Chromatographic methods for analysis of statin drugs in pharmaceuticals
\r\n\t
",isbn:"978-1-80356-948-2",printIsbn:"978-1-80356-947-5",pdfIsbn:"978-1-80356-949-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"c0d1c1c93a36fd9d726445966316a373",bookSignature:"Dr. Sylvanus Gbendazhi Barnabas",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11434.jpg",keywords:"Indigenous People, Natives, First People, Minorities, United Nations, UN Declaration, Indigenous People Rights, Self-Determination, States, Independence, Struggle for Rights, Contemporary Times",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 7th 2022",dateEndSecondStepPublish:"May 5th 2022",dateEndThirdStepPublish:"July 4th 2022",dateEndFourthStepPublish:"September 22nd 2022",dateEndFifthStepPublish:"November 21st 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Legal practitioner, consultant and a law academic with a diversity of interest in multi and intra-disciplinary scholarship on legal issues at national regional and international levels.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"293764",title:"Dr.",name:"Sylvanus",middleName:"Gbendazhi",surname:"Barnabas",slug:"sylvanus-barnabas",fullName:"Sylvanus Barnabas",profilePictureURL:"https://mts.intechopen.com/storage/users/293764/images/system/293764.jpg",biography:"Sylvanus Barnabas is a Senior Lecturer in Law at the Faculty of Law, Nile University of Nigeria where he teaches various subjects in law; he obtained the degree of Doctor of Philosophy in international human rights law from Northumbria University at Newcastle upon Tyne, United Kingdom; he has a Master of Laws degree obtained with distinction in Environmental Law and Policy from University of Kent at Canterbury, Kent, United Kingdom; he also holds a Bachelor of Laws degree from Ahmadu Bello University, Zaria, Nigeria; and he is also a qualified a barrister and solicitor of the Supreme Court of Nigeria.",institutionString:"Nigerian Turkish Nile University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Nigerian Turkish Nile University",institutionURL:null,country:{name:"Nigeria"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"21",title:"Psychology",slug:"psychology"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"440204",firstName:"Ana",lastName:"Cink",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/440204/images/20006_n.jpg",email:"ana.c@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6494",title:"Behavior Analysis",subtitle:null,isOpenForSubmission:!1,hash:"72a81a7163705b2765f9eb0b21dec70e",slug:"behavior-analysis",bookSignature:"Huei-Tse Hou and Carolyn S. Ryan",coverURL:"https://cdn.intechopen.com/books/images_new/6494.jpg",editedByType:"Edited by",editors:[{id:"96493",title:"Prof.",name:"Huei Tse",surname:"Hou",slug:"huei-tse-hou",fullName:"Huei Tse Hou"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9052",title:"Psychoanalysis",subtitle:"A New Overview",isOpenForSubmission:!1,hash:"69cc7a085f5417038f532cf11edee22f",slug:"psychoanalysis-a-new-overview",bookSignature:"Floriana Irtelli, Barbara Marchesi and Federico Durbano",coverURL:"https://cdn.intechopen.com/books/images_new/9052.jpg",editedByType:"Edited by",editors:[{id:"174641",title:"Dr.",name:"Floriana",surname:"Irtelli",slug:"floriana-irtelli",fullName:"Floriana Irtelli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10981",title:"Sport Psychology in Sports, Exercise and Physical Activity",subtitle:null,isOpenForSubmission:!1,hash:"5214c44bdc42978449de0751ca364684",slug:"sport-psychology-in-sports-exercise-and-physical-activity",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/10981.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde Dorthea Grindvik",surname:"Nielsen",slug:"hilde-dorthea-grindvik-nielsen",fullName:"Hilde Dorthea Grindvik Nielsen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10211",title:"The Science of Emotional Intelligence",subtitle:null,isOpenForSubmission:!1,hash:"447fc7884303a10093bc189f4c82dd47",slug:"the-science-of-emotional-intelligence",bookSignature:"Simon George Taukeni",coverURL:"https://cdn.intechopen.com/books/images_new/10211.jpg",editedByType:"Edited by",editors:[{id:"202046",title:"Dr.",name:"Simon George",surname:"Taukeni",slug:"simon-george-taukeni",fullName:"Simon George Taukeni"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7811",title:"Beauty",subtitle:"Cosmetic Science, Cultural Issues and Creative Developments",isOpenForSubmission:!1,hash:"5f6fd59694706550db8dd1082a8e457b",slug:"beauty-cosmetic-science-cultural-issues-and-creative-developments",bookSignature:"Martha Peaslee Levine and Júlia Scherer Santos",coverURL:"https://cdn.intechopen.com/books/images_new/7811.jpg",editedByType:"Edited by",editors:[{id:"186919",title:"Dr.",name:"Martha",surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"40372",title:"A Review of Current Trends and Advances in Analytical Methods for Determination of Statins: Chromatography and Capillary Electrophoresis",doi:"10.5772/48694",slug:"a-review-of-current-trends-and-advances-in-analytical-methods-for-determination-of-statins-chromatog",body:'Statins are now among the most frequently prescribed agents for reducing morbidity and mortality related to cardiovascular diseases (Figure 1) and analysis of these drugs is a current problem. The major therapeutic action of statin drugs is reduction of circulating atherogenic lipoproteins as a result of inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase [1]. The key enzyme catalyzes the conversion of HMG-CoA to mevalonate, a critical intermediary in the cholesterol biosynthesis. This mechanism was discovered in 1976, when Endo and co-workers isolated a compound mevastatin from
Ischemic heart disease is the leading cause of death in middle- and high-income countries, killing over 7 million people each year. Cardiovascular disease has no geographic, gender or socio-economic boundaries, and will remain the leading cause of death globally in the future. Therefore, the development of new analytical methods for statin drugs is of great importance. Analytical methods are employed through entire life cycle of a drug, from design and manufacture, elucidating the mechanism of biotransformation, clinical trials, dosage scheme adjustment, its introduction into the marketplace, quality control and pharmacovigilance to drug recycling and disposal with emphasis on environmental protection.
Statins can be grouped into fermentation-derived and chemically synthesized. Lovastatin, also called mevinolin, was isolated as secondary metabolite of fermentation process of various fungi such as
Statins exist in two forms, lactone and open-ring hydroxy acid forms. Lovastatin and simvastatin are administered as lactone prodrugs and subsequently transformed to active metabolites in contrast to other statins, which are formulated in the pharmacologically active -hydroxy acid form.
Statins are considered for long-term therapy and thus the purity assessment of these drugs is of great significance. Development of selective methods for monitoring their potential impurities and degradation products is highly required. Identification and determination of drug-related substances is an important aspect because impurities and degradation products of drugs are often responsible for some side-effects. The estimation of the impurity profiles of bulk drugs or dosage formulations requires methods involving high sensitivity and resolution as well as acceptable analysis time. The hyphenated technique that incorporates the efficient separation using liquid chromatography and specific and sensitive detection by mass spectrometry has become indispensable tool for identification and structure elucidation of unknown impurities in statin drugs as well as quantification of trace impurity levels.
Various chromatographic methods for determination of statins and their related impurities in the bulk drug forms and pharmaceutical formulations were developed. Almost all methods used for the separation of statins are based on high-performance liquid chromatography. In pharmaceutical applications UV detection was most commonly used. Analytical methods for determination of statins were developed individually as expected from their different structural and chemical properties. This approach to the analysis was chosen most probably because statins are not used in combination with other statin molecules during therapy. However, the development of a rapid analytical procedure that is not limited to the analysis of only one statin can be considered as a very useful assessment in quality control.Numerous chromatographic methods for quantification of statins in different biological fluids were developed. The levels of statins in biological fluids are very low because only about 5% of dosed statin reaches the systematic circulation. The liquid chromatography coupled to tandem mass spectrometry has become the method of choice for therapeutic plasma level monitoring of statins and their metabolites in pharmacokinetic investigations [10]. Generally, hyperlipidemic patients are treated with multiple-drug regime which commonly leads to drug interaction. The simultaneous determination of statins and drugs usually combined in cardiovasculary therapy in human plasma is important to get more insight in their possible interactions with a consequent increased risk to toxic effects. Due to different physical and chemical properties of co-administrated drugs development of methods for their simultaneous analysis is an over going challenge.
This chapter will present recent advances in chromatographic and capillary electrophoretic methods for the determination of statin drugs in various fields of application. Current trends in developing new methods for analysis of the most frequently used drugs will be discussed.
Pharmaceutical analysis provides information on the identity, purity, content and stability of starting material, excipients and active pharmaceutical ingredients (APIs). A distinction is made between analysis of the pure active ingredients and pharmaceutical formulations. Specification and test methods for the commonly used API and excipients are described in detail in pharmacopoeias.
Impurity profiling is of great importance in new drug substance and new drug product because of their potential unwanted pharmacological effects, possible toxicity, side effects, and their eventual impact on the activity, efficacy and the stability of the drug, its bioavailability and the results of the drug analysis. International Conference on Harmonization (ICH) gives strict regulatory guidelines for identification and quantification of trace impurities in drugs. Any compound that does not have the same chemical entity as the active substance, present at levels higher than 0.1% or 0.05% (depending on the daily dose), needs to be identified. Therefore there is a permanent need for developing new accurate, selective, and sensitive methods for the determination of drug impurities. Impurities can come from starting materials, they can be intermediars and by-products from the synthesis of the API (process related impurities), degradation products formed during manufacturing process and long-term storage, interaction products between API and other active ingredients and excipients or primary container.
Stability indicating methods are quantitative test methods that can detect changes of API and drug products during time and under certain conditions. Information on type and amount of degradation products over time is important for quality, safety and efficacy of the drug. Therefore, Food and Drug Administration (FDA), European Medicines Agency and other regulatory agencies, along ICH and good manufacturing practise require development and validation of stability indicating methods. General purpose of stability testing is to provide evidence on how the quality of an API or a finished pharmaceutical product changes during time under the influence of different environmental factors such as temperature, humidity and light. After these tests have been performed, recommendation on storage conditions and shelf life of the product can be given. ICH guidelines give detailed description of forced decomposition studies (stress testing). Stress testing of the API can help identify possible degradation products. It should include the effect of temperature (in 10 °C increments), humidity (≥ 75% relative humidity), oxidation, photolysis and hydrolysis of the API at a wide range of pH (acidic, neutral and alkali conditions).
In this section a review of chromatographic methods applied for identification and quantification of statins in bulk drug and pharmaceutical dosage forms will be given (Table 1). Each statin commercially available on the market will be covered in this review. Special emphasis will be given to stability indicating methods and papers describing impurity profiling.
Statins are often manufactured in combined pharmaceutical formulations together with ramipril, acetylsalicylic acid, amlodipine etc., and especially ezetimibe, a novel lipid-lowering agent that inhibits the absorption of cholesterol in the intestine by blocking Niemann-Pick C1-like protein cholesterol transporter. A synergic effect in reducing plasma concentrations of LDL cholesterol is achieved, mainly by the combination of statin and ezetimibe. Since statins are often co-administered with other drugs in therapy of cardiovascular disease, i.e. acetylsalicylic acid, antihypertensive medicines (ACE inhibitors, calcium channel blockers), but also in combined therapy of multiple disorders, e.g. antidiabetics, diuretics, nonsteroidal anti-inflammatory drugs and other analgetics, antibiotics etc. In order to avoid problems with patient compliance when a combination of acetylsalicylic acid, antihypertensives, lipid-lowering drugs and etc. is required, a polypill, a fixed-dose combination containing three or more drugs in a single pill, would be the solution. Methods describing simultaneous analysis of these combined pharmaceutical products will also be mentioned.
Chemical structures of statins
The first statin registered as a drug was lovastatin. Nowadays, in therapy it is greatly replaced by new synthetic products, mainly atorvastatin and simvastatin. Therefore there are not many new methods for determination and quantification of lovastatin in bulk drug and pharmaceutical formulations.
There are scarce reports investigating the conversion of statins from lactone to their corresponding hydroxy acid forms. Yang and Hwang studied the conversion of lovastatin and simvastatin from lactone to corresponding hydroxy acid forms [11]. They concluded that the conversion of lactone forms to corresponding hydroxy acid forms would occur in water or 70% acetonitrile. However, this conversion could be retarded by addition of acetic acid to the solution. Hence a mobile phase with acetic acid added to the composition is recommended for HPLC analysis. Furthermore, lactone forms could only be transformed to their corresponding hydroxy acid forms in 0.1 M NaOH or 0.05 M KOH prepared in 25% or 50% acetonitrile in water. When alkaline methanolic solutions were used further transformation to methyl ester of hydroxy acid form would take place. Recently another paper was published investigating conversion of lovastatin [12]. The identity of all three forms, lovastatin, lovastatin hydroxy acid and its methyl ester was confirmed by electrospray ionization (ESI) mass spectrometry (MS). Their results imply that also under acidic conditions, with increase of storage time, lactone is converted to hydroxy acid form and further transformed to methyl ester form.
Bearing in mind the interconversion problem, special attention should be given to the choice of a mobile phase for HPLC analysis, the extraction procedure and sample storage time. Methanol in acidic conditions should be avoided because it induces the conversion and transformation of lovastatin forms. Hence, most recently developed LC methods utilize pH around 4.5.
Lovastatin is an active pharmaceutical ingredient in red yeast rice products, used as a dietary supplement. In such products lovastatin is mostly refered to as monakolin K, and is accompanied by 13 more monacolins naturally occurring in red yeast rice. These products are frequently used by millions of people as a complementary and alternative therapy for lowering total lipid and LDL cholesterol levels. Unfortunately dietary supplements do not follow strict quality control as medicines do, active ingredients are not standardized and published on labels, and considerable variations can be found among different manufactures even between lots of the same manufacture. Therefore there is a growing need for specific and precise methods for determination of lovastatin in red yeast rice dietary supplements in order to ensure standardization, efficacy and safety of these products.
Identification and chemical profiling of all 14 monacolins in red yeast rice and its formulated products was conducted using HPLC with photodiode array detecore (PDA) and MS [13]. Because red yeast rice has a complex matrix, sample extraction procedure was carried out with 75% ethanol. Chemical profiling was performed using electrospray ionization and ion trap mass analyzer. Since lovastatin content depends on the fermentation process of the rice by
A stability-indicating method for the stress test of red yeast rice was also performed [15]. An assay of seven main monacolins, monacolin K (lovastatin), monacolin J, monacolin L and their corresponding hydroxy acid forms and dehydromonacolin K, representing 97% of total monacolins, was determined. In order to shorten the analysis time Song et al. proposed a fast screening method of lovastatin in red yeast rice products by flow injection tandem mass spectrometry without LC separation [16].
Simvastatin is along atorvastatin the most often used statin drug and there is a great number of analytical methods developed. Novakova et al. published a review paper on HPLC methods for the determination of simvastatin and atorvastatin [17]. An oversight on different areas of application, pharmaceutical formulations, clinical medicine (human plasma) and environmental (aqueous samples) was given. A more detailed overview will be given on papers not covered by this review.
A simple HPLC-UV method was optimized according to the USP chromatographic method for simvastatin [18]. By changing the column length from 30 cm to a Chromolith RP18 monolithic column, 10 cm in length and reducing the pH to 3.0, a reduction in elution time was about 60%, resulting in analysis time less than 4 min. Method was applied to determine the quality of 60 compounding simvastatin 40 mg capsules. The mean content and weight variation evaluation, content uniformity, determination of simvastatin concentration, determination of lovastatin as an impurity and the dissolution test were performed. Results were devastating. The mean content of the capsules varied from 70 mg to 316 mg. In ten Brazilian pharmacies more than one tested capsule was outside the range from 85-115%. Only three pharmacies presented content uniformity with values complying to reference ones. Capsules from all the pharmacies resulted in simvastatin content less than 100% of the declared value. In 6 of them the content ranged from 4-87% of the declared amount. These results do not meet the requirements for simvastatin contents, resulting in underdosing. These appalling results emphasize the need for the control of raw material, compounding process and finished products quality, efficacy and safety.
Tablet splitting is a somewhat controversial topic among pharmacy practitioners, patients, managed care organizations and many other associations involved in health care. However it has become increasingly common, especially within geriatric and psychiatry communities. There are many concerns surrounding tablet splitting program, mainly if there will be considerable weight fluctuations, will the daily dose be the same in two half\'s, and will tablet splitting deliver same clinical outcomes at a lower cost. Hill et al. presented an HPLC-UV method, taken from the USP monograph and adapted to half-tablets, for drug content and weight uniformity for half-tablets of six commonly split medications, including simvastatin [19]. There analysis found 38.80 mg as target drug content, while the measured drug content mean was 40.06 mg, with a RSD 4.29%. Target drug content ranges from 95.21% to 111.35%. These small changes in daily dose should have no significant impact on long-term clinical end points.
RP-HPLC method was developed and validated for simultaneous analysis of simvastatin and tocotrienol and tocopherols isoforms in simvastatin-tocotrienol nanoparticles manufactured as potential targeted therapy of breast cancer [20]. In order to obtain good resolution in short analysis time the separation was carried out on a Phenomenex Onyx C18 monolithic column (100 mm x 4.6 mm) with a gradient elution.
Preparation and evaluation of a high-dose nicotinic acid loaded sustained-release pellets coated with double polymer and immediate release simvastatin was introduced by Zhao and co-workers [21]. After the preparation of drug-loaded pellets, drug content analysis was performed by HPLC for both nicotinic acid and simvastatin. However, unnecessary, different methods, using similar columns and mobile phases, were employed.
There are a number of methods describing simultaneous determination of simvastatin and ezetimibe from their combination drug products [22-25]. Stability indicating studies on combined pharmaceutical products of simvastatin and ezetimibe have also been published [24, 25]. Different approaches to forced degradation study, chromatographic conditions and determination of degradation products were performed. Hefnawy and co-workers proposed a very fast and sensitive stability indicating method for simultaneous determination of ezetimibe and simvastatin in tablet dosage form [25]. Instead of traditional chromatographic columns packed with porous particles, they used a monolithic stationary phases, i.e. RP Merck Chromolith Performance column (RP-18e, 100 mm x 4.6 mm). Due to monolithic stationary phase, an elevated flow rate is possible, resulting in a run-time five-fold reduced (analysis time under 2 min), consumption of mobile phase about two-fold decreased, while the resolution between peaks remained unaffected.
Several methods have been developed for identification and quantification of known impurities, but many also studied fragmentation and structural determination of unknown simvastatin impurities [26-29]. Structural characterization and identification of a new compound, an unknown simvastatin by-product generated during the industrial synthesis starting from lovastatin was published [26]. After HPLC-diode array detector (DAD) analysis, ESI-ion trap mass analyzer was employed to obtain MS/MS spectra, followed by Fourier transform-infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) analysis.
Plumb et al. [27] proposed a method using high resolution sub 2 μm particle LC column together with hybrid quadrupole orthogonal time-of-flight (TOF) mass spectrometer used to profile and identify simvastatin impurities. All common impurites were identified in a single 10 min run. A new impurity of simvastatin was detected and identified as the saturated ring form of simvastatin. The same group published a paper on screening pharmaceutical products by ultra performance liquid chromatography (UPLC) coupled to TOF-MS [28]. Principal components statistical analysis was used for rapid classification of batches of simvastatin tablets according to their impurity profile.
Reddy et al. [29] performed HPLC separation of simvastatin and its two main impurities, anhydro-simvastatin and simvastatin dimmer. An unknown impurity was detected. MS/MS spectrum was obtained by ESI+ and ion-trap mass analyzer and the structure of the so far unknown simvastatin impurity was proposed. Recently, a paper on synthesis, characterization and quantification of simvastatin\'s metabolites and impurities was published [30]. This method emphasizes use of non-compendial reference standards for quantification, with shorter analysis time and improved sensitivity. β-hydroxy acid and methyl ester of simvastatin were synthesized as non-compendial reference standards. After complete and detailed characterization by MS, FT-IR and NMR, they were used as reference standards in quantification of simvastatin impurities.
An HPLC method for quantification of pravastatin in tablets was published [31]. However, an unnecessary complicated extraction procedure and linearity investigation was performed. Identification of an impurity in pravastatin was performed by application of collision-activated decomposition mass spectra both in positive and negative ionization mode [32]. The impurity is an analogue of pravastatin with an additional methyl group on ester side chain.
Two stability indicating studies of pravastatin under different forced degradation conditions were conducted [33, 34]. Forced degradation study was performed for neutral, acid and basic hydrolysis, chemical oxidation, photochemical degradation and thermal stress using HPLC-UV [33]. Under neutral hydrolysis a decrease in the peak area of pravastatin was observed accompanied by two additional peaks. In basic hydrolysis a 90% decrease of pravastatin peak was noted and an additional peak is obtained, while in acidic conditions pravastatin peak completely disappeared and two new signals appeared. Degradation of pravastatin was also observed under oxidative conditions, while under thermal stress no change was percived.
Results obtained by Brain-Isasi et al. [34] are somewhat different then those previously published [33]. They argue that the previously described method was to short (7 min) to observe all degradation peaks obtained by acid hydrolysis while all of them are eluting after pravastatin. This indicates they are more liphophyllic than the parent drug, probably formed after esterification and lactonization of pravastatin. By the use of MS/MS spectra obtained in the positive mode, one of the peaks was identified as pravastatin lactone form. In alkaline medium only one product was observed and after preparative TLC it was isolated and identified by 1H-NMR and 13C-NMR as the 8-hydroxy derivate of pravastatin.
Photodegradation study of fluvastatin has been studied and examined by high-performance-thin-layer chromatography (HPTLC) and spectrophotometry [35]. Photoproducts were separated by HPTLC on a nonpolar C18 stationary phase with a mixture of phosphate buffer and methanol as a mobile phase. Both in water and methanol solutions, photochemical decomposition led to the formation of three major products.
Of all seven statins, atorvastatin is the most often administered statin drug. In fact, it is one of the most often prescribed prescription drugs overall. Therefore many methods are developed for determination and quantification of atorvastatin in bulk drug and pharmaceuticals. Since Novakova et al. in 2008 [17] gave a review of HPLC methods for the determination of atorvastatin in pharmaceutical assays, only papers published afterwards will be presented.
There are several stability indicating methods for determination of atorvastatin using different techniques and detectors. A RP-HPTLC method using aluminium sheets precoated with silica gel 60 RP18F(254) as the mobile phase consisted of methanol-water was used for determination of atorvastatin in bulk drug and pharmaceutical formulation [36]. Quantification was conducted densitometrically at 246 nm. Under acidic conditions drug underwent significant hydrolysis, while it was stable under alkali, oxidation, dry heat and photodegradation conditions. HPLC method using fluorescence detector (282 nm excitation, 400 nm emission) was introduced for analysis of atorvastatin and its degradation products in bulk drug and tablet form [37]. HPLC method with UV detection at 247 nm was developed for determination of atorvastatin and its degradation products in bulk drug, marketed tablet and in-house prepared nanoemulsion formulation [38].
Another stability indicating method was proposed for simultaneous determination of atorvastatin and amlodipine alongside with their degradation products in commercial combined tablets [39]. An UPLC method using ethylene bridged hybrid C18 column (50 mm x 2.1 mm, 1.7 μm) was used for simultaneous determination and quantitation of atorvastatin, acetylsalicylic acid and their four known and six unknown degradation products in combined dosage forms [40].
Two LC-MS method were reported for structure determination and identification of atorvastatin degradation products. An LC method employing an atmospheric pressure chemical ionization (APCI) source in positive mode with TOF mass spectrometer for acquiring accurate mass and an ion trap analyzer for complete fragmentation pattern was introduced [41]. Six unknown atorvastatin degradation products formed under stress conditions of hydrolysis, oxidation and photolysis were identified. Preparative HPLC method with Luna prep C18(2) column (200 mm x 50 mm, 10 μm) was used for isolation of four oxidative degradation products [42]. HPLC coupled to MS, high resolution MS and NMR spectroscopy were applied for the structure elucidation. Quantitative NMR spectroscopy was used for assay determination of isolated oxidative atorvastatin degradation products. A fast UPLC method with analysis time of 3 min was employed for determination of atorvastatin, fenofibrate and their degradation products in combined dosage forms [43].
We have developed HPLC/DAD/ESI/MSn method for separation and identification of atorvastatin and its four related impurities [44]. To avoid hydrolysis of the atorvastatin lactone and the lactonization of acid form, ammonium buffer pH 4.0 was used. In order to achieve separation between atorvastatin and its diastereomer, several mobile phases were examined. Finally, a gradient elution mode was chosen to achieve good separation between peaks adjacent to the drug components, as well as to keep short analysis time of lipophilic impurities (Fig. 2.). Mass spectra were obtained by ESI source in the positive ion mode and ion trap analyzer. For quantitative analysis of atorvastatin and its four known impurities multiple reaction monitoring (MRM) mode was employed. Several unknown impurities were identified through MS/MS fragmentation analysis, i.e. diamino-atorvastatin, photolytic oxo-product, photolytic degradation product and diastereomer of atorvastatin lactone. Method was successfully applied to bulk drug and pharmaceutical dosage forms provided by different manufactures (Figure 2).
HPLC-UV method was developed for simultaneous determination of atorvastatin and seven related compounds specified as process-related impurities and possible degradation impurities. Experimental design was used during method optimization and robustness testing [45]. Artificial Neural Networks were used for the modelling and prediction of chromatographic retention of atorvastatin and its impurities in micellar liquid chromatography [46].
Atorvastatin in combined dosage forms, e.g. with ezetimibe, fenofibrate, ramiprile was determined by HPTLC methods [47, 48]. HPLC methods were published for simultaneous determination of atorvastatin in combination with amlodipin [49], fenofibrate [50], ezetimibe [51]and ramiprile [47, 52]. An improved HPLC method, with higher sensitivity and shorter analysis time using a chemometric protocol (statistical experimental design and Derringer\'s desirability function) was developed for simultaneous analysis of amlodipine and atorvastatin in pharmaceutical formulations [53]. Three HPLC methods have been published for analysis of atorvastatin and acetylsalicylic acid in combination with clopidogrel [54] and ramipril [55].
Total ion current chromatogram of atorvastatin pharmaceutical dosage form (A) and MS spectra of its process related impurity diamino-atorvastatin (B)
HPLC method was used for investigation of polypills for the treatment of cardiovascular diseases [56]. Seven drugs, i.e. lisinopril, aspirin, atenolol, hydrochlorothiazide and simvastatin/pravastatin/atorvastatin in the presence of their major interaction and degradation products were separated on a C8 column. In order to obtain mass spectra of the interaction and degradation products, ESI-MicroTOFQ mass spectrometer was employed. Atenolol, lisinopril, simvastatin and atorvastatin mass spectra were acquired in positive ESI mode, while hydrochlorotiazide and aspirin were ionized better in negative mode. Pravastatin gave good molecular ions in both modes. All the interaction and degradation products gave satisfactory mass spectra in positive ESI modes, except for two pravastatin related products which showed better molecular ions in negative mode. Results suggested that use of pravastatin in relate to other statins resulted in more interaction and degradation products, as well did the combination with atenolol by comparison with hydrochlorotiazide. This is a very nice approach that can be utilized for drug-drug interactions and stability studies of the polypill. Drawbacks of the proposed method are long analysis time of 90 min, replacement of the phosphate buffer with water for MS analysis and three different gradient methods for each of the statins.
Far to our knowledge first HPLC method for the determination of rosuvastatin in bulk drug and in its dosage form was published by Mehta et al [57]. A forced degradation study was done at various pH values, under hydrolytic, oxidative, photolytic and thermal stress conditions. Developed method was able to resolve the degradation products formed during the stress study.
Not so commonly used in quality control analysis of pharmaceuticals, HPTLC method was proposed [58] for determination of rosuvastatin in its bulk drug and pharmaceutical preparations. Analysis was performed in a Camag twin-trough chamber on silica gel 60F(254) HPTLC plates. Aceclofenac was used as internal standard. Optimized mobile phase consisted of toluene-methanol-ethyl acetate-formic acid. Quantitation was performed densitometrically at 265 nm.
A paper employing both HPTLC and HPLC for determination of rosuvastatin and ezetimibe in combined tablet dosage forms was published [59]. HPLC analysis was performed on a Chromolith C18 column (100 mm x 4.6 mm) with PDA detector set at 245 nm. HPTLC separation was carried out on an aluminum-backed sheet of silica gel 60F (254) layers using n-butyl acetate-chloroform-glacial acetic acid as the mobile phase. Quantification of analites was performed with UV densitometry at 245 nm. A stability indicating method for simultaneous estimation of rosuvastatin and ezetimibe in their combination drug product was introduced [60]. Under oxidation, thermal and photodegradation conditions, both drugs were relatively stable. For rosuvastatin a high degree of degradation was observed in acidic hydrolytic conditions (0.1 M HCl at 80 °C for 1h), while ezetimibe was stable. On the contrary, ezetimibe was completely degradated with 0.1 M NaOH at 80 °C in 30 min, while rosuvastatin remained stable.
Simultaneous determination and quantification of atenolol, rosuvastatin, spironolactone, glibenclamide and naproxen sodium in bulk drugs, pharmaceutical formulations and in spiked human plasma was performed by HPLC [61].
Pitavastatin is the newest statin on the market available in Japan since 2003, and approved for use in US in 2009. Currently pitavastatin is under evaluation in Europe (in UK it was approved in 2010). Hence, not many methods have been reported for determination of pitavastatin in bulk drug and pharmaceutical formulations.
Two HPTLC methods were reported for the determination of pitavastatin in commercial pharmaceutical dosage forms [62, 63]. Validation was performed and both methods were shown to be selective, sensitive and accurate.
A HPLC method was proposed for determination of pitavastatin in pharmaceutical dosage forms by Kumar et al [64]. Separation was achieved on a Phenomenex C18 column (250 mm x 4.6 mm, 5 μm) in isocratic mode. Different mobile phases were tested and based on the best separation, analysis time, cost-effectives, sensitivity and suitability for the stability studies, a mobile phase consisted of 0.5% acetic acid:acetonitrile (35:65,
Several stability indicating methods have been published [65-68]. Panchal and co-workers proposed two different methods, using liquid chromatography and ultraviolet spectrophotometry for determination of pitavastatin in tablet dosage forms [66]. Additionally forced degradation study was conducted under acidic, basic, oxidative, thermal and photolytic conditions. No change in the area of pitavastatin peak and no additional peaks were detected under photodegradation conditions. Both acidic and basic hydrolysis and thermal conditions generated additional peaks. After oxidative degradation a significant decrease of pitavastatin peak and additional peaks were observed. Linearity range of the LC method was 0.1-2.5 µg/mL, while for the UV method it ranged from 2-20 µg/mL. The limit of detection (LOD) of the LC method was 0.0055 µg/mL, whereas for the UV method it was much higher, 0.4062 µg/mL. Statistical comparison between two methods by applying the paired t-test was performed and no statistically significant difference was observed.
UPLC stability indicating method was developed for degradation study of pitavastatin [67]. Separation of pitavastatin and its degradation products and impurities was performed in less then 5 min. More detailed photodegradation study of pitavastatin was conducted by Grobelny et al. [68]. Pitavastatin solution was exposed to UV-A radiation. HPLC analysis was performed to monitor the changes of pitavastatin. Identification of four photoproducts was conducted by MS analysis.
A single method is reported for simultaneous determination of pitavastatin and ezetimibe [69]. After optimization and validation, the proposed method was successfully applied for determination of pitavastatin and ezetimibe in a prepared binary mixture. However, no real sample was tested.
LOV | stability indicating study | HPLC PDA 237 nm | Symmetry C18 (150 x 3.9 mm, 5 μm) | Gradient elution A: ACN B: 0.1% TFA | 15 |
SIM, EZE | combined dosage form | HPLC UV 240 nm | Chromolith Performance monolitich column RP-18e (250 x 4.6 mm) | ACN:50 mM ammonium acetate (65:35) | 25 |
SIM | impurity profiling | HPLC DAD 240 nm, ESI-ion trap | Symmetry Shield RP 18 (250 x 4.6 mm, 5 μm) | ACN:water (85:15) | 26 |
SIM | combined dosage form | UPLC Q-TOF MS | Acquity BEH C18 (100 x 2.1 mm, 1.7 μm) | gradient elution ACN:ammonium acetate pH 6 | 28 |
PRA | impurity profiling | HPLC APCI-CAD MS | Betasil C18 (250 x 4.6 mm) | gradient elution A: 30%methanol+10 mM ammonium acetate B: 100% methanol + 10 mM ammonium acetate | 32 |
PRA | stability indicating study | HPLC UV 238 nm | Alltima C18 (150 x 4.6 mm, 5 μm) | methanol:0.02 M phosphate buffer pH 7 | 33 |
ATO, AML | stability indicating study | HPLC UV 237 nm | Perfectsil Target ODS-3 (250 x 4.6 mm, 5 μm) | ACN:0.025 M sodium dihydrogen phosphate pH 4.5 (55:45) | 39 |
ATO, ASA | stability indicating study | UPLC UV 247 nm | BEH C18 (50 x 2.1 mm, 1.7 μm) | ACN:0.1 M phosphate buffer | 40 |
ATO, FEN | stability indicating study | UPLC UV 247 nm | BEH C18 (50 x 2.1 mm, 1.7 μm) | ACN:0.01 M ammonium acetate pH 4.7 | 43 |
ATO | related compounds | HPLC UV 248 nm | Zorbax XDB C18 Rapid Resolution HT (50 x 4.6 mm, 1.8 μm) | gradient elution A: Tetrahydrofuran:ACN (90:10) B: 0.025M phosphate buffer pH 3.5 | 45 |
ATO, RAM | combined dosage form | HPLC HPTLC | Phenomenex Luna C18 (250 x 4.6 mm, 5 μm) Silica gel 60F254 | 0.1% phosphoric acid:ACN (38:62) methanol-benzene-glacial acid (19.6:80.0:0.4) | 47 |
ATO, FEN | combined dosage form | TLC UV 258 nm | Aluminum foil silica gel 60 F-254 | toluene-methanol-triethylamine (7:3:0.2) | 48 |
ATO, SIM, PRA | pharmaceutical dosage form | HPLC UV 225 nm ESI-QTOF MS | Supelco C8 (250 x 4.6 mm, 5 μm) | gradient elution A: ACN B: phosphate buffer pH 2.3 | 56 |
ROS, EZE | combined dosage form | HPLC HPTLC UV 245 nm | Chromolith C 18 (100 x 6 mm) Aluminium-backed silica gel 60F(254) | 0.1% orthophosphoric acid pH 3.5:ACN (63:37) | 59 |
ROS, EZE | stability indicating study | HPLC UV 242 nm | Hypersil C18 (150 x 4.6 mm, 5 μm) | 0.05 M phosphate buffer pH 2.5:methanol (45:55) | 60 |
PIT | pharmaceutical dosage form | HPTLC UV 245 nm | Aluminum backed Silica gel 60F(254) | ethyl acetate-methanol-ammonia+1drop formic acid (7:2:0.8) | 62 |
PIT | photostability study | HPLC MS | LiChrospher RP-18 (250 x 4.6 mm, 5 μm) | gradient elution A:ACN B:10 mM phosphate buffer | 66 |
ROS, ATO, SIM, LOV, PRA | pharmaceutical dosage form | HPLC GC UV 246 nm | Symmetry C18 (250 x 4.6 mm, 5 μm) HP-1 (30 m x 0.25 mm x 0.25 μm) | ACN:water (70:30) pH 2.5 1.2 mL/min 2.9 mL/min (GC) | 123 |
PRA, FLU, ATO, ROS | stability indicating study | HPLC | RP C18 | methanol-water (60:40)-PRA,ROS Methanol-water (70:30)-FLU,ATO | 124 |
Chromatographic methods for analysis of statin drugs in pharmaceuticals
There have been three reviews on analytical methods for the determination of HMG-CoA reductase inhibitors in biological samples. The first one, published by Ertürk and co-workers in 2003 [70], reviews bio-analytical methods for lovastatin, simvastatin, pravastatin, fluvastatin and atorvastatin. The second one, published in 2007, is focused only on chromatography-mass spectrometry methods for the quantification of statins in biological samples [10]. In 2008 Nováková and co-workers [17] have published a review on HPLC methods for the determination of simvastatin and atorvastatin in various fields of application, including bioanalytical assays. Since these reviews have been published, a number of bioanalytical methods have been developed for all HMG-CoA reductase inhibitors. Most of the methods published since 2007 were applied for investigation of HMG-CoA reductase inhibitors in human plasma or serum. Far to our knowledge since 2007 only two LC/MS/MS methods for determination of statins in human urine have been developed. The sample preparation procedures and analytical assays for quantification of statins in biological samples are listed in Tables 2 and 3.
Sample preparation is a quite tedious but still unavoidable procedure in bioanalitical methods. The objective of this delicate and challenging step is to transfer analyte of interest into a form that is purified, concentrated and compatible with the analytical system. The extraction and enrichment of analytes from the sample matrix are often realized by procedures such as, protein precipitation, liquid-liquid extraction (LLE) and solid-phase extraction (SPE). These conventional sample preparation procedures are still dominating in the preparation of biological samples for determination of statin drugs as well as their metabolites.
In most of the methods protein precipitation reagent is used as a dilution solvent for internal standard in order to reduce the number of reagent additions [71-74]. Still, Apostolou and co-workers [75] suggested addition of protein precipitation reagent after the internal standard in order to ensure a more satisfying binding of internal standard molecules with plasma proteins, simulating the binding of proteins with analytes in real human plasma. A number of different protein precipitation reagents were tested [76]. Despite the good recoveries obtained with phosphoric acid, the authors recommended to avoid acidic precipitants due to degradation of fluvastatin in acidic conditions. The highest recoveries were obtained with organic solvents. Although no significant differences were observed between methanol and acetonitrile, the second one was used as it offered a more compact precipitate minimizing the risk of SPE cartridge obstruction.
The simplest way to concentrate the analyte is certainly LLE. Hence, Hamidi and co-workers [73] tested a wide spectrum of organic solvents from various physicochemical categories with different volume fractions as well as combinations for extraction of lovastatin from human plasma. The best extraction efficacy was obtained using diethyl ether as extraction solvent. The same solvent was used for extraction of pitavastatin from human plasma [77]. An addition of hidrocloric acid to the plasma samples afore the extraction procedure was shown to be necessary in order to obtain the non-ionized form of analyte which considerably improved extraction efficacy. Assays employing LLE with ethyl acetate [78] and ethyl ether [79] as extraction solvents for determination of rosuvastatin in plasma samples were already published with extraction recoveries of 74 and 69%, respectively. However, in the preliminary study by Lan and co-workers [80], it was found that the extraction recovery of rosuvastatin from plasma in most common organic solvents, such as above mentioned ethyl acetate and ethyl ether, was less than 20%, resulting in an insufficient, imprecise and inaccurate extraction procedure. The authors presumed that low extraction efficacy of rosuvastatin was due to its extremely low water solubility. However, a carboxyl group in its structure forms a salt with calcium ion which indicates that rosuvastatin was apt to ionization. The application of ion paring with tetrabutyl ammonium hydroxide was suggested for improvement of rosuvastatin solubility and subsequently extraction efficacy. Finally, using ion paring LLE, extraction efficacy of rosuvastatin in ethyl acetate was improved from around 10% to more than 50%. A somewhat unusual LLE method for determination of timolol maleate, rosuvastatin and diclofenac in human plasma and aqueous humor from the bovine eyes was proposed [81]. The mobile phase, consisted of acetonitrile and 0.2% triethylamine, was used as extraction solvent. The quite high extraction efficacy of all investigated compounds was obtained using this uncommon extraction solvent.
Although LLE is generally considered to be providing cleaner extracts and lower matrix effect than the SPE, lower recovery due to the transfer of a fraction of the organic extract after the extraction may be the main disadvantage of the LLE technique. Moreover, when low concentrations have to be detected it is necessary to use a large solvent volumes and sample preparation becomes time consuming and labor invasive. In order to reduce organic solvent consumption, sample volume and sample preparation time, Apostolou and co-workers [75] have presented a fully automated high-throughput two-step LLE-LC/MS/MS method for the quantification of simvastatin and its acid form using a robotic liquid handling workstation with 96-deepwell plates. Another fully automated high-throughput salting-out (SA) assisted LLE-LC/MS/MS method was introduced by Zhang and co-workers [82]. Due to the compatibility between SALLE and LC/MS/MS, the extracts of simvastatin and its acid from human plasma were injected directly into LC system immediately after sample extraction. In this way extract solvent evaporation was eliminated and consequently sample preparation procedure was simplified. Also, the exposure of the extracts to the room temperature was minimized and hence minimal interconversion between simvastatin and its acid was achieved.
Among the SPE methods, the reverse phase cartridges have been extensively used for extraction of statins from biological samples. Gonzalez and co-workers [76] have presented a nice work regarding the traditional one-variable-at a time optimization for SPE extraction of fluvastatin together with other drugs from human plasma. The optimization of conditioning and washing solution composition, pH for conditioning and washing step and elution solvent selection were described in details. The SPE procedure has also been used as sample preparation step for quantification of atorvastatin and simvastatin as well as their metabolites in serum from patients with end stage renal disease [83]. In order to obtain the satisfactory and repeatable extraction efficacy and to remove matrix effects, several different reversed-phase SPE sorbents have been tested. The best results were obtained using ZORBAX SPE C-18 (Agilent Technologies) and Discovery DSC-18 SPE (Supelco) cartridges. As ZORBAX SPE C-18 columns were withdrawn from commercial market circulation during optimization of method, further investigations were performed using Discovery DSC-18 SPE cartridges. For the purpose of minimization of the interconversion between lacton and open-ring hydroxy acid forms of simvastatin and atorvastatin, SPE sorbents were conditioned and analytes were eluated with solvents containing 0.1 M acetate ammonium buffer pH 4.5. In the work of Di and co-workers [84) SPE sample preparation procedure was used for determination of pitavastatin with rosuvastatin as internal standard in human plasma. The influence of pH on extraction efficacy of statin drugs was investigated in detail. The authors have pointed out importance of 0.5 M potassium dihydrogenphosphate buffer (pH 4.0) as conditioning reagent for cartridges. At pH lower than 4 both molecules were protonated, leading to a decrease in its partitioning in reversed-phase SPE and recovery. At pH higher than 4, the carboxylic group in both pitavastatin and rosuvastatin undergo ionization, which also resulted in a decrease in the recovery for the same reason. Furthermore, it was found that pitavastatin degradation was much faster at lower than at high pHs. Also, it was found that pitavastatin was sensitive to sunlight. It was recommended to minimize the exposure of samples to sunlight as well as to dissolve the dried extract rather in methanol and water than in mobile phase containing formic acid.
To reduce the time of sample preparation, Mertens and co-workers [85] have used an automated SPE on disposable extraction cartridges to isolate pravastatin and its metabolites together with fenofibric acid, another lipid-regulating agent, from the human plasma and to prepare cleaner samples before injection and analysis in the LC/DAD/MS/MS system. Different kinds of disposable extraction cartridges containing bonded silicas of different polarities (ethyl, endcapped ethyl, octyl, endcapped octyl, octadecyl, endcapped octadecyl and cyanopropyl) were tested. The best recoveries for all investigated compounds were reported when disposable extraction cartridges filled with octyl functionalized silica sorbent were used.
Unfortunately, conventional SPE and LLE approaches are multi-step, time-consuming and the sample required for analyses as well as the consumption of organic solvent are quite high, particularly in case of LLE. A solvent-minimized sample preparation approach has been popular in last decades, therefore Farahani and co-workers [71] have published liquid-liquid-liquid microextraction procedure (LLLME), a miniaturized format of LLE, for determination of atorvastatin in human plasma. A number of factors affecting the microextraction efficiency were studied in detailed and the optimized conditions were established. They have obtained quite high extraction efficacy of atorvastatin from human plasma using proposed sample preparation procedure. Vlčková and co-workers [86] have developed fast and simple extraction procedure using microextraction by packed sorbent (MEPS) for sample purification and concentration of atorvastatin and its metabolites from human serum. Briefly, MEPS is a miniaturization of conventional SPE, but it differs from commercial SPE by fact that packing is inserted directly into the syringe, not into a separate column. In addition, they have compared a previously described [83] SPE procedure for extraction of atorvastatin and its metabolites from human serum with newly developed MEPS approach. The results of samples treated by SPE and MEPS were compared by means of Student
The high performance liquid chromatography has become the method of choice for bioanalytical methods. Generally, in the HPLC methods reversed-phase C18 chromatographic columns were used for analysis of statin drugs in biological fluids. The recently developed columns based on BEH particles technology were employed in several methods [83, 86, 87]. Only in one assay reversed-phase C8 chromatographic column was used [88]. Unusually, reversed-phase narrow bore phenyl column was employed for investigation of atorvastatin, rosuvastatin and their metabolites [74, 89]. The length and diameter of columns differed fairly from 50 to 250 mm and from 2.0 to 4.6 mm, respectively. Although in most of the cases columns with particle size 5 μm were used, several authors preferred columns with smaller particles in order to obtain better peak shapes, resolution and thus shorter analysis time [72, 82, 83, 86, 87]. Analytical run times have been very variable, the shortest 2 min, the longest about 20 min.
The selection of mobile phase was quite a challenging task in all investigations. In most of the methods acetonitrile or methanol were present in the mobile phase as organic solvent. The percentage of organic solvents was optimized such that the retention times of analytes were kept as short as possible. In most assays percentage of organic solventwas quite high, usually more than 70%. The majority of publications emphasize the pH as the most critical variable for separation of the statin drugs [76, 82, 84]. In order to minimize the interconversion, it is critical to maintain pH of mobile phase between 4 and 5.
The influence of mobile phase pH on retention of atorvastatin and rosuvastatin has been investigated [90]. Since both of the analytes are acidic compounds, their retention on the reversed-phase column was expected to be pH dependant. When pH of the mobile phase was decreased from 4.0 to 3.0, the retention times of the analytes decreased unexpectedly and with further decreases in the pH to 2.0 the retention times increased once again. This behavior was explained by a change in binding of the analytes to the stationary phase and also changes in the solubility of the analytes in the mobile phase. The pH 3.0 was chosen as optimum pH because of the reasonable retention times while the resolution between peaks, as well as peak shapes, were satisfactory.
The pH of mobile phase was also a critical variable for the separation of the fluvastatin from valsartan and its metabolite during the optimization of LC/PDA/FLD method [76]. The pH of the mobile phase was limited by the native fluorescence of valsartan and its metabolite, which disappears in the basic form (p
The flow rate of the mobile phase was in range from 0.2 up to 1.5 mL/min. In all of the assays the flow rate did not change during the chromatographic analysis except in the reference [76] where the flow rate was gradually changed after three minutes.
The chromatographic separation of most of the methods was performed at room temperature. In order to shorten analysis time, in the several cases the column temperature was maintained above 30 °C [76, 77, 81, 83, 86, 87]. The effect of column oven temperatures on the analysis of atorvastatin and rosuvastatin in the range 25 to 35 °Cwas investigated and best results were observed at 25 °C in terms of retention factor and resolution [90]. Increasing temperature above 25 °C resulted in the rapid elution of rosuvastatin close to the solvent front.
Recovery (%) | ||||||
ATO | plasma | PP, LLLME | - | methanol , HCl, trichloroacetic acid /1-octanol | 91 | 71 |
SIM, MET IS=propranolol hydrochloride | plasma | PP | - | methanol:water (1:1) | 83-91 | 72 |
ROS + metabolites IS=deuterium labeled | plasma | PP | - | 0.1% acetic acid in methanol | 88–106 | 74 |
FLU, VAL + metabolite, CLT IS=candesartan cilexetil | plasma | PP, SPE | Phenomenex Strata-X polymeric C18 | ACN/methanol | 78–91 | 76 |
ROS IS=hydrochlorothiazide | plasma | LLE | - | ethyl ether | 69–72 | 79 |
ROS IS=estrone | plasma | ion pair LLE | - | ethyl acetate | 47–63 | 80 |
ROS, TIM, DIC IS=naproxen | plasma, bovine aqueous humor | PP, LLE | - | methanol/mobile phase | 95–99 | 81 |
SIM, SIM-acid IS=deuterium labeled | plasma | SALLE | - | ACN, 5 M ammonium formate buffer (pH 4.5) | 71–79 | 82 |
SIM, ATO + metabolites IS= deuterium labeled | serum | SPE | Supelco Discovery DSC-18 | ACN:0.1 M ammonium acetate buffer pH 4.5 (95:5) | 65-100 | 83 |
PIT IS=ROS | plasma, urine | SPE | Supelco SupercleanTM LC-18 SPE Tubed | methanol | plasma 84–88 urine 86–96 | 84 |
PRA + metabolites, FFA IS=triamcinolone | plasma | at-SPE | Disposable extraction cartridges C8 silica sorbent | methanol | 50–77 | 85 |
ATO + metabolites IS=deuterium labeled | serum | MEPS | C8 | ACN:0.1 M ammonium acetate pH 4.5 (95:5) | 89–116 | 86 |
PIT, PIT-lactone IS=racemic | plasma, urine | LLE | - | methyl-terc-butyl ether | plasma 70–75 urine 74–83 | 88 |
PRA, ASA IS=furosemide | plasma | LLE | - | tertiary butyl methyl ether | 51–66 | 94 |
Sample preparation procedures utilized for the determination of statins in biological samples
LC/DAD methods are rarely sensitive enough for quantification of statins as well as their metabolites in human plasma samples due to the poor UV-absorption properties of statin molecules. Furthermore, the levels of statins and their metabolites in biological fluids are very low due to low amount of drug reaching the systemic circulation. Their typical plasma concentrations are in ng/mL levels. However, several sensitive LC/DAD methods for determination of pravastatin [31], atorvastatin [71], lovastatin [73], rosuvastatin [81], and atorvastatin with rosuvastatin [90] have been developed with limit of quantification (LOQ) in range of 1 - 10 ng/mL. Less sensitive LC/DAD method for quantification of lovastatin in human plasma was developed [91]. The LOQ value for lovastatin was relatively high, 400 ng/mL. Another even less sensitive LC/DAD method for quantification of several HMG-CoA reductase inhibitors in human plasma was developed by Sultana and co-workers [92]. The LOQ values were between 376 and 1006 ng/mL. In fact, both of these methods were not used on real plasma samples.
Fluorescence detection has not been widely employed in the determination of HMG-CoA reductase inhibitors, as most of statins do not possess a natural native fluorescence. Still, Gonzalez and co-workers [76] have developed a SPE-HPLC/PDA/FLD method for determination of fluvastatin and valsartan in human plasma. Comparing results obtained with spectrophotometic and fluorimetric detector superior selectivity and sensitivity by fluorescence detection of fluvastatin could be perceived.
Recently UPLC is becoming a leading chromatographic technique in modern bio-analytical methods. Nováková and co-workers [83] have investigated its potential in combination with MS/MS detection for the fast, sensitive, reliable and selective detection of atorvastatin and simvastatin together with their main metabolites and interconversion products in human serum. Iriarte and co-workers [87] have investigated UPLC technique as a faster alternative to HPLC for simultaneous analysis of fluvastatin and other drugs usually prescribed in cardiovascular therapy. Acquity UPLC Columns Calculator software was used for transfer of previously developed HPLC method [76].
The UPLC technology has significantly improved the method optimization process since shorter analysis and re-equilibration times allowed a greater number of experimental testing conditions than with a conventional HPLC. The sample volume required was much lower than in HPLC method. Furthermore, shorter analysis time together with slower flow rates reduced the organic solvent consumption. The sharper and higher chromatographic peaks, thereby improved peak capacity, was obtained using UPLC technology. Still, the sensitivity of UPLC method was found to be analyte dependent as the improvement was not achieved for all analytes.
In pharmacokinetic investigations of statins LC/MS/MS technique is unequivocally the method of choice. Recently, several procedures were described in the literature taking the advantages of the benefits of mass spectrometry. Both ESI and APCI sources as well as triple quadrupole analyzator were applied in most LC/MS/MS sample analysis.
As it was mentioned above the selection of appropriate mobile phase composition for determination of statins in biological fluids is quite challenging task which is even more complicated when detection and quantification of statins is performed using MS. Only few additives could enable good stability at pH range 4 to 5 as well as volatility and sensitive mass spectrometric response.Therefore, Di and co-workers [84] have pointed out the importance of the formic acid in lowering the pH of mobile phase. In this way pitavastatin was obtained in non-ionized form and a symmetrical peak shape was observed. The concentration of formic acid was optimized not only to maintain a symmetrical peak shape in the chromatographic system but also to render good ionization and fragmentation of pitavastatin in the MS/MS detector. An addition of 0.025% formic acid to the aqueous phase was found to be an important factor for acquiring the high sensitivity of another LC/MS/MS method for determination of pitavastatin in human plasma [77].
Nováková and co-workers [83] have presented a nice example of optimization of the buffer pH and concentration in order to get the best signal to noise ratio of MS detector. Ammonium formate and ammonium acetate at pH 4.0 and 4.5 were tested at the concentration range 0.01 to 10 mM. The best response of atorvastatin and simvastatin was observed at 0.5 mM buffers. The concentrations higher than 5 mM significantly decreased the response of mass spectrometer. On the other hand, the concentrations lower than 0.5 mM were not sufficient to keep buffering capacity and thus had negative influence to the response of mass spectrometer. Ammonium acetate was preferred before ammonium formate because of better peak shapes. Finally, the optimized mobile phase composition was 70% of acetonitrile and 30% of ammonium acetate buffer 0.5 mM (pH 4.0). In most of bioanalytical methods isocratic elution has been utilized, still when more analytes with different polarities were separated, gradient elution had to be applied.
Tandem mass spectrometry detection for identification and quantification of simvastatin and atorvastatin together with their metabolites and lacton/hidroxy acid interconversion forms was employed [83, 86]. All analytes were monitored using electrospray positive ionization (ESI+) mode and for all analytes protonated molecule [M+H]+ was the most intensive ion in mass spectra. Quantification of all analytes was performed using selected reaction monitoring (SRM) and two specific transitions were optimized for each molecule in order to increase selectivity and sensitivity of the method. In the paper published afterwards simvastatin in its lactone form was determined in ESI+ mode, while its hydroxy acid form was determined in ESI- mode due to poor sensitivity of hydroxy acid form in positive ion mode [82].
LC/MS/MS method developed by Apostolou and co-workers [75] consisted also of two periods combining both negative and positive ionization modes. The mass spectrometer operated in the negative detection mode for 1.21 min until simvastatin and lovastatin hydroxy acid forms were eluted from chromatographic column. Afterwards a period of 0.69 min followed in the positive mode during witch simvastatin and lovastatin lacton forms were eluted. Comparing LOQ values for simvastatin acid obtained by these three methods it can be seen that lower LOQ values and thus better sensitivity were obtained in the last two methods. Unfortunately, simvastatin forms various adducts influenced by mobile-phase and matrix composition and such adducts sometimes give higher intensity than protonated molecule [M+H]+, which is an ideal precursor ion for SRM transition and quantification studies. However, Senthamil Selvan and co-workers [72] have observed very high signal of [M+Na]+ in the spectra of simvastatin next to the [M+H]+. Consequently, it was used as precursor ion for quantitation of simvastatin. Also, Zhang and co-workers [82] have used the methylammonium aduct [M+CH3NH4]+ as a parent ion for simvastatin because the adduct ion showed the best signal to noise ratio.
Rosuvastatin has a pyrimidine ring and a carboxylic group in its structure, hence it could be detected either in positive or negative ionization mode. However, the quantification of rosuvastatin in positive ionization mode is more common and was used for determination of rosuvastatin [80] and rosuvastatin together with its metabolites [74], respectively. In the both assays the major ion was protonated molecule [M+H]+ in full-scan mode and principal product ion was at
During the method development, Gao and co-workers [79] also attempted to optimize ESI conditions under positive ionization mode. However, the observed signal intensity was not sensitive enough for determination of expected rosuvastatin’s concentrations, especially for low dosage administration. Low sensitivity of positive ionization mode could be explained by a number of fragment ions produced in the product ion spectrum of [M+H]+. In order to improve the sensitivity of the method, the negative ESI detection was taken into consideration. Under negative ESI mode, rosuvastatin produced abundant deprotonated molecule [M-H]- at m/z 480. In the product ion mass spectrum of [M-H]-, fewer fragment ions were formed compared with that of [M +H]+. Also, it was pointed out that negative ESI mode produced lower chemical background noise than positive. Comparing LOQ values obtained by these three methods, it can be observed that almost five times lower LOQ value for rosuvastatin was obtained using negative ESI detection.
Pitavastatin has similar structure to rosuvastatin. It contains alkaline nitrogen ion on the quinoline ring and a carboxylic group, therefore positive and negative ionization mode could be also employed. Both of ionization modes for determination of pitavastatin in human plasma and urine by LC/MS/MS method were applied [84]. The results showed that the response intensity of pitavastatin in negative mode was lower and furthermore the response was quite unstable. Pitavastatin was scanned under Q1 MS full-scan mode to determine the parent ion and under Q1/Q3 product ion scan mode to locate the most abundant production. The protonated molecular ion, [M+H]+, was the predominant ion in the Q1 spectrum and was used as the parent ion to obtain the product ion spectra. The most sensitive mass transition was from
Recently, two LC/MS/MS methods have been developed for determination of pravastatin in human plasma [85, 94]. Both methods utilized ESI but in different modes. In the method developed by Martens and co-workers [85] the mass spectrometer was operated in the positive mode. The MS/MS detection was set up in MRM mode. The full scan mass spectra of pravastatin and its metabolites were scanned. The collision energy in Q2 produced different significant fragment ions. The MS/MS ion transitions selected for quantification purpose were
Internal standards have been used in most of the assays leading to more corrected results. In some cases one of the statins has been used as internal standard [73, 75, 77, 84], while other works utilized internal standards of various structure, including hydrochlorothiazide [79], estrone [80], naproxen [90], gemfibrozil [91], pioglitazone [95] etc. The best internal standards for precise and accurate quantification in MS or tandem MS are stable-isotope-labeled standards. Only a few works employed deuterium labeled standards [74, 82, 83, 86]. In the case of atorvastatin, [d5] labeling usually occurs on the phenyl ring, which does not contain fluorine. [d3] labeling of simvastatin occurs on the side chain, while [d6] labeling of rosuvastatin occurs on isopropyl group attached to pyrimidin ring. In most of investigations only one compound was used as internal standard.
However, Mertens and co-workers [85] have used two different internal standards for quantification of fenofibric acid, pravastatin and its metabolites in human plasma by automated SPE-LC/DAD/MS/MS technique. To avoid the need for plasma dilution and two time-consuming analytical runs, the use of two internal standards was necessary as the concentration of fenofibric acid was too high and MS signal appeared saturated. Hence, the sulindac was selected for the quantification of fenofibric acid by UV-detector, while the triamcinolone was used for MS/MS quantification of pravastatin and its metabolites. As it was mentioned above, in the method developed by Zhang and co-workers [82], the LC/MS/MS data acquisition for simvastatin was conducted in positive ionization mode, whereas the data acquisition for simvastatin acid was conducted in negative ionization mode. Therefore, it was inevitable to use two internal standards deuterium labeled simvastatin and deuterium labeled simvastatin acid, respectively.
Several GC/MS methods for determination of statins in biological samples have been reported [10]. Unfortunately, these methods are limited and not recommended for routine applications as they include analyte derivatization step prior to anaysis in order to obtain volatile derivatives of the drug molecule and therefore a complicate sample preparation procedures.
Simultaneous determination of lovastatin, simvastatin and pravastatin in plasma using GC with chemical ionization mass spectrometry has been described [70]. The analytes were isolated from plasma by SPE procedure which separated the lactone and acid forms of the drugs. The lactone forms were converted to the corresponding acid forms, which were subsequently derivatized by pentafluorobenzylation of the carboxyl group, and trimethylsilylation of the hydroxyl functions. The method has sufficient sensitivity for the analysis of clinical samples containing the drugs administered at therapeutic doses with recoveries between 79 and 90%. In another method, simvastatine and its acid form were derivatized with ferroceneboranic acid.
Far to our knowledge since 2001 no method for determination of statin drugs in biological samples using gas chromatography has been published due to imprecise and time consuming derivatization procedures which is an unavoidable step in analysis of statin molecules and the biggest disadvantage of using this technique.
Since all HMG-CoA reductase inhibitors are given to the patients once daily, monitoring plasma concentrations over a period of 24 hours is necessary. In all published papers monitoring plasma concentration levels were performed at least over 24 hours, except in references [74, 89] were the blood samples were collected at various time points during a period of 12 hours after a single oral dose of rosuvastatin and atorvastatin, respectively. Also, in pharmacokinetic and bioavailability study of simvastatin in healthy volunteers and moderately hyperlipemic patients\' drug plasma concentrations were monitored during 12 hours [96]. In the most of investigations pharmacokinetic parameters of statins were investigated after only one pharmaceutical tablet dosage.
Pharmacokinetic parameters of rosuvastatin have been investigated after single doses of 5, 10 and 20 mg [79]. The peak plasma levels obtained from this study were 8.32, 14.8 and 20.1 ng/mL, respectively. It was found that plasma exposure to rosuvastatin appeared increasing dose-proportionally and the plasma elimination half-lives were prolonged with increased doses. Not so many methods for determination of statins in human urine have been developed. The SPE-LC/MS/MS method was successfully applied to quantify the pitavastatin concentration in plasma and urine which were collected from Chinese volunteers [84]. The urinary excretion ratio of pitavastatin accounted for less than 0.6%, which suggested that pitavastatin was not excreted primarily by kidney. Quite similar data were obtained using LLE-LC/MS/MS method [88].
Several above described bioanalytical assays have been used in bioequivalence studies of statin drugs. The pharmacokinetic parameters derived from drug plasma concentrations, including maximum plasma concentration, area under the plasma concentration-time curve from 0 h to the last measured data, area under the plasma concentration-timecurve from 0 h to the infinity, the time to reach peak concentration, the apparent elimination rate constant, showed that there was no statistically significant difference between two investigated pharmaceutical formulations [72, 73].
ROS + metabolites, IS=deuterium labeled | plasma | Agilent Zorbax-SB Phenyl, Rapid Resolution HT (100 x 2.1 mm, 3.5 μm) | gradient elution A: 0.1% glacial acetic acid in 10 % methanol in water B: 40% methanol in ACN | HPLC ESI+ MS/MS MRM | 0.1– 0.5 ng/mL | 74 |
SIM, SIM acid IS= LOV, LOV acid | plasma | YMC ODS-A (50 x 4.0 mm) | ACN:5 mM ammonium acetate pH 4.5 (82:18) | HPLC APCI/ESI-/ESI+ MS/MS MRM | 0.1 ng/mL | 75 |
FLU, VAL + metabolite, CLT IS=candesartan cilexetil | plasma | Waters Atlantis dC18 (100 x 3.9, 3 μm) | gradient elution A: ACN, 0.01% formic acid, 10 mM ammonium formate B: 0.01% formic acid, 10 mM ammonium formate pH 4.1 | HPLC UV 229, 254, 236 nm FD 254, 378 nm | UV: 31-85 μg/mL FD: 10-20 μg/mL | 76 |
ROS IS=hydrochlorothiazide | plasma | Agilent Zorbax XDB-C18 (150 x 4.6 mm, 5 μm) | methanol:water (75:25), pH 6.0 with ammonia | HPLC ESI- MS/MS MRM | 0.02 ng/mL | 79 |
SIM, SIM-acid, ATO + metabolites IS=deuterium labeled | serum | Waters Acquity UPLCTM BEH C18 (100 x 2.1 mm, 1.7 μm) | gradient elution A: ACN B: 0.5 mM ammonium acetate buffer pH 4.0 | UPLC ESI+ MS/MS SRM | 0.09–4.38 nM | 83 |
PIT IS=ROS | plasma, urine | Shimadzu Shim-pak VP-ODS (150 x 4.6 mm, 5 μm) | methanol:water:formic acid (75:25:0.05) | HPLC ESI+ MS/MS SRM | 0.08 ng/mL | 84 |
PRA + metabolites, FFA IS=triamcinolone | plasma | Phenomenex Synergi Max-RP (150 x 2 mm, 4 μm) | ACN:methanol:5 mM ammonium acetate buffer pH 4.5 (30:30:40) | HPLC ESI+ MS/MS MRM | 0.05– 0.5 ng/mL | 85 |
ATO + metabolites IS=deuterium labeled | serum | Waters BEH C18 (100 x 2.1 mm, 1.7 μm) | gradient elution A: ACN B: 0.5 mM ammonium acetate pH 4.0 | UPLC ESI+ MS/MS SRM | 0.08-0.66 nM | 86 |
FLU, VAL + metabolite, CLT IS=candesartan cilexetil | plasma | Waters Acquity UPLCTM BEH C18 (50 x 2.1 mm, 1.7 μm) | gradient elution A: 10 mM ammonium formate, 0.01% formic acid B: ACN, 10 mM ammonium formate, 0.01% formic acid, pH 4.1 | UPLC UV 220 nm | 20-110 μg/mL | 87 |
PIT, PIT-lacton IS=racemic i-prolact | plasma, urine | Thermo BDS Hypersil C8 (50 x 2.1 mm, 3 μm) | methanol:0.2% acetic acid in water (70:30) | HPLC ESI+ MS/MS MRM | 1 ng/mL | 88 |
Analytical methods for the determination of statins in biological samples
Not so many chromatographic methods have been developed for the quantification of HMG-CoA reductase inhibitors in combination with their metabolites. They undergo quite extensive first-pass metabolism during witch active and inactive metabolites are produced. The actual plasma concentrations of both parent compounds and metabolites are of major interest in pharmacokinetics studies. Therefore, analytical methods for simultaneous determination of statins and theirmetabolites are quite valuable. Although simultaneous determination of statins and their metabolites was considered being difficult owing to the different polarities of the analytes, several methods have been published.
Recently, Apostolou and co-workers [75] published fast and fully automated LLE-LC/MS/MS method, while Zhang and co-workers [82] presented a high-throughput salting-out assisted LLE-LC/MS/MS method for simvastatin in lactone and acid form. Both of methods were very fast with analytical runs less than two min and fairly sensitive with LOQ values around 0.1 ng/mL. Nováková and co-workers [83] have developed fast selective and reliable SPE-UPLC/MS/MS method for simultaneous determination of simvastatin and atorvastatin as well as their active and inactive metabolites. The main advantage of the method was applicability of the method for determination of two clinically widely used statins using one sample preparation procedure and one chromatographic run, while the main limitation of study was slightly higher LOQ value obtained for simvastatin in open-ring hydroxy acid form.
More recently Vlčková and co-workers [86] have presented a new MEPS-UPLC method for determination of atorvastatin and its metabolites, faster and more sensitive comparing to previously published ones. A simple, fast and reproducible method for determination of rosuvastatin and metabolites in human plasma has been described [74]. The major advantages of the method were the requirement for small plasma volume and simple sample preparation procedure, protein precipitation. The major limitation of method was its inability to determine
A sensitive and accurate procedure based on solid-phase extraction coupled at-line to a LC/MS/MS for determination of pravastatin and its two metabolites in human plasma has been presented [85]. Optimized and validated LLE-LC/MS/MS method for determination of pitavastatin and its lacton form in human plasma as well as in urine is described [88]. Furthermore, a LC/MS/MS method for separation of fluvastatin from its
The advantage of the methods for simultaneous determination of several co-administered drugs is that the one sample preparation and one chromatographic run are required for monitoring therapeutic levels of several drugs. Therefore, these methods could be useful in daily routine sample handling, when many samples from patients taking different drugs together with HMG-CoA reductase inhibitors are analyzed in clinical laboratories. Recently, several chromatographic methods have been developed for the quantification of statin drugs in combination with other drugs, most of them are commonly used in treatment of cardiovascular disease: atenolol, spironolactone, glibenclamide [61], metoprolol succinate [72], valsartan and chlorthalidone [76, 87], timolol maleate, diclofenac sodium [81], fenofibric acid [85], ezetimibe [91], ceftriaxone [92], acetylsalicylic acid [94], amlodipine [98] and losartan, atenolol, acetylsalicylic acid [99].
Recently, several papers were published regarding prediction of statins’ pharmacokinetics. In our work the usefulness of reversed-phase high performance chromatography in building models that would allow the prediction of pharmacokinetics parameters of statins was evaluated [100]. In order to get better insight into the nature of their chromatographic behavior, the retention times were measured using octyl and octadecyl chromatographic columns. Obtained chromatographic data were compared with pharmacokinetic parameters predicted by use of 17 different computer programs. Significant correlations were found between chromatographic data and lipophilicity of statins. In addition, with the combine set of descriptors (chromatographic data, solubility, quantum chemical and topological indices) the highly significant correlations with pharmacokinetic parameters have been found, which confirms the utility of HPLC technique for prediction of pharmacokinetic behavior of statin drugs.
In order to predict the bioavailability of statins, the association mechanism with phosphatidylcholine using immobilized artificial membrane high performance liquid chromatography technique was studied. Moreover, the thermodinamic driving forces for the statin molecules with phosphatidylcholine monolayers were analyzed in detail [101].
Capillary electrophoresis (CE) is an alternative separation technique which is designed to separate species based on their size to charge ratio in an electric field in the interior of a small capillary filled with background electrolyte. Driving forces in CE are electrophoretic migration and the electro-osmotic flow (EOF). CE has become a useful tool in pharmaceutical analysis because of its advantages over other separation techniques, such as high resolution, high selectivity, simplicity, short analysis time, cost efficiency and low consumption of solvents and reagents [102]. Mainly employed CE modes for drug analysis are capillary zone electrophoresis (CZE) based on charge-to-mass ratio and micellar electrokinetic chromatography (MEKC) based on chromatographic partition of analytes between micelles and background electrolyte. MEKC is the most appropriate electrophoretic technique for impurity profiling because the neutral compounds and charged components that have similar electrophoretic mobilities can be separated simultaneously [103]. CE is currently recommended in several pharmacopoeias. Principal advantage of CE over well-established and widely used HPLC technique is its ability to deliver high efficiency in short analysis times [104]. However, CE methods proposed for the determination of statin drugs are scarce.
CE has been applied for determination of pravastatin in fermentation broth in order to optimize its production in bioreactors [105]. Pravastatin is produced in two-step fermentation. In the first step, mevastatin is produced by
We have developed CZE method for determination of pravastatin in pharmaceutical dosage form [106]. Rapid migration of negatively charged pravastatin molecule was obtained in alkaline buffer by the application of electric field of 30 kV. The alkaline buffer generated strong EOF that enabled determination of a fully charged drug molecule within 2.5 min. Pravastatin retention time is about 21 min in the assay procedure listed in European Pharmacopoeia (Ph. Eur.) using the HPLC with UV detection. Relatively short analysis time is the main advantage of the CZE method developed. Pravastatin is administered to patients in its active form as the hydroxy acid sodium salt. However, the drug exists in solution with its lactone equilibrium product reversibly formed at acidic pH. Pravastatin is also susceptible to an isomerization reaction which is relatively rapid [107]. The MEKC method was established to separate the drug and its degradation products in acidic media. Introduction of sodium dodecyl sulphate (SDS) in the background electrolyte solution plays a key role in the separation of negatively charged and neutral species. The proposed method allows baseline separation of pravastatin, C-6 epimer of pravastatin and their corresponding lactone forms that appear as interconversion products depending on the pH value. The migration times of degradation compounds ranged from 2.8 to 6.2 min. The above mentioned interconversion compounds of pravastatin represent its related impurities defined in Ph. Eur. and are also potential biotransformation products. CE has also been applied to the screening of anionic impurities in bulk drug [108].
The application of CE to rapidly quantitate lovastatin production levels by
The quantitative analysis of lovastatin in urine samples based on CE has significance for the control of clinical therapy [111]. The concentration sensitivity is poor in CE because of the short optical path length limited by the inner diameter of the capillary and small volume of sample injected. Such low sensitivity has hampered the use of this method in clinical drug monitoring. However, the sensitivity was enhanced by using a simple stacking method for the determination of trace lovastatin in biologic fluids.
The CZE method was developed for the separation and determination of lovastatin as active ingredient in the red yeast rice product [112]. Prior to determination, lovastatin was extracted from capsule by ethanol. In this study, high pH (10.5) was selected in order to convert lovastatin to its acidic form completely. However, earlier reported studies revealed that lovastatin and lovastatin hydroxy acid are the two main components which contribute to up to 90% of the total quantity of monacolins in the read yeast rice [13]. Hence, the main disadvantage of the proposed CE method is that the content of the main components contributing to the pharmacology effect in red yeast rice supplement was not determined individually.
Only one CE method for the analysis of simvastatin is available till date [113]. This method was developed for the quanitication of both lovastatin and simvastatin in pharmaceutical dosage forms.
In the literature, CZE method has been reported for determination of atorvastatin [114]. The separation was optimized on capillary, but it was further miniaturized to a microchip platform with linear imaging UV detection. Even though CE is a rather good alternative for evaluation of impurity profile and enantiomeric purity of a drug, it is not enough applied. Therefore, we have developed a new MEKC method for separation and simultaneous quantitation of atorvastatin and its related substances diastereomer-atorvastatin, desfluoro atorvastatin, atorvastatin methyl ester and atorvastatin lactone [115]. The separation was carried out in an extended light path capillary in order to improve sensitivity at applied voltage of 30 kV using a background electrolyte consisting of 10 mM sodium tetraborate buffer pH 9.5, 50 mM SDS and 20% (
CE method was also developed for the separation and simultaneous determination of atorvastatin and amlodipine in their combination formulations [116]. Degradation products produced as a result of stress studies did not interfere with the detection of both drugs and the assay can thus be considered stability indicating.
The CE method was developed for the enantiomeric purity determination of fluvastatin enantiomers [117]. Its principle involves the formation of diastereoisomer complexes after addition of neutral cyclodextrin to the running buffer. Fluvastatin enantiomers were separated on an uncoated fused silica with 100 mM borate solution containing 30 mg/mL of (2-hydroxypropyl)-β-cyclodextrin as running buffer and fenoprofen as an internal standard. The limit of detection and quantification for (+)-3R, 5S and (-)-3S, 5R-fluvastatin were 1.5 μg/mL and 2.5 μg/mL, respectively. Compared to chiral LC separations, CE analyses are cheaper (no chiral column, no solvent, low consumption of chiral selector) and peak efficiencies are higher by one order of magnitude.
There is only one CE method for quantification of rosuvastatin [118]. Currently, for rosuvastatin only a limited number of analytical methods are reported in literature. This is due to the fact that rosuvastatin is a new statin introduced in the EU in 2002 and approved in the US in 2003.
Using neutral β-cyclodextrin as chiral selector, the CZE method has been established for the chiral separation of pitavastatin calcium enantiomers [119]. Pitavastatin is a novel statin that potentially represents an important addition to the cardiovasculary therapy. In view of this, simple and efficient capillary electrophoretic methods for the determination of rosuvastatin and pitavastatin are highly required.
Since statins differ in their structure, analytical methods for their determination are developed individually. In fact, since statin drugs are never co-administered together during treatment of hyperlipimidemia, some authors even argued that there is no need for their simultaneous analysis. However, lately papers have been published that propose analytical methods that enable separation, identification and quantitative determination for two and even all six statins simultaneously in a single run. This kind of method would allow determination of any statin available on the market without the need of developing a new, separate, individual method for each statin, and could by used for simultaneous analysis of pharmaceutical dosage forms or in routine clinical monitoring.
A HPTLC method was published using precoated silica gel 60F 254 aluminum sheets and detection carried out at 239, 238 and 310 nm for determination of simvastatin, pravastatin and rosuvastatin in tablet dosage forms, respectively [120]. Far to our knowledge first HPLC-PDA method for simultaneous analysis of atorvastatin, lovastatin, pravastatin, rosuvastatin and simvastatin was reported for determination in pharmaceutical formulations and
An interesting method for pharmaceutical analysis of atorvastatin, simvastatin and lovastatin using a charged aerosol detector (CAD) was published [122]. CAD is a universal detector for HPLC that operates regardless of the physiochemical and spectral properties of non-volatile analytes. It can provide data complementary to UV or MS detectors. The eluent from the HPLC column is first nebulized and then charged. A highly sensitive electrometer generates a signal proportional to the analyte quantity. Although CAD is considered as a non-linear detector, the authors found a perfectly linear response (R > 0.9995). Sensitivity of the CAD detector was two folds greater then the UV detector; LOD of atorvastatin measured with UV and CAD detectors was 0.17 μg/mL and 0.08 μg/mL, respectively.
A HPLC-UV method for quantification of rosuvastatin, atorvastatin, fluvastatin, lovastatin and simvastatin and four fibrates in pharmaceutical dosage forms was developed [123]. In this paper a simple GC-FID method was also proposed for identification of atorvastatin, lovastatin and simvastatin along four fibrates.
Two stability-indicating HPLC methods for quantitative determination of pravastatin, fluvastatin, atorvastatin and rosuvastatin in pharmaceuticals were developed [124].
Methods for their simultaneous determination in biological samples could provide easy quantification of drug level in human plasma without changes in the chromatographic procedures for individual statin. Despite the fact that these drugs seem to be structurally similar, development of the method for their simultaneous determination in complex biological samples is quite challenging task as they differ significantly in terms of solubility, polarity, stability as well as optic characteristics. Until now several analytical methods have been developed for the determination of statins in biological samples simultaneously, simvastatin and atorvastatin [83], rosuvastatin and atorvastatin [90], simvastatin, pravastatin, rosuvastatin and atorvastatin [92].
Investigation of statins in the environment has become an important issue in the last years due to their large worldwide consumption and their potential adverse effects on animal and human health. Three different preconcentration techniques including solid phase extraction, dispersive liquid–liquid microextraction and stir-bar sorptive extraction have been optimized and compared for the simultaneous analysis of statin drugs in wastewater and river water samples by HPLC coupled to quadrupole-time-of-flight mass spectrometry [125].
Due to low sensitivity of CE, three on-line preconcentration strategies were investigated for the analysis of charged and neutral statins by MEKC [126]. A background electrolyte consisting of 20 mM ammonium bicarbonate buffer (pH 8.50) and 50 mM SDS was used for the separation of all statin molecules including mevastatin. The methods were applied for the analysis of statin analytes in wastewater samples. The more frequently prescribed statins are of environmental concern. Consequently, sensitive methods for investigation of distribution of statin drugs in the environment are very valuable.
We have introduced a universal MEKC method with diode-array detection for the simultaneous and short-time analysis of lovastatin, simvastatin, pravastatin, fluvastatin, atorvastatin and rosuvastatin in a single run [127]. Base hydrolysis was used to open lactone ring of lovastatin and simvastatin, administered as lactone prodrugs, in order to transform these compounds to the corresponding acid forms before analysis. This approach offered shorter analysis time due to a decrease of the migration times of negatively charged statin drugs in comparison to neutral lactone forms. The first step in CE method development for optimizing the separation of ionisable statin molecules was the selection of the buffer pH, which determined the extent of ionization and mobility of each drug. As reported in the literature, statins with -hydroxy acid forms have pKa values between 4.1 and 4.6 [128] and statin molecules are completely in anionic forms above pH 6. Surfactant was added to the electrolyte to improve the selectivity of the separation. With SDS, negatively charged statins molecules were not strongly attracted to the micelles, and drug molecules were separated as a result of differences in their electrophoretic mobilities and lipophilicity. The addition of an organic modifier in the presence of SDS in the electrolyte solution played a key role in the separation of statin molecules. The addition of an organic modifier changes the selectivity and migration times due to the change in electrolyte viscosity, dielectric constant and the zeta potential. The SDS micelles and methanol in the concentration of 10%
Electropherogram of a simultaneous analysis of statins
Development of the analytical methods for identification, purity evaluation and quantification of statin drugs has received a great deal of attention in the field of pharmaceutical analysis in recent years. This review includes trends and advances in separation methods developed for the analysis of statin molecules with different physical and chemical properties. The chapter surveys the application of chromatographic techniques for the determination of statins in pharmaceutical dosage forms and biological samples.
Stability indicating methods and papers describing impurity profiling are discussed in this review. Special emphasis is given to sample preparation as unavoidable and delicate step in bioanalitical methods for quantification of statins and their metabolites. The hyphenated technique that incorporates the efficient separation using liquid chromatography and sensitive detection by mass spectrometry has become an indispensable tool for quantification of statins in biological fluids and pharmacokinetic studies. Methods describing simultaneous analysis of different statins as well as drugs in combined pharmaceutical products and other co-administered drugs in therapy of cardiovascular disease are also described. The application of capillary electrophoresis as alternative separation technique for statins is considered and compared with chromatographic methods.
The use of statin drugs has augmented in recent years and is expected to increase further in the years ahead because high cholesterol and cardiovascular diseases are being diagnosed more frequently. Therefore, the development of new analytical methods for commercially available statins as well as novel upcoming statin drugs will be a future challenging task for many analysts.
This work was supported through Grant No. 0061117-1240 (Investigation of new methods in analysis of drugs and bioactive substances) from the Ministry of Science, Education and Sports of the Republic of Croatia.
The distributed system architecture field is more abstract, being at the level above the algorithms and data structures fields [1]. These architectures include the global control structures, protocols for communication, synchronization, physical distribution, scaling and performance, remote access and selection among design alternatives. At this level the common architectural styles like pipes and filters, object orientation, event-based models, and table-driven interpreter etc., and their computing techniques and distributed network architectures are seen. The level of performance within the distributed computing is directly proportional degree of multiplicity of resources involved and participating in it. This is one of the important factors that affects and regulates the usefulness within the distributed computing defining the capability of computing system to support multiplicity and migration. Most of distributed approaches involve dispersion of data over various network machines for reliability and availability of data which requires deployment of communication protocols that can server inter-platform connectivity. The interconnections in a disseminated framework allows machine to interact autonomously allowing them to share memory or processors. They can communicate with each other utilizing messages, snippets of data exchanged, intimating a function on one machine and finishing on other and so on. Simply by messages many information can be conveyed to execute with specific contentions, also they can send and get bundles of information and can do many more such things [2].
Dispersed frameworks over the network has always been communicating and imparting the information by means of message passing. This type of correspondence was exceptionally straightforward where one side (client) bundles a few information, known as a message and sends it to the opposite side where it is decoded or stored additionally. The configuration of the message and the manner by which it will be prepared by the recipient is carried out by application subordinate. In a few applications the recipient may react by sending an answer message often called as acknowledgement or response while in other cases, this won’t not occur. This approach likewise makes it difficult to reuse segments of one circulated framework in other conveyed frameworks as the message is encoded in language could not be decodable or readable by other language framework with different sets of library and calling mechanisms [3]. Despite the fact that message passing can be powerful, it would be decent if there were more uniform, reusable, and easy to understand methods for getting things done remotely by calling remote function on local machine or by sending function for execution on server. Such unusualness requires an extensive variety of new procedures past those utilized as a part of conventional computing. This also involves participation of an appropriated framework by letting the compiler or run-time libraries handle various issues of scheduling and allocation.
One of the alternatives in the design of the distributed system architecture is how to access remote resources or make calls to remote objects and also how to send the program over network. Currently, the client–server paradigm is the most common style, where the code does not move at all. Under the code-mobility and remote programming domain there are certain paradigm that helps in understanding the shift happened in distributed system architecture. Like, remote method invocation allows invocation of remote objects to java enabled platforms. Code-on-demand paradigm calls upon the code from a distant site which is then downloaded and executed on the local machine. And, remote evaluation paradigm which sends the code to another site where it is executed from which result is returned back to caller [4]. These distributed mechanism helps in building up of mobile and portable code design to help effective information and program relocation in various processing states on heterogeneous execution platforms.
Allocation of numerous resources to a small number of computers called Server-hosts, yet keeping client-hosts simpler by offloading the computation to central terminal is termed as centralized Paradigm. This type of architectural taxonomy relies heavily on network resources like servers and infrastructure for computation and storage. In this typography, client-hosts are diskless nodes that are dependent on central network terminal to load its operating system. Simply, it acts as an input/output interface to the server because they neither have their own operating system nor personalized resources. The much broader infrastructure used for such paradigm is Thin Client, which is a lightweight computer that is purposely built for remote into a server, where many client-hosts share their computations with a server or server farm. It depends heavily on another computer (server) to fulfill its computational roles. The specific roles assumed by the server-host may vary, from hosting a shared set of virtualized applications, a shared desktop stack or virtual desktop, to data processing and file storage on the behalf of client-hosts [5].
The server-side infrastructure makes use of cloud computing software such as application virtualization, hosted shared desktop (HSD) or desktop virtualization (VDI). This combination forms what is known today as a cloud based system where desktop resources are centralized into one or more data centers. Basically, this type of architecture is described by lack of delegation as they have single management station to initiate requests for low-level data.
Distributed processing encompasses a wide range of task autonomy and semantic richness in hierarchical architectures. This paradigm describes implementation labels that employ vertical delegation for management functionality. Hierarchical approach includes distributed objects and limited forms of Management-by-Delegation (MbD) with code mobility technologies such as Remote EValuation (REV) and Code-on-Demand (CoD). Distributed objects describe a form of gateway operation allowing the communication with encapsulated data and actions remotely. Likewise, REV provides code for execution of intended management function while CoD retrieves and caches code to execute the intended management function [6]. The hierarchical paradigm supports the delegation as following:
Delegation-by-domain: Domain delegation is referred as a simplified distributed paradigm. In this, a central authority assigns complete management control of a specified domain to the domain itself. The distributed domain functions independently of the central authority. Management information is not shared, and resources and administrative control resides with the specified domain. Central authority behaves as task coordinator to delegate task to different domains.
Delegation by micro-task with low-level semantics: Delegation by micro task in distributed hierarchical paradigm allows the central authority to employ one or more management stations to perform specified tasks. Low-level semantics signifies the little abstraction from the details of the management task. Likewise, this method of delegation statically retrieved low-level data from simple agents before handing the response data to the central authority for processing into information.
Delegation by micro-task with high-level semantics: High-level semantics refers to meaningful abstractions from low-level data. For example, this method of delegation statically retrieves object data from a distributed environment before handling the response object to the central authority for processing. This framework encapsulated the protocol that supports communication between objects. Example of this distributed object paradigm includes common object request broker architecture (CORBA) and web based enterprise management (WBEM).
Delegation by macro-task with low-level semantics: Delegation by macro task allowed a central authority to empower one or more management stations to control specified managed elements rather than specified element properties. The management station performs necessary functions such as statically retrieving low-level data from simple agents to be processed into information by managing application. It is also responsible for taking corrective action if central authority is lost while communications.
Delegation by macro-task with high-level semantics: This form of delegation involves one or more authorized management stations controlling specified managed elements. Management functions include statically retrieving object data from a distributed environment which is subsequently processed by the managing application. It allows effective control decomposition and functional approximation to promote framework scalability, run time overhead reductions and workload dynamics. Example of this approach is a Goal Driven Network Management System [7].
Semantically rich delegation referred to a cooperative paradigm in distributed systems that empower the remote agent to control specified elements with limited instructions for preset operations. The intelligent agent relies on high-level goals and changing contextual data to make appropriate independent determination for successful management in a complex environment. Along with high autonomy and low task specification, cooperative paradigm uses horizontal delegation to cooperate with other agents unlike vertical delegation in hierarchical approaches. This is also more effective for real-time data collection within large complex and evolving networks. However, these approaches require some sort of system fidelity and measures of consistency across all nodes ensuring cooperation towards a common goal [8].
Distributed application structure defines client–server model that does segregation of workloads between service or resource provider, called servers and service or resource requester, called clients. These two separate components, a client and a server, which communicate over a network through a TCP/IP handshake paradigm. The client requests information, while the server responds when its advertised services are accessed. This each request/response, as depicted in Figure 1, is a complete round trip on the network. The code that implements these services i.e. the know-how is hosted locally by the server, also server has processing capabilities. Client decides with some intelligence which of services offered by server it should use.
Client server paradigm.
Single-tier architecture is the simplest, single tier on single user, and is the equivalent of running an application on a personal computer as shown in Figure 2. All the components like user interface, business logic, and data storage, which are necessary to run an application, are located within the system. They are the easiest to design, but the least scalable as they are not part of a network also they cannot be used for designing web applications [9].
Single-tier architecture.
Two-tier architectures supply a basic network between a client and a server. For example, the basic web model is a two-tier architecture as illustrated in Figure 3. A web browser makes a request from a web server, which then processes the request and returns the desired response, in this case, web pages. This approach improves scalability and divides the user interface from the data layers. However, it does not divide application layers so they can be utilized separately. This makes them difficult to update and not specialized. The entire application must be updated because layers are not separated.
Two-tier architecture.
Three-tier architecture is most commonly used to build web applications. In this model, the browser acts like a client, middleware or an application server contains the business logic, and database servers handle data functions. This approach separates business logic from display and data [10]. So the three layers commonly known as: presentation layer (PL/UI), business logic layer (BLL) and data access layer (DAL) as shown in Figure 4.
Presentation tier (Level 1): This provides the application’s user interface (UI). Being the topmost level it displays information related to user oriented functionality responsible for managing user interaction with the system. This acts as common bridge into core business logic encapsulated in business layer.
Business logic tier (Level 2): This is also called application layer as it controls an application’s functionality by performing detailed processing. This layer implements the core functionality of the system encapsulating the relevant business logic. It has components exposing service interfaces for callers to use.
Data access tier (Level 3): This includes data persistence mechanisms like database servers, file shares, etc. providing access to data hosted within system and data exposed by other networked systems. The data layer exposes generic interfaces that can be consumed by components in the business layer. It also provides an API to application layer that exposes methods of managing the stored data without out casting dependencies on the data storage mechanisms.
Three-tier architecture.
Terms layer and tier are often used interchangeably but one point of difference is that a layer is a logical structuring mechanism for the elements that make up the software solution. That means logical software component groups, mainly by functionality, are used for software development purpose. By contrast, a tier is a physical structuring mechanism for the system infrastructure [11]. Like an individual running server is one tier and several running servers may also be counted as one tier. Layer software implementation has many advantages and is a good way to achieve N-tier architecture. Layer and tier may or may not exactly match each other. Each layer may run in an individual tier. However, multiple layers may also be able to run in one tier.
N-tier implies more than three levels or tiers involved as depicted in Figure 5; mostly additional tiers are associated with business logic tier. Some layers in 3-tier can be broken further into more layers. These broken layers may be able to run in more tiers. For example, application layer can be broken into business layer, persistence layer or more. Presentation layer can be broken into client layer and client presenter layer [12]. So, in order to claim a complete N-tier architecture, client presenter layer, business layer and data layer should be able to run in three separate computers (tiers).
Client tier: This tier is involved with users directly. There may be several different types of clients coexisting, such as WPF, Window form, HTML web page and etc.
Client presenter tier: This contains the presentation logic needed by clients, such as ASP. NET MVC in IIS web server.
Business tier: It handles and encapsulates all of business domains and logics; also called as domain layer.
Persistence tier: This tier handles the read/write of the business data to the data layer, also called data access layer (DAL).
Data tier: It is the external data source, such as a database.
N-tier architecture.
Remote procedure call works on client–server communication protocol that is used by one program to request a service from a program located in another computer in a network without understanding network details. It is based on RPC is a synchronous operation requiring the requesting program to be suspended till the results of remote procedure are returned [13].
RPC is analogous to a function call extending the notion of conventional local procedure calling so that procedure need not exists in the same address space as the calling procedure. Like a function call, the calling arguments are passed to the remote procedure and the caller waits for a response to be returned from the remote procedure.
The client makes a procedure call that sends a request to the server and waits for response, as shown in Figure 6. The thread is blocked from processing until either a reply is received, or it times out. When the request arrives, the server calls a dispatch routine that performs the requested service, and sends the reply back to the client. After the RPC call is completed, the client program continues its normal execution [4].
Remote procedure call.
Stub: Stubs are generated at the static compilation time and then deployed to the client side which is used as a proxy for the client. Client-side proxy acts as a mediator between the client and the broker and provides additional transparency between them and the client so that a remote object appears like a local one. The proxy hides the inter-process communication (IPC) at protocol level and performs marshaling of parameter values and un-marshaling of results from the server.
Skeleton: Skeleton is generated by the service interface compilation and then deployed to the server side, which is used as a proxy for the server. Server-side proxy encapsulates low-level system-specific networking functions and provides high-level APIs to mediate between the server and the broker. It also receives the requests, unpacks the requests, un-marshals the method arguments, calls the suitable service, and also marshals the result before sending it back to the client [2].
Sequence of events during an RPC:
The client calls the client stub. The call is a local procedure call, with parameters pushed on to the stack in the normal way.
The client stub packs the parameters into a message and makes a system call to send the message. Packing the parameters is called marshaling.
The client’s local operating system sends the message from the client machine to the server machine.
The local operating system on the server machine passes the incoming packets to the server stub.
The server stub unpacks the parameters from the message. Unpacking the parameters is called un-marshaling.
Finally, the server stub calls the server procedure. The reply traces the same steps in the reverse direction. Figure 7 shows the event flow of RPC.
Event flow in RPC.
Remote method invocation is a technology introduced by java that allows invocation of methods that are remotely located by simply calling them using desired interfaces. RMI technology allows us to distribute over business logic i.e. making the business logic available on a remote server letting it accessible to clients [14].
RMI is often called as “RPC with object orientation”, i.e. the RPC but with ability to pass one or more objects along with the request. The objects can include the information that will change the service that is performed in the remote computer as delineated in Figure 8.
Remote method invocation.
For example, when a user at a remote computer fills out an expense account, the Java program interacting with the user could communicate, using RMI, with a Java program in another computer that always had the latest policy about expense reporting. In reply, that program would send back an object and associated method information that would enable the remote computer program to screen the user’s expense account data in a way that was consistent with the latest policy [15]. The user and the company both would save time by catching mistakes early. Whenever the company policy changed, it would require a change to a program in only one computer (Table 1).
RMI | RPC |
---|---|
Location neutral, language dependent | Language neutral mechanism |
Supports object oriented design | It is procedural like C |
It allows objects passing as arguments and return values | It supports only primitive data types |
This allows usage of design patterns | No such capability |
RMI v/s RPC difference table.
RMI is implemented as three layers (as illustrated in Figure 9):
Stub/Skeleton layer: A stub program represents the remote object and also acts as gateway to a corresponding skeleton at the server end. The stub appears to the calling program to be the program being called for a service.
Remote reference layer: This can behave differently depending on the parameters passed by the calling program. For example, this layer can determine whether the request is to call a single remote service or multiple remote programs as in a multicast.
Transport connection layer: This sets up and manages the request. A single request travels down through the layers on one computer and up through the layers at the other end.
Event flow in RMI.
RMI Registry is a central repository keeping a track of all services being exposed from the current network. Since all the clients’ requests for services through the RMI Registry the location of the application or service is unknown to the clients hence making the application location neutral [16].
Typically, code on demand is used for any technology that sends executable code from a server host to a client host on the request of the client’s application. Code on demand is a specific use of mobile code under the field of code mobility. In the code-on-demand style, as delineated in Figure 10, a client component has an access to a set of resources, but not the know-how on how to process them. It sends a request to a remote server for the code representing that know-how, receives that code, and executes it locally. So as per the code-on-demand paradigm, knowing the know-how is necessary when in need [17].
Code-on-demand.
Say for example, one host (A) initially is unable to execute its task due to a lack of code (know-how). And another host (B) in the network provides the needed code. Once the code is received by A, the computation is carried out on A’s machine. Host A holds the processor capability as well as the local resources. Unlike in the client–server paradigm, A does not need knowledge about the remote host, since all the necessary code will be downloaded.
Java applets are excellent practical examples of this paradigm. Applets get downloaded in Web browsers and execute locally.
The internet is a combination of various kinds of systems or platforms that are often required to communicate with each other. The client that makes a request may be from a completely different platform for instance the application may be hosted on the windows based server and client may be requesting from a Linux-based system.
Java introduced a new technology that would allow any client from any network platform to host and execute applications over the internet. This new technology was called as applets [18]. The word applet stands for an “application scriplets”. This can be defined as a piece of java code residing on a server machine requested via a browser downloaded over the internet and executed on the client machine via the browser. In order to execute the applet on a client machine, the browser must be java enabled i.e. JRE must be enabled. An applet is typically embedded inside a web page and runs in the context of a browser. The browser’s Java Plug-in software manages the lifecycle of an applet. The architecture of applet is shown in above Figure 11.
Architecture of applet.
Atop these five methods, depicted in Figure 12, an applet is been created:
Init(): This method is intended for whatever initialization is needed for your applet. It is called after the param tags inside the applet tag have been processed.
Start(): This method is automatically called after the browser calls the init method. It is also called whenever the user returns to the page containing the applet after having gone off to other pages.
Stop(): This method is automatically called when the user moves off the page on which the applet sits. It can, therefore, be called repeatedly in the same applet.
Destroy(): This method is only called when the browser shuts down normally. Because applets are meant to live on an HTML page, you should not normally leave resources behind after a user leaves the page that contains the applet.
Paint(): Invoked immediately after the start() method, and also any time the applet needs to repaint itself in the browser. The paint() method is actually inherited from the java.awt.
Life cycle of applet.
In computer science, remote evaluation is a term that belongs to the family of mobile code, within the field of code mobility. It is for any technology that involves the transmission of executable software code from a client hosts to a server hosts for execution to be happen at the server and the result is sent back to the client after execution for this resources of server sside are used [19]. A simple model of remote evaluation is illustrated in Figure 13.
Remote evaluation.
An example for remote evaluation is grid computing: An executable task may be sent to a specific computer in the grid. After the execution has terminated, the result is sent back to the client. The client in turn may have to reassemble the different results of multiple concurrently calculated subtasks into one single result.
Web based technologies are of two different types: Client Side Technologies and Server Side Technologies. The Client Side Technology has the code completely downloaded on the client machine and executed on the client itself, any changes that need to be incorporated or updated in the application will be on client system after re-downloading by the client. The processing of this application will take place on the client, completely.
In a Server Side Technology the complete business logic is maintained on the server and on the request of the client it will be executed on the server, delivering the response to the clients. The Java Servlets technology provides on such simple, vendor-independent mechanism to extend the functionality of a web server [20]. Servlets technology is similar to common gateway interface (CGI) scripts, Javascripts (on client side) and hypertext preprocessor (PHP). Additionally, scripting languages can be used in servlets to dynamically modify or generate hypertext markup language (HTML) pages. It also supports various HTTP methods, such as GET and POST, which is used to redirect requests and responses as shown in Figure 14.
Architecture of servlets.
Whenever a client sends a request to the J2EE application server for a particular servlet, the J2EE Application server passes the request to the Web container. The Web container checks whether an instance of the requested servlet exists. If the servlet instance exists then the Web container delegates the request to the servlet, which process the client request and sends back the response (Shown in Figure 15).
Various stages in request and response mechanism of servlets. (a) Clients request handling carried out by web container. (b) Object formation. (c) Calling servlet thread. (d) Thread execution. (e) Submission of response. (f) Final response toclient.
It is the job of Web container to get the request and response to the servlet. The container creates multiple threads to process multiple requests to a single servlet. So in case the servlet instance does not exist, the Web container locates and loads the servlet class. The Web container then creates an instance of the servlet and initializes it. The servlet instance starts processing the request after initialization. The Web container passes the response generated by the servlet to the client.
Servlets don’t have a main() method that’s why Web container manages the life cycle of a Servlet instance. The life cycle of the servlet includes three states: new, ready and end. The servlet is in new state if servlet instance is created. After invoking the init() method, Servlet comes in the ready state [21]. In the ready state, servlet performs all the tasks. When the web container invokes the destroy() method, it shifts to the end state. It is shown in Figure 16.
Life cycle of servlets.
Servlet class is loaded: The class loader is responsible to load the servlet class. The servlet class is loaded when the first request for the servlet is received by the web container.
Servlet instance is created: The web container creates the instance of a servlet after loading the servlet class. The servlet instance is created only once in the servlet life cycle.
Init method is invoke: The web container calls the init method only once after creating the servlet instance. The init method is used to initialize the servlet.
Method Signature: public void init(ServletConfig config) throws ServletException
Service method is invoked: The web container calls the service method each time when request for the servlet is received [22]. If servlet is not initialized, it follows the above three steps then calls the service method. The servlet is initialized only once so if servlet is already initialized, it directly calls the service method.
Method Signature: public void service(ServletRequest request, ServletResponse response) throws ServletException, IOException.
Destroy method is invoked: The web container calls the destroy method before removing the servlet instance from the service. It gives the servlet an opportunity to clean up any resources like memory, thread etc. Figure 16 shows life cycle methods of servlets.
In the past couple of years there has been a development of enthusiasm for versatile platform innovation and a few stages have been developed and innovated to allow more independencies in programming platform. In this chapter we have surveyed and researched the various computing environment provided for remote execution that has incurred the need of mobile codes, intelligent agents, autonomous objects, etc. raising issues with flexibility, efficiency and security in present system that can promises to resolve existing problems and add on more facilities like remote execution, auto-scheduling and many more. Some of them have just been utilized for look into purposes while others have been conveyed as business items. A few technologies that incorporated in evolution of mobile agents have been discussed on the basis of the usefulness of have been displayed in this exploration.
I would like to impart my sincere thanks to my guide Late. Dr. Rajesh Purohit, who has inspirited and fostered my interest in multifarious streams and disciplines of remoting and mobile-objects. Further I would like to extend my regards to all academic friends and lecturers who supported and motivated to move on with my work. They are (alphabetical order) Ashish Sharma, Poonam Purohit, Purva Dayya and Shivam Lohiya.
The following presents the acronyms used throughout this chapter.
HSD | hosted shared desktop |
VDI | desktop virtualization |
CORBA | common object request broker architecture |
WBEM | web based enterprise management |
MbD | management-by-delegation |
REV | remote revaluation |
CoD | code on demand |
TCP/IP | transfer control protocol/internet protocol |
PL/UI | presentation layer |
BLL | business logic layer |
DAL | data access layer |
API | application programmable interface |
UI | user interface |
WPF | windows presentation foundation |
HTML | hyper text markup language |
RPC | remote procedure call |
RMI | remote method invocation |
Applets | application scriplets |
Servlets | server scriplets |
CGI | common gateway interface |
HTTP | hyper text transfer protocol |
PHP | hypertext pre processor |
Our books are published online and are accessible for free. However, if you are interested in ordering your hardcover copy, you can do so by contacting our Print Sales Department at orders@intechopen.com. All IntechOpen books are printed on demand in full-colour and delivered in signature packaging through free DHL Express delivery. A selection of our books in soft cover is also available through Amazon.
',metaTitle:"Order Print Copies",metaDescription:"Our books are published online and are accessible for free. However, if you are interested in ordering your printed copy, you can do so by contacting our Print Sales Department at orders@intechopen.com.\n\nOur hardcover books are carefully designed and printed on wood-free premium quality paper.\n\nThe paper size is 155 mm x 225 mm (6.1 X 8.8 inches).",metaKeywords:null,canonicalURL:"/page/order-print-copies",contentRaw:'[{"type":"htmlEditorComponent","content":"InTechOpen contributors can order print books at a special price ranging from:
\\n\\nFor a quote please contact us directly at orders@intechopen.com The quote will be sent to you within 1-2 business days.
\\n\\nAll of the books and chapters can be browsed online. To obtain InTechOpen's full book catalogue in PDF, please contact us.
\\n\\n\\n\\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\\n\\nPrint copies of our publications are most often purchased as individual purchases by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions. Our books are available at our direct Print Sales Department and through selected representatives throughout the world.
\\n\\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\\n\\nASEAN - Books International
\\n\\nChina Publishers Services Ltd - CPS
\\n\\nMallory International Ltd
\\n\\nFor partnership opportunities, please contact orders@intechopen.com.
\\n\\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add a Book Value-Added Tax of 5%. Institutions and companies registered as VAT taxable entities in their own EU member state, will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'InTechOpen contributors can order print books at a special price ranging from:
\n\nFor a quote please contact us directly at orders@intechopen.com The quote will be sent to you within 1-2 business days.
\n\nAll of the books and chapters can be browsed online. To obtain InTechOpen's full book catalogue in PDF, please contact us.
\n\n\n\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\n\nPrint copies of our publications are most often purchased as individual purchases by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions. Our books are available at our direct Print Sales Department and through selected representatives throughout the world.
\n\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\n\nASEAN - Books International
\n\nChina Publishers Services Ltd - CPS
\n\nMallory International Ltd
\n\nFor partnership opportunities, please contact orders@intechopen.com.
\n\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add a Book Value-Added Tax of 5%. Institutions and companies registered as VAT taxable entities in their own EU member state, will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6654},{group:"region",caption:"Middle and South America",value:2,count:5945},{group:"region",caption:"Africa",value:3,count:2452},{group:"region",caption:"Asia",value:4,count:12681},{group:"region",caption:"Australia and Oceania",value:5,count:1014},{group:"region",caption:"Europe",value:6,count:17701}],offset:12,limit:12,total:133951},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11616",title:"Foraging",subtitle:null,isOpenForSubmission:!0,hash:"955b60bb658c8d1a09dd4efc9bf6674b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11616.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11697",title:"Scoliosis",subtitle:null,isOpenForSubmission:!0,hash:"fa052443744b8f6ba5a87091e373bafe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11697.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11699",title:"Neonatal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"e52adaee8e54f51c2ba4972daeb410f7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11699.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11730",title:"Midwifery",subtitle:null,isOpenForSubmission:!0,hash:"95389fcd878d0e929234c441744ba398",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11730.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11770",title:"Feminism",subtitle:null,isOpenForSubmission:!0,hash:"008be465c708a6fde48c8468757a40af",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11770.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11773",title:"Archaeology - Challenges and Updates",subtitle:null,isOpenForSubmission:!0,hash:"17d91462fa926279f65164ac0d5641cd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11773.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11776",title:"Fashion Industry",subtitle:null,isOpenForSubmission:!0,hash:"e8d53d1029a7bccf825aa55d43fecc68",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11776.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11794",title:"Coconut Cultivation",subtitle:null,isOpenForSubmission:!0,hash:"48e1cb42a4162f64cae3a2e777472f21",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11794.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11797",title:"Clostridium",subtitle:null,isOpenForSubmission:!0,hash:"4cb066b44bb8d4a8b93a627de26e3ebf",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11797.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11809",title:"Lagomorpha",subtitle:null,isOpenForSubmission:!0,hash:"1e8fd5779205c16e5797b05455dc5be0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11809.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:30},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:14},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:11},{group:"topic",caption:"Engineering",value:11,count:24},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:7},{group:"topic",caption:"Materials Science",value:14,count:9},{group:"topic",caption:"Mathematics",value:15,count:5},{group:"topic",caption:"Medicine",value:16,count:83},{group:"topic",caption:"Neuroscience",value:18,count:5},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:1},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:25},{group:"topic",caption:"Technology",value:24,count:1}],offset:12,limit:12,total:253},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4422},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10774",title:"Model Organisms in Plant Genetics",subtitle:null,isOpenForSubmission:!1,hash:"f6624b58571ac10c9b636c5d85ec5e54",slug:"model-organisms-in-plant-genetics",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/10774.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!1,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:"protein-detection",bookSignature:"Yusuf Tutar and Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Applications of Calorimetry",subtitle:null,isOpenForSubmission:!1,hash:"8c87f7e2199db33b5dd7181f56973a97",slug:"applications-of-calorimetry",bookSignature:"José Luis Rivera Armenta and Cynthia Graciela Flores Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"96",title:"Theory of Computation",slug:"theory-of-computation",parent:{id:"9",title:"Computer and Information Science",slug:"computer-and-information-science"},numberOfBooks:8,numberOfSeries:0,numberOfAuthorsAndEditors:140,numberOfWosCitations:233,numberOfCrossrefCitations:163,numberOfDimensionsCitations:301,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"96",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"3069",title:"Emerging Applications of Cellular Automata",subtitle:null,isOpenForSubmission:!1,hash:"e6a086431e9729115dea24eb62e0ef29",slug:"emerging-applications-of-cellular-automata",bookSignature:"Alejandro Salcido",coverURL:"https://cdn.intechopen.com/books/images_new/3069.jpg",editedByType:"Edited by",editors:[{id:"1120",title:"Dr.",name:"Alejandro",middleName:null,surname:"Salcido",slug:"alejandro-salcido",fullName:"Alejandro Salcido"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2185",title:"Petri Nets",subtitle:"Manufacturing and Computer Science",isOpenForSubmission:!1,hash:"cd35e0811ba40522bbb37a6ad2390bc4",slug:"petri-nets-manufacturing-and-computer-science",bookSignature:"Pawel Pawlewski",coverURL:"https://cdn.intechopen.com/books/images_new/2185.jpg",editedByType:"Edited by",editors:[{id:"4487",title:"Dr.",name:"Pawel",middleName:null,surname:"Pawlewski",slug:"pawel-pawlewski",fullName:"Pawel Pawlewski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1865",title:"Grid Computing",subtitle:"Technology and Applications, Widespread Coverage and New Horizons",isOpenForSubmission:!1,hash:"2150a7cc66612ed7623e9da28de72763",slug:"grid-computing-technology-and-applications-widespread-coverage-and-new-horizons",bookSignature:"Soha Maad",coverURL:"https://cdn.intechopen.com/books/images_new/1865.jpg",editedByType:"Edited by",editors:[{id:"7692",title:"Dr.",name:"Soha",middleName:null,surname:"Maad",slug:"soha-maad",fullName:"Soha Maad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"65",title:"Advances in Grid Computing",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"advances-in-grid-computing",bookSignature:"Zoran Constantinescu",coverURL:"https://cdn.intechopen.com/books/images_new/65.jpg",editedByType:"Edited by",editors:[{id:"17194",title:"Dr.",name:"Zoran",middleName:null,surname:"Constantinescu",slug:"zoran-constantinescu",fullName:"Zoran Constantinescu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4460",title:"Advances in Petri Net",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:"eb16f30c8c97de6bf750fde5e04363ae",slug:"advances-in-petri-net-theory-and-applications",bookSignature:"Tauseef Aized",coverURL:"https://cdn.intechopen.com/books/images_new/4460.jpg",editedByType:"Edited by",editors:[{id:"10867",title:"Prof.",name:"Tauseef",middleName:null,surname:"Aized",slug:"tauseef-aized",fullName:"Tauseef Aized"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3780",title:"Petri Nets",subtitle:"Applications",isOpenForSubmission:!1,hash:"b1f80da4d06e2b7b4076e74797319265",slug:"petri-nets-applications",bookSignature:"Pawel Pawlewski",coverURL:"https://cdn.intechopen.com/books/images_new/3780.jpg",editedByType:"Edited by",editors:[{id:"4487",title:"Dr.",name:"Pawel",middleName:null,surname:"Pawlewski",slug:"pawel-pawlewski",fullName:"Pawel Pawlewski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5329",title:"Cognitive Maps",subtitle:null,isOpenForSubmission:!1,hash:"95e2c75f734f41a231480f0272fed2ed",slug:"cognitive-maps",bookSignature:"Karl Perusich",coverURL:"https://cdn.intechopen.com/books/images_new/5329.jpg",editedByType:"Edited by",editors:[{id:"6071",title:"Dr.",name:"Karl",middleName:null,surname:"Perusich",slug:"karl-perusich",fullName:"Karl Perusich"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5330",title:"Petri Net",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:"4ebb7d10fa68cbcab11de39a524f2581",slug:"petri_net_theory_and_applications",bookSignature:"Vedran Kordic",coverURL:"https://cdn.intechopen.com/books/images_new/5330.jpg",editedByType:"Edited by",editors:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:8,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"9201",doi:"10.5772/7497",title:"Modelling and Analysis of Traffic Light Control Systems Using Timed Coloured Petri nets",slug:"modelling-and-analysis-of-traffic-light-control-systems-using-timed-coloured-petri-nets",totalDownloads:4736,totalCrossrefCites:2,totalDimensionsCites:19,abstract:null,book:{id:"3780",slug:"petri-nets-applications",title:"Petri Nets",fullTitle:"Petri Nets Applications"},signatures:"Yi-Sheng Huang and Ta-Hsiang Chung",authors:null},{id:"13946",doi:"10.5772/14594",title:"A GPU Accelerated High Performance Cloud Computing Infrastructure for Grid Computing Based Virtual Environmental Laboratory",slug:"a-gpu-accelerated-high-performance-cloud-computing-infrastructure-for-grid-computing-based-virtual-e",totalDownloads:4350,totalCrossrefCites:12,totalDimensionsCites:17,abstract:null,book:{id:"65",slug:"advances-in-grid-computing",title:"Advances in Grid Computing",fullTitle:"Advances in Grid Computing"},signatures:"Giulio Giunta, Raffaele Montella, Giuliano Laccetti, Florin Isaila and Francisco Javier García Blas",authors:[{id:"18274",title:"Prof.",name:"Giulio",middleName:null,surname:"Giunta",slug:"giulio-giunta",fullName:"Giulio Giunta"},{id:"20639",title:"Dr.",name:"Raffaele",middleName:null,surname:"Montella",slug:"raffaele-montella",fullName:"Raffaele Montella"},{id:"20858",title:"Dr.",name:"Florin",middleName:null,surname:"Isaila",slug:"florin-isaila",fullName:"Florin Isaila"},{id:"21151",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"García Blas",slug:"francisco-javier-garcia-blas",fullName:"Francisco Javier García Blas"},{id:"28062",title:"Prof.",name:"Giuliano",middleName:null,surname:"Laccetti",slug:"giuliano-laccetti",fullName:"Giuliano Laccetti"}]},{id:"38510",doi:"10.5772/47829",title:"A Petri Net-Based Approach to the Quantification of Data Center Dependability",slug:"a-petri-net-based-approach-to-the-quantification-of-data-center-dependability",totalDownloads:3281,totalCrossrefCites:9,totalDimensionsCites:14,abstract:null,book:{id:"2185",slug:"petri-nets-manufacturing-and-computer-science",title:"Petri Nets",fullTitle:"Petri Nets - Manufacturing and Computer Science"},signatures:"Gustavo Callou, Paulo Maciel, Dietmar Tutsch, Julian Araújo, João Ferreira and Rafael Souza",authors:[{id:"30126",title:"Prof.",name:"Paulo",middleName:"Romero Martins",surname:"Maciel",slug:"paulo-maciel",fullName:"Paulo Maciel"},{id:"121996",title:"Prof.",name:"Gustavo",middleName:null,surname:"Callou",slug:"gustavo-callou",fullName:"Gustavo Callou"},{id:"148639",title:"MSc.",name:"Carlos",middleName:null,surname:"Araujo",slug:"carlos-araujo",fullName:"Carlos Araujo"},{id:"148867",title:"Mr.",name:"João",middleName:null,surname:"Ferreira",slug:"joao-ferreira",fullName:"João Ferreira"},{id:"148871",title:"Prof.",name:"Dietmar",middleName:null,surname:"Tutsch",slug:"dietmar-tutsch",fullName:"Dietmar Tutsch"},{id:"157701",title:"BSc.",name:"Rafael",middleName:null,surname:"Souza",slug:"rafael-souza",fullName:"Rafael Souza"}]},{id:"38516",doi:"10.5772/50117",title:"Timed Petri Nets",slug:"timed-petri-nets",totalDownloads:3593,totalCrossrefCites:0,totalDimensionsCites:12,abstract:null,book:{id:"2185",slug:"petri-nets-manufacturing-and-computer-science",title:"Petri Nets",fullTitle:"Petri Nets - Manufacturing and Computer Science"},signatures:"José Reinaldo Silva and Pedro M. G. del Foyo",authors:[{id:"148751",title:"Dr.",name:"José Reinaldo",middleName:null,surname:"Silva",slug:"jose-reinaldo-silva",fullName:"José Reinaldo Silva"}]},{id:"708",doi:"10.5772/5310",title:"Petri Net Transformations",slug:"petri_net_transformations",totalDownloads:4417,totalCrossrefCites:8,totalDimensionsCites:11,abstract:null,book:{id:"5330",slug:"petri_net_theory_and_applications",title:"Petri Net",fullTitle:"Petri Net, Theory and Applications"},signatures:"Hartmut Ehrig, Kathrin Hoffmann, Julia Padberg, Claudia Ermel, Ulrike Prange, Enrico Biermann and Tony Modica",authors:null}],mostDownloadedChaptersLast30Days:[{id:"6752",title:"The Role of Public Visual Art in Urban Space Recognition",slug:"the-role-of-public-visual-art-in-urban-space-recognition",totalDownloads:8629,totalCrossrefCites:5,totalDimensionsCites:7,abstract:null,book:{id:"5329",slug:"cognitive-maps",title:"Cognitive Maps",fullTitle:"Cognitive Maps"},signatures:"Anna Januchta-Szostak",authors:null},{id:"38495",title:"Petri Nets Models for Analysis and Control of Public Bicycle-Sharing Systems",slug:"petri-nets-models-for-analysis-and-control-of-public-bicycle-sharing-systems",totalDownloads:2956,totalCrossrefCites:6,totalDimensionsCites:9,abstract:null,book:{id:"2185",slug:"petri-nets-manufacturing-and-computer-science",title:"Petri Nets",fullTitle:"Petri Nets - Manufacturing and Computer Science"},signatures:"Karim Labadi, Taha Benarbia, Samir Hamaci and A-Moumen Darcherif",authors:[{id:"11428",title:"Dr.",name:"Karim",middleName:null,surname:"Labadi",slug:"karim-labadi",fullName:"Karim Labadi"},{id:"145768",title:"Mr.",name:"Taha",middleName:null,surname:"Benarbia",slug:"taha-benarbia",fullName:"Taha Benarbia"}]},{id:"38493",title:"Construction and Application of Learning Petri Net",slug:"construction-and-application-of-learning-petri-net",totalDownloads:3414,totalCrossrefCites:1,totalDimensionsCites:2,abstract:null,book:{id:"2185",slug:"petri-nets-manufacturing-and-computer-science",title:"Petri Nets",fullTitle:"Petri Nets - Manufacturing and Computer Science"},signatures:"Liangbing Feng, Masanao Obayashi, Takashi Kuremoto and Kunikazu Kobayashi",authors:[{id:"14090",title:"Prof.",name:"Masanao",middleName:null,surname:"Obayashi",slug:"masanao-obayashi",fullName:"Masanao Obayashi"},{id:"15895",title:"Assistant Prof.",name:"Takashi",middleName:null,surname:"Kuremoto",slug:"takashi-kuremoto",fullName:"Takashi Kuremoto"},{id:"15896",title:"Dr.",name:"Kunikazu",middleName:null,surname:"Kobayashi",slug:"kunikazu-kobayashi",fullName:"Kunikazu Kobayashi"},{id:"15897",title:"Dr.",name:"Liangbing",middleName:null,surname:"Feng",slug:"liangbing-feng",fullName:"Liangbing Feng"}]},{id:"38499",title:"Performance Evaluation of Distributed System Using SPN",slug:"performance-evaluation-of-distributed-system-using-spn",totalDownloads:2050,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"2185",slug:"petri-nets-manufacturing-and-computer-science",title:"Petri Nets",fullTitle:"Petri Nets - Manufacturing and Computer Science"},signatures:"Razib Hayat Khan, Poul E. Heegaard and Kazi Wali Ullah",authors:[{id:"150886",title:"Mr.",name:"Razib Hayat",middleName:null,surname:"Khan",slug:"razib-hayat-khan",fullName:"Razib Hayat Khan"},{id:"155603",title:"Prof.",name:"Poul E",middleName:null,surname:"Heegaard",slug:"poul-e-heegaard",fullName:"Poul E Heegaard"},{id:"156101",title:"Mr.",name:"Kazi Wali",middleName:null,surname:"Ullah",slug:"kazi-wali-ullah",fullName:"Kazi Wali Ullah"}]},{id:"38510",title:"A Petri Net-Based Approach to the Quantification of Data Center Dependability",slug:"a-petri-net-based-approach-to-the-quantification-of-data-center-dependability",totalDownloads:3281,totalCrossrefCites:9,totalDimensionsCites:14,abstract:null,book:{id:"2185",slug:"petri-nets-manufacturing-and-computer-science",title:"Petri Nets",fullTitle:"Petri Nets - Manufacturing and Computer Science"},signatures:"Gustavo Callou, Paulo Maciel, Dietmar Tutsch, Julian Araújo, João Ferreira and Rafael Souza",authors:[{id:"30126",title:"Prof.",name:"Paulo",middleName:"Romero Martins",surname:"Maciel",slug:"paulo-maciel",fullName:"Paulo Maciel"},{id:"121996",title:"Prof.",name:"Gustavo",middleName:null,surname:"Callou",slug:"gustavo-callou",fullName:"Gustavo Callou"},{id:"148639",title:"MSc.",name:"Carlos",middleName:null,surname:"Araujo",slug:"carlos-araujo",fullName:"Carlos Araujo"},{id:"148867",title:"Mr.",name:"João",middleName:null,surname:"Ferreira",slug:"joao-ferreira",fullName:"João Ferreira"},{id:"148871",title:"Prof.",name:"Dietmar",middleName:null,surname:"Tutsch",slug:"dietmar-tutsch",fullName:"Dietmar Tutsch"},{id:"157701",title:"BSc.",name:"Rafael",middleName:null,surname:"Souza",slug:"rafael-souza",fullName:"Rafael Souza"}]}],onlineFirstChaptersFilter:{topicId:"96",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:18,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"June 11th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",slug:"andries-engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:9,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"13633",title:"Prof.",name:"Abdelhamid",middleName:null,surname:"Mellouk",slug:"abdelhamid-mellouk",fullName:"Abdelhamid Mellouk",profilePictureURL:"https://mts.intechopen.com/storage/users/13633/images/1567_n.jpg",institutionString:null,institution:{name:"Paris 12 Val de Marne University",institutionURL:null,country:{name:"France"}}},{id:"109268",title:"Dr.",name:"Ali",middleName:null,surname:"Al-Ataby",slug:"ali-al-ataby",fullName:"Ali Al-Ataby",profilePictureURL:"https://mts.intechopen.com/storage/users/109268/images/7410_n.jpg",institutionString:null,institution:{name:"University of Liverpool",institutionURL:null,country:{name:"United Kingdom"}}},{id:"3807",title:"Dr.",name:"Carmelo",middleName:"Jose Albanez",surname:"Bastos-Filho",slug:"carmelo-bastos-filho",fullName:"Carmelo Bastos-Filho",profilePictureURL:"https://mts.intechopen.com/storage/users/3807/images/624_n.jpg",institutionString:null,institution:{name:"Universidade de Pernambuco",institutionURL:null,country:{name:"Brazil"}}},{id:"38850",title:"Dr.",name:"Efren",middleName:null,surname:"Gorrostieta Hurtado",slug:"efren-gorrostieta-hurtado",fullName:"Efren Gorrostieta Hurtado",profilePictureURL:"https://mts.intechopen.com/storage/users/38850/images/system/38850.jpg",institutionString:null,institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},{id:"239041",title:"Prof.",name:"Yang",middleName:null,surname:"Yi",slug:"yang-yi",fullName:"Yang Yi",profilePictureURL:"https://mts.intechopen.com/storage/users/239041/images/system/239041.jpeg",institutionString:"Virginia Tech",institution:{name:"Virginia Tech",institutionURL:null,country:{name:"United States of America"}}}]},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"13818",title:"Dr.",name:"Asim",middleName:null,surname:"Bhatti",slug:"asim-bhatti",fullName:"Asim Bhatti",profilePictureURL:"https://mts.intechopen.com/storage/users/13818/images/system/13818.jpg",institutionString:null,institution:{name:"Deakin University",institutionURL:null,country:{name:"Australia"}}},{id:"151889",title:"Dr.",name:"Joao Luis Garcia",middleName:null,surname:"Rosa",slug:"joao-luis-garcia-rosa",fullName:"Joao Luis Garcia Rosa",profilePictureURL:"https://mts.intechopen.com/storage/users/151889/images/4861_n.jpg",institutionString:null,institution:{name:"University of Sao Paulo",institutionURL:null,country:{name:"Brazil"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",institutionURL:null,country:{name:"Turkey"}}}]},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"1177",title:"Prof.",name:"Antonio",middleName:"J. R.",surname:"Neves",slug:"antonio-neves",fullName:"Antonio Neves",profilePictureURL:"https://mts.intechopen.com/storage/users/1177/images/system/1177.jpg",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"220565",title:"Dr.",name:"Jucheng",middleName:null,surname:"Yang",slug:"jucheng-yang",fullName:"Jucheng Yang",profilePictureURL:"https://mts.intechopen.com/storage/users/220565/images/5988_n.jpg",institutionString:null,institution:{name:"Tianjin University of Technology",institutionURL:null,country:{name:"China"}}},{id:"29299",title:"Prof.",name:"Serestina",middleName:null,surname:"Viriri",slug:"serestina-viriri",fullName:"Serestina Viriri",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYOalQAG/Profile_Picture_1620817405517",institutionString:null,institution:{name:"University of KwaZulu-Natal",institutionURL:null,country:{name:"South Africa"}}},{id:"315933",title:"Dr.",name:"Yalın",middleName:null,surname:"Baştanlar",slug:"yalin-bastanlar",fullName:"Yalın Baştanlar",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002qpr7hQAA/Profile_Picture_1621430127547",institutionString:null,institution:{name:"Izmir Institute of Technology",institutionURL:null,country:{name:"Turkey"}}}]},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios",profilePictureURL:"https://mts.intechopen.com/storage/users/111683/images/system/111683.jpg",institutionString:"De La Salle University",institution:{name:"De La Salle University",institutionURL:null,country:{name:"Philippines"}}},{id:"106873",title:"Prof.",name:"Hongwei",middleName:null,surname:"Ge",slug:"hongwei-ge",fullName:"Hongwei Ge",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Dalian University of Technology",institutionURL:null,country:{name:"China"}}},{id:"171056",title:"Dr.",name:"Sotirios",middleName:null,surname:"Goudos",slug:"sotirios-goudos",fullName:"Sotirios Goudos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9IuQAK/Profile_Picture_1622623673666",institutionString:null,institution:{name:"Aristotle University of Thessaloniki",institutionURL:null,country:{name:"Greece"}}},{id:"15895",title:"Assistant Prof.",name:"Takashi",middleName:null,surname:"Kuremoto",slug:"takashi-kuremoto",fullName:"Takashi Kuremoto",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLrqQAG/Profile_Picture_1625656196038",institutionString:null,institution:{name:"Nippon Institute of Technology",institutionURL:null,country:{name:"Japan"}}},{id:"125844",title:"Prof.",name:"Wellington",middleName:"Pinheiro Dos",surname:"Santos",slug:"wellington-santos",fullName:"Wellington Santos",profilePictureURL:"https://mts.intechopen.com/storage/users/125844/images/4878_n.jpg",institutionString:null,institution:{name:"Federal University of Pernambuco",institutionURL:null,country:{name:"Brazil"}}}]},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}},{id:"16614",title:"Prof.",name:"Juan Ignacio",middleName:null,surname:"Guerrero Alonso",slug:"juan-ignacio-guerrero-alonso",fullName:"Juan Ignacio Guerrero Alonso",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6HB8QAM/Profile_Picture_1627901127555",institutionString:null,institution:{name:"University of Seville",institutionURL:null,country:{name:"Spain"}}},{id:"3095",title:"Prof.",name:"Kenji",middleName:null,surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/3095/images/1592_n.jpg",institutionString:null,institution:{name:"University of Chicago",institutionURL:null,country:{name:"United States of America"}}},{id:"214067",title:"Dr.",name:"W. David",middleName:null,surname:"Pan",slug:"w.-david-pan",fullName:"W. David Pan",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSEI9QAO/Profile_Picture_1623656213532",institutionString:null,institution:{name:"University of Alabama in Huntsville",institutionURL:null,country:{name:"United States of America"}}},{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk",profilePictureURL:"https://mts.intechopen.com/storage/users/72920/images/system/72920.jpeg",institutionString:"Dalarna University, Faculty of Data and Information Sciences",institution:{name:"Dalarna University",institutionURL:null,country:{name:"Sweden"}}}]},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"275140",title:"Dr.",name:"Dinh Hoa",middleName:null,surname:"Nguyen",slug:"dinh-hoa-nguyen",fullName:"Dinh Hoa Nguyen",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRbnKQAS/Profile_Picture_1622204093453",institutionString:null,institution:{name:"Kyushu University",institutionURL:null,country:{name:"Japan"}}},{id:"20259",title:"Dr.",name:"Hongbin",middleName:null,surname:"Ma",slug:"hongbin-ma",fullName:"Hongbin Ma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRhDJQA0/Profile_Picture_2022-05-02T08:25:21.jpg",institutionString:null,institution:{name:"Beijing Institute of Technology",institutionURL:null,country:{name:"China"}}},{id:"28640",title:"Prof.",name:"Yasushi",middleName:null,surname:"Kambayashi",slug:"yasushi-kambayashi",fullName:"Yasushi Kambayashi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYOQxQAO/Profile_Picture_1625660525470",institutionString:null,institution:{name:"Nippon Institute of Technology",institutionURL:null,country:{name:"Japan"}}}]}]},overviewPageOFChapters:{paginationCount:14,paginationItems:[{id:"82248",title:"Sustainability and Excellence: Pillars for Business Survival",doi:"10.5772/intechopen.105420",signatures:"Irina Severin, Maria Cristina Dijmarescu and Mihai Caramihai",slug:"sustainability-and-excellence-pillars-for-business-survival",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82124",title:"Assessment of Diversity, Growth Characteristics and Aboveground Biomass of Tree Species in Selected Urban Green Areas of Osogbo, Osun State",doi:"10.5772/intechopen.104982",signatures:"Omolara Aremu, Olusola O. Adetoro and Olusegun Awotoye",slug:"assessment-of-diversity-growth-characteristics-and-aboveground-biomass-of-tree-species-in-selected-u",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",subseries:{id:"94",title:"Climate Change and Environmental Sustainability"}}},{id:"81975",title:"Self-Sustained Communities: Food Security in Times of Crisis",doi:"10.5772/intechopen.104425",signatures:"Kriengsak Chareonwongsak",slug:"self-sustained-communities-food-security-in-times-of-crisis",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81920",title:"Rethinking an Approach for Sustainable Globalization",doi:"10.5772/intechopen.105141",signatures:"Parakram Pyakurel",slug:"rethinking-an-approach-for-sustainable-globalization",totalDownloads:21,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}}]},overviewPagePublishedBooks:{paginationCount:0,paginationItems:[]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11475",title:"Food Security Challenges and Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11475.jpg",hash:"090302a30e461cee643ec49675c811ec",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"292145",title:"Dr.",name:"Muhammad",surname:"Haseeb Ahmad",slug:"muhammad-haseeb-ahmad",fullName:"Muhammad Haseeb Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",hash:"a58c7b02d07903004be70f744f2e1835",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11477",title:"Public Economics - New Perspectives and Uncertainty",coverURL:"https://cdn.intechopen.com/books/images_new/11477.jpg",hash:"a8e6c515dc924146fbd2712eb4e7d118",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 27th 2022",isOpenForSubmission:!0,editors:[{id:"414400",title:"Dr.",name:"Habtamu",surname:"Alem",slug:"habtamu-alem",fullName:"Habtamu Alem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11457",title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",hash:"8df7150b01ae754024c65d1a62f190d9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"317087",title:"Dr.",name:"Pavel",surname:"Samec",slug:"pavel-samec",fullName:"Pavel Samec"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 7th 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11473",title:"Social Inequality - Structure and Social Processes",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",hash:"cefab077e403fd1695fb2946e7914942",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"313341",title:"Ph.D.",name:"Yaroslava",surname:"Robles-Bykbaev",slug:"yaroslava-robles-bykbaev",fullName:"Yaroslava Robles-Bykbaev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:19,paginationItems:[{id:"82196",title:"Multi-Features Assisted Age Invariant Face Recognition and Retrieval Using CNN with Scale Invariant Heat Kernel Signature",doi:"10.5772/intechopen.104944",signatures:"Kamarajugadda Kishore Kumar and Movva Pavani",slug:"multi-features-assisted-age-invariant-face-recognition-and-retrieval-using-cnn-with-scale-invariant-",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"82063",title:"Evaluating Similarities and Differences between Machine Learning and Traditional Statistical Modeling in Healthcare Analytics",doi:"10.5772/intechopen.105116",signatures:"Michele Bennett, Ewa J. Kleczyk, Karin Hayes and Rajesh Mehta",slug:"evaluating-similarities-and-differences-between-machine-learning-and-traditional-statistical-modelin",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81557",title:"Object Tracking Using Adapted Optical Flow",doi:"10.5772/intechopen.102863",signatures:"Ronaldo Ferreira, Joaquim José de Castro Ferreira and António José Ribeiro Neves",slug:"object-tracking-using-adapted-optical-flow",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81558",title:"Thresholding Image Techniques for Plant Segmentation",doi:"10.5772/intechopen.104587",signatures:"Miguel Ángel Castillo-Martínez, Francisco Javier Gallegos-Funes, Blanca E. Carvajal-Gámez, Guillermo Urriolagoitia-Sosa and Alberto J. Rosales-Silva",slug:"thresholding-image-techniques-for-plant-segmentation",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81471",title:"Semantic Map: Bringing Together Groups and Discourses",doi:"10.5772/intechopen.103818",signatures:"Theodore Chadjipadelis and Georgia Panagiotidou",slug:"semantic-map-bringing-together-groups-and-discourses",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79491",title:"Fuzzy Perceptron Learning for Non-Linearly Separable Patterns",doi:"10.5772/intechopen.101312",signatures:"Raja Kishor Duggirala",slug:"fuzzy-perceptron-learning-for-non-linearly-separable-patterns",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Raja Kishor",surname:"Duggirala"}],book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81234",title:"Cognitive Visual Tracking of Hand Gestures in Real-Time RGB Videos",doi:"10.5772/intechopen.103170",signatures:"Richa Golash and Yogendra Kumar Jain",slug:"cognitive-visual-tracking-of-hand-gestures-in-real-time-rgb-videos",totalDownloads:38,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81331",title:"Machine Learning Algorithm-Based Contraceptive Practice among Ever-Married Women in Bangladesh: A Hierarchical Machine Learning Classification Approach",doi:"10.5772/intechopen.103187",signatures:"Iqramul Haq, Md. Ismail Hossain, Md. Moshiur Rahman, Md. Injamul Haq Methun, Ashis Talukder, Md. Jakaria Habib and Md. Sanwar Hossain",slug:"machine-learning-algorithm-based-contraceptive-practice-among-ever-married-women-in-bangladesh-a-hie",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},subseriesFiltersForOFChapters:[{caption:"Applied Intelligence",value:22,count:1,group:"subseries"},{caption:"Computer Vision",value:24,count:8,group:"subseries"},{caption:"Machine Learning and Data Mining",value:26,count:10,group:"subseries"}],publishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"10795",title:"Plant Stress Physiology",subtitle:"Perspectives in Agriculture",coverURL:"https://cdn.intechopen.com/books/images_new/10795.jpg",slug:"plant-stress-physiology-perspectives-in-agriculture",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Mirza Hasanuzzaman and Kamran Nahar",hash:"c5a7932b74fe612b256bf95d0709756e",volumeInSeries:11,fullTitle:"Plant Stress Physiology - Perspectives in Agriculture",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",institutionURL:null,country:{name:"Bangladesh"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7999",title:"Free Radical Medicine and Biology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7999.jpg",slug:"free-radical-medicine-and-biology",publishedDate:"July 15th 2020",editedByType:"Edited by",bookSignature:"Kusal Das, Swastika Das, Mallanagouda Shivanagouda Biradar, Varaprasad Bobbarala and S. Subba Tata",hash:"083e5d427097d368a3f8a02bd6c76bf8",volumeInSeries:10,fullTitle:"Free Radical Medicine and Biology",editors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",institutionString:"BLDE (Deemed to be University), India",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8762",title:"Melatonin",subtitle:"The Hormone of Darkness and its Therapeutic Potential and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/8762.jpg",slug:"melatonin-the-hormone-of-darkness-and-its-therapeutic-potential-and-perspectives",publishedDate:"June 24th 2020",editedByType:"Edited by",bookSignature:"Marilena Vlachou",hash:"bfbc5538173f11acb0f9549a85b70489",volumeInSeries:9,fullTitle:"Melatonin - The Hormone of Darkness and its Therapeutic Potential and Perspectives",editors:[{id:"246279",title:"Associate Prof.",name:"Marilena",middleName:null,surname:"Vlachou",slug:"marilena-vlachou",fullName:"Marilena Vlachou",profilePictureURL:"https://mts.intechopen.com/storage/users/246279/images/system/246279.jpg",institutionString:"National and Kapodistrian University of Athens",institution:{name:"National and Kapodistrian University of Athens",institutionURL:null,country:{name:"Greece"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8002",title:"Tumor Progression and Metastasis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8002.jpg",slug:"tumor-progression-and-metastasis",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Ahmed Lasfar and Karine Cohen-Solal",hash:"db17b0fe0a9b6e80ff02b81a93bafa4e",volumeInSeries:8,fullTitle:"Tumor Progression and Metastasis",editors:[{id:"32546",title:"Dr.",name:"Ahmed",middleName:null,surname:"Lasfar",slug:"ahmed-lasfar",fullName:"Ahmed Lasfar",profilePictureURL:"https://mts.intechopen.com/storage/users/32546/images/system/32546.png",institutionString:"Rutgers, The State University of New Jersey",institution:{name:"Rutgers, The State University of New Jersey",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6897",title:"Biophysical Chemistry",subtitle:"Advance Applications",coverURL:"https://cdn.intechopen.com/books/images_new/6897.jpg",slug:"biophysical-chemistry-advance-applications",publishedDate:"February 19th 2020",editedByType:"Edited by",bookSignature:"Mohammed A. A. Khalid",hash:"0ad18ab382e2ffb9ff202d15282297eb",volumeInSeries:7,fullTitle:"Biophysical Chemistry - Advance Applications",editors:[{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",institutionString:"Taif University",institution:{name:"Taif University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8430",title:"Neurodevelopment and Neurodevelopmental Disorder",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8430.jpg",slug:"neurodevelopment-and-neurodevelopmental-disorder",publishedDate:"November 27th 2019",editedByType:"Edited by",bookSignature:"Michael Fitzgerald",hash:"696c96d038de473216e48b199613c111",volumeInSeries:6,fullTitle:"Neurodevelopment and Neurodevelopmental Disorder",editors:[{id:"205005",title:"Dr.",name:"Michael",middleName:null,surname:"Fitzgerald",slug:"michael-fitzgerald",fullName:"Michael Fitzgerald",profilePictureURL:"https://mts.intechopen.com/storage/users/205005/images/system/205005.jpg",institutionString:"Independant Researcher",institution:{name:"Trinity College Dublin",institutionURL:null,country:{name:"Ireland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",slug:"antioxidants",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Emad Shalaby",hash:"76361b4061e830906267933c1c670027",volumeInSeries:5,fullTitle:"Antioxidants",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby",profilePictureURL:"https://mts.intechopen.com/storage/users/63600/images/system/63600.png",institutionString:"Cairo University",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8797",title:"Adipose Tissue",subtitle:"An Update",coverURL:"https://cdn.intechopen.com/books/images_new/8797.jpg",slug:"adipose-tissue-an-update",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Leszek Szablewski",hash:"34880b7b450ef96fa5063c867c028b02",volumeInSeries:4,fullTitle:"Adipose Tissue - An Update",editors:[{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6924",title:"Adenosine Triphosphate in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6924.jpg",slug:"adenosine-triphosphate-in-health-and-disease",publishedDate:"April 24th 2019",editedByType:"Edited by",bookSignature:"Gyula Mozsik",hash:"04106c232a3c68fec07ba7cf00d2522d",volumeInSeries:3,fullTitle:"Adenosine Triphosphate in Health and Disease",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",institutionString:"University of Pécs",institution:{name:"University of Pecs",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",slug:"endoplasmic-reticulum",publishedDate:"April 17th 2019",editedByType:"Edited by",bookSignature:"Angel Català",hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",volumeInSeries:2,fullTitle:"Endoplasmic Reticulum",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7264",title:"Calcium and Signal Transduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7264.jpg",slug:"calcium-and-signal-transduction",publishedDate:"October 24th 2018",editedByType:"Edited by",bookSignature:"John N. Buchholz and Erik J. Behringer",hash:"e373a3d1123dbd45fddf75d90e3e7c38",volumeInSeries:1,fullTitle:"Calcium and Signal Transduction",editors:[{id:"89438",title:"Dr.",name:"John N.",middleName:null,surname:"Buchholz",slug:"john-n.-buchholz",fullName:"John N. Buchholz",profilePictureURL:"https://mts.intechopen.com/storage/users/89438/images/6463_n.jpg",institutionString:null,institution:{name:"Loma Linda University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Plant Physiology",value:13,count:1},{group:"subseries",caption:"Human Physiology",value:12,count:2},{group:"subseries",caption:"Cell Physiology",value:11,count:8}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1},{group:"publicationYear",caption:"2020",value:2020,count:4},{group:"publicationYear",caption:"2019",value:2019,count:5},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:301,paginationItems:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}},{id:"338856",title:"Mrs.",name:"Nur Alvira",middleName:null,surname:"Pascawati",slug:"nur-alvira-pascawati",fullName:"Nur Alvira Pascawati",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universitas Respati Yogyakarta",country:{name:"Indonesia"}}},{id:"441116",title:"Dr.",name:"Jovanka M.",middleName:null,surname:"Voyich",slug:"jovanka-m.-voyich",fullName:"Jovanka M. Voyich",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Montana State University",country:{name:"United States of America"}}},{id:"330412",title:"Dr.",name:"Muhammad",middleName:null,surname:"Farhab",slug:"muhammad-farhab",fullName:"Muhammad Farhab",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"349495",title:"Dr.",name:"Muhammad",middleName:null,surname:"Ijaz",slug:"muhammad-ijaz",fullName:"Muhammad Ijaz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Veterinary and Animal Sciences",country:{name:"Pakistan"}}}]}},subseries:{item:{id:"93",type:"subseries",title:"Inclusivity and Social Equity",keywords:"Social contract, SDG, Human rights, Inclusiveness, Equity, Democracy, Personal learning, Collaboration, Glocalization",scope:"\r\n\tThe environment is subject to severe anthropic effects. Among them are those associated with pollution, resource extraction and overexploitation, loss of biodiversity, soil degradation, disorderly land occupation and planning, and many others. These anthropic effects could potentially be caused by any inadequate management of the environment. However, ecosystems have a resilience that makes them react to disturbances which mitigate the negative effects. It is critical to understand how ecosystems, natural and anthropized, including urban environments, respond to actions that have a negative influence and how they are managed. It is also important to establish when the limits marked by the resilience and the breaking point are achieved and when no return is possible. The main focus for the chapters is to cover the subjects such as understanding how the environment resilience works, the mechanisms involved, and how to manage them in order to improve our interactions with the environment and promote the use of adequate management practices such as those outlined in the United Nations’ Sustainable Development Goals.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/39.jpg",keywords:"Anthropic effects, Overexploitation, Biodiversity loss, Degradation, Inadequate Management, SDGs adequate practices"},{id:"38",title:"Pollution",scope:"\r\n\tPollution is caused by a wide variety of human activities and occurs in diverse forms, for example biological, chemical, et cetera. In recent years, significant efforts have been made to ensure that the environment is clean, that rigorous rules are implemented, and old laws are updated to reduce the risks towards humans and ecosystems. However, rapid industrialization and the need for more cultivable sources or habitable lands, for an increasing population, as well as fewer alternatives for waste disposal, make the pollution control tasks more challenging. Therefore, this topic will focus on assessing and managing environmental pollution. It will cover various subjects, including risk assessment due to the pollution of ecosystems, transport and fate of pollutants, restoration or remediation of polluted matrices, and efforts towards sustainable solutions to minimize environmental pollution.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",keywords:"Human activity, Pollutants, Reduced risks, Population growth, Waste disposal, Remediation, Clean environment"},{id:"41",title:"Water Science",scope:"