\r\n\toxygen-free atmosphere. Biochar has been used for many years as a soil amendment and in general soil applications. Nonetheless, biochar is far more than a mere soil amendment. In this review, we report all the applications of biochar including environmental remediation, energy storage, composites, and catalyst production. In this book, we intend to collect contributions from worldwide experts in the field of biochar production and utilization providing a general overview of the recent uses of biochar in material science, thus presenting this cheap and waste-derived material as a high value-added carbonaceous source. Furthermore, we are aiming to give readers a handy and effective tool to easily understand how this field is interesting and diverse. It is a goal that this book could be easily used by any reader with a strong scientific background ranging from scientific company advisors to academic members. Nonetheless, students enrolled in scientific undergraduate and graduate programs could be consulted to this text for any further and deeper investigation. In the end, we intend to propose a very high scientific content book that could represent the reference text for any consideration and future study about biochar for the next years.
",isbn:"978-1-80356-252-0",printIsbn:"978-1-80356-251-3",pdfIsbn:"978-1-80356-253-7",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,hash:"af29d12de2a10f46f574776213120e9e",bookSignature:"Dr. Mattia Bartoli, Dr. Mauro Giorcelli and Prof. Alberto Tagliaferro",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11537.jpg",keywords:"Energy Storage, Battery, Environmental Remediation, Catalysis, Reactors, Fast Pyrolysis, Slow Pyrolysis, Microwave Pyrolysis, Porosity, Raman, Monolith, Hard Carbon",numberOfDownloads:54,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 10th 2022",dateEndSecondStepPublish:"April 13th 2022",dateEndThirdStepPublish:"June 12th 2022",dateEndFourthStepPublish:"August 31st 2022",dateEndFifthStepPublish:"October 30th 2022",remainingDaysToSecondStep:"a month",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"A cutting-edge researcher in waste-to-value technologies for application in drop-in fuels, green chemicals, and material science. Dr. Bartoli is a member of the Italian Chemical Society, American Chemical Society, and American Carbon Society.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"188999",title:"Dr.",name:"Mattia",middleName:null,surname:"Bartoli",slug:"mattia-bartoli",fullName:"Mattia Bartoli",profilePictureURL:"https://mts.intechopen.com/storage/users/188999/images/system/188999.png",biography:"Dr. Mattia Bartoli has always performed at the highest levels throughout his education and training, as proved by research outputs with several published peer-reviewed papers in top international journals. After obtaining his Ph.D., Dr. Bartoli moved to the Biorefinery Conversion Network, University of Alberta, Canada, where he contributed to developing new materials and new technologies. In 2018, he joined the Carbon Group, Polytechnic University of Turin, Italy, where he studied both the production and use of carbon from thermochemical conversion of waste streams for material science applications. Since 2021, Dr. Bartoli has been working on CO2 electrochemical and thermochemical conversion at the Center for Sustainable Future Technologies (CSFT@POLITO). He is also a member of several journal editorial boards and international societies.",institutionString:"Polytechnic University of Turin",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Polytechnic University of Turin",institutionURL:null,country:{name:"Italy"}}}],coeditorOne:{id:"39628",title:"Dr.",name:"Mauro",middleName:null,surname:"Giorcelli",slug:"mauro-giorcelli",fullName:"Mauro Giorcelli",profilePictureURL:"https://mts.intechopen.com/storage/users/39628/images/system/39628.png",biography:"Dr. Mauro Giorcelli is co-founder of the Carbon Group, Polytechnic University of Turin, Italy, where he was also a post-doctoral researcher in the Material and Science Technology Department. He obtained a degree in Electronic Engineering and a Ph.D. in Physics in 2009. Currently, he is a researcher in composite materials. He is a carbon materials specialist, with more than fifteen years of experience in the field. He has published more than eighty articles in international journals. His main expertise is low-cost carbon materials derived from recycled materials, in particular carbon materials derived from biomasses (biochar). He recently published a book dedicated to innovative biochar applications. Dr. Giorcelli has a widespread collaboration network in Europe, Asia, and Canada for biochar production and applications.",institutionString:"Polytechnic University of Turin",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Polytechnic University of Turin",institutionURL:null,country:{name:"Italy"}}},coeditorTwo:{id:"39631",title:"Prof.",name:"Alberto",middleName:null,surname:"Tagliaferro",slug:"alberto-tagliaferro",fullName:"Alberto Tagliaferro",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:"Polytechnic University of Turin",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Polytechnic University of Turin",institutionURL:null,country:{name:"Italy"}}},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:[{id:"80209",title:"Microwaved Flux Matter- Char Sand Production of Waste Coal Char/Biochar/Gypsium Ash and Fly Ash Mixtures for Mortar- Fire Retardent Composite",slug:"microwaved-flux-matter-char-sand-production-of-waste-coal-char-biochar-gypsium-ash-and-fly-ash-mixtu",totalDownloads:54,totalCrossrefCites:0,authors:[{id:"200229",title:"Dr.",name:"Yıldırım",surname:"İsmail Tosun",slug:"yildirim-ismail-tosun",fullName:"Yıldırım İsmail Tosun"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"252211",firstName:"Sara",lastName:"Debeuc",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/252211/images/7239_n.png",email:"sara.d@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"8903",title:"Carbon-Based Material for Environmental Protection and Remediation",subtitle:null,isOpenForSubmission:!1,hash:"19da699b370f320eca63ef2ba02f745d",slug:"carbon-based-material-for-environmental-protection-and-remediation",bookSignature:"Mattia Bartoli, Marco Frediani and Luca Rosi",coverURL:"https://cdn.intechopen.com/books/images_new/8903.jpg",editedByType:"Edited by",editors:[{id:"188999",title:"Dr.",name:"Mattia",surname:"Bartoli",slug:"mattia-bartoli",fullName:"Mattia Bartoli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"45122",title:"Multiple Routes of Motor Neuron Degeneration in ALS",doi:"10.5772/56625",slug:"multiple-routes-of-motor-neuron-degeneration-in-als",body:'
1. Introduction
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurological disorder with higher selectivity in the degeneration of the upper and lower motor neurons, which leads to progressive paralysis of voluntary muscles. Although most cases fall under sporadic ALS (sALS), 10% of cases are inherited and known as familial ALS (fALS). The etiology of most ALS cases remains unknown, but mutations of ALS-linked Cu/Zn superoxide dismutase 1 (SOD1) are the most common causes of fALS and are responsible for its neurotoxicity and disease propagation due to the acquired toxic gain-of-function [1-2]. Studies in both human ALS patients and the transgenic ALS mouse model have delineated multiple pathological mechanisms of neuronal death that include genetic mutations, excitotoxicity, free radicals, apoptosis, inflammation, and protein aggregation. Targeting the multiple routes of the motor neuron degeneration is likely to contribute to the development of novel therapeutics for ALS patients.
2. Excitotoxicity
2.1. Glutamate neurotoxicity
Glutamate mediates excitatory synaptic transmission by activating the ionotropic glutamate receptors that are sensitive to N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), or kainate. While the ionotropic glutamate receptors constitute fast excitatory synapses in the brain and the spinal cord, the glutamate receptors are excessively activated under pathological conditions such as hypoxic ischemia, trauma, and epilepsy, which triggers degeneration of neurons and oligodendrocytes. Extensive evidence supports the causative role of Ca2+-permeable ionotropic glutamate receptors in motor neuron degeneration in ALS patients. Intracellular Ca2+ overload causes catastrophic neuronal death by impairing mitochondria or activating proteases, cytosolic phospholipase A2, kinases, endonucleases, and nuclear factor kappa B [3].
2.1.1. Abnormal glutamate re-uptake in ALS
Glutamate transporter 1 (GLT-1), also known as excitatory amino acid transporter 2 (EAAT2), and glutamate-aspartate transporter (GLAST), the primary transporters of glutamate into astrocytes, plays a central role in regulating the extracellular levels of glutamate [4-5]. The expression of GLT-1 was markedly reduced in the motor cortex and the spinal cord of sporadic and familial ALS patients [6]. In mutant SOD1 mice, the levels and the activity of EAAT2 were reduced in the spinal cord [7-8]. The levels of extracellular glutanmate increased in the plasma and the cerebrospinal fluid of ALS patients [9-10] and of mutant SOD1-expressing rodent models [7,11-12]. Reducing the expression of EAAT2 with antisense oligonucleotide reduced transporter activity induces neuronal death in vitro and in vivo [13]. Crossing transgenic mice that overexpress EAAT2 with SOD1G93A mice caused delayed motor deficit [14]. In addition, increasing the expression of GLT-1 significantly extended the survival of mutant SOD1 mice [15]. More recently, a sumoylated fragment of EAAT2 cleaved to by activating caspase-3 was shown to cause motor neuron death [16]. This implies that reduced glutamate uptake into astrocytes mediates degeneration of spinal motor neurons in ALS.
2.1.2. Mediation of motor neuron degeneration by the Ca2+ permeability of AMPA receptors
Ca2+-permeable AMPA glutamate receptors appear to mediate chronic motor neuron degeneration in ALS. AMPA receptors consist of heteromeric combinations of four sub-units, GluR1-4 [17]. The glutamate (Q)/arginine (R)-editing of the GluR2 mRNA provides a positively charged form of GluR2 protein with arginine, which is responsible for Ca2+ impermeability [18]. When AMPA receptors contain reduced levels of Q/R-edited GluR2, the AMPA receptor complex becomes more permeable to Ca2+ [18]. The motor neuron of ALS patients showed evidence of defective editing of the pre-mRNA of GluR2 [19]. While lack of GluR2 accelerated motor neuron degeneration and shortened the life span of the SOD1 mice, overexpression of GluR2 delayed the disease onset and reduced the mortality of mutant SOD1 mice [20-21]. Moreover, the GluR2-N transgenic mice that expressed GluR2 gene encoding a asparagine at the Q/R site showed late-onset degeneration of the spinal motor neurons and motor function deficit [22]. Crossbreeding GluR2-N mice with mutant SOD1 mice aggravated motor neuron degeneration and shortened the survival time.
2.1.3. Therapies related to glutamate-mediated excitotoxicity
Although riluzole, the only approved disease-modifying therapy available to ALS patients since 1995, has been shown to inhibit glutamate release, subsequent studies demonstrated that riluzole inhibited AMPA receptors and presynaptic NMDA receptors [23-24]. Administration of riluzole significantly improved the motor neuron survival, motor function, and life expectancy of mutant SOD1 mice [25]. Similar beneficial effects of AMPA receptor antagonists such as memantine, 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX), and talampanel have been verified in mutant SOD1 mice [26-28]. The B-lactam antibiotic cefriaxone increased GLT-1 expression in spinal cord culture and in normal rats. The cefriaxone treatment delayed motor deficits with marginal survival in SOD1G93A mice [15]. An adaptive design Phase II/III study revealed good tolerability over 20 weeks [29]. The extened phase III of this study is ongoing.
3. Oxidative stress
3.1. Homeostasis and generation of free radicals in cells
Free radicals, including reactive oxygen species (ROS) and reactive nitrogen species (RNS), are characterized by unpaired electrons in their outer orbit. The most common cellular free radicals are hydroxyl (OH ) radicals, superoxide (O2- ) anions, and nitric monoxide (NO ). Although hydrogen peroxide (H2O2) and peroxynitrite (ONOO-) are literally not free radicals, they are deemed to generate free radicals through various chemical reactions in many cases. Free radicals are cleared through several defense mechanisms, as follows: (1) catalytic removal of reactive species by enzymes such as superoxide dismutase, catalase, and peroxidase; (2) scavenging of reactive species by low-molecular-weight agents that were either synthesized in vivo (including glutathione, α-keto acids, lipoic acid, and coenzyme Q) or obtained from the diet [including ascorbate (vitamin C) and α-tocopherol (vitamin E)]; and (3) minimization of the availability of pro-oxidants such as transition metals [30]. CNS, which is mainly composed of polyunsaturated fatty acids (PUFAs), is readily susceptible to oxidative damage because the system demands a high metabolic oxidative rate with limited anti-oxidants and has a high transition metal content that acts as a potent pro-oxidant through the Haber-Weiss reaction or the Fenton reaction [51]. Upon shifting to pro-oxidants, CNS is promptly attacked by ROS that includes H2O2, NO, O2- , and highly reactive OH and NO and undergoes serious functional abnormality that is directly related to the demise of the course of neurons.
3.2. Evidence of oxidative stress in ALS
There is extensive evidence of the causative role of oxidative stress in motor neuron degeneration in ALS. The 3-nitrotyrosine(3-NT) level was elevated in subjects with both sporadic and familial cases of ALS, and the immunoreactivity of 3-NT became more evident within large motor neurons in the ventral horn of the lumbar spinal cord [31-32]. Higher carbonylation of proteins with the use of 2,4-dinitrophenylhydrazine (DNPH) was detected in the spinal cord in sporadic ALS [33]. Elevation of 8-hydroxy-2-deoxyguanosine (8-OHdG) was found in the CSF, serum, and urine of ALS patients [34]. The 4-hydroxynonenal level increased in the serum of ALS patients [35]. Transgenic ALS mice overexpression of the human mutant SOD1 revealed oxidative damage to proteins, lipids, and DNA [36-37].
3.2.1. Role of mitochondria in oxidative stress
Mitochondria produce ATP using about 90% of the O2 that is taken up by neurons. During electron transfer in the inner membrane of the organelle, electrons spontaneously leak from the electron transport chain and react with available O2 to produce superoxide, which makes mitochondria the major cellular sources of ROS. Mitochondria exist in the motor neurons due to the high rate of metabolic demand, which makes motor neurons more vulnerable to cumulative oxidative stress. Free radicals that accumulate over time decrease mitochondrial efficacy and increase the production of mutated mitochondrial DNA related to the aging process, although mitochondria have their own specific anti-oxidants that consist of SOD1, SOD2, glutathioneperoxidase, and peroxiredoxin 3 and can usually combat the high rate of ROS production [38]. Morphological abnormality in the organelle, which includes a fragmented network and swelling, and increased cristae have been observed in the soma and proximal axons of ventral motor neurons of sporadic ALS (sALS) patients [39]. In the axon and soma of motor neurons of mice that expressed SOD1G93A and SOD1G37R [40-41], membrane vacuoles derived from degenerating mitochondria were reported. Morphological alteration in mitochondria was also illustrated in NSC34 motor-neuron-like cells that expressed SOD1G93A [42-43]. Mutant SOD1 that was localized in mitochondria was associated with increased oxidative damage, decreased respiratory activity of the mitochondria, and architectural change. The interaction of mutant SOD1 and mitochondria was enough to result in motor neuron death in neuroblastoma cells [44]. Mitochondrial SOD1 and its chaperone protein named copper chaperone for SOD1 (CCS) are co-localized in the mitochondrial inter-membrane space [45]. The aggregates of mutant SOD1 were shown within the mitochondria in the spinal cord of SOD1G93A mice before the onset of the symptoms [46-47] and were implicated in increased oxidative damage, decreased respiratory activity of mitochondria [48], and mitochondrial swelling and vacuolization [47].
3.2.2. Role of transition metals in oxidative stress
Redox-active transition metals are useful but harmful trace elements. Copper and iron are abundant (~0.1-0.5 mM) in the brain and have been implicated in the generation of ROS in various neurodegenerative diseases that include Alzheimer’s disease and Parkinson’s disease [49-50]. These transition metals mediate the formation of a hydroxyl radical through the iron-catalyzed or copper-catalyzed Haber-Weiss reactions [51]. Once copper ions are transported into the cell, they must be delivered to specific targets (e.g., SOD1 and cytochrome c oxidase) or stored in copper scavenging systems (e.g., GSH and metallothioneins) [52-53]. When these events are out of control, the cells have an uncomfortable abundance of toxic and radical-generating metal ions. FALS-linked SOD1 mutation has weaker binding affinity to copper ions, which are readily libertated to increase oxidative stress in cells expressed with fALS-SOD1 [54]. The detrimental role of copper in fALS pathogenesis was supported by several experiments that used copper chelators, which delayed the disease onset and prolonged the survival of fALS-G93A mice [55], prevented peroxidase activity by expressing fALS-SOD1 A4V and G93A in vitro [56], and reduced elevated ROS production in the lymphoblasts of fALS patients [57]. Iron is vital for all living organisms because it has an essential role in oxygen transport and electron transfer, and is a cofactor in many enzyme systems that include DNA synthesis. Iron homeostasis and its regulatory system [58] was readily disrupted in the development and progress of neurodegenerative diseases such as AD or PD [59-60]. Recently, several pieces of evidence supported the concept that iron is dysregulated in ALS. An increased ferritin level was observed in the serum of sporadic ALS patients, which suggests a possible risk factor and the disturbance of iron homeostasis [61-62]. Ferritin was upregulated just prior to the end-stage disease in SOD1-G93A mice, which supports increased Fe levels [63]. In the same animal model, increased iron was evident in the spinal cord at the ages of 90 and 120 days, with the onset of the symptoms and in the late stage, due to the disease progress. The increased iron levels were attenuated by iron chelators, which improved the motor function and the survival [64]. mRNAs associated with iron homeostasis (e.g., DMT1, TfR1, the iron exporter Fpn, and CP) also increased with a caudal-to-rostral gradient, with the highest levels rostrally in the cervical region in SOD1G37R [65]. HFE protein is a membrane protein that can influence cellular iron uptake, and mutated HFE is well recognized in haemochromatosis, a genetic disorder due to the irregular accumulation of free forms of Fe in parenchymal tissue. In studies of sporadic ALS patients, both the prevalence of HFE mutation and its polymorphisms (e.g., H63D) were evident [66-67]. Therefore, HFE polymorphisms in ALS may be associated with the altered Fe homeostasis and oxidative stress in this disease. Although abnormal iron homeostasis was evident, the iron regulation mechanisms for motor neuron death must be explained.
3.2.3. Possible mechanisms related to oxidative stress in ALS
Human SOD1 mutation has a toxic gain-of-function that may be due to loss of the active site of copper binding that converts the SOD1 itself to pro-oxidant proteins and participates in ROS generation [68]. Several pieces of evidence have been suggested to show that higher interaction of mutant SOD1 with mitochondria may induce mitochondrial dysfunction and selectively lead to excessive oxidative stress in motor neurons [46]. Reduced transcription factor nuclear erythroid 2-related factor 2 (Nrf2) mRNA and protein expression has been reported in the spinal cord of ALS patients [69]. Crossbreeding SOD1G93A mice with overexpressed Nrf2 extended their survival [70], which suggests that increasing the Nef2 activity may be a novel therapeutic target. Nrf2 activation increases the expression of anti-oxidant proteins due to its interaction with the anti-oxidant-response element (ARE) after its translocation to the nucleus. In another reported mechanism of oxidative stress, the activity of NADPH oxidase (Nox) increased in both sALS patients and mutant SOD1 mice. Expressed Nox in activated microglia may influence motor neuron death. Deletion of either Nox1 or Nox2 prolonged the survival of mutant SOD1G93A mice [71-72]. Protein aggregation is a common pathological feature in ALS patients and animal ALS models. TAR DNA-binding protein-43 (TDP-43) or mutant SOD1 is a constituent of inclusions in ALS patients and mutant SOD1 mice [73-74]. Mutant SOD1 itself caused oxidative damage of proteins in mutant SOD1 mice [37].
3.2.4. Therapeutic drugs for oxidative stress in ALS
Several anti-oxidants have been tested using animal ALS models (Table 1). Completed, ongoing, or planned trials explored, are exploring, or will explore the value of anti-oxidants. Vitamin E, the most potent natural scavenger of ROS and RNS, delayed their clinical onset and slowed the disease progression in mutant SOD1 mice [25]. Long-term vitamin E supplements reduced the risk of death from ALS in ALS-free subjects [75-76]. Unfortunately, two vitamin E clinical trials failed to show the vitamin’s efficacy in ALS patients due to impermeable BBB penetration [77]. Creatine, N-acetylcysteine, AEOL-10150, and edarabone have successfully improved the motor function and survival of mutant SOD1 mice [78-81]. Creatine and N-acetylcystein were not effective in the clinical trial phase II.
4. Apoptosis
4.1. Evidence of apoptosis in ALS
Kerr et al. (1972)[82] reported electron microscopic features of shrinkage necrosis or apoptosis that are expected to play a role in the regulation of the number of cells under physiological and pathological conditions. The apoptotic cells were accompanied by condensation of the nucleus and the cytoplasm, nuclear fragmentation, and aggregated condensation of nuclear chromatin. Interestingly, apoptosis is prevented by inhibitors of protein and mRNA synthesis, and thus, appears to require the expression and activation of death-regulating proteins in neurons and non-neuronal cells [83-84]. The morphological and molecular features of apoptosis have been reported in the nervous system during the development of various neurological diseases. Apoptosis is probably correlated with the demise of motor neurons in ALS. Degenerating motor neurons in the spinal cord and the motor cortex are illustrated by the dark and shrunken cytoplasm and nuclei, chromatin condensation, and apoptotic bodies in the cells. Various pro-apoptosis proteins are activated in the ALS-injured area, and protein synthesis inhibitors attenuate ALS-related neuronal death.
4.1.1. Death receptor Fas
The death receptor Fas (CD95 or APO-1) belongs to the tumor necrosis factor (TNF) receptor superfamily and functions as a key determinant of cell fate under physiological and pathological conditions [86-87]. The Fas ligand (Fas-L) activates Fas in an autocrine or paracrine manner, which leads to the trimerization of Fas with Fas-associating protein within the death domain (FADD) and procaspase-8. Fas activation has been shown as an obligatory step in apoptosis in neurons deprived of trophic factors [88-90]. Fas antibodies were more frequently found in the serum of sporadic or familial ALS patients than in that of the normal controls [91], which also induced apoptosis in the human neuroblastoma cell line and in neuron-glia co-cultured cells of the spinal cord of rat embryos [92]. Primary motor neurons of mouse embryos that expressed mutant SOD1 were susceptible to Fas-induced death [93]. Continuous silencing of the Fas receptor on the motor-neuron-ameliorated motor function and survival of SOD1G93A mice using small interfering RNA-mediated interference supported the role of Fas-linked motor neuron degeneration in ALS [94]. In SOD1G93A mice, a Fas pathway is required to allow Fas interaction with FADD, which in turn recruits caspase-8 as one of the downstream effectors. In addition, TIMP-3 controls Fas-mediated apoptosis by inhibiting the MMP-3-mediated shedding activity in the Fas ligand on the cell surface [95]. The FASS/FADD-mediated motor neuron degeneration was attenuated by Lithium treatment in SOD1G93A mice [96]. A Fas/NO feedback loop with downstream Daxx and P38 was proposed as another Fas pathway of motor neuron death in mutant SOD1 mice [97].
4.1.2. Pro-apoptotic family of Bcl-2
The physiological and pathological roles of the Bcl-2 family have been extensively reviewed [98-99]. The physical balance between anti-apoptotic and pro-apoptotic members of the Bcl-2 family generally appears to determine the fate of developing and mature cells. Anti- and pro-apoptotic proteins are separated by the presence or absence of Bcl-2 homology (BH) domains. There are four domains: BH1-BH4. Bcl-2 and Bcl-xL contain all four domains and are anti-apoptotic. The pro-apoptotic Bcl-2 family includes Bax, Bcl-xs, Bak, Bad, and Bid and participates in the neuronal death process. Unbalanced pro- or anti-apoptotic proteins activate caspase-realted apoptosis by releasing cytochrome c into cytosol. Bax is oligomerized, inserted into the outer membrane of mitochondria, and shown to induce cytochrome c release [100-101]. The ratio of the apoptotic cell death genes Bax to Bcl-2 increases at both the mRNA and protein levels in the spinal motor neurons of ALS patients and SOD1G93A mice [102-104]. Interestingly, mutant SOD1 was highly associated with Bcl-2 in the mitochondria, which resulted in conformational or phenotypic change of Bcl-2 that weakened the mitochondria in the spinal cord [105]. Blunt Bcl-2 may contribute to the activation of the mitochondrial apoptosis machinery such as caspase-9, caspase 3, and cytochrome c in the spinal motor neurons of ALS transgenic mice and humans with ALS [106-107]. To support this idea, Bcl-2 overexpression or Bax depletion crossbred with SOD1G93A mice delayed the onset of symptoms and extended the life expectancy [108-109].
4.1.3. Caspase cascade
Caspases, a family of cysteine-dependent aspartate-directed proteases, mediate the propagation and execution of apoptosis. They can be classified into initiator caspases and effector caspases [110]. Caspase-9 is an initiator caspase and is proteolytically activated by apaf-1, a cytoplasmic protein that is homologous to ced-4, and by cytochrome c. The latter is located in the intermembrane space of the mitochondria and released into the cytoplasm by the pro-apoptotic Bcl-2 (e.g., Bax) that is transported from the cytoplasm into the mitochondria in the early phase of apoptosis. Caspase-8, which is known as another initiator caspase, is activated through the interaction of procaspase-9 with the Fas receptor and the FADD adapter. Activated caspase-8 and caspase-9 can activate downstream caspases such as caspase-3, 6, and 7 that can cleave to a number of proteins that are essential to the structure, signal transduction, and cell cycle and terminate the overall apoptosis process. Under the ER (endoplasmic reticulum) stress, caspase-12 is activated with the cleavage (activation) of caspase-9 and caspase-3, regardless of the release of cytochrome c. Marginally, ER stress triggers caspase-8 activation, which results in a mitochondria-mediated pathway via Bid cleavage. The caspase-1, -3, and -9 activities were higher in the motor neurons of the spinal cord or the motor cortex of ALS patients than in those of the control [107,111]. Caspase-1 truncated Bid to be highly reactive [106]. The orderly activation of caspase-1 and -3 was evident, and their mRNAs were abundant in animal ALS models [111-112]. The sequential activation of caspase-9 to caspase-7 was required for the mitochondria-dependent apoptosis pathway in a rodent ALS model [107]. Moreover, caspase-9 was simultaneously activated with a death receptor pathway that contained Fas, FADD, caspase-8, and caspase-3 in the ALS mice after their motor neuron death began [95-96]. Cleaved forms of caspase-12 were expressed presymptomatically in animal models, which shows evidence of ER stress [113]. A more advanced mechanism than that with caspases revealed that caspases such as caspase-3 or caspase-7 mediated TDP-43 cleavage [114], which was observed immunologically in an aggregated form in the cytoplasmic inclusions in ALS. Intraventricular administration of zVAD-fmk, a broad-spectrum caspase inhibitor, prolonged the survival of G93ASOD1 mice [111], which supports the causative role of caspase cascade in motor neuron death.
4.1.4. Anti-apoptotic drugs served as therapy for ALS
Even though minocycline has anti-inflammatory effects that prevent microglia proliferation, the drug prevented apoptotic motor neuron death by inhibiting cytochrome c release in mutant SOD1 mice [115]. The beneficial effects were proven in several studies to prolong survival and ameliorate the motor function [115-117]. Minocycline accelerated disease progression in a clinical trial, though [118]. TCH-346, a molecule that binds to glyceraldehyde 3-phosphate dehydrogenase (GAPDH), was used in small samples in a Phase II/III randomized trial, but it did not show beneficial effects [119].
5. Inflammation
5.1. Microglia and astrocyte
Microglia activation is an early event in all forms of pathology. Thus, activated microglia was initially considered a sensitive marker to identify sites that were predestined for tissue. The classical bone-marrow-derived microglial cells dwell in the gray matter and have ramified (highly branched) structures with a small portion of perinuclear cytoplasm and a small, dense, and heterochromatic nucleus. In many CNS pathologies, the cells increase, and this may arise from either local proliferation or recruitment from the blood, or both. The morphology of microglia becomes reactive under pathological conditions that were determined as infiltration of blood-derived cells, local BBB [120], or presence of damaged neurons. Microglia near areas of neuronal injury tend to have more amoeboid features with intense cell bodies and reduced numbers of shortened and thick processes [121] that lead to a structural morphology similar to that of macrophages. A shift in the active style of microglia affects neural, vascular, and blood-borne cells due to several secretions that include pro-inflammatory cytokines and chemokines, nitric oxide, and reactive oxygen intermediates. Astrocytes have many essential physiological functions in the CNS such as provision of trophic support for neurons, conduct of synaptic formation and plasticity, and regulation of the cerebral blood flow. Due to their strategic structure, they are in close contact with CNS resident cells and blood vessels [122-123]. An inflammatory insult causes proliferation of astrocytes and morphological changes. Astroglial activation is recognized via increased expression of the intermediate filament glial fibrillary acidic protein (GFAP) and the marker aldehyde dehydrogenase 1 family, member L1 (ALDH1L1). Although astrocytes are not immune cells, they can contribute to the immune response in pathological conditions. Microgliosis and astrocytosis are promient features of neurodegenerative diseases that include AD, PD, and ALS.
5.2. Evidence of inflammation in ALS
Several studies have shown the possibility that glial cells adjacent to degenerating motor neurons, mainly primed microglia and astrocytes, have causative roles in the course of disease propagation in ALS. Massive gliosis is apparent in pathologically vulnerable departments of CNS in both human ALS patients and ALS animal models [124-125]. Microglia antibodies have also been found in the CSF of an ALS patient [126]. Recently, the presence of activated microglia was visualized via positron emission tomography (PET), using [11C](R)-PK11195, in the motor cortex, dorsolateral prefrontal cortex, thalamus, and pos of living patients [127]. In the presymptomatic stage of the disease, TNF-α and M-CSF expression increased in a transgenic ALS model. Interestingly, the increase in the expressed TNF-α was found to be correlated to the severity of motor neuron loss [128]. The elevation of TNF-α and of its two receptors [TNFRI (p55TNF) and TNFRII ( p75TNF)] was observed in the serum of ALS patients, unlike in those of healthy controls [129]. To date, primed microglia-sensitive intracellular signaling that affectas ALS is authorized by the activation of p38 mitogen-activated protein kinase (p38MAPK), the translocation of the transcription factor NF-κB into the nucleus, and the upregulation of COX-2. The activation of NF-κB regulates the transcription of a wide range of inflammation-related genes that include inducible nitric oxide synthesis (iNOS), COX-2, MCP-1, MMP-9, IL-2, IL-6, IL-8, IL-12p40, IL-2 receptor, ICAM-1, TNF-α, and IFN-γ [130], which leads to the secretion of many inflammatory mediators. The aforementioned genes were shown to have changed in the tissues of ALS patients and hSOD1 transgenic mice [128,131-133]. COX-2 is inducible and is a rate-limiting enzyme of the synthesis pathways of the prostaglandins (PG) PGD2, PGE2, PGF2a, and PGI2 and thromboxane (TXA2). Prostaglandins play a role in various cellular effectors that include the instigation of inflammatory responses, the re-arrangement of cytoskeletons, and gene transcription changes [134]. COX-2 expression was significantly elevated in motor neuron and glial cells in the spinal cord of ALS patients [135-136], and the COX-2 activity increased in the spinal cord of ALS patients [137]. In addition, the PGE2 levels jumped up in the CSF of ALS patients by two to 10 times, compared with the controls [137]. The deletion of the prostaglandin E(2) EP2 receptor in SOD1G93A mice improved their motor function and prolonged their survival, which suggests that PGE2 signalling via the EP2 receptor acts as an inflammatory mediator in motor neuron degeneration [138].
5.2.1. Non-cell-autonomous neurotoxicity in ALS
Aside from degenerating motor neurons, microglia and astrocytes concomitantly play a role in disease progression in ALS model mice. Recent reports emphasized the potential role of non-cell-autonomous mechanisms, which are harmonious with and critical in SOD1G93A-induced cell-autonomous death signals [139-140]. Either neuron-specific or glia-specific expression of SOD1 mutation in mice led to the ALS phenotype, with marginal effects [141-142]. Specific expression of mutant SOD1 within neurons using Nefl (neurofilament light chain) promoters did not cause motor neuron degeneration in transgenic mice [142]. Consistently, selective expression of mutant SOD1 in microglia or astrocytes did not kill motor neurons [141,143].These non-cell-autonomous deaths of motor neurons were supported by an analysis of chimeric mice that had mixed populations of normal cells and cells that expressed mutant SOD1 [144]. Conditional knockout of mutant SOD1 in motor neurons using an Isl1 promoter-driven Cre transgene that is expressed in the spinal cord delayed the disease onset in and prolonged the survival of mutant SOD1 transgenic mice. On the other hand, however, selective removal from cells of the myeloid lineage that included microglia using a Cd11b promoter-driven Cre transgene did not delay the disease onset but extended its progress [139]. In the same lineages, selective viral vector-mediated delivery of small interfering RNAs against human SOD1 in motor neurons delayed the disease onset but did not modify the disease progression once it started [145], whereas silencing of mutant SOD1 within myeloid cells or astrocytes slowed the disease progression rather than the disease onset [139-140]. After all the bone marrow of mutant-SOD1-expressing PU-/- mice, which lacked myeloid and lymphoid cells, were replaced with wild-type-SOD1 bone marrow, their disease progression and survival improved [143], which suggests that microglia and astrocytes were not sufficient for the initiation of motor neuron death, but hastened the disease progression.
5.2.2. Systemic inflammation
Damaged or aged brains continuously suffer from systemic inflammation connected with peripheral factors, regardless of the presence of innate inflammation in the CNS [146-147]. Three critical components are directly correlated with the synthesis of cytokines and inflammatory mediators in the brain parenchyma to communicate an inflammatory signal to the brain and to trigger tissue injury. First, inflammatory responses in the thoracic-abdominal cavity are transduced into the brain via vagal-nerve sensory afferents, and then the outflow of a vagal efferent seems to manipulate these events through acetylcholine secretion, which acts on alpha 7 nicotinic receptors of macrophages [148]. Second, cytokines and inflammatory mediators from the specific area of the inflammation are put into the blood and communicate with macrophages and other cells in the circumventricular organs, which lack a patent blood-brain barrier [149]. Third, the cytokines or inflammatory mediators themselves might directly communicate with the brain endothelium via receptors expressed on the endothelium [150]. Several pieces of evidence showed that a systemic immune response is related to a clinically symptomatic feature of a neurodegenerative disease such as AD. In accordance with frequently circulating cytokines in the blood or CSF of AD patients, the abundance of pro-inflammatory factors preceded the clinical onset of dementia in the subjects [151]. Aged people with systemic infections have a double risk of developing AD. Similarly, the correlation of clinical events with systemic immunity was experimentally evaluated in an animal that was challenged with systemic stimulation. Infection of aged rats with LPS revealed neuronal loss in the brain and the memory deficits [152]. Thus, it can be said that systemic inflammation contributes to the onset and progression of neurodegenerative diseases. In recent clinical and pathological studies, ALS patients revealed dysregulation of their systemic inflammatory components, which belonged to alterations in their microglia/macrophage activation profiles [153]; elevated levels of complementary proteins in their sera [154]; increased IL-13-producing T cells and circulating neutrophils [155-156]; and higher production of CD8+ T cells in the lymphocytes [157]. Monocyte chemoattractant protein (MCP)-1 and RANTES were abundant in the cerebrospinal fluid and sera of ALS patients [158-161]. Increased MCP-1 was shown in the microglia of mutant SOD1 mice [162-163]. Moreover, the higher LPS level in the plasma of ALS patients was proportional to the total abnormally activated monocyte/macrophage contents of the peripheral blood [164]. Long-term exposure to LPS also furthered the disease progression in animal ALS models, which implies that systemic inflammation connected to peripheral factors and innate immunity in the CNS concurrently influences the disease course [165]. With aging, the blood-brain barrier (BBB) is less tight and thus, more vulnerable to systemic inflammation. The collapse of BBB or of the blood-spinal cord barrier (BSCB) was shown in animal ALS models or human ALS patients using evans blue leakage and immunohistochemistry against the anti-CD44 antibody, respectively [166-167]. Under these conditions, peripheral-inflammation-inducing factors were very apparent in the CNS and thereby affected the neurodegeneration.
5.2.3. Therapies for inflammation in ALS
Minocycline, which is believed to attenuate microglia activation, or celecoxib, a cox-2 inhibitor, showed beneficial effects in mutant SOD1 mice [115-117,168-169]. Clinical studies on the two drugs did not disprove, however, their therapeutic property in ALS patients. Thalidomide, glatiramer acetate, and ONO-2506 also supported the causative role of the inflammation in the pathology in ALS mice that showed improved motor function and survival [170-171], but their beneficial effects were not linked to the ALS patients.
6. Mitochondrial pathology in ALS
Mitochondria constitute approximately 25% of the cytoplasmic volume in most eukaryotic cells and produce cellular energy in the form of ATP via electron transport and oxidative phosphorylation. During electron transfer in the inner membrane of the organelle, electrons spontaneously leak from the electron transport chain and react with available O2 to produce superoxide, which makes mitochondria the major cellular sources of ROS. Mitochondria have been recognized as target organelles for the regulation and execution of cell death under pathological conditions [172-173]. There are many mitochondria in the motor neurons because of the high rate of metabolic demand therein, which implies that motor neurons are susceptible to functional or morphological alteration in mitochondria. Mtochondrial abnormality may play a crucial role in the pathologic mechanism of motor neuron diseases and of ALS. Studies with ALS patients and animal ALS models have been performed to examine both the morphologic and functional abnormalities of the mitochondria [174]. Morphological abnormality in the organelle that includes a fragmented network, swelling, and increased cristae has been observed in the soma and proximal axons of ventral motor neurons of sporadic ALS (sALS) patients [39]. In ALS patients, a reduction in complex IV of the electron transport chain activity was evident and has been associated with mutations in mitochondrial DNA [175-176]. Although SOD1 is mainly localized in cytosols, it is also resilient in other subcellular compartments such as the mitochondria [45,177-178] and even the endoplasmic reticulum [182]. The aggregates of mutant SOD1 were shown within the mitochondria of the spinal cord of SOD1G93A mice before the onset of symptoms [46-47] and were implicated in increased oxidative damage, decreased respiratory activity of mitochondria [48], and the appearance of mitochondrial swelling and vacuolization [47]. Dissociated cytochrome c from the interaction of mitochondria with mutant SOD1 activates apoptosis [44]. Mitochondria function as reservoirs of intracellular Ca2+, as ER. Once overloaded in cytosol, the accumulated Ca2+ in the mitochondria prepares the organelle to undergo permeability transition, and then swells and ruptures in their outermembrane, which in turn produces free radicals from them and oxidizes their lipids and DNA [179-180]. Ca2+-induced mitochondrial damage can also result in mitochondrial release of cytotoxic substances such as cytochrome c [181] and can affect caspase cascade. The homeostasis at the intracellular Ca2+ level was also disturbed in motor neurons of SOD1G93A mice [182]. Moreover, increased Ca2+ uptake into the mitochondria of motor neurons easily occurred after exposure to the glutamate agonist AMPA or kinate, and triggered increased ROS generation [183]. ALS-linked SOD1 has been shown to slow down fast axonal transport of mitochondria. The axonal mitochondria transport was primarily reduced in the anterograde direction, which suggests that the energy supply in the presynaptic terminals of the motor endplates is compromised [184]. Multiple functions of the mitochondria over cellular injury and the apearance of mitochondrial dysfunction in the presymptomatic stage may contribute to various routes of neuronal death in ALS. More recently, in mice that expressed human TDP-43 only in neurons that included motor neurons, massive accumulation of mitochondria in TDP-43-negative cytoplasmic inclusions in the motor neurons were reported and the lack of mitochondria in the motor axon terminal was observed [185]. In addition, the transgenic mice that overexpressed human TDP-43 driven by the mouse prion promoter demonstrated motor deficits, early mortality, and mitochondrial aggregation [186]. These results imply that TDP-43 is indirectly involved in mitochondrial dysfunction in neurodegenerative diseases such as ALS.
7. Autophagy in ALS
Autophagy is a degradative mechanism that is involved in the recycling and turnover of long-life proteins and organelles [187]. Autophagy is basically induced by lack of nutrients and energy or by various toxicants. Although its primary role is adaptation to scarcity, this degradative process is also critical for the normal turnover of cytoplasmic contents that include neurons. Genetic ablation of autophagy-related genes provokes neurodeneration even with lack of disease-like mutant proteins [188]. Recent studies verified the importance of the autophagy pathway in various pathological conditions that include neurodegenerative diseases [189]. Interestingly, the catabolic process is both beneficial and detrimental to cells, depending on its context and specific stimuli. The lethality of mutated SOD1 is the result of abnormal protein aggregates, which impair the degradation machinery such as the ubiqutin-proteasome system and the autophay-lysosome pathway [190-191]. Enhancing the latter with physiological characteristics prevents motor neuron dysfunction in vivo [192-193]. Defects in the autophagy pathway have a principal disease-causing role in human pathologies that include neurodegeneration [189,194]. Studies of the spinal motor neurons of ALS patients [195] and ALS transgenic mice [196] have delineated the abnormality in autophagy, which is probably correlated with the pathogenesis of the disease [192-193,197]. A growing number of studies support the concept that autophagy makes diseased motor neurons healthy by clearing the aggregated mutant SOD1, which was accomplished by inducing autophagy, as illustrated by the increased number of autophagosomes and the higher level of autophagy markers such as Beclin-1, ATG5-ATG12 complex, and LC3-II [192-193]. It is also possible, however, that blunt autophagy in neurodegenerative conditions was accompanied by the abnormal accumulation of autophagosomes and excessive markers, which might have killed the neurons [197-198] and which indicates the compensatory role of autophagy in inherited ALS. Thus, the detailed molecular mechanism of the development of autophagy-mediated diseases must be explained.
8. Therapeutic strategy for ALS
8.1. Separate routes of motor neuron degeneration in ALS
Figure 1.
Multiple pathways of motor neuron degeneration and their therapeutic drugs in ALS: (1) increased Ca2+ in the motor neuron: dysfunction or downregulation of glutamate transporters such as GLT1 on the astrocytes, elevation of the Ca2+ permeable AMPA receptor via downregulation of or a deficit in the post-transcriptional edition of GluR2 sub-units, and mitochondrial dysfunction; (2) oxidative damage of the motor neuron: increased intracellular Ca2+ contents, high levels of mitochondria due to high energy demand, and increase in free metal ions such as copper and iron; (3) apoptosis in the motor neuron: activation of the Fas-mediated pathway, alteration of Bcl-2 family proteins via mitochondrial interaction with mSOD1, and initiation, propagation, or execution of caspase cascade; (4) inflammation: non-cell-autonomous motor neuron death (the disease progression is coordinated by mSOD1 expression in all neuronal and non-neuronal cells) and concurrent activation of the innate immune system and systemic inflammation (BBB breakdown may induce a vicious cycle of inflammation); and (5) autophagy: increased autophagosome formation.Current therapeutic drugs were developed basically against a specific route of ALS disease progression.
The parallel pathway of oxidative stress and Fas-mediated apoptosis in motor neuron death in SOD1G93A mice was previously focused on [96]. This study provided the first evidence that combination therapy that targets oxidative stress and apoptosis together also delays the onset and progression of motor dysfunction and extends the survival time of ALS transgenic mice. Evidence was accumulated that shows that oxidative stress and apoptotic insults cause neuronal death through distinctive pathways and with unique morphological changes. The neurotrophins’ nerve growth factor, the brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), and NT-4/5, and the insulin-like growth factors IGF-I and IGF-II, promote neuronal survival by preventing programmed cell death or apoptosis, but they significantly enhance necrotic degeneration of neurons exposed to oxidative stress or deprived of oxygen and glucose [199-200]. Neurotrophins can induce oxidative stress by upregulating NADPH oxidase, which leads to neuronal cell necrosis [201]. Surprisingly, the insulin-like growth factor 1 (IGF-1) prevented neuronal cell apoptosis and protected spinal motor neurons in ALS mice [199,202], but markedly potentiated neuronal cell necrosis induced by hydroxyl radicals or glutathione depletion [203]. Given that oxidative stress and apoptosis play a central role in motor neuron degeneration and can contribute to neuronal death through distinctive routes in ALS, it was hypothesized that a therapeutic approach that targets both oxidative stress and apoptosis would have additive effects on neuronal survival and the motor function. To pharmacologically prevent oxidative stress and apoptosis, Neu2000, a novel anti-oxidant, and Li+, a well-known anti-apoptosis agent, were used. The former, a chemical derivative of aspirin and sulfasalazine, was developed to protect neurons from oxidative stress with greater potency and safety, and has been shown to be a potent and secure anti-oxidant in vitro and in animal models of hypoxic ischemia [204]. Li+ has been shown to prevent apoptosis through mechanisms that involve Bcl-2 upregulation, glycogen synthase kinase-3 beta inhibition, and activation of phosphatidylinositol 3-kinase that activates serine/threonine kinase Akt-1 and phospholipase C gamma [205-206]. An additional benefit of Li+ was recently demonstrated the induction of an autophagy pathway at a low dose, clears altered mitochondria and protein aggregates [192]. In the results of this study, the concurrent administration of Neu2000 and Li+, which block free-radical-mediated necrosis and Fas-mediated apoptosis, respectively, significantly delayed the onset and progression of motor neuron degeneration and motor function deficits. Thus, targeting both oxidative stress and the Fas apoptosis pathway with concurrent treatment with Neu2000 and Li+ may further improve the neurological function and neuronal survival in ALS and possibly other neurological diseases such as stroke, Alzheimer’s disease, and Parkinson’s disease. The authors’ hypothesis was supported by other experiments in which a cocktail of neuroprotective drugs with different modes of action more significantly improved survival and the motor function than did monotherapy in transgenic mouse ALS models [117,207].
Table 1.
List of drugs tested with ALS mice
Table 2.
Additive effect of combination therapy in ALS mice
8.2. Current treatment and new approach of ALS medications
Riluzole, the only therapeutic drug approved for ALS, extends life expectancy to up to 3 months in human patients. The symptomatic drug potentially targets gluatamate- or oxidative-stress-induced neurodegeneration with marginal apoptosis effects [25]. As mentioned, therapeutic strategies and drugs developed based on them, as shown in Figure 1, explain the multiple-disease-causing process of ALS. As shown in Table 1, many drugs were evaluated in mice that expressed mutant SOD1. Most of the drugs were beneficial to the motor function and survival in the tests with the mice. Several drugs (such as creatine, celecoxib, gabapentin, topiramate, lamotrigine, minocycline, thalidomide, valproate, vitamin E, and even lithium) showed beneficial effects in animal ALS models, but none of them significantly prolonged the survival or improved the quality of life of human ALS patients. The therapeutic effects on the animal models and the human patients significantly differed due to the following translational mismatch issues: first, the methological inappropriateness of the drug screening with the use of animals that had biological confounding variables such as sex and differences in the treatment initiation time point; second, the lack of correct pharmacokinetics, which were considered in a dose-ranging study of safety/toxicity and BBB penetration; and finally, the methodological pitfall of ALS clinical trials due to the insufficiency of the number of patients, the inclusion of heterogeneous populations, the short duration of the trial, and the inadequate analysis of the efficacy. It should be noted that the combination of creatine and celecoxib improved the motor function in a randomized clinical phase II trial of ALS patients and SOD1G93A mice, although single treatment with either creatine or celecoxib failed to show beneficial effects in human ALS trials [208], which suggests the greater efficacy of combined anti-oxidant and NSAID therapy than those of monotherapy. Several pieces of evidence support the notion that therapeutic combinations are more effective than individual agents in animal ALS models (Table2). More recently, the authors reported that a single agent named AAD-2004, which has a dual mode of action as an anti-oxidant and an mPGES-1 inhibitor, had better efficacy on the motor function and survival than those of riluzole and ibuprofen.
In support of such a notion, a phase II clinical trial was recently conducted, which showed that the suggested strategy may be feasible and efficient.
9. Conclusion
In ALS, knowledge of the contribution of multiple pathways to the degeneration of motor neurons has expanded greatly and has challenged clinical trials of drugs that target the processes. Better understanding of the detrimental processes that cause neurodegeneration will help define its medical importance and clarify the therapeutic potential of interfering with them.
\n',keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/45122.pdf",chapterXML:"https://mts.intechopen.com/source/xml/45122.xml",downloadPdfUrl:"/chapter/pdf-download/45122",previewPdfUrl:"/chapter/pdf-preview/45122",totalDownloads:2922,totalViews:446,totalCrossrefCites:2,totalDimensionsCites:2,totalAltmetricsMentions:0,impactScore:1,impactScorePercentile:73,impactScoreQuartile:3,hasAltmetrics:0,dateSubmitted:"May 9th 2012",dateReviewed:"May 7th 2013",datePrePublished:null,datePublished:"September 11th 2013",dateFinished:"May 31st 2013",readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/45122",risUrl:"/chapter/ris/45122",book:{id:"3393",slug:"current-advances-in-amyotrophic-lateral-sclerosis"},signatures:"Jin Hee Shin and Jae Keun Lee",authors:[{id:"124840",title:"Dr.",name:"Jin Hee",middleName:null,surname:"Shin",fullName:"Jin Hee Shin",slug:"jin-hee-shin",email:"ppzini@hanmail.net",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"124841",title:"Dr.",name:"Jae Keun",middleName:null,surname:"Lee",fullName:"Jae Keun Lee",slug:"jae-keun-lee",email:"mtguys@korea.ac.kr",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Excitotoxicity",level:"1"},{id:"sec_2_2",title:"2.1. Glutamate neurotoxicity",level:"2"},{id:"sec_2_3",title:"2.1.1. Abnormal glutamate re-uptake in ALS",level:"3"},{id:"sec_3_3",title:"2.1.2. Mediation of motor neuron degeneration by the Ca2+ permeability of AMPA receptors",level:"3"},{id:"sec_4_3",title:"2.1.3. Therapies related to glutamate-mediated excitotoxicity",level:"3"},{id:"sec_7",title:"3. Oxidative stress",level:"1"},{id:"sec_7_2",title:"3.1. Homeostasis and generation of free radicals in cells",level:"2"},{id:"sec_8_2",title:"3.2. Evidence of oxidative stress in ALS",level:"2"},{id:"sec_8_3",title:"3.2.1. Role of mitochondria in oxidative stress",level:"3"},{id:"sec_9_3",title:"3.2.2. Role of transition metals in oxidative stress",level:"3"},{id:"sec_10_3",title:"3.2.3. Possible mechanisms related to oxidative stress in ALS",level:"3"},{id:"sec_11_3",title:"3.2.4. Therapeutic drugs for oxidative stress in ALS",level:"3"},{id:"sec_14",title:"4. Apoptosis",level:"1"},{id:"sec_14_2",title:"4.1. Evidence of apoptosis in ALS",level:"2"},{id:"sec_14_3",title:"4.1.1. Death receptor Fas",level:"3"},{id:"sec_15_3",title:"4.1.2. Pro-apoptotic family of Bcl-2",level:"3"},{id:"sec_16_3",title:"4.1.3. Caspase cascade",level:"3"},{id:"sec_17_3",title:"4.1.4. Anti-apoptotic drugs served as therapy for ALS",level:"3"},{id:"sec_20",title:"5. Inflammation",level:"1"},{id:"sec_20_2",title:"5.1. Microglia and astrocyte",level:"2"},{id:"sec_21_2",title:"5.2. Evidence of inflammation in ALS",level:"2"},{id:"sec_21_3",title:"5.2.1. Non-cell-autonomous neurotoxicity in ALS",level:"3"},{id:"sec_22_3",title:"5.2.2. Systemic inflammation",level:"3"},{id:"sec_23_3",title:"5.2.3. Therapies for inflammation in ALS",level:"3"},{id:"sec_26",title:"6. Mitochondrial pathology in ALS",level:"1"},{id:"sec_27",title:"7. Autophagy in ALS",level:"1"},{id:"sec_28",title:"8. Therapeutic strategy for ALS",level:"1"},{id:"sec_28_2",title:"8.1. Separate routes of motor neuron degeneration in ALS",level:"2"},{id:"sec_29_2",title:"8.2. Current treatment and new approach of ALS medications",level:"2"},{id:"sec_31",title:"9. Conclusion",level:"1"}],chapterReferences:[{id:"B1",body:'Rosen, D.R. Sapp, P. O\'Regan, J. McKenna-Yasek, D. Schlumpf, K.S. Haines, J.L. Gusella, J.F. Horvitz, H.R. & Brown, R.H. Jr. Genetic linkage analysis of familial amyotrophic lateral sclerosis using human chromosome 21 microsatellite DNA markers. Am J Med Genet. 1994 May;15(51): 61-69.'},{id:"B2",body:'Gurney, M.E. Transgenic-mouse model of amyotrophic lateral sclerosis. N Engl J Med. 1994 Dec 22;331(25):1721-1722.'},{id:"B3",body:'Won SJ, Kim DY, Gwag BJ. Cellular and molecular pathways of ischemic neuronal death. J Biochem Mol Biol. 2002 Jan 31;35(1):67-86'},{id:"B4",body:'Nicholls D, Attwell D. The release and uptake of excitatory amino acids. Trends Pharmacol Sci. 1990 Nov;11(11):462-468.'},{id:"B5",body:'Barbour B, Brew H, Attwell D. Electrogenic glutamate uptake in glial cells is activated by intracellular potassium. Nature. 1988 Sep 29;335(6189):433-435.'},{id:"B6",body:'Rothstein, J.D. Van Kammen, M. Levey, A.I. Martin, L.J. & Kuncl, RW. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol. 1995 Jul; 38(1):73-84.'},{id:"B7",body:'Bendotti, C. Tortarolo, M. Suchak, S.K. Calvaresi, N. Carvelli, L. Bastone, A. Rizzi, M, Rattray M. & Mennini, T. Transgenic SOD1 G93A mice develop reduced GLT-1 in spinal cord without alterations in cerebrospinal fluid glutamate levels. J Neurochem. 2001 Nov;79(4):737-746.'},{id:"B8",body:'Canton, T. Pratt, J. Stutzmann, J.M. Imperato, A. & Boireau, A. Glutamate uptake is decreased tardively in the spinal cord of FALS mice. Neuroreport. 1998 Mar;309(5):775-778.'},{id:"B9",body:'Rothstein, J.D. Tsai, G. Kuncl, R.W. Clawson, L. Cornblath, D.R. Drachman, D.B. Pestronk, A. Stauch, B.L. & Coyle, J.T. Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol. 1990 Jul;28(1):18-25.'},{id:"B10",body:'Shaw, P.J. Forrest, V. Ince, P.G. Richardson, J.P. & Wastell, H.J. CSF and plasma amino acid levels in motor neuron disease: elevation of CSF glutamate in a subset of patients. Neurodegeneration. 1995 Jun;4(2):209-216.'},{id:"B11",body:'Bruijn, L.I. Becher, M.W. Lee, M.K. Anderson, K.L. Jenkins, N.A. Copeland, N.G. Sisodia, S.S. Rothstein, J.D. Borchelt, D.R. Price, D.L. & Cleveland, D.W. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron. 1997 Feb;18(2):327-338.'},{id:"B12",body:'Howland, D.S. Liu, J. She, Y. Goad, B. Maragakis, N.J. Kim, B. Erickson, J. Kulik, J. DeVito, L. Psaltis, G. DeGennaro, L.J. Cleveland, D.W. & Rothstein, J.D. Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1604-1609.'},{id:"B13",body:'Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron. 1996 Mar;16(3):675-686.'},{id:"B14",body:'Guo H, Lai L, Butchbach ME, Stockinger MP, Shan X, Bishop GA, Lin CL. Increased expression of the glial glutamate transporter EAAT2 modulates excitotoxicity and delays the onset but not the outcome of ALS in mice. Hum Mol Genet. 2003 Oct 1;12(19):2519-2532. '},{id:"B15",body:'Rothstein, J.D. Patel, S. Regan, M.R. Haenggeli, C. Huang, Y.H. Bergles, D.E. Jin, L. Dykes Hoberg, M. Vidensky, S. Chung, D.S. Toan, S.V. Bruijn, L.I. Su, Z.Z. Gupta, P. & Fisher, P.B. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature. 2005 Jan 6433 ; 7021 : 73-77.'},{id:"B16",body:'Foran E, Bogush A, Goffredo M, Roncaglia P, Gustincich S, Pasinelli P, Trotti DMotor neuron impairment mediated by a sumoylated fragment of the glial glutamate transporter EAAT2. Glia. 2011 Nov;59(11):1719-1731.'},{id:"B17",body:'Hollmann, M. & Heinemann, S. Cloned glutamate receptors. Annu. Rev. Neurosci. 1994;17:31-108. '},{id:"B18",body:'Burnashev, N. Monyer, H. Seeburg, P.H. & Sakmann, B. Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron. 1992 Jan; 8(1):189-198.'},{id:"B19",body:'Kawahara, Y. Ito, K. Sun, H. Aizawa, H. Kanazawa, I. & Kwak, S. Glutamate receptors: RNA editing and death of motor neurons. Nature. 2004 Feb;26427(6977): 801.'},{id:"B20",body:'Van Damme P. Braeken, D. Callewaert, G. Robberecht, W. & Van Den Bosch, L. GluR2 deficiency accelerates motor neuron degeneration in a mouse model of amyotrophic lateral sclerosis. Neuropathol Exp Neurol. 2005 Jul;64(7):605-612.'},{id:"B21",body:'Tateno, M. Sadakata, H. Tanaka, M. Itohara, S. Shin, RM. Miura, M. Masuda, M. Aosaki, T. Urushitani, M. Misawa, H. & Takahashi, R. Calcium-permeable AMPA receptors promote misfolding of mutant SOD1 protein and development of amyotrophic lateral sclerosis in a transgenic mouse model. Hum Mol Genet. 2004 Oct;113(19): 2183-2196. '},{id:"B22",body:'Kuner, R. Groom, A.J. Müller, G. Kornau, H.C. Stefovska, V. Bresink, I. Hartmann, B. Tschauner, K. Waibel, S. Ludolph, A.C. Ikonomidou, C. Seeburg, P.H. & Turski, L. Mechanisms of disease: motoneuron disease aggravated by transgenic expression of a functionally modified AMPA receptor subunit. Ann N Y Acad Sci. 2005 Aug;1053:269-286.'},{id:"B23",body:'Lamanauskas N and Nistri A. Riluzole blocks persistent Na+ and Ca2+ currents and modulates release of glutamate via presynaptic NMDA receptors on neonatal rat hypoglossal motoneurons in vitro.Eur J Neurosci. 2008 May;27(10):2501-2514.'},{id:"B24",body:'Albo F, Pieri M, Zona C. Modulation of AMPA receptors in spinal motor neurons by the neuroprotective agent riluzole. J Neurosci Res. 2004 Oct 15;78(2):200-207.'},{id:"B25",body:'Gurney ME, Cutting FB, Zhai P, Doble A, Taylor CP, Andrus PK, Hall ED. Benefit of vitamin E, riluzole, and gabapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann Neurol. 1996 Feb;39(2):147-157.'},{id:"B26",body:'Joo IS, Hwang DH, Seok JI, Shin SK, Kim SU. Oral administration of memantine prolongs survival in a transgenic mouse model of amyotrophic lateral sclerosis. J Clin Neurol. 2007 Dec;3(4):181-186.'},{id:"B27",body:'Van Damme P, Leyssen M, Callewaert G, Robberecht W, Van Den Bosch L. The AMPA receptor antagonist NBQX prolongs survival in a transgenic mouse model of amyotrophic lateral sclerosis. Neurosci Lett. 2003 Jun 5;343(2):81-84.'},{id:"B28",body:'Paizs M, Tortarolo M, Bendotti C, Engelhardt JI, Siklós L. Talampanel reduces the level of motoneuronal calcium in transgenic mutant SOD1 mice only if applied presymptomatically. Amyotroph Lateral Scler. 2011 Sep;12(5):340-384. '},{id:"B29",body:'Gutteridge, J.M. & Halliwell, B. Free radicals and antioxidants in the year 2000. A historical look to the future. Ann N Y Acad Sci. 2000;899:136-147. '},{id:"B30",body:'Halliwell, B & Gutteridge, J.M. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 1984 Apr 1;219(1):1-14.'},{id:"B31",body:'Beal, M.F. Ferrante, R.J. Browne, S.E. Matthews, R.T. Kowall, N.W. & Brown, R.H. Jr.(1997) Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann Neurol. 1997 Oct 42;4:644-654.'},{id:"B32",body:'Abe, K. Pan, L.H. Watanabe, M. Konno, H. Kato, T. & Itoyama, Y. Upregulation of protein-tyrosine nitration in the anterior horn cells of amyotrophic lateral sclerosis. Neurol Res. 1997 Apr 19;2(12):4-8.'},{id:"B33",body:'Poon, H.F. Hensley, K. Thongboonkerd, V. Merchant, M.L. Lynn, B.C. Pierce, W.M. Klein, J.B. Calabrese, V. & Butterfield, D.A. Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic mice--a model of familial amyotrophic lateral sclerosis. Free Radic Biol Med. 2005 Aug;1539(4):453-462. '},{id:"B34",body:'Bogdanov M, Brown RH, Matson W, Smart R, Hayden D, O\'Donnell H, Flint Beal M, Cudkowicz M. Increased oxidative damage to DNA in ALS patients. Free Radic Biol Med. 2000 Oct 1;29(7):652-658.'},{id:"B35",body:'Simpson EP, Henry YK, Henkel JS, Smith RG, Appel SH. Increased lipid peroxidation in sera of ALS patients: a potential biomarker of disease burden. Neurology. 2004 May 25;62(10):1758-1765.'},{id:"B36",body:'Ferrante, R.J. Browne, S.E. Shinobu, L.A. Bowling, A.C. Baik, M.J. MacGarvey, U. Kowall, N.W. Brown, R.H. Jr & Beal, MF. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem. 1997 Nov;69(5):2064-2074.'},{id:"B37",body:'Andrus PK, Fleck TJ, Gurney ME, Hall ED. Protein oxidative damage in a transgenic mouse model of familial amyotrophic lateral sclerosis. J Neurochem. 1998 Nov;71(5):2041-2048.'},{id:"B38",body:'Starkov, A.A. The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci. 2008 Dec;1147:37-52. '},{id:"B39",body:'Sasaki, S. & Iwata, M. Mitochondrial alterations in the spinal cord of patients with sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 2007 Jan;66(1):10-16.'},{id:"B40",body:'Dal Canto, M.C. & Gurney, M.E. Neuropathological changes in two lines of mice carrying a transgene for mutant human Cu,Zn SOD, and in mice overexpressing wild type human SOD: a model of familial amyotrophic lateral sclerosis (FALS). Brain Res. 1995 Apr;3676(1):25-40.'},{id:"B41",body:'Wong, P.C. Pardo, C.A. Borchelt, D.R. Lee, M.K. Copeland, N.G. Jenkins, N.A. Sisodia, S.S. Cleveland, D.W. & Price, D.L. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron. 1995 Jun;14(6):1105-1116.'},{id:"B42",body:'Menzies, F.M. Cookson, M.R. Taylor, R.W. Turnbull, D.M. Chrzanowska-Lightowlers, Z.M. Dong, L. Figlewicz, D.A. & Shaw, P.J. Mitochondrial dysfunction in a cell culture model of familial amyotrophic lateral sclerosis. Brain. 2002 Jul;125(Pt 7):1522-1533.'},{id:"B43",body:'Raimondi, A. Mangolini, A. Rizzardini, M. Tartari, S. Massari, S. Bendotti, C. Francolini, M. Borgese, N. Cantoni, L. & Pietrini, G. Cell culture models to investigate the selective vulnerability of motoneuronal mitochondria to familial ALS-linked G93ASOD1. Eur J Neurosci. 2006 Jul;24(2):387-399.'},{id:"B44",body:'Takeuchi H, Kobayashi Y, Ishigaki S, Doyu M, Sobue G. Mitochondrial localization of mutant superoxide dismutase 1 triggers caspase-dependent cell death in a cellular model of familial amyotrophic lateral sclerosis. J Biol Chem. 2002 Dec 27;277(52):50966-50972'},{id:"B45",body:'Okado-Matsumoto, A. & Fridovich, I. Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu,Zn-SOD in mitochondria. J Biol Chem. Vol. 19276, No. 42, (Oct 2001), pp.38388-38393.'},{id:"B46",body:'Liu J, Lillo C, Jonsson PA, Vande Velde C, Ward CM, Miller TM, Subramaniam JR, Rothstein JD, Marklund S, Andersen PM, Brännström T, Gredal O, Wong PC, Williams DS, Cleveland DW. Toxicity of familial ALS-linked SOD1 mutants from selective recruitment to spinal mitochondria. Neuron. 2004 Jul 8;43(1):5-17.'},{id:"B47",body:'Jaarsma, D. Rognoni, F. van Duijn, W. Verspaget, H.W. Haasdijk, E.D. & Holstege, J.C. CuZn superoxide dismutase (SOD1) accumulates in vacuolated mitochondria in transgenic mice expressing amyotrophic lateral sclerosis-linked SOD1 mutations. Acta Neuropathol. 2001 Oct;102(4):293-305.'},{id:"B48",body:'Mattiazzi, M. D\'Aurelio, M. Gajewski, CD. Martushova, K. Kiaei, M. Beal, MF. & Manfredi, G. Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice. J Biol Chem. 2002 Aug;16277(33): 29626-29633. '},{id:"B49",body:'Deibel, M. A., Ehmann, W. D., and Markesbery, W. R., Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer\'s disease: possible relation to oxidative stress. 1996 Nov;143(1-2):137-142.'},{id:"B50",body:'Youdim, M. B., Ben-Shachar, D., and Riederer, P., The possible role of iron in the etiopathology of Parkinson\'s disease. Mov. Disord., 1993;8(1):1-12.'},{id:"B51",body:'Haber, F. and Weiss, J., The catalytic descomposition of hydrogen peroxide by iron salts, Proc. R. Soc., London A 147, 332, 1934.'},{id:"B52",body:'Rae, T.D. Schmidt, P.J. Pufahl, R.A. Culotta, V.C. & O\'Halloran, T.V. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science.1999 Apr;30284(5415):805-808.'},{id:"B53",body:'Puig, S. & Thiele, D.J. Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol. 2002 Apr;6(2):171-180.'},{id:"B54",body:'Hayward, L.J. Rodriguez, J.A. Kim, J.W. Tiwari, A. Goto, J.J. Cabelli, D.E. Valentine, J.S. & Brown, R.H. Jr. Decreased metallation and activity in subsets of mutant superoxide dismutases associated with familial amyotrophic lateral sclerosis. J Biol Chem. 2002 May;3277(18):15923-15931.'},{id:"B55",body:'Hottinger, A.F. Fine, E.G. Gurney, M.E. Zurn, A.D. & Aebischer, P. The copper chelator d-penicillamine delays onset of disease and extends survival in a transgenic mouse model of familial amyotrophic lateral sclerosis. Eur J Neurosci. 1997 Jul;9(7):1548-1551.'},{id:"B56",body:'Wiedau-Pazos, M. Goto, J.J. Rabizadeh, S. Gralla, E.B. Roe, J.A. Lee, M.K. Valentine, J.S. & Bredesen, D.E. Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science. 1996 Jan;26271(5248):515-518.'},{id:"B57",body:'Said Ahmed, M. Hung, W.Y. Zu, J.S. Hockberger, P. & Siddique, T. Increased reactive oxygen species in familial amyotrophic lateral sclerosis with mutations in SOD1. J Neurol Sci. 2000 Jan;15176(2):88-94.'},{id:"B58",body:'Bishop, G.M. Robinson, S.R. Liu, Q. Perry, G. Atwood, C.S. & Smith, M.A. Iron: a pathological mediator of Alzheimer disease? Dev Neurosci. 2002;24(2-3):184-187.'},{id:"B59",body:'Zecca, L. Youdim, MB. Riederer, P. Connor, J.R. & Crichton, R.R. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci. 2004 Nov;5(11):863-873.'},{id:"B60",body:'Berg, D. Gerlach, M. Youdim, M.B. Double, K.L. Zecca, L. Riederer, P. & Becker, G. Brain iron pathways and their relevance to Parkinson\'s disease. J Neurochem. 2001 Oct;79(2):225-236. '},{id:"B61",body:'Qureshi, M. Brown, R.H. Jr. Rogers J.T. & Cudkowicz, M.E. Serum ferritin and metal levels as risk factors for amyotrophic lateral sclerosis. Open Neurol J 2008 Sep 12;2:51-54. '},{id:"B62",body:'Goodall, E.F. Haque, M.S. & Morrison, K.E. Increased serum ferritin levels in amyotrophic lateral sclerosis (ALS) patients. J Neurol. 2008 Nov;255(11):1652-1656.'},{id:"B63",body:'Olsen, M.K. Roberds, S.L. Ellerbrock, B.R. Fleck, T.J. McKinley, D.K. & Gurne,y M.E. Disease mechanisms revealed by transcription profiling in SOD1-G93A transgenic mouse spinal cord. Ann Neurol. 2001 Dec;50(6):730-740.'},{id:"B64",body:'Wang, Q. Zhang, X. Chen, S. Zhang, X. Zhang, S. Youdium, M. & Le, W. Prevention of motor neuron degeneration by novel iron chelators in SOD1(G93A) transgenic mice of amyotrophic lateral sclerosis. Neurodegener Dis. 2011;8(5):310-321.'},{id:"B65",body:'Jeong, S.Y. Rathore, K.I. Schulz, K. Ponka, P. Arosio, P. & David, S. Dysregulation of iron homeostasis in the CNS contributes to disease progression in a mouse model of amyotrophic lateral sclerosis. J Neurosci. 2009 Jan 21;29(3):610-619.'},{id:"B66",body:'Wang, X.S. Lee, S. Simmons, Z. Boyer, P. Scott, K. Liu, W. & Connor, J. Increased incidence of the Hfe mutation in amyotrophic lateral sclerosis and related cellular consequences. J Neurol Sci. 2004 Dec;15227(1):27-33.'},{id:"B67",body:'Goodall, E.F. Greenway, M.J. van Marion, I. Carroll, C.B. Hardiman, O. & Morrison, K.E. Association of the H63D polymorphism in the hemochromatosis gene with sporadic ALS. Neurology. 2005 Sep;2765(6):934-937.'},{id:"B68",body:'Yim HS, Kang JH, Chock PB, Stadtman ER, Yim MB. A familial amyotrophic lateral sclerosis-associated A4V Cu, Zn-superoxide dismutase mutant has a lower Km for hydrogen peroxide. Correlation between clinical severity and the Km value. J Biol Chem. 1997 Apr 4;272(14):8861-8863.'},{id:"B69",body:'Sarlette A, Krampfl K, Grothe C, Neuhoff N, Dengler R, Petri S. Nuclear erythroid 2-related factor 2-antioxidative response element signaling pathway in motor cortex and spinal cord in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 2008 Nov;67(11):1055-1062.'},{id:"B70",body:'Vargas MR, Johnson DA, Sirkis DW, Messing A, Johnson JA. Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis. J Neurosci. 2008 Dec 10;28(50):13574-13581.'},{id:"B71",body:'Wu DC, Ré DB, Nagai M, Ischiropoulos H, Przedborski S. The inflammatory NADPH oxidase enzyme modulates motor neuron degeneration in amyotrophic lateral sclerosis mice. Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):12132-12137. '},{id:"B72",body:'Marden JJ, Harraz MM, Williams AJ, Nelson K, Luo M, Paulson H, Engelhardt JF. Redox modifier genes in amyotrophic lateral sclerosis in mice. J Clin Invest. 2007 Oct;117(10):2913-2919.'},{id:"B73",body:'Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VM. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006 Oct 6;314(5796):130-133.'},{id:"B74",body:'Shan X, Vocadlo D, Krieger C. Mislocalization of TDP-43 in the G93A mutant SOD1 transgenic mouse model of ALS. Neurosci Lett. 2009 Jul 17;458(2):70-74.'},{id:"B75",body:'Wang H, O\'Reilly ÉJ, Weisskopf MG, Logroscino G, McCullough ML, Schatzkin A, Kolonel LN, Ascherio A. Vitamin E intake and risk of amyotrophic lateral sclerosis: a pooled analysis of data from 5 prospective cohort studies. Am J Epidemiol. 2011 Mar 15;173(6):595-602.'},{id:"B76",body:'Ascherio A, Weisskopf MG, O\'reilly EJ, Jacobs EJ, McCullough ML, Calle EE, Cudkowicz M, Thun MJ. Vitamin E intake and risk of amyotrophic lateral sclerosis. Ann Neurol. 2005 Jan;57(1):104-110.'},{id:"B77",body:'Pappert EJ, Tangney CC, Goetz CG, Ling ZD, Lipton JW, Stebbins GT, Carvey PM. Alpha-tocopherol in the ventricular cerebrospinal fluid of Parkinson\'s disease patients: dose-response study and correlations with plasma levels. Neurology. 1996 Oct;47(4):1037-1042.'},{id:"B78",body:'Klivenyi P, Ferrante RJ, Matthews RT, Bogdanov MB, Klein AM, Andreassen OA, Mueller G, Wermer M, Kaddurah-Daouk R, Beal MF. Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat Med. 1999 Mar;5(3):347-350.'},{id:"B79",body:'Andreassen OA, Dedeoglu A, Klivenyi P, Beal MF, Bush AI. N-acetyl-L-cysteine improves survival and preserves motor performance in an animal model of familial amyotrophic lateral sclerosis. Neuroreport. 2000 Aug 3;11(11):2491-2493.'},{id:"B80",body:'Crow JP, Calingasan NY, Chen J, Hill JL, Beal MF. Manganese porphyrin given at symptom onset markedly extends survival of ALS mice. Ann Neurol. 2005 Aug;58(2):258-265.'},{id:"B81",body:'Ito H, Wate R, Zhang J, Ohnishi S, Kaneko S, Ito H, Nakano S, Kusaka H. Treatment with edaravone, initiated at symptom onset, slows motor decline and decreases SOD1 deposition in ALS mice. Exp Neurol. 2008 Oct;213(2):448-455.'},{id:"B82",body:'Kerr, J. F., Wyllie, A. H., and Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics, Br. J. Cancer, 1972 Aug;26(4):239-257. '},{id:"B83",body:'Wyllie, A. H., Morris, R. G., Smith, A. L., and Dunlop, D. Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis, J. Pathol. 1984 Jan;142(1):67-77.'},{id:"B84",body:'Martin, D. P., Schmidt, R. E., DiStefano, P. S., Lowry, O. H., Carter, J. G., and Johnson, E. M. Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation, J. Cell Biol. 1988 Mar;106(3):829-844.'},{id:"B85",body:'Martin, LJ. Neuronal death in amyotrophic lateral sclerosis is apoptosis: possible contribution of a programmed cell death mechanism. J Neuropathol Exp Neurol. 1999 May;58(5):459-471.'},{id:"B86",body:'Nagata, S. Apoptosis by death factor. Cell. 1997 Feb 7;88(3):355-365.'},{id:"B87",body:'Strasser, A., O\'Connor, L., and Dixit, V. M. Apoptosis signaling, Annu. Rev. Biochem. 2000;69:217-245.'},{id:"B88",body:'Cheema, Z. F., Wade, S. B., Sata, M., Walsh, K., Sohrabji, F., and Miranda, R. C. Fas/Apo [apoptosis]-1 and associated proteins in the differentiating cerebral cortex: induction of caspase-dependent cell death and activation of NF-kappaB, J. Neurosci. 1999 Mar 1;19(5):1754-1770.'},{id:"B89",body:'Le-Niculescu, H., Bonfoco, E., Kasuya, Y., Claret, F. X., Green, D. R., and Karin, M. Withdrawal of survival factors results in activation of the JNK pathway in neuronal cells leading to Fas ligand induction and cell death. Mol. Cell Biol. 1999 Jan;19(1):751-763.'},{id:"B90",body:'Raoul, C., Henderson, C. E., and Pettmann, B. Programmed cell death of embryonic motoneurons triggered through the Fas death receptor, J. Cell Biol. 1999 Nov 29;147(5):1049-1062.'},{id:"B91",body:'Sengun, I.S. & Appel, S.H. Serum anti-Fas antibody levels in amyotrophic lateral sclerosis. J Neuroimmunol. 2003 Sep;142(1-2):137-140.'},{id:"B92",body:'Yi, F.H. Lautrette, C. Vermot-Desroches, C. Bordessoule, D. Couratier, P. Wijdenes, J. Preud\'homme, J.L. & Jauberteau, M.O. In vitro induction of neuronal apoptosis by anti-Fas antibody-containing sera from amyotrophic lateral sclerosis patients. J Neuroimmunol. 2000 sep;22109(2):211-220.'},{id:"B93",body:'Raoul, C. Estévez, A.G. Nishimune, H. Cleveland, D.W. deLapeyrière, O. Henderson, C.E. Haase, G. & Pettmann, B. Motoneuron death triggered by a specific pathway downstream of Fas. potentiation by ALS-linked SOD1 mutations. Neuron.2002 Sep;1235(6):1067-1083.'},{id:"B94",body:'Locatelli F, Corti S, Papadimitriou D, Fortunato F, Del Bo R, Donadoni C, Nizzardo M, Nardini M, Salani S, Ghezzi S, Strazzer S, Bresolin N, Comi GP. Fas small interfering RNA reduces motoneuron death in amyotrophic lateral sclerosis mice. Ann Neurol. 2007 Jul;62(1):81-92.'},{id:"B95",body:'Lee, J.K. Shin, J.H. Suh, J. Choi, I.S. Ryu, K.S. & Gwag, B.J. Tissue inhibitor of metalloproteinases-3 (TIMP-3) expression is increased during serum deprivation-induced neuronal apoptosis in vitro and in the G93A mouse model of amyotrophic lateral sclerosis: a potential modulator of Fas-mediated apoptosis. Neurobiol Dis. 2008 May;30(2):174-185.'},{id:"B96",body:'Shin, J.H. Cho, S.I. Lim, H.R. Lee, J.K. Lee, Y.A. Noh, J.S. Joo, I.S. Kim, K.W. & Gwag, B.J. Concurrent administration of Neu2000 and lithium produces marked improvement of motor neuron survival, motor function, and mortality in a mouse model of amyotrophic lateral sclerosis. Mol Pharmacol. 2007 Apr;71(4):965-975.'},{id:"B97",body:'Raoul C, Buhler E, Sadeghi C, Jacquier A, Aebischer P, Pettmann B, Henderson CE, Haase G. Chronic activation in presymptomatic amyotrophic lateral sclerosis (ALS) mice of a feedback loop involving Fas, Daxx, and FasL. Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):6007-6012.'},{id:"B98",body:'Merry, D. E. and Korsmeyer, S. J. Bcl-2 gene family in the nervous system, Annu. Rev. Neurosci. 1997;20:245-267.'},{id:"B99",body:'Chao, D. T. and Korsmeyer, S.J. BCL-2 family: regulators of cell death, Annu. Rev. Immunol. 1998;16:395-419.'},{id:"B100",body:'Hsu, Y. T., Wolter, K. G., and Youle, R. J. Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis, Proc. Natl. Acad. Sci. U.S.A.1997 Apr 15;94(8):3668-3672. '},{id:"B101",body:'Gross, A., Jockel, J., Wei, M. C., and Korsmeyer, S. J. Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis, EMBO J 1998 Jul 15;17(14):3878-3885.'},{id:"B102",body:'Ekegren, T. Grundström, E. Lindholm, D. & Aquilonius, S.M. Upregulation of Bax protein and increased DNA degradation in ALS spinal cord motor neurons. Acta Neurol Scand.1999 Nov;100(5):317-321.'},{id:"B103",body:'Mu, X. He, J. Anderson, D.W. Trojanowski, J.Q. & Springer, J.E. Altered expression of bcl-2 and bax mRNA in amyotrophic lateral sclerosis spinal cord motor neurons. Ann Neurol. 1996 Sep;40(3):379-386.'},{id:"B104",body:'Vukosavic, S. Dubois-Dauphin, M. Romero, N. & Przedborski, S. Bax and Bcl-2 interaction in a transgenic mouse model of familial amyotrophic lateral sclerosis. J Neurochem. 1999 Dec;73(6):2460-2468'},{id:"B105",body:'Pasinelli, P. Belford, M.E. Lennon, N. Bacskai, B.J. Hyman, B.T. Trotti, D. & Brown, R.H. Jr. Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria. Neuron. 2004 Jul;843(1):19-30.'},{id:"B106",body:'Guégan, C. Vila, M. Rosoklija, G. Hays, A.P. & Przedborski, S. Recruitment of the mitochondrial-dependent apoptotic pathway in amyotrophic lateral sclerosis. J Neurosci. 2001 Sep;121(17):6569-6576.'},{id:"B107",body:'Inoue, H. Tsukita, K. Iwasato, T. Suzuki, Y. Tomioka, M. Tateno, M. Nagao, M. Kawata, A. Saido, T.C. Miura, M. Misawa, H. Itohara, S. & Takahashi, R. The crucial role of caspase-9 in the disease progression of a transgenic ALS mouse model. EMBO J. 2003 Dec;1522(24):6665-6674.'},{id:"B108",body:'Kostic, V. Jackson-Lewis, V. de Bilbao, F. Dubois-Dauphin, M. & Przedborski, S. Bcl-2: prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. Science. 1997 Jul;25277(5325):559-562.'},{id:"B109",body:'Gould, T.W. Buss, R.R. Vinsant, S. Prevette, D. Sun, W. Knudson, C.M. Milligan, C.E. & Oppenheim, R.W. Complete dissociation of motor neuron death from motor dysfunction by Bax deletion in a mouse model of ALS. J Neurosci. 2006 Aug;2326(34):8774-8786.'},{id:"B110",body:'Earnshaw, W. C., Martins, L. M., and Kaufmann, S. H. Mammalian caspases: structure, activation, substrates, and functions during apoptosis, Annu. Rev. Biochem 1999;68:383-424.'},{id:"B111",body:'Li, M. Ona, V.O. Guégan, C. Chen, M. Jackson-Lewis, V. Andrews, L.J. Olszewski, A.J. Stieg P.E. Lee, J.P. Przedborski, S. & Friedlander, R.M. Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science. 2000 Apr;14288(5464):335-339.'},{id:"B112",body:'Ando, Y. Liang, Y. Ishigaki, S. Niwa, J. Jiang, Y. Kobayashi, Y. Yamamoto, M. Doyu, M. & Sobue, G. Caspase-1 and -3 mRNAs are differentially upregulated in motor neurons and glial cells in mutant SOD1 transgenic mouse spinal cord: a study using laser microdissection and real-time RT-PCR. Neurochem Res. 2003 Jun;28(6):839-846.'},{id:"B113",body:'Nagata, T. Ilieva, H. Murakami, T. Shiote, M. Narai, H. Ohta, Y. Hayashi, T. Shoji, M. & Abe, K. Increased ER stress during motor neuron degeneration in a transgenic mouse model of amyotrophic lateral sclerosis. Neurol Res. 2007 Dec;29(8):767-771.'},{id:"B114",body:'Zhang YJ, Xu YF, Dickey CA, Buratti E, Baralle F, Bailey R, Pickering-Brown S, Dickson D, Petrucelli L. Progranulin mediates caspase-dependent cleavage of TAR DNA binding protein-43. J Neurosci. 2007 Sep 26;27(39):10530-10534.'},{id:"B115",body:'Zhu S, Stavrovskaya IG, Drozda M, Kim BY, Ona V, Li M, Sarang S, Liu AS, Hartley DM, Wu DC, Gullans S, Ferrante RJ, Przedborski S, Kristal BS, Friedlander RM. Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature. 2002 May 2;417(6884):74-78.'},{id:"B116",body:'Van Den Bosch L, Tilkin P, Lemmens G, Robberecht W. Minocycline delays disease onset and mortality in a transgenic model of ALS. Neuroreport. 2002 Jun 12;13(8):1067-1070.'},{id:"B117",body:'Zhang W, Narayanan M, Friedlander RM. Additive neuroprotective effects of minocycline with creatine in a mouse model of ALS. Ann Neurol. 2003 Feb;53(2):267-270.'},{id:"B118",body:'Gordon PH, Moore DH, Miller RG, Florence JM, Verheijde JL, Doorish C, Hilton JF, Spitalny GM, MacArthur RB, Mitsumoto H, Neville HE, Boylan K, Mozaffar T, Belsh JM, Ravits J, Bedlack RS, Graves MC, McCluskey LF, Barohn RJ, Tandan R; Western ALS Study Group. Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol. 2007 Dec;6(12):1045-1053. '},{id:"B119",body:'Miller R, Bradley W, Cudkowicz M, Hubble J, Meininger V, Mitsumoto H, Moore D, Pohlmann H, Sauer D, Silani V, Strong M, Swash M, Vernotica E; TCH346 Study Group. Phase II/III randomized trial of TCH346 in patients with ALS. Neurology. 2007 Aug 21;69(8):776-784.'},{id:"B120",body:'Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005 May 27;308(5726):1314-318.'},{id:"B121",body:'Cunningham O, Campion S, Perry VH, Murray C, Sidenius N, Docagne F, Cunningham C. Microglia and the urokinase plasminogen activator receptor/uPA system in innate brain inflammation. Glia. 2009 Dec;57(16):1802-1814.'},{id:"B122",body:'Venance L, Cordier J, Monge M, Zalc B, Glowinski J, Giaume C. Homotypic and heterotypic coupling mediated by gap junctions during glial cell differentiation in vitro. Eur J Neurosci. 1995 Mar 1;7(3):451-461'},{id:"B123",body:'Rash JE, Yasumura T, Dudek FE, Nagy JI. Cell-specific expression of connexins and evidence of restricted gap junctional coupling between glial cells and between neurons. J Neurosci. 2001 Mar 15;21(6):1983-2000.'},{id:"B124",body:'Kawamata T, Akiyama H, Yamada T, McGeer PL. Immunologic reactions in amyotrophic lateral sclerosis brain and spinal cord tissue. Am J Pathol. 1992 Mar;140(3):691-707.'},{id:"B125",body:'Hall ED, Oostveen JA, Gurney ME. Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS. Glia. 1998 Jul;23(3):249-256.'},{id:"B126",body:'Banati RB, Gehrmann J, Kellner M, Holsboer F. Antibodies against microglia/brain macrophages in the cerebrospinal fluid of a patient with acute amyotrophic lateral sclerosis and presenile dementia. Clin Neuropathol. 1995 Jul-Aug;14(4):197-200'},{id:"B127",body:'Turner MR, Cagnin A, Turkheimer FE, Miller CC, Shaw CE, Brooks DJ, Leigh PN, Banati RB. Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol Dis. 2004 Apr;15(3):601-609.'},{id:"B128",body:'Yoshihara T, Ishigaki S, Yamamoto M, Liang Y, Niwa J, Takeuchi H, Doyu M, Sobue G. Differential expression of inflammation- and apoptosis-related genes in spinal cords of a mutant SOD1 transgenic mouse model of familial amyotrophic lateral sclerosis. J Neurochem. 2002 Jan;80(1):158-167.'},{id:"B129",body:'Poloni M, Facchetti D, Mai R, Micheli A, Agnoletti L, Francolini G, Mora G, Camana C, Mazzini L, Bachetti T. Circulating levels of tumour necrosis factor-alpha and its soluble receptors are increased in the blood of patients with amyotrophic lateral sclerosis. Neurosci Lett. 2000 Jun 30;287(3):211-214.'},{id:"B130",body:'Baldwin AS Jr. Series introduction: the transcription factor NF-kappaB and human disease. J Clin Invest. 2001 Jan;107(1):3-6.'},{id:"B131",body:'Hensley K, Floyd RA, Gordon B, Mou S, Pye QN, Stewart C, West M, Williamson K. Temporal patterns of cytokine and apoptosis-related gene expression in spinal cords of the G93A-SOD1 mouse model of amyotrophic lateral sclerosis. J Neurochem. 2002 Jul;82(2):365-374.'},{id:"B132",body:'Hensley K, Fedynyshyn J, Ferrell S, Floyd RA, Gordon B, Grammas P, Hamdheydari L, Mhatre M, Mou S, Pye QN, Stewart C, West M, West S, Williamson KS. Message and protein-level elevation of tumor necrosis factor alpha (TNF alpha) and TNF alpha-modulating cytokines in spinal cords of the G93A-SOD1 mouse model for amyotrophic lateral sclerosis. Neurobiol Dis. 2003 Oct;14(1):74-80.'},{id:"B133",body:'Henkel JS, Engelhardt JI, Siklós L, Simpson EP, Kim SH, Pan T, Goodman JC, Siddique T, Beers DR, Appel SH. Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann Neurol. 2004 Feb;55(2):221-235.'},{id:"B134",body:'Bos CL, Richel DJ, Ritsema T, Peppelenbosch MP, Versteeg HH. Prostanoids and prostanoid receptors in signal transduction. Int J Biochem Cell Biol.2004 Jul;36(7):1187-1205'},{id:"B135",body:'Yasojima K, Tourtellotte WW, McGeer EG, McGeer PL. Marked increase in cyclooxygenase-2 in ALS spinal cord: implications for therapy. Neurology.2001 Sep 25;57(6):952-956.'},{id:"B136",body:'Maihöfner C, Probst-Cousin S, Bergmann M, Neuhuber W, Neundörfer B, Heuss D. Expression and localization of cyclooxygenase-1 and -2 in human sporadic amyotrophic lateral sclerosis. Eur J Neurosci. 2003 Sep;18(6):1527-1534.'},{id:"B137",body:'Almer G, Guégan C, Teismann P, Naini A, Rosoklija G, Hays AP, Chen C, Przedborski S. Increased expression of the pro-inflammatory enzyme cyclooxygenase-2 in amyotrophic lateral sclerosis. Ann Neurol. 2001 Feb;49(2):176-185'},{id:"B138",body:'Liang X, Wang Q, Shi J, Lokteva L, Breyer RM, Montine TJ, Andreasson K. The prostaglandin E2 EP2 receptor accelerates disease progression and inflammation in a model of amyotrophic lateral sclerosis. Ann Neurol. 2008 Sep;64(3):304-314.'},{id:"B139",body:'Boillée S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, Kollias G, Cleveland DW. Onset and progression in inherited ALS determined by motor neurons and microglia. Science. 2006 Jun 2;312(5778):1389-1392.'},{id:"B140",body:'Yamanaka K, Chun SJ, Boillee S, Fujimori-Tonou N, Yamashita H, Gutmann DH, Takahashi R, Misawa H, Cleveland DW. Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat Neurosci. 2008 Mar;11(3):251-253. '},{id:"B141",body:'Gong YH, Parsadanian AS, Andreeva A, Snider WD, Elliott JL. Restricted expression of G86R Cu/Zn superoxide dismutase in astrocytes results in astrocytosis but does not cause motoneuron degeneration. J Neurosci. 2000 Jan 15;20(2):660-605.'},{id:"B142",body:'Pramatarova A, Laganière J, Roussel J, Brisebois K, Rouleau GA. Neuron-specific expression of mutant superoxide dismutase 1 in transgenic mice does not lead to motor impairment. J Neurosci. 2001 May 15;21(10):3369-3374.'},{id:"B143",body:'Beers DR, Henkel JS, Xiao Q, Zhao W, Wang J, Yen AA, Siklos L, McKercher SR, Appel SH. Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2006 Oct 24;103(43):16021-16026.'},{id:"B144",body:'Clement AM, Nguyen MD, Roberts EA, Garcia ML, Boillée S, Rule M, McMahon AP, Doucette W, Siwek D, Ferrante RJ, Brown RH Jr, Julien JP, Goldstein LS, Cleveland DW. Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science. 2003 Oct 3;302(5642):113-117.'},{id:"B145",body:'Ralph GS, Radcliffe PA, Day DM, Carthy JM, Leroux MA, Lee DC, Wong LF, Bilsland LG, Greensmith L, Kingsman SM, Mitrophanous KA, Mazarakis ND, Azzouz M. Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat Med. 2005 Apr;11(4):429-433.'},{id:"B146",body:'Cunningham C, Wilcockson DC, Campion S, Lunnon K, Perry VH. Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci. 2005 Oct 5;25(40):9275-9284.'},{id:"B147",body:'Godbout JP, Chen J, Abraham J, Richwine AF, Berg BM, Kelley KW, Johnson RW. Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. FASEB J. 2005 Aug;19(10):1329-1331. '},{id:"B148",body:'Pavlov VA, Tracey KJ. The cholinergic anti-inflammatory pathway. Brain Behav Immun. 2005 Nov;19(6):493-499. '},{id:"B149",body:'Lacroix S, Feinstein D, Rivest S. The bacterial endotoxin lipopolysaccharide has the ability to target the brain in upregulating its membrane CD14 receptor within specific cellular populations. Brain Pathol. 1998 Oct;8(4):625-640.'},{id:"B150",body:'Ek M, Engblom D, Saha S, Blomqvist A, Jakobsson PJ, Ericsson- Dahlstrand A. Inflammatory response: pathway across the blood-brain barrier. Nature. 2001 Mar 22;410(6827):430-431'},{id:"B151",body:'Tilvis RS, Kähönen-Väre MH, Jolkkonen J, Valvanne J, Pitkala KH, Strandberg TE. Predictors of cognitive decline and mortality of aged people over a 10-year period. J Gerontol A Biol Sci Med Sci. 2004 Mar;59(3):268-274.'},{id:"B152",body:'Semmler A, Frisch C, Debeir T, Ramanathan M, Okulla T, Klockgether T, Heneka MT. Long-term cognitive impairment, neuronal loss and reduced cortical cholinergic innervation after recovery from sepsis in a rodent model. Exp Neurol. 2007 Apr;204(2):733-740.'},{id:"B153",body:'Holmøy T. T cells in amyotrophic lateral sclerosis. Eur J Neurol. 2008 Apr;15(4):360-366. '},{id:"B154",body:'Goldknopf IL, Sheta EA, Bryson J, Folsom B, Wilson C, Duty J, Yen AA, Appel SH. Complement C3c and related protein biomarkers in amyotrophic lateral sclerosis and Parkinson\'s disease. Biochem Biophys Res Commun. 2006 Apr 21;342(4):1034-1039. '},{id:"B155",body:'Shi N, Kawano Y, Tateishi T, Kikuchi H, Osoegawa M, Ohyagi Y, Kira J. Increased IL-13-producing T cells in ALS: positive correlations with disease severity and progression rate. J Neuroimmunol. 2007 Jan;182(1-2):232-235.'},{id:"B156",body:'Provinciali L, Laurenzi MA, Vesprini L, Giovagnoli AR, Bartocci C, Montroni M, Bagnarelli P, Clementi M, Varaldo PE. Immunity assessment in the early stages of amyotrophic lateral sclerosis: a study of virus antibodies and lymphocyte subsets. Acta Neurol Scand. 1988 Dec;78(6):449-454.'},{id:"B157",body:'Rentzos M, Evangelopoulos E, Sereti E, Zouvelou V, Marmara S, Alexakis T, Evdokimidis I. Alterations of T cell subsets in ALS: a systemic immune activation? Acta Neurol Scand. 2012 Apr;125(4):260-264.'},{id:"B158",body:'Baron P, Bussini S, Cardin V, Corbo M, Conti G, Galimberti D, Scarpini E, Bresolin N, Wharton SB, Shaw PJ, Silani V. Production of monocyte chemoattractant protein-1 in amyotrophic lateral sclerosis. Muscle Nerve. 2005 Oct;32(4):541-544.'},{id:"B159",body:'Wilms H, Sievers J, Dengler R, Bufler J, Deuschl G, Lucius R. Intrathecal synthesis of monocyte chemoattractant protein-1 (MCP-1) in amyotrophic lateral sclerosis: further evidence for microglial activation in neurodegeneration. J Neuroimmunol. 2003 Nov;144(1-2):139-142.'},{id:"B160",body:'Nagata T, Nagano I, Shiote M, Narai H, Murakami T, Hayashi T, Shoji M, Abe K.Elevation of MCP-1 and MCP-1/VEGF ratio in cerebrospinal fluid of amyotrophic lateral sclerosis patients. Neurol Res. 2007 Dec;29(8):772-776.'},{id:"B161",body:'Rentzos M, Nikolaou C, Rombos A, Boufidou F, Zoga M, Dimitrakopoulos A, Tsoutsou A, Vassilopoulos D. RANTES levels are elevated in serum and cerebrospinal fluid in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2007 Oct;8(5):283-287.'},{id:"B162",body:'Henkel JS, Beers DR, Siklós L, Appel SH. The chemokine MCP-1 and the dendritic and myeloid cells it attracts are increased in the mSOD1 mouse model of ALS. Mol Cell Neurosci. 2006 Mar;31(3):427-437.'},{id:"B163",body:'Sargsyan SA, Blackburn DJ, Barber SC, Monk PN, Shaw PJ. Mutant SOD1 G93A microglia have an inflammatory phenotype and elevated production of MCP-1. Neuroreport. 2009 Oct 28;20(16):1450-1455.'},{id:"B164",body:'Zhang R, Hadlock KG, Do H, Yu S, Honrada R, Champion S, Forshew D, Madison C, Katz J, Miller RG, McGrath MS.Gene expression profiling in peripheral blood mononuclear cells from patients with sporadic amyotrophic lateral sclerosis (sALS). J Neuroimmunol. 2011 Jan;230(1-2):114-123'},{id:"B165",body:'Nguyen MD, D\'Aigle T, Gowing G, Julien JP, Rivest S. Exacerbation of motor neuron disease by chronic stimulation of innate immunity in a mouse model of amyotrophic lateral sclerosis. J Neurosci. 2004 Feb 11;24(6):1340-1349.'},{id:"B166",body:'Garbuzova-Davis S, Saporta S, Haller E, Kolomey I, Bennett SP, Potter H, Sanberg PR. Evidence of compromised blood-spinal cord barrier in early and late symptomatic SOD1 mice modeling ALS. PLoS One. 2007 Nov 21;2(11):e1205.'},{id:"B167",body:'Garbuzova-Davis S, Woods RL 3rd, Louis MK, Zesiewicz TA, Kuzmin-Nichols N, Sullivan KL, Miller AM, Hernandez-Ontiveros DG, Sanberg PR. Reduction of circulating endothelial cells in peripheral blood of ALS patients. PLoS One. 2010 May 12;5(5):e10614.'},{id:"B168",body:'Drachman DB, Frank K, Dykes-Hoberg M, Teismann P, Almer G, Przedborski S, Rothstein JD. Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a transgenic mouse model of ALS. Ann Neurol. 2002 Dec;52(6):771-778.'},{id:"B169",body:'Klivenyi P, Kiaei M, Gardian G, Calingasan NY, Beal MF. Additive neuroprotective effects of creatine and cyclooxygenase 2 inhibitors in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurochem. 2004 Feb;88(3):576-582.'},{id:"B170",body:'Kiaei M, Petri S, Kipiani K, Gardian G, Choi DK, Chen J, Calingasan NY, Schafer P, Muller GW, Stewart C, Hensley K, Beal MF. Thalidomide and lenalidomide extend survival in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurosci. 2006 Mar 1;26(9):2467-2473.'},{id:"B171",body:'Banerjee R, Mosley RL, Reynolds AD, Dhar A, Jackson-Lewis V, Gordon PH, Przedborski S, Gendelman HE. Adaptive immune neuroprotection in G93A-SOD1 amyotrophic lateral sclerosis mice. PLoS One. 2008 Jul 23;3(7):e2740.'},{id:"B172",body:'Budd SL, Nicholls DG. Mitochondria in the life and death of neurons. 1998 Essays Biochem. 1998;33:43-52.'},{id:"B173",body:'Kroemer G. The mitochondrion as an integrator/coordinator of cell death pathways. Cell Death Differ.1998 Jun;5(6):547.'},{id:"B174",body:'Sasaki S, Iwata M. Ultrastructural study of synapses in the anterior horn neurons of patients with amyotrophic lateral sclerosis. Neurosci Lett.1996 Feb 2;204(1-2):53-56.'},{id:"B175",body:'Borthwick GM, Johnson MA, Ince PG, Shaw PJ, Turnbull DM. Mitochondrial enzyme activity in amyotrophic lateral sclerosis: implications for the role of mitochondria in neuronal cell death. Ann Neurol. 1999 Nov;46(5):787-790.'},{id:"B176",body:'Vielhaber S, Winkler K, Kirches E, Kunz D, Büchner M, Feistner H, Elger CE, Ludolph AC, Riepe MW, Kunz WS. Visualization of defective mitochondrial function in skeletal muscle fibers of patients with sporadic amyotrophic lateral sclerosis. J Neurol Sci. 1999 Oct 31;169(1-2):133-139.'},{id:"B177",body:'Sturtz LA, Diekert K, Jensen LT, Lill R, Culotta VC. A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J Biol Chem. 2001 Oct 12;276(41):38084-38089.'},{id:"B178",body:'Higgins CM, Jung C, Ding H, Xu Z. Mutant Cu, Zn superoxide dismutase that causes motoneuron degeneration is present in mitochondria in the CNS. J Neurosci. 2002 Mar 15;22(6):RC215.'},{id:"B179",body:'Dykens JA. Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated CA2+ and Na+: implications for neurodegeneration. J Neurochem. 1994 Aug;63(2):584-591.'},{id:"B180",body:'Dugan LL, Sensi SL, Canzoniero LM, Handran SD, Rothman SM, Lin TS, Goldberg MP, Choi DW. Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. J Neurosci. 1995 Oct;15(10):6377-6388.'},{id:"B181",body:'Luetjens CM, Bui NT, Sengpiel B, Münstermann G, Poppe M, Krohn AJ, Bauerbach E, Krieglstein J, Prehn JH. Delayed mitochondrial dysfunction in excitotoxic neuron death: cytochrome c release and a secondary increase in superoxide production. J Neurosci. 2000 Aug 1;20(15):5715-5723.'},{id:"B182",body:'Kawamata H, Manfredi G. Mitochondrial dysfunction and intracellular calcium dysregulation in ALS. Mech Ageing Dev. 2010 Jul-Aug;131(7-8):517-526.'},{id:"B183",body:'Volterra A, Trotti D, Floridi S, Racagni G. Reactive oxygen species inhibit high-affinity glutamate uptake: molecular mechanism and neuropathological implications. Ann N Y Acad Sci. 1994 Nov 17;738:153-162'},{id:"B184",body:'De Vos KJ, Chapman AL, Tennant ME, Manser C, Tudor EL, Lau KF, Brownlees J, Ackerley S, Shaw PJ, McLoughlin DM, Shaw CE, Leigh PN, Miller CC, Grierson AJ. Familial amyotrophic lateral sclerosis-linked SOD1 mutants perturb fast axonal transport to reduce axonal mitochondria content. Hum Mol Genet. 2007 Nov 15;16(22):2720-2728.'},{id:"B185",body:'Shan X, Chiang PM, Price DL, Wong PC. Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of TDP-43 transgenic mice. Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16325-16330.'},{id:"B186",body:'Xu YF, Gendron TF, Zhang YJ, Lin WL, D\'Alton S, Sheng H, Casey MC, Tong J, Knight J, Yu X, Rademakers R, Boylan K, Hutton M, McGowan E, Dickson DW, Lewis J, Petrucelli L. Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. J Neurosci. 2010 Aug 11;30(32):10851-10859.'},{id:"B187",body:'Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science. 2000 Dec 1;290(5497):1717-17121.'},{id:"B188",body:'Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006 Jun 15;441(7095):885-889.'},{id:"B189",body:'Wong E, Cuervo AM. Autophagy gone awry in neurodegenerative diseases. Nat Neurosci. 2010 Jul;13(7):805-811.'},{id:"B190",body:'Kabashi E, Durham HD. Failure of protein quality control in amyotrophic lateral sclerosis. Biochim Biophys Acta. 2006 Nov-Dec;1762(11-12):1038-1050.'},{id:"B191",body:'Pasquali L, Ruffoli R, Fulceri F, Pietracupa S, Siciliano G, Paparelli A, Fornai F. The role of autophagy: what can be learned from the genetic forms of amyotrophic lateral sclerosis. CNS Neurol Disord Drug Targets. 2010 Jul;9(3):268-278.'},{id:"B192",body:'Fornai F, Longone P, Ferrucci M, Lenzi P, Isidoro C, Ruggieri S, Paparelli A. Autophagy and amyotrophic lateral sclerosis: The multiple roles of lithium. Autophagy. 2008 May;4(4):527-530.'},{id:"B193",body:'Hetz C, Thielen P, Matus S, Nassif M, Court F, Kiffin R, Martinez G, Cuervo AM, Brown RH, Glimcher LH. XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev. 2009 Oct 1;23(19):2294-2306.'},{id:"B194",body:'Banerjee R, Beal MF, Thomas B. Autophagy in neurodegenerative disorders: pathogenic roles and therapeutic implications. Trends Neurosci. 2010 Dec;33(12):541-549.'},{id:"B195",body:'Sasaki S. Autophagy in spinal cord motor neurons in sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 2011 May;70(5):349-359.'},{id:"B196",body:'Li L, Zhang X, Le W. Altered macroautophagy in the spinal cord of SOD1 mutant mice. Autophagy. 2008 Apr;4(3):290-293.'},{id:"B197",body:'Zhang X, Li L, Chen S, Yang D, Wang Y, Zhang X, Wang Z, Le W. Rapamycin treatment augments motor neuron degeneration in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Autophagy. 2011 Apr;7(4):412-425. '},{id:"B198",body:'Venkatachalam K, Long AA, Elsaesser R, Nikolaeva D, Broadie K, Montell C. Motor deficit in a Drosophila model of mucolipidosis type IV due to defective clearance of apoptotic cells. Cell. 2008 Nov 28;135(5):838-851'},{id:"B199",body:'Ryu BR, Ko HW, Jou I, Noh JS, Gwag BJ. Phosphatidylinositol 3-kinase-mediated regulation of neuronal apoptosis and necrosis by insulin and IGF-I. J Neurobiol. 1999 Jun 15;39(4):536-546.'},{id:"B200",body:'Won SJ, Park EC, Ryu BR, Ko HW, Sohn S, Kwon HJ, Gwag BJ. NT-4/5 exacerbates free radical-induced neuronal necrosis in vitro and in vivo. Neurobiol Dis. 2000 Aug;7(4):251-259.'},{id:"B201",body:'Kim SH, Won SJ, Sohn S, Kwon HJ, Lee JY, Park JH, Gwag BJ. Brain-derived neurotrophic factor can act as a pronecrotic factor through transcriptional and translational activation of NADPH oxidase. J Cell Biol. 2002 Dec 9;159(5):821-831. '},{id:"B202",body:'Kaspar BK, Lladó J, Sherkat N, Rothstein JD, Gage FH. Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science. 2003 Aug 8;301(5634):839-842.'},{id:"B203",body:'Gwag BJ, Koh JY, DeMaro JA, Ying HS, Jacquin M, Choi DW. Slowly triggered excitotoxicity occurs by necrosis in cortical cultures. Neuroscience. 1997 Mar;77(2):393-401.'},{id:"B204",body:'Gwag BJ, Lee YA, Ko SY, Lee MJ, Im DS, Yun BS, Lim HR, Park SM, Byun HY, Son SJ, Kwon HJ, Lee JY, Cho JY, Won SJ, Kim KW, Ahn YM, Moon HS, Lee HU, Yoon SH, Noh JH, Chung JM, Cho SI. Marked prevention of ischemic brain injury by Neu2000, an NMDA antagonist and antioxidant derived from aspirin and sulfasalazine. J Cereb Blood Flow Metab. 2007 Jun;27(6):1142-1151. '},{id:"B205",body:'Chalecka-Franaszek E, Chuang DM. Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons. Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8745-8750.'},{id:"B206",body:'Kang HJ, Noh JS, Bae YS, Gwag BJ. Calcium-dependent prevention of neuronal apoptosis by lithium ion: essential role of phosphoinositide 3-kinase and phospholipase Cgamma. Mol Pharmacol. 2003 Aug;64(2):228-234.'},{id:"B207",body:'Petri S, Kiaei M, Kipiani K, Chen J, Calingasan NY, Crow JP, Beal MF. Additive neuroprotective effects of a histone deacetylase inhibitor and a catalytic antioxidant in a transgenic mouse model of amyotrophic lateral sclerosis. Neurobiol Dis. 2006 Apr;22(1):40-49. '},{id:"B208",body:'Gordon PH, Cheung YK, Levin B, Andrews H, Doorish C, Macarthur RB, Montes J, Bednarz K, Florence J, Rowin J, Boylan K, Mozaffar T, Tandan R, Mitsumoto H, Kelvin EA, Chapin J, Bedlack R, Rivner M, McCluskey LF, Pestronk A, Graves M, Sorenson EJ, Barohn RJ, Belsh JM, Lou JS, Levine T, Saperstein D, Miller RG, Scelsa SN; Combination Drug Selection Trial Study Group. A novel, efficient, randomized selection trial comparing combinations of drug therapy for ALS. Amyotroph Lateral Scler. 2008 Aug;9(4):212-222.'},{id:"B209",body:'Bordet T, Buisson B, Michaud M, Drouot C, Galéa P, Delaage P, Akentieva NP, Evers AS, Covey DF, Ostuni MA, Lacapère JJ, Massaad C, Schumacher M, Steidl EM, Maux D, Delaage M, Henderson CE, Pruss RM. Identification and characterization of cholest-4-en-3-one, oxime (TRO19622), a novel drug candidate for amyotrophic lateral sclerosis. J Pharmacol Exp Ther. 2007 Aug;322(2):709-720. '},{id:"B210",body:'Tokuda E, Ono S, Ishige K, Watanabe S, Okawa E, Ito Y, Suzuki T. Ammonium tetrathiomolybdate delays onset, prolongs survival, and slows progression of disease in a mouse model for amyotrophic lateral sclerosis. Exp Neurol. 2008 Sep;213(1):122-128. '},{id:"B211",body:'Keep M, Elmér E, Fong KS, Csiszar K. Intrathecal cyclosporin prolongs survival of late-stage ALS mice. Brain Res. 2001 Mar 16;894(2):327-331.'},{id:"B212",body:'Feng HL, Leng Y, Ma CH, Zhang J, Ren M, Chuang DM. Combined lithium and valproate treatment delays disease onset, reduces neurological deficits and prolongs survival in an amyotrophic lateral sclerosis mouse model. Neuroscience. 2008 Aug 26;155(3):567-572'},{id:"B213",body:'Kiaei M, Kipiani K, Petri S, Chen J, Calingasan NY, Beal MF. Celastrol blocks neuronal cell death and extends life in transgenic mouse model of amyotrophic lateral sclerosis. Neurodegener Dis.2005;2(5):246-254.'},{id:"B214",body:'West M, Mhatre M, Ceballos A, Floyd RA, Grammas P, Gabbita SP, Hamdheydari L, Mai T, Mou S, Pye QN, Stewart C, West S, Williamson KS, Zemlan F, Hensley K. The arachidonic acid 5-lipoxygenase inhibitor nordihydroguaiaretic acid inhibits tumor necrosis factor alpha activation of microglia and extends survival of G93A-SOD1 transgenic mice. J Neurochem. 2004 Oct;91(1):133-143.'},{id:"B215",body:'Lorenzl S, Narr S, Angele B, Krell HW, Gregorio J, Kiaei M, Pfister HW, Beal MF. The matrix metalloproteinases inhibitor Ro 28-2653 [correction of Ro 26-2853] extends survival in transgenic ALS mice. Exp Neurol. 2006 Jul;200(1):166-171.'},{id:"B216",body:'Wang R, Zhang D. Memantine prolongs survival in an amyotrophic lateral sclerosis mouse model. Eur J Neurosci. 2005 Nov;22(9):2376-80.'},{id:"B217",body:'Zheng C, Nennesmo I, Fadeel B, Henter JI. Vascular endothelial growth factor prolongs survival in a transgenic mouse model of ALS. Ann Neurol. 2004 Oct;56(4):564-567.'},{id:"B218",body:'Azzouz M, Ralph GS, Storkebaum E, Walmsley LE, Mitrophanous KA, Kingsman SM, Carmeliet P, Mazarakis ND. VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature. 2004 May 27;429(6990):413-417.'},{id:"B219",body:'Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, Jin L, Dykes Hoberg M, Vidensky S, Chung DS, Toan SV, Bruijn LI, Su ZZ, Gupta P, Fisher PB. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature. 2005 Jan 6;433(7021):73-77.'},{id:"B220",body:'Lee J, Ryu H, Kowall NW. Motor neuronal protection by L-arginine prolongs survival of mutant SOD1 (G93A) ALS mice. Biochem Biophys Res Commun. 2009 Jul 10;384(4):524-529.'},{id:"B221",body:'Ghadge GD, Slusher BS, Bodner A, Canto MD, Wozniak K, Thomas AG, Rojas C, Tsukamoto T, Majer P, Miller RJ, Monti AL, Roos RP. Glutamate carboxypeptidase II inhibition protects motor neurons from death in familial amyotrophic lateral sclerosis models. Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9554-9559'},{id:"B222",body:'Del Signore SJ, Amante DJ, Kim J, Stack EC, Goodrich S, Cormier K, Smith K, Cudkowicz ME, Ferrante RJ. Combined riluzole and sodium phenylbutyrate therapy in transgenic amyotrophic lateral sclerosis mice. Amyotroph Lateral Scler. 2009 Apr;10(2):85-94.'},{id:"B223",body:'Kriz J, Gowing G, Julien JP. Efficient three-drug cocktail for disease induced by mutant superoxide dismutase. Ann Neurol. 2003 Apr;53(4):429-436.'},{id:"B224",body:'Waibel S, Reuter A, Malessa S, Blaugrund E, Ludolph AC. Rasagiline alone and in combination with riluzole prolongs survival in an ALS mouse model. J Neurol. 2004 Sep;251(9):1080-1084.'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Jin Hee Shin",address:"ppzini@hanmail.net",affiliation:'
School of Life Science and Biotechnology, Korea University, South Korea
'}],corrections:null},book:{id:"3393",type:"book",title:"Current Advances in Amyotrophic Lateral Sclerosis",subtitle:null,fullTitle:"Current Advances in Amyotrophic Lateral Sclerosis",slug:"current-advances-in-amyotrophic-lateral-sclerosis",publishedDate:"September 11th 2013",bookSignature:"Alvaro G. Estévez",coverURL:"https://cdn.intechopen.com/books/images_new/3393.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:null,printIsbn:"978-953-51-1195-5",pdfIsbn:"978-953-51-7179-9",reviewType:"peer-reviewed",numberOfWosCitations:10,isAvailableForWebshopOrdering:!0,editors:[{id:"82021",title:"Prof.",name:"Alvaro",middleName:"G.",surname:"Estévez",slug:"alvaro-estevez",fullName:"Alvaro Estévez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1056"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"45326",type:"chapter",title:"Pathophysiology of Amyotrophic Lateral Sclerosis",slug:"pathophysiology-of-amyotrophic-lateral-sclerosis",totalDownloads:3659,totalCrossrefCites:1,signatures:"Fabian H. Rossi, Maria Clara Franco and Alvaro G. Estevez",reviewType:"peer-reviewed",authors:[{id:"82021",title:"Prof.",name:"Alvaro",middleName:"G.",surname:"Estévez",fullName:"Alvaro Estévez",slug:"alvaro-estevez"},{id:"158927",title:"Dr.",name:"Fabian H.",middleName:null,surname:"Rossi",fullName:"Fabian H. Rossi",slug:"fabian-h.-rossi"},{id:"158928",title:"Dr.",name:"Maria Clara",middleName:null,surname:"Franco",fullName:"Maria Clara Franco",slug:"maria-clara-franco"}]},{id:"45122",type:"chapter",title:"Multiple Routes of Motor Neuron Degeneration in ALS",slug:"multiple-routes-of-motor-neuron-degeneration-in-als",totalDownloads:2922,totalCrossrefCites:2,signatures:"Jin Hee Shin and Jae Keun Lee",reviewType:"peer-reviewed",authors:[{id:"124840",title:"Dr.",name:"Jin Hee",middleName:null,surname:"Shin",fullName:"Jin Hee Shin",slug:"jin-hee-shin"},{id:"124841",title:"Dr.",name:"Jae Keun",middleName:null,surname:"Lee",fullName:"Jae Keun Lee",slug:"jae-keun-lee"}]},{id:"45312",type:"chapter",title:"Genetics of ALS and Correlations Between Genotype and Phenotype in ALS — A Focus on Italian Population",slug:"genetics-of-als-and-correlations-between-genotype-and-phenotype-in-als-a-focus-on-italian-population",totalDownloads:2087,totalCrossrefCites:2,signatures:"L. Diamanti, S. Gagliardi, C. Cereda and M. Ceroni",reviewType:"peer-reviewed",authors:[{id:"86115",title:"Dr.",name:"Cristina",middleName:null,surname:"Cereda",fullName:"Cristina Cereda",slug:"cristina-cereda"},{id:"92101",title:"Dr.",name:"Stella",middleName:null,surname:"Gagliardi",fullName:"Stella Gagliardi",slug:"stella-gagliardi"},{id:"92103",title:"Dr.",name:"Luca",middleName:null,surname:"Diamanti",fullName:"Luca Diamanti",slug:"luca-diamanti"},{id:"92104",title:"Prof.",name:"Mauro",middleName:null,surname:"Ceroni",fullName:"Mauro Ceroni",slug:"mauro-ceroni"}]},{id:"45315",type:"chapter",title:"The Neuroinflammation in the Physiopathology of Amyotrophic Lateral Sclerosis",slug:"the-neuroinflammation-in-the-physiopathology-of-amyotrophic-lateral-sclerosis",totalDownloads:2323,totalCrossrefCites:0,signatures:"Melissa Bowerman, Thierry Vincent, Frédérique Scamps, William\nCamu and Cédric Raoul",reviewType:"peer-reviewed",authors:[{id:"63593",title:"Dr.",name:"Thierry",middleName:null,surname:"Vincent",fullName:"Thierry Vincent",slug:"thierry-vincent"},{id:"157656",title:"Dr.",name:"Cédric",middleName:null,surname:"Raoul",fullName:"Cédric Raoul",slug:"cedric-raoul"},{id:"159999",title:"Dr.",name:"Melissa",middleName:null,surname:"Bowerman",fullName:"Melissa Bowerman",slug:"melissa-bowerman"},{id:"160001",title:"Dr.",name:"Frédérique",middleName:null,surname:"Scamps",fullName:"Frédérique Scamps",slug:"frederique-scamps"},{id:"160002",title:"Prof.",name:"William",middleName:null,surname:"Camu",fullName:"William Camu",slug:"william-camu"}]},{id:"45316",type:"chapter",title:"Superoxide Dismutase and Oxidative Stress in Amyotrophic Lateral Sclerosis",slug:"superoxide-dismutase-and-oxidative-stress-in-amyotrophic-lateral-sclerosis",totalDownloads:2894,totalCrossrefCites:0,signatures:"María Clara Franco, Cassandra N. Dennys, Fabian H. Rossi and\nAlvaro G. Estévez",reviewType:"peer-reviewed",authors:[{id:"82021",title:"Prof.",name:"Alvaro",middleName:"G.",surname:"Estévez",fullName:"Alvaro Estévez",slug:"alvaro-estevez"},{id:"158928",title:"Dr.",name:"Maria Clara",middleName:null,surname:"Franco",fullName:"Maria Clara Franco",slug:"maria-clara-franco"},{id:"159399",title:"BSc.",name:"Cassandra",middleName:null,surname:"Dennys",fullName:"Cassandra Dennys",slug:"cassandra-dennys"}]},{id:"45319",type:"chapter",title:"The Use of Human Samples to Study Familial and Sporadic Amyotrophic Lateral Sclerosis: New Frontiers and Challenges",slug:"the-use-of-human-samples-to-study-familial-and-sporadic-amyotrophic-lateral-sclerosis-new-frontiers-",totalDownloads:1612,totalCrossrefCites:0,signatures:"Laura Ferraiuolo, Kathrin Meyer and Brian Kaspar",reviewType:"peer-reviewed",authors:[{id:"157798",title:"Dr.",name:"Laura",middleName:null,surname:"Ferraiuolo",fullName:"Laura Ferraiuolo",slug:"laura-ferraiuolo"},{id:"161697",title:"Dr.",name:"Kathrin",middleName:null,surname:"Meyer",fullName:"Kathrin Meyer",slug:"kathrin-meyer"},{id:"166922",title:"Dr.",name:"Brian",middleName:null,surname:"Kaspar",fullName:"Brian Kaspar",slug:"brian-kaspar"}]},{id:"45347",type:"chapter",title:"The Role of the Statistical Method of Motor Unit Number Estimation (MUNE) to Assess the Potential Therapeutic Benefits of Riluzole on Patients with Pre-symptomatic Familial Amyotrophic Lateral Sclerosis",slug:"the-role-of-the-statistical-method-of-motor-unit-number-estimation-mune-to-assess-the-potential-ther",totalDownloads:1767,totalCrossrefCites:0,signatures:"Arun Aggarwal",reviewType:"peer-reviewed",authors:[{id:"81638",title:"Prof.",name:"Arun",middleName:null,surname:"Aggarwal",fullName:"Arun Aggarwal",slug:"arun-aggarwal"}]},{id:"45348",type:"chapter",title:"Changes in Motor Unit Loss and Axonal Regeneration Rate in Sporadic and Familiar Amyotrophic Lateral Sclerosis (ALS) — Possible Different Pathogenetic Mechanisms?",slug:"changes-in-motor-unit-loss-and-axonal-regeneration-rate-in-sporadic-and-familiar-amyotrophic-lateral",totalDownloads:1542,totalCrossrefCites:0,signatures:"Tommaso Bocci, Elisa Giorli, Lucia Briscese, Silvia Tognazzi, Fabio\nGiannini and Ferdinando Sartucci",reviewType:"peer-reviewed",authors:[{id:"92225",title:"Prof.",name:"Ferdinando",middleName:null,surname:"Sartucci",fullName:"Ferdinando Sartucci",slug:"ferdinando-sartucci"},{id:"92236",title:"Dr.",name:"Tommaso",middleName:null,surname:"Bocci",fullName:"Tommaso Bocci",slug:"tommaso-bocci"},{id:"92240",title:"Prof.",name:"Fabio",middleName:null,surname:"Giannini",fullName:"Fabio Giannini",slug:"fabio-giannini"},{id:"122088",title:"Dr.",name:"Lucia",middleName:null,surname:"Briscese",fullName:"Lucia Briscese",slug:"lucia-briscese"},{id:"165722",title:"Dr.",name:"Elisa",middleName:null,surname:"Giorli",fullName:"Elisa Giorli",slug:"elisa-giorli"},{id:"165723",title:"Dr.",name:"Silvia",middleName:null,surname:"Tognazzi",fullName:"Silvia Tognazzi",slug:"silvia-tognazzi"}]},{id:"45358",type:"chapter",title:"Eye-Gaze Input System Suitable for Use under Natural Light and Its Applications Toward a Support for ALS Patients",slug:"eye-gaze-input-system-suitable-for-use-under-natural-light-and-its-applications-toward-a-support-for",totalDownloads:2799,totalCrossrefCites:3,signatures:"Abe Kiyohiko, Ohi Shoichi and Ohyama Minoru",reviewType:"peer-reviewed",authors:[{id:"160224",title:"Dr.",name:"Kiyohiko",middleName:null,surname:"Abe",fullName:"Kiyohiko Abe",slug:"kiyohiko-abe"}]}]},relatedBooks:[{type:"book",id:"1191",title:"Neuromuscular Disorders",subtitle:null,isOpenForSubmission:!1,hash:"6f634511340dcd5fe321e13e83a62531",slug:"neuromuscular-disorders",bookSignature:"Ashraf Zaher",coverURL:"https://cdn.intechopen.com/books/images_new/1191.jpg",editedByType:"Edited by",editors:[{id:"66392",title:"Prof.",name:"Ashraf",surname:"Zaher",slug:"ashraf-zaher",fullName:"Ashraf Zaher"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"38138",title:"Integrins in the Development and Pathology of Skeletal Muscle",slug:"integrins-in-the-development-and-pathology-of-skeletal-muscle",signatures:"Susan C. Brown, Ulrich Mueller and Francesco J. Conti",authors:[{id:"75267",title:"Dr.",name:"Francesco",middleName:null,surname:"Conti",fullName:"Francesco Conti",slug:"francesco-conti"},{id:"76763",title:"Dr.",name:"Ulrich",middleName:null,surname:"Mueller",fullName:"Ulrich Mueller",slug:"ulrich-mueller"}]},{id:"38139",title:"Facioscapulohumeral Muscular Dystrophy: From Clinical Data to Molecular Genetics and Return",slug:"facioscapulohumeral-muscular-dystrophy-from-clinical-data-to-molecular-genetics-and-return",signatures:"Monica Salani, Elisabetta Morini, Isabella Scionti and Rossella Tupler",authors:[{id:"75673",title:"Prof.",name:"Rossella",middleName:null,surname:"Tupler",fullName:"Rossella Tupler",slug:"rossella-tupler"},{id:"84026",title:"Dr.",name:"Monica",middleName:null,surname:"Salani",fullName:"Monica Salani",slug:"monica-salani"},{id:"84040",title:"BSc.",name:"Elisabetta",middleName:null,surname:"Morini",fullName:"Elisabetta Morini",slug:"elisabetta-morini"},{id:"84043",title:"BSc.",name:"Isabella",middleName:null,surname:"Scionti",fullName:"Isabella Scionti",slug:"isabella-scionti"}]},{id:"38140",title:"AON-Mediated Exon Skipping for Duchenne Muscular Dystrophy",slug:"aon-mediated-exon-skipping-for-duchenne-muscular-dystrophy",signatures:"Ingrid E. C. Verhaart and Annemieke Aartsma-Rus",authors:[{id:"97876",title:"Dr.",name:"Annemieke",middleName:null,surname:"Aartsma-Rus",fullName:"Annemieke Aartsma-Rus",slug:"annemieke-aartsma-rus"},{id:"97903",title:"MSc.",name:"Ingrid",middleName:null,surname:"Verhaart",fullName:"Ingrid Verhaart",slug:"ingrid-verhaart"}]},{id:"38141",title:"Psychosocial Support Needs of Families of Boys with Duchenne Muscular Dystrophy",slug:"support-needs-of-families-of-boys-with-duchenne-muscular-dystrophy",signatures:"Jean K. Mah and Doug Biggar",authors:[{id:"101069",title:"Dr.",name:"Jean",middleName:null,surname:"Mah",fullName:"Jean Mah",slug:"jean-mah"}]},{id:"38142",title:"Comparison Between Courses of Home and Inpatients Mechanical Ventilation in Patients with Muscular Dystrophy in Japan",slug:"comparison-between-courses-of-home-and-inpatients-mechanical-ventilation-in-patients-with-muscul",signatures:"Toshio Saito and Katsunori Tatara",authors:[{id:"80070",title:"Dr.",name:"Toshio",middleName:null,surname:"Saito",fullName:"Toshio Saito",slug:"toshio-saito"},{id:"89572",title:"Dr.",name:"Katsunori",middleName:null,surname:"Tatara",fullName:"Katsunori Tatara",slug:"katsunori-tatara"}]},{id:"38143",title:"Myopathy in Autoimmune Diseases - Primary Sjögren's Syndrome and Dermatomyositis",slug:"dermatomyositis",signatures:"Fumio Kaneko, Ari Togashi, Erika Nomura, Teiji Yamamoto and Hideo Sakuma",authors:[{id:"87035",title:"Prof.",name:"Fumio",middleName:null,surname:"Kaneko",fullName:"Fumio Kaneko",slug:"fumio-kaneko"},{id:"91498",title:"Dr.",name:"Ari",middleName:null,surname:"Togashi",fullName:"Ari Togashi",slug:"ari-togashi"},{id:"126816",title:"Dr.",name:"Hideo",middleName:null,surname:"Sakuma",fullName:"Hideo Sakuma",slug:"hideo-sakuma"},{id:"127426",title:"Dr.",name:"Erika",middleName:null,surname:"Nomura",fullName:"Erika Nomura",slug:"erika-nomura"},{id:"127427",title:"Prof.",name:"Teiji",middleName:null,surname:"Yamamoto",fullName:"Teiji Yamamoto",slug:"teiji-yamamoto"}]},{id:"38144",title:"Dermatomyositis",slug:"dermatomyositis-a-pictorial-essay-radiology",signatures:"Fred van Gelderen",authors:[{id:"87949",title:"Dr.",name:"Fred",middleName:null,surname:"Van Gelderen",fullName:"Fred Van Gelderen",slug:"fred-van-gelderen"}]},{id:"38145",title:"Interstitial Pneumonia in Dermatomyositis",slug:"interstitial-pneumonia-in-dermatomyositis",signatures:"Tohru Takeuchi, Takuya Kotani and Shigeki Makino",authors:[{id:"87002",title:"Dr.",name:"Tohru",middleName:null,surname:"Takeuchi",fullName:"Tohru Takeuchi",slug:"tohru-takeuchi"},{id:"94499",title:"Dr.",name:"Takuya",middleName:null,surname:"Kotani",fullName:"Takuya Kotani",slug:"takuya-kotani"},{id:"94500",title:"Dr.",name:"Shigeki",middleName:null,surname:"Makino",fullName:"Shigeki Makino",slug:"shigeki-makino"}]},{id:"38146",title:"IBMPFD and p97, the Structural and Molecular Basis for Functional Disruption",slug:"ibmpfd-and-the-structural-and-molecular-basis-for-the-disruption-of-p97-function",signatures:"Wai-Kwan Tang and Di Xia",authors:[{id:"80387",title:"Dr.",name:"Di",middleName:null,surname:"Xia",fullName:"Di Xia",slug:"di-xia"},{id:"81906",title:"Dr.",name:"Wai-Kwan",middleName:null,surname:"Tang",fullName:"Wai-Kwan Tang",slug:"wai-kwan-tang"}]},{id:"38147",title:"Congenital Myasthenic Syndromes - Molecular Bases of Congenital Defects of Proteins at the Neuromuscular Junction",slug:"congenital-myasthenic-syndromes-molecular-bases-of-congenital-defects-of-proteins-at-the-neuromu",signatures:"Kinji Ohno, Mikako Ito and Andrew G. Engel",authors:[{id:"75717",title:"Dr.",name:"Kinji",middleName:null,surname:"Ohno",fullName:"Kinji Ohno",slug:"kinji-ohno"},{id:"75724",title:"Prof.",name:"Andrew G.",middleName:null,surname:"Engel",fullName:"Andrew G. Engel",slug:"andrew-g.-engel"},{id:"75988",title:"Dr.",name:"Mikako",middleName:null,surname:"Ito",fullName:"Mikako Ito",slug:"mikako-ito"}]},{id:"38148",title:"Motor Neuron Disease",slug:"motor-neuron-diseases",signatures:"Hamdy N. El Tallawy",authors:[{id:"101534",title:"Dr.",name:"Hamdy",middleName:"Naguib",surname:"El-Tallawy",fullName:"Hamdy El-Tallawy",slug:"hamdy-el-tallawy"}]},{id:"38149",title:"Spinal Muscular Atrophy",slug:"spinal-muscular-atrophy",signatures:"Yasser Salem",authors:[{id:"99239",title:"Dr.",name:"Yasser",middleName:null,surname:"Salem",fullName:"Yasser Salem",slug:"yasser-salem"}]},{id:"38150",title:"Respiratory Muscle Aids in the Management of Neuromuscular Respiratory Impairment to Prevent Respiratory Failure and Need for Tracheostomy",slug:"respiratory-muscle-aids-in-the-management-of-neuromuscular-respiratory-impairment-to-prevent-res",signatures:"A. J. Hon and J. R. Bach",authors:[{id:"102142",title:"Dr",name:"Alice",middleName:null,surname:"Hon",fullName:"Alice Hon",slug:"alice-hon"},{id:"106027",title:"Prof.",name:"John",middleName:null,surname:"Bach",fullName:"John Bach",slug:"john-bach"}]},{id:"38151",title:"Neuromuscular Diseases in the Context of Psychology and Educational Science",slug:"neuromuscular-diseases-in-the-context-of-psychology-and-educational-science",signatures:"Andrea Pieter and Michael Fröhlich",authors:[{id:"98306",title:"Dr.",name:"Michael",middleName:"Alfred",surname:"Froehlich",fullName:"Michael Froehlich",slug:"michael-froehlich"},{id:"131231",title:"Prof.",name:"Andrea",middleName:null,surname:"Pieter",fullName:"Andrea Pieter",slug:"andrea-pieter"}]}]}],publishedBooks:[{type:"book",id:"6955",title:"Dystonia",subtitle:"Different Prospects",isOpenForSubmission:!1,hash:"5f28682b4811cab0faf6a2be829b2121",slug:"dystonia-different-prospects",bookSignature:"Tamer Mohamed Gaber Rizk",coverURL:"https://cdn.intechopen.com/books/images_new/6955.jpg",editedByType:"Edited by",editors:[{id:"170531",title:"Prof.",name:"Tamer",surname:"Rizk",slug:"tamer-rizk",fullName:"Tamer Rizk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"197",title:"The Clinical Spectrum of Alzheimer's Disease",subtitle:"The Charge Toward Comprehensive Diagnostic and Therapeutic Strategies",isOpenForSubmission:!1,hash:"968eec9d1d7cad83f7a8ca81d5aeee2d",slug:"the-clinical-spectrum-of-alzheimer-s-disease-the-charge-toward-comprehensive-diagnostic-and-therapeutic-strategies",bookSignature:"Suzanne De La Monte",coverURL:"https://cdn.intechopen.com/books/images_new/197.jpg",editedByType:"Edited by",editors:[{id:"29111",title:"Dr.",name:"Suzanne",surname:"De La Monte",slug:"suzanne-de-la-monte",fullName:"Suzanne De La Monte"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7070",title:"Novel Aspects on Motor Neuron Disease",subtitle:null,isOpenForSubmission:!1,hash:"3ea8aa08fd9d45d806411a8c60b7adab",slug:"novel-aspects-on-motor-neuron-disease",bookSignature:"Humberto Foyaca Sibat and Lourdes de Fátima Ibañez-Valdés",coverURL:"https://cdn.intechopen.com/books/images_new/7070.jpg",editedByType:"Edited by",editors:[{id:"142346",title:"Prof.",name:"Humberto",surname:"Foyaca Sibat",slug:"humberto-foyaca-sibat",fullName:"Humberto Foyaca Sibat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"210",title:"Novel Treatment of Epilepsy",subtitle:null,isOpenForSubmission:!1,hash:"f53f29b4c0d2dfbe5607e03e04344316",slug:"novel-treatment-of-epilepsy",bookSignature:"Humberto Foyaca-Sibat",coverURL:"https://cdn.intechopen.com/books/images_new/210.jpg",editedByType:"Edited by",editors:[{id:"142346",title:"Prof.",name:"Humberto",surname:"Foyaca Sibat",slug:"humberto-foyaca-sibat",fullName:"Humberto Foyaca Sibat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7147",title:"Demystifying Polyneuropathy",subtitle:"Recent Advances and New Directions",isOpenForSubmission:!1,hash:"884b3c36ad0b0856066a901d2f910ef5",slug:"demystifying-polyneuropathy-recent-advances-and-new-directions",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/7147.jpg",editedByType:"Edited by",editors:[{id:"221787",title:"Dr.",name:"Patricia",surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[{type:"book",id:"3393",title:"Current Advances in Amyotrophic Lateral Sclerosis",subtitle:null,isOpenForSubmission:!1,hash:"070e10ef61935de43d68e3d6bd918abb",slug:"current-advances-in-amyotrophic-lateral-sclerosis",bookSignature:"Alvaro G. Estévez",coverURL:"https://cdn.intechopen.com/books/images_new/3393.jpg",editedByType:"Edited by",editors:[{id:"82021",title:"Prof.",name:"Alvaro",surname:"Estévez",slug:"alvaro-estevez",fullName:"Alvaro Estévez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},onlineFirst:{chapter:{type:"chapter",id:"72121",title:"An LTE-Direct-Based Communication System for Safety Services in Vehicular Networks",doi:"10.5772/intechopen.91948",slug:"an-lte-direct-based-communication-system-for-safety-services-in-vehicular-networks",body:'
1. Introduction
A vehicular communication system is one of the key components of intelligent transportation and traffic management systems. Advanced traffic management systems are expected to improve traffic flow, reduce congestions and accidents, and optimize the energy consumption of vehicles. Vehicular communication systems should enable just in time data exchange mechanisms among different elements of traffic management. Early versions of the vehicular networks were developed primarily to support V2V communications which are now evolving to vehicle-to-everything (V2X) communications mode [1]. A V2V system enables vehicles to exchange messages within the close vicinity of a Host Vehicle (HV), whereas the V2X service enables the vehicle to exchange information among any data devices in the vehicular network or in the infrastructure network. The enhanced features of vehicular networks are increasing the need for more flexible communication network architecture that can support diversified services, from time-critical safety services to high data rate entertainment services. The time-critical safety services are key features of the vehicular networks to reduce traffic accidents and offer better road safety services. Hence the role of the communication network will be crucial in a vehicular network.
The vehicular ad hoc network (VANET) architecture was initially developed using the dedicated short-range communication (DSRC) and the IEEE 802.11p networking standards [2]. The main objective of the VANET is to support V2V and vehicle-to-infrastructure (V2I) communication modes. The IEEE 802.11p network uses the random-access medium access control protocol carrier-sense multiple access with collision avoidance (CSMA/CA) to support V2V and V2I services. The advantages of the CSMA/CA protocol are in its simplicity, minimum control signaling, and the broadcast nature of transmission. These enable low packet transmission delay at lower teletraffic load. However, due to the lack of coordination among transmitters, packet collisions can occur which can increase the packet transmission delay as well as reduce the packet delivery ratio. Also, the performance of an IEEE 802.11p network is affected by the network node densities which could vary on roads depending on the road layout, congestions, and time of the day. Hence the main bottlenecks of an IEEE 802.11p vehicular network are the scalability and lack of adequate Quality of Service (QoS) support for a different class of services. However, the IEEE 802.11p standard-based vehicular network technology has matured, and many commercial products are now available [3, 4]. With the introduction of 5G technologies, the transportation and ICT industries have refocused their attention to developing new systems and products mainly relying on the Long Term Evolution (LTE)-based technologies [5].
The LTE standard is commonly used as the 4G broadband wireless technology which is further evolving as one of the major components of the 5G technology [6]. The LTE is a wide-area wireless networking technology standard that uses the conventional cellular network architecture and uses direct radio communication between the user equipment (UE) and the base station commonly known as the eNodeB (eNB) as shown in Figure 1. The Enhanced UMTS Terrestrial Radio Access Network (E-UTRAN) represents the radio access network where the eNB and user equipment (UE) are located. The Evolved Packet Core Network (EPC) connects the radio access networks and the external network such as the Internet. The core network hosts various control entities, databases, and functional servers. Cellular networks have several benefits such as wide-area coverage, high data rate, and guaranteed QoS for multiple services. However, the conventional centralized cellular networks are not always suitable for vehicular networks to support some of the services particularly for distributing time-sensitive broadcast services such as the Cooperative Awareness Message (CAM). In a conventional cellular network, all data communication between devices must go through the eNB, irrespective of whether they are located next to each other or at a long distance. The CAMs are transmitted from each vehicle to its neighboring vehicles to distribute situational awareness information.
Figure 1.
LTE network architecture.
The CAMs are periodic messages that have a 10 Hz generation frequency with latency restrictions of 100 ms. In the 802.11p-based VANET, the CAM messages are broadcasted to the neighboring vehicles using the CSMA/CA protocol. Generally, conventional cellular networks can support unicast, broadcast, and multicast communications; however, these configurations are not suitable for the CAM message transmissions due to high signaling overhead. To accommodate the needs of vehicular networks, the 3GPP has started to standardize the LTE-V standard to support V2X services which encompass three modes of communications: V2V, V2I, and vehicle-to-pedestrian (V2P) in Release 14. To support vehicular networking requirements, the standard has developed a new channel architecture using the PC5 interface. The standard also supports the conventional Uu interface for different vehicular services. The PC5 interface includes the sidelink which has D2D communication abilities developed under Release 12 of the LTE standard. Release 12 was mainly developed for public safety applications. The V2X communication services are being enhanced in the LTE Release 15 and will be further enhanced in Release 16.
In this chapter, we firstly review the vehicular networking and service requirements. Following the review of networking and service requirements, we briefly review the LTE-V/LTE-V2X standard. The discussion then focuses on our new algorithm referred to as Cluster-Based Cellular Vehicle-to-Vehicle (CBC-V2V) combined with a new peer discovery model referred to as Evolved Packet Core Level Sidelink Peer Discovery (ESPD). The chapter also presents the performance analysis of the CBC-V2V algorithm and compares the performance of the algorithm with other standard algorithms. In Section 2, we present the review on future vehicular network requirements. In Section 3, we briefly introduce the LTE-V/VX standard. In Section 4, our proposed LTE standard-based vehicular network resource allocation algorithm is presented. In Section 5, we present the simulation model developed to analyze the performance of the CBC-V2V algorithm. Conclusions are drawn in Section 6.
2. Future vehicular network requirements
Traffic management systems are constantly evolving to improve road traffic services and the safety of road users. Recently, the 3GPP introduced a number of vehicular network use cases in the LTE-V2V Release 14 [7] for future vehicular networks. The study showed that the vehicular network requirements have evolved over time. In early days, vehicular networks were developed mainly to support safer vehicle movements and reduce traffic congestion. However, future vehicular networks are planning to support a range of basic and enhanced services. Some of the future suggested services are listed below. The following list shows that future vehicular network requirements have been extended to include several smart city services such as parking management services, pedestrian and vulnerable road user safety. These services need to be supported by four different network configurations, i.e., V2V, V2I, V2P, and Vehicle-to-Network (V2N). Some of the service characteristics are briefly summarized in Table 1.
Forward collision warning (FCW)
Control loss warning (CLW)
Emergency vehicle warning
V2V emergency stop
Cooperative Adaptive Cruise Control (CACC)
V2I emergency stop case
Queue warning
Road safety services
Automated parking system (APS)
Wrong-way driving warning (WDW)
V2X message transfer
Pre-crash sensing warning
V2X services in areas outside network coverage
V2X road safety services via infrastructure
V2N traffic flow optimization
Curve speed warning
Warning to pedestrian messaging
Vulnerable road user (VRU) safety
Service
Main purpose
Communication mode
Service requirements
Forward collision warning
The FCW service has been proposed to warn the driver of a host vehicle (HV) about an impending rear end collision with a remote vehicle (RV) or vehicles. The FCW service can help reduce collisions
HV and RV communicate using V2V transmission mode
Periodic broadcast CAM message, support high mobility, early warning message
Control loss warning
The CLW service enables an HV to broadcast self-generated loss of control message to RVs. Upon receiving the message, RVs warn drivers for appropriate action(s)
HV and RV communication using V2V services
Communicate messages over a distance to generate warning message with ample time to respond. Event-based broadcast message
Emergency vehicle warning
This service enables all vehicles to acquire location, speed, and direction information of surrounding emergency vehicle(s) to assist smooth movement of emergency vehicles
V2V communication using LTE-D2D
Event-based CAM message broadcast to cars within 300–500 meters
Cooperative Adaptive Cruise Control (CACC)
The CACC service provides convenience and safety benefits to group of vehicles in close vicinity. Can be used for platooning structure
Mainly V2V services, but V2X communication can also be used to obtain forward traffic flow information
The service can support a maximum latency of 1 sec and a maximum frequency of one message per second
Queue warning
This service allows vehicles to receive forward road queue warning messages. Road user safety can be significantly increased by using this service
V2V and V2I communication services
Able to transmit and receive V2I messages with a maximum relative velocity of 160 km/h. Support an appropriate communication range necessary for early warning
Road safety services
Using this service, V2X messages are delivered from an UE to other UEs via an installed Road Side Unit.
V2X and V2I services
A V2X message should be delivered within 100 ms via an RSU with low delivery loss. An RSU should be able to transmit V2X messages at a maximum frequency of 10 Hz
Curve speed warning
This application sends alert messages to the driver to manage possible blind spot or the curve at an appropriate speed. An RSU is placed before a curve to transmit information such as curve location, recommended speed, curvature, and road surface conditions
RSU-based I2V and V2I services
I2V message transmission with a maximum latency of 1 sec and maximum frequency of one message per second
Table 1.
Service characteristics.
Table 1 shows that communication needs and service requirements of future vehicular networks are quite diverse with variable QoS requirements. It is expected that over time, the service categories will grow, and their requirements will evolve. To support the above multiservice requirements, the current IEEE 802.11p networks will not be adequate due to higher traffic volume and inadequate QoS support for multiservice networks. Also, some of the services such as emergency vehicle warning or curve speed warning may need longer transmission ranges and may also increase the collision probability in CSMA/CA-based IEEE 802.11p networks. Another important consideration for the future vehicular network is the support of autonomous vehicles that require low delay and low loss reliable communication networks. Hence, the main objective of the LTE-V/LTE-V2X standard is developing an advanced cellular-based vehicular network. In the following section, we review the LTE-V2X standard based on Release 14.
3. LTE-V2X standard
The LTE standard is widely used in public and private mobile radio networks. LTE technology has been identified to support vehicular network services using V2X architecture. The V2X service architecture is shown in Figure 2. As mentioned in the previous section, the V2X communication services include four different modes of communication (V2V, V2I, V2P, and V2N). These links are bidirectional. 3GPP study groups in collaboration with transport industries have started standardization activities on LTE-based vehicular networks in the working group 1. After several studies and developing several initial specifications on V2X services based on LTE, Release 14 was published in 2017 [8]. The standard is further developed in Release 15 in 2018 supporting enhanced V2X networking features. The enhancements go beyond the support of CAM and Decentralized Environmental Notification Messages (DENM) transmissions as shown in Table 1. The 3GPP specifications did not allocate any specific frequency band to support V2X services. European Telecommunications Standard Institute (ETSI) has allocated a 70 MHz spectrum in the 5.9 GHz band in which there is no overlap between V2X and conventional cellular network services. This separation of operating frequency will enable different operators to provide vehicular network services independent of conventional mobile operators. The 5.9 GHz LTE band will allow the system to coexist with IEEE 802.11p-based systems. However, the mobile operators can also use the licensed band to support the V2X services. The V2X services can use the conventional air interface as well as the newly developed D2D interface using the sidelink channel. The D2D communication architecture is briefly introduced in the following section.
Figure 2.
V2X communication architecture.
3.1 D2D communication architecture
The LTE-V2X architecture has been developed to support diverse vehicular network services as discussed above. The architecture uses the new air interface PC5 along with the conventional Uu interface to support various services. The PC5 interface can offer enhanced network services such as device-to-device communication, normally supported by the ad hoc network architecture. The device-to-device communication services was introduced in Release 12 which was originally developed for the safety services [9]. The LTE Release 12 architecture is shown in Figure 3. The figure shows a new service function the Proximity Service located in the Evolved Packet Core which allows the devices to discover peer devices for D2D communication services. The ProSe function allows users to directly communicate and exchange data with neighboring devices by sending a registration message to the eNB with a ProSe application ID. The eNB organizes the communication between the devices using the control channels. Once the communicating devices are matched by the eNB, then they can directly communicate using the PC5 interface as shown in Figure 3. The PC interface functions are summarized in Table 2. Details of these interfaces can be found in [10].
The ProSe application server can communicate towards a ProSe application in the UE through the interface
PC2
The ProSe application server can communicate with the ProSe function through this interface
PC3
The ProSe function can connect to the UE through the PC3 interface
PC4
The ProSe function connects with Evolved Packet Core in the network through PC4 interface
PC5
A PC5 interface enables direct communication between two UEs
Table 2.
PC interfaces.
The channels in the Uu and PC5 interfaces are organized as logical, transport, and physical channels. Figure 4 shows the mapping structure of these channels used for the sidelink communication in the LTE standard. There are two logical channels introduced for sidelink communication: first is the SL Traffic Channel (STCH), and second is SL Broadcast Control Channel (SBCCH). The STCH is an interface to the Physical SL shared Channel (PSSCH), which transports the data carrying user information over the air. The SBCCH is used to broadcast control data, for synchronization in the out of coverage or partial coverage, or for the synchronization between UEs which are located in different cells. There is also a Transport and Physical Sidelink Control Channel carrying the SL control information (SCI). There is a new transport and physical channel for direct discovery: sidelink discovery channel (SL-DCH) and the physical sidelink discovery channel (PSDCH).
Figure 4.
Mapping of channels for sidelink communication in 3GPP LTE.
3.2 Enhanced D2D communication architecture for V2X communications
Recently, several fundamental modifications have been carried out to enhance the PC 5 interface in the Release 14 to support V2X operational scenarios and requirements as shown in Table 1 [11]. The sidelink LTE-V2X employs the single-carrier frequency division multiple access (SC-FDMA) which permits the UE to access radio resources in both time and frequency domains. In the frequency domain, the subcarrier spacing is fixed to 15 kHz, and subcarriers are utilized in groups of 12 (i.e., 180 kHz). To support different V2X operational requirements, the transmission channels may use a higher carrier frequency of 6 GHz with very high relative velocity. However, due to the high relative velocity and the use of higher carrier frequency, inter-carrier interference (ICI) due to higher Doppler shift and insufficient channel estimation due to shorter coherence time could be a problem compared to the legacy 3GPP systems.
To improve the performance in the presence of high Doppler shift, the sidelink interface has been tuned to counteract the severe Doppler shift experienced at high speed. In the time domain, additional demodulation reference signal (DMRS) symbols have been added in one subframe to handle the high Doppler shift associated with relative speeds of up to 500 km/h and the use of higher carrier frequency [12]. The new subframe structure is illustrated in Figure 5. Fourteen symbols form a subframe of 1 ms, also called transmission time interval (TTI), which include nine data symbols, four demodulation reference signal (DMRS) symbols, and one empty symbol for Tx-Rx switch and timing adjustment. The LTE-V2X has a large number of modulation and coding schemes (MCS), with 4-QAM and 16-QAM modulations, and an almost continuous coding rate. The minimum radio resource allocated to an LTE-V2X link is the subchannel in the frequency domain, corresponding to a multiple of the 12 subcarriers groups, and the TTI in the time domain. One packet normally occupies one or more subchannels in a TTI. To improve the system-level performance under high node density while meeting the latency requirement of a V2V link, a new classification of scheduling assignment and data resources is designed where the scheduling assignment is transmitted in sub-channel using specific Resource Blocks (RBs) across the time. More specifically, each data packet also known as Transport Block (TB) has an associated control message called the Sidelink control information (SCI). TB and the associated SCI must be transmitted in the same subframe but can be allocated in adjacent and nonadjacent resource blocks.
Figure 5.
V2V subframe for PC-5 interface structure [12].
Figure 6 depicts the overall network architecture enhancement in Release 16 for V2X services [13]. Two new entities are introduced: the V2X Application server and the V2X control function to support the V2X services. The V2X control function is the logical function that is used for network-related actions required for V2X. The parameters required for V2X communications can be obtained from V2X Application Server. It is also provision the UEs with Public Land Mobile Network (PLMN) specific parameters that allow the UE to use V2X in this specific PLMN. The V2X Application server incorporates the V2X capability for building the application functionality. It is responsible for receiving uplink data from the UE in the unicast mode, providing the parameters for V2X communications over the PC5 reference point to V2X control function. As per the network architecture, several new reference points (or interface) have been introduced. The roles of V2X reference points are summarized in Table 3.
Figure 6.
Enhanced ProSe D2D sidelink architecture for V2X communications [13].
Interface
Main functions
V1
The V2X application server can communicate towards an V2X application in the UE through V1 interface
V2
The V2X application server can communicate with the V2X control function through V2 interface. The V2X application server may connect to V2X control function belonging to multiple PLMNs
V3
The V2X control function can connect to the UE through the V3 interface
V4
The V2X control function connects with entity Home Subscriber Server (HSS) in Evolved Packet Core in the 3GPP network through V4 interface
V5
A V2X application in UE can communicate towards a V2X application in different UEs through V5 interface
SGi
An EPC can connect to the V2X application server through SGi interface
Table 3.
V2X interfaces.
To support the V2X communication, Release 14 introduced the new communication modes (mode 3 and mode 4) as shown in Figure 7. Mode 1 from Release 12 was enhanced to mode 3 for V2X communication; similarly, mode 2 from D2D was enhanced to mode 4 for V2X. In mode 3, the UEs’ resource reservation and scheduling are performed by the eNB, while in mode 4 the UEs choose the radio resources autonomously. Mode 3 algorithms are not defined in the specifications and their implementation is left to vendors. In contrast, mode 4 can operate without cellular coverage and is therefore considered as the baseline V2V mode since safety applications cannot always depend on the availability of cellular coverage. In mode 4, also known as autonomous or out-of-coverage, each node selects the resources based on a sensing procedure and a semi-persistent scheduling (SPS) mechanism. Mode 4 includes a distributed scheduling scheme for vehicles to select their radio resources and includes the support for distributed congestion control. The detailed description by 3GPP for mode 4 algorithm is presented in [14, 15]. The Global Navigation Satellite System (GNSS) is introduced to provide accurate timing and frequency references in the off-coverage scenario [16].
Figure 7.
V2X communication mode defined in release 14.
3.3 Review on current research on LTE vehicular networks
Since the LTE Release 14 was standardized, several studies have been carried out to compare the performance of IEEE 802.11p and LTE-V2X vehicular networks. In [17], comparative experiments with real devices were carried out, demonstrating improvement of the C-V2X system performance. The work demonstrated that the latency in C-V2X under congested conditions can be maintained under 100 ms.
The use of cellular technologies for vehicular networks has been investigated to meet the requirements of safety services in [5, 18, 19]. The work showed that traffic hazard warning messages are disseminated in less than a second. Hybrid architectures based on the LTE and the 802.11p standards have been proposed to exploit the benefits of both networks [20, 21]. Sivaraj et al. [20] present a cluster-based centralized vehicular network architecture which uses both the 802.11p and the LTE standards for well-known urban sensing application and floating car data (FCD) application. The authors also compared those system performances with other decentralized clustering protocols. Remy et al. [21] propose a cluster-based VANET-LTE hybrid architecture for multimedia-communication services.
In [22], the authors provide the delay performance analysis of hybrid architectures. Calabuig et al. [22] propose a hybrid architecture known as the VMaSC-LTE that integrates the LTE network with the IEEE 802.11p-based VANET network. In [22], the authors propose a Hybrid Cellular-VANET Configuration (HCVC) to distribute road hazard warning (RHW) messages to distant vehicles. In this hybrid architecture, cluster members (CMs) communicate with the cluster head (CH) by using the IEEE 802.11p link, and the CHs communicate with the eNB by using cellular links. However, this proposed 802.11p-LTE hybrid architecture increases the transmission delay at the same time as reducing the reliability when the IEEE 802.11p-based network needs to support higher node densities, leading to higher medium access delays. Toukabri et al. [23] propose a Cellular Vehicular Network (CVN) solution as a reliable and scalable operator-assisted opportunistic architecture that supports hyper-local ITS services for the 3GPP Proximity Services. A hybrid clustering approach is suggested to form a dynamic and flexible cluster managed locally by the ProSe-CHs. However, the authors do not focus on the transmission of safety messages in the network.
In [24, 25, 26], the authors compare the performance of the IEEE 802.11p and the LTE-V2X in terms of reliability. They mainly used simulation with a moving vehicle and consider the highway scenario to analyze the performance of two technologies. Some of them also include an urban Manhattan case [25, 26]. Bazzi et al. [27] compare IEEE 802.11p and LTE-V2V for cooperative awareness in terms of maximum awareness range and also provides analytical evaluation of the proposed schemes. Min et al. [25] introduce a resource scheduling algorithm known as Maximum Reuse Distance (MRD) for V2V communication under network coverage. The proposed scheduling algorithm is in-line with Cellular-V2X mode 3 with the aim of minimizing the interference and increasing the reliability and latency of V2V communication.
Recently, a global alliance called the Fifth Generation Automotive Association (5GAA) has developed a model to assess the relative performance of LTE-V2X (PC5) and the IEEE 802.11p technologies with regard to improving the safety, focusing on direct communications [28]. This study indicates that the LTE-V2X (PC5) outperforms the 802.11p in reducing fatalities and serious injuries on European roads. All of the abovementioned works agree that LTE-V2X can provide better performance compare to IEEE 802.11p. This is due to a combination of the superior performance of LTE-V2X (PC5) at the radio link level for ad hoc/direct communications between road users. However, the use of LTE-V2X for vehicular applications is not mature yet. In particular, LTE-V2V devices are still under development, and the allocation (and management) of radio resources is still under investigation.
4. CBC-V2V system model
In this section, we present an LTE-based cellular network architecture for V2X communication using the PC5 interface of the LTE standard. We assume that all vehicles on the road are within the coverage of the eNB. A highway road traffic scenario is considered where traffic is flowing in both directions in a multilane road as depicted in Figure 8. We assume that each vehicle is equipped with a GPS device capable of providing accurate position measurements. The highway is partitioned into fixed-size regions known as a cluster. Vehicles on the road with near proximities form a cluster where they exchange the safety messages to each other using a CBC-V2V-based packet transmission technique.
Figure 8.
Highway scenario for proposed cluster-based V2V cellular (CBC-V2V) architecture.
We are considering two types of vehicles: the first type represents the user terminals capable of acting as a CH and supports D2D communication using the PC5 interface. The CH also manages the network resource usage among the group of devices communicating over D2D links. The second type of vehicles represents the network devices that can only act as CMs. These vehicles connect to the appropriate CH to assist them in establishing the D2D links to exchange messages. In this model, a vehicle uses two communication links: the conventional Uu channels and the D2D links using the PC5 interface. Cluster members can communicate with others using the PC5 links, whereas a CH communicates with the eNB using the Uu interface. Although the D2D channels enable two neighboring UEs to communicate directly, all signaling and data transmission processes should still be under the control of the eNB in order to comply with the LTE-Advanced architecture requirements.
4.1 Cluster-based cellular V2V (CBC-V2V) communication architecture
We propose a cluster-based cellular V2V communication architecture that combines the new sidelink peer discovery model to support safety services. We propose to use a cluster topology where communication among cluster members is coordinated by the cluster shown in Figure 8. Vehicular networks are generally dynamic where vehicles may arrive new in a cluster location or may leave a cluster. For a newly arrived vehicle, it is necessary to find out necessary system information to join an appropriate cluster. In the following section, our proposed sidelink peer discovery model is presented. Following that discussion, our cluster-based cellular V2V communication mechanism combining with a round-robin scheduling technique is proposed to distribute the radio resources among the cluster nodes.
4.2 EPC level sidelink peer discovery (ESPD) model
For direct communication, two devices must be aware of each other. ProSe peer discovery is the first step to start a direct transmission. Since the introduction of D2D communication architecture in Release 12, many device/peer discovery techniques have been developed using two models defined in the standard. From the user’s perspective, they can be classified into restricted discovery and open discovery [29]. For restricted discovery, the user entity is not allowed to be detected without its explicit permission. In this case, it prevents other users to distribute their information to protect user privacy. It suits social network applications (e.g., group gaming and context sharing with friends). For open discovery, a user entity can be detected as long as it is within another device’s proximity. From the network’s perspective, device discovery can be divided into two types: direct discovery and Evolved Packet Core (EPC) discovery. UE would search for a nearby device autonomously; this requires a UE device to participate in the device discovery process. Direct discovery work in both in-coverage and out-of-coverage scenarios. There are also provisions for EPC level discovery that notifies the terminal about other users detected in the vicinity based on the user interest information and the UE location information registered by terminals in the ProSe function [30].
All vehicles that need to use the D2D link must have the ProSe capability features: the ability to discover, to be discovered, and to communicate with discovered devices. Within the existing EPC level discovery model, the ProSe function authenticates the user by checking its credential with the HSS as to whether the user is permitted to utilize ProSe features. After successful authentication of the UE, the ProSe function creates an EPC ProSe Subscriber ID (EPUID) and assigned it to the registered device. Once a vehicle registered as a ProSe subscriber, it can run the applications that support proximity services, named as a ProSe-enabled applications. The application server allocates the user an Application Layer User ID (ALUID) to recognize him within the context of this particular application.
However, these device discovery and the EPC level discovery models require significant control signaling or message exchanges such as announce requests, monitor requests, match reports, etc. [30, 31]. Our proposed discovery mechanism diminishes network resource requirements. It assumes that every vehicle is equipped with a GPS receiver and can accurately determine its position and direction of movement. Figure 9 appears the signaling diagram of the proposed EPC level discovery technique elaborated as follows:
When a new vehicle reaches an eNB coverage area, the downlink frame synchronization is accomplished once it has decoded the primary synchronization signal (PSS) and the secondary synchronization signal (SSS) messages, which are accessible on the downlink broadcast control channel. The vehicle at that point downloads the Master Information Block (MIB) from the broadcast channel. This channel incorporates the downlink and uplink carrier configuration information. Further, the vehicle utilizes the Downlink Shared Channel (DL-SCH) to download the system information block. The SIB2 block contains necessary parameters for the initial access transmission.
In the initial state, each vehicle on the road must register itself with the eNodeB using its current GPS position. Unlike the existing EPC level discovery, the vehicle sends its location information in the registration request to the eNodeB instead of using the ProSe function for user (vehicle) registration. The vehicles will forward their information (such as ALU_ID, current GPS location, an average speed of the vehicle, discovery range, and vehicle ID) in the registration request message utilizing the Random Access Channel (RACH) to the eNB. The eNB acknowledges the registration request and broadcasts the registration response back to vehicles along with the current traffic profile over the broadcast channel. The vehicle’s traffic profile contains an EPC ProSe Subscriber ID, zone information (i.e., to which zone it currently belongs), neighboring vehicle list, and the vehicle’s remaining distance from its location.
After accepting the information supplied in the registration response, the vehicle collects all the data in its Vehicle Information Register (VIR), a repository that stores vehicle and surrounding information. For D2D communication, each vehicle updates its neighborhood table with a new list of neighboring vehicles and builds knowledge of its local environment. The global mobile location center (GMLC) keeps vehicle locations tracked. Once the vehicle comes to a new zone or crosses the boundary of the zone, the location alert, i.e., the Location Service (LCS) report, will be received and vehicle will require re-registration to update its VIR.
Figure 9.
EPC level Sidelink peer discovery (ESPD) model for VANET.
4.3 Cluster formation
After the peer discovery, each vehicle needs to select an appropriate Cluster Head (CH) to associate with it. Using the peer discovery model, after successful registration, each vehicle updates its Neighborhood Table (NVT) in its VIR with the new proximity data (i.e., a list of neighbor vehicles) along with the vehicle ID, total number of vehicles, and current state of the each vehicle in the list. Once the new proximity data received, the vehicle will reach in the Selection State (SE). As shown in Figure 10, a vehicle in the selection state first tries to connect to the existing cluster to minimize the number of clusters. Hence, the source vehicle (SV) first checks the total number of vehicles, their position conjointly, and the state of each vehicle in its NVT.
Figure 10.
CBC-V2V clustering approach.
If the vehicle finds a cluster head in its NVT, and the number of members in the cluster is lower than the maximum number of members allowed, the SV will attempt to connect to the existing CH. In the NVT, if none of the neighboring vehicles are listed as CH or the vehicle is unable to connect to any of the neighboring CHs, the vehicle inspects the neighboring vehicles in the semi-cluster head (SCH) state. If there are vehicles in the SCH state in its NVL, the source vehicle tries to connect the existing semi-cluster head. If none of the neighbor vehicles are listed as CH or SCH, the SV checks the neighboring vehicle in Selection State. If the SV discovers the vehicles in SE in NVT and it has the lowest average speed and the maximum distance from its current location to the zone boundary (i.e., longest lifetime) among them, then it will take the role of CH. Otherwise, the SV becomes an SCH. SCH is the state the vehicle has no potential neighboring vehicle that can connect to it.
4.4 Cluster head and semi-cluster head selection
Upon receiving the new proximity data in a neighboring table, an SV search the NVT during the time period Tsearch to check the vehicles in CH, SCH, and SE state. If none of the neighbor vehicles are recorded either as CH or SCH, the vehicle will check the neighboring vehicles in the SE states. If there are the vehicles in SE state in the NVT and the SV has the most reduced average speed and a maximum distance from its current location to the zone boundary (i.e., longest lifetime), at that point it becomes the CH. The algorithm for the CH and the SCH selection is presented in Algorithm 1. Each vehicle calculates its average speed periodically. If none of the neighbor vehicles are recorded either as CH, SCH, or SE, a source vehicle will take the role of SCH. In case the vehicle in the SCH state gets any joining request from a neighboring vehicle during the time period TSCH, then it will take the role of the CH. Otherwise, it will reach in the SE state and require a re-registration to receive new proximity data.
Algorithm 1. CH and SCH selection
1: while Tsearch≠0 && there is no potential neighbouring to connect (VState≠CHorSCH) do
2: if VState=ALLSE then
3: The SV will compare its SSV and TLife with other vehicles in NVL;
4: if SSV<SALL and TLife>TALL then
5: SV→CH;
6: else
7: SV→SCH;
8: end if
9: end if
10: if TSCH≠0 then
11: SCHi receive any joining request from neighbouring vehicle;
12: SCH→CH;
13: else
14: SCH→SE;
15: end if
16: end while
4.5 V2X sidelink channel structure
Using communication mode 3, we suggest the 3GPP standard-based V2V sidelink channel structure as shown in Figure 11. The figure shows that an eNB reserves 10 D2D subframes on uplink cellular traffic channels in the time division multiplex (TDM) manner. The D2D subframe repetition rate is 100 ms. Each subframe contains two slots; hence a single carrier offers 20 slots for sidelink communications. The RBs are used to transmit data and control information. The data is transmitted using transport blocks (TBs) over the Physical Sidelink Shared Channels. Sidelink control information messages are transmitted over the Physical Sidelink Control Channels (PSCCH) [16]. The number of RBs in a slot depends on the bandwidth of an LTE-V network cell. Using a 3 MHz transmission bandwidth, there will be 15 RBs in 1 slot available for the D2D communication.
Figure 11.
V2V sidelink subframe structure.
4.6 CBC-V2V communication
Our proposed CBC-V2V communication for safety message transmission is shown in Figure 12. As seen, the intra-cluster communication procedure between cluster members VA1 and VA2 belongs to a cluster CHA0 and inter-cluster communication from VA1 to the vehicle VB1 which belongs to a neighbor cluster CHB0. For the rest of the vehicles in the network the same procedure will follow. A CH acts as a ProSe gateway node for vehicle-to-infrastructure (V2I) and infrastructure-to-vehicle (I2V) communication. The CH utilizes the Physical Uplink Shared Channel (PUSCH) uplink grant allocated during the random access procedure to send the RRC connection request along with the data structure called cluster_info. In the cluster_info, each CH keeps the information such as the CHID and the number of CMs attached to it. Based on the cluster_info in the RRC connection request, an eNB dynamically allocates resources to a CH for D2D communication. At the cluster level, each cluster head further schedules the resources among its CMs using the new cluster-based round-robin scheduling as described below.
Figure 12.
CBC-V2V communication over sidelink channels.
Radio resources are initially allocated to the CH for each cluster of nodes. The CH then conducts round-robin resource scheduling among its CMs (i.e., vehicles) based on the vehicle ID. The round-robin scheduling approach is based on the idea of being fair to all active users in the long term by granting an equal number of physical resource blocks (PRBs). Our proposed resource allocation scheme is operated by dynamically assigning the same slot to the multiple users, in turn, using node IDs in ascending order. Subsequently, members of a cluster can share the same slot in turn to transmit their own CAM.
As shown in Figure 11, 10 subframes for D2D communication show up in every 100 ms which are shared between different clusters. Since each cluster is designated one slot, the same subframe will support two clusters. In the example, slot 1 is assigned to CHA0 and slot 2 is assigned to CHB0. When the resource is allocated, the CH chooses PRBs within the available slot to transmit its posses CAM to its CMs in the multicast mode. A ProSe-enabled node cannot receive and decode the D2D message while it is transmitting, due to the half-duplex nature of most transceiver designs. Therefore, in the cluster, when one vehicle is transmitting, the rest of the vehicles will receive the CAM from the transmitting vehicle. Each safety message can be accommodated utilizing four PRBs based on the selected modulation and coding scheme and the packet size. On completion of the transmission from the CH, it will assign the same slot to its CMs. The next vehicle VA1 is thereby allocated the same slot on its turn based on its vehicle ID. Then VA1 multicast its own safety message to its neighboring vehicles. The same procedure will follow by the remaining vehicles in the cluster. To maximize reuse of the spectrum, the same D2D resource can be assigned to different nonoverlapping clusters.
In this architecture, the inter-cluster communication is required to share safety messages by vehicles which are found at the edge of the two neighboring clusters. In the example, vehicle VB1 is in the neighbor list of VA1 but out of range of its CHA0. Therefore, direct communication is not conceivable between VA1 and VB1. In this case, CHA0 collects the safety message from its cluster member VA1 over the D2D Physical Sidelink Shared Channel and transmits to the eNodeB over the LTE interface in the unicast mode. At that point, the eNodeB conveys the safety traffic message to a concerned neighbor CHB0 over the LTE interface. The CHB0 multicasts the safety message to its cluster members VB1 and VB2 via the LTE-D2D PC5 interface.
5. Simulation model
An OMNET++ version 5.1.1-based simulation model is developed utilizing the SimuLTE library [32] that utilizes the INET framework 3.4.0. For enhanced traffic simulation, GPS data incorporation, and mobility support, we utilized the Veins Package with a realistic mobility model generated by the microscopic road traffic simulation package: Simulation of Urban Mobility (SUMO) [33]. To add the mobility support feature in SimuLTE, a new interface known as vehicularMobility module has been added. This new mobility model can be implemented by the TraCIMobility module defined by the Veins. There is another mobility module known as INETMobility present in the INET framework. A vehicle can utilize only one mobility module during the simulation; therefore both modules (i.e., INETMobility and vehicularMobility) are defined as a conditional module within the Ned file. Veins use the OMNeT++ API to create and initialize the new module dynamically. When a new vehicle is created, it needs to obtain an IP address to communicate. SimuLTE demands the assignment of IP addresses to the IPv4NetworkConfigurator module provided by INET.
A new parameter, i.e., d2dcapable, is utilized in the .ini file to enable direct communication between two UEs. Most of the PC-5 operations at each layer of the LTE stack are created by extending pre-existing SimuLTE capacities. For each D2D competent user, an LTE binder keeps up a data structure that contains the set of directly reachable destinations. In expansion to the existing DL/UL ones in SimuLTE, a new flow path, PC-5, has been distinguished. From the UE point of view, IP datagrams reach the PDCP layer and either the PC-5 or the UL directions can be associated with the corresponding flow, depending on whether the destination is in the LTE Binder peering table or not. The detailed description of configuring D2D communication in OMNET++ with SimuLTE is given in [34]. The key simulation parameters are summarized in Table 4.
Parameter
Value
Maximum velocity
40–70 km/h
Number of vehicles
96 vehicles/km
Road length and number of lanes
5 km and 4 (i.e., 2 in each direction)
Carrier frequency
2.6 GHz
Duplexing mode
TDD
CAM generation rate
10 packets/sec
Transmission bandwidth
3 MHz (i.e., 15 RBs)
Path loss model
Highway scenario
Fading model
Shadowing
eNodeB Tx power
46 dBm
UE Tx Power
26 dBm (Uplink), 5 dBm (Sidelink)
Coverage range
1000 m
Noise figure
5 dB
Cable loss
2 dB
Simulation time
800 s
Packet size
340 bytes
Tsafety
100 ms
Number of vehicle/cluster
12
CHmaxmember
11
Table 4.
Main simulation parameters.
We modified the existing D2D communication model in the SimuLTE to support our proposed cluster-based cellular V2V architecture. Figure 13 shows the CBC-V2V communication model consists of an access network entity (single eNodeB) and core network entities (MME, HSS, and GMLS) are utilized to support our proposed EPC Level Sidelink Peer Discovery model. In the simulation, we design a multilane highway scenario where the vehicles are distributed according to the Poisson process. The vehicles form the clusters using our proposed clustering scheme for D2D communication. To implement our proposed clustering scheme, we utilize the sample source code accessible online [35]. Each cluster node keeps up neighborhood table that contains its neighbor’s ID and their state. In the simulation, we include scenarios of both multicast and unicast shown in Figure 12. The model is simulated for both scenarios utilizing the parameters presented in Table 4 for 800 seconds. At the MAC layer in the SimuLTE, we modified the scheduling model (i.e., LTEDrr) to implement our proposed round-robin scheduling scheme presented in Section 4. Utilizing the proposed round-robin scheduling technique, each cluster node receives an equal share of the radio resource for D2D communication.
Figure 13.
CBC-V2V simulation model.
5.1 Performance analysis
Using the number of clusters/km and the traffic load (i.e., number of vehicles/cluster) parameters, we examine the overall end-to-end delay, resource utilization, signaling overhead, and data packet delivery ratio performance of our cluster-based D2D vehicular network architecture. The following performance metrics are used to evaluate the proposed algorithm.
5.1.1 Control signaling overhead
The signaling overhead is measured for the proposed EPC level peer discovery and the D2D packet communication techniques. The overall signaling overhead of the network can be calculated as
XSOc=∑i∈Nx¯pd+x¯d2dE1
where x¯pd represents the average signaling overhead in bits related to the control signaling required for the peer discovery and x¯d2d represents the average signaling overhead related to the control signaling required for the D2D communication. x¯pd can be calculated as the number of slots used for peer discovery out of the total number of n subframe available in the cell i as
x¯pd=xir1+xir2+xir3,…,xirnn×100E2
Similarly, we calculate x¯d2d the overhead for the D2D communication and calculate the overall signaling overhead. Figure 14 shows the signaling overhead required by the CBC-V2V, the default 3GPP ProSe algorithm, and the LTE-Advanced algorithm using conventional cellular architecture. The results clearly show that the CBC-V2V introduces lower signaling overhead compared to the other two standards which can be used in a VANET. The main reason for the performance improvement is the lower control signaling requirement for the CBC-V2V algorithm. The major benefit comes from our ESPD algorithm which requires less control message exchange for peer discovery compared to existing peer discovery models described in Section 4. Unlike the existing 3GPP peer discovery model, in the ESPD algorithm, a vehicle receives the proximity information after the successful registration which requires very less control message exchange as shown in Figure 2. The smaller control signaling overhead requirement will improve the performance of safety services and guarantee the timely delivery of active safety messages.
Figure 14.
Performance comparison in terms of signaling overhead.
Figure 15 shows the overall resource utilization of the CBC-V2V algorithm for safety services. We compare the results with the standard ProSe solutions in terms of a number of occupied RBs. The efficient scheduler minimizes resource utilization and distribution levels. In the CBC-V2V, each of the CH acts as a scheduler and distributes the resources among its CMs using our proposed round-robin scheduling. Two clusters can be served in a single subframe, and nonoverlapping clusters can share the same resource. Resource utilisation of the CBC-V2V algorithm is lower compared to 3GPP ProSe algorithm due to lower control signal requirements, cluster architecture and efficient resource allocation technique of the algorithm.
Figure 15.
Performance comparison in terms of total occupied RBs.
Figure 16 shows DPDR of the CBC-V2V and compares it with two existing standard procedures. The DPDR is characterized as the proportion of the total number of received safety packets to the total number of scheduled safety packets. Due to the closer vicinity of vehicles, the DPDR value increases with the number of clusters. The system based on IEEE 802.11p shows the lowest DPDR value because packets are lost due to collisions then the proposed D2D packet communication technique which is contention-free. Subsequently, the packet loss probability is low, due to transmission channel condition.
Figure 16.
Performance comparison in terms of data packet delivery ratio.
5.1.2 Total end-to-end delay
The total end-to-end delay (δE2E) for a transmission of a safety message consists of two major delay components as
δE2E=δPD+δD2DE3
where δPD represents the total delay in peer discovery, which is the time difference between sending a request for registration and receiving an eNodeB response and δD2D represents the total delay in D2D packet communication, which is the sum of the intra- and inter-cluster delays in communication. To ensure timely delivery of active safety messages, the total end-to-end delay (i.e., δE2E) of the safety message should be less than the required delivery delay (i.e., Tsafety).
Figures 17 and 18 present the delay analysis of the CBC-V2V algorithm as a function of the total number of clusters formed based on the number of vehicles/km. Figure 17 evaluates and compares the peer discovery delay of the ESPD with the 3GPP ProSe peer discovery model described in Section 4. In the proposed ESPD, the peer discovery delay is the time taken by each vehicle for successful registration. In the registration response, each vehicle receives its current traffic profile which contains the list directly reachable vehicle in its vicinity. Due to the less resource utilization and minimal control signaling overhead requirement, ESPD shows the lower delay values for the peer discovery task compared to the existing 3GPP ProSe peer discovery model. Figure 18 shows the overall end-to-end packet delay of the CBC-V2V. The results show that the CBC-V2V outperforms the traditional approaches such as IEEE 802.11p, LTE-D2D, and LTE for the safety message transmission in a VANET.
Figure 17.
Performance comparison in terms of peer discovery delay.
Figure 18.
Performance comparison in terms of E2E packet delay.
6. Conclusion
This chapter has introduced an advanced new cluster-based V2V packet communication architecture combined with an EPC level peer discovery model suitable for vehicular safety applications. The ESPD model reduces the control signaling overhead and end-to-end delay with the awareness of proximity utilizing the GPS information. The CBC-V2V also combines a cluster-based round-robin scheduling technique to distribute the radio resource among the cluster nodes. The CBC-V2V can improve resource utilization and reduce the end-to-end delay to meet the QoS requirements of the safety services in VANETs. Simulation results show that the CBC-V2V offers higher QoS than do the IEEE 802.11p and other LTE networking architectures. The research will be further extended to examine the vehicular network performance in different road terrains and transmission conditions.
Abbreviations
VANET
vehicular ad hoc network
ITS
intelligent transportation system
V2V
vehicle-to-vehicle
V2N
vehicle-to-network
V2P
vehicle-to-pedestrian
V2I
vehicle-to-infrastructure
V2X
vehicle-to-everything
RV
remote vehicle
HV
host vehicle
RSU
road side unit
DENM
decentralized environmental notification messages
STCH
SL traffic channel
SBBCH
SL Broadcast Control Channel
SCI
SL control information
PSSH
physical SL shared channel
PSDCH
physical sidelink discovery channel
ProSe
proximity service
DPDR
data packet delivery ratio
CSMA/CA
carrier-sense multiple access with collision avoidance
SPS
semi-persistent scheduling
LTE
long term evolution
eNB
eNodeB
UE
user equipment
E-UTRAN
Enhanced UMTS Terrestrial Radio Access Network
EPC
evolved packet core
CAM
cooperative awareness message
CBC-V2V
cluster-based cellular vehicle-to-vehicle
ESPD
evolved packet core level sidelink peer discovery
CACC
cooperative adaptive cruise control
SC-FDMA
single-carrier frequency division multiple access
GNSS
global navigation satellite system
EPUID
EPC ProSe subscriber ID
ALUID
application layer user ID
PSS
primary synchronization signal
SSS
secondary synchronization signal
MIB
master information block
SIB2
system information block 2
MRD
maximum reuse distance
FCD
floating car data
CMs
cluster members
CH
cluster head
ICI
inter-carrier interference
TTI
transmission time interval
\n',keywords:"clustering, D2D, LTE, proximity services, resource allocation, safety applications, vehicular ad hoc network, V2V, V2X",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/72121.pdf",chapterXML:"https://mts.intechopen.com/source/xml/72121.xml",downloadPdfUrl:"/chapter/pdf-download/72121",previewPdfUrl:"/chapter/pdf-preview/72121",totalDownloads:817,totalViews:0,totalCrossrefCites:0,dateSubmitted:"October 7th 2019",dateReviewed:"March 2nd 2020",datePrePublished:"May 26th 2020",datePublished:"August 18th 2021",dateFinished:"May 11th 2020",readingETA:"0",abstract:"With the expected introduction of fully autonomous vehicles, the long-term evolution (LTE)-based vehicle-to-everything (V2X) networking approach is gaining a lot of industry attention, to develop new strategies to enhance safety and telematics features. The vehicular and wireless industries are currently considering the development of an LTE-based system, which may co-exist, with the IEEE 802.11p-based systems for some time. In light of the above fact, our objective is to investigate the development of LTE Proximity Service (ProSe)-based V2X architecture for time-critical vehicular safety applications in an efficient and cost-effective manner. In this chapter, we present a new cluster-based LTE sidelink-based vehicle-to-vehicle (V2V) multicast/broadcast architecture to satisfy the latency and reliability requirements of V2V safety applications. Our proposed architecture combines a new ProSe discovery mechanism for sidelink peer discovery and a cluster-based round-robin scheduling technique to distribute the sidelink radio resources among the cluster members. Utilizing an OMNET++ based simulation model, the performance of the proposed network architecture is examined. Results of the simulation show that the proposed algorithms diminish the end-to-end delay and overhead signaling as well as improve the data packet delivery ratio (DPDR) compared with the existing 3GPP ProSe vehicle safety application technique.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/72121",risUrl:"/chapter/ris/72121",signatures:"Shashank Kumar Gupta, Jamil Yusuf Khan and Duy Trong Ngo",book:{id:"9173",type:"book",title:"Moving Broadband Mobile Communications Forward",subtitle:"Intelligent Technologies for 5G and Beyond",fullTitle:"Moving Broadband Mobile Communications Forward - Intelligent Technologies for 5G and Beyond",slug:"moving-broadband-mobile-communications-forward-intelligent-technologies-for-5g-and-beyond",publishedDate:"August 18th 2021",bookSignature:"Abdelfatteh Haidine",coverURL:"https://cdn.intechopen.com/books/images_new/9173.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83962-344-8",printIsbn:"978-1-83962-343-1",pdfIsbn:"978-1-83962-345-5",isAvailableForWebshopOrdering:!0,editors:[{id:"187242",title:"Dr.",name:"Abdelfatteh",middleName:null,surname:"Haidine",slug:"abdelfatteh-haidine",fullName:"Abdelfatteh Haidine"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"2898",title:"Dr.",name:"Jamil Y.",middleName:null,surname:"Khan",fullName:"Jamil Y. Khan",slug:"jamil-y.-khan",email:"Jamil.Khan@newcastle.edu.au",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Newcastle University",institutionURL:null,country:{name:"United Kingdom"}}},{id:"313099",title:"Ph.D.",name:"Shashank Kumar",middleName:null,surname:"Gupta",fullName:"Shashank Kumar Gupta",slug:"shashank-kumar-gupta",email:"c3265964@uon.edu.au",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"313579",title:"Dr.",name:"Duy T.",middleName:null,surname:"Ngo",fullName:"Duy T. Ngo",slug:"duy-t.-ngo",email:"duy.ngo@newcastle.edu.au",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Future vehicular network requirements",level:"1"},{id:"sec_3",title:"3. LTE-V2X standard",level:"1"},{id:"sec_3_2",title:"3.1 D2D communication architecture",level:"2"},{id:"sec_4_2",title:"3.2 Enhanced D2D communication architecture for V2X communications",level:"2"},{id:"sec_5_2",title:"3.3 Review on current research on LTE vehicular networks",level:"2"},{id:"sec_7",title:"4. CBC-V2V system model",level:"1"},{id:"sec_7_2",title:"4.1 Cluster-based cellular V2V (CBC-V2V) communication architecture",level:"2"},{id:"sec_8_2",title:"4.2 EPC level sidelink peer discovery (ESPD) model",level:"2"},{id:"sec_9_2",title:"4.3 Cluster formation",level:"2"},{id:"sec_10_2",title:"4.4 Cluster head and semi-cluster head selection",level:"2"},{id:"sec_11_2",title:"4.5 V2X sidelink channel structure",level:"2"},{id:"sec_12_2",title:"4.6 CBC-V2V communication",level:"2"},{id:"sec_14",title:"5. Simulation model",level:"1"},{id:"sec_14_2",title:"5.1 Performance analysis",level:"2"},{id:"sec_14_3",title:"5.1.1 Control signaling overhead",level:"3"},{id:"sec_15_3",title:"5.1.2 Total end-to-end delay",level:"3"},{id:"sec_18",title:"6. Conclusion",level:"1"},{id:"sec_21",title:"Abbreviations",level:"1"}],chapterReferences:[{id:"B1",body:'Chen S, Hu J, Shi Y, Peng Y, Fang J, Zhao R, et al. Vehicle-to-everything (v2x) services supported by LTE-based systems and 5G. IEEE Communications Standards Magazine. 2017;1:70-76'},{id:"B2",body:'Campolo C, Molinaro A, Scopigno R. From todays VANETs to tomorrow’s planning and the bets for the day after. Vehicular Communications. 2015;2(3):158-171'},{id:"B3",body:'IEEE Standard for Information Technology. Telecommunications and information exchange between systems local and metropolitan area networks-specific requirements. Part II: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications redline. IEEE Std. 802.11-2012 (Revision of IEEE Std 802.11-2007) Redline. 2012. p. 15229'},{id:"B4",body:'Teixeira FA, e Silva VF, Leoni JL, Macedo DF, Nogueira JMS. Vehicular networks using the IEEE 802.11p standard: An experimental analysis. Vehicular Communications. 2014;1(2):91-96'},{id:"B5",body:'Araniti G, Campolo C, Condoluci M, Iera A, Molinaro A. LTE for vehicular networking: A survey. IEEE Communications Magazine. 2013;51(5):148157'},{id:"B6",body:'Seo H, Lee K, Yasukawa S, Peng Y, Sartori P. LTE evolution for vehicle-to-everything services. IEEE Communications Magazine. June 2016;54(6):22-28. DOI: 10.1109/MCOM.2016.7497762'},{id:"B7",body:'3GPP TR 22.885. Technical Specification Group Services and System Aspects; Study on LTE Support for V2X Services, Rel. 14, v1.0.0. 2015'},{id:"B8",body:'3GPP. Evolved universal terrestrial radio access E-UTRA and evolved universal terrestrial radio access network E-UTRAN; overall description, vol. Stage 2 v14.3.0, (Release 14), no. 3GPP; Technical Report 36.213; 2017'},{id:"B9",body:'3GPP TR 36.843. Study on LTE device to device proximity services: Radio aspects Release 12, vol. v12.0.1, Release 12, no. 3GPP; Technical Report 36.843; 2014'},{id:"B10",body:'3GPP TS 23.303. 3rd generation partnership project; technical specification group services and system aspects; proximity-based services (ProSe); Stage 2 (Release 15) V15.1.0 (2018-06)'},{id:"B11",body:'Sun SH, Hu JL, Peng Y, Pan XM, Zhao L, Fang JY. Support for vehicle-to-everything services based on LTE. IEEE Wireless Communications. 2016;23(3):48'},{id:"B12",body:'3GPP TR 21.914. Technical Specification Group service and system aspects; release 14 description, V14.0.0, 2018-05'},{id:"B13",body:'3GPP TS 23.285. Architecture enhancements for V2X services, v16.2.0; 2019'},{id:"B14",body:'3GPP TS 36.213. Technical specification group radio access network; Evolved Universal Terrestrial Radio Access (E-UTRA); physical layer procedures, V14.7.0; 2018'},{id:"B15",body:'3GPP TS 36.321. Technical specification group radio access network; Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification, V14.7.0; 2018'},{id:"B16",body:'3GPP TS 36.171. Technical specification group radio access network; evolved universal terrestrial radio access (E-UTRA); requirements for support of assisted global navigation satellite system (A-GNSS), V14.0.0; 2017'},{id:"B17",body:'5GAA. V2X Functional and Performance Test Report; Test Procedures and Results. 2018. Available from: http://5gaa.org/wp-content/uploads/2018/11/P-180106-V2X-Functional-and-Performance-TestReport_Final_051118.pdf'},{id:"B18",body:'Project Cooperative Cars, COCAR [Online]. Available from: http://www.aktivonline.org/english/aktiv-cocar.html'},{id:"B19",body:'LTE-Connected Cars. NG Connect Program [Online]. Available from: http://ngconnect.org/service-concepts/lte-connected-car/'},{id:"B20",body:'Sivaraj R, Gopalakrishna AK, Chandra MG, Balamuralidhar P. Qos-enabled group communication in integrated Vanet-LTE heterogeneous wireless networks. In: 2011 IEEE 7th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Conference Proceedings; 2011. p. 1724'},{id:"B21",body:'Remy G, Senouci S, Jan F, Gourhant Y. LTE4V2X: LTE for a Centralized VANET Organization. In: 2011 IEEE Global Telecommunications Conference—GLOBECOM 2011, Conference Proceedings; 2011. p. 16'},{id:"B22",body:'Calabuig D, Martn-Sacristn D, Monserrat JF, Botsov M, Gozlvez D. Distribution of road hazard warning messages to distant vehicles in intelligent transport systems. IEEE Transactions on Intelligent Transportation Systems. 2018;19(4):11521165'},{id:"B23",body:'Toukabri T, Said AM, Abd-Elrahman E, Afifi H. Distributed D2D architecture for ITS services in advanced 4G networks. In: 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), Conference Proceedings; 2015. p. 17'},{id:"B24",body:'Molina-Masegosa R, Gozalvez J. LTE-V for sidelink 5G V2X vehicular communications: A new 5G technology for short-range vehicle-to-everything communications. IEEE Vehicular Technology Magazine. 2017;12:3039'},{id:"B25",body:'Min W, Winbjork M, Zhang Z, Blasco R, Do H, Sorrentino S, Belleschi M, Zang Y. Comparison of LTE and DSRC-based connectivity for intelligent transportation systems. In: Proceedings of the IEEE 85th Vehicular Technology Conference (VTC Spring); Sydney, Australia; 2017. p. 47'},{id:"B26",body:'Nguyen TV, Shailesh P, Sudhir B, Kapil G, Jiang L, Wu Z, Malladi D, Li J. A comparison of cellular vehicle-to-everything and dedicated short range communication. In: Proceedings of the IEEE Vehicular Networking Conference (VNC); Torino, Italy; 27–29 November 2017'},{id:"B27",body:'Bazzi A, Masini BM, Zanella A, Thibault I. On the performance of IEEE 802.11p and LTE-V2V for the cooperative awareness of connected vehicles. IEEE Transactions on Vehicular Technology. 2017;66:1041910432'},{id:"B28",body:'5GAA. An assessment of LTE-V2X (PC5) and 802.11p direct communications technologies for improved road safety in the EU. 2017'},{id:"B29",body:'3GPP TS 36.843. Study on LTE device to device proximity services: Radio aspects (Release 12), vol. v12.0.1. 2014'},{id:"B30",body:'Doumiati S, Artail H. Analytical study of a service discovery system based on an LTE-A D2D implementation. Physical Communication. 2016;19(Supplement C):145162'},{id:"B31",body:'Shinpai Y, Hirkoi H, Satoshi N, Zhao Q. D2D communication in LTE-advanced released 12. NTT DOCOMO Technical Journal. 2015;17(2):56-64'},{id:"B32",body:'Virdis A, Stea G, Nardini G. Simulating LTE/LTE-advanced networks with SimuLTE. In: Obaidat M, Ören T, Kacprzyk J, Filipe J, editors. Simulation and Modeling Methodologies, Technologies and Applications. Advances in Intelligent Systems and Computing, Vol. 402. Cham: Springer; 2015'},{id:"B33",body:'Sommer C, German R, Dressler F. Bidirectionally coupled network and road traffic simulation for improved IVC analysis. IEEE Transactions on Mobile Computing. 2011;10(1):315'},{id:"B34",body:'Nardini G, Virdis A, Stea G. Simulating device-to-device communications in OMNeT++ with SimuLTE: Scenarios and configurations. In: OMNeT++ Community Summit 2016; Brno, CZ; September 15–16, 2016'},{id:"B35",body:'Implementations of a Selection of Clustering Algorithms for VANETs, Written in C++ for OMNeT++ [Online]. 2014. Available from: https://github.com/cscooper/ClusterLib'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Shashank Kumar Gupta",address:"c3265964@uon.edu.au",affiliation:'
School of Electrical Engineering and Computing, The University of Newcastle, Callaghan, NSW, Australia
'},{corresp:null,contributorFullName:"Jamil Yusuf Khan",address:null,affiliation:'
School of Electrical Engineering and Computing, The University of Newcastle, Callaghan, NSW, Australia
'},{corresp:null,contributorFullName:"Duy Trong Ngo",address:null,affiliation:'
School of Electrical Engineering and Computing, The University of Newcastle, Callaghan, NSW, Australia
'}],corrections:null},book:{id:"9173",type:"book",title:"Moving Broadband Mobile Communications Forward",subtitle:"Intelligent Technologies for 5G and Beyond",fullTitle:"Moving Broadband Mobile Communications Forward - Intelligent Technologies for 5G and Beyond",slug:"moving-broadband-mobile-communications-forward-intelligent-technologies-for-5g-and-beyond",publishedDate:"August 18th 2021",bookSignature:"Abdelfatteh Haidine",coverURL:"https://cdn.intechopen.com/books/images_new/9173.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83962-344-8",printIsbn:"978-1-83962-343-1",pdfIsbn:"978-1-83962-345-5",isAvailableForWebshopOrdering:!0,editors:[{id:"187242",title:"Dr.",name:"Abdelfatteh",middleName:null,surname:"Haidine",slug:"abdelfatteh-haidine",fullName:"Abdelfatteh Haidine"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"348834",title:"M.Sc.",name:"Amenah I.",middleName:"Idrees",surname:"Kanaan",email:"amina.edrees@gmail.com",fullName:"Amenah I. Kanaan",slug:"amenah-i.-kanaan",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:null},booksEdited:[],chaptersAuthored:[{id:"77760",title:"Implantable Wireless Systems: A Review of Potentials and Challenges",slug:"implantable-wireless-systems-a-review-of-potentials-and-challenges",abstract:"With the current advancement in micro-and nano-fabrication processes and the newly developed approaches, wireless implantable devices are now able to meet the demand for compact, self-powered, wireless, and long-lasting implantable devices for medical and health-care applications. The demonstrated fabrication advancement enabled the wireless implantable devices to overcome the previous limitations of electromagnetic-based wireless devices such as the high volume due to large antenna size and to overcome the tissue and bone losses related to the ultrasound implantable devices. Recent state-of-the-are wireless implantable devices can efficiently harvest electromagnetic energy and detect RF signals with minimum losses. Most of the current implanted devices are powered by batteries, which is not an ideal solution as these batteries need periodic charging and replacement. On the other hand, the implantable devices that are powered by energy harvesters are operating continuously, patient-friendly, and are easy to use. Future wireless implantable devices face a strong demand to be linked with IoT-based applications and devices with data visualization on mobile devices. This type of application requires additional units, which means more power consumption. Thus, the challenge here is to reduce the overall power consumption and increase the wireless power transfer efficiency. This chapter presents the state-of-the-art wireless power transfer techniques and approaches that are used to drive implantable devices. These techniques include inductive coupling, radiofrequency, ultrasonic, photovoltaic, and heat. The advantages and disadvantages of these approaches and techniques along with the challenges and limitations of each technique will be discussed. Furthermore, the performance parameters such as operating distance, energy harvesting efficiency, and size will be discussed and analyzed to introduce a comprehensive comparison. Finally, the recent advances in materials development and wireless communication strategies, are also discussed.",signatures:"Amenah I. Kanaan and Ahmed M.A. Sabaawi",authors:[{id:"348834",title:"M.Sc.",name:"Amenah I.",surname:"Kanaan",fullName:"Amenah I. Kanaan",slug:"amenah-i.-kanaan",email:"amina.edrees@gmail.com"},{id:"349568",title:"Dr.",name:"Ahmed M.A.",surname:"Sabaawi",fullName:"Ahmed M.A. Sabaawi",slug:"ahmed-m.a.-sabaawi",email:"ahmed.sabaawi@uoninevah.edu.iq"}],book:{id:"10764",title:"Antenna Systems",slug:"antenna-systems",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"347961",title:"Dr.",name:"Qi",surname:"Song",slug:"qi-song",fullName:"Qi Song",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/347961/images/16027_n.jpg",biography:"Qi Song, received his PhD in Electrical Engineering and Computer Science from the University of California, Irvine in 2012, now is CEO of Soleilware Photonics LLC and the joint Professor at Suzhou institute of Biomedical Engineering and Technology, Chinese academy of sciences. His research interest includes microwave and optical device design, metamaterial, photonics nano-device, machine vision and machine learning, with applications to autonomous vehicles and robot.",institutionString:null,institution:{name:"Suzhou Institute of Biomedical Engineering and Technology",institutionURL:null,country:{name:"China"}}},{id:"348809",title:"M.A.",name:"Ange Joel",surname:"Nounga Njanda",slug:"ange-joel-nounga-njanda",fullName:"Ange Joel Nounga Njanda",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/348809/images/16466_n.png",biography:"je m\\'appelle Nounga Joel née le 16 Aout 1998 a Ndoungue , Originaire de la région du littoral Cameroun j\\'ai obtenu en 2020 mon diplôme d\\'Ingénieur en Télécommunication a l\\'école Nationale Supérieure Polytechnique de Douala dans mes travaux de fin d\\'etudes j\\'ai travaille sur le Co-Design d\\'un Bloc PA-Antenne Pour Application Radar Automobile a 79 GHz",institutionString:null,institution:null},{id:"349568",title:"Dr.",name:"Ahmed M.A.",surname:"Sabaawi",slug:"ahmed-m.a.-sabaawi",fullName:"Ahmed M.A. Sabaawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"349601",title:"Dr.",name:"Nianxi",surname:"Xu",slug:"nianxi-xu",fullName:"Nianxi Xu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"349806",title:"Dr.",name:"Putu",surname:"Artawan",slug:"putu-artawan",fullName:"Putu Artawan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/349806/images/16468_n.jpg",biography:"Putu Artawan. Was born in Seririt, Bali, Indonesia on 20 December 1979. Following elementary school until senior high school in Seririt Bali. He was graduated (S.Pd) at IKIP Negeri Singaraja, Bali Indonesia in Physics Education programme on 2002. And, was graduated in Master Programme (M.Si) at ITS Surabaya, Indonesia in Optoelectronics field, Department of Physics, Faculty of Sciences on 2011. Now, he has graduated in Doctoral programme at Physics Departement, Faculty of Science ITS Surabaya, Indonesia in Antenna Design and its application in communications systems specifically. \r\nThe author is a lecturer in Physics Department, Math and Science Faculty, Ganesha University of Education, Bali Indonesia since 2006. Now, this the author as a doctoral student in Physics Department, Faculty of Science, ITS Surabaya Indonesia. Besides teaching the author is activelly involved in some researches, especially in applied physics field. The author also advises schools/students in physics olympiads preparation.",institutionString:null,institution:{name:"Universitas Pendidikan Ganesha",institutionURL:null,country:{name:"Indonesia"}}},{id:"355124",title:"Dr.",name:"Vinodh",surname:"Minchula",slug:"vinodh-minchula",fullName:"Vinodh Minchula",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"I have been performing consistently exceptionally in my academic career starting from primary studies to University education. This ensures my flair for Academics, which eventually made me university 3rd in M.Tech Communication Engineering from VIT University (it is 15th best Engineering Institute of India since 2016 rankings by NIRF & also recognized as Institution of Eminence in 2019 by Govt. of India) and also received a National Research Fellowship from NFOBC-UGC Govt. of INDIA for doing Ph.D. in wireless communications from Andhra University (19th rank in University category by NIRF, Govt. of India) and got International Fellowship in Japan”-Asia youth exchange program in science under Sakura Science program sponsored by Japan Science and Technology, Japan in the year 2017. I have been teaching undergraduate and postgraduate students of Electronics and Communication Engineering specialization, also supervising their project and dissertations works. I have evinced considerable interest and initiative in Research publication and Industrial interaction through conferences, seminars, training for quality improvement, in keeping up with the growing trends of Next-generation technological advancements.",institutionString:null,institution:{name:"Chaitanya Bharathi Institute of Technology",institutionURL:null,country:{name:"India"}}},{id:"414482",title:"Prof.",name:"Sashibhushana Rao",surname:"Gottapu",slug:"sashibhushana-rao-gottapu",fullName:"Sashibhushana Rao Gottapu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Andhra University",institutionURL:null,country:{name:"India"}}},{id:"417058",title:"Dr.",name:"Ruoqian",surname:"Gao",slug:"ruoqian-gao",fullName:"Ruoqian Gao",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"417059",title:"Prof.",name:"Yan",surname:"Gong",slug:"yan-gong",fullName:"Yan Gong",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"423671",title:"Dr.",name:"Paul Samuel",surname:"Mandeng",slug:"paul-samuel-mandeng",fullName:"Paul Samuel Mandeng",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]},generic:{page:{slug:"content-alerts",title:"Content alerts",intro:"
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6601},{group:"region",caption:"Middle and South America",value:2,count:5906},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12541},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:12,limit:12,total:132763},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"9"},books:[{type:"book",id:"11445",title:"Multi-Agent Technologies and Machine Learning",subtitle:null,isOpenForSubmission:!0,hash:"d980826615baa6e33456e2a79064c5e8",slug:null,bookSignature:"Prof. Igor Sheremet",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",editedByType:null,editors:[{id:"265237",title:"Prof.",name:"Igor",surname:"Sheremet",slug:"igor-sheremet",fullName:"Igor Sheremet"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11446",title:"Industry 4.0 - Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"be984f45b90c1003798661ef885d8a34",slug:null,bookSignature:"Dr. Meisam Gordan and Dr. Khaled Ghaedi",coverURL:"https://cdn.intechopen.com/books/images_new/11446.jpg",editedByType:null,editors:[{id:"303193",title:"Dr.",name:"Meisam",surname:"Gordan",slug:"meisam-gordan",fullName:"Meisam Gordan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",subtitle:null,isOpenForSubmission:!0,hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",slug:null,bookSignature:"Dr. Marco Antonio Aceves Fernandez",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",editedByType:null,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11448",title:"Artificial Neural Networks - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"e57ff97a39cfc6fe68a1ac62b503dbe9",slug:null,bookSignature:"Dr. Chi Leung Patrick Hui",coverURL:"https://cdn.intechopen.com/books/images_new/11448.jpg",editedByType:null,editors:[{id:"22866",title:"Dr.",name:"Chi Leung Patrick",surname:"Hui",slug:"chi-leung-patrick-hui",fullName:"Chi Leung Patrick Hui"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11547",title:"Information Security and Privacy in the Digital World - Some Selected Topics",subtitle:null,isOpenForSubmission:!0,hash:"b268e581d5e458cb91b82c518f2717eb",slug:null,bookSignature:"Prof. Jaydip Sen",coverURL:"https://cdn.intechopen.com/books/images_new/11547.jpg",editedByType:null,editors:[{id:"4519",title:"Prof.",name:"Jaydip",surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11549",title:"Data Integrity and Data Governance",subtitle:null,isOpenForSubmission:!0,hash:"97a93f73a55957a70eb2a40de891b344",slug:null,bookSignature:" B. Santhosh Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/11549.jpg",editedByType:null,editors:[{id:"330426",title:"Dr.",name:"B. Santhosh",surname:"Kumar",slug:"b.-santhosh-kumar",fullName:"B. Santhosh Kumar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11553",title:"Cyberspace - Challenges and Threats in the Disruptive Era",subtitle:null,isOpenForSubmission:!0,hash:"ff86e203474b6696b712f0a11112d6e3",slug:null,bookSignature:"Dr. Arwin Datumaya Wahyudi Datumaya Wahyudi Sumari and Dr. Ulla Delfana Rosiani",coverURL:"https://cdn.intechopen.com/books/images_new/11553.jpg",editedByType:null,editors:[{id:"22530",title:"Dr.",name:"Arwin Datumaya Wahyudi",surname:"Sumari",slug:"arwin-datumaya-wahyudi-sumari",fullName:"Arwin Datumaya Wahyudi Sumari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11554",title:"Information Systems Management",subtitle:null,isOpenForSubmission:!0,hash:"3134452ff2fdec020663f241c7a9a748",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11554.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11556",title:"Numerical Simulation",subtitle:null,isOpenForSubmission:!0,hash:"0a68fbeb303684344bda285aa06769af",slug:null,bookSignature:"Dr. Ali Soofastaei",coverURL:"https://cdn.intechopen.com/books/images_new/11556.jpg",editedByType:null,editors:[{id:"257455",title:"Dr.",name:"Ali",surname:"Soofastaei",slug:"ali-soofastaei",fullName:"Ali Soofastaei"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11911",title:"Scientometrics",subtitle:null,isOpenForSubmission:!0,hash:"ed74b66a0dc7d009900af198efc6b2e1",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11911.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11912",title:"Expert Systems With Recent Applications",subtitle:null,isOpenForSubmission:!0,hash:"514907388f7a2b291f71f9b93b58b795",slug:null,bookSignature:"Prof. Ercan Oztemel",coverURL:"https://cdn.intechopen.com/books/images_new/11912.jpg",editedByType:null,editors:[{id:"306974",title:"Prof.",name:"Ercan",surname:"Oztemel",slug:"ercan-oztemel",fullName:"Ercan Oztemel"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11913",title:"Scheduling Algorithms",subtitle:null,isOpenForSubmission:!0,hash:"da42ea7b678d715e23ffcae50ae47078",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11913.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:42},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:5},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:62},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:10},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:35},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4383},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1169",title:"Condensed Matter Physics",slug:"nanotechnology-and-nanomaterials-material-science-condensed-matter-physics",parent:{id:"208",title:"Material Science",slug:"nanotechnology-and-nanomaterials-material-science"},numberOfBooks:66,numberOfSeries:0,numberOfAuthorsAndEditors:1878,numberOfWosCitations:3917,numberOfCrossrefCitations:1606,numberOfDimensionsCitations:3820,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1169",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editedByType:"Edited by",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10504",title:"Crystallization and Applications",subtitle:null,isOpenForSubmission:!1,hash:"3478d05926950f475f4ad2825d340963",slug:"crystallization-and-applications",bookSignature:"Youssef Ben Smida and Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10504.jpg",editedByType:"Edited by",editors:[{id:"311698",title:"Dr.",name:"Youssef",middleName:null,surname:"Ben Smida",slug:"youssef-ben-smida",fullName:"Youssef Ben Smida"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10644",title:"Recent Developments in Atomic Force Microscopy and Raman Spectroscopy for Materials Characterization",subtitle:null,isOpenForSubmission:!1,hash:"30a4c22b98d8dd2b18e5c33dade4b94b",slug:"recent-developments-in-atomic-force-microscopy-and-raman-spectroscopy-for-materials-characterization",bookSignature:"Chandra Shakher Pathak and Samir Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/10644.jpg",editedByType:"Edited by",editors:[{id:"318029",title:"Dr.",name:"Chandra Shakher",middleName:null,surname:"Pathak",slug:"chandra-shakher-pathak",fullName:"Chandra Shakher Pathak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10386",title:"Ionic Liquids",subtitle:"Thermophysical Properties and Applications",isOpenForSubmission:!1,hash:"e995617af1c5e63353ae91bbdac4c894",slug:"ionic-liquids-thermophysical-properties-and-applications",bookSignature:"S. M. Sohel Murshed",coverURL:"https://cdn.intechopen.com/books/images_new/10386.jpg",editedByType:"Edited by",editors:[{id:"24904",title:"Prof.",name:"S. M. Sohel",middleName:null,surname:"Murshed",slug:"s.-m.-sohel-murshed",fullName:"S. M. Sohel Murshed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10505",title:"Colloids",subtitle:"Types, Preparation and Applications",isOpenForSubmission:!1,hash:"55025219ea1a8b915ec8aa4b9f497a8d",slug:"colloids-types-preparation-and-applications",bookSignature:"Mohamed Nageeb Rashed",coverURL:"https://cdn.intechopen.com/books/images_new/10505.jpg",editedByType:"Edited by",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10511",title:"Multifunctional Ferroelectric Materials",subtitle:null,isOpenForSubmission:!1,hash:"4077c7f481db4483629ea5dfb645dbb9",slug:"multifunctional-ferroelectric-materials",bookSignature:"Dipti Ranjan Sahu",coverURL:"https://cdn.intechopen.com/books/images_new/10511.jpg",editedByType:"Edited by",editors:[{id:"251855",title:"Prof.",name:"Dipti Ranjan",middleName:null,surname:"Sahu",slug:"dipti-ranjan-sahu",fullName:"Dipti Ranjan Sahu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10575",title:"Magnetic Skyrmions",subtitle:null,isOpenForSubmission:!1,hash:"d93d7485e8a6a30d9e069aed78fdb355",slug:"magnetic-skyrmions",bookSignature:"Dipti Ranjan Sahu",coverURL:"https://cdn.intechopen.com/books/images_new/10575.jpg",editedByType:"Edited by",editors:[{id:"251855",title:"Prof.",name:"Dipti Ranjan",middleName:null,surname:"Sahu",slug:"dipti-ranjan-sahu",fullName:"Dipti Ranjan Sahu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8773",title:"Magnetic Materials and Magnetic Levitation",subtitle:null,isOpenForSubmission:!1,hash:"2342b6038c029039a1a852caa1fecb9f",slug:"magnetic-materials-and-magnetic-levitation",bookSignature:"Dipti Ranjan Sahu and Vasilios N. Stavrou",coverURL:"https://cdn.intechopen.com/books/images_new/8773.jpg",editedByType:"Edited by",editors:[{id:"251855",title:"Prof.",name:"Dipti Ranjan",middleName:null,surname:"Sahu",slug:"dipti-ranjan-sahu",fullName:"Dipti Ranjan Sahu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8447",title:"Density Functional Theory Calculations",subtitle:null,isOpenForSubmission:!1,hash:"430664e87463d090a0f03b1f096a7d9d",slug:"density-functional-theory-calculations",bookSignature:"Sergio Ricardo De Lazaro, Luis Henrique Da Silveira Lacerda and Renan Augusto Pontes Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/8447.jpg",editedByType:"Edited by",editors:[{id:"176017",title:"Prof.",name:"Sergio Ricardo De",middleName:null,surname:"Lazaro",slug:"sergio-ricardo-de-lazaro",fullName:"Sergio Ricardo De Lazaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9881",title:"Perovskite and Piezoelectric Materials",subtitle:null,isOpenForSubmission:!1,hash:"8fa0e0f48567bbc50fbb3bfdde6f9a0b",slug:"perovskite-and-piezoelectric-materials",bookSignature:"Someshwar Pola, Neeraj Panwar and Indrani Coondoo",coverURL:"https://cdn.intechopen.com/books/images_new/9881.jpg",editedByType:"Edited by",editors:[{id:"177037",title:"Dr.",name:"Someshwar",middleName:null,surname:"Pola",slug:"someshwar-pola",fullName:"Someshwar Pola"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7430",title:"Magnetometers",subtitle:"Fundamentals and Applications of Magnetism",isOpenForSubmission:!1,hash:"0d7c0464c36927782cee8c9ef40efca6",slug:"magnetometers-fundamentals-and-applications-of-magnetism",bookSignature:"Sergio Curilef",coverURL:"https://cdn.intechopen.com/books/images_new/7430.jpg",editedByType:"Edited by",editors:[{id:"125424",title:"Prof.",name:"Sergio",middleName:null,surname:"Curilef",slug:"sergio-curilef",fullName:"Sergio Curilef"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7630",title:"Inelastic X-Ray Scattering and X-Ray Powder Diffraction Applications",subtitle:null,isOpenForSubmission:!1,hash:"80896f929598a48f6b4c306a6be47ea6",slug:"inelastic-x-ray-scattering-and-x-ray-powder-diffraction-applications",bookSignature:"Alessandro Cunsolo, Margareth K. K. D. Franco and Fabiano Yokaichiya",coverURL:"https://cdn.intechopen.com/books/images_new/7630.jpg",editedByType:"Edited by",editors:[{id:"176605",title:"Dr.",name:"Alessandro",middleName:null,surname:"Cunsolo",slug:"alessandro-cunsolo",fullName:"Alessandro Cunsolo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:66,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"50566",doi:"10.5772/63234",title:"Influences of Doping on Photocatalytic Properties of TiO2 Photocatalyst",slug:"influences-of-doping-on-photocatalytic-properties-of-tio2-photocatalyst",totalDownloads:5395,totalCrossrefCites:23,totalDimensionsCites:75,abstract:"As a kind of highly effective, low‐cost, and stable photocatalysts, TiO2 has received substantial public and scientific attention. However, it can only be activated under ultraviolet light irradiation due to its wide bandgap, high recombination, and weak separation efficiency of carriers. Doping is an effective method to extend the light absorption to the visible light region. In this chapter, we will address the importance of doping, different doping modes, preparation method, and photocatalytic mechanism in TiO2 photocatalysts. Thereafter, we will concentrate on Ti3+ self‐doping, nonmetal doping, metal doping, and codoping. Examples of progress can be given for each one of these four doping modes. The influencing factors of preparation method and doping modes on photocatalytic performance (spectrum response, carrier transport, interfacial electron transfer reaction, surface active sites, etc.) are summed up. The main objective is to study the photocatalytic processes, to elucidate the mechanistic models for a better understanding the photocatalytic reactions, and to find a method of enhancing photocatalytic activities.",book:{id:"5139",slug:"semiconductor-photocatalysis-materials-mechanisms-and-applications",title:"Semiconductor Photocatalysis",fullTitle:"Semiconductor Photocatalysis - Materials, Mechanisms and Applications"},signatures:"Fei Huang, Aihua Yan and Hui Zhao",authors:[{id:"178389",title:"Dr.",name:"Fei",middleName:null,surname:"Huang",slug:"fei-huang",fullName:"Fei Huang"},{id:"185126",title:"Dr.",name:"Aihua",middleName:null,surname:"Yan",slug:"aihua-yan",fullName:"Aihua Yan"},{id:"185127",title:"Ms.",name:"Hui",middleName:null,surname:"Zhao",slug:"hui-zhao",fullName:"Hui Zhao"}]},{id:"17184",doi:"10.5772/17039",title:"Polymer Nanocomposites: From Synthesis to Applications",slug:"polymer-nanocomposites-from-synthesis-to-applications",totalDownloads:17294,totalCrossrefCites:31,totalDimensionsCites:68,abstract:null,book:{id:"1045",slug:"nanocomposites-and-polymers-with-analytical-methods",title:"Nanocomposites and Polymers with Analytical Methods",fullTitle:"Nanocomposites and Polymers with Analytical Methods"},signatures:"S. Anandhan and S. Bandyopadhyay",authors:[{id:"27050",title:"Prof.",name:"Sri",middleName:null,surname:"Bandyopadhyay",slug:"sri-bandyopadhyay",fullName:"Sri Bandyopadhyay"},{id:"44992",title:"Prof.",name:"Anandhan",middleName:null,surname:"Srinivasan",slug:"anandhan-srinivasan",fullName:"Anandhan Srinivasan"}]},{id:"9725",doi:"10.5772/8508",title:"Biosynthesis and Application of Silver and Gold Nanoparticles",slug:"biosynthesis-and-application-of-silver-and-gold-nanoparticles",totalDownloads:27930,totalCrossrefCites:23,totalDimensionsCites:58,abstract:null,book:{id:"3621",slug:"silver-nanoparticles",title:"Silver Nanoparticles",fullTitle:"Silver Nanoparticles"},signatures:"Zygmunt Sadowski",authors:null},{id:"17194",doi:"10.5772/21694",title:"Properties of Nanofillers in Polymer",slug:"properties-of-nanofillers-in-polymer",totalDownloads:20390,totalCrossrefCites:9,totalDimensionsCites:56,abstract:null,book:{id:"1045",slug:"nanocomposites-and-polymers-with-analytical-methods",title:"Nanocomposites and Polymers with Analytical Methods",fullTitle:"Nanocomposites and Polymers with Analytical Methods"},signatures:"Damien M. Marquis, Éric Guillaume and Carine Chivas-Joly",authors:[{id:"44307",title:"Dr",name:"Damien",middleName:"Michel",surname:"Marquis",slug:"damien-marquis",fullName:"Damien Marquis"},{id:"44317",title:"Prof.",name:"Carine",middleName:null,surname:"Chivas-Joly",slug:"carine-chivas-joly",fullName:"Carine Chivas-Joly"}]},{id:"52860",doi:"10.5772/65937",title:"Cerium Oxide Nanostructures and their Applications",slug:"cerium-oxide-nanostructures-and-their-applications",totalDownloads:5377,totalCrossrefCites:24,totalDimensionsCites:58,abstract:"Due to excellent physical and chemical properties, cerium oxide (ceria, CeO2) has attracted much attention in recent years. This chapter aimed at providing some basic and fundamental properties of ceria, the importance of oxygen vacancies in this material, nano‐size effects and various synthesis strategies to form diverse structural morphologies. Finally, some key applications of ceria‐based nanostructures are reviewed. We conclude this chapter by expressing personal perspective on the probable challenges and developments of the controllable synthesis of CeO2 nanomaterials for various applications.",book:{id:"5510",slug:"functionalized-nanomaterials",title:"Functionalized Nanomaterials",fullTitle:"Functionalized Nanomaterials"},signatures:"Adnan Younis, Dewei Chu and Sean Li",authors:[{id:"191574",title:"Dr.",name:"Adnan",middleName:null,surname:"Younis",slug:"adnan-younis",fullName:"Adnan Younis"}]}],mostDownloadedChaptersLast30Days:[{id:"38951",title:"Carbon Nanotube Transparent Electrode",slug:"carbon-nanotube-transparent-electrode",totalDownloads:3985,totalCrossrefCites:3,totalDimensionsCites:5,abstract:null,book:{id:"3077",slug:"syntheses-and-applications-of-carbon-nanotubes-and-their-composites",title:"Syntheses and Applications of Carbon Nanotubes and Their Composites",fullTitle:"Syntheses and Applications of Carbon Nanotubes and Their Composites"},signatures:"Jing Sun and Ranran Wang",authors:[{id:"153508",title:"Prof.",name:"Jing",middleName:null,surname:"Sun",slug:"jing-sun",fullName:"Jing Sun"},{id:"153596",title:"Ms.",name:"Ranran",middleName:null,surname:"Wang",slug:"ranran-wang",fullName:"Ranran Wang"}]},{id:"49413",title:"Electrodeposition of Nanostructure Materials",slug:"electrodeposition-of-nanostructure-materials",totalDownloads:3733,totalCrossrefCites:1,totalDimensionsCites:7,abstract:"We are conducting a multi-disciplinary research work that involves development of nanostructured thin films of semiconductors for different applications. Nanotechnology is widely considered to constitute the basis of the next technological revolution, following on from the first Industrial Revolution, which began around 1750 with the introduction of the steam engine and steelmaking. Nanotechnology is defined as the design, characterization, production, and application of materials, devices and systems by controlling shape and size of the nanoscale. The nanoscale itself is at present considered to cover the range from 1 to 100 nm. All samples prepared in thin film forms and the characterization revealed their nanostructure. The major exploitation of thin films has been in microelectronics, there are numerous and growing applications in communications, optical electronics, coatings of all kinds, and in energy generation. A great many sophisticated analytical instruments and techniques, largely developed to characterize thin films, have already become indispensable in virtually every scientific endeavor irrespective of discipline. Among all these techniques, electrodeposition is the most suitable technique for nanostructured thin films from aqueous solution served as samples under investigation. The electrodeposition of metallic layers from aqueous solution is based on the discharge of metal ions present in the electrolyte at a cathodic surface (the substrate or component.) The metal ions accept an electron from the electrically conducting material at the solid- electrolyte interface and then deposit as metal atoms onto the surface. The electrons necessary for this to occur are either supplied from an externally applied potential source or are surrendered by a reducing agent present in solution (electroless reduction). The metal ions themselves derive either from metal salts added to solution, or by the anodic dissolution of the so-called sacrificial anodes, made of the same metal that is to be deposited at the cathode.",book:{id:"4718",slug:"electroplating-of-nanostructures",title:"Electroplating of Nanostructures",fullTitle:"Electroplating of Nanostructures"},signatures:"Souad A. M. Al-Bat’hi",authors:[{id:"174793",title:"Dr.",name:"Mohamad",middleName:null,surname:"Souad",slug:"mohamad-souad",fullName:"Mohamad Souad"}]},{id:"54226",title:"Localized Surface Plasmon Resonance for Optical Fiber-Sensing Applications",slug:"localized-surface-plasmon-resonance-for-optical-fiber-sensing-applications",totalDownloads:2265,totalCrossrefCites:2,totalDimensionsCites:5,abstract:"It is well known that optical fiber sensors have attracted the attention of scientific community due to its intrinsic advantages, such as lightweight, small size, portability, remote sensing, immunity to electromagnetic interferences and the possibility of multiplexing several signals. This field has shown a dramatic growth thanks to the creation of sensitive thin films onto diverse optical fiber configurations. In this sense, a wide range of optical fiber devices have been successfully fabricated for monitoring biological, chemical, medical or physical parameters. In addition, the use of nanoparticles into the sensitive thin films has resulted in an enhancement in the response time, robustness or sensitivity in the optical devices, which is associated to the inherent properties of nanoparticles (high surface area ratio or porosity). Among all of them, the metallic nanoparticles are of great interest for sensing applications due to the presence of strong absorption bands in the visible and near-infrared regions, due to their localized surface plasmon resonances (LSPR). These optical resonances are due to the coupling of certain modes of the incident light to the collective oscillation of the conduction electrons of the metallic nanoparticles. The LSPR extinction bands are very useful for sensing applications as far as they can be affected by refractive index variations of the surrounding medium of the nanoparticles, and therefore, it is possible to create optical sensors with outstanding properties such as high sensitivity and optical self-reference. In this chapter, the attractive optical properties of metal nanostructures and their implementation into different optical fiber configuration for sensing or biosensing applications will be studied.",book:{id:"5721",slug:"nanoplasmonics-fundamentals-and-applications",title:"Nanoplasmonics",fullTitle:"Nanoplasmonics - Fundamentals and Applications"},signatures:"Pedro J. Rivero, Javier Goicoechea and Francisco J. Arregui",authors:[{id:"69816",title:"Dr.",name:"Javier",middleName:null,surname:"Goicoechea",slug:"javier-goicoechea",fullName:"Javier Goicoechea"},{id:"188796",title:"Dr.",name:"Pedro J.",middleName:null,surname:"Rivero",slug:"pedro-j.-rivero",fullName:"Pedro J. Rivero"},{id:"197277",title:"Dr.",name:"Francisco",middleName:null,surname:"Arregui",slug:"francisco-arregui",fullName:"Francisco Arregui"}]},{id:"25297",title:"Nanofabrication of Metal Oxide Patterns Using Self-Assembled Monolayers",slug:"nanofabrication-of-metal-oxide-patterns-using-self-assembled-monolayers",totalDownloads:3443,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"860",slug:"nanofabrication",title:"Nanofabrication",fullTitle:"Nanofabrication"},signatures:"Yoshitake Masuda",authors:[{id:"12385",title:"Dr.",name:"Yoshitake",middleName:null,surname:"Masuda",slug:"yoshitake-masuda",fullName:"Yoshitake Masuda"}]},{id:"77225",title:"Piezoelectricity and Its Applications",slug:"piezoelectricity-and-its-applications",totalDownloads:510,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The piezoelectric effect is extensively encountered in nature and many synthetic materials. Piezoelectric materials are capable of transforming mechanical strain and vibration energy into electrical energy. This property allows opportunities for implementing renewable and sustainable energy through power harvesting and self-sustained smart sensing in buildings. As the most common construction material, plain cement paste lacks satisfactory piezoelectricity and is not efficient at harvesting the electrical energy from the ambient vibrations of a building system. In recent years, many techniques have been proposed and applied to improve the piezoelectric capacity of cement-based composite, namely admixture incorporation and physical. The successful application of piezoelectric materials for sustainable building development not only relies on understanding the mechanism of the piezoelectric properties of various building components, but also the latest developments and implementations in the building industry. Therefore, this review systematically illustrates research efforts to develop new construction materials with high piezoelectricity and energy storage capacity. In addition, this article discusses the latest techniques for utilizing the piezoelectric materials in energy harvesters, sensors and actuators for various building systems. With advanced methods for improving the cementations piezoelectricity and applying the material piezoelectricity for different building functions, more renewable and sustainable building systems are anticipated.",book:{id:"10511",slug:"multifunctional-ferroelectric-materials",title:"Multifunctional Ferroelectric Materials",fullTitle:"Multifunctional Ferroelectric Materials"},signatures:"B. Chandra Sekhar, B. Dhanalakshmi, B. Srinivasa Rao, S. Ramesh, K. Venkata Prasad, P.S.V. Subba Rao and B. Parvatheeswara Rao",authors:[{id:"335022",title:"Dr.",name:"B. Chandra",middleName:null,surname:"Sekhar",slug:"b.-chandra-sekhar",fullName:"B. Chandra Sekhar"},{id:"422021",title:"Dr.",name:"B.",middleName:null,surname:"Dhanalakshmi",slug:"b.-dhanalakshmi",fullName:"B. Dhanalakshmi"},{id:"422022",title:"Dr.",name:"B.Srinivasa",middleName:null,surname:"Rao",slug:"b.srinivasa-rao",fullName:"B.Srinivasa Rao"},{id:"422023",title:"Dr.",name:"S.",middleName:null,surname:"Ramesh",slug:"s.-ramesh",fullName:"S. Ramesh"},{id:"422024",title:"Dr.",name:"K.Venkata",middleName:null,surname:"Prasad",slug:"k.venkata-prasad",fullName:"K.Venkata Prasad"},{id:"422025",title:"Dr.",name:"P.S.V",middleName:null,surname:"Subba Rao",slug:"p.s.v-subba-rao",fullName:"P.S.V Subba Rao"},{id:"422026",title:"Dr.",name:"B.Parvatheeswara",middleName:null,surname:"Rao",slug:"b.parvatheeswara-rao",fullName:"B.Parvatheeswara Rao"}]}],onlineFirstChaptersFilter:{topicId:"1169",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81438",title:"Research Progress of Ionic Thermoelectric Materials for Energy Harvesting",slug:"research-progress-of-ionic-thermoelectric-materials-for-energy-harvesting",totalDownloads:24,totalDimensionsCites:0,doi:"10.5772/intechopen.101771",abstract:"Thermoelectric material is a kind of functional material that can mutually convert heat energy and electric energy. It can convert low-grade heat energy (less than 130°C) into electric energy. Compared with traditional electronic thermoelectric materials, ionic thermoelectric materials have higher performance. The Seebeck coefficient can generate 2–3 orders of magnitude higher ionic thermoelectric potential than electronic thermoelectric materials, so it has good application prospects in small thermoelectric generators and solar power generation. According to the thermoelectric conversion mechanism, ionic thermoelectric materials can be divided into ionic thermoelectric materials based on the Soret effect and thermocouple effect. They are widely used in pyrogen batteries and ionic thermoelectric capacitors. The latest two types of ionic thermoelectric materials are in this article. The research progress is explained, and the problems and challenges of ionic thermoelectric materials and the future development direction are also put forward.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Jianwei Zhang, Ying Xiao, Bowei Lei, Gengyuan Liang and Wenshu Zhao"},{id:"77670",title:"Thermoelectric Elements with Negative Temperature Factor of Resistance",slug:"thermoelectric-elements-with-negative-temperature-factor-of-resistance",totalDownloads:72,totalDimensionsCites:0,doi:"10.5772/intechopen.98860",abstract:"The method of manufacturing of ceramic materials on the basis of ferrites of nickel and cobalt by synthesis and sintering in controllable regenerative atmosphere is presented. As the generator of regenerative atmosphere the method of conversion of carbonic gas is offered. Calculation of regenerative atmosphere for simultaneous sintering of ceramic ferrites of nickel and cobalt is carried out. It is offered, methods of the dilated nonequilibrium thermodynamics to view process of distribution of a charge and heat along a thermoelement branch. The model of a thermoelement taking into account various relaxation times of a charge and warmth is constructed.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Yuri Bokhan"},{id:"79236",title:"Processing Techniques with Heating Conditions for Multiferroic Systems of BiFeO3, BaTiO3, PbTiO3, CaTiO3 Thin Films",slug:"processing-techniques-with-heating-conditions-for-multiferroic-systems-of-bifeo3-batio3-pbtio3-catio",totalDownloads:96,totalDimensionsCites:0,doi:"10.5772/intechopen.101122",abstract:"In this chapter, we have report a list of synthesis methods (including both synthesis steps & heating conditions) used for thin film fabrication of perovskite ABO3 (BiFeO3, BaTiO3, PbTiO3 and CaTiO3) based multiferroics (in both single-phase and composite materials). The processing of high quality multiferroic thin film have some features like epitaxial strain, physical phenomenon at atomic-level, interfacial coupling parameters to enhance device performance. Since these multiferroic thin films have ME properties such as electrical (dielectric, magnetoelectric coefficient & MC) and magnetic (ferromagnetic, magnetic susceptibility etc.) are heat sensitive, i.e. ME response at low as well as higher temperature might to enhance the device performance respect with long range ordering. The magnetoelectric coupling between ferromagnetism and ferroelectricity in multiferroic becomes suitable in the application of spintronics, memory and logic devices, and microelectronic memory or piezoelectric devices. In comparison with bulk multiferroic, the fabrication of multiferroic thin film with different structural geometries on substrate has reducible clamping effect. A brief procedure for multiferroic thin film fabrication in terms of their thermal conditions (temperature for film processing and annealing for crystallization) are described. Each synthesis methods have its own characteristic phenomenon in terms of film thickness, defects formation, crack free film, density, chip size, easier steps and availability etc. been described. A brief study towards phase structure and ME coupling for each multiferroic system of BiFeO3, BaTiO3, PbTiO3 and CaTiO3 is shown.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Kuldeep Chand Verma and Manpreet Singh"},{id:"78034",title:"Quantum Physical Interpretation of Thermoelectric Properties of Ruthenate Pyrochlores",slug:"quantum-physical-interpretation-of-thermoelectric-properties-of-ruthenate-pyrochlores",totalDownloads:78,totalDimensionsCites:0,doi:"10.5772/intechopen.99260",abstract:"Lead- and lead-yttrium ruthenate pyrochlores were synthesized and investigated for Seebeck coefficients, electrical- and thermal conductivity. Compounds A2B2O6.5+z with 0 ≤ z < 0.5 were defect pyrochlores and p-type conductors. The thermoelectric data were analyzed using quantum physical models to identify scattering mechanisms underlying electrical (σ) and thermal conductivity (κ) and to understand the temperature dependence of the Seebeck effect (S). In the metal-like lead ruthenates with different Pb:Ru ratios, σ (T) and the electronic thermal conductivity κe (T) were governed by ‘electron impurity scattering’, the lattice thermal conductivity κL (T) by the 3-phonon resistive process (Umklapp scattering). In the lead-yttrium ruthenate solid solutions (Pb(2-x)YxRu2O(6.5±z)), a metal–insulator transition occurred at 0.2 moles of yttrium. On the metallic side (<0.2 moles Y) ‘electron impurity scattering’ prevailed. On the semiconductor/insulator side between x = 0.2 and x = 1.0 several mechanisms were equally likely. At x > 1.5 the Mott Variable Range Hopping mechanism was active. S (T) was discussed for Pb-Y-Ru pyrochlores in terms of the effect of minority carrier excitation at lower- and a broadening of the Fermi distribution at higher temperatures. The figures of merit of all of these pyrochlores were still small (≤7.3 × 10−3).",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Sepideh Akhbarifar"},{id:"77635",title:"Optimization of Thermoelectric Properties Based on Rashba Spin Splitting",slug:"optimization-of-thermoelectric-properties-based-on-rashba-spin-splitting",totalDownloads:124,totalDimensionsCites:0,doi:"10.5772/intechopen.98788",abstract:"In recent years, the application of thermoelectricity has become more and more widespread. Thermoelectric materials provide a simple and environmentally friendly solution for the direct conversion of heat to electricity. The development of higher performance thermoelectric materials and their performance optimization have become more important. Generally, to improve the ZT value, electrical conductivity, Seebeck coefficient and thermal conductivity must be globally optimized as a whole object. However, due to the strong coupling among ZT parameters in many cases, it is very challenging to break the bottleneck of ZT optimization currently. Beyond the traditional optimization methods (such as inducing defects, varying temperature), the Rashba effect is expected to effectively increase the S2σ and decrease the κ, thus enhancing thermoelectric performance, which provides a new strategy to develop new-generation thermoelectric materials. Although the Rashba effect has great potential in enhancing thermoelectric performance, the underlying mechanism of Rashba-type thermoelectric materials needs further research. In addition, how to introduce Rashba spin splitting into current thermoelectric materials is also of great significance to the optimization of thermoelectricity.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Zhenzhen Qin"},{id:"75364",title:"Challenges in Improving Performance of Oxide Thermoelectrics Using Defect Engineering",slug:"challenges-in-improving-performance-of-oxide-thermoelectrics-using-defect-engineering",totalDownloads:214,totalDimensionsCites:0,doi:"10.5772/intechopen.96278",abstract:"Oxide thermoelectric materials are considered promising for high-temperature thermoelectric applications in terms of low cost, temperature stability, reversible reaction, and so on. Oxide materials have been intensively studied to suppress the defects and electronic charge carriers for many electronic device applications, but the studies with a high concentration of defects are limited. It desires to improve thermoelectric performance by enhancing its charge transport and lowering its lattice thermal conductivity. For this purpose, here, we modified the stoichiometry of cation and anion vacancies in two different systems to regulate the carrier concentration and explored their thermoelectric properties. Both cation and anion vacancies act as a donor of charge carriers and act as phonon scattering centers, decoupling the electrical conductivity and thermal conductivity.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Jamil Ur Rahman, Gul Rahman and Soonil Lee"}],onlineFirstChaptersTotal:6},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"25",title:"Environmental Sciences",doi:"10.5772/intechopen.100362",issn:"2754-6713",scope:"
\r\n\tScientists have long researched to understand the environment and man’s place in it. The search for this knowledge grows in importance as rapid increases in population and economic development intensify humans’ stresses on ecosystems. Fortunately, rapid increases in multiple scientific areas are advancing our understanding of environmental sciences. Breakthroughs in computing, molecular biology, ecology, and sustainability science are enhancing our ability to utilize environmental sciences to address real-world problems. \r\n\tThe four topics of this book series - Pollution; Environmental Resilience and Management; Ecosystems and Biodiversity; and Water Science - will address important areas of advancement in the environmental sciences. They will represent an excellent initial grouping of published works on these critical topics.
",coverUrl:"https://cdn.intechopen.com/series/covers/25.jpg",latestPublicationDate:"April 13th, 2022",hasOnlineFirst:!1,numberOfPublishedBooks:1,editor:{id:"197485",title:"Dr.",name:"J. Kevin",middleName:null,surname:"Summers",slug:"j.-kevin-summers",fullName:"J. Kevin Summers",profilePictureURL:"https://mts.intechopen.com/storage/users/197485/images/system/197485.jpg",biography:"J. Kevin Summers is a Senior Research Ecologist at the Environmental Protection Agency’s (EPA) Gulf Ecosystem Measurement and Modeling Division. He is currently working with colleagues in the Sustainable and Healthy Communities Program to develop an index of community resilience to natural hazards, an index of human well-being that can be linked to changes in the ecosystem, social and economic services, and a community sustainability tool for communities with populations under 40,000. He leads research efforts for indicator and indices development. Dr. Summers is a systems ecologist and began his career at the EPA in 1989 and has worked in various programs and capacities. This includes leading the National Coastal Assessment in collaboration with the Office of Water which culminated in the award-winning National Coastal Condition Report series (four volumes between 2001 and 2012), and which integrates water quality, sediment quality, habitat, and biological data to assess the ecosystem condition of the United States estuaries. He was acting National Program Director for Ecology for the EPA between 2004 and 2006. He has authored approximately 150 peer-reviewed journal articles, book chapters, and reports and has received many awards for technical accomplishments from the EPA and from outside of the agency. Dr. Summers holds a BA in Zoology and Psychology, an MA in Ecology, and Ph.D. in Systems Ecology/Biology.",institutionString:null,institution:{name:"Environmental Protection Agency",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"38",title:"Pollution",coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",isOpenForSubmission:!0,editor:{id:"110740",title:"Dr.",name:"Ismail M.M.",middleName:null,surname:"Rahman",slug:"ismail-m.m.-rahman",fullName:"Ismail M.M. Rahman",profilePictureURL:"https://mts.intechopen.com/storage/users/110740/images/2319_n.jpg",biography:"Ismail Md. Mofizur Rahman (Ismail M. M. Rahman) assumed his current responsibilities as an Associate Professor at the Institute of Environmental Radioactivity, Fukushima University, Japan, in Oct 2015. He also has an honorary appointment to serve as a Collaborative Professor at Kanazawa University, Japan, from Mar 2015 to the present. \nFormerly, Dr. Rahman was a faculty member of the University of Chittagong, Bangladesh, affiliated with the Department of Chemistry (Oct 2002 to Mar 2012) and the Department of Applied Chemistry and Chemical Engineering (Mar 2012 to Sep 2015). Dr. Rahman was also adjunctly attached with Kanazawa University, Japan (Visiting Research Professor, Dec 2014 to Mar 2015; JSPS Postdoctoral Research Fellow, Apr 2012 to Mar 2014), and Tokyo Institute of Technology, Japan (TokyoTech-UNESCO Research Fellow, Oct 2004–Sep 2005). \nHe received his Ph.D. degree in Environmental Analytical Chemistry from Kanazawa University, Japan (2011). He also achieved a Diploma in Environment from the Tokyo Institute of Technology, Japan (2005). Besides, he has an M.Sc. degree in Applied Chemistry and a B.Sc. degree in Chemistry, all from the University of Chittagong, Bangladesh. \nDr. Rahman’s research interest includes the study of the fate and behavior of environmental pollutants in the biosphere; design of low energy and low burden environmental improvement (remediation) technology; implementation of sustainable waste management practices for treatment, handling, reuse, and ultimate residual disposition of solid wastes; nature and type of interactions in organic liquid mixtures for process engineering design applications.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"201020",title:"Dr.",name:"Zinnat Ara",middleName:null,surname:"Begum",slug:"zinnat-ara-begum",fullName:"Zinnat Ara Begum",profilePictureURL:"https://mts.intechopen.com/storage/users/201020/images/system/201020.jpeg",biography:"Zinnat A. Begum received her Ph.D. in Environmental Analytical Chemistry from Kanazawa University in 2012. She achieved her Master of Science (M.Sc.) degree with a major in Applied Chemistry and a Bachelor of Science (B.Sc.) in Chemistry, all from the University of Chittagong, Bangladesh. Her work affiliations include Fukushima University, Japan (Visiting Research Fellow, Institute of Environmental Radioactivity: Mar 2016 to present), Southern University Bangladesh (Assistant Professor, Department of Civil Engineering: Jan 2015 to present), and Kanazawa University, Japan (Postdoctoral Fellow, Institute of Science and Engineering: Oct 2012 to Mar 2014; Research fellow, Venture Business Laboratory, Advanced Science and Social Co-Creation Promotion Organization: Apr 2018 to Mar 2021). The research focus of Dr. Zinnat includes the effect of the relative stability of metal-chelator complexes in the environmental remediation process designs and the development of eco-friendly soil washing techniques using biodegradable chelators.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorThree:null},{id:"39",title:"Environmental Resilience and Management",coverUrl:"https://cdn.intechopen.com/series_topics/covers/39.jpg",isOpenForSubmission:!0,editor:{id:"137040",title:"Prof.",name:"Jose",middleName:null,surname:"Navarro-Pedreño",slug:"jose-navarro-pedreno",fullName:"Jose Navarro-Pedreño",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRAXrQAO/Profile_Picture_2022-03-09T15:50:19.jpg",biography:"Full professor at University Miguel Hernández of Elche, Spain, previously working at the University of Alicante, Autonomous University of Madrid and Polytechnic University of Valencia. Graduate in Sciences (Chemist), graduate in Geography and History (Geography), master in Water Management, Treatment, master in Fertilizers and Environment and master in Environmental Management; Ph.D. in Environmental Sciences. His research is focused on soil-water and waste-environment relations, mainly on soil-water and soil-waste interactions under different management and waste reuse. His work is reflected in more than 230 communications presented in national and international conferences and congresses, 29 invited lectures from universities, associations and government agencies. Prof. Navarro-Pedreño is also a director of the Ph.D. Program Environment and Sustainability (2012-present) and a member of several societies among which are the Spanish Society of Soil Science, International Union of Soil Sciences, European Society for Soil Conservation, DessertNet and the Spanish Royal Society of Chemistry.",institutionString:"Miguel Hernández University of Elche, Spain",institution:null},editorTwo:null,editorThree:null},{id:"40",title:"Ecosystems and Biodiversity",coverUrl:"https://cdn.intechopen.com/series_topics/covers/40.jpg",isOpenForSubmission:!0,editor:{id:"209149",title:"Prof.",name:"Salustiano",middleName:null,surname:"Mato",slug:"salustiano-mato",fullName:"Salustiano Mato",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLREQA4/Profile_Picture_2022-03-31T10:23:50.png",biography:"Salustiano Mato de la Iglesia (Santiago de Compostela, 1960) is a doctor in biology from the University of Santiago and a Professor of zoology at the Department of Ecology and Animal Biology at the University of Vigo. He has developed his research activity in the fields of fauna and soil ecology, and in the treatment of organic waste, having been the founder and principal investigator of the Environmental Biotechnology Group of the University of Vigo.\r\nHis research activity in the field of Environmental Biotechnology has been focused on the development of novel organic waste treatment systems through composting. The result of this line of work are three invention patents and various scientific and technical publications in prestigious international journals.",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}},editorTwo:{id:"60498",title:"Prof.",name:"Josefina",middleName:null,surname:"Garrido",slug:"josefina-garrido",fullName:"Josefina Garrido",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRj1VQAS/Profile_Picture_2022-03-31T10:06:51.jpg",biography:"Josefina Garrido González (Paradela de Abeleda, Ourense 1959), is a doctor in biology from the University of León and a Professor of Zoology at the Department of Ecology and Animal Biology at the University of Vigo. She has focused her research activity on the taxonomy, fauna and ecology of aquatic beetles, in addition to other lines of research such as the conservation of biodiversity in freshwater ecosystems; conservation of protected areas (Red Natura 2000) and assessment of the effectiveness of wetlands as priority areas for the conservation of aquatic invertebrates; studies of water quality in freshwater ecosystems through biological indicators and physicochemical parameters; surveillance and research of vector arthropods and invasive alien species.",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}},editorThree:{id:"464288",title:"Dr.",name:"Francisco",middleName:null,surname:"Ramil",slug:"francisco-ramil",fullName:"Francisco Ramil",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003RI7lHQAT/Profile_Picture_2022-03-31T10:15:35.png",biography:"Fran Ramil Blanco (Porto de Espasante, A Coruña, 1960), is a doctor in biology from the University of Santiago de Compostela and a Professor of Zoology at the Department of Ecology and Animal Biology at the University of Vigo. His research activity is linked to the taxonomy, fauna and ecology of marine benthic invertebrates and especially the Cnidarian group. Since 2004, he has been part of the EcoAfrik project, aimed at the study, protection and conservation of biodiversity and benthic habitats in West Africa. He also participated in the study of vulnerable marine ecosystems associated with seamounts in the South Atlantic and is involved in training young African researchers in the field of marine research.",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}}},{id:"41",title:"Water Science",coverUrl:"https://cdn.intechopen.com/series_topics/covers/41.jpg",isOpenForSubmission:!0,editor:{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang",profilePictureURL:"https://mts.intechopen.com/storage/users/349630/images/system/349630.jpg",biography:"Prof. Dr. Yizi Shang is a pioneering researcher in hydrology and water resources who has devoted his research career to promoting the conservation and protection of water resources for sustainable development. He is presently associate editor of Water International (official journal of the International Water Resources Association). He was also invited to serve as an associate editor for special issues of the Journal of the American Water Resources Association. He has served as an editorial member for international journals such as Hydrology, Journal of Ecology & Natural Resources, and Hydro Science & Marine Engineering, among others. He has chaired or acted as a technical committee member for twenty-five international forums (conferences). Dr. Shang graduated from Tsinghua University, China, in 2010 with a Ph.D. in Engineering. Prior to that, he worked as a research fellow at Harvard University from 2008 to 2009. Dr. Shang serves as a senior research engineer at the China Institute of Water Resources and Hydropower Research (IWHR) and was awarded as a distinguished researcher at National Taiwan University in 2017.",institutionString:"China Institute of Water Resources and Hydropower Research",institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:0,paginationItems:[]},overviewPagePublishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",biography:"Prof. Mohamed Nageeb Rashed is Professor of Analytical and Environmental Chemistry and former vice-dean for environmental affairs, Faculty of Science, Aswan University, Egypt. He received his Ph.D. in Environmental Analytical Chemistry from Assiut University, Egypt, in 1989. His research interest is in analytical and environmental chemistry with special emphasis on: (1) monitoring and assessing biological trace elements and toxic metals in human blood, urine, water, crops, vegetables, and medicinal plants; (2) relationships between environmental heavy metals and human diseases; (3) uses of biological indicators for monitoring water pollution; (4) environmental chemistry of lakes, rivers, and well water; (5) water and wastewater treatment by adsorption and photocatalysis techniques; (6) soil and water pollution monitoring, control, and treatment; and (7) advanced oxidation treatment. Prof. Rashed has supervised several MSc and Ph.D. theses in the field of analytical and environmental chemistry. He served as an examiner for several Ph.D. theses in analytical chemistry in India, Kazakhstan, and Botswana. He has published about ninety scientific papers in peer-reviewed international journals and several papers in national and international conferences. He participated as an invited speaker at thirty international conferences. Prof. Rashed is the editor-in-chief and an editorial board member for several international journals in the fields of chemistry and environment. He is a member of several national and international societies. He received the Egyptian State Award for Environmental Research in 2001 and the Aswan University Merit Award for Basic Science in 2020. Prof. Rashed was recognized in Stanford University’s list of the World’s Top 2% Scientists in 2020 and 2021.",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}]}]},openForSubmissionBooks:{paginationCount:1,paginationItems:[{id:"11601",title:"Econometrics - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11601.jpg",hash:"bc8ab49e2cf436c217a49ca8c12a22eb",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 13th 2022",isOpenForSubmission:!0,editors:[{id:"452331",title:"Dr.",name:"Brian",surname:"Sloboda",slug:"brian-sloboda",fullName:"Brian Sloboda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:19,paginationItems:[{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79909",title:"Cryopreservation Methods and Frontiers in the Art of Freezing Life in Animal Models",doi:"10.5772/intechopen.101750",signatures:"Feda S. Aljaser",slug:"cryopreservation-methods-and-frontiers-in-the-art-of-freezing-life-in-animal-models",totalDownloads:170,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"79782",title:"Avian Reproduction",doi:"10.5772/intechopen.101185",signatures:"Kingsley Omogiade Idahor",slug:"avian-reproduction",totalDownloads:151,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kingsley O.",surname:"Idahor"}],book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"78802",title:"Intraovarian Gestation in Viviparous Teleosts: Unique Type of Gestation among Vertebrates",doi:"10.5772/intechopen.100267",signatures:"Mari-Carmen Uribe, Gabino De la Rosa-Cruz, Adriana García-Alarcón and Juan Carlos Campuzano-Caballero",slug:"intraovarian-gestation-in-viviparous-teleosts-unique-type-of-gestation-among-vertebrates",totalDownloads:184,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:137,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78849",title:"Application of Vermicompost Fertilizer in Aquaculture Nutrition: Review",doi:"10.5772/intechopen.100326",signatures:"Sonnia Nzilani Musyoka and Rita Nairuti",slug:"application-of-vermicompost-fertilizer-in-aquaculture-nutrition-review",totalDownloads:67,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Nutrition - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11416.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"78617",title:"Doppler Ultrasound in the Reproduction of Mares",doi:"10.5772/intechopen.98951",signatures:"Camila Silva Costa Ferreira and Rita de Cássia Lima Morais",slug:"doppler-ultrasound-in-the-reproduction-of-mares",totalDownloads:123,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",doi:"10.5772/intechopen.100051",signatures:"Chan I-Ping and Hsueh Tung",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:171,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",doi:"10.5772/intechopen.99067",signatures:"Christophe Casteleyn and Jaco Bakker",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:308,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},subseriesFiltersForOFChapters:[{caption:"Animal Nutrition",value:20,count:1,group:"subseries"},{caption:"Animal Reproductive Biology and Technology",value:28,count:7,group:"subseries"},{caption:"Animal Science",value:19,count:11,group:"subseries"}],publishedBooks:{paginationCount:10,paginationItems:[{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",slug:"animal-feed-science-and-nutrition-production-health-and-environment",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Amlan Kumar Patra",hash:"79944fc8fbbaa329aed6fde388154832",volumeInSeries:10,fullTitle:"Animal Feed Science and Nutrition - Production, Health and Environment",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Sergey Tkachev",hash:"49cce3f548da548c718c865feb343509",volumeInSeries:9,fullTitle:"Rabies Virus at the Beginning of 21st Century",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10496",title:"Advanced Studies in the 21st Century Animal Nutrition",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",slug:"advanced-studies-in-the-21st-century-animal-nutrition",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"László Babinszky, Juliana Oliveira and Edson Mauro Santos",hash:"8ffe43a82ac48b309abc3632bbf3efd0",volumeInSeries:8,fullTitle:"Advanced Studies in the 21st Century Animal Nutrition",editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",slug:"canine-genetics-health-and-medicine",publishedDate:"June 2nd 2021",editedByType:"Edited by",bookSignature:"Catrin Rutland",hash:"b91512e31ce34032e560362e6cbccc1c",volumeInSeries:7,fullTitle:"Canine Genetics, Health and Medicine",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9081",title:"Equine Science",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",slug:"equine-science",publishedDate:"September 23rd 2020",editedByType:"Edited by",bookSignature:"Catrin Rutland and Albert Rizvanov",hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",volumeInSeries:5,fullTitle:"Equine Science",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",institutionString:null,institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Animal Nutrition",value:20,count:2},{group:"subseries",caption:"Animal Reproductive Biology and Technology",value:28,count:3},{group:"subseries",caption:"Animal Science",value:19,count:5}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:1},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:148,paginationItems:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",biography:"Vahid Asadpour, MS, Ph.D., is currently with the Department of Research and Evaluation, Kaiser Permanente Southern California. He has both an MS and Ph.D. in Biomedical Engineering. He was previously a research scientist at the University of California Los Angeles (UCLA) and visiting professor and researcher at the University of North Dakota. He is currently working in artificial intelligence and its applications in medical signal processing. In addition, he is using digital signal processing in medical imaging and speech processing. Dr. Asadpour has developed brain-computer interfacing algorithms and has published books, book chapters, and several journal and conference papers in this field and other areas of intelligent signal processing. He has also designed medical devices, including a laser Doppler monitoring system.",institutionString:"Kaiser Permanente Southern California",institution:null},{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",biography:"Prof. Dr. Marian Gaiceanu graduated from the Naval and Electrical Engineering Faculty, Dunarea de Jos University of Galati, Romania, in 1997. He received a Ph.D. (Magna Cum Laude) in Electrical Engineering in 2002. Since 2017, Dr. Gaiceanu has been a Ph.D. supervisor for students in Electrical Engineering. He has been employed at Dunarea de Jos University of Galati since 1996, where he is currently a professor. Dr. Gaiceanu is a member of the National Council for Attesting Titles, Diplomas and Certificates, an expert of the Executive Agency for Higher Education, Research Funding, and a member of the Senate of the Dunarea de Jos University of Galati. He has been the head of the Integrated Energy Conversion Systems and Advanced Control of Complex Processes Research Center, Romania, since 2016. He has conducted several projects in power converter systems for electrical drives, power quality, PEM and SOFC fuel cell power converters for utilities, electric vehicles, and marine applications with the Department of Regulation and Control, SIEI S.pA. (2002–2004) and the Polytechnic University of Turin, Italy (2002–2004, 2006–2007). He is a member of the Institute of Electrical and Electronics Engineers (IEEE) and cofounder-member of the IEEE Power Electronics Romanian Chapter. He is a guest editor at Energies and an academic book editor for IntechOpen. He is also a member of the editorial boards of the Journal of Electrical Engineering, Electronics, Control and Computer Science and Sustainability. Dr. Gaiceanu has been General Chairman of the IEEE International Symposium on Electrical and Electronics Engineering in the last six editions.",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',country:{name:"Romania"}}},{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",biography:"Jaydip Sen is associated with Praxis Business School, Kolkata, India, as a professor in the Department of Data Science. His research areas include security and privacy issues in computing and communication, intrusion detection systems, machine learning, deep learning, and artificial intelligence in the financial domain. He has more than 200 publications in reputed international journals, refereed conference proceedings, and 20 book chapters in books published by internationally renowned publishing houses, such as Springer, CRC press, IGI Global, etc. Currently, he is serving on the editorial board of the prestigious journal Frontiers in Communications and Networks and in the technical program committees of a number of high-ranked international conferences organized by the IEEE, USA, and the ACM, USA. He has been listed among the top 2% of scientists in the world for the last three consecutive years, 2019 to 2021 as per studies conducted by the Stanford University, USA.",institutionString:"Praxis Business School",institution:null},{id:"320071",title:"Dr.",name:"Sidra",middleName:null,surname:"Mehtab",slug:"sidra-mehtab",fullName:"Sidra Mehtab",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002v6KHoQAM/Profile_Picture_1584512086360",biography:"Sidra Mehtab has completed her BS with honors in Physics from Calcutta University, India in 2018. She has done MS in Data Science and Analytics from Maulana Abul Kalam Azad University of Technology (MAKAUT), Kolkata, India in 2020. Her research areas include Econometrics, Time Series Analysis, Machine Learning, Deep Learning, Artificial Intelligence, and Computer and Network Security with a particular focus on Cyber Security Analytics. Ms. Mehtab has published seven papers in international conferences and one of her papers has been accepted for publication in a reputable international journal. She has won the best paper awards in two prestigious international conferences – BAICONF 2019, and ICADCML 2021, organized in the Indian Institute of Management, Bangalore, India in December 2019, and SOA University, Bhubaneswar, India in January 2021. Besides, Ms. Mehtab has also published two book chapters in two books. Seven of her book chapters will be published in a volume shortly in 2021 by Cambridge Scholars’ Press, UK. Currently, she is working as the joint editor of two edited volumes on Time Series Analysis and Forecasting to be published in the first half of 2021 by an international house. Currently, she is working as a Data Scientist with an MNC in Delhi, India.",institutionString:"NSHM College of Management and Technology",institution:null},{id:"226240",title:"Dr.",name:"Andri Irfan",middleName:null,surname:"Rifai",slug:"andri-irfan-rifai",fullName:"Andri Irfan Rifai",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/226240/images/7412_n.jpg",biography:"Andri IRFAN is a Senior Lecturer of Civil Engineering and Planning. He completed the PhD at the Universitas Indonesia & Universidade do Minho with Sandwich Program Scholarship from the Directorate General of Higher Education and LPDP scholarship. He has been teaching for more than 19 years and much active to applied his knowledge in the project construction in Indonesia. His research interest ranges from pavement management system to advanced data mining techniques for transportation engineering. He has published more than 50 papers in journals and 2 books.",institutionString:null,institution:{name:"Universitas Internasional Batam",country:{name:"Indonesia"}}},{id:"314576",title:"Dr.",name:"Ibai",middleName:null,surname:"Laña",slug:"ibai-lana",fullName:"Ibai Laña",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314576/images/system/314576.jpg",biography:"Dr. Ibai Laña works at TECNALIA as a data analyst. He received his Ph.D. in Artificial Intelligence from the University of the Basque Country (UPV/EHU), Spain, in 2018. He is currently a senior researcher at TECNALIA. His research interests fall within the intersection of intelligent transportation systems, machine learning, traffic data analysis, and data science. He has dealt with urban traffic forecasting problems, applying machine learning models and evolutionary algorithms. He has experience in origin-destination matrix estimation or point of interest and trajectory detection. Working with large volumes of data has given him a good command of big data processing tools and NoSQL databases. He has also been a visiting scholar at the Knowledge Engineering and Discovery Research Institute, Auckland University of Technology.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"314575",title:"Dr.",name:"Jesus",middleName:null,surname:"L. Lobo",slug:"jesus-l.-lobo",fullName:"Jesus L. Lobo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314575/images/system/314575.png",biography:"Dr. Jesús López is currently based in Bilbao (Spain) working at TECNALIA as Artificial Intelligence Research Scientist. In most cases, a project idea or a new research line needs to be investigated to see if it is good enough to take into production or to focus on it. That is exactly what he does, diving into Machine Learning algorithms and technologies to help TECNALIA to decide whether something is great in theory or will actually impact on the product or processes of its projects. So, he is expert at framing experiments, developing hypotheses, and proving whether they’re true or not, in order to investigate fundamental problems with a longer time horizon. He is also able to design and develop PoCs and system prototypes in simulation. He has participated in several national and internacional R&D projects.\n\nAs another relevant part of his everyday research work, he usually publishes his findings in reputed scientific refereed journals and international conferences, occasionally acting as reviewer and Programme Commitee member. Concretely, since 2018 he has published 9 JCR (8 Q1) journal papers, 9 conference papers (e.g. ECML PKDD 2021), and he has co-edited a book. He is also active in popular science writing data science stories for reputed blogs (KDNuggets, TowardsDataScience, Naukas). Besides, he has recently embarked on mentoring programmes as mentor, and has also worked as data science trainer.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",biography:"Yalcin Isler (1971 - Burdur / Turkey) received the B.Sc. degree in the Department of Electrical and Electronics Engineering from Anadolu University, Eskisehir, Turkey, in 1993, the M.Sc. degree from the Department of Electronics and Communication Engineering, Suleyman Demirel University, Isparta, Turkey, in 1996, the Ph.D. degree from the Department of Electrical and Electronics Engineering, Dokuz Eylul University, Izmir, Turkey, in 2009, and the Competence of Associate Professorship from the Turkish Interuniversity Council in 2019.\n\nHe was Lecturer at Burdur Vocational School in Suleyman Demirel University (1993-2000, Burdur / Turkey), Software Engineer (2000-2002, Izmir / Turkey), Research Assistant in Bulent Ecevit University (2002-2003, Zonguldak / Turkey), Research Assistant in Dokuz Eylul University (2003-2010, Izmir / Turkey), Assistant Professor at the Department of Electrical and Electronics Engineering in Bulent Ecevit University (2010-2012, Zonguldak / Turkey), Assistant Professor at the Department of Biomedical Engineering in Izmir Katip Celebi University (2012-2019, Izmir / Turkey). He is an Associate Professor at the Department of Biomedical Engineering at Izmir Katip Celebi University, Izmir / Turkey, since 2019. In addition to academics, he has also founded Islerya Medical and Information Technologies Company, Izmir / Turkey, since 2017.\n\nHis main research interests cover biomedical signal processing, pattern recognition, medical device design, programming, and embedded systems. He has many scientific papers and participated in several projects in these study fields. He was an IEEE Student Member (2009-2011) and IEEE Member (2011-2014) and has been IEEE Senior Member since 2014.",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"339677",title:"Dr.",name:"Mrinmoy",middleName:null,surname:"Roy",slug:"mrinmoy-roy",fullName:"Mrinmoy Roy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/339677/images/16768_n.jpg",biography:"An accomplished Sales & Marketing professional with 12 years of cross-functional experience in well-known organisations such as CIPLA, LUPIN, GLENMARK, ASTRAZENECA across different segment of Sales & Marketing, International Business, Institutional Business, Product Management, Strategic Marketing of HIV, Oncology, Derma, Respiratory, Anti-Diabetic, Nutraceutical & Stomatological Product Portfolio and Generic as well as Chronic Critical Care Portfolio. A First Class MBA in International Business & Strategic Marketing, B.Pharm, D.Pharm, Google Certified Digital Marketing Professional. Qualified PhD Candidate in Operations and Management with special focus on Artificial Intelligence and Machine Learning adoption, analysis and use in Healthcare, Hospital & Pharma Domain. Seasoned with diverse therapy area of Pharmaceutical Sales & Marketing ranging from generating revenue through generating prescriptions, launching new products, and making them big brands with continuous strategy execution at the Physician and Patients level. Moved from Sales to Marketing and Business Development for 3.5 years in South East Asian Market operating from Manila, Philippines. Came back to India and handled and developed Brands such as Gluconorm, Lupisulin, Supracal, Absolut Woman, Hemozink, Fabiflu (For COVID 19), and many more. In my previous assignment I used to develop and execute strategies on Sales & Marketing, Commercialization & Business Development for Institution and Corporate Hospital Business portfolio of Oncology Therapy Area for AstraZeneca Pharma India Ltd. Being a Research Scholar and Student of ‘Operations Research & Management: Artificial Intelligence’ I published several pioneer research papers and book chapters on the same in Internationally reputed journals and Books indexed in Scopus, Springer and Ei Compendex, Google Scholar etc. Currently, I am launching PGDM Pharmaceutical Management Program in IIHMR Bangalore and spearheading the course curriculum and structure of the same. I am interested in Collaboration for Healthcare Innovation, Pharma AI Innovation, Future trend in Marketing and Management with incubation on Healthcare, Healthcare IT startups, AI-ML Modelling and Healthcare Algorithm based training module development. I am also an affiliated member of the Institute of Management Consultant of India, looking forward to Healthcare, Healthcare IT and Innovation, Pharma and Hospital Management Consulting works.",institutionString:null,institution:{name:"Lovely Professional University",country:{name:"India"}}},{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",country:{name:"Romania"}}},{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",biography:"Dr. Eneko Osaba works at TECNALIA as a senior researcher. He obtained his Ph.D. in Artificial Intelligence in 2015. He has participated in more than twenty-five local and European research projects, and in the publication of more than 130 papers. He has performed several stays at universities in the United Kingdom, Italy, and Malta. Dr. Osaba has served as a program committee member in more than forty international conferences and participated in organizing activities in more than ten international conferences. He is a member of the editorial board of the International Journal of Artificial Intelligence, Data in Brief, and Journal of Advanced Transportation. He is also a guest editor for the Journal of Computational Science, Neurocomputing, Swarm, and Evolutionary Computation and IEEE ITS Magazine.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"275829",title:"Dr.",name:"Esther",middleName:null,surname:"Villar-Rodriguez",slug:"esther-villar-rodriguez",fullName:"Esther Villar-Rodriguez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/275829/images/system/275829.jpg",biography:"Dr. Esther Villar obtained a Ph.D. in Information and Communication Technologies from the University of Alcalá, Spain, in 2015. She obtained a degree in Computer Science from the University of Deusto, Spain, in 2010, and an MSc in Computer Languages and Systems from the National University of Distance Education, Spain, in 2012. Her areas of interest and knowledge include natural language processing (NLP), detection of impersonation in social networks, semantic web, and machine learning. Dr. Esther Villar made several contributions at conferences and publishing in various journals in those fields. Currently, she is working within the OPTIMA (Optimization Modeling & Analytics) business of TECNALIA’s ICT Division as a data scientist in projects related to the prediction and optimization of management and industrial processes (resource planning, energy efficiency, etc).",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null},{id:"278948",title:"Dr.",name:"Carlos Pedro",middleName:null,surname:"Gonçalves",slug:"carlos-pedro-goncalves",fullName:"Carlos Pedro Gonçalves",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRcmyQAC/Profile_Picture_1564224512145",biography:'Carlos Pedro Gonçalves (PhD) is an Associate Professor at Lusophone University of Humanities and Technologies and a researcher on Complexity Sciences, Quantum Technologies, Artificial Intelligence, Strategic Studies, Studies in Intelligence and Security, FinTech and Financial Risk Modeling. He is also a progammer with programming experience in:\n\nA) Quantum Computing using Qiskit Python module and IBM Quantum Experience Platform, with software developed on the simulation of Quantum Artificial Neural Networks and Quantum Cybersecurity;\n\nB) Artificial Intelligence and Machine learning programming in Python;\n\nC) Artificial Intelligence, Multiagent Systems Modeling and System Dynamics Modeling in Netlogo, with models developed in the areas of Chaos Theory, Econophysics, Artificial Intelligence, Classical and Quantum Complex Systems Science, with the Econophysics models having been cited worldwide and incorporated in PhD programs by different Universities.\n\nReceived an Arctic Code Vault Contributor status by GitHub, due to having developed open source software preserved in the \\"Arctic Code Vault\\" for future generations (https://archiveprogram.github.com/arctic-vault/), with the Strategy Analyzer A.I. module for decision making support (based on his PhD thesis, used in his Classes on Decision Making and in Strategic Intelligence Consulting Activities) and QNeural Python Quantum Neural Network simulator also preserved in the \\"Arctic Code Vault\\", for access to these software modules see: https://github.com/cpgoncalves. He is also a peer reviewer with outsanding review status from Elsevier journals, including Physica A, Neurocomputing and Engineering Applications of Artificial Intelligence. Science CV available at: https://www.cienciavitae.pt//pt/8E1C-A8B3-78C5 and ORCID: https://orcid.org/0000-0002-0298-3974',institutionString:"University of Lisbon",institution:{name:"Universidade Lusófona",country:{name:"Portugal"}}},{id:"241400",title:"Prof.",name:"Mohammed",middleName:null,surname:"Bsiss",slug:"mohammed-bsiss",fullName:"Mohammed Bsiss",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241400/images/8062_n.jpg",biography:null,institutionString:null,institution:null},{id:"276128",title:"Dr.",name:"Hira",middleName:null,surname:"Fatima",slug:"hira-fatima",fullName:"Hira Fatima",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/276128/images/14420_n.jpg",biography:"Dr. Hira Fatima\nAssistant Professor\nDepartment of Mathematics\nInstitute of Applied Science\nMangalayatan University, Aligarh\nMobile: no : 8532041179\nhirafatima2014@gmal.com\n\nDr. Hira Fatima has received his Ph.D. degree in pure Mathematics from Aligarh Muslim University, Aligarh India. Currently working as an Assistant Professor in the Department of Mathematics, Institute of Applied Science, Mangalayatan University, Aligarh. She taught so many courses of Mathematics of UG and PG level. Her research Area of Expertise is Functional Analysis & Sequence Spaces. She has been working on Ideal Convergence of double sequence. She has published 17 research papers in National and International Journals including Cogent Mathematics, Filomat, Journal of Intelligent and Fuzzy Systems, Advances in Difference Equations, Journal of Mathematical Analysis, Journal of Mathematical & Computer Science etc. She has also reviewed few research papers for the and international journals. She is a member of Indian Mathematical Society.",institutionString:null,institution:null},{id:"414880",title:"Dr.",name:"Maryam",middleName:null,surname:"Vatankhah",slug:"maryam-vatankhah",fullName:"Maryam Vatankhah",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Borough of Manhattan Community College",country:{name:"United States of America"}}},{id:"414879",title:"Prof.",name:"Mohammad-Reza",middleName:null,surname:"Akbarzadeh-Totonchi",slug:"mohammad-reza-akbarzadeh-totonchi",fullName:"Mohammad-Reza Akbarzadeh-Totonchi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ferdowsi University of Mashhad",country:{name:"Iran"}}},{id:"414878",title:"Prof.",name:"Reza",middleName:null,surname:"Fazel-Rezai",slug:"reza-fazel-rezai",fullName:"Reza Fazel-Rezai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"American Public University System",country:{name:"United States of America"}}},{id:"302698",title:"Dr.",name:"Yao",middleName:null,surname:"Shan",slug:"yao-shan",fullName:"Yao Shan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Dalian University of Technology",country:{name:"China"}}},{id:"125911",title:"Prof.",name:"Jia-Ching",middleName:null,surname:"Wang",slug:"jia-ching-wang",fullName:"Jia-Ching Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Central University",country:{name:"Taiwan"}}},{id:"357085",title:"Mr.",name:"P. Mohan",middleName:null,surname:"Anand",slug:"p.-mohan-anand",fullName:"P. Mohan Anand",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356696",title:"Ph.D. Student",name:"P.V.",middleName:null,surname:"Sai Charan",slug:"p.v.-sai-charan",fullName:"P.V. Sai Charan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"357086",title:"Prof.",name:"Sandeep K.",middleName:null,surname:"Shukla",slug:"sandeep-k.-shukla",fullName:"Sandeep K. Shukla",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356823",title:"MSc.",name:"Seonghee",middleName:null,surname:"Min",slug:"seonghee-min",fullName:"Seonghee Min",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Daegu University",country:{name:"Korea, South"}}},{id:"353307",title:"Prof.",name:"Yoosoo",middleName:null,surname:"Oh",slug:"yoosoo-oh",fullName:"Yoosoo Oh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Yoosoo Oh received his Bachelor's degree in the Department of Electronics and Engineering from Kyungpook National University in 2002. He obtained his Master’s degree in the Department of Information and Communications from Gwangju Institute of Science and Technology (GIST) in 2003. In 2010, he received his Ph.D. degree in the School of Information and Mechatronics from GIST. In the meantime, he was an executed team leader at Culture Technology Institute, GIST, 2010-2012. In 2011, he worked at Lancaster University, the UK as a visiting scholar. In September 2012, he joined Daegu University, where he is currently an associate professor in the School of ICT Conver, Daegu University. Also, he served as the Board of Directors of KSIIS since 2019, and HCI Korea since 2016. From 2017~2019, he worked as a center director of the Mixed Reality Convergence Research Center at Daegu University. From 2015-2017, He worked as a director in the Enterprise Supporting Office of LINC Project Group, Daegu University. His research interests include Activity Fusion & Reasoning, Machine Learning, Context-aware Middleware, Human-Computer Interaction, etc.",institutionString:null,institution:{name:"Daegu Gyeongbuk Institute of Science and Technology",country:{name:"Korea, South"}}},{id:"262719",title:"Dr.",name:"Esma",middleName:null,surname:"Ergüner Özkoç",slug:"esma-erguner-ozkoc",fullName:"Esma Ergüner Özkoç",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Başkent University",country:{name:"Turkey"}}},{id:"346530",title:"Dr.",name:"Ibrahim",middleName:null,surname:"Kaya",slug:"ibrahim-kaya",fullName:"Ibrahim Kaya",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"419199",title:"Dr.",name:"Qun",middleName:null,surname:"Yang",slug:"qun-yang",fullName:"Qun Yang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Auckland",country:{name:"New Zealand"}}},{id:"351158",title:"Prof.",name:"David W.",middleName:null,surname:"Anderson",slug:"david-w.-anderson",fullName:"David W. Anderson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Calgary",country:{name:"Canada"}}}]}},subseries:{item:{id:"95",type:"subseries",title:"Urban Planning and Environmental Management",keywords:"Circular economy, Contingency planning and response to disasters, Ecosystem services, Integrated urban water management, Nature-based solutions, Sustainable urban development, Urban green spaces",scope:"
\r\n\tIf we aim to prosper as a society and as a species, there is no alternative to sustainability-oriented development and growth. Sustainable development is no longer a choice but a necessity for us all. Ecosystems and preserving ecosystem services and inclusive urban development present promising solutions to environmental problems. Contextually, the emphasis on studying these fields will enable us to identify and define the critical factors for territorial success in the upcoming decades to be considered by the main-actors, decision and policy makers, technicians, and public in general.
\r\n
\r\n\tHolistic urban planning and environmental management are therefore crucial spheres that will define sustainable trajectories for our urbanizing planet. This urban and environmental planning topic aims to attract contributions that address sustainable urban development challenges and solutions, including integrated urban water management, planning for the urban circular economy, monitoring of risks, contingency planning and response to disasters, among several other challenges and solutions.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/95.jpg",hasOnlineFirst:!1,hasPublishedBooks:!1,annualVolume:11979,editor:{id:"181079",title:"Dr.",name:"Christoph",middleName:null,surname:"Lüthi",slug:"christoph-luthi",fullName:"Christoph Lüthi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRHSqQAO/Profile_Picture_2022-04-12T15:51:33.png",biography:"Dr. Christoph Lüthi is an urban infrastructure planner with over 25 years of experience in planning and design of urban infrastructure in middle and low-income countries. He holds a Master’s Degree in Urban Development Planning from the University College of London (UCL), and a Ph.D. in Urban Planning & Engineering from TU Berlin. He has conducted applied research on urban planning and infrastructure issues in over 20 countries in Africa and Asia. In 2005 he joined Eawag-Sandec as Leader of the Strategic Environmental Sanitation Planning Group. Since 2015 he heads the research department Sanitation, Water and Solid Waste for Development (Sandec) at the Swiss Federal Institute of Aquatic Research and Technology (Eawag).",institutionString:"Swiss Federal Institute of Aquatic Science and Technology, Switzerland",institution:null},editorTwo:{id:"290571",title:"Dr.",name:"Rui Alexandre",middleName:null,surname:"Castanho",slug:"rui-alexandre-castanho",fullName:"Rui Alexandre Castanho",profilePictureURL:"https://mts.intechopen.com/storage/users/290571/images/system/290571.jpg",biography:"Rui Alexandre Castanho has a master\\'s degree in Planning, Audit, and Control in Urban Green Spaces and an international Ph.D. in Sustainable Planning in Borderlands. Currently, he is a professor at WSB University, Poland, and a visiting professor at the University of Johannesburg, South Africa. Dr. Castanho is a post-doc researcher on the GREAT Project, University of Azores, Ponta Delgada, Portugal. He collaborates with the Environmental Resources Analysis Research Group (ARAM), University of Extremadura (UEx), Spain; VALORIZA - Research Center for the Enhancement of Endogenous Resources, Polytechnic Institute of Portalegre (IPP), Portugal; Centre for Tourism Research, Development and Innovation (CITUR), Madeira, Portugal; and AQUAGEO Research Group, University of Campinas (UNICAMP), Brazil.",institutionString:"University of Johannesburg, South Africa and WSB University, Poland",institution:{name:"University of Johannesburg",institutionURL:null,country:{name:"South Africa"}}},editorThree:null,series:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null},editorialBoard:[{id:"181486",title:"Dr.",name:"Claudia",middleName:null,surname:"Trillo",slug:"claudia-trillo",fullName:"Claudia Trillo",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSAZHQA4/Profile_Picture_2022-03-14T08:26:43.jpg",institutionString:null,institution:{name:"University of Salford",institutionURL:null,country:{name:"United Kingdom"}}},{id:"308328",title:"Dr.",name:"Dávid",middleName:null,surname:"Földes",slug:"david-foldes",fullName:"Dávid Földes",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002nXXGKQA4/Profile_Picture_2022-03-11T08:25:45.jpg",institutionString:null,institution:{name:"Budapest University of Technology and Economics",institutionURL:null,country:{name:"Hungary"}}},{id:"282172",title:"Dr.",name:"Ivan",middleName:null,surname:"Oropeza-Perez",slug:"ivan-oropeza-perez",fullName:"Ivan Oropeza-Perez",profilePictureURL:"https://mts.intechopen.com/storage/users/282172/images/system/282172.jpg",institutionString:"Universidad de las Américas Puebla",institution:{name:"Universidad de las Américas Puebla",institutionURL:null,country:{name:"Mexico"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"81831",title:"Deep Network Model and Regression Analysis using OLS Method for Predicting Lung Vital Capacity",doi:"10.5772/intechopen.104737",signatures:"Harun Sümbül",slug:"deep-network-model-and-regression-analysis-using-ols-method-for-predicting-lung-vital-capacity",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Decision Science - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11604.jpg",subseries:{id:"86",title:"Business and Management"}}}]},publishedBooks:{paginationCount:3,paginationItems:[{type:"book",id:"10859",title:"Data Mining",subtitle:"Concepts and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10859.jpg",slug:"data-mining-concepts-and-applications",publishedDate:"March 30th 2022",editedByType:"Edited by",bookSignature:"Ciza Thomas",hash:"63a4e514e537d3962cf53ef1c6b9d5eb",volumeInSeries:8,fullTitle:"Data Mining - Concepts and Applications",editors:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10651",title:"Machine Learning",subtitle:"Algorithms, Models and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10651.jpg",slug:"machine-learning-algorithms-models-and-applications",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Jaydip Sen",hash:"6208156401c496e0a4ca5ff4265324cc",volumeInSeries:7,fullTitle:"Machine Learning - Algorithms, Models and Applications",editors:[{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",institutionString:"Praxis Business School",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"4",title:"Fungal Infectious Diseases",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment"},{id:"5",title:"Parasitic Infectious Diseases",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology"},{id:"6",title:"Viral Infectious Diseases",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/348834",hash:"",query:{},params:{id:"348834"},fullPath:"/profiles/348834",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()