Automotive engines are designed to convert chemical energy to mechanical energy. The efficiency of this conversion is governed by thermodynamics. The two most common engines utilize gas oil and gasoline fuels for this purpose. However, the combustion processes are radically different. The combustion sequence and relative characteristics for both engine types will be discussed. Due to different combustion requirements, the fundamental properties of both fuels will also be examined as these are significantly different for the two fuel types. The main fuel properties discussed are energy density, stability, fluidity, corrosion, contaminants, safety, wear and environmental aspects. Also, with the advent of various renewable components in both fuels, new trends are emerging for both fuel quality assessments as these are molecularly distinct from their crude oil counterparts.
Part of the book: Advanced Applications of Hydrogen and Engineering Systems in the Automotive Industry
It is concluded that the lubricity of gasoline is the least well understood of all three fuels due largely to the lack of a reliable test method for measuring the lubricity of such a very volatile and contamination-sensitive material. To overcome this limitation, the development of a simple and easy methodology based on the general standard ASTM G-133 have been produced. This method is first used to investigate the lubricity of commercial gasolines to obtain some baseline data for further study. A comparison of the overall lubricity level of diesel fuel and gasoline fuel indicates that additive-free gasolines have significantly poorer lubricity than highly-refined, Swedish Class I diesel fuel, while commercial, detergent-containing gasolines range from slightly better to significantly poorer than a Swedish Class I diesel fuel. Especially LRP (lead replacement) gasolines developed a tests on refinery streams used to blend gasoline also show quite varied wear behaviour. Gasoline lubricity can be significantly improved by adding small amount of diesel lubricity additives. The results indicate that the type of fuel is a significant factor for discriminating the lubrication properties of each type of gasoline fuel and that lubricity is affected by bulk and trace composition characteristics of the fuel.
Part of the book: Crude Oil