This document presents the design of a digital PID control for a Stewart-Gough platform, delimited by six degrees of freedom (DoF) that allow the final effector to have displacement in the XYZ axes and rotation with warpage, pitch, and yaw restrictions. It includes the study and resolution of the direct and inverse kinematics of the platform, as well as the workspace described by the final effector and its corresponding simulation of movements and joints to study extreme points and possible singularities. From the definition of characteristics, the CAD design generated from the generalized mathematical model of the public domain, and the general selection of materials for the construction of the functional prototype, a study of applied forces is generated to observe the points with stress concentrators, the safety factor, and possible deformations. The estimation of the sampling period for the selection of the microcontroller and an approximate definition of the response time are also considered. The development of this prototype and its documentation are proposed as didactic material for the study, design, and control of parallel mechanisms.
Part of the book: Automation and Control