengineered sphincters. In this way, the patient’s own IAS can be preserved and augmented with additional autologous functional neuro-muscular components [36].
This study aimed to provide data for a large animal model in support of the use of Bioengineered sphincter as a new therapy to treat FI. These nonclinical studies were conducted to test the safety and efficacy of using autologous cell bioengineered sphincters as a regenerative medicine approach for treating induced FI in rabbits. The study design consisted of four steps. Table 4 summarizes the four steps including their objectives and key outcomes.
Currently, there is no model for FI where the defect is specific to the internal anal sphincter. In humans, the IAS is responsible for 70% of anal basal pressure, anal closure, and fecal continence. The New Zealand white rabbit (female, 3.0–3.5 kg at the enrollment of the study) was chosen as an animal model because the anatomy and the surgical planes of the anal area are similar to humans. The rabbit was selected as a good model for successful identification and surgical resection of full thickness biopsies with a successful outcome. Thus, the rabbit is a good large animal model for our lab to utilize in evaluating FI. The number of animals, experimental protocols, and overall study design used in this study were reviewed and approved by the Wake Forest Institutional Animal Care and Use Committee before conducting any component of this study involving animals. Each rabbit was given a unique identification number that was printed on the cage card. Each rabbit was identified using a unique identification number. All data collected on each animal was referenced with the unique animal identification number and tattooed onto the ear of each animal to prevent mix-up. Rabbits were acclimated for at least 6 days before enrollment in the study [10, 39].
The groups of the study, summarized in Table 5, was developed to assess the post-implantation safety of bioengineered sphincters in rabbits at three-time points (3, 6, and 12 months). All animals underwent IAS hemi-sphincterectomy to induce FI. Rabbits were randomly divided into three experimental groups: (1) non-treated group (incontinent control), (2) treated group (received surgical implantation of bioengineered sphincters 6–8 weeks following sphincterectomy through a surgical opening of the anal verge), and (3) Sham surgery group (surgical opening of the anal verge was performed followed by immediate closure without implantation of bioengineered sphincters).
Steps | Study objective(s) | Test article | Animal model | Key outcome (e.g., safety (tumor/tox/biodistribution), efficacy, characterization, stability, degradation) |
---|---|---|---|---|
IAS hemi-sphincterectomy | To induce FI | Donor IAS tissue | Female New Zealand rabbits | Lack of fecal hygiene and significant reduction in anal basal pressure and RAIR |
Isolation of SMC | To isolate autologous IAS smooth muscle cells (SMC) characterization of autologous smooth muscle | In vitro expanded IAS smooth muscle cells | Female New Zealand rabbits | Smooth muscle cells expressed cell lineage appropriate phenotype markers |
Small intestinal biopsy | To isolate neural progenitor cells (NPC) characterization of autologous NPC | In vitro expanded small intestine neural progenitor cells | female New Zealand rabbits | Neural progenitor cells expressed cell lineage appropriate phenotype markers |
Bioengineered sphincters with autologous smooth muscle and neural progenitor cells | Characterize the bioengineered sphincters | Autologous bioengineered sphincters | female New Zealand rabbits | Restoration of fecal hygiene, anal basal pressure, and RAIR |
Implantation of bioengineered sphincters | Optimization of the implantation procedure | Autologous bioengineered sphincters | female New Zealand rabbits | The dosage of bioengineered sphincters was optimized four bioengineered sphincters were implanted on each rabbit in the treated group |
Anal basal pressure and RAIR | Effects of bioengineered sphincters on the restoration of continence | Autologous bioengineered sphincters | female New Zealand rabbits | Rabbits with induced FI receiving bioengineered sphincter implants had anal basal pressure, and RAIR restored to normal baseline, but rabbits with induced FI in the non-treated group and sham surgery group had consistently reduced anal basal pressure and RAIR |
Blood results | Effects of implants on blood cell counts, kidney and liver function, and electrolytes. | Implanted bioengineered sphincters | female New Zealand rabbits | There were no adverse effects of implants on blood values |
Tissue pathology | Effects of experimental conditions on tissue pathology | Implanted bioengineered sphincters | female New Zealand rabbits | There were no effects of experimental condition on local or peripheral histopathology |
Clinical presentation | Morbidity/mortality | Implanted bioengineered sphincters | female New Zealand rabbits | There were no effects of bioengineered sphincter implantation on morbidity or mortality |
IAS histopathology | Fibrosis/inflammation | Implanted bioengineered sphincters bioengineered sphincter | female New Zealand rabbits | No definitive difference between bioengineered sphincter implants and naïve. No evidence of neoplasia |
Summary of nonclinical study of safety and efficacy of bioengineered sphincters.
Study groups (no. of rabbits) | Baseline manometry | Sphincterectomy to induce FI | Manometry post sphincterectomy | 4–6 weeks post sphincterectomy | 1 month | 3 months | 6 months | 12 months |
---|---|---|---|---|---|---|---|---|
Non-treated group (11) | ✓ | ✓ | ✓ | No treatment | Manometry post sphincterectomy | |||
Treated group (10) | ✓ | ✓ | ✓ | Implant bioengineered sphincters | Manometry post implant | |||
Sham surgery group (5) | ✓ | ✓ | ✓ | Sham surgery | Manometry post sham |
Study groups for the non-clinical study.
The IAS hemi-sphincterectomy was performed on all the rabbits to induce passive FI. The development of passive FI was confirmed in each assessment of fecal hygiene and anorectal pressure. Baseline manometry readings were obtained on all rabbits before any surgeries. Following hemi-sphincterectomy, anorectal manometry was performed on all rabbits to confirm passive FI, which was identified by lack of fecal hygiene and by a significant decrease in anal basal pressure and RAIR in all rabbits [10, 39].
The SMCs were isolated from the IAS harvested during hemi-sphincterectomy. Isolated cells were characterized by α-smooth muscle actin and smoothelin markers. Cells stained positive confirming contractile phenotype of smooth muscle cells. NPCs were isolated from small intestine biopsies. Cells were then characterized by immunofluorescence and stained positive for p75NTR, Nestin, and Sox2, confirming neural crest-derived stem cells. Both cell types were expanded for 4 weeks to obtain the required number to form the bioengineered sphincters.
Intrinsically innervated IAS sphincters were bioengineered using both types of cells as described previously. Bioengineered sphincter products were characterized using different methods. The presence of aligned smooth muscle cells and the differentiated functional neural network was confirmed via immune-reactivity against smoothelin and βIII tubulin. These results further validated via positive expression of smoothelin and βIII tubulin qPCR. Engineered IAS sphincters were tested for physiological functionality. The engineered tissues able to generate the spontaneous basal tone and exhibited a robust stable response following pharmacological or electrical stimuli. The bioengineered autologous BioSphincters were implanted adjacent to IAS tissues into the respective rabbits [10, 39].
Anorectal manometry is a technique used to measure contractility in the anus and rectum. Anorectal manometry was performed initially at baseline prior to any surgery. These measurements reflected the control state for all animals in this study. Anorectal manometry was performed prior to any surgery (before animals went for any procedure) to record the baseline, and 1 month following IAS hemi-sphincterectomy (biopsy), then at 3, 6, and 12 months in each experimental group.
IAS hemi-sphincterectomy resulted in a significant decrease in anal basal pressure and RAIR compared to baseline (no surgery), supporting the validity of the induced-incontinence model. In the sham surgery group, anal basal pressure and RAIR were not improved and were comparable to readings from rabbits in the non-treated group. Compared to baseline, the basal pressure in non-treated and sham group was decreased by 41% (p < 0.0001) after 1 month of hemi-sphincterectomy and remained low up to study time point of 12 months. Similarly, RAIR was also reduced by 50.9% from the baseline (p < 0.0001). It remained low in non-treated group (49.2%) and sham groups (40.0%) compared to baseline till the study time point.
This reduced anorectal functionality was restored within 1-month post-implantation of autologous BioSphincters in the treated group. The resting pressure was returned to baseline after 4 weeks of implantation and remained similar up to 12 months. RAIR was restored by ∼88% in initial 1 month and improved within 3 months and sustained till 12 months. The restoration of basal pressure and RAIR were significantly higher (p < 0.0001) than values observed in the non-treated group and sham groups.
The IAS hemi-sphincterectomy affected fecal hygiene of the rabbits. This was evident from messy rabbit cages as feces were dispersed over the whole area of the cage. There was a definite lack of anal area hygiene as the area was always covered in a thin layer of feces. After implantation, the fecal hygiene returned to normal with a clean anal area and normal defecatory movement.
An improvement in defecatory activity was observed as early as 3 weeks after implantation of the bioengineered sphincters. Stool consistency returned to a firm pellet, similar to what was observed before FI was induced by the sphincterectomy.
The post-implant harvested tissues displayed intact BioSphincter after 12 months of implantation. The presence of a thick continuous sheet of muscles innervated with neuronal network validated the manometry outcomes. There was the absence of any fibrosis or avascular collagen around the implant, indicating no foreign-body reaction with the implants. Pathologic findings in this study were generally minor and consisted primarily of a low incidence of background changes and minor changes attributable to implantation. There was no evidence of neoplasia. These results confirmed that the bioengineered sphincters were viable and functional in vivo with the maintenance of both the muscle and neural components [10, 39].
In this study, passive Fi was successfully developed in the large animal model. The bioengineered intrinsically innervated IAS constructs from the autologous cells retrieved at biopsy. The IAS constructs were bioengineered and implanted after 6–8 weeks after harvesting the cells (Figure 2A); then, one by one, four bioengineered sphincters were implanted at the anal site (Figure 2B). The four bioengineered sphincters were stacked together at the site (Figure 2C). After 12 months of implantation, implanted bioengineered sphincters appeared intact as one tissue at the site (Figure 2D).
Different stages from bioengineered sphincter to implantation; (A) bioengineered sphincter; (B) implantation of two bioengineered sphincters; (C) 4 implanted bioengineered sphincters; and (D) implanted bioengineered sphincter after euthanasia (after 12 months of implantation).
The animals resumed normal activity and defecatory bowel movement. There was no indication of any rectal outlet obstruction or anal stenosis. Anorectal manometry was performed on the animals monthly beginning 6 weeks after implantation. The animals exhibited a reinstated basal tone and RAIR. Animals were maintained and monitored up to 12 months after implantation. At each endpoint, after euthanasia, the harvested implant was tested. Results show that the construct maintained physiological functionality. The tests show that both muscle and neural type of cells maintained their physiological function. In other experiments, we have demonstrated that the cells of the implant stayed within the implant and did not migrate outside the location of the implant.
Regeneration of an intrinsically innervated function IAS sphincter is a promising approach for long-term relief from passive FI. The IAS muscle and neural cells synergized in collagen-laminin hydrogel as a 3D sphincter like architecture, mimicking the native IAS cell orientation and innervation. The bioengineering process has been optimized, scaled up for clinical application using human origin cells. The signaling pathways for sphincter tone and contraction were characterized. The bioengineered sphincter able to generate spontaneous tone and response to different pharmacological agents was comparable to human IAS. The stability, viability and cytocompatibility analysis of engineered sphincters were carried out in vitro and in vivo conditions. The step-wise pre-clinical assessment of engineered autologous BioSphincters confirmed biocompatibility as IAS sphincter substitute, without any adverse effect. The implanted autologous BioSphincters vascularized, integrated with the impaired native IAS and regenerated stable, circularly oriented IAS muscle population, innervated with the neural network. The regeneration approach provided immediate symptomatic relief by restoration fecal hygiene. We have developed a large animal model of passive fecal incontinence and demonstrated sustained restoration of fecal continence, and restoration of basal tone and restoration of RAIR in this model after implantation of engineered autologous intrinsically innervated internal anal sphincter (IAS) BioSphincters. In a clinical scenario, this innovative approach will be able to reinstate continence, by providing an additive functional intrinsically innervated IAS bioengineered from the patient’s cells.
As summary, regeneration, and implantation of the IAS BioSphincter will benefit a large socially distressed segment of the population via restoration of physiological function of the IAS, resolve FI, and improving quality of life.
This work was supported by NIH/NIDDK STTR R42DK105593.
KNB is the founder of CELLF BIO LLC a startup biotech that has an interest in developing treatments for neurodegenerative diseases of the gut.
The wearables are identified as 1 of the 10 technologies which will change our lives [1]. They offer attractive solutions in diverse areas including healthcare, education, finance, sport, and entertainment. For example, in the area of the healthcare, wearable devices can collect data (on blood pressure, temperature, heart rate, steps, calories burned, and even glucose levels) in real-time and send this information to nearby node (on-body communication between two wearable devices) or remote station (off-body communication between a wearable device and mobile phone, tablet, or personal computer) using body area networks (BANs). In order to realize remote monitoring and real-time feedback to the user, the wearable device needs to be equipped with a sensor, processor, memory, power unit, transceiver, and an antenna.
The wearable antenna plays a significant role in the overall performance of each wireless wearable device because it determines the reliability of the wireless link and directly influences the energy efficiency and battery life of the device [2, 3]. However, because the wearable antenna operates in a specific environment (on or near to the human body), the effects due to lossy body tissues (as impedance mismatching, radiation-pattern distortion, radiation efficiency reduction) make the design of a wearable antenna a difficult task. Therefore, care is needed in designing antennas for wearable devices [4, 5].
The design of wearable antennas for body-centric communications is discussed in [2, 3, 4, 5, 6, 7, 8], and the most important requirements are summarized Table 1.
Requirements | |
---|---|
Electrical |
|
Mechanical |
|
Safety | |
Manufacturing |
|
General design requirements for wearable antennas.
Generally, in wearable antenna design, electrical, mechanical, and safety requirements should be taken into account. Moreover, to obtain the best antenna performance, the antenna-human interaction needs to be taken into account during the first stage of the wearable antenna design process. As the body is composed of different tissues with different material properties, the choice of a proper body model (called phantom) is critical in ensuring a good trade-off between simulation accuracy and complexity [4]. For the initial design, the simplest and fastest option is to use a homogenous flat phantom of the human body. A detailed review of various types of human body models is presented in [3, 11, 12].
The selection of materials for the conductive and non-conductive elements of the antenna is also an important factor to consider, especially when the antenna is required to possess characteristics such as low-profile, lightweight, compactness, flexibility, and robust. Hence, flexible, thinner, and low-cost materials should be chosen to make the antenna conformable to the person wearing the wearable device and to meet mechanical and manufacturing requirements. Materials like polymers [3, 13], non-conductive fabrics [4], paper [14], and flex film [5, 6] have been used as the substrates in the existing wearable antennas [3, 15]. The choice of material for the antenna’s substrate is a critical factor in the performance of the antenna and is examined in depth in Section 3. After the selection of a suitable material for the antenna substrate, its electromagnetic properties (complex permittivity and permeability and loss tangent) must be characterized via measurements [4]. Several (resonant and non-resonant) methods described in [16] can be used for characterization of the electromagnetic properties of flexible materials. For conductive antenna elements, thinner copper or brass foils, electrically conductive fabrics, threads, or ink can be chosen.
Finally, the impact of wearable antennas on the human body also needs to be considered. To study possible effects on body tissues, we must examine the rate at which energy (W) is deposited in a given volume (V) of tissue with specific density (ρ), as shown in Eq. (1):
SAR can be also calculated from the electric field (E) within the tissue, as shown in Eq. (2):
where σ is the electrical conductivity of the tissue [S/m].
To control the possibility of high local peaks, the maximum permitted SAR is specified as applying to any 1 g or 10 g of tissue [17].
Therefore, the antenna topology with high body-antenna isolation is required to guarantee satisfactory performance and to reduce the SAR when the antenna is placed on the human body. Several antenna designs with a high degree of isolation between the antenna and human tissues have been reported. These designs use a full ground plane [15, 18], an artificial magnetic conducting surface [19], a reflector [13], an electromagnetic bandgap structure [20], or substrate integrated waveguide techniques [2, 21].
Based on the above requirements, a flexible wearable antenna with a low profile, high radiation efficiency, and low SAR can be developed using the algorithm for numerical design and optimization proposed in [3].
After that, a prototype of the optimized design of the wearable antenna can be fabricated using the methods for fabrication of flexible and wearable antennas presented in [5, 8, 13].
Finally, the antenna designs need to be confirmed by both numerical simulations and experimental measurements, first in free space and after that, when antennas are placed on a human body model.
During the wearable antenna design and development process, measurements of classical parameters that describe the antenna’s performance such as reflection coefficient magnitude (|S11|), bandwidth, gain, radiation efficiency, and radiation patterns need to be performed using passive approaches. In passive antenna measurements, the prototype is connected to the measuring equipment (a network analyzer, signal generator, receiver, or spectrum analyzer) using an external coaxial cable. Moreover, full verification of the antenna design requires more extensive testing, such as flexibility tests (described in [4, 5]) and tests which represent the behavior of the antenna in real working conditions (also called active antenna measurements). In these measurements, a wearable device simulator (or a radio communication test module) is used to set up a connection to the antenna under test, which is embedded into a complete operating wearable device (or connected to a radio communication module) to reproduce real-world behavior. In order to conduct accurate and repeatable measurements, a test (anechoic or reverberation) chamber with a controlled environment is required. The schematic setup for passive (cable-fed) and active testing of antennas in an anechoic and reverberation chamber can be found in [22].
Moreover, different measurement scenarios should be investigated to guarantee optimal antenna performance in a variety of operating conditions: free-space (the antenna is in an isolated test fixture made from foam, placed away from the human body) and on-body scenarios (the antenna is very close to the human body phantom or in direct contact with the phantom).
For wearable applications, the effect of antennas on the human body also must be quantified [8]. The SAR distribution can be measured by the thermographic method (described in [23]) or by a commercial DASY-4 system (presented in [24]).
The major challenge of designing wearable antennas is to make an antenna that is invisible and unobtrusively integrated inside a garment as well as comfortable and non-hindering for the wearer [7, 25]. The integration of antennas into clothes involves using textile materials as dielectric substrates [7].
The substrate material offers not only ergonomic properties and ease of integration into the users’ garments, but it impacts on the antenna performance. Moreover, the thickness of the substrate also influences the overall antenna dimensions [26]. A brief survey on electromagnetic (EM) properties of textile materials used in wearable antennas can be found in [4, 26, 27]. However, little information can be found on the effect of EM properties of the substrate materials on the performance of wearable antennas with body-antenna isolation. The following subsections describe the characterization of the EM properties of textile materials (polar fleece, polyester, polyamide-elastane, cotton, and denim) and their effects on performance (resonant frequency, bandwidth, radiation efficiency, and maximum gain) of wearable antennas with body-antenna isolation.
The EM properties (real (
EM properties | ||||||
---|---|---|---|---|---|---|
Thickness mm | Material layers | Density g/cm3 | ||||
Polar fleece | 1.5 | One | 1.21831 | 0.00221 | 0.00183 | 0.20 |
Polyester | 0.35 | One | 1.49797 | 0.00578 | 0.00389 | 1.38 |
1.5 | Four | 1.62022 | 0.00824 | 0.00509 | ||
Polyamide-elastane | 0.5 | One | 1.52389 | 0.03103 | 0.02040 | 1.14 |
1.5 | Three | 1.54927 | 0.02268 | 0.01463 | ||
Cotton | 0.52 | One | 1.63850 | 0.10199 | 0.06218 | 1.52 |
1.5 | Three | 1.63215 | 0.08049 | 0.04930 | ||
Denim | 0.5 | One | 1.86986 | 0.11786 | 0.06310 | 1.54 |
1.5 | Three | 1.87813 | 0.11166 | 0.05942 |
Parameters of the textile materials and results from measurements of their EM properties.
From the results presented in Table 2, it can be observed that the EM properties of the textile materials show a variation with increasing number of layers in the sample. Moreover, the
A comparison of different textile materials at the same thickness (1.5 mm) shows that denim has the highest values of
Based on the EM properties provided by the above subsection, five textile wearable antennas with high body-antenna isolation were designed using the xFDTD (xFDTD, Remcom Inc., State College, PA, USA), a finite-difference time-domain (FDTD) method-based simulation software. The configuration of the wearable textile antenna with a substrate from denim fabric is illustrated in Figure 1a. It consists of a hexagonal shaped monopole on the top of the substrate and a planar rectangular reflector on the bottom. The antenna is fed by a coplanar waveguide (CPW) feed line. This antenna structure is chosen due to its advantages of lightweight, low-profile, low-cost, and easy fabrication, which satisfies the requirements for wearable antennas presented in Table 1.
The (a) 3D numerical model of the textile antenna with a substrate from denim fabric and photographs of the fabricated prototypes, (b) antenna with a denim substrate, (c) antenna with a cotton substrate, (d) antenna with a polyester substrate, (e) antenna with a polyamide-elastane substrate, and (f) antenna with a polar fleece substrate.
Then, five antennas were manufactured by a cost-effective and time-saving fabrication technique, as described in [28]. The radiating elements of the antennas were built using a highly conductive woven fabric P1168 (supplied by Adafruit, Italy) with a thickness of 0.08 mm and sheet resistance of 0.05 Ω/sq. Figure 1b–f shows the fabricated prototypes of the antennas.
Two scenarios were investigated in this subsection to study the effect of the EM properties of the textile substrate on the antenna performance.
Configuration of the wearable antenna.
At the first stage, a wearable antenna with a substrate from polar fleece was designed (Figure 2) to operate in the 2.4–2.48 GHz industrial scientific and medical (ISM) band. The geometrical dimensions of the monopole, CPW, and reflector were tuned by numerical simulations, following the optimization procedure in [3], to achieve the optimal impedance match, high radiation efficiency, and high front-to-back (FB) ratio at the targeted ISM band. The dimensions of the antenna are listed in Table 3.
Antenna with an air-filled substrate | Antenna with a polyester substrate | Antenna with a polyamide-elastane substrate | Antenna with a cotton substrate | Antenna with a denim substrate | Antenna with a polar fleece substrate | |
---|---|---|---|---|---|---|
A | 141.0 | 141.0 | 141.0 | 141.0 | 141.0 | 141.0 |
B | 103.5 | 103.5 | 103.5 | 103.5 | 103.5 | 103.5 |
C | 134.0 | 110.0 | 112.0 | 109.0 | 103.0 | 123.0 |
D | 21.0 | 21.0 | 21.0 | 21.0 | 21.0 | 21.0 |
E | 59.0 | 47.0 | 48.0 | 46.5 | 43.5 | 53.5 |
F | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
G | — | 16.5 | 15.5 | 17.0 | 20.0 | 10.0 |
H | — | 16.5 | 15.5 | 17.0 | 20.0 | 10.0 |
I | 90.0 | 78.0 | 79.0 | 77.5 | 74.5 | 84.5 |
J | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
K | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
O1 | 17.0 | 17.0 | 17.0 | 17.0 | 17.0 | 17.0 |
O2 | 17.0 | 17.0 | 17.0 | 17.0 | 17.0 | 17.0 |
R1 | 138.0 | 127.0 | 127.0 | 127.0 | 127.0 | 127.0 |
R2 | 93.0 | 87.5 | 87.5 | 87.5 | 87.5 | 87.5 |
The geometrical dimensions of the optimized antennas.
For comparison purposes, five different numerical models of the wearable antenna with different substrates (from cotton, denim, polyester, polyamide-elastane, air) and geometrical dimensions as that of the antenna with a substrate from polar fleece were built. The resonant frequency of the antennas calculated by the simulations is compared in Figure 3a.
Variation of (a) resonant frequencies and (b) bandwidths with the
As expected, the antenna with a substrate filled by air (
Next, the effects of the EM properties of the textile substrate on the bandwidth were evaluated and illustrated in Figure 3b–d. The bandwidth of all antennas was defined for |S11| = −10 dB. Figure 3b shows the bandwidth as a function of the
As shown in Figure 3d, the antennas with a substrate from denim and cotton have the largest bandwidth (150.5 MHz) because these two fabrics have the highest values of
From the results mentioned here, it also can be concluded that fabrics made from synthetic fibers (polar fleece, polyamide-elastane, polyester) exhibit a narrow bandwidth compared to the fabrics made from natural fibers (cotton and denim).
Moreover, it is well known that the bandwidth and radiation efficiency not only are determined by the substrate’s EM properties and thickness but also depend on the size of the antenna radiating elements and matching. Consequently, it is necessary to know the effect of the EM properties of the textile materials on antenna performance when antenna elements are optimized. For this reason, in the second scenario, the structure of the antennas with a polyester, polyamide-elastane, denim, cotton, and air-filled substrate was optimized for the maximum impedance bandwidth, radiation efficiency, and high FB ratio at the 2.4–2.48 GHz frequency band. The optimized dimensions are listed in Table 3.
To illustrate the effects of textile materials on the antenna performance, the optimized antenna designs considered in Table 3 were evaluated in the free space and when placed on a flat phantom. First, a flat homogeneous semisolid phantom of the human body with dimensions 265 × 50 × 350 mm to emulate 2/3 muscle tissue was fabricated accordingly to the recipe and technique described in [29]. After the phantom mixture had solidified, EM properties were measured at 2.564 GHz:
Flat phantom and the antenna with a denim substrate: (a) a photograph and (b) numerical models.
The results from numerical simulations in both free space and on-body are presented in Figures 5–9. Figure 5 displays the bandwidth as a function of the loss tangent of the textile substrate. As seen in these plots, the bandwidth remains unchanged in both free space (Figure 5a) and on-body (Figure 5b) for the antennas with a polyester, cotton, and denim substrate. A slight bandwidth broadening is observed when the optimized antennas with an air-filled, polar fleece and polyamide-elastane substrate are placed on the flat phantom. The reason for this effect is that the real part of the relative permittivity of these materials (at a thickness of 1.5 mm, see Table 2) is between 1 and 1.55. Consequently, we can conclude that the performance of the wearable antennas with substrates made from fabrics with real part of the relative permittivity small than 1.6 will be influent from the proximity of the human body.
Variation of the bandwidth with the loss tangent of the textile substrates used in optimized wearable antennas with geometrical dimensions listed in
Simulated radiation efficiency curves versus frequency of the wearable antennas: in the free space (FS) and on the flat phantom (FP).
Simulated maximum gain curves versus frequency of the wearable antennas: in the free space (FS) and on the flat phantom (FP).
Simulated three-dimensional radiation patterns at 2.4, 2.44, 2.46, and 2.48 GHz for the antenna with a polar fleece substrate (a) in the free space and (b) on the flat phantom.
Simulated three-dimensional radiation patterns at 2.4, 2.44, 2.46, and 2.48 GHz for the antenna with a denim substrate (a) in the free space and (b) on the flat phantom.
A comparison between the simulated radiation efficiency of the antennas is displayed in Figure 6. The radiation efficiency is defined as the ratio of the power radiated from the antenna to the net input power, which is the radiated power plus material losses [30]. The comparison shows that the antennas with polar fleece, polyester, and polyamide-elastane substrates achieve a much better radiation efficiency than the antennas with substrates from cotton and denim. These differences are attributed to the fact that fabrics made from synthetic fibers have lower
From the results presented in Figure 6, a slight reduction of radiation efficiency when the antennas are placed on the flat phantom (FP) also can be observed. For example, across the operating band, the radiation efficiency of the antenna with a substrate from polar fleece is estimated to be −0.47 dB (90%) in the free space and − 1.1 dB (78%) when it is placed on the phantom.
The maximum gain of the optimized antennas was also evaluated and illustrated in Figure 7. As seen, in the target frequency band, the gain varies between 11 and 7 dBi (for the antenna with a polar fleece substrate) and between 1 and −1 dBi (for the antenna with a denim substrate). The variation in maximum gain values is related to the maximum directivity (see Figure 8) and is primarily due to the coupling between radiating elements and the reflector. The gain difference between the antennas with substrates from fabrics made with synthetic fibers and fabrics made with natural fibers can be associated with the differences in their radiation efficiency (see Figure 6). Moreover, the maximum gains of the antennas mounted directly on the flat phantom are not strongly affected by the phantom (human body).
Figures 8 and 9 compare the three-dimensional (3D) radiation patterns of the optimized wearable antennas with polar fleece and denim substrates, at 2.4, 2.44, 2.46, and 2.48 GHz. These frequencies approximately correspond to the lower, middle, and upper end of the 2.45 GHz ISM band. As shown in Figures 8 and 9, the radiation is unidirectional for the antennas at all frequencies. Three-dimensional patterns show that a small amount of the energy is radiated in the backward direction (i.e., behind the antenna) into the human body. Moreover, it can be observed that in the free space, the Eφ is the dominant field component at 2.4, 2.44, and 2.46 GHz for the antennas. At 2.48 GHz, the Eθ is the dominant field component for these antennas. Hence, we observe that the directivity is decreased with increasing frequency because more energy is radiated in θ direction.
As can be seen in the figures, the radiation patterns of the antennas are not significantly modified by the presence of the flat phantom.
Figure 10 shows FB radio as a function of frequency both in free space and on a phantom. As seen, in the target frequency band, the FB ratios vary between 12 and 33 dB in the free space and between 18 and 36 dB on the phantom, depending on the antenna’s substrate. A FB ratio of about 30 dB is achieved for the antennas with denim and cotton substrates in the free space, in the frequency band of 2.4–2.46 GHz, indicating a small amount of radiation behind the antenna.
Simulated front-to-back radio as a function of frequency in both (a) free space and (b) on phantom.
As seen in Figure 10, both antennas with polyester and polyamide-elastane substrates have FB ratio better than 17 dB in the free space and better than 23 dB on the phantom. Moreover, the antennas with cotton, polyester, polyamide-elastane, and denim preserve their FB ratios when placed directly on the flat phantom. In the case of the antennas with polar fleece and air-filled substrate, we see a FB ratio between 12 and 20 dB in the free space and between 25 and 35 dB when antennas are placed directly on the flat phantom; this will result in an increase in SAR values (see Figure 11). Comparing the FB ratios of the antennas, it can be concluded that the cotton and denim textile substrates improve FB ratio of the antenna.
SAR as a function of frequency (a) the maximum local SAR, (b) average SAR in exposed flat phantom, (c) maximum 1 g average SAR and (d) maximum 10 g average SAR.
Because the wearable textile antennas are designed to operate near to the human body, in this subsection, we investigate the effects of these antennas on the human body by evaluating the SAR. For these computations, each antenna was placed directly on the numerical flat homogeneous human body model as presented in Figure 4b.
Figure 11a–d shows the maximum local SAR, average SAR in exposed flat phantom, and maximum 1 g and 10 g average SAR as a function of frequency. The results presented in Figure 11a–d were normalized to net input power of 100 mW. As can be seen in the figures, the SAR values from the antennas with air-filled and polar fleece substrates are higher than the SAR from the other antennas. Moreover, the maximum 10 g average SAR is 0.18 (antenna with a polar fleece substrate) and between 0.04 and 0.1 W/kg for the rest of the antennas. Therefore, maximum 10 g average SAR for all antennas is 90% lower than the specification required by the ICNIRP [10] and also smaller than most of the previously proposed wearable textile antennas.
The differences in SAR distributions between the antennas are illustrated in Figure 12a–f. For all antennas, the peak SAR in the phantom occurs in the region near the antenna edges. Moreover, the SAR distribution of the antenna with a polar fleece substrate is similar to that of the antenna with an air-filled substrate. Also, the SAR distribution of the antennas with a substrate from cotton and denim is quite similar.
SAR distributions at 2.4, 2.44, 2.46, and 2.48 GHz for the antenna with (a) an air-filled substrate, (b) a polar fleece substrate, (c) a polyamide-elastane substrate, (d) a polyester substrate, (e) a cotton substrate, (f) a denim substrate, and (g) scale.
SAR values presented in Figure 12 were averaged over a volume of 0.125 mm3 containing a mass of 0.14575 mg.
Measurements were carried out to validate the simulations. Figure 13 shows the simulated and measured reflection coefficient magnitudes of the wearable antennas in the free space and on the phantom. A small difference between simulated and measured results was observed. This difference can be attributed to fabrication and assembly inaccuracies (due to the manual assembly). Moreover, the coaxial cable and U. FL connector were not integrated into the FDTD simulations, which also lead to a difference between the simulations and measurements.
|S11| curves versus frequency (a) simulated in the free space, (b) measured in the free space, (c) simulated on the phantom, and (d) measured on the phantom.
We can conclude that the antennas demonstrate stable performance on both in the free space and when placed directly on the flat phantom.
In this chapter, the main parameters and characteristics of wearable antennas and their design requirements have been presented. The electromagnetic properties of the textile substrates also have been examined. From the results mentioned here, it is concluded that fabrics made from synthetic fibers (polar fleece, polyamide-elastane, polyester) have a lower relative permittivity and
Five low-profile all-textile antennas with high body-antenna isolation have been presented. The in-depth performance evaluations on both in the free space and on the flat phantom of these antennas indicate that they cover 2.45 GHz ISM band and the maximum 10 g average SAR for all antennas is 90% lower than the specification.
The author would like to acknowledge the Bulgarian National Science Fund, Ministry of Education and Science, Bulgaria, for the support through a grant № KP-06-H27/11 from 11 December 2018 “Antenna technology for wearable devices in the future communication networks.”
You have been successfully unsubscribed.
",metaTitle:"Unsubscribe Successful",metaDescription:"You have been successfully unsubscribed.",metaKeywords:null,canonicalURL:"/page/unsubscribe-successful",contentRaw:'[{"type":"htmlEditorComponent","content":""}]'},components:[{type:"htmlEditorComponent",content:""}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6601},{group:"region",caption:"Middle and South America",value:2,count:5906},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12541},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:12,limit:12,total:132763},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"21"},books:[{type:"book",id:"11434",title:"Indigenous Populations - Perspectives From Scholars and Practitioners in Contemporary Times",subtitle:null,isOpenForSubmission:!0,hash:"c0d1c1c93a36fd9d726445966316a373",slug:null,bookSignature:"Dr. Sylvanus Gbendazhi Barnabas",coverURL:"https://cdn.intechopen.com/books/images_new/11434.jpg",editedByType:null,editors:[{id:"293764",title:"Dr.",name:"Sylvanus",surname:"Barnabas",slug:"sylvanus-barnabas",fullName:"Sylvanus Barnabas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11436",title:"Beauty",subtitle:null,isOpenForSubmission:!0,hash:"0e15ba86bab1a64f950318f3ab2584ed",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11436.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11441",title:"Psychometrics - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"c0fb1dfb98e0ae76496610595407145e",slug:null,bookSignature:" Sandro Misciagna",coverURL:"https://cdn.intechopen.com/books/images_new/11441.jpg",editedByType:null,editors:[{id:"103586",title:null,name:"Sandro",surname:"Misciagna",slug:"sandro-misciagna",fullName:"Sandro Misciagna"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11443",title:"Empathy - Advanced Research and Applications",subtitle:null,isOpenForSubmission:!0,hash:"4c1042dfe15aa9cea6019524c4cbff38",slug:null,bookSignature:"Ph.D. Sara Ventura",coverURL:"https://cdn.intechopen.com/books/images_new/11443.jpg",editedByType:null,editors:[{id:"227763",title:"Ph.D.",name:"Sara",surname:"Ventura",slug:"sara-ventura",fullName:"Sara Ventura"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11444",title:"Happiness - Biopsychosocial and Anthropological Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"fa84e7fc3611e5428e070239dcf5a93f",slug:null,bookSignature:"Dr. Floriana Irtelli and Prof. Fabio Gabrielli",coverURL:"https://cdn.intechopen.com/books/images_new/11444.jpg",editedByType:null,editors:[{id:"174641",title:"Dr.",name:"Floriana",surname:"Irtelli",slug:"floriana-irtelli",fullName:"Floriana Irtelli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11478",title:"Recent Advances in the Study of Dyslexia",subtitle:null,isOpenForSubmission:!0,hash:"26764a18c6b776698823e0e1c3022d2f",slug:null,bookSignature:"Prof. Jonathan Glazzard",coverURL:"https://cdn.intechopen.com/books/images_new/11478.jpg",editedByType:null,editors:[{id:"294281",title:"Prof.",name:"Jonathan",surname:"Glazzard",slug:"jonathan-glazzard",fullName:"Jonathan Glazzard"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11777",title:"LGBT Communities",subtitle:null,isOpenForSubmission:!0,hash:"e08bb222c250dcebf093b7ab595a14a7",slug:null,bookSignature:"Dr. Deborah Woodman",coverURL:"https://cdn.intechopen.com/books/images_new/11777.jpg",editedByType:null,editors:[{id:"463750",title:"Dr.",name:"Deborah",surname:"Woodman",slug:"deborah-woodman",fullName:"Deborah Woodman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11781",title:"Family Therapy - Recent Advances in Clinical and Crisis Settings",subtitle:null,isOpenForSubmission:!0,hash:"8c5b7d5e4233594de70d2f830209b757",slug:null,bookSignature:"Dr. Oluwatoyin Olatundun Ilesanmi",coverURL:"https://cdn.intechopen.com/books/images_new/11781.jpg",editedByType:null,editors:[{id:"440049",title:"Dr.",name:"Oluwatoyin Olatundun",surname:"Ilesanmi",slug:"oluwatoyin-olatundun-ilesanmi",fullName:"Oluwatoyin Olatundun Ilesanmi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11782",title:"Personality Traits - The Role in Psychopathology",subtitle:null,isOpenForSubmission:!0,hash:"d3a491e5194cad4c59b900dd57a11842",slug:null,bookSignature:" Vladimir V. Kalinin",coverURL:"https://cdn.intechopen.com/books/images_new/11782.jpg",editedByType:null,editors:[{id:"31572",title:null,name:"Vladimir V.",surname:"Kalinin",slug:"vladimir-v.-kalinin",fullName:"Vladimir V. Kalinin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11783",title:"Motivation and Success",subtitle:null,isOpenForSubmission:!0,hash:"f660b7cd35b9af94bdfc3564df138161",slug:null,bookSignature:"Dr. Simon George Taukeni",coverURL:"https://cdn.intechopen.com/books/images_new/11783.jpg",editedByType:null,editors:[{id:"202046",title:"Dr.",name:"Simon George",surname:"Taukeni",slug:"simon-george-taukeni",fullName:"Simon George Taukeni"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12109",title:"Occupational Stress",subtitle:null,isOpenForSubmission:!0,hash:"2dc8ab0bc980393022adbacd9a23d219",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12109.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12125",title:"Well-being",subtitle:null,isOpenForSubmission:!0,hash:"d40b65482e247c51364543462b97b4a2",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12125.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:42},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:5},{group:"topic",caption:"Chemistry",value:8,count:24},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:62},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:123},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:17},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4383},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1",title:"Physical Sciences, Engineering and Technology",slug:"physical-sciences-engineering-and-technology",parent:null,numberOfBooks:2670,numberOfSeries:2,numberOfAuthorsAndEditors:57720,numberOfWosCitations:107752,numberOfCrossrefCitations:63831,numberOfDimensionsCitations:138371,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editedByType:"Edited by",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10861",title:"Furan Derivatives",subtitle:"Recent Advances and Applications",isOpenForSubmission:!1,hash:"fdfc39cecd82f91b0effac994f75c877",slug:"furan-derivatives-recent-advances-and-applications",bookSignature:"Anish Khan, Mohammed Muzibur Rahman, M. Ramesh, Salman Ahmad Khan and Abdullah Mohammed Ahmed Asiri",coverURL:"https://cdn.intechopen.com/books/images_new/10861.jpg",editedByType:"Edited by",editors:[{id:"293058",title:"Dr.",name:"Anish",middleName:null,surname:"Khan",slug:"anish-khan",fullName:"Anish Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10400",title:"The Application of Ant Colony Optimization",subtitle:null,isOpenForSubmission:!1,hash:"f4fdfd07ee1ab99fb7c740d6d0c144c6",slug:"the-application-of-ant-colony-optimization",bookSignature:"Ali Soofastaei",coverURL:"https://cdn.intechopen.com/books/images_new/10400.jpg",editedByType:"Edited by",editors:[{id:"257455",title:"Dr.",name:"Ali",middleName:null,surname:"Soofastaei",slug:"ali-soofastaei",fullName:"Ali Soofastaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10870",title:"Ultrasound Imaging",subtitle:"Current Topics",isOpenForSubmission:!1,hash:"2f0bc3733ab226d67fa73759ef0e12ad",slug:"ultrasound-imaging-current-topics",bookSignature:"Felix Okechukwu Erondu",coverURL:"https://cdn.intechopen.com/books/images_new/10870.jpg",editedByType:"Edited by",editors:[{id:"68312",title:"Prof.",name:"Felix",middleName:null,surname:"Okechukwu Erondu",slug:"felix-okechukwu-erondu",fullName:"Felix Okechukwu Erondu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10683",title:"Technological Innovations and Advances in Hydropower Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ce7ad8768bd2cad155470fe1fd883f4",slug:"technological-innovations-and-advances-in-hydropower-engineering",bookSignature:"Yizi Shang, Ling Shang and Xiaofei Li",coverURL:"https://cdn.intechopen.com/books/images_new/10683.jpg",editedByType:"Edited by",editors:[{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10968",title:"Applied Aspects of Modern Metrology",subtitle:null,isOpenForSubmission:!1,hash:"688f4a581f96ea8041bc2dff50f6256e",slug:"applied-aspects-of-modern-metrology",bookSignature:"Oleh Velychko",coverURL:"https://cdn.intechopen.com/books/images_new/10968.jpg",editedByType:"Edited by",editors:[{id:"223340",title:"Prof.",name:"Oleh",middleName:null,surname:"Velychko",slug:"oleh-velychko",fullName:"Oleh Velychko"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10805",title:"Technology, Science and Culture",subtitle:"A Global Vision, Volume III",isOpenForSubmission:!1,hash:"d023002df29a59c64622b5b5936e2b67",slug:"technology-science-and-culture-a-global-vision-volume-iii",bookSignature:"Luis Ricardo Hernández and Martín Alejandro Serrano Meneses",coverURL:"https://cdn.intechopen.com/books/images_new/10805.jpg",editedByType:"Edited by",editors:[{id:"293965",title:"Dr.",name:"Luis Ricardo",middleName:null,surname:"Hernández",slug:"luis-ricardo-hernandez",fullName:"Luis Ricardo Hernández"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"2",chapterContentType:"conference paper",authoredCaption:"Edited by"}},{type:"book",id:"10972",title:"Control Systems in Engineering and Optimization Techniques",subtitle:null,isOpenForSubmission:!1,hash:"f92f65447d0f90b67465865d41a61cd1",slug:"control-systems-in-engineering-and-optimization-techniques",bookSignature:"P. Balasubramaniam, Sathiyaraj Thambiayya, Kuru Ratnavelu and JinRong Wang",coverURL:"https://cdn.intechopen.com/books/images_new/10972.jpg",editedByType:"Edited by",editors:[{id:"252215",title:"Dr.",name:"P.",middleName:null,surname:"Balasubramaniam",slug:"p.-balasubramaniam",fullName:"P. Balasubramaniam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10775",title:"Hypersonic Vehicles",subtitle:"Applications, Recent Advances, and Perspectives",isOpenForSubmission:!1,hash:"0eb40c595ae6a0a77f2bd4102c00a2e6",slug:"hypersonic-vehicles-applications-recent-advances-and-perspectives",bookSignature:"Giuseppe Pezzella and Antonio Viviani",coverURL:"https://cdn.intechopen.com/books/images_new/10775.jpg",editedByType:"Edited by",editors:[{id:"14939",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pezzella",slug:"giuseppe-pezzella",fullName:"Giuseppe Pezzella"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2670,seriesByTopicCollection:[{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0},{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0}],seriesByTopicTotal:2,mostCitedChapters:[{id:"37067",doi:"10.5772/35482",title:"Fourier Transform Infrared Spectroscopy for Natural Fibres",slug:"fourier-transform-infrared-spectroscopy-for-natural-fibres",totalDownloads:9218,totalCrossrefCites:160,totalDimensionsCites:389,abstract:null,book:{id:"2270",slug:"fourier-transform-materials-analysis",title:"Fourier Transform",fullTitle:"Fourier Transform - Materials Analysis"},signatures:"Mizi Fan, Dasong Dai and Biao Huang",authors:[{id:"104647",title:"Prof.",name:"Mizi",middleName:null,surname:"Fan",slug:"mizi-fan",fullName:"Mizi Fan"}]},{id:"36171",doi:"10.5772/36942",title:"Research of Calcium Phosphates Using Fourier Transform Infrared Spectroscopy",slug:"research-of-calcium-phosphates-using-fourier-transformation-infrared-spectroscopy",totalDownloads:9190,totalCrossrefCites:128,totalDimensionsCites:369,abstract:null,book:{id:"1591",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",title:"Infrared Spectroscopy",fullTitle:"Infrared Spectroscopy - Materials Science, Engineering and Technology"},signatures:"Liga Berzina-Cimdina and Natalija Borodajenko",authors:[{id:"110522",title:"Prof.",name:"Liga",middleName:null,surname:"Berzina-Cimdina",slug:"liga-berzina-cimdina",fullName:"Liga Berzina-Cimdina"},{id:"112181",title:"MSc.",name:"Natalija",middleName:null,surname:"Borodajenko",slug:"natalija-borodajenko",fullName:"Natalija Borodajenko"}]},{id:"60680",doi:"10.5772/intechopen.76082",title:"Environmental Contamination by Heavy Metals",slug:"environmental-contamination-by-heavy-metals",totalDownloads:16014,totalCrossrefCites:168,totalDimensionsCites:364,abstract:"The environment and its compartments have been severely polluted by heavy metals. This has compromised the ability of the environment to foster life and render its intrinsic values. Heavy metals are known to be naturally occurring compounds, but anthropogenic activities introduce them in large quantities in different environmental compartments. This leads to the environment’s ability to foster life being reduced as human, animal, and plant health become threatened. This occurs due to bioaccumulation in the food chains as a result of the nondegradable state of the heavy metals. Remediation of heavy metals requires special attention to protect soil quality, air quality, water quality, human health, animal health, and all spheres as a collection. Developed physical and chemical heavy metal remediation technologies are demanding costs which are not feasible, time-consuming, and release additional waste to the environment. This chapter summarises the problems related to heavy metal pollution and various remediation technologies. A case study in South Africa mines were also used.",book:{id:"6534",slug:"heavy-metals",title:"Heavy Metals",fullTitle:"Heavy Metals"},signatures:"Vhahangwele Masindi and Khathutshelo L. Muedi",authors:[{id:"225304",title:"Dr.",name:"Vhahangwele",middleName:null,surname:"Masindi",slug:"vhahangwele-masindi",fullName:"Vhahangwele Masindi"},{id:"241403",title:"M.Sc.",name:"Khathutshelo",middleName:"Lilith",surname:"Muedi",slug:"khathutshelo-muedi",fullName:"Khathutshelo Muedi"}]},{id:"41411",doi:"10.5772/53659",title:"Textile Dyes: Dyeing Process and Environmental Impact",slug:"textile-dyes-dyeing-process-and-environmental-impact",totalDownloads:20534,totalCrossrefCites:92,totalDimensionsCites:299,abstract:null,book:{id:"3137",slug:"eco-friendly-textile-dyeing-and-finishing",title:"Eco-Friendly Textile Dyeing and Finishing",fullTitle:"Eco-Friendly Textile Dyeing and Finishing"},signatures:"Farah Maria Drumond Chequer, Gisele Augusto Rodrigues de Oliveira, Elisa Raquel Anastácio Ferraz, Juliano Carvalho Cardoso, Maria Valnice Boldrin Zanoni and Danielle Palma de Oliveira",authors:[{id:"49040",title:"Prof.",name:"Danielle",middleName:null,surname:"Palma De Oliveira",slug:"danielle-palma-de-oliveira",fullName:"Danielle Palma De Oliveira"},{id:"149074",title:"Prof.",name:"Maria Valnice",middleName:null,surname:"Zanoni",slug:"maria-valnice-zanoni",fullName:"Maria Valnice Zanoni"},{id:"153502",title:"Ph.D.",name:"Farah",middleName:null,surname:"Chequer",slug:"farah-chequer",fullName:"Farah Chequer"},{id:"153504",title:"MSc.",name:"Gisele",middleName:null,surname:"Oliveira",slug:"gisele-oliveira",fullName:"Gisele Oliveira"},{id:"163377",title:"Dr.",name:"Juliano",middleName:null,surname:"Cardoso",slug:"juliano-cardoso",fullName:"Juliano Cardoso"},{id:"163393",title:"Dr.",name:"Elisa",middleName:null,surname:"Ferraz",slug:"elisa-ferraz",fullName:"Elisa Ferraz"}]},{id:"17237",doi:"10.5772/24553",title:"Hydrogels: Methods of Preparation, Characterisation and Applications",slug:"hydrogels-methods-of-preparation-characterisation-and-applications",totalDownloads:65759,totalCrossrefCites:86,totalDimensionsCites:276,abstract:null,book:{id:"248",slug:"progress-in-molecular-and-environmental-bioengineering-from-analysis-and-modeling-to-technology-applications",title:"Progress in Molecular and Environmental Bioengineering",fullTitle:"Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications"},signatures:"Syed K. H. Gulrez, Saphwan Al-Assaf and Glyn O Phillips",authors:[{id:"58120",title:"Prof.",name:"Saphwan",middleName:null,surname:"Al-Assaf",slug:"saphwan-al-assaf",fullName:"Saphwan Al-Assaf"}]}],mostDownloadedChaptersLast30Days:[{id:"35255",title:"Mechanical Transmissions Parameter Modelling",slug:"mechanical-transmissions-parameter-modelling",totalDownloads:7046,totalCrossrefCites:1,totalDimensionsCites:2,abstract:null,book:{id:"1982",slug:"mechanical-engineering",title:"Mechanical Engineering",fullTitle:"Mechanical Engineering"},signatures:"Isad Saric, Nedzad Repcic and Adil Muminovic",authors:[{id:"101313",title:"Prof.",name:"Isad",middleName:null,surname:"Saric",slug:"isad-saric",fullName:"Isad Saric"}]},{id:"68505",title:"Research Design and Methodology",slug:"research-design-and-methodology",totalDownloads:24410,totalCrossrefCites:6,totalDimensionsCites:14,abstract:"There are a number of approaches used in this research method design. The purpose of this chapter is to design the methodology of the research approach through mixed types of research techniques. The research approach also supports the researcher on how to come across the research result findings. In this chapter, the general design of the research and the methods used for data collection are explained in detail. It includes three main parts. The first part gives a highlight about the dissertation design. The second part discusses about qualitative and quantitative data collection methods. The last part illustrates the general research framework. The purpose of this section is to indicate how the research was conducted throughout the study periods.",book:{id:"8511",slug:"cyberspace",title:"Cyberspace",fullTitle:"Cyberspace"},signatures:"Kassu Jilcha Sileyew",authors:[{id:"292841",title:"Ph.D.",name:"Kassu",middleName:null,surname:"Jilcha Sileyew",slug:"kassu-jilcha-sileyew",fullName:"Kassu Jilcha Sileyew"}]},{id:"67558",title:"Polymerase Chain Reaction (PCR): Principle and Applications",slug:"polymerase-chain-reaction-pcr-principle-and-applications",totalDownloads:10263,totalCrossrefCites:6,totalDimensionsCites:14,abstract:"The characterization of the diversity of species living within ecosystems is of major scientific interest to understand the functioning of these ecosystems. It is also becoming a societal issue since it is necessary to implement the conservation or even the restoration of biodiversity. Historically, species have been described and characterized on the basis of morphological criteria, which are closely linked by environmental conditions or which find their limits especially in groups where they are difficult to access, as is the case for many species of microorganisms. The need to understand the molecular mechanisms in species has made the PCR an indispensable tool for understanding the functioning of these biological systems. A number of markers are now available to detect nuclear DNA polymorphisms. In genetic diversity studies, the most frequently used markers are microsatellites. The study of biological complexity is a new frontier that requires high-throughput molecular technology, high speed computer memory, new approaches to data analysis, and the integration of interdisciplinary skills.",book:{id:"7728",slug:"synthetic-biology-new-interdisciplinary-science",title:"Synthetic Biology",fullTitle:"Synthetic Biology - New Interdisciplinary Science"},signatures:"Karim Kadri",authors:[{id:"290766",title:"Dr.",name:"Kadri",middleName:null,surname:"Karim",slug:"kadri-karim",fullName:"Kadri Karim"}]},{id:"62059",title:"Types of HVAC Systems",slug:"types-of-hvac-systems",totalDownloads:12036,totalCrossrefCites:8,totalDimensionsCites:14,abstract:"HVAC systems are milestones of building mechanical systems that provide thermal comfort for occupants accompanied with indoor air quality. HVAC systems can be classified into central and local systems according to multiple zones, location, and distribution. Primary HVAC equipment includes heating equipment, ventilation equipment, and cooling or air-conditioning equipment. Central HVAC systems locate away from buildings in a central equipment room and deliver the conditioned air by a delivery ductwork system. Central HVAC systems contain all-air, air-water, all-water systems. Two systems should be considered as central such as heating and cooling panels and water-source heat pumps. Local HVAC systems can be located inside a conditioned zone or adjacent to it and no requirement for ductwork. Local systems include local heating, local air-conditioning, local ventilation, and split systems.",book:{id:"6807",slug:"hvac-system",title:"HVAC System",fullTitle:"HVAC System"},signatures:"Shaimaa Seyam",authors:[{id:"247650",title:"M.Sc.",name:"Shaimaa",middleName:null,surname:"Seyam",slug:"shaimaa-seyam",fullName:"Shaimaa Seyam"},{id:"257733",title:"MSc.",name:"Shaimaa",middleName:null,surname:"Seyam",slug:"shaimaa-seyam",fullName:"Shaimaa Seyam"},{id:"395618",title:"Dr.",name:"Shaimaa",middleName:null,surname:"Seyam",slug:"shaimaa-seyam",fullName:"Shaimaa Seyam"}]},{id:"70315",title:"Some Basic and Key Issues of Switched-Reluctance Machine Systems",slug:"some-basic-and-key-issues-of-switched-reluctance-machine-systems",totalDownloads:1216,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Although switched-reluctance machine (SRM) possesses many structural advantages and application potential, it is rather difficult to successfully control with high performance being comparable to other machines. Many critical affairs must be properly treated to obtain the improved operating characteristics. This chapter presents the basic and key technologies of switched-reluctance machine in motor and generator operations. The contents in this chapter include: (1) structures and governing equations of SRM; (2) some commonly used SRM converters; (3) estimation of key parameters and performance evaluation of SRM drive; (4) commutation scheme, current control scheme, and speed control scheme of SRM drive; (5) some commonly used front-end converters and their operation controls for SRM drive; (6) reversible and regenerative braking operation controls for SRM drive; (7) some tuning issues for SRM drive; (8) operation control and some tuning issues of switched-reluctance generators; and (9) experimental application exploration for SRM systems—(a) wind generator and microgrid and (b) EV SRM drive.",book:{id:"8899",slug:"modelling-and-control-of-switched-reluctance-machines",title:"Modelling and Control of Switched Reluctance Machines",fullTitle:"Modelling and Control of Switched Reluctance Machines"},signatures:"Chang-Ming Liaw, Min-Ze Lu, Ping-Hong Jhou and Kuan-Yu Chou",authors:[{id:"37616",title:"Prof.",name:"Chang-Ming",middleName:null,surname:"Liaw",slug:"chang-ming-liaw",fullName:"Chang-Ming Liaw"},{id:"306461",title:"Mr.",name:"Min-Ze",middleName:null,surname:"Lu",slug:"min-ze-lu",fullName:"Min-Ze Lu"},{id:"306463",title:"Mr.",name:"Ping-Hong",middleName:null,surname:"Jhou",slug:"ping-hong-jhou",fullName:"Ping-Hong Jhou"},{id:"306464",title:"Mr.",name:"Kuan-Yu",middleName:null,surname:"Chou",slug:"kuan-yu-chou",fullName:"Kuan-Yu Chou"}]}],onlineFirstChaptersFilter:{topicId:"1",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81114",title:"Research and Innovation to Improve the Efficiency of Modern Diesel Engines",slug:"research-and-innovation-to-improve-the-efficiency-of-modern-diesel-engines",totalDownloads:1,totalDimensionsCites:null,doi:"10.5772/intechopen.102759",abstract:"Modern diesel engines are one of the main mobile energy sources and are characterized by a high degree of workflow completeness, design, and manufacturing technology. The chapter summarizes the authors’ experience in improving diesel engines, increasing specific volume power, and reliability, ensuring a low level of environmental pollution emissions. The results of research using industry 4.0 technologies for systematization, choice of directions, and the search for rational ways to improve the efficiency of diesel engines are presented. The application of anergo-exergy method for analyzing the efficiency of the working process of the engine and its systems is considered. Taking into consideration the operating conditions, technical solutions are proposed to improve the reliability of the most heat-stressed parts of high-powered engines. The possibilities for a comprehensive assessment of the fuel efficiency and environmental qualities of diesel engines have been expanded taking into account CO2 emissions when using traditional, alternative, and hybrid diesel fuel.",book:{id:"11164",title:"Diesel Engines and Biodiesel Engines Technologies",coverURL:"https://cdn.intechopen.com/books/images_new/11164.jpg"},signatures:"Andrіy Marchenko, Igor Parsadanov, Volodymyr Pylyov, Oleksandr Osetrov, Linkov Oleh, Serhii Kravchenko, Oleksandr Trynov, Denys Meshkov, Serhii Bilyk, Anatolii Savchenko, Inna Rykova and Rasoul Aryan"},{id:"81908",title:"Behaviors of Multi-Droplets Impacting on a Flat Wall",slug:"behaviors-of-multi-droplets-impacting-on-a-flat-wall",totalDownloads:0,totalDimensionsCites:0,doi:"10.5772/intechopen.105007",abstract:"Microscopic characteristics of fuel spray are very important for atomization and mixture formation. The droplet size, number density, velocity distribution as well as minimum distance reveal the quality of spray and atomization, which affects the subsequent combustion and emissions for different engines such as vehicle, marine and aircraft. Moreover, in the internal combustion engine, the spray-wall impingement is difficult to avoid, which is the main source for soot emissions. Nowadays, regulations for emissions become straight by governments. Therefore, it is urgent for us to alleviate the energy and emissions crisis. In this study, the droplets behaviors will be characterized under the related engine working state. Firstly, the experimental setup and measurement were explained in detail. Then, images process method was induced to calculate the droplet size, velocity and distance among them. Finally, results of the impinging spray were presented. One thing should be noted, as the dense region is not available to detect the droplets by the observation. Therefore, a spray “slicer” was designed and applied to cut the spray slim. Finally, multi-droplets were generated, and the results can be concluded as well. All the results could provide insights into the impacting behaviors for better understanding the droplet dynamics.",book:{id:"11205",title:"Droplet Dynamics",coverURL:"https://cdn.intechopen.com/books/images_new/11205.jpg"},signatures:"Hongliang Luo and Feixiang Chang"},{id:"81902",title:"Green Methods of Chemical Analysis and Pollutant Removal",slug:"green-methods-of-chemical-analysis-and-pollutant-removal",totalDownloads:0,totalDimensionsCites:0,doi:"10.5772/intechopen.104829",abstract:"This chapter deals with chemical analysis and pollutant removal methods that follow some of the 12 principles of Green Chemistry. In this chapter, the 12 principles of the Green Chemistry along with the short description are highlighted. Several chemical analysis methods are presented, that are both used for chemical identification and concentration determination, whether conventionally or instrumentally. The conventional chemical analysis methods evaluated in this chapter include volumetric and gravimetric, while the instrumental ones presented are limited to atomic absorption spectrometry (AAS) and X-ray fluorescence (XRF) for determination of the analyte concentration, and Infrared spectrometry (IR) and X-ray diffraction (XRD) for chemical identification. Additionally, the pollutant removal methods involving conventional and advanced processes, are reviewed. The conventional chemical removal methods such as precipitation, coagulation, and adsorption are illustrated. The advanced methods in removing chemical pollutants discussed in this chapter are photocatalytic degradation, photo-oxidation/reduction, Fenton and Photo-Fenton, and ozonation. In the description of the chemical analysis and the chemical pollutant removal methods, the evaluation of the unsuitableness or suitableness toward some of the Green Chemistry principles are also accompanied. In addition, the ways to make the less green methods to be greener are also proposed.",book:{id:"11211",title:"Green Chemistry - New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11211.jpg"},signatures:"Endang Tri Wahyuni and Eko Sri Kunarti"},{id:"81907",title:"Fundamental Principles to Address Green Chemistry & Green Engineering for Sustainable Future",slug:"fundamental-principles-to-address-green-chemistry-green-engineering-for-sustainable-future",totalDownloads:1,totalDimensionsCites:0,doi:"10.5772/intechopen.104717",abstract:"The background of green chemistry represents the dramatic module of a new millennium, the substantiable chemical process steam for evaluation in designing phase to incorporate the principles of GC (Green Chemistry) in 1990s. there has been a tremendous success in developing a new product and process which are more compatible with biological, zoological and botanical perspective to illuminate the sustainability goal, this chapter represents the simplified way to lookout different approach adopted in GC-research, the methodology enhance the chemical process economics, concomitant which deduct the environmental burden. This review merely focusing on eco-friendly protocol which replace the traditional method of synthesis followed in chemistry to synthesize lifesaving drugs, with prevention outgoing waste from industries. GC and chemical engineering or green engineering (GE) should produce eco-friendly chemical process for drug design which likely to be spread rapidly in next few decades. This chapter explains in-depth and compact with detailed glimpse of environment friendly-protocol and principle bridging continent and scientific discipline to create new solution.",book:{id:"11211",title:"Green Chemistry - New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11211.jpg"},signatures:"Nikhat Farhana, Mohammed Gulzar Ahmed, Mohammed Asif Iqbal, Natasha Naval Aggarwal, Prajitha Biju, Ashwini Somayaji, Abdul Rahamanulla, Nishmitha Gretta D’Souza, Sudhina Makuttan, Tahreen Taj, Abdullah Khan and Roshan Sayeed"},{id:"81900",title:"HRTF Performance Evaluation: Methodology and Metrics for Localisation Accuracy and Learning Assessment",slug:"hrtf-performance-evaluation-methodology-and-metrics-for-localisation-accuracy-and-learning-assessmen",totalDownloads:2,totalDimensionsCites:0,doi:"10.5772/intechopen.104931",abstract:"Through a review of the current literature, this chapter defines a methodology for the analysis of HRTF localisation performance, as applied to assess the quality of an HRTF selection or learning program. A case study is subsequently proposed, applying this methodology to a cross-comparison on the results of five contemporary experiments on HRTF learning. The objective is to propose a set of steps and metrics to allow for a systematic assessment of participant performance (baseline, learning rates, foreseeable performance plateau limits, etc.) to ease future inter-study comparisons.",book:{id:"10370",title:"Advances in Fundamental and Applied Research on Spatial Audio",coverURL:"https://cdn.intechopen.com/books/images_new/10370.jpg"},signatures:"David Poirier-Quinot, Martin S. Lawless, Peter Stitt and Brian F.G. Katz"},{id:"81356",title:"Wind Turbine Aerodynamics and Flow Control",slug:"wind-turbine-aerodynamics-and-flow-control",totalDownloads:1,totalDimensionsCites:0,doi:"10.5772/intechopen.103930",abstract:"Aerodynamics is one of the prime topics in wind turbine research. In aerodynamics, the design of a flow control mechanism lays the foundation for an efficient power output. Lift generation in the airfoil section leading to rotary motion of blade and transfer of mechanical to electrical power generation through gearbox assembly. The primary objective of a flow control mechanism in wind turbine blades is to delay the stall and increase the lift, thereby an efficient power generation. Flow control is classified into active and passive flow control mechanisms. Active flow control works on an actuation mechanism that comes into action when required during varied operating conditions. Passive flow control devices are designed, developed, and fixed on the surface to extract the required output through effective flow control. Vortex generators are the simplest, most cost-effective and efficient passive flow control devices. These devices influence the power of wind turbine blades in various ways, such as placement of generator along the chord, distance between pairs of a generator, angle of inclination of a generator with the blade surface, the height of generator. Flow control device needs to be optimized with the aforementioned parameters for efficient stall delay and power generation.",book:{id:"11176",title:"Wind Turbines - Advances and Challenges in Design, Manufacture and Operation",coverURL:"https://cdn.intechopen.com/books/images_new/11176.jpg"},signatures:"Karthik Jayanarasimhan and Vignesh Subramani-Mahalakshmi"}],onlineFirstChaptersTotal:748},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:49,paginationItems:[{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}}]},overviewPagePublishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science and Technology from the Department of Chemistry, National University of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013. She relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the National Institute of Fundamental Studies from April 2013 to October 2016. She was a senior lecturer on a temporary basis at the Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is currently Deputy Principal of the Australian College of Business and Technology – Kandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI) Ambassador to Sri Lanka.",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:5,paginationItems:[{id:"11669",title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",hash:"9117bd12dc904ced43404e3383b6591a",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 3rd 2022",isOpenForSubmission:!0,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11672",title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",hash:"c00855833476a514d37abf7c846e16e9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11674",title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",hash:"5d7d49bd80f53dad3761f78de4a862c6",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",hash:"69f009be08998711eecfb200adc7deca",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 26th 2022",isOpenForSubmission:!0,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 8th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:49,paginationItems:[{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"81681",title:"Immunomodulatory Effects of a M2-Conditioned Medium (PRS® CK STORM): Theory on the Possible Complex Mechanism of Action through Anti-Inflammatory Modulation of the TLR System and the Purinergic System",doi:"10.5772/intechopen.104486",signatures:"Juan Pedro Lapuente",slug:"immunomodulatory-effects-of-a-m2-conditioned-medium-prs-ck-storm-theory-on-the-possible-complex-mech",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81580",title:"Graft-Versus-Host Disease: Pathogenesis and Treatment",doi:"10.5772/intechopen.104450",signatures:"Shin Mukai",slug:"graft-versus-host-disease-pathogenesis-and-treatment",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81533",title:"Prenylation of Natural Products: An Overview",doi:"10.5772/intechopen.104636",signatures:"Kantharaju Kamanna and Aravind Kamath",slug:"prenylation-of-natural-products-an-overview",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kantharaju",surname:"Kamanna"}],book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"81067",title:"Encapsulation of Essential Oils and Their Use in Food Applications",doi:"10.5772/intechopen.103147",signatures:"Hamdy A. Shaaban and Amr Farouk",slug:"encapsulation-of-essential-oils-and-their-use-in-food-applications",totalDownloads:49,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81099",title:"SK Channels and Heart Disease",doi:"10.5772/intechopen.104115",signatures:"Katherine Zhong, Shawn Kant, Frank Sellke and Jun Feng",slug:"sk-channels-and-heart-disease",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:3,group:"subseries"},{caption:"Metabolism",value:17,count:9,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:17,group:"subseries"},{caption:"Chemical Biology",value:15,count:19,group:"subseries"}],publishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9753",title:"Terpenes and Terpenoids",subtitle:"Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/9753.jpg",slug:"terpenes-and-terpenoids-recent-advances",publishedDate:"July 28th 2021",editedByType:"Edited by",bookSignature:"Shagufta Perveen and Areej Mohammad Al-Taweel",hash:"575689df13c78bf0e6c1be40804cd010",volumeInSeries:21,fullTitle:"Terpenes and Terpenoids - Recent Advances",editors:[{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9403",title:"Human Microbiome",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9403.jpg",slug:"human-microbiome",publishedDate:"June 16th 2021",editedByType:"Edited by",bookSignature:"Natalia V. Beloborodova and Andrey V. Grechko",hash:"c31366ba82585ba3ac91d21eb1cf0a4d",volumeInSeries:20,fullTitle:"Human Microbiome",editors:[{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",slug:"oxidoreductase",publishedDate:"February 17th 2021",editedByType:"Edited by",bookSignature:"Mahmoud Ahmed Mansour",hash:"852e6f862c85fc3adecdbaf822e64e6e",volumeInSeries:19,fullTitle:"Oxidoreductase",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour",profilePictureURL:"https://mts.intechopen.com/storage/users/224662/images/system/224662.jpg",institutionString:"King Saud bin Abdulaziz University for Health Sciences",institution:{name:"King Saud bin Abdulaziz University for Health Sciences",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",slug:"ubiquitin-proteasome-pathway",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"af6880d3a5571da1377ac8f6373b9e82",volumeInSeries:18,fullTitle:"Ubiquitin - Proteasome Pathway",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9002",title:"Glutathione System and Oxidative Stress in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9002.jpg",slug:"glutathione-system-and-oxidative-stress-in-health-and-disease",publishedDate:"August 26th 2020",editedByType:"Edited by",bookSignature:"Margarete Dulce Bagatini",hash:"127defed0a50ad5ed92338dc96e1e10e",volumeInSeries:17,fullTitle:"Glutathione System and Oxidative Stress in Health and Disease",editors:[{id:"217850",title:"Dr.",name:"Margarete Dulce",middleName:null,surname:"Bagatini",slug:"margarete-dulce-bagatini",fullName:"Margarete Dulce Bagatini",profilePictureURL:"https://mts.intechopen.com/storage/users/217850/images/system/217850.jpeg",institutionString:"Universidade Federal da Fronteira Sul",institution:{name:"Universidade Federal da Fronteira Sul",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:3},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:8},{group:"subseries",caption:"Chemical Biology",value:15,count:10}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:301,paginationItems:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}},{id:"338856",title:"Mrs.",name:"Nur Alvira",middleName:null,surname:"Pascawati",slug:"nur-alvira-pascawati",fullName:"Nur Alvira Pascawati",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universitas Respati Yogyakarta",country:{name:"Indonesia"}}},{id:"441116",title:"Dr.",name:"Jovanka M.",middleName:null,surname:"Voyich",slug:"jovanka-m.-voyich",fullName:"Jovanka M. Voyich",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Montana State University",country:{name:"United States of America"}}},{id:"330412",title:"Dr.",name:"Muhammad",middleName:null,surname:"Farhab",slug:"muhammad-farhab",fullName:"Muhammad Farhab",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"349495",title:"Dr.",name:"Muhammad",middleName:null,surname:"Ijaz",slug:"muhammad-ijaz",fullName:"Muhammad Ijaz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Veterinary and Animal Sciences",country:{name:"Pakistan"}}}]}},subseries:{item:{id:"25",type:"subseries",title:"Evolutionary Computation",keywords:"Genetic Algorithms, Genetic Programming, Evolutionary Programming, Evolution Strategies, Hybrid Algorithms, Bioinspired Metaheuristics, Ant Colony Optimization, Evolutionary Learning, Hyperparameter Optimization",scope:"Evolutionary computing is a paradigm that has grown dramatically in recent years. This group of bio-inspired metaheuristics solves multiple optimization problems by applying the metaphor of natural selection. It so far has solved problems such as resource allocation, routing, schedule planning, and engineering design. Moreover, in the field of machine learning, evolutionary computation has carved out a significant niche both in the generation of learning models and in the automatic design and optimization of hyperparameters in deep learning models. This collection aims to include quality volumes on various topics related to evolutionary algorithms and, alternatively, other metaheuristics of interest inspired by nature. For example, some of the issues of interest could be the following: Advances in evolutionary computation (Genetic algorithms, Genetic programming, Bio-inspired metaheuristics, Hybrid metaheuristics, Parallel ECs); Applications of evolutionary algorithms (Machine learning and Data Mining with EAs, Search-Based Software Engineering, Scheduling, and Planning Applications, Smart Transport Applications, Applications to Games, Image Analysis, Signal Processing and Pattern Recognition, Applications to Sustainability).",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11421,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios",profilePictureURL:"https://mts.intechopen.com/storage/users/111683/images/system/111683.jpg",institutionString:"De La Salle University",institution:{name:"De La Salle University",institutionURL:null,country:{name:"Philippines"}}},{id:"106873",title:"Prof.",name:"Hongwei",middleName:null,surname:"Ge",slug:"hongwei-ge",fullName:"Hongwei Ge",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Dalian University of Technology",institutionURL:null,country:{name:"China"}}},{id:"171056",title:"Dr.",name:"Sotirios",middleName:null,surname:"Goudos",slug:"sotirios-goudos",fullName:"Sotirios Goudos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9IuQAK/Profile_Picture_1622623673666",institutionString:null,institution:{name:"Aristotle University of Thessaloniki",institutionURL:null,country:{name:"Greece"}}},{id:"15895",title:"Assistant Prof.",name:"Takashi",middleName:null,surname:"Kuremoto",slug:"takashi-kuremoto",fullName:"Takashi Kuremoto",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLrqQAG/Profile_Picture_1625656196038",institutionString:null,institution:{name:"Nippon Institute of Technology",institutionURL:null,country:{name:"Japan"}}},{id:"125844",title:"Prof.",name:"Wellington",middleName:"Pinheiro Dos",surname:"Santos",slug:"wellington-santos",fullName:"Wellington Santos",profilePictureURL:"https://mts.intechopen.com/storage/users/125844/images/4878_n.jpg",institutionString:null,institution:{name:"Federal University of Pernambuco",institutionURL:null,country:{name:"Brazil"}}}]},onlineFirstChapters:{paginationCount:0,paginationItems:[]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",institutionString:"Tecnalia Research & Innovation",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"4",title:"Fungal Infectious Diseases",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment"},{id:"5",title:"Parasitic Infectious Diseases",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology"},{id:"6",title:"Viral Infectious Diseases",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:287,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRqB9QAK/Profile_Picture_1626163237970",institutionString:null,institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/351665",hash:"",query:{},params:{id:"351665"},fullPath:"/profiles/351665",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()