Absorption, translocation, and metabolism of 14C-herbicides in resistant and susceptible weeds.
\r\n\tThe purpose of this book is to provide the readers with an understanding of the characteristics of the crisis itself, recognize the wide range and multi-layer of the crisis from a real situation, give ideas on how to minimize the damage, and find ways to increase resilience in the future. To adapt to the rapidly and diversely changing world, the necessary experience and appropriate management for all kinds of crisis issues will be discussed as well. At the same time, it is intended to suggest elements such as verified scientific and empirical knowledge and applicable technologies; more effective risk management operation; modeling of the risks, manuals, management plans, and strategies.
\r\n\t
Herbicides can penetrate plants through their aerial structures (leaves and stems), subterraneous (root, rhizome, stolon, and tuber), and young structures such as radicles and caulicles. The main route of penetration of the herbicides in the plant is a function of a series of intrinsic and extrinsic (environmental) factors. Absorption of herbicides by roots or leaves is influenced by the availability of the products at the sites of absorption and environmental factors (temperature, light, relative humidity, and soil moisture), which also influences the translocation of these to the site of action [1].
\nAmong the biochemical and physiological mechanisms, the change in the absorption, translocation, or metabolism of resistant weed biotypes has been reported on several species for different herbicides. These resistance mechanisms have been studied over the last years, allowing the development and improvement of analytical techniques to diagnose this type of resistance [2]. However, an up-to-date, organized description and standardization of research procedures and methodology on the use of radioisotopes for detection of resistant weeds, through different mechanisms of absorption, translocation, and metabolism in comparison with susceptible weeds are lacking in the literature.
\nRadioisotopes are used on several research areas, such as for the metabolism of drugs and pesticides, environmental studies to determine biological routes and mass balance studies for organic compounds, and the ones that are most frequently used are tritium and 14C. The method for using radiolabeled herbicides may be quantitative or qualitative, allowing associating the resistance to the reduced absorption and/or translocation, and/or to the accelerated metabolism in several weed species [3]. Therefore, it is important to understand concepts and measurement units of the main analytical techniques that use labeled molecules with 14C to study the biochemical and physiological resistance mechanisms to herbicides, as well as for studies that evaluate the destination of these molecules on the environment. Understanding these mechanisms is fundamental for management alternatives to be planned or to improve the effectiveness of the product [4].
\nConsidering the above, the objective of this chapter was to conduct a description of the research procedures and the methodology related for detection of resistant weeds using 14C-herbicide absorption, translocation, and metabolism compared with susceptible weeds.
\nAs long as a plant biotype is susceptible to an herbicide, the biological activity resulting from the pulverization of the herbicide in the plant is dependant of the absorption and translocation of that herbicide in the plant.
\nTranslocation is a desirable attribute because it allows the herbicide to reach both treated and untreated parts of the plant [5]. It is especially important when used for controlling plants that are able to regenerate themselves through structures such as bulbs, rhizomes, stolons, and tubers. If, for some reason, the herbicide fails to reach these structures due to restriction of movement, the plants are not going to be controlled and will therefore be resistant.
\nWeed Science Society of America (WSSA) defines herbicide resistance as the inheritable ability of a plant biotype to survive and reproduce following exposure to an herbicide dose that would normally be lethal to the wild type [2].
\nResistance conferred by the restriction of herbicide movement mechanism is classified as non-target-site resistance (NTSR). Weeds that are resistant due to this mechanism commonly show higher foliar retention and reduced translocation, reducing the amount of herbicide that reaches the target, making it insufficient to exercise control over the weed.
\nGoggin et al. [6] employed 14C-labeled 2,4-dichlorophenoxyacetic acid (2,4-D) to study resistance in two wild radish (
Reduced translocation was reported as the cause of resistance to paraquat in two populations of
Riar et al. [8] studied three barnyardgrass (
Regarding glyphosate, the world’s most important and widely used herbicide, NTSR has been reported as one of the most widespread type of resistance [9].
\nGlyphosate is a foliar applied herbicide which follows a source-to-sink pattern and kills plants through the inhibition of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), which are most highly expressed in the meristems and flowers of plants [10]. Since it is applied on the shoots, it must traverse the non-living structures of the leaf cuticle and the cell walls of the epidermis, apoplast, and mesophyll prior to accessing the phloem for transport to sink tissues [11]. Glyphosate’s great ability to translocation in the plant reaching vital areas such as the roots and shoot meristems is one of the characteristics that makes it so important and efficient, but it also makes it highly dependent on herbicide movement.
\nFerreira et al. [12] reported an increase in foliar retention in hairy fleabane (
The mechanism of glyphosate absorption into plant cells is not well understood. There appears to be two different mechanisms of absorption. One is an active system that pumps the herbicide into plant cells, possibly via a phosphate transporter, and operates at low concentrations. Other may be a passive mass flow system which is gradient dependent (Figure 1).
\nProposed mechanisms of glyphosate absorption into plant cells. G, glyphosate (the size of the letter indicates relative size of glyphosate pool). (1) Active absorption of glyphosate into cell. (2) Passive diffusion of glyphosate into the cell. Arrows indicate direction of movement of glyphosate pools into and out of the cell, chloroplast, and vacuole. Source: Shaner [
The exact mechanism that promotes the reduction of cellular absorption and translocation of glyphosate in resistant weeds is not clear yet. Shaner [10] described four potential mechanisms that may cause the restriction of glyphosate movement (Figure 2): (1) alteration in a putative phosphate transporter responsible for the active cellular absorption of glyphosate, in a way that the transporter is no longer present or no longer recognizes glyphosate, resulting in reduced absorption and translocation; (2) evolution of a new transporter that pumps glyphosate into the vacuole, thus sequestering the herbicide and preventing it from reaching either the chloroplast or the phloem; (3) evolution of a new transporter that actively pumps glyphosate out of the cell into the apoplast; or (4) evolution of a transporter at the chloroplast envelope that pumps glyphosate out of the chloroplast, preventing the herbicide from reaching its target site.
\nPotential mechanisms for reduced glyphosate cellular absorption in glyphosate-resistant (GR) biotypes. (1) Inhibition of active absorption by a modification of active transporter. (2) An active transporter that pumps glyphosate into the vacuole. (3) An active transporter that pumps glyphosate from the cell into the apoplast. (4) Inhibition of glyphosate absorption into the chloroplast by a transporter that pumps it out of the chloroplast. G, glyphosate. Source: Shaner [
In order to study glyphosate resistance, 31P nuclear magnetic resonance (NMR) spectroscopy studies were employed to track glyphosate movement and metabolism in resistant and susceptible biotypes of horseweed (
These results have been confirmed in different glyphosate-resistant
According IRSN [17], the 14C contained in the resistant weed (test portion) is transformed to 14CO2 from which a sample is prepared for measurement by liquid scintillation spectrometry (LSS), and combustion by oxidizer (Figure 3) is main method used.
\nOxidizer OX500 (R.J. Harvey Instrument Corporation) (a) and liquid scintillation equipment, Tri-Carb 2910 TR LSA counter (PerkinElmer) (b) from the Laboratory of Ecotoxicology of CENA/USP.
Resistant weed samples are not readily soluble on scintillation cocktails. Due to this reason, such samples go through biological combustion on oxidizer. The combustion of the sample creates an atmosphere that is rich in hydrogen, which is oxidized by the water, while the entire carbon content is oxidized by the carbon dioxide containing 14C (14CO2). Evolved 14CO2 is trapped in a 2 M NaOH solution and subsequently mixed in an adequate scintillating cocktail for ß counting on a LSS [18].
\nCoughtrey et al. [19] described a wet oxidation technique using potassium dichromate and concentrated sulfuric and phosphoric acid, which can be done in a modified filter flask. This technique can accommodate up to 0.3 g of dry resistant weed. Recovery of 14C is consistent between batches, with an average recovery of 97.2% over 15 standards. These authors reported that technique described does not involve large capital expenditure and is relatively rapid.
\nThe expression of the resistant weed sample’s activity in becquerel (Bq) of 14C per kg of carbon also requires measuring its elementary carbon content, generally by gas chromatography. According Nandula and Vencil [20], the commonly accepted unit of measurement of radioactivity is the Bq, derived from the International System of Units. It is defined as follows:
\nA description of the research procedures and the methodology related for detection of resistant weeds using 14C-herbicide absorption, translocation, and metabolism compared with susceptible weeds will be described below, based on Nandula and Vencil [20] and Mendes et al. [21].
\nStudies on the absorption and translocation of herbicides in plants are usually conducted to evaluate the behavior of a new herbicide on a certain plant species, comparing two or more herbicides, specific formulations, additives, or the effect of environmental standards. The growing problem regarding the resistance of weeds to herbicides promoted the studies on the absorption, translocation, and metabolism of herbicides as the methodology to elucidate the resistance mechanisms [20]. So these procedures need to be better explained to researchers, as will be described in this chapter.
\nThe studies on the absorption of herbicides use a destructive sampling of treated plants on several post-treatment periods, which allows the characterization of the absorption standard on the plant, considering the planning and adequate statistical analyses [22].
\nOn the adequate phenological stage for each species, susceptible and resistant weeds must be adequately identified by treatment. The leaves that have been predetermined to receive the radiolabeled herbicide must be covered with plastic film, aluminum paper, or small paper envelopes. Then, the “cold” herbicide is applied to the plants (without the radioisotope) at the dose recommended by the manufacturer, as a solution with adjuvant (when indicated) and water, followed by the immediate removal of the protective plastic film of the applied leaf.
\nThe radiolabeled herbicide solution must be prepared on a solution containing its commercial formulation at the recommended dose for the considered phenological stage. After applying the “cold” product, its radiolabeled version is applied. It is important for the radiolabeled herbicide to be applied with at least 170 Bq of specific activity, in the case of studies with most of the annual weeds [20].
\nThe radiolabeled product is applied using a micro-syringe, by applying a 1 μL droplet (the total radiolabeled product applied depends on the molecule and the radioactivity of the radiolabeled molecule), on the leaf blade of the upper part of the expanded leaf of each plant (Figure 4). The choice for the leaf on which the application will occur depends on the studied species. Each plant (or part of the plant) must be collected according to the pre-established times for each situation. However, it is suggested that at least six collection times are used, in addition to time zero (immediately after the application), and that the untreated plants are included as control. For each collection, the treated leaf from each plant must be rinsed with the adequate solvent. The concentration (v v−1) of the solvent must be established on preliminary tests with the studied molecule. Then, the radioactivity during the rinsing must be quantified by LSS in order to determine the non-absorbed radioactivity. The leaf absorption is calculated by the difference between the applied and the non-absorbed radioactivity. The plants must be dried with an absorbing paper, pressed, and dried on an air circulation oven at 70°C for 48 h.
\nApplication of 14C-glyphosate with a micro-syringe on glyphosate tolerant
In the preparation of the absorption studies, we must select resistant and susceptible weeds of the same age and/or growth stage. According Nandula and Vencill [20] to plot, the figure is necessary use at least six time points in addition to a 0 time point of tissue harvest, as illustrated in Figure 5. However, under conditions of limited resources, it is better to increase the number of time points and reduce the number of replications (
Absorption of 14C-quinclorac by propanil- and quinclorac-resistant and susceptible barnyardgrass (
Usually, the translocation studies are conducted right after the absorption studies, although they demand more work and time. Differently from the absorption, which occurs within hours after the treatment, the translocation of herbicides may take up to days after the treatment. Due to this reason, in order to evaluate the translocation, the previous knowledge must be considered in order to determine the times after the treatment in which this variable should be evaluated.
\nThe biological combustion is the most used procedure to quantify the translocation of herbicides on plants. However, care must be taken when stating that the detection of the radioactivity on other parts of the plant, outside the treated leaf, means that the herbicide is on its parental form. It might have been converted into a non-phytotoxic metabolite. In order to state this, one must investigate the potential for the herbicide to have been metabolized by the studied weed, through the information available in the literature.
\nTo study the movement of herbicides on weeds, the qualitative techniques involving autoradiography or phosphorus blade images have been used for over 50 years [20]. While the biological combustion offers a quantitative estimation of the herbicide on the treated weed, autoradiography (Figure 6), or the phosphorus blade image provides a qualitative measurement of the movement of the herbicide on the weed, in addition to the location where it occurs.
\nAutoradiography of glyphosate tolerant (a and b) and susceptible (c and d)
For the exposition of the treated and untreated plants, the use of phosphorus blade images is safer in comparison to the use of autoradiography, since it does not require handling chemical compounds that are harmful to the health. Despite more expensive, the technique is also quicker. A single day of exposition of a plant on a phosphorus blade resulted on images with superior quality than the exposition for 3 weeks with the X-ray film [24].
\nTherefore, in order to study the translocation, the plants treated as on the absorption study must be exposed on phosphorus blade for 72 h, in order to scan the image for qualitative analysis. The usual procedure to quantify the translocation of herbicides on plants is the biological combustion, in which dry samples of each part of the plant (both the treated leaf and the part above and below it, as well as the roots) are oxidized by the presence of O2, and the resulting CO2 is captured on a special solvent. Then, the radioactivity must be measured on the scintillation counter.
\nThe quantitative analysis of the translocation may also be conducted through the volume analysis, offered by the software provided together with the image scanner, as of its purchase. The volume is the total signal intensity of the radioactivity within defined limits of the image. The translocation is then expressed as the rate between the percentage of signal intensity on the applied zone, as well as above and below it, and the total signal intensity on a defined image containing 14C [25].
\nThe use of radiolabeled herbicides to investigate whether the herbicide is being metabolized in the resistant weed is an efficient method, and it is the most indicated method to diagnose the resistance related to other phenomena that are not related to the change on the action site of the herbicide [26]. The analytical method aiming at studying the metabolism of herbicides in plants comprehends three fundamental steps: preparation of the plants and application of treatments; extraction and separation; and identification of the herbicide and its metabolites, if any.
\nThe steps to conduct the study on the metabolism of herbicides in plants are described as follows. The preparation of plants and application of the treatments must be conducted as described for the absorption and translocation study. In case the fresh samples of plants are not adequate for processing after the collection, the ideal is to store them at −20°C to assure the stability of the active substances and metabolites. The techniques employed on studies on the metabolism of herbicides in plants are thin layer chromatography (TLC), high-performance liquid chromatography (HPLC), and gas chromatography (GC), depending on the herbicide molecule.
\nFor the extraction, the adequate system of solvents for the studies herbicide must be known. The treated leaf must be rinsed with non-polar solvent (usually ethanol or methanol). Then, the plant must be dried with an absorbing paper, immediately frozen in liquid nitrogen and stored at −80°C up to its use. The plant tissue must be macerated in crucibles that must be previously cooled with N2, and homogenized with the specific cold solvent at a concentration of 80% (v v−1). A stainless steel homogenizer may also be used. The solution must be centrifuged; the supernatant decanted; and the residue must go through re-extraction with the chosen cold solvent at 80%, followed by extraction with the same cold solvent at 50% (v v−1). The supernatants must be mixed, and the radioactivity must be determined by LSS, in order to know the mass balance, which is expressed as the rate between the radioactivity applied at the beginning of the experiment and the total radioactivity measured (originated from rinsing all parts of the plant). The mass balance may be also referred to as the radioactivity recovery percentage. Approximately 7 mL of the supernatant must be evaporated, resuspended in 300 mL of the solvent at 50%, and centrifuged. The final sample may be analyzed by any previously described technique, usually TLC or HPLC, with the respective solvent system [4].
\nSeveral researchers have studied herbicides behavior in weeds in order to find resistance mechanics through the differential of 14C-herbicide absorption, translocation, and metabolism, according to Table 1. These results suggest that reduced translocation and accelerated metabolism of herbicide plays a major role in herbicide resistance in resistant biotypes of weed. Likewise, differences in absorption may contribute to the differential sensitivity of herbicide resistant and susceptible weed populations.
\nHerbicide | \nWeed | \nBiotype | \nAbsorption | \nTranslocation | \nMetabolism | \nReference | \n
---|---|---|---|---|---|---|
Clopyralid | \nResistant | \n= | \n= | \n↑ | \nValenzuela et al. [27] | \n|
Susceptible | \n= | \n= | \n↓ | \n\n | ||
Quinclorac | \nResistant | \n= | \n↓ | \nNA | \nLovelace et al. [23] | \n|
Susceptible | \n= | \n↑ | \nNA | \n\n | ||
Glyphosate | \nResistant | \n= | \n↓ | \nNA | \nPérez et al. [28] | \n|
Susceptible | \n= | \n↑ | \nNA | \n\n | ||
Glyphosate | \nResistant | \n= | \n↓ | \n= | \nFeng et al. [29] | \n|
Susceptible | \n= | \n↑ | \n= | \n\n | ||
Glyphosate | \nResistant | \n= | \n↓ | \nNA | \nKoger and Reddy [30] | \n|
Susceptible | \n= | \n↑ | \nNA | \n\n | ||
Glyphosate | \nResistant | \n= | \n= | \n= | \nFeng et al. [31] | \n|
Susceptible | \n= | \n= | \n= | \n\n | ||
Glyphosate | \nResistant | \n= | \n↓ | \nNA | \nYeboah et al. [32] | \n|
Susceptible | \n= | \n↑ | \nNA | \n\n | ||
MSMA | \nResistant | \n= | \n= | \nNA | \nKeese and Camper [33] | \n|
Susceptible | \n= | \n= | \nNA | \n\n | ||
Chlorsulfuron | \nResistant | \n= | \n= | \n= | \nSaari et al. [34] | \n|
Susceptible | \n= | \n= | \n= | \n\n | ||
2,4-D | \nTolerant | \n↓ | \n= | \nNA | \nKohler et al. [35] | \n|
Susceptible | \n↑ | \n= | \nNA | \n\n | ||
2,4-D | \nResistant | \n= | \n↓ | \n= | \nGoggin et al. [6] | \n|
Susceptible | \n= | \n↑ | \n= | \n\n | ||
Paraquat | \nResistant | \n= | \n↓ | \n= | \nIsmail et al. [36] | \n|
Susceptible | \n= | \n↑ | \n= | \n\n | ||
Paraquat | \nResistant | \n= | \n↓ | \nNA | \nPreston et al. [7] | \n|
Susceptible | \n= | \n↑ | \nNA | \n\n | ||
Bispyribac sodium | \nResistant | \n= | \n↓ | \nNA | \nRiar et al. [8] | \n|
Susceptible | \n= | \n↑ | \nNA | \n\n | ||
Imazamox | \nResistant | \n= | \n↓ | \nNA | \nRiar et al. [8] | \n|
Susceptible | \n= | \n↑ | \nNA | \n\n | ||
Penoxsulam | \nResistant | \n= | \n= | \nNA | \nRiar et al. [8] | \n|
Susceptible | \n= | \n= | \nNA | \n\n | ||
Propoxycarbazone Sodium | \nResistant | \n= | \n= | \n↑ | \nPark et al. [37] | \n|
Susceptible | \n= | \n= | \n↓ | \n\n |
Absorption, translocation, and metabolism of 14C-herbicides in resistant and susceptible weeds.
(=) % absorbed of the total applied radioactivity, % translocate of the total absorbed, and amount of metabolites formed were similar in resistant and susceptible weeds. (↓) values were lower in this biotype. (↑) values were higher in this biotype. NA: non-available.
Overall, herbicide absorption is similarly compared with resistant and susceptible biotypes, but the difference in herbicide translocation is notorious in most studies reported (Table 1). Although differential translocation can be observed between resistant and susceptible weeds, it is unclear whether this difference is a cause of herbicide resistance or an effect of some other physiological process [23].
\nHerbicide metabolism studies are not always researched together with herbicide absorption and translocation studies, because the increased herbicide metabolism in resistant biotypes compared with susceptible transforms this product on metabolites without herbicidal action (Table 1). Among herbicides reported, glyphosate is more studied. Studies on glyphosate metabolism, expression, and sensitivity of target enzyme EPSPS synthase are necessary to elucidate the mechanism of glyphosate resistance in weed population [28]. However, Feng et al. [29] suggested that glyphosate resistance is likely due to altered cellular distribution that impaired phloem loading and plastidic import of glyphosate resulting in reduced overall translocation as well as inhibition of EPSPS. Taken together, these results suggest that metabolic deactivation is not a likely mechanism for glyphosate resistance in weeds.
\nThe purpose of radiation safety orientation is to protect researchers, employees, students, and the general public from overexposure to radiation. In that matter, it will be necessary to comply with regulations, laws, and guidelines regarding the safe use of radioactive material, such as 14C-herbicide.
\nIt is mandatory that personal involved with the handling of radioactive material must attend to a training of radiological protection (RP), given by professionals certified by the regulatory agencies of each country.
\nThe training should aim to achieve the clear and convincing transfer of the knowledge and recommendations on the subject. The main objective is to avoid deterministic health effects and to reduce the probability of stochastic health effects of ionizing radiation. For annual limits of exposure to ionizing radiation check the annals of the International Commission on Radiological Protection (ICRP) [26].
\nWhen handling a radiolabeled 14C-herbicide, the orientation for individual protection is to wear a Personal Protective Equipment (PPE), which consists of: laboratory coat exclusive for radiolabeled material handling, disposable plastic gloves, and protective goggles.
\nFor general protection, the use of the international symbol of radioactive material is mandatory in every room or equipment where radiolabeled material is handled or stored, and only authorized personal should be allowed.
\nIt is mandatory to have a radiation detector (usually Geiger-Müller) that must be turned on when handling radiolabeled material and the surface where it will be handled should be covered with an impermeable plastic film in order to prevent equipment contamination.
\nThe use of 14C-herbicide generates some waste that can be in the form of liquid scintillation vials, refuse, and biological waste. The volumes of the waste generated in research activities using 14C-herbicide are much smaller than those generated by reactor and fuel reprocessing operations; however, it still needs to be managed if the activity is superior of a certain threshold. This threshold will depend solely on which state of matter the waste is presented.
\nIn Brazil, the
The liquid waste generated by the utilization of 14C-herbicide is usually in the form of scintillation solution, and since the organic solvent used in the scintillation solution is not only toxic but also water insoluble, all the radiolabeled scintillation solution must be considered radioactive waste.
\nEvery radioactive waste must be identified with all the information about the radionuclide, including: activity, volume, physical and chemical properties.
\nAbsorption, translocation, and metabolism of herbicides are dependent upon active ingredient form and sensitivity of the target weed species. There is the need of further disclosure within the scientific community connected to the study of weeds regarding the use of 14C-herbicides on absorption, translocation, and metabolism studies in resistant and susceptible weed, mainly in the Brazilian conditions. In this chapter, a step-by-step methodology was suggested in order to meet this need, including the radiation safety orientation and management of resulting radioactive waste from the studies conducted in the laboratory. Techniques that use 14C such as tracers are extremely useful to study the herbicides behavior in the resistant weed, since the radiometric techniques offer the possibility of accurately determining very small amounts in a relatively short time. However, mechanism of resistance to herbicides in this resistant weed population compared with the susceptible population cannot be due to differential absorption, translocation, or metabolism of herbicide in weed; so other studies are necessary to elucidate the mechanism of herbicide resistance on weed population.
\nAlgae represent a highly diverse consortium of polyphyletic, thallophytic, photosynthetic, and cryptogamic organisms.
The microalga
Schematic of a prokaryotic cell with an indication of some of the methods used to probe cellular activity or growth [
Algae have six types of life cycles viz. haplontic, diplontic, isomorphic, heteromorphic, haplobiontic, and diplobiontic cycles; the exposition of these algal life cycles is discussed elsewhere [5]. The microscopic algae are the microphytes or microalgae and are typically found in freshwater and marine ecosystems at the benthic depths and in the water column. They are reported to be the chief converters of water and carbon dioxide to biomass and oxygen (see Eq. (1)) as they receive radiation from sunlight, and are therefore referred to as primary producers. Microalgae exist either individually, or in chains or groups; and depending on the species, their sizes are typically 3–30 μm, while the cyanobacteria are as small as 0.2–2 μm [2].
Aside from producing oxygen and availing themselves as food for a large number of aquatic animals, algae are a good resource base for fine chemicals, crude oil, food supplement for humans, and some pharmaceutical products and finished goods [5].
Pigments are chemical compounds that reflect and transmit only certain wavelengths of visible light. This makes them appear as the colors perceived. More important than their reflection of light is the ability of pigments to absorb light of certain wavelengths. A photosynthetic pigment (accessory pigment; chloroplast pigment; antenna pigment) is a pigment that is present in chloroplasts of algae and other photosynthetic organisms and captures the light energy necessary for photosynthesis. The reaction of each pigment is associated with only a narrow range of the spectrum, and it is necessary to produce several kinds of pigments with different colors to capture more of the sun’s energy. Five important pigments found in algae are (i) chlorophyll (ii) xanthophyll (iii) fucoxanthin (iv) phycocyanin and (v) phycoerythrin [6].
Algae and plants have chloroplasts in which the light-capturing chlorophyll is located, while in cyanobacteria the main light-capturing complex protein molecular assemblies are the phycobilisomes, which are located on the surface of thylakoid membranes [7]. Both chlorophyll and phycobilisomes absorb light most strongly between the high-frequency, high-energy wavelengths of 450 and 495 nm, which happen to be the blue region of the electromagnetic spectrum. Also, the photosynthetic pigments absorb the low-frequency, low-energy wavelengths between 620 and 750 nm, which is the red region of the electromagnetic spectrum. The chlorophyll pigment comes in different forms, and the structure of each type of Chlorophyll pigment is anchored on a chlorin ring with a magnesium ion at the centre. The side chain of each chlorophyll pigment type is different and they are so identified (see Figure 3 and Tables 1 and 2) [7, 8].
Chlorophyll - a porphyrin ring structure attached to a protein backbone. The porphyrin is built up of pyrrole molecules – 5 membered aromatic rings which are made of four carbons and one nitrogen atom. This ring system acts as a polydentate ligand and has a magnesium cation at its Centre [
Chlorophyll | ||||
---|---|---|---|---|
a | b | c1 | c2 | |
Molecular Formula | C55H72O5N4Mg | C55H70O6N4Mg | C35H30O5N4Mg | C35H28O5N4Mg |
C2 group | -CH3 | -CH3 | -CH3 | -CH3 |
C3 group | -CH=CH2 | -CH=CH2 | -CH=CH2 | -CH=CH3 |
C7 group | -CH3 | -CHO | -CH3 | -CH3 |
C8 group | -CH2CH3 | -CH2CH3 | -CH2CH3 | -CH2CH3 |
C17 group | -CH2CH2COO-Phytyl | -CH2CH2COO-Phytyl | -CH=CHCOOH | -CH=CHCOOH |
C17-C18 bond | Single (chlorin) | Single (chlorin) | Double (porphyrin) | Double (porphyrin) |
Occurrence | Universal | Plants | Algae | Algae |
Chemical structure of chlorophyll.
Chlorophyll | ||
---|---|---|
d | f | |
Molecular formula | C54H70O6N4Mg | C55H70O6N4Mg |
C2 group | -CH3 | -CHO |
C3 group | -CHO | -CH=CH2 |
C7 group | -CH3 | -CH3 |
C8 group | -CH2CH3 | -CH2CH3 |
C17 group | −CH2CH2COO − Phytyl | −CH2CH2COO − Phytyl |
C17-C18 bond | Single (Chlorin) | Single (chlorin) |
Occurrence | Cyanobacteria | Cyanobacteria |
Chlorophyll structural formulae.
Chlorophyll a with the molecular formula C55H72O5N4Mg is the most common type of Chlorophyll. It is a green pigment with a chlorin ring having magnesium at the centre (see Figure 3). Chlorin is a tetrapyrrole pigment, which is partially hydrogenated porphyrin. The ring-shaped molecule is stable with electrons freely migrating around it to establish resonance structures [9]. It also has side chains and a hydrocarbon trail and contains only –CH3 groups as side chains. The long hydrophobic tail anchors the molecule to other hydrophobic proteins on the surface of the thylakoid membrane. The chemical structural layout of chlorophyll shows a porphyrin ring attached to a protein backbone (see Figure 3). By substituting functional groups at positions C2, C3, C7, C8, and the C17-C18 bond, one can identify the structure of the desired chlorophyll (see Tables 1 and 2). Chlorophyll captures and absorbs blue, violet, and red light from the spectrum to transmit or reflect green, which is the color that the green algae exhibit [9, 10]. Oxygenic photosynthesis uses chlorophyll a to furnish electrons in the electron-transport chain. Photosystems I and II harbor many pigments that help to capture light energy. A unique pair of pigment molecules are located at the reaction site of each photosystem. For photosystem I the unique pair is referred to as P700, while for photosystem II it is identified as P680. These reaction sites receive resonance energy released from chlorophyll a to sustain the redox reactions [10].
Chlorophyll b is found only in the green algae and in plants, and it absorbs most effectively at 470 nm (blue) but also at 430 nm and 640 nm. Molecular formula - C55H70O6N4Mg. It is an accessory photosynthetic pigment. The molecular structure consists of a chlorin ring with Mg centre. It also has side chains and a phytol tail. Pyrrole ring II contains an aldehyde group (− CHO). Chlorophyll b absorbs energy that chlorophyll a does not absorb. It has a light-harvesting antenna in Photosystem I [11].
Xanthophyll is one of the two major groups of the carotenoids group. Generally, it is a C40 terpenoid compound formed by condensation of isoprene units. Xanthophyll, with the formula C40H56O2, contains oxygen atoms in the form of hydroxyl groups or as epoxides. Xanthophyll acts as an accessory light-harvesting pigment. They have a critical structural and functional role in the photosynthesis of algae and plants. They also serve to absorb and dissipate excess light energy or work as antioxidants. Xanthophyll may be involved in inhibiting lipid peroxidation [12].
Fucoxanthin, with the formula C42H58O6, is a xanthophyll carotenoid, being an accessory pigment that drives limited photosynthetic reactions in brown algae (phaeophytes) and other stramenopiles. It renders the brown or olive-green color to these seaweeds. Fucoxanthin captures the red light of the spectrum for photosynthetic activities. Some edible brown algae produce this pigment in abundance, and typical candidates in this category include
Phycocyanin is a protein-pigment complex found in cyanobacteria as an accessory pigment to phycobilisomes. As a phycobiliprotein, phycocyanin is identified by the color it bears as blue phycocyanin. Depending on the cyanobacterial species, this can be phycocyanin, showing maximum absorbance at 620 nm and identified as C-PC, and allophycocyanin with maximum absorbance at 650 nm and identified as A-PC. From the red microalgae, phycocyanin is identified as R-PC [13]. The molecular structure of phycocyanin changes with the pH of the medium, exhibiting the (αβ)3 trimeric structure at pH 7. However, at the pH range of 5–6, the much more available phycocyanin, C-PC, assumes the hexameric structural conformation (αβ)6. Phycocyanin boosts the human and animal immune systems and protects against certain diseases. It exhibits hepatoprotection, cytoprotection, and neuroprotection. Persons undergoing chemotherapy and radiation for cancer are placed on Phycocyanin from spirulina as a dietary supplement to ease negative symptoms during treatment as well as rejuvenate post-treatment. Phycocyanin is used in the food industry as a food additive [12, 14].
Phycoerythrin is an accessory pigment to the main chlorophyll pigment complex found in red algae and cryptophytes; it is part of a covalently bonded phycobilin chromophore in the family of phycobilins, typical of which is phycoerythrobilin, the phycoerythrin acceptor chromophore. Phycoerythrin is made up of (αβ) monomers aggregates. Except for phycoerythrin 545 (PE545), these monomer aggregates are assembled into (αβ)3 trimers or (αβ)6 hexamers with 3 or 32 symmetry and enclosing central channel [13, 14]. In red algae, they are attached to the stroma of thylakoid membranes of chloroplasts, whereas in cryptophytes, phycobilisomes are reduced and housed inside the lumen of thylakoids. Phycoerythrin captures light energy from the electromagnetic radiation and directs it to the reaction site through the phycobiliproteins, phycocyanin, and through A-PC. Each trimer and hexamer in the phycobilisome (PBS) has a minimum of one linker protein at the central channel. The α and β chains in B-phycoerythrin (B-PE) and R-phycoerythrin (R-PE) from the red algae also have γ sub-units conferring both link and light-capturing capabilities due to the presence of chromophores [14] (Figure 4).
The structure of the pigments: (a) xanthophyll (b) Fucoxanthin (c) Phycocyanin and (d) Phycoerythrin [
The chloroplast of algal cell contains the water-soluble phycobilin pigments and while the same phycobilin pigments are found in the phycocyanin and phycoerythrin of Cyanobacteria and the red algae, the Rhodophyta. The algal chlorophyll has a structural difference from Bacteriochlorophylls (Bchl) of cyanobacteria, the latter having one of the porphyrin rings saturated, and absorbing longer wavelengths of light as opposed to chlorophylls.
The colors of pigments are the reflections of the electromagnetic spectrum from the pigments. A portion of the pigment molecule causes the formation of the color perceived, and this moiety is referred to as
In general, chromophores comprise four pyrrole rings; identified as (i) open-chain pyrroles with no transition metal involved – typically, carotenoids, phycobilins, and phytochromes, (ii) pyrroles arranged as a porphyrin ring with a central transition metal atom – typically, chlorophylls and bacteriochlorophylls (C55H74MgN4O6). Chlorophyll absorbs all other visible components of light except green, which is the color the human eye sees of plants in their leaves. Various chlorophylls and accessory pigments (as discussed in sections 2.1–2.5) have characteristic
Relative absorbance of photosynthetic pigments as a function of the wavelength of light [
The Calvin cycle [
The dark reactions of photosynthesis occur in the stroma of the chloroplast and are referred to as the Calvin cycle. Although the Calvin cycle does not utilize light and can happen during the daytime or at night, they employ products of the light-dependent reactions to propagate. Products of the light-dependent reaction are ATP and reduced NADP; the energized electrons from the light-dependent reactions provide the energy to produce carbohydrates from carbon dioxide molecules.
The first reaction in the Calvin cycle: Carbon fixation.
The Calvin Cycle first produces phosphoglyceric acid (PGA), which is phosphorylated, using the energy carriers ATP and NADPH generated by the photosystems I and II, to produce 12 molecules of phosphoglyceraldehyde (PGAL). Two molecules of PGAL are ejected from the cycle in the form of a glucose molecule. The other ten molecules of PGAL are converted to 6 RuBP molecules, using the inherent energy in ATP and the cycle continues [19, 20].
The summary of the reactions in the Calvin cycle (see Eq. (2))
Light has properties of both waves and particles, from the quantum mechanics point of view [20]. The particulate behavior of light presents light as a stream of particles of energy, known as photons, which interact with electrons to cause the energy contained in the light to disappear and then reappear as the kinetic energy of the ejected electrons plus a work function.
where
By definition,
where
Thus for sunlight with a wavelength of 650 nm (650 × 10−9 m), the energy is computed in Eq. (6).
If all this were to be used for synthesizing ATP from ADP and
Chlorophylls b, c, d, and e are accessory pigments with xanthophylls, and carotenoids in algae and protistans, Pigments that are not accessory to chlorophyll absorb light energy at wavelengths that do not stimulate chlorophyll. Light energy absorbed by accessory pigments is channeled to the reaction site and is converted into chemical energy. The ability to absorb some energy from the longer, more penetrating wavelengths probably conferred an advantage to the benthic photosynthetic algae. Depending upon turbidity of the water, the shorter, high energy wavelengths penetrate very little in the euphotic zone (below 5 meters) in seawater [7, 8]. Chlorophyll molecules being the main producers of pigments are bound to proteins of the photosynthetic membranes and capture the sunlight in oxygenic plants, and convert light energy into chemical energy. This is facilitated by pigment-protein complexes known as Photosystem I (PSI) and Photosystem II (PSII) reaction sites [9]. In PS II water is
Photo-isomerization of all-trans to 13-cis retinal in bR [
The most common chlorophylls are chlorophyll a, chlorophyll b, and chlorophyll c1, and chlorophyll c2. Each pigment registers a maximum signal at a particular wavelength of maximum absorption (
Photosynthesis – Irradiance curve.
The saturation irradiance (
Microalgae is a promising renewable resource for biofuels, and optimization and control of the biomass growth production have gained economic and commercial interests. Algae do not compete with traditional food crops for space and resources [5]. Microalgae are highly diverse and differences within and between both species and populations lead to significant differences in biogeography and the environment. The macromolecular composition of the microalgae is of interest for understanding nutrient competition within microalgal communities, food web interactions, and developing algal systems for the development of biofuels, nutraceuticals, and mariculture [3]. Production of microalgae-derived metabolites requires processes for culturing the algae, recovery of the biomass, and further downstream processing to purify the metabolite. The cost of producing microalgal bioactive agents has to be weighed as the downstream recovery of the microalgal products can be substantially more expensive than the culturing of the microalgae [5]. Depending on their origin, algae are referred to as terrestrial algae, snow algae, seaweeds, and phytoplankton. Ubiquitous in marine, freshwater, and terrestrial habitats and possessing broad biochemical diversity, which is the basis for many biotechnological and industrial applications [3].
Hatcheries are used to produce a range of microalgae biomass, which are used in a variety of ways for commercial purposes. Studies have adduced the success of a microalgae hatchery system to the following factors: (i) the dimensions of the container/bioreactor where microalgae are cultured, (ii) exposure to illumination, and (iii) concentration of microalgal cells within the reactor [23, 24]. Photosynthesis is one of the basic biochemical transformations of photosynthetic micro-organisms that convert solar energy into chemical energy. Many microalgae are autotrophs, which use photosynthesis to produce food. Some heterotrophic microalgae can grow in the dark by utilizing organic carbon. Some microalgae grow by combining both autotrophy and heterotrophy into a hybrid cultivation mode called mixotrophy [4, 6]. Diatoms and dinoflagellates are the two types of microalgae. Diatoms can be spheres, triangles, elliptical or stars. Many dinoflagellates have two flagella for their movement through the water. Both diatoms and dinoflagellates contain oils in their cells, helping them to swim. Both diatoms and dinoflagellates can grow very quickly and cause algal blooms [3].
There are two main advantages of culturing microalgae using the open pond system. Firstly, an open pond system is easier to build and operate. Secondly, open ponds are cheaper than closed bioreactors because closed bioreactors require parts that are expensive to acquire. However, where the temperature is the growth or lipid accumulation limiting factor, using open pond systems may decrease the productivity of certain commercially important strains such as
Algae raceway pond: The microalgae culture broth is constantly kept in motion with a powered paddle wheel [
Many photobioreactors have been suggested for commercial production of algal biomass. However, only a few of them are suitable for practical application because of poor gas mass transfer. The vertical tubular photobioreactor provides a greater surface area for the interaction of light and the algal cells, increasing the time of gas mass transfer in the culture broth, and the efficient uptake of nutrients. Most times, commercial cultivation of microalgae in vertical reactor systems and reactors of other configurations is not economically viable in batch mode, due to the time taken to load, unload, and clean the reactor systems. The vertical tubular reactor can be made of alveolar panels, polyethylene sleeves, or glass tubes and supported on steel frames (see Figure 11). The low productivity characterizing this reactor system is overcome when the surface area to volume ratio is increased. The O2 gas mass transfer is aided by bubbling air through the culture broth [23].
Vertical tubular photobioreactors for culturing microalgae [
This is an outdoor microalgal cultivation system, which has tubes laid on the ground to form a network of loops (see Figure 12(b)). A pump is used to mix the microalgal suspended culture, which raises the culture vertically periodically into a photobioreactor. Pulsed mixing at intervals produces better results than continuous mixing.
Horizontal tubular photobioreactor of different orientations [
This is an outdoor microalgal cultivation technique for the production of biomass and metabolites under a highly controlled environment. By this technique, the air is moved within the system to circulate the medium in which microalgae is growing. The culture is grown in transparent tubes that lie horizontally on the ground and are connected by a network of pipes (see Figure 13). Air is passed through the tube such that air escapes from the end that rests inside the reactor that contains the culture and creates an effect like stirring [28]. Other configurations of the airlift reactor are an improvement over this design. The external-loop ALR is a promising configuration for breakthrough scale-up
Different types of airlift photobioreactor [
Different microalgae strains acclimate in different environments, evolving their metabolic pathways to stimulate and propagate growth. However, the extent of growth depends on the composition of the culture media which can be enhanced by either inorganic or organic carbon metabolism or both. Other co-factors such as nutrient availability, pH, chemical oxygen demand (COD), and temperature also influence growth, and the accumulation of metabolites in microalgae (see Table 3) [29].
Metabolic mode | Energy source | Carbon source | Light availability | Metabolism availability |
---|---|---|---|---|
Photo-autotrophic | Light | Inorganic | Obligatory | Fixed |
Heterotrophic | Organic | Organic | Not required | Switch between sources |
Photoheterotrophic | Light | Organic | Obligatory | Switch between sources |
Mixotrophic | Light & organic | Inorganic & organic | Not obligatory | Simultaneous utilization |
Microalgal metabolic requirements.
The photosynthetic CO2-fixation in microalgae suffices to possess a greater ability to fix CO2. Photo trophy refers to an autotrophic mode of metabolism in which organisms can harness light energy with the help of photosynthetic pigments and convert it to chemical bond energy in the form of ATP (photophosphorylation).
Autotrophy is the ability of PMOs to use inorganic carbon in the form of CO2 as the sole source of carbon to synthesize organic compounds necessary to build cell components. This is also referred to as carbon-autotrophy to distinguish the ability of some organisms to use molecular nitrogen as the sole source of nitrogen. Such organisms are referred to as nitrogen autotrophs. However, autotrophy as used in this chapter is carbon autotrophy. This is a property that is present primarily, in plants, algae, and phototrophic bacteria including cyanobacteria [30].
Aside from these organisms, all of which are photosynthetic, several groups of non-photosynthetic bacteria can grow using CO2 as the sole source of carbon by their ability to oxidize inorganic compounds. Such organisms are chemoautotrophic or chemolithotrophic [31].
CO2 is the end-product of aerobic respiration, a process that releases the energy of respiratory substrates. Carbon dioxide is, therefore, poor in energy content. In autotrophic metabolism, this energy-poor compound is used to build organic molecules which are much richer in energy content. Therefore, It is noted that the conversion of CO2 to organic compounds requires the input of energy from an external source. The ultimate source in the case of photosynthesis is radiant energy and in the case of chemolithotrophy is the oxidation energy of inorganic chemical compounds. In either case, the immediate source of energy for driving the endergonic reaction involved in the conversion of CO2 to organic compounds is ATP [32].
In photosynthesis, ATP is generated with the help of photosynthetic pigments through a process known as photophosphorylation. In chemoautotrophy, the energy of oxidation of inorganic compounds is channelized into the respiratory chain for ATP synthesis by oxidative phosphorylation.
Thus, autotrophic metabolism consists of two sets of reactions viz. (1) the ATP and the reducing force are generated and, (2) they are used for the reduction of CO2 to organic compounds.
The reactions in (1) are different in phototrophic and non-phototrophic autotrophs. But the reactions in (2) are common between the two groups. In the majority of autotrophs, the reactions involved in the reduction of CO2 proceed via a cyclic pathway, known as the reductive pentose phosphate pathway or, more commonly, as the Calvin-Benson cycle, or simply the Calvin cycle, although other pathways are also known to operate in some organisms, both in the phototrophic green plants and bacteria. The reduction of CO2 to yield organic compounds is commonly known as CO2-fixation [32, 33].
The supply of sufficient light for massive growth is the main goal and a limiting factor for microalgal cultivation. To ignore the requirement for illumination and present the possibility of high cell concentration, points at heterotrophic cultivation as a promising, efficient, and sustainable strategy for certain microalgae to produce metabolites of value by using carbon substances as the sole carbon and energy source. The optimized preliminary cell culturing of microalgae species is an important stage in culturing microalgae biomass at the commercial scale. The growth environment during the culturing process can be [32] either autotrophic (inorganic carbon) or heterotrophic (organic carbon) depending upon the nature of cells and their growth tendencies. Heterotrophic and mixotrophic microalgae are more capable of growing much faster with higher cellular oil accumulation as compared to autotrophic microalgae species. However, heterotrophic microalgae require organic carbon sources like glycerol, glucose, or acetate as a sole source of carbon for growth, which is responsible for about 80% of the costs of culture media [33]. The metabolism of respiration is applied to produce energy. The respiration rates, intimately geared to the growth and division, are determined by the oxidization of organic substrates of the given microalgae [32]. Glucose provides the organic carbon needed and it is preferred because of its high energy density compared to other sources. The oxidative assimilation of glucose employs either the Embden–Meyerhof–Parnas (EMP) pathway or the pentose phosphate (PP) pathway depending on the cycle position. During the dark cycle, PMOs assimilate and metabolize glucose via the PP pathway. However, during the daytime cycle, glycolysis in the cytosol is via the EMP pathway [34]. The growth rate, lipid content, and the ATP of microalgae under the heterotrophic metabolic strategy are higher compared to those under the photoautotrophic metabolic strategy but depend mainly on the PMO’s species and strain used. The PMO’s growth is steady and rapid in a nutrient-rich culture media using a high level of system control, to achieve biomass production of 50–100 g L−1 in heterotrophy which is higher than that achieved in photoautotrophy [35].
Heterotrophic metabolism eliminates the two main problems associated with autotrophic metabolism viz. (i) it allows the use of practically any vessel as a bioreactor, and (ii) low energy and high yield, as major outcomes, giving a significant reduction in costs for the process. Cost-effectiveness and relative simplicity of operations and daily maintenance are the main attractions of the heterotrophic growth approach. A significant benefit is that it is possible to obtain, heterotrophically, high densities of microalgae cells that provides an economically feasible method for large scale, mass production cultivation [34].
Heterotrophy has its drawbacks viz. (1) The microalgae species and strains that can grow by the heterotrophic strategy are limited; (2) Increasing energy expenses and costs by adding organic carbon substrate; (3) Contamination and competition with local microorganisms; (4) Inhibition of growth by excess organic substrate; and (5) Inability to produce light-induced metabolites [35]. Nonetheless, heterotrophic cultures are gaining increasing application for producing a wide variety of microalgal metabolites from bench experiments to commercial scale.
Mixotrophic cultivation of microalgae strategies provides both carbon dioxide and organic carbon simultaneously and both chemoheterotrophic and photoautotrophic metabolisms operate concurrently. Microalgae biomass produced by this approach has high density and contains high-value lipids, proteins, carbohydrates, and pigments; and the product range is very versatile [7, 8, 9, 10]. These products range from high-value nutraceuticals, food supplements, and cosmetics to the lower value commodities biofuels, food, fertilizer, and application in wastewater treatment [10, 11, 12].
Microalgal biomass contains considerable amounts of bioactive molecules such as carotenoids (astaxanthins, β-carotenes, and xanthophylls), omega-3 fatty acids, polysaccharides, and proteins, which can be used in several applications as colorants, pharmaceuticals, food, food additives, and feed and as bioplastics.
Microalgae produce carotenoids and all known xanthophylls found in terrestrial plants (e.g., zeaxanthin, lutein, antheraxanthin). Astaxanthin is a carotenoid pigment that occurs in microalgae, trout, yeast, and shrimp, among other sea creatures. It is found in abundance in Pacific salmon and the fish appears pinkish due to the presence of astaxanthin. Astaxanthin is an antioxidant; it is said to have many health benefits. Carotenoids as accessory pigments, capture light energy during photosynthesis and promote photoprotection. Stains of
Lutein, a xanthophyll, is one of the many known naturally occurring carotenoids. Lutein is synthesized only by plants and is found in large quantities in green leafy vegetables like kale, spinach, yellow carrots, and in dietary supplements. The lutein-rich microalgae
Microalgae are the dominant sources of polyunsaturated fatty acids in the marine food chain.
The acetyl-CoA condensation to fatty acyls is one of the methods by which biohydrocarbons are produced in-situ biotic organisms. The second biohydrocarbon production pathway is the isopentenyl pyrophosphate (IPP) condensation to higher isoprenoids, which is responsible for the diverse isoprene derivatives, many of which are suitable for fuels or fuel additives due to their desirable cetane and pour point and other fuel properties [5]. The low-to-zero-oxygen content of isoprenoids results in energy densities similar to the alkanes in current diesel fuels and diversity of ring structures affords lower cloud points [46, 47]. Additionally, it has been found that slight modifications to enzymes involved in the final steps of higher isoprenoid synthesis can result in subtle product variants with distinct thermochemical and thermophysical properties [47]. The precursors for the majority of these compounds are metabolic intermediates in photosynthetic microorganisms (PMOs). Genetic engineering of microalgae and cyanobacteria would be required to enhance the productivity of PMOs [5].
Triglycerides are lipids or waxes, formed by biochemically combining glycerol and fatty acids in the ratio of 1: 3 respectively. This combination may be a simple type or a mixed type. Triglycerides in which the glycerol backbone is attached to three molecules of the same fatty acid are referred to as simple triglycerides. Typical in this category is tripalmitin, C3H5(OCOC15H31)3. Only a few of the glycerides occurring in nature are of the simple type; most are mixed triglycerides (see Figure 14) [48]. Based on saturation and unsaturation of the attached fatty acids, triglycerides can be classified as saturated, monounsaturated, and polyunsaturated. In saturated triglycerides, all the fatty acids are saturated. Saturated fats abound in many animal products such as butter, cheese, cream, and fatty meats, ice cream, and whole milk. In monounsaturated triglycerides most of the fatty acids are monounsaturated. Vegetable oils such as canola oil, olive oil, peanut oil, and sesame oil have high levels of monounsaturated fats and polyunsaturated triglycerides. Omega-3 and omega-6 fatty acids are polyunsaturated.
The structure of triglyceride showing the simple and mixed types.
Microalgae are a promising renewable resource for green production of triacylglycerols (TAGs), which can be used as a biofuel feedstock. Nitrogen starvation is the most effective strategy to induce TAG biosynthesis in microalgae [48]. One of the best microalgae for lipid production is
Phospholipids are made up of four components viz. fatty acids, a platform to which the fatty acids are attached, phosphate, and an alcohol attached to the phosphate. Phospholipids may be built on either glycerol or sphingosine framework. Phospholipids built on glycerol framework are called phosphoglycerides (or glycerophospholipids). A phosphoglyceride consists of a glycerol molecule, two fatty acids, a phosphate, and choline, which is an alcohol. Phosphoglycerides are the most abundant phospholipid molecules found in cell membranes. The phospholipids built on sphingosine framework are referred to as sphingolipids or glycolipids, depending on the number of glucose or galactose molecules they contain; and lipoproteins, which are complexes of cholesterol, triglycerides, and proteins that transport lipids in the aqueous environment of the bloodstream. These are complex lipids. The algae contain three major phospholipids, phosphatidylglycerol (PG), phosphatidylethanolamine (PE), and phosphatidylcholine (PC). Phospholipids are synthesized by both prokaryotic and eukaryotic organisms. They are the major component of most eukaryotic cell membranes, which play a fundamental role in compartmentalizing the biochemistry of life [52]. The hydroxyl groups at positions C-1 and C-2 in phosphoglycerides are esterified to the carboxyl groups of the two fatty acid chains. The hydroxyl group at position C-3 hydroxyl group of the glycerol backbone is esterified to phosphoric acid. At this extent of conversion, the product is phosphatidic acid, which is the simplest phosphoglyceride. Phosphatidic acid now serves as the backbone on which most phosphoglycerides are derived having moieties such as serine, ethanolamine, choline, glycerol, and the inositol. Consequently, we have phosphatidylserine, phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol, and phosphatidylinositol respectively (see Figure 15) [52].
Sphingolipids and phospholipids: The classification of sphingolipids is based on the group attached to the sphingosine (LCB) backbone (a). Sphingomyelin (b) and ceramides (c-e) differ in fatty acid length, unsaturation, and in the type of attached head group and hydroxylation. Phospholipids with glycerol framework: (f) phosphatidylethanolamine, (g) phosphatidylcholine [
Metabolites from both microalgae and cyanobacteria have attended to both human and animal health and food needs and these microorganisms have become attractive resources for bioactive natural products that have wide applications in pharmaceutical, food, and chemical industries. Algae-derived bioactive substrates are employed for drug screening, given their tremendous structural diversity and biological availability. Microalgae biomass has a wide range of physiological and biochemical characteristics and contains 50–70% protein compared to 50% in meat, and 15–17% in wheat, with 30% lipids, more than 40% glycerol, 8–14% carotene, and a reasonably high levels of vitamins B1, B2, B3, B6, B12, E, K, D, and others [54, 55, 56].
Microalgae that have been cultivated on commercial scales and are available include
Abiotic, Biotic, and process-related factors influence the growth of algae. Some of the abiotic factors are illumination and luminous intensity, daytime to night-time ratio, the temperature of the culture medium, nutrient availability, O2, and CO2 mass transfer, pH value, the hydraulic retention time (HRT), salinity, and presence of growth-inhibiting chemical agents [30]. Some of the biotic factors are the presence of pathogens (bacteria, fungi, viruses) and the presence of more than one algae strains. Each algae strain has a different capacity to assimilate nutrients, and in mixed cultures, there is competition for the available nutrients in the media, which may afferent the growth of some strains [36]. Process related factors that may influence algal growth are hydrodynamics of the culture broth, which is influenced by the choice of the bioreactor, the initial algal cell concentration in the reactor, and the related frequency of harvesting algal biomass [57, 58].
There is a major difference between microalgae and cyanobacteria in terms of their cell structure and this work has presented unmistakable evidence that microalgae have a nucleus and chloroplast, and their makeup includes their full identity in a two-stranded DNA. On the other hand, cyanobacteria are identified by one-stranded DNA and do not have a nucleus and neither a chloroplast. However, Microalgae and cyanobacteria do photosynthesize to produce their food.
It is seen from research as discussed in this chapter that value products aimed to meet pharmaceutical and food needs are obtainable by continuous availability of nutrients to the microalgae in the culture media. It is also seen that to accumulate lipid in the order of triglycerides for biodiesel production, microalgae must experience nutrients deficiency in the culture media at the stationary stage of growth.
The hydrodynamics of the microalgal culture broth depends on the choice of bioreactor for a particular cultivation activity and contributes to the algal growth factor.
The versatility of the microalgal biomass is expressed in the diversity of metabolites produced by manipulation of the growth factors in favor of the desired product. Also, the choice of the strain will drive towards the targeted product.
The authors appreciate the Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, Durban for providing the platform for scientific investigations.
The authors have declared that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this chapter.
The Edited Volume, also known as the IntechOpen Book, is an IntechOpen pioneered publishing product. Edited Volumes make up the core of our business - and as pioneers and developers of this Open Access book publishing format, we have helped change the way scholars and scientists publish their scientific papers - as scientific chapters.
",metaTitle:"Edited Volumes",metaDescription:"The Edited Volume, also known as the InTechOpen Book, is an InTechOpen pioneered publishing product. Edited Volumes make up the core of our business - and as pioneers and developers of this Open Access book publishing format, we have helped change the way scholars and scientists publish their scientific papers - as scientific chapters. ",metaKeywords:null,canonicalURL:"/pages/edited-volumes",contentRaw:'[{"type":"htmlEditorComponent","content":"WHY PUBLISH IN AN INTECHOPEN EDITED VOLUME?
\\n\\nOut of all of the publishing options available to researchers, why choose to contribute your research to an IntechOpen Edited Volume? The reasons are simple. IntechOpen has worked exceptionally hard over the past years to fine tune the Open Access book publishing process and we continue to work hard to deliver the best for all of our contributors. The quality of published content is of utmost importance to us, followed closely by speed, and of course, availability and accessibility. To view current Open Access book projects that are Open for Submissions visit us here.
\\n\\nQUALITY CONTENT
\\n\\nOver the years we have learned what is important. What makes a difference to the researchers that work with us, what they value. Something that is very high not only on their lists, but our own, is the quality of the published content.
\\n\\nOur books contain scientific content written by two Nobel Prize winners, two Breakthrough Prize winners and 73 authors who are in the top 1% Most Cited.
\\n\\nWith regular submission for coverage in the single most important database, the Book Citation Index in the Web of Science™ Core Collection (BKCI), and no rejected submissions to date, over 43% of all Open Access books indexed in the BKCI are IntechOpen published books.
\\n\\nIn addition to BKCI, IntechOpen covers a number of important discipline specific databases as well, such as Thomson Reuters’ BIOSIS Previews.
\\n\\nACCESS
\\n\\nThe need for up to date information available at the click of a mouse is one thing that sets IntechOpen apart. By developing our own technologies in order to streamline the publishing process, we are able to minimize the amount of time from initial submission of a manuscript to its final publication date, without compromising the rigor of the editorial and peer review process. This means that the research published stays relevant, and in this fast paced world, this is very important.
\\n\\nYOUR WORK, YOUR COPYRIGHT
\\n\\nThe utilization of CC licenses allow researchers to retain copyright to their work. Researchers are free to use, adapt and share all content they publish with us. You will never have to pay permission fees to reuse a part of an experiment that you worked so hard to complete and are free to build upon your own research and the research of others. The Edited Volume helps bring together research from all over the world and compiles that research into one book - accessible for all. The research presented in chapter one can inspire the author of chapter three to take his or her research to the next level. It is about sharing ideas, insights and knowledge.
\\n\\nCan collaboration be inspired by a publishing format? At IntechOpen, the answer is yes. The way the research is published, the way it is accessed, it’s all part of our mission to help academics make a greater impact by giving readers free access to all published work.
\\n\\nOur Open Access book collection includes:
\\n\\n3,332 OPEN ACCESS BOOKS
\\n\\n107,564 INTERNATIONAL AUTHORS AND ACADEMIC EDITORS
\\n\\n113+ MILLION DOWNLOADS
\\n\\nPUBLISHING PROCESS STEPS
\\n\\nSee a complete overview of all publishing process steps and descriptions here.
\\n\\nCURRENT PROJECTS
\\n\\nTo view current Open Access book projects that are Open for Submissions visit us here.
\\n\\nNot sure if this is the right publishing option for you? Feel free to contact us at book.department@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'WHY PUBLISH IN AN INTECHOPEN EDITED VOLUME?
\n\nOut of all of the publishing options available to researchers, why choose to contribute your research to an IntechOpen Edited Volume? The reasons are simple. IntechOpen has worked exceptionally hard over the past years to fine tune the Open Access book publishing process and we continue to work hard to deliver the best for all of our contributors. The quality of published content is of utmost importance to us, followed closely by speed, and of course, availability and accessibility. To view current Open Access book projects that are Open for Submissions visit us here.
\n\nQUALITY CONTENT
\n\nOver the years we have learned what is important. What makes a difference to the researchers that work with us, what they value. Something that is very high not only on their lists, but our own, is the quality of the published content.
\n\nOur books contain scientific content written by two Nobel Prize winners, two Breakthrough Prize winners and 73 authors who are in the top 1% Most Cited.
\n\nWith regular submission for coverage in the single most important database, the Book Citation Index in the Web of Science™ Core Collection (BKCI), and no rejected submissions to date, over 43% of all Open Access books indexed in the BKCI are IntechOpen published books.
\n\nIn addition to BKCI, IntechOpen covers a number of important discipline specific databases as well, such as Thomson Reuters’ BIOSIS Previews.
\n\nACCESS
\n\nThe need for up to date information available at the click of a mouse is one thing that sets IntechOpen apart. By developing our own technologies in order to streamline the publishing process, we are able to minimize the amount of time from initial submission of a manuscript to its final publication date, without compromising the rigor of the editorial and peer review process. This means that the research published stays relevant, and in this fast paced world, this is very important.
\n\nYOUR WORK, YOUR COPYRIGHT
\n\nThe utilization of CC licenses allow researchers to retain copyright to their work. Researchers are free to use, adapt and share all content they publish with us. You will never have to pay permission fees to reuse a part of an experiment that you worked so hard to complete and are free to build upon your own research and the research of others. The Edited Volume helps bring together research from all over the world and compiles that research into one book - accessible for all. The research presented in chapter one can inspire the author of chapter three to take his or her research to the next level. It is about sharing ideas, insights and knowledge.
\n\nCan collaboration be inspired by a publishing format? At IntechOpen, the answer is yes. The way the research is published, the way it is accessed, it’s all part of our mission to help academics make a greater impact by giving readers free access to all published work.
\n\nOur Open Access book collection includes:
\n\n3,332 OPEN ACCESS BOOKS
\n\n107,564 INTERNATIONAL AUTHORS AND ACADEMIC EDITORS
\n\n113+ MILLION DOWNLOADS
\n\nPUBLISHING PROCESS STEPS
\n\nSee a complete overview of all publishing process steps and descriptions here.
\n\nCURRENT PROJECTS
\n\nTo view current Open Access book projects that are Open for Submissions visit us here.
\n\nNot sure if this is the right publishing option for you? Feel free to contact us at book.department@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",topicId:"5,6,13,18,12"},books:[{type:"book",id:"11649",title:"Carnivora",subtitle:null,isOpenForSubmission:!0,hash:"cfe96fa2ecf64b22057163f9896dc476",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11649.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11645",title:"Neural Tube Defects",subtitle:null,isOpenForSubmission:!0,hash:"08d6ba70d97767769a97cfeeb52dac78",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11645.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11650",title:"Aquifers",subtitle:null,isOpenForSubmission:!0,hash:"2a7acb5c7fbf3f244aefa79513407b5e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11650.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11605",title:"Bamboo",subtitle:null,isOpenForSubmission:!0,hash:"378d957561b27c86b750a9c7841a5d18",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11605.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11612",title:"Landraces",subtitle:null,isOpenForSubmission:!0,hash:"06316c41a6f6317ad2bee244dc98c6a4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11612.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11616",title:"Foraging",subtitle:null,isOpenForSubmission:!0,hash:"955b60bb658c8d1a09dd4efc9bf6674b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11616.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11792",title:"Insects as Food",subtitle:null,isOpenForSubmission:!0,hash:"4f553a9813d17305dcd47eb334670001",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11792.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11794",title:"Coconut Cultivation",subtitle:null,isOpenForSubmission:!0,hash:"48e1cb42a4162f64cae3a2e777472f21",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11794.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11809",title:"Lagomorpha",subtitle:null,isOpenForSubmission:!0,hash:"1e8fd5779205c16e5797b05455dc5be0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11809.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11797",title:"Clostridium",subtitle:null,isOpenForSubmission:!0,hash:"4cb066b44bb8d4a8b93a627de26e3ebf",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11797.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12162",title:"Helicobacter pylori",subtitle:null,isOpenForSubmission:!0,hash:"1d5df6d5558615ea58030bb3e50ad9dd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12162.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:41},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:16},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:16},{group:"topic",caption:"Engineering",value:11,count:32},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:11},{group:"topic",caption:"Materials Science",value:14,count:11},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:100},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:8},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:32},{group:"topic",caption:"Technology",value:24,count:1}],offset:12,limit:12,total:77},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4380},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"472",title:"Operation Management",slug:"business-management-and-economics-quality-management-operation-management",parent:{id:"78",title:"Quality Management",slug:"business-management-and-economics-quality-management"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:66,numberOfWosCitations:74,numberOfCrossrefCitations:66,numberOfDimensionsCitations:105,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"472",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"2164",title:"Total Quality Management and Six Sigma",subtitle:null,isOpenForSubmission:!1,hash:"795ec6e73e04689d89e67d0d906dbe83",slug:"total-quality-management-and-six-sigma",bookSignature:"Tauseef Aized",coverURL:"https://cdn.intechopen.com/books/images_new/2164.jpg",editedByType:"Edited by",editors:[{id:"10867",title:"Prof.",name:"Tauseef",middleName:null,surname:"Aized",slug:"tauseef-aized",fullName:"Tauseef Aized"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1803",title:"Quality Assurance and Management",subtitle:null,isOpenForSubmission:!1,hash:"a3a89048ff15a35054ba91df31f60d51",slug:"quality-assurance-and-management",bookSignature:"Mehmet Savsar",coverURL:"https://cdn.intechopen.com/books/images_new/1803.jpg",editedByType:"Edited by",editors:[{id:"10536",title:"Prof.",name:"Mehmet",middleName:null,surname:"Savsar",slug:"mehmet-savsar",fullName:"Mehmet Savsar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"33265",doi:"10.5772/33922",title:"Implementing Quality Management Systems in Higher Education Institutions",slug:"implementing-quality-management-systems-in-higher-education-institutions",totalDownloads:9879,totalCrossrefCites:3,totalDimensionsCites:24,abstract:null,book:{id:"1803",slug:"quality-assurance-and-management",title:"Quality Assurance and Management",fullTitle:"Quality Assurance and Management"},signatures:"Maria J. Rosa, Cláudia S. Sarrico and Alberto Amaral",authors:[{id:"97785",title:"Prof.",name:"Alberto",middleName:null,surname:"Amaral",slug:"alberto-amaral",fullName:"Alberto Amaral"}]},{id:"33278",doi:"10.5772/33487",title:"Improving Quality Assurance in Automation Systems Development Projects",slug:"improving-quality-assurance-in-automation-systems-development-projects",totalDownloads:3257,totalCrossrefCites:19,totalDimensionsCites:20,abstract:null,book:{id:"1803",slug:"quality-assurance-and-management",title:"Quality Assurance and Management",fullTitle:"Quality Assurance and Management"},signatures:"Dietmar Winkler and Stefan Biffl",authors:[{id:"95798",title:"Dr.",name:"Dietmar",middleName:null,surname:"Winkler",slug:"dietmar-winkler",fullName:"Dietmar Winkler"},{id:"135962",title:"Prof.",name:"Stefan",middleName:null,surname:"Biffl",slug:"stefan-biffl",fullName:"Stefan Biffl"}]},{id:"38088",doi:"10.5772/46106",title:"Some Applicable Methods to Analyze and Optimize System Processes in Quality Management",slug:"some-applicable-methods-to-analyze-and-optimize-system-processes-in-quality-management",totalDownloads:3109,totalCrossrefCites:11,totalDimensionsCites:13,abstract:null,book:{id:"2164",slug:"total-quality-management-and-six-sigma",title:"Total Quality Management and Six Sigma",fullTitle:"Total Quality Management and Six Sigma"},signatures:"Andrey Kostogryzov, George Nistratov and Andrey Nistratov",authors:[{id:"148322",title:"Dr.",name:"Andrey",middleName:null,surname:"Kostogryzov",slug:"andrey-kostogryzov",fullName:"Andrey Kostogryzov"},{id:"156748",title:"Dr.",name:"Andrey",middleName:null,surname:"Nistratov",slug:"andrey-nistratov",fullName:"Andrey Nistratov"},{id:"156749",title:"Dr.",name:"George",middleName:null,surname:"Nistratov",slug:"george-nistratov",fullName:"George Nistratov"}]},{id:"33264",doi:"10.5772/33776",title:"Challenges for Quality Management in Higher Education - Investigating Institutional Leadership, Culture and Performance",slug:"challenges-for-quality-management-in-higher-education-investigating-leadership-culture-and-performan",totalDownloads:5074,totalCrossrefCites:4,totalDimensionsCites:9,abstract:null,book:{id:"1803",slug:"quality-assurance-and-management",title:"Quality Assurance and Management",fullTitle:"Quality Assurance and Management"},signatures:"P. Trivellas, P. Ipsilantis, I. Papadopoulos and D. Kantas",authors:[{id:"97009",title:"Associate Prof.",name:"Panagiotis",middleName:null,surname:"Trivellas",slug:"panagiotis-trivellas",fullName:"Panagiotis Trivellas"},{id:"97010",title:"Prof.",name:"Pantelis",middleName:null,surname:"Ipsilantis",slug:"pantelis-ipsilantis",fullName:"Pantelis Ipsilantis"},{id:"97011",title:"Prof.",name:"Ioannis",middleName:null,surname:"Papadopoulos",slug:"ioannis-papadopoulos",fullName:"Ioannis Papadopoulos"},{id:"97012",title:"Prof.",name:"Dimitris",middleName:null,surname:"Kantas",slug:"dimitris-kantas",fullName:"Dimitris Kantas"}]},{id:"33273",doi:"10.5772/33081",title:"Critical Success Factors for Quality Assurance in Healthcare Organizations",slug:"critical-success-factors-for-quality-assurance-in-healthcare-organizations",totalDownloads:5496,totalCrossrefCites:6,totalDimensionsCites:6,abstract:null,book:{id:"1803",slug:"quality-assurance-and-management",title:"Quality Assurance and Management",fullTitle:"Quality Assurance and Management"},signatures:"Víctor Reyes-Alcázar, Antonio Torres-Olivera, Diego Núñez-García and Antonio Almuedo-Paz",authors:[{id:"93938",title:"Dr.",name:"Victor",middleName:null,surname:"Reyes-Alcázar",slug:"victor-reyes-alcazar",fullName:"Victor Reyes-Alcázar"},{id:"97412",title:"Dr.",name:"Antonio",middleName:null,surname:"Torres-Olivera",slug:"antonio-torres-olivera",fullName:"Antonio Torres-Olivera"},{id:"97456",title:"Dr.",name:"Diego",middleName:null,surname:"Nunez-García",slug:"diego-nunez-garcia",fullName:"Diego Nunez-García"},{id:"97457",title:"Dr.",name:"Antonio",middleName:null,surname:"Almuedo-Paz",slug:"antonio-almuedo-paz",fullName:"Antonio Almuedo-Paz"}]}],mostDownloadedChaptersLast30Days:[{id:"33265",title:"Implementing Quality Management Systems in Higher Education Institutions",slug:"implementing-quality-management-systems-in-higher-education-institutions",totalDownloads:9871,totalCrossrefCites:3,totalDimensionsCites:24,abstract:null,book:{id:"1803",slug:"quality-assurance-and-management",title:"Quality Assurance and Management",fullTitle:"Quality Assurance and Management"},signatures:"Maria J. Rosa, Cláudia S. Sarrico and Alberto Amaral",authors:[{id:"97785",title:"Prof.",name:"Alberto",middleName:null,surname:"Amaral",slug:"alberto-amaral",fullName:"Alberto Amaral"}]},{id:"38085",title:"Qualitative and Quantitative Analysis of Six Sigma in Service Organizations",slug:"qualitative-and-quantitative-analysis-of-six-sigma-in-service-organizations",totalDownloads:8544,totalCrossrefCites:1,totalDimensionsCites:3,abstract:null,book:{id:"2164",slug:"total-quality-management-and-six-sigma",title:"Total Quality Management and Six Sigma",fullTitle:"Total Quality Management and Six Sigma"},signatures:"Ayon Chakraborty and Kay Chuan Tan",authors:[{id:"147160",title:"Dr.",name:"Ayon",middleName:null,surname:"Chakraborty",slug:"ayon-chakraborty",fullName:"Ayon Chakraborty"},{id:"148315",title:"Dr.",name:"Kay Chuan",middleName:null,surname:"Tan",slug:"kay-chuan-tan",fullName:"Kay Chuan Tan"}]},{id:"38084",title:"Project Costs and Risks Estimation Regarding Quality Management System Implementation",slug:"project-costs-and-risks-estimation-regarding-quality-management-system-implementation",totalDownloads:4441,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"2164",slug:"total-quality-management-and-six-sigma",title:"Total Quality Management and Six Sigma",fullTitle:"Total Quality Management and Six Sigma"},signatures:"Adela-Eliza Dumitrascu and Anisor Nedelcu",authors:[{id:"52709",title:"Prof.",name:"Anisor",middleName:null,surname:"Nedelcu",slug:"anisor-nedelcu",fullName:"Anisor Nedelcu"},{id:"145737",title:"Dr.",name:"Dumitrascu",middleName:null,surname:"Adela-Eliza",slug:"dumitrascu-adela-eliza",fullName:"Dumitrascu Adela-Eliza"}]},{id:"38089",title:"Lean Six Sigma - Making It 'Business as Usual'\"",slug:"lean-six-sigma-making-it-business-as-usual-",totalDownloads:3240,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"2164",slug:"total-quality-management-and-six-sigma",title:"Total Quality Management and Six Sigma",fullTitle:"Total Quality Management and Six Sigma"},signatures:"Graham Cartwright and John Oakland",authors:[{id:"151090",title:"Dr.",name:"John",middleName:null,surname:"Oakland",slug:"john-oakland",fullName:"John Oakland"},{id:"153931",title:"Mr.",name:"Graham",middleName:null,surname:"Cartwright",slug:"graham-cartwright",fullName:"Graham Cartwright"}]},{id:"33260",title:"The Development and Changes of Quality Control in Japan",slug:"the-development-and-change-in-quality-control-in-japan",totalDownloads:5493,totalCrossrefCites:1,totalDimensionsCites:2,abstract:null,book:{id:"1803",slug:"quality-assurance-and-management",title:"Quality Assurance and Management",fullTitle:"Quality Assurance and Management"},signatures:"Kozo Koura",authors:[{id:"87079",title:"Dr.",name:"Kozo",middleName:null,surname:"Koura",slug:"kozo-koura",fullName:"Kozo Koura"}]}],onlineFirstChaptersFilter:{topicId:"472",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261",scope:"Modern physiology requires a comprehensive understanding of the integration of tissues and organs throughout the mammalian body, including the cooperation between structure and function at the cellular and molecular levels governed by gene and protein expression. While a daunting task, learning is facilitated by identifying common and effective signaling pathways mediated by a variety of factors employed by nature to preserve and sustain homeostatic life. \r\nAs a leading example, the cellular interaction between intracellular concentration of Ca+2 increases, and changes in plasma membrane potential is integral for coordinating blood flow, governing the exocytosis of neurotransmitters, and modulating gene expression and cell effector secretory functions. Furthermore, in this manner, understanding the systemic interaction between the cardiovascular and nervous systems has become more important than ever as human populations' life prolongation, aging and mechanisms of cellular oxidative signaling are utilised for sustaining life. \r\nAltogether, physiological research enables our identification of distinct and precise points of transition from health to the development of multimorbidity throughout the inevitable aging disorders (e.g., diabetes, hypertension, chronic kidney disease, heart failure, peptic ulcer, inflammatory bowel disease, age-related macular degeneration, cancer). With consideration of all organ systems (e.g., brain, heart, lung, gut, skeletal and smooth muscle, liver, pancreas, kidney, eye) and the interactions thereof, this Physiology Series will address the goals of resolving (1) Aging physiology and chronic disease progression (2) Examination of key cellular pathways as they relate to calcium, oxidative stress, and electrical signaling, and (3) how changes in plasma membrane produced by lipid peroxidation products can affect aging physiology, covering new research in the area of cell, human, plant and animal physiology.",coverUrl:"https://cdn.intechopen.com/series/covers/10.jpg",latestPublicationDate:"May 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:11,editor:{id:"35854",title:"Prof.",name:"Tomasz",middleName:null,surname:"Brzozowski",slug:"tomasz-brzozowski",fullName:"Tomasz Brzozowski",profilePictureURL:"https://mts.intechopen.com/storage/users/35854/images/system/35854.jpg",biography:"Prof. Dr. Thomas Brzozowski works as a professor of Human Physiology and is currently Chairman at the Department of Physiology and is V-Dean of the Medical Faculty at Jagiellonian University Medical College, Cracow, Poland. His primary area of interest is physiology and pathophysiology of the gastrointestinal (GI) tract, with the major focus on the mechanism of GI mucosal defense, protection, and ulcer healing. He was a postdoctoral NIH fellow at the University of California and the Gastroenterology VA Medical Center, Irvine, Long Beach, CA, USA, and at the Gastroenterology Clinics Erlangen-Nuremberg and Munster in Germany. He has published 290 original articles in some of the most prestigious scientific journals and seven book chapters on the pathophysiology of the GI tract, gastroprotection, ulcer healing, drug therapy of peptic ulcers, hormonal regulation of the gut, and inflammatory bowel disease.",institutionString:null,institution:{name:"Jagiellonian University",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:9,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",slug:"ana-isabel-flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",slug:"christian-palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",slug:"azhar-rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",slug:"anca-pantea-stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",slug:"attilio-rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",slug:"yanfei-(jacob)-qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",slug:"arli-aditya-parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",slug:"cesar-lopez-camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",slug:"shymaa-enany",fullName:"Shymaa Enany",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRqB9QAK/Profile_Picture_1626163237970",institutionString:null,institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]},overviewPageOFChapters:{paginationCount:19,paginationItems:[{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79909",title:"Cryopreservation Methods and Frontiers in the Art of Freezing Life in Animal Models",doi:"10.5772/intechopen.101750",signatures:"Feda S. Aljaser",slug:"cryopreservation-methods-and-frontiers-in-the-art-of-freezing-life-in-animal-models",totalDownloads:171,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"79782",title:"Avian Reproduction",doi:"10.5772/intechopen.101185",signatures:"Kingsley Omogiade Idahor",slug:"avian-reproduction",totalDownloads:152,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kingsley O.",surname:"Idahor"}],book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}}]},overviewPagePublishedBooks:{paginationCount:10,paginationItems:[{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}]},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}]},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",biography:"Naceur M’HAMDI is Associate Professor at the National Agronomic Institute of Tunisia, University of Carthage. He is also Member of the Laboratory of genetic, animal and feed resource and member of Animal science Department of INAT. He graduated from Higher School of Agriculture of Mateur, University of Carthage, in 2002 and completed his masters in 2006. Dr. M’HAMDI completed his PhD thesis in Genetic welfare indicators of dairy cattle at Higher Institute of Agronomy of Chott-Meriem, University of Sousse, in 2011. He worked as assistant Professor of Genetic, biostatistics and animal biotechnology at INAT since 2013.",institutionString:null,institution:null}]},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",biography:"Juan Carlos Gardón Poggi received University degree from the Faculty of Agrarian Science in Argentina, in 1983. Also he received Masters Degree and PhD from Córdoba University, Spain. He is currently a Professor at the Catholic University of Valencia San Vicente Mártir, at the Department of Medicine and Animal Surgery. He teaches diverse courses in the field of Animal Reproduction and he is the Director of the Veterinary Farm. He also participates in academic postgraduate activities at the Veterinary Faculty of Murcia University, Spain. His research areas include animal physiology, physiology and biotechnology of reproduction either in males or females, the study of gametes under in vitro conditions and the use of ultrasound as a complement to physiological studies and development of applied biotechnologies. Routinely, he supervises students preparing their doctoral, master thesis or final degree projects.",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11460",title:"Pluralistic Approaches for Conservation and Sustainability in Biodiversity",coverURL:"https://cdn.intechopen.com/books/images_new/11460.jpg",hash:"ab014f8ed1669757335225786833e9a9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 22nd 2022",isOpenForSubmission:!0,editors:[{id:"101105",title:"Dr.",name:"Gopal",surname:"Shukla",slug:"gopal-shukla",fullName:"Gopal Shukla"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11475",title:"Food Security Challenges and Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11475.jpg",hash:"090302a30e461cee643ec49675c811ec",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"292145",title:"Dr.",name:"Muhammad",surname:"Haseeb Ahmad",slug:"muhammad-haseeb-ahmad",fullName:"Muhammad Haseeb Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",hash:"a58c7b02d07903004be70f744f2e1835",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11477",title:"Public Economics - New Perspectives and Uncertainty",coverURL:"https://cdn.intechopen.com/books/images_new/11477.jpg",hash:"a8e6c515dc924146fbd2712eb4e7d118",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 27th 2022",isOpenForSubmission:!0,editors:[{id:"414400",title:"Dr.",name:"Habtamu",surname:"Alem",slug:"habtamu-alem",fullName:"Habtamu Alem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11457",title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",hash:"8df7150b01ae754024c65d1a62f190d9",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"317087",title:"Dr.",name:"Pavel",surname:"Samec",slug:"pavel-samec",fullName:"Pavel Samec"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 2nd 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:4,paginationItems:[{id:"81821",title:"Pneumococcal Carriage in Jordanian Children and the Importance of Vaccination",doi:"10.5772/intechopen.104999",signatures:"Adnan Al-Lahham",slug:"pneumococcal-carriage-in-jordanian-children-and-the-importance-of-vaccination",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"81813",title:"Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development",doi:"10.5772/intechopen.104738",signatures:"Andressa Barban do Patrocinio",slug:"schistosomiasis-discovery-of-new-molecules-for-disease-treatment-and-vaccine-development",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"81644",title:"Perspective Chapter: Ethics of Using Placebo Controlled Trials for Covid-19 Vaccine Development in Vulnerable Populations",doi:"10.5772/intechopen.104776",signatures:"Lesley Burgess, Jurie Jordaan and Matthew Wilson",slug:"perspective-chapter-ethics-of-using-placebo-controlled-trials-for-covid-19-vaccine-development-in-vu",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"80546",title:"Streptococcal Skin and Skin-Structure Infections",doi:"10.5772/intechopen.102894",signatures:"Alwyn Rapose",slug:"streptococcal-skin-and-skin-structure-infections",totalDownloads:48,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},subseriesFiltersForOFChapters:[{caption:"Parasitic Infectious Diseases",value:5,count:1,group:"subseries"},{caption:"Viral Infectious Diseases",value:6,count:1,group:"subseries"},{caption:"Bacterial Infectious Diseases",value:3,count:2,group:"subseries"}],publishedBooks:{paginationCount:10,paginationItems:[{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",slug:"animal-feed-science-and-nutrition-production-health-and-environment",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Amlan Kumar Patra",hash:"79944fc8fbbaa329aed6fde388154832",volumeInSeries:10,fullTitle:"Animal Feed Science and Nutrition - Production, Health and Environment",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Sergey Tkachev",hash:"49cce3f548da548c718c865feb343509",volumeInSeries:9,fullTitle:"Rabies Virus at the Beginning of 21st Century",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10496",title:"Advanced Studies in the 21st Century Animal Nutrition",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",slug:"advanced-studies-in-the-21st-century-animal-nutrition",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"László Babinszky, Juliana Oliveira and Edson Mauro Santos",hash:"8ffe43a82ac48b309abc3632bbf3efd0",volumeInSeries:8,fullTitle:"Advanced Studies in the 21st Century Animal Nutrition",editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",slug:"canine-genetics-health-and-medicine",publishedDate:"June 2nd 2021",editedByType:"Edited by",bookSignature:"Catrin Rutland",hash:"b91512e31ce34032e560362e6cbccc1c",volumeInSeries:7,fullTitle:"Canine Genetics, Health and Medicine",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9081",title:"Equine Science",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",slug:"equine-science",publishedDate:"September 23rd 2020",editedByType:"Edited by",bookSignature:"Catrin Rutland and Albert Rizvanov",hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",volumeInSeries:5,fullTitle:"Equine Science",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",institutionString:null,institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Animal Nutrition",value:20,count:2},{group:"subseries",caption:"Animal Reproductive Biology and Technology",value:28,count:3},{group:"subseries",caption:"Animal Science",value:19,count:5}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:1},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:302,paginationItems:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/198499/images/system/198499.jpeg",biography:"Dr. Daniel Glossman-Mitnik is currently a Titular Researcher at the Centro de Investigación en Materiales Avanzados (CIMAV), Chihuahua, Mexico, as well as a National Researcher of Level III at the Consejo Nacional de Ciencia y Tecnología, Mexico. His research interest focuses on computational chemistry and molecular modeling of diverse systems of pharmacological, food, and alternative energy interests by resorting to DFT and Conceptual DFT. He has authored a coauthored more than 255 peer-reviewed papers, 32 book chapters, and 2 edited books. He has delivered speeches at many international and domestic conferences. He serves as a reviewer for more than eighty international journals, books, and research proposals as well as an editor for special issues of renowned scientific journals.",institutionString:"Centro de Investigación en Materiales Avanzados",institution:{name:"Centro de Investigación en Materiales Avanzados",country:{name:"Mexico"}}},{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",biography:"Dr. Mirza Hasanuzzaman is a Professor of Agronomy at Sher-e-Bangla Agricultural University, Bangladesh. He received his Ph.D. in Plant Stress Physiology and Antioxidant Metabolism from Ehime University, Japan, with a scholarship from the Japanese Government (MEXT). Later, he completed his postdoctoral research at the Center of Molecular Biosciences, University of the Ryukyus, Japan, as a recipient of the Japan Society for the Promotion of Science (JSPS) postdoctoral fellowship. He was also the recipient of the Australian Government Endeavour Research Fellowship for postdoctoral research as an adjunct senior researcher at the University of Tasmania, Australia. Dr. Hasanuzzaman’s current work is focused on the physiological and molecular mechanisms of environmental stress tolerance. Dr. Hasanuzzaman has published more than 150 articles in peer-reviewed journals. He has edited ten books and written more than forty book chapters on important aspects of plant physiology, plant stress tolerance, and crop production. According to Scopus, Dr. Hasanuzzaman’s publications have received more than 10,500 citations with an h-index of 53. He has been named a Highly Cited Researcher by Clarivate. He is an editor and reviewer for more than fifty peer-reviewed international journals and was a recipient of the “Publons Peer Review Award” in 2017, 2018, and 2019. He has been honored by different authorities for his outstanding performance in various fields like research and education, and he has received the World Academy of Science Young Scientist Award (2014) and the University Grants Commission (UGC) Award 2018. He is a fellow of the Bangladesh Academy of Sciences (BAS) and the Royal Society of Biology.",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",country:{name:"Bangladesh"}}},{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",biography:"Kusal K. Das is a Distinguished Chair Professor of Physiology, Shri B. M. Patil Medical College and Director, Centre for Advanced Medical Research (CAMR), BLDE (Deemed to be University), Vijayapur, Karnataka, India. Dr. Das did his M.S. and Ph.D. in Human Physiology from the University of Calcutta, Kolkata. His area of research is focused on understanding of molecular mechanisms of heavy metal activated low oxygen sensing pathways in vascular pathophysiology. He has invented a new method of estimation of serum vitamin E. His expertise in critical experimental protocols on vascular functions in experimental animals was well documented by his quality of publications. He was a Visiting Professor of Medicine at University of Leeds, United Kingdom (2014-2016) and Tulane University, New Orleans, USA (2017). For his immense contribution in medical research Ministry of Science and Technology, Government of India conferred him 'G.P. Chatterjee Memorial Research Prize-2019” and he is also the recipient of 'Dr.Raja Ramanna State Scientist Award 2015” by Government of Karnataka. He is a Fellow of the Royal Society of Biology (FRSB), London and Honorary Fellow of Karnataka Science and Technology Academy, Department of Science and Technology, Government of Karnataka.",institutionString:"BLDE (Deemed to be University), India",institution:null},{id:"243660",title:"Dr.",name:"Mallanagouda Shivanagouda",middleName:null,surname:"Biradar",slug:"mallanagouda-shivanagouda-biradar",fullName:"Mallanagouda Shivanagouda Biradar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243660/images/system/243660.jpeg",biography:"M. S. Biradar is Vice Chancellor and Professor of Medicine of\nBLDE (Deemed to be University), Vijayapura, Karnataka, India.\nHe obtained his MD with a gold medal in General Medicine and\nhas devoted himself to medical teaching, research, and administrations. He has also immensely contributed to medical research\non vascular medicine, which is reflected by his numerous publications including books and book chapters. Professor Biradar was\nalso Visiting Professor at Tulane University School of Medicine, New Orleans, USA.",institutionString:"BLDE (Deemed to be University)",institution:{name:"BLDE University",country:{name:"India"}}},{id:"289796",title:"Dr.",name:"Swastika",middleName:null,surname:"Das",slug:"swastika-das",fullName:"Swastika Das",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/289796/images/system/289796.jpeg",biography:"Swastika N. Das is Professor of Chemistry at the V. P. Dr. P. G.\nHalakatti College of Engineering and Technology, BLDE (Deemed\nto be University), Vijayapura, Karnataka, India. She obtained an\nMSc, MPhil, and PhD in Chemistry from Sambalpur University,\nOdisha, India. Her areas of research interest are medicinal chemistry, chemical kinetics, and free radical chemistry. She is a member\nof the investigators who invented a new modified method of estimation of serum vitamin E. She has authored numerous publications including book\nchapters and is a mentor of doctoral curriculum at her university.",institutionString:"BLDEA’s V.P.Dr.P.G.Halakatti College of Engineering & Technology",institution:{name:"BLDE University",country:{name:"India"}}},{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248459/images/system/248459.png",biography:"Akikazu Takada was born in Japan, 1935. After graduation from\nKeio University School of Medicine and finishing his post-graduate studies, he worked at Roswell Park Memorial Institute NY,\nUSA. He then took a professorship at Hamamatsu University\nSchool of Medicine. In thrombosis studies, he found the SK\npotentiator that enhances plasminogen activation by streptokinase. He is very much interested in simultaneous measurements\nof fatty acids, amino acids, and tryptophan degradation products. By using fatty\nacid analyses, he indicated that plasma levels of trans-fatty acids of old men were\nfar higher in the US than Japanese men. . He also showed that eicosapentaenoic acid\n(EPA) and docosahexaenoic acid (DHA) levels are higher, and arachidonic acid\nlevels are lower in Japanese than US people. By using simultaneous LC/MS analyses\nof plasma levels of tryptophan metabolites, he recently found that plasma levels of\nserotonin, kynurenine, or 5-HIAA were higher in patients of mono- and bipolar\ndepression, which are significantly different from observations reported before. In\nview of recent reports that plasma tryptophan metabolites are mainly produced by\nmicrobiota. He is now working on the relationships between microbiota and depression or autism.",institutionString:"Hamamatsu University School of Medicine",institution:{name:"Hamamatsu University School of Medicine",country:{name:"Japan"}}},{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",biography:"Mohammed Khalid received his B.S. degree in chemistry in 2000 and Ph.D. degree in physical chemistry in 2007 from the University of Khartoum, Sudan. He moved to School of Chemistry, Faculty of Science, University of Sydney, Australia in 2009 and joined Dr. Ron Clarke as a postdoctoral fellow where he worked on the interaction of ATP with the phosphoenzyme of the Na+/K+-ATPase and dual mechanisms of allosteric acceleration of the Na+/K+-ATPase by ATP; then he went back to Department of Chemistry, University of Khartoum as an assistant professor, and in 2014 he was promoted as an associate professor. In 2011, he joined the staff of Department of Chemistry at Taif University, Saudi Arabia, where he is currently an assistant professor. His research interests include the following: P-Type ATPase enzyme kinetics and mechanisms, kinetics and mechanisms of redox reactions, autocatalytic reactions, computational enzyme kinetics, allosteric acceleration of P-type ATPases by ATP, exploring of allosteric sites of ATPases, and interaction of ATP with ATPases located in cell membranes.",institutionString:"Taif University",institution:{name:"Taif University",country:{name:"Saudi Arabia"}}},{id:"63810",title:"Prof.",name:"Jorge",middleName:null,surname:"Morales-Montor",slug:"jorge-morales-montor",fullName:"Jorge Morales-Montor",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/63810/images/system/63810.png",biography:"Dr. Jorge Morales-Montor was recognized with the Lola and Igo Flisser PUIS Award for best graduate thesis at the national level in the field of parasitology. He received a fellowship from the Fogarty Foundation to perform postdoctoral research stay at the University of Georgia. He has 153 journal articles to his credit. He has also edited several books and published more than fifty-five book chapters. He is a member of the Mexican Academy of Sciences, Latin American Academy of Sciences, and the National Academy of Medicine. He has received more than thirty-five awards and has supervised numerous bachelor’s, master’s, and Ph.D. students. Dr. Morales-Montor is the past president of the Mexican Society of Parasitology.",institutionString:"National Autonomous University of Mexico",institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}},{id:"217215",title:"Dr.",name:"Palash",middleName:null,surname:"Mandal",slug:"palash-mandal",fullName:"Palash Mandal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/217215/images/system/217215.jpeg",biography:null,institutionString:"Charusat University",institution:null},{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",biography:"Leszek Szablewski is a professor of medical sciences. He received his M.S. in the Faculty of Biology from the University of Warsaw and his PhD degree from the Institute of Experimental Biology Polish Academy of Sciences. He habilitated in the Medical University of Warsaw, and he obtained his degree of Professor from the President of Poland. Professor Szablewski is the Head of Chair and Department of General Biology and Parasitology, Medical University of Warsaw. Professor Szablewski has published over 80 peer-reviewed papers in journals such as Journal of Alzheimer’s Disease, Biochim. Biophys. Acta Reviews of Cancer, Biol. Chem., J. Biomed. Sci., and Diabetes/Metabol. Res. Rev, Endocrine. He is the author of two books and four book chapters. He has edited four books, written 15 scripts for students, is the ad hoc reviewer of over 30 peer-reviewed journals, and editorial member of peer-reviewed journals. Prof. Szablewski’s research focuses on cell physiology, genetics, and pathophysiology. He works on the damage caused by lack of glucose homeostasis and changes in the expression and/or function of glucose transporters due to various diseases. He has given lectures, seminars, and exercises for students at the Medical University.",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",country:{name:"Poland"}}},{id:"173123",title:"Dr.",name:"Maitham",middleName:null,surname:"Khajah",slug:"maitham-khajah",fullName:"Maitham Khajah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/173123/images/system/173123.jpeg",biography:"Dr. Maitham A. Khajah received his degree in Pharmacy from Faculty of Pharmacy, Kuwait University, in 2003 and obtained his PhD degree in December 2009 from the University of Calgary, Canada (Gastrointestinal Science and Immunology). Since January 2010 he has been assistant professor in Kuwait University, Faculty of Pharmacy, Department of Pharmacology and Therapeutics. His research interest are molecular targets for the treatment of inflammatory bowel disease (IBD) and the mechanisms responsible for immune cell chemotaxis. He cosupervised many students for the MSc Molecular Biology Program, College of Graduate Studies, Kuwait University. Ever since joining Kuwait University in 2010, he got various grants as PI and Co-I. He was awarded the Best Young Researcher Award by Kuwait University, Research Sector, for the Year 2013–2014. He was a member in the organizing committee for three conferences organized by Kuwait University, Faculty of Pharmacy, as cochair and a member in the scientific committee (the 3rd, 4th, and 5th Kuwait International Pharmacy Conference).",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"195136",title:"Dr.",name:"Aya",middleName:null,surname:"Adel",slug:"aya-adel",fullName:"Aya Adel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/195136/images/system/195136.jpg",biography:"Dr. Adel works as an Assistant Lecturer in the unit of Phoniatrics, Department of Otolaryngology, Ain Shams University in Cairo, Egypt. Dr. Adel is especially interested in joint attention and its impairment in autism spectrum disorder",institutionString:"Ain Shams University",institution:{name:"Ain Shams University",country:{name:"Egypt"}}},{id:"94911",title:"Dr.",name:"Boulenouar",middleName:null,surname:"Mesraoua",slug:"boulenouar-mesraoua",fullName:"Boulenouar Mesraoua",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94911/images/system/94911.png",biography:"Dr Boulenouar Mesraoua is the Associate Professor of Clinical Neurology at Weill Cornell Medical College-Qatar and a Consultant Neurologist at Hamad Medical Corporation at the Neuroscience Department; He graduated as a Medical Doctor from the University of Oran, Algeria; he then moved to Belgium, the City of Liege, for a Residency in Internal Medicine and Neurology at Liege University; after getting the Belgian Board of Neurology (with high marks), he went to the National Hospital for Nervous Diseases, Queen Square, London, United Kingdom for a fellowship in Clinical Neurophysiology, under Pr Willison ; Dr Mesraoua had also further training in Epilepsy and Continuous EEG Monitoring for two years (from 2001-2003) in the Neurophysiology department of Zurich University, Switzerland, under late Pr Hans Gregor Wieser ,an internationally known epileptologist expert. \n\nDr B. Mesraoua is the Director of the Neurology Fellowship Program at the Neurology Section and an active member of the newly created Comprehensive Epilepsy Program at Hamad General Hospital, Doha, Qatar; he is also Assistant Director of the Residency Program at the Qatar Medical School. \nDr B. Mesraoua's main interests are Epilepsy, Multiple Sclerosis, and Clinical Neurology; He is the Chairman and the Organizer of the well known Qatar Epilepsy Symposium, he is running yearly for the past 14 years and which is considered a landmark in the Gulf region; He has also started last year , together with other epileptologists from Qatar, the region and elsewhere, a yearly International Epilepsy School Course, which was attended by many neurologists from the Area.\n\nInternationally, Dr Mesraoua is an active and elected member of the Commission on Eastern Mediterranean Region (EMR ) , a regional branch of the International League Against Epilepsy (ILAE), where he represents the Middle East and North Africa(MENA ) and where he holds the position of chief of the Epilepsy Epidemiology Section; Dr Mesraoua is a member of the American Academy of Neurology, the Europeen Academy of Neurology and the American Epilepsy Society.\n\nDr Mesraoua's main objectives are to encourage frequent gathering of the epileptologists/neurologists from the MENA region and the rest of the world, promote Epilepsy Teaching in the MENA Region, and encourage multicenter studies involving neurologists and epileptologists in the MENA region, particularly epilepsy epidemiological studies. \n\nDr. Mesraoua is the recipient of two research Grants, as the Lead Principal Investigator (750.000 USD and 250.000 USD) from the Qatar National Research Fund (QNRF) and the Hamad Hospital Internal Research Grant (IRGC), on the following topics : “Continuous EEG Monitoring in the ICU “ and on “Alpha-lactoalbumin , proof of concept in the treatment of epilepsy” .Dr Mesraoua is a reviewer for the journal \"seizures\" (Europeen Epilepsy Journal ) as well as dove journals ; Dr Mesraoua is the author and co-author of many peer reviewed publications and four book chapters in the field of Epilepsy and Clinical Neurology",institutionString:"Weill Cornell Medical College in Qatar",institution:{name:"Weill Cornell Medical College in Qatar",country:{name:"Qatar"}}},{id:"282429",title:"Prof.",name:"Covanis",middleName:null,surname:"Athanasios",slug:"covanis-athanasios",fullName:"Covanis Athanasios",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/282429/images/system/282429.jpg",biography:null,institutionString:"Neurology-Neurophysiology Department of the Children Hospital Agia Sophia",institution:null},{id:"190980",title:"Prof.",name:"Marwa",middleName:null,surname:"Mahmoud Saleh",slug:"marwa-mahmoud-saleh",fullName:"Marwa Mahmoud Saleh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/190980/images/system/190980.jpg",biography:"Professor Marwa Mahmoud Saleh is a doctor of medicine and currently works in the unit of Phoniatrics, Department of Otolaryngology, Ain Shams University in Cairo, Egypt. She got her doctoral degree in 1991 and her doctoral thesis was accomplished in the University of Iowa, United States. Her publications covered a multitude of topics as videokymography, cochlear implants, stuttering, and dysphagia. She has lectured Egyptian phonology for many years. Her recent research interest is joint attention in autism.",institutionString:"Ain Shams University",institution:{name:"Ain Shams University",country:{name:"Egypt"}}},{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259190/images/system/259190.png",biography:"Dr. Naqvi is a radioanalytical chemist and is working as an associate professor of analytical chemistry in the Department of Chemistry, Government College University, Faisalabad, Pakistan. Advance separation techniques, nuclear analytical techniques and radiopharmaceutical analysis are the main courses that he is teaching to graduate and post-graduate students. In the research area, he is focusing on the development of organic- and biomolecule-based radiopharmaceuticals for diagnosis and therapy of infectious and cancerous diseases. Under the supervision of Dr. Naqvi, three students have completed their Ph.D. degrees and 41 students have completed their MS degrees. He has completed three research projects and is currently working on 2 projects entitled “Radiolabeling of fluoroquinolone derivatives for the diagnosis of deep-seated bacterial infections” and “Radiolabeled minigastrin peptides for diagnosis and therapy of NETs”. He has published about 100 research articles in international reputed journals and 7 book chapters. Pakistan Institute of Nuclear Science & Technology (PINSTECH) Islamabad, Punjab Institute of Nuclear Medicine (PINM), Faisalabad and Institute of Nuclear Medicine and Radiology (INOR) Abbottabad are the main collaborating institutes.",institutionString:"Government College University",institution:{name:"Government College University, Faisalabad",country:{name:"Pakistan"}}},{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",biography:"Gyula Mózsik MD, Ph.D., ScD (med), is an emeritus professor of Medicine at the First Department of Medicine, Univesity of Pécs, Hungary. He was head of this department from 1993 to 2003. His specializations are medicine, gastroenterology, clinical pharmacology, clinical nutrition, and dietetics. His research fields are biochemical pharmacological examinations in the human gastrointestinal (GI) mucosa, mechanisms of retinoids, drugs, capsaicin-sensitive afferent nerves, and innovative pharmacological, pharmaceutical, and nutritional (dietary) research in humans. He has published about 360 peer-reviewed papers, 197 book chapters, 692 abstracts, 19 monographs, and has edited 37 books. He has given about 1120 regular and review lectures. He has organized thirty-eight national and international congresses and symposia. He is the founder of the International Conference on Ulcer Research (ICUR); International Union of Pharmacology, Gastrointestinal Section (IUPHAR-GI); Brain-Gut Society symposiums, and gastrointestinal cytoprotective symposiums. He received the Andre Robert Award from IUPHAR-GI in 2014. Fifteen of his students have been appointed as full professors in Egypt, Cuba, and Hungary.",institutionString:"University of Pécs",institution:{name:"University of Pecs",country:{name:"Hungary"}}},{id:"277367",title:"M.Sc.",name:"Daniel",middleName:"Martin",surname:"Márquez López",slug:"daniel-marquez-lopez",fullName:"Daniel Márquez López",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/277367/images/7909_n.jpg",biography:"Msc Daniel Martin Márquez López has a bachelor degree in Industrial Chemical Engineering, a Master of science degree in the same área and he is a PhD candidate for the Instituto Politécnico Nacional. His Works are realted to the Green chemistry field, biolubricants, biodiesel, transesterification reactions for biodiesel production and the manipulation of oils for therapeutic purposes.",institutionString:null,institution:{name:"Instituto Politécnico Nacional",country:{name:"Mexico"}}},{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",biography:"Angel Catalá studied chemistry at Universidad Nacional de La Plata, Argentina, where he received a Ph.D. in Chemistry (Biological Branch) in 1965. From 1964 to 1974, he worked as an Assistant in Biochemistry at the School of Medicine at the same university. From 1974 to 1976, he was a fellow of the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor of Biochemistry at the Universidad Nacional de La Plata. He is a member of the National Research Council (CONICET), Argentina, and the Argentine Society for Biochemistry and Molecular Biology (SAIB). His laboratory has been interested for many years in the lipid peroxidation of biological membranes from various tissues and different species. Dr. Catalá has directed twelve doctoral theses, published more than 100 papers in peer-reviewed journals, several chapters in books, and edited twelve books. He received awards at the 40th International Conference Biochemistry of Lipids 1999 in Dijon, France. He is the winner of the Bimbo Pan-American Nutrition, Food Science and Technology Award 2006 and 2012, South America, Human Nutrition, Professional Category. In 2006, he won the Bernardo Houssay award in pharmacology, in recognition of his meritorious works of research. Dr. Catalá belongs to the editorial board of several journals including Journal of Lipids; International Review of Biophysical Chemistry; Frontiers in Membrane Physiology and Biophysics; World Journal of Experimental Medicine and Biochemistry Research International; World Journal of Biological Chemistry, Diabetes, and the Pancreas; International Journal of Chronic Diseases & Therapy; and International Journal of Nutrition. He is the co-editor of The Open Biology Journal and associate editor for Oxidative Medicine and Cellular Longevity.",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",country:{name:"Argentina"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",biography:"Francisco Javier Martín-Romero (Javier) is a Professor of Biochemistry and Molecular Biology at the University of Extremadura, Spain. He is also a group leader at the Biomarkers Institute of Molecular Pathology. Javier received his Ph.D. in 1998 in Biochemistry and Biophysics. At the National Cancer Institute (National Institute of Health, Bethesda, MD) he worked as a research associate on the molecular biology of selenium and its role in health and disease. After postdoctoral collaborations with Carlos Gutierrez-Merino (University of Extremadura, Spain) and Dario Alessi (University of Dundee, UK), he established his own laboratory in 2008. The interest of Javier's lab is the study of cell signaling with a special focus on Ca2+ signaling, and how Ca2+ transport modulates the cytoskeleton, migration, differentiation, cell death, etc. He is especially interested in the study of Ca2+ channels, and the role of STIM1 in the initiation of pathological events.",institutionString:null,institution:{name:"University of Extremadura",country:{name:"Spain"}}},{id:"217323",title:"Prof.",name:"Guang-Jer",middleName:null,surname:"Wu",slug:"guang-jer-wu",fullName:"Guang-Jer Wu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/217323/images/8027_n.jpg",biography:null,institutionString:null,institution:null},{id:"148546",title:"Dr.",name:"Norma Francenia",middleName:null,surname:"Santos-Sánchez",slug:"norma-francenia-santos-sanchez",fullName:"Norma Francenia Santos-Sánchez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/148546/images/4640_n.jpg",biography:null,institutionString:null,institution:null},{id:"272889",title:"Dr.",name:"Narendra",middleName:null,surname:"Maddu",slug:"narendra-maddu",fullName:"Narendra Maddu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/272889/images/10758_n.jpg",biography:null,institutionString:null,institution:null},{id:"242491",title:"Prof.",name:"Angelica",middleName:null,surname:"Rueda",slug:"angelica-rueda",fullName:"Angelica Rueda",position:"Investigador Cinvestav 3B",profilePictureURL:"https://mts.intechopen.com/storage/users/242491/images/6765_n.jpg",biography:null,institutionString:null,institution:null},{id:"88631",title:"Dr.",name:"Ivan",middleName:null,surname:"Petyaev",slug:"ivan-petyaev",fullName:"Ivan Petyaev",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Lycotec (United Kingdom)",country:{name:"United Kingdom"}}},{id:"423869",title:"Ms.",name:"Smita",middleName:null,surname:"Rai",slug:"smita-rai",fullName:"Smita Rai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Integral University",country:{name:"India"}}},{id:"424024",title:"Prof.",name:"Swati",middleName:null,surname:"Sharma",slug:"swati-sharma",fullName:"Swati Sharma",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Integral University",country:{name:"India"}}},{id:"439112",title:"MSc.",name:"Touseef",middleName:null,surname:"Fatima",slug:"touseef-fatima",fullName:"Touseef Fatima",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Integral University",country:{name:"India"}}},{id:"424836",title:"Dr.",name:"Orsolya",middleName:null,surname:"Borsai",slug:"orsolya-borsai",fullName:"Orsolya Borsai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca",country:{name:"Romania"}}},{id:"422262",title:"Ph.D.",name:"Paola Andrea",middleName:null,surname:"Palmeros-Suárez",slug:"paola-andrea-palmeros-suarez",fullName:"Paola Andrea Palmeros-Suárez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Guadalajara",country:{name:"Mexico"}}}]}},subseries:{item:{id:"38",type:"subseries",title:"Pollution",keywords:"Human activity, Pollutants, Reduced risks, Population growth, Waste disposal, Remediation, Clean environment",scope:"\r\n\tPollution is caused by a wide variety of human activities and occurs in diverse forms, for example biological, chemical, et cetera. In recent years, significant efforts have been made to ensure that the environment is clean, that rigorous rules are implemented, and old laws are updated to reduce the risks towards humans and ecosystems. However, rapid industrialization and the need for more cultivable sources or habitable lands, for an increasing population, as well as fewer alternatives for waste disposal, make the pollution control tasks more challenging. Therefore, this topic will focus on assessing and managing environmental pollution. It will cover various subjects, including risk assessment due to the pollution of ecosystems, transport and fate of pollutants, restoration or remediation of polluted matrices, and efforts towards sustainable solutions to minimize environmental pollution.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11966,editor:{id:"110740",title:"Dr.",name:"Ismail M.M.",middleName:null,surname:"Rahman",slug:"ismail-m.m.-rahman",fullName:"Ismail M.M. Rahman",profilePictureURL:"https://mts.intechopen.com/storage/users/110740/images/2319_n.jpg",biography:"Ismail Md. Mofizur Rahman (Ismail M. M. Rahman) assumed his current responsibilities as an Associate Professor at the Institute of Environmental Radioactivity, Fukushima University, Japan, in Oct 2015. He also has an honorary appointment to serve as a Collaborative Professor at Kanazawa University, Japan, from Mar 2015 to the present. \nFormerly, Dr. Rahman was a faculty member of the University of Chittagong, Bangladesh, affiliated with the Department of Chemistry (Oct 2002 to Mar 2012) and the Department of Applied Chemistry and Chemical Engineering (Mar 2012 to Sep 2015). Dr. Rahman was also adjunctly attached with Kanazawa University, Japan (Visiting Research Professor, Dec 2014 to Mar 2015; JSPS Postdoctoral Research Fellow, Apr 2012 to Mar 2014), and Tokyo Institute of Technology, Japan (TokyoTech-UNESCO Research Fellow, Oct 2004–Sep 2005). \nHe received his Ph.D. degree in Environmental Analytical Chemistry from Kanazawa University, Japan (2011). He also achieved a Diploma in Environment from the Tokyo Institute of Technology, Japan (2005). Besides, he has an M.Sc. degree in Applied Chemistry and a B.Sc. degree in Chemistry, all from the University of Chittagong, Bangladesh. \nDr. Rahman’s research interest includes the study of the fate and behavior of environmental pollutants in the biosphere; design of low energy and low burden environmental improvement (remediation) technology; implementation of sustainable waste management practices for treatment, handling, reuse, and ultimate residual disposition of solid wastes; nature and type of interactions in organic liquid mixtures for process engineering design applications.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"201020",title:"Dr.",name:"Zinnat Ara",middleName:null,surname:"Begum",slug:"zinnat-ara-begum",fullName:"Zinnat Ara Begum",profilePictureURL:"https://mts.intechopen.com/storage/users/201020/images/system/201020.jpeg",biography:"Zinnat A. Begum received her Ph.D. in Environmental Analytical Chemistry from Kanazawa University in 2012. She achieved her Master of Science (M.Sc.) degree with a major in Applied Chemistry and a Bachelor of Science (B.Sc.) in Chemistry, all from the University of Chittagong, Bangladesh. Her work affiliations include Fukushima University, Japan (Visiting Research Fellow, Institute of Environmental Radioactivity: Mar 2016 to present), Southern University Bangladesh (Assistant Professor, Department of Civil Engineering: Jan 2015 to present), and Kanazawa University, Japan (Postdoctoral Fellow, Institute of Science and Engineering: Oct 2012 to Mar 2014; Research fellow, Venture Business Laboratory, Advanced Science and Social Co-Creation Promotion Organization: Apr 2018 to Mar 2021). The research focus of Dr. Zinnat includes the effect of the relative stability of metal-chelator complexes in the environmental remediation process designs and the development of eco-friendly soil washing techniques using biodegradable chelators.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorThree:null,series:{id:"25",title:"Environmental Sciences",doi:"10.5772/intechopen.100362",issn:"2754-6713"},editorialBoard:[{id:"252368",title:"Dr.",name:"Meng-Chuan",middleName:null,surname:"Ong",slug:"meng-chuan-ong",fullName:"Meng-Chuan Ong",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRVotQAG/Profile_Picture_2022-05-20T12:04:28.jpg",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",institutionURL:null,country:{name:"Malaysia"}}},{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}},{id:"187907",title:"Dr.",name:"Olga",middleName:null,surname:"Anne",slug:"olga-anne",fullName:"Olga Anne",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBE5QAO/Profile_Picture_2022-04-07T09:42:13.png",institutionString:null,institution:{name:"Klaipeda State University of Applied Sciences",institutionURL:null,country:{name:"Lithuania"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81286",title:"Potassium Derangements: A Pathophysiological Review, Diagnostic Approach, and Clinical Management",doi:"10.5772/intechopen.103016",signatures:"Sairah Sharif and Jie Tang",slug:"potassium-derangements-a-pathophysiological-review-diagnostic-approach-and-clinical-management",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80895",title:"Heart Rate Variability as a Marker of Homeostatic Level",doi:"10.5772/intechopen.102500",signatures:"Moacir Fernandes de Godoy and Michele Lima Gregório",slug:"heart-rate-variability-as-a-marker-of-homeostatic-level",totalDownloads:26,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Moacir",surname:"Godoy"},{name:"Michele",surname:"Gregório"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80433",title:"Heart Autonomic Nervous System: Basic Science and Clinical Implications",doi:"10.5772/intechopen.101718",signatures:"Elvan Wiyarta and Nayla Karima",slug:"heart-autonomic-nervous-system-basic-science-and-clinical-implications",totalDownloads:51,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80316",title:"Central Control of the Larynx in Mammals",doi:"10.5772/intechopen.102009",signatures:"Manuel Víctor López-González, Marta González-García, Laura Carrillo-Franco, Amelia Díaz-Casares and Marc Stefan Dawid-Milner",slug:"central-control-of-the-larynx-in-mammals",totalDownloads:37,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80402",title:"General Anesthesia and Autonomic Nervous System: Control and Management in Neurosurgery",doi:"10.5772/intechopen.101829",signatures:"Irina Alexandrovna Savvina, Anna Olegovna Petrova and Yulia Mikhailovna Zabrodskaya",slug:"general-anesthesia-and-autonomic-nervous-system-control-and-management-in-neurosurgery",totalDownloads:58,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80035",title:"Healthy Lifestyle, Autonomic Nervous System Activity, and Sleep Status for Healthy Aging",doi:"10.5772/intechopen.101837",signatures:"Miki Sato, Feni Betriana, Ryuichi Tanioka, Kyoko Osaka, Tetsuya Tanioka and Savina Schoenhofer",slug:"healthy-lifestyle-autonomic-nervous-system-activity-and-sleep-status-for-healthy-aging",totalDownloads:61,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80175",title:"Signaling Pathways Regulating Axogenesis and Dendritogenesis in Sympathetic Neurons",doi:"10.5772/intechopen.102442",signatures:"Vidya Chandrasekaran",slug:"signaling-pathways-regulating-axogenesis-and-dendritogenesis-in-sympathetic-neurons",totalDownloads:68,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Vidya",surname:"Chandrasekaran"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80176",title:"Impacts of Environmental Stressors on Autonomic Nervous System",doi:"10.5772/intechopen.101842",signatures:"Mayowa Adeniyi",slug:"impacts-of-environmental-stressors-on-autonomic-nervous-system",totalDownloads:67,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79655",title:"The Autonomic Nervous System, Sex Differences, and Chronobiology under General Anesthesia in In Vivo Experiments Involving Rats",doi:"10.5772/intechopen.101075",signatures:"Pavol Svorc Jr and Pavol Svorc",slug:"the-autonomic-nervous-system-sex-differences-and-chronobiology-under-general-anesthesia-in-in-vivo-e",totalDownloads:91,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79194",title:"Potassium in Solid Cancers",doi:"10.5772/intechopen.101108",signatures:"Jessica Iorio, Lisa Lastraioli and Elena Lastraioli",slug:"potassium-in-solid-cancers",totalDownloads:120,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78820",title:"Potassium Homeostasis",doi:"10.5772/intechopen.100368",signatures:"Shakuntala S. Patil and Sachin M. Patil",slug:"potassium-homeostasis",totalDownloads:108,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78193",title:"Potassium and Cardiac Surgery",doi:"10.5772/intechopen.99735",signatures:"Shawn Kant, Frank W. Sellke and Jun Feng",slug:"potassium-and-cardiac-surgery",totalDownloads:178,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}}]},publishedBooks:{paginationCount:0,paginationItems:[]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/338628",hash:"",query:{},params:{id:"338628"},fullPath:"/profiles/338628",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()