Correlation between the currents of the magnets and the magnitude of the magnetic field near the substrate and in the gas-discharge chamber.
\r\n\t
",isbn:"978-1-83962-547-3",printIsbn:"978-1-83962-546-6",pdfIsbn:"978-1-83962-548-0",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"e5ba02fedd7c87f0ab66414f3b07de0c",bookSignature:" John P. Tiefenbacher",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10765.jpg",keywords:"Managing Urbanization, Managing Development, Managing Resource Use, Drought Management, Flood Management, Water Quality Monitoring, Air Quality Monitoring, Ecological Monitoring, Modeling Extreme Natural Events, Ecological Restoration, Restoring Environmental Flows, Environmental Management Perspectives",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"January 12th 2021",dateEndSecondStepPublish:"February 9th 2021",dateEndThirdStepPublish:"April 10th 2021",dateEndFourthStepPublish:"June 29th 2021",dateEndFifthStepPublish:"August 28th 2021",remainingDaysToSecondStep:"23 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"A geospatial scholar working at the interface of natural and human systems, collaborating internationally on innovative studies about hazards and environmental challenges. Dr. Tiefenbacher has published more than 200 papers on a diverse array of topics that examine perception and behaviors with regards to the application of pesticides, releases of toxic chemicals, environments of the U.S.-Mexico borderlands, wildlife hazards, and the geography of wine.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"73876",title:"Dr.",name:"John P.",middleName:null,surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher",profilePictureURL:"https://mts.intechopen.com/storage/users/73876/images/system/73876.jfif",biography:"Dr. John P. Tiefenbacher (Ph.D., Rutgers, 1992) is a professor of Geography at Texas State University. His research has focused on various aspects of hazards and environmental management. Dr. Tiefenbacher has published on a diverse array of topics that examine perception and behaviors with regards to the application of pesticides, releases of toxic chemicals, environments of the U.S.-Mexico borderlands, wildlife hazards, and the geography of wine. More recently his work pertains to spatial adaptation to climate change, spatial responses in wine growing regions to climate change, the geographies of viticulture and wine, artificial intelligence and machine learning to predict patterns of natural processes and hazards, historical ethnic enclaves in American cities and regions, and environmental adaptations of 19th century European immigrants to North America's landscapes.",institutionString:"Texas State University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"6",institution:{name:"Texas State University",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"12",title:"Environmental Sciences",slug:"environmental-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"194667",firstName:"Marijana",lastName:"Francetic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/194667/images/4752_n.jpg",email:"marijana@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"65029",title:"Physical Processes and Plasma Parameters in a Radio-Frequency Hybrid Plasma System for Thin-Film Production with Ion Assistance",doi:"10.5772/intechopen.82870",slug:"physical-processes-and-plasma-parameters-in-a-radio-frequency-hybrid-plasma-system-for-thin-film-pro",body:'\nAt the present time, vacuum plasma methods for the formation of multicomponent thin-film structures based on magnetron or vacuum arc gas discharges are widely used in the industry. These methods allow to obtain a wide class of functional coatings, such as optical, hardening, anticorrosion, antibacterial, etc. A particular case of the known vacuum plasma methods of coating formation is ion-assisted deposition [1, 2, 3, 4, 5, 6, 7, 8]. The method involves continuous or periodic bombardment of growing thin films by accelerated ions.
\nThe results of the bombardment of the substrate and the growing films by accelerated ions are [1, 2, 3, 4, 5, 6, 7, 8]:
cleaning of the substrate surface and removing traces of water and hydrocarbons;
increase of density and, in some cases, modification of the growing film structure;
removal of loosely bounded molecules during the film growth;
improving the adhesion of the film to the substrate;
better control of the film stoichiometric composition in the case of chemically active gas usage.
The concept of ion-stimulated deposition was proposed more than 70 years ago by Berghaus [1]. More than two decades later, the technology was implemented in the experimental works by Mattox and MacDonald [2], as well as by Mattox and Kominiak [3].
\nCurrently, vacuum deposition of films is carried out by way of thermal evaporation, magnetron, vacuum arc, and ion-beam deposition [4, 5, 6, 7, 8]. Bombardment of substrates and growing films is implemented using accelerated ion beams, generated in ion sources or gas-discharge plasma. In the latter case, a negative bias is applied to the substrate, which accelerates the ions in the direction perpendicular to the surface of the growing film.
\nThe effect of the ion flux treatment on the thin-film properties substantially depends on the flux magnitude, energy and mass of the ions, as well as the ratio between the flows of the assisting ions and the atoms of the deposited substance. The question of the optimal magnitude of energy, which has to be introduced into the growing film per a single deposited atom, was examined in [5, 9, 10, 11, 12].
\nIn [10], the results of numerous experiments on the deposition of coatings using ion beam stimulation are analyzed. It is shown that the most significant changes in the properties of deposited films occur, when each of the deposited atom obtains additional energy in the range of 1.0–100 eV. However, it was shown in [11] that in the case of Ti-Al-N film deposition, composition of the film, predominant orientation, and distances between atoms in the lattice significantly depend on whether the energy is introduced by one high-energy ion or by several low-energy ions. As shown in [12], the problem is that in the above cases the energy is transferred to the deposited atoms irregularly. High-energy ions are capable of creating defects in the deeper layers of the coating and the substrate; having been reflected from the surface of the substrate, the ions acquire energy, which significantly depends on the substrate material. This results in the fact [12] that the energy required for the film growth at the initial stage may greatly differ from the energy, which is required at the final growth stage, when the assisting ions interact only with the atoms of the deposited substance. It should be noted that when the ion energy exceeds 15–30 eV [13], the growing film can be sputtered with a beam of fast ions. The use of ion beams with energies up to 30 eV makes it possible to reduce these effects to a minimum.
\nThe use of vacuum plasma methods of forming functional coatings in the industry requires the ensuring of high-speed film deposition and, accordingly, the use of significant fluxes of assisting ions. Literature review [6, 13] shows that the ion fluxes generated by gridded and gridless ion beam sources are often insufficient to assist the growth of films produced using magnetron and vacuum arc methods. Besides, there is a complex problem of matching the operation of gas-discharge sources generating assisting ions and coating systems in terms of pressure.
\nIn [14], the possibility of generating plasma flows with the ion component density of up to 20–30 mA/cm2 and independently controlled ion energy within the range of 20–120 eV by using a combination of arc discharge with inductive radio-frequency (RF) discharge in external magnetic field is shown. The results obtained in [14] served as the starting point for the development of a plasma reactor [15, 16, 17, 18], intended for the magnetron sputtering of functional coatings using stimulation by ions, generated in RF inductive discharge with external magnetic field.
\nThe task of developing a plasma reactor for magnetron sputtering deposition of ion-stimulated coatings has determined the composition of the reactor: one or more magnetron sources to provide the flow of sputtered particles onto a substrate and gas-discharge source, which provides the generation of a magnitude-controlled flux of ions, bombarding the substrate. The ion flux energy control is provided by a direct current (DC) or RF biasing of the substrate.
\nTo enable successful operation of the plasma reactor, it is necessary to ensure that:
The working areas of the magnetron and gas-discharge sources are matched in terms of pressure.
Changing of external parameters of the gas-discharge source ensures coordination of the flux of assisting ions and the flux of sputtered particles entering the substrate.
Changing of external parameters of the gas-discharge source ensures uniform density of ion current density on the substrate not worse than 10%.
The plasma reactor operates using both inert and chemically active gases.
Let us do some estimates. Taking into account typical rate of magnetron sputtering, it is advisable to ensure that the density of the stimulating ion current varies within the range of 0.1–3 mA/cm2. This means that the plasma density must vary within the range of 0.03–1 × 1011 cm−3.
\nA literature review [19, 20, 21] has shown that it is reasonable to consider two modifications of inductive RF discharge as the options for implementing the working process in the gas-discharge source, namely, inductive RF discharge in the absence and in the presence of external magnetic field. In the first case, the magnitude of the assisting ion flow will be determined by the power of the RF power supply. In the second case, two external parameters—the power of the RF power supply and the induction of an external magnetic field—will allow to control the values of plasma parameters and their spatial distribution in the plasma reactor.
\nIn modern industrial installations, the diameter of substrates usually exceeds 200 mm. Large diameter of the plasma reactor makes it difficult to generate strong magnetic fields in the volume of the reactor. It is known [22, 23, 24, 25] that when an external magnetic field with induction of less than 100 Gs is imposed on inductive RF discharge, a peak of electron density is observed at certain resonant values of the magnetic field. The absolute values of plasma density are close to those required in case of our task. The physically observable density peak is associated with resonant excitation in the plasma reactor of helicon and Trivelpiece-Gould waves [22, 23, 24, 25]. Provided that the pressure in the reactor does not exceed 10 mTorr, the Trivelpiece-Gould wave is a bulk wave, penetrates deep into plasma, and determines the absorption of RF power [24, 25].
\nIn [26], the authors offered a scheme of two-chamber process plasma source, based on inductive RF discharge with external magnetic field, diverging toward the substrate. Following the scheme [26], preliminary experiments on the study of the discharge parameters have been carried out with the plasma reactor having two chambers [27]. The model consisted of two cylindrical quartz chambers of different diameters and a magnetic system. The upper part of the reactor (gas-discharge chamber) had a diameter of 10 cm and a height of 25 cm. The lower part of the reactor (process chamber) had 46 cm diameter and 30 cm height. The RF power input unit—a three-turn solenoid antenna—was located on the outer surface of the gas-discharge chamber. The magnetic system allowed generation in the volume of the process chamber of uniform magnetic field, converging and diverging toward the lower flange where the substrate was located.
\nExperiments have shown that when using an inductive RF discharge in the absence of magnetic field, the discharge is concentrated in the gas-discharge chamber, while the plasma density in the process chamber near the substrate is vanishingly small. A different situation is observed when using external magnetic field, diverging in the region of the gas-discharge chamber and uniform in the region of the process chamber. Under argon pressures, when the electron mean free path exceeds the longitudinal size of the system, the imposition of magnetic field results in significant changes in the discharge length [27]. In the absence of magnetic field, the discharge is concentrated in the gas-discharge chamber. An increase in the magnitude of the magnetic field first results in the appearance of plasma in the upper part of the technological chamber. Then, the length of the intensely glowing part of the discharge in the process chamber starts to grow, and, finally, the discharge closes at the bottom flange. The movement of electrons across the magnetic field is difficult; therefore, an extended plasma column, sharply outlined in the radial direction, appears in the process chamber. In parallel with the increase in the discharge length near the substrate, an increase in the probe ion saturation current is observed.
\nFigure 1 shows variation of the axial distribution of the probe ion saturation current when the magnetic field induction grows. In the absence of magnetic field, the discharge is concentrated in the upper part of the plasma source; as the magnetic field increases, the ion current in the lower chamber gets increased. When the magnetic field exceeds 36 Gs, the discharge gets localized in the process chamber of the reactor.
\nProbe ionic saturation current distribution along z axis of plasma source depending on external magnetic field magnitude: 0.7 mTorr, 400 W, and 13.56 MHz.
This effect is observed for all of the examined powers of the RF power supply, and the maximum values of the ion current are increasing in proportion to the input power. The achieved plasma concentrations near the substrate correspond to those required in this work. Detailed studies of the physical causes for the axial redistribution of plasma density as the magnetic field induction increases have shown that the effect is associated with the patterns of excitation of partial standing waves in the plasma [17, 27]. It should be noted that the use of other configurations of the magnetic field did not result in significant increase in the ionic saturation current near the substrate.
\nThe obtained results served as the basis for the development of a semi-industrial installation for magnetron deposition of coatings with ion assistance.
\nPreliminary results, obtained using a plasma reactor prototype, have served as the basis for a semi-industrial installation [16, 17, 18]. Diagram of this prototype is shown in Figure 2. The reactor consists of two parts. The main part is a metal cylindrical process chamber having 500 mm diameter and 350 mm height. At the bottom of the chamber, there is a rotating table for the accommodation of samples being treated. To facilitate spectrometric studies of plasma parameters, two optical inspection windows are located above the table right opposite to each other. The magnetron source is installed on the side surface of the process chamber.
\nPlasma reactor prototype diagram: (1, 2) gas-discharge and process chambers, (3) antenna, (4, 5) top and bottom electromagnets, (6) magnetron, (7) rotating table, and (8) window.
Quartz gas-discharge chamber having 250 mm length and 220 mm diameter is mounted on top of the process chamber. From above the chamber, volume is covered with a glass blind flange; from beneath the chamber is sealed with a metal flange with an opening that allows plasma to penetrate into the main chamber.
\nBelow the process chamber, a pumping system is installed, consisting of rotary and turbo molecular pumps. The working gas is supplied to the reactor through the gas inlet located in the upper part of the gas-discharge chamber.
\nThe magnetic system consists of two electromagnets, located in the upper and lower parts of the process chamber. The electromagnets ensure generation of diverging magnetic field in the area of the gas-discharge chamber. The magnitude of the magnetic field in each specific point in the volume of the process chamber is determined by the currents Itop, Ibot flowing through the top and bottom electromagnets, respectively, and one and the same value of magnetic induction can be provided by setting different ratios between the currents of the magnets. In this regard, in the further section, the dependence of the discharge parameters on Itop, Ibot is given in the graphs illustrating the results of experiments. Table 1 contains the magnetic field induction values achieved near the antenna, in the center of the process chamber and near the substrate at different values of Itop, Ibot.
\nTop magnet current (Gs) | \nBottom magnet current (Gs) | \nMagnetic field in the substrate plane (Gs) | \nMagnetic field in the bottom part of the gas-discharge chamber (Gs) | \n
---|---|---|---|
3 | \n5 | \n39 | \n49 | \n
4 | \n5 | \n40 | \n63 | \n
5 | \n5 | \n42 | \n78 | \n
7 | \n5 | \n45 | \n107 | \n
3 | \n1 | \n11 | \n45 | \n
3 | \n3 | \n25 | \n47 | \n
3 | \n7 | \n53 | \n50 | \n
3 | \n9 | \n66 | \n52 | \n
3 | \n12 | \n87 | \n55 | \n
10 | \n4 | \n42 | \n150 | \n
1 | \n6 | \n42 | \n20 | \n
Correlation between the currents of the magnets and the magnitude of the magnetic field near the substrate and in the gas-discharge chamber.
To excite an inductive RF discharge, a solenoid antenna is used, which is located on the outer surface of the quartz chamber. The ends of the antenna are connected through the matching system to the RF power source, having the operating frequency of 13.56 MHz and an output power of up to 1000 W. In the inductive RF discharge, the power of RF power sources is coupled not only to plasma but is wasted in the antenna too. In order to measure the RF power value Ppl coupled to plasma, the method described in [24] was used.
\nTo ignite and maintain the magnetron discharge, the RF power source with the operating frequency of 13.56 MHz and output power up to 1000 W is used.
\nTo study the homogeneity of plasma near the substrate, a movable Langmuir probe was used, capable of traveling along the diameter of the substrate. When measuring the dependence of the probe ionic saturation current on the magnitude and configuration of the magnetic field, 60 V potential negative in respect of to the walls of the main chamber is applied to the probe.
\nIn parallel with probe measurements, the plasma glow spectrum was studied. Plasma radiation via an optical fiber was fed to the input of the MDR-40 monochromator, on the output of which photomultiplier FEU-100 was installed. The signal from the photomultiplier was amplified and fed to an ADC connected to a computer. The spectrum was scanned in the wavelength range of 400–700 nm. In addition to the glow spectrum, longitudinal distribution of the spectral lines intensity was measured. To this end, the light guide was moved along the generating line of the process chamber within the diagnostic window opening.
\nThin films were deposited onto silicon substrates when only the magnetron was operating and when the magnetron and the gas-discharge plasma source were operating together in the absence and in the presence of bias on the substrate. The morphology of the surface and the cleavage of the films were studied with the help of scanning electron microscope Supra-40. The electro-physical characteristics of the coatings were measured with the help of a two-probe method.
\nAt the first stage of the study, the parameters of the plasma generated by inductive RF discharge were studied depending on the size and configuration of the external magnetic field, the power of the RF power supply, and the pressure of argon in the absence of the magnetron discharge.
\nExperimental studies of the discharge have shown that when a longitudinal magnetic field is imposed on the discharge, an extended plasma column is formed in the process chamber, similar to that observed in the prototype reactor. The diameter of the plasma column is approximately equal to the diameter of the quartz chamber that is 20 cm (Figure 3).
\nPhoto of the discharge in the plasma reactor.
As with the prototype, a change in the magnetic field made it possible to control the longitudinal distribution of plasma density. Figure 4 shows correlation between the plasma glow intensity I1, measured in the central part of the process chamber, and at the substrate I3. An increase in the currents through the magnet, located near the gas discharge Itop and the substrate Ibot, results in equalization of the distribution of the plasma glow intensity along the discharge axis. This confirms the conclusion about the formation of the plasma “column,” closing on the substrate.
\nThe ratio of plasma glow intensity near the substrate I3 to the plasma glow intensity near the magnetron I1 versus the current flowing through the bottom electromagnet. Corresponding values of the current through the top electromagnet are shown in the menu in the figure. Pressure, 0.2 Pa.
Figures 5 and 6 show the dependence of the portion of the power Ppl coupled to the argon plasma, on the values of the currents Itop, Ibot through the top and bottom magnets, provided that the power of the RF power supply is 1000 W. As can be seen, Ppl is determined by the magnetic field B, which is generated by the current through the top electromagnet located in the area of the gas-discharge chamber. The effect induced by the bottom magnet is noticeable at low currents of the top magnet, when contribution of the bottom electromagnet to the values of the magnetic field induction is significant. The non-monotonic character of dependence of the absorbed power on B is also worth noticing. Ppl reaches the maximum in the Itop range between 3 and 5 A, which corresponds to magnetic fields in the area of the gas-discharge chamber of 50–80 Gs. The non-monotonous nature of the dependence of the absorbed power on the external magnetic field is retained when argon is replaced by other working gases, such as neon, argon, and oxygen. However, the position of the energy input maximum significantly depends on the working gas used. Thus, with the use of oxygen, position of the Ppl(B) maximum at the RF power supply power of 1000 W is reached at Itop = 2 A (see Figure 6).
\nDependence of the portion of power, coupled to plasma, on the values of currents through the top and bottom magnets, provided that the RF power supply power is 1000 W. Argon pressure, 0.7 Pa.
Dependence of the portion of power, coupled to plasma, on the values of currents through the top and bottom magnets, provided that the RF power supply power is 1000 W. Oxygen pressure, 0.7 Pa.
Figure 7 shows radial dependence of the RF longitudinal magnetic field Bz, measured at various Itop values. One can see that Bz under condition of the best absorption of the RF power (at the magnetic field of about 80 G in the area of the gas-discharge chamber) reaches its maximum on the discharge axis, that is, the RF fields penetrate deep into the plasma (see Figure 7). This indicates excitation of bulk waves in the discharge.
\nRadial dependence of the RF longitudinal magnetic field.
Calculation of the dependence of the RF fields, excited in plasma, on the external magnetic field, made on the basis of the theoretical model of a limited inductive plasma source with external magnetic field [25], has shown that interconnected helicons and Trivelpiece-Gould waves are excited in the discharge under considered experimental conditions. The Trivelpiece-Gould wave is a bulk wave, and it is the dissipation of its energy that determines the absorption of RF power in the plasma.
\nThe conclusion concerning the resonant excitation of bulk waves at the current of the top magnet of 5A is also confirmed by measurements of the probe ionic saturation current near the substrate (see Figure 8). An increase in the current of the top magnet within the range from 1 to 5 A results in increase in the absolute values of the ionic current and the formation of a bell-shaped distribution. As the current is further increased to 7 A, the portion of RF power absorbed by the plasma and the absolute value of the probe ionic saturation current decrease. It is necessary to note the result that is important for technological applications: at the top magnet current of 3A, the most uniform distribution of the ion current is observed. Deviation of the ionic current values from the average ones within the 20 cm diameter does not exceed 10%. Remarkably, the most uniform radial distribution near the substrate is observed not in the resonance region, but when approaching the resonance region.
\nRadial dependence of ionic saturation current at different top magnet currents while the bottom magnet current is fixed.
The most uniform distribution, obtained at the top magnet current of 3A, corresponds to the ionic current density of about 1 mA/cm2. This value may be insufficient for ionic assistance at high rates of film deposition. Additional experiments have shown that increasing the bottom magnet current allows to increase the ionic current density by two to three times and to obtain homogeneous plasma within the diameter of 15 cm (Figure 9, curves 1 and 2).
\nRadial dependence of the ionic saturation current at different bottom magnet currents while the top magnet current is fixed.
Figure 9 additionally shows the radial distributions of the ionic saturation current, obtained at the top magnet current of 1A. As a reminder, the point Itop = 1 A is located before the maximum of the Ppl(Itop) curve. It is natural to assume that at this point the RF fields do not yet penetrate the main volume of the plasma. Taking into account that the movement of electrons across the magnetic field is difficult, the distribution of the ionic current with a dip on the axis is observed.
\nLet us further examine the results of the probe studies in more detail. A typical probe characteristic is shown in Figure 10.
\nDependence of the probe electron current on the probe potential.
As can be seen, the electron energy distribution is close to Maxwell one. Figure 11 shows the dependence of electron density in the substrate region on the values of currents through the top and bottom magnets at fixed values of current on the top and bottom magnets, respectively.
\nDependence of electron density in the substrate region on the values of currents through the top (a) and bottom (b) magnets at fixed values of current on the top and bottom magnets, respectively.
As can be seen, the range of changes in plasma density corresponds to that which is necessary for the successful implementation of ion assistance technology as part of the magnetron sputtering.
\nAdditional experiments have shown that the best argon pressure range in terms of technological applications is the range between 0.5 and 0.7 Pa. At lower pressures, it is not possible to obtain the required uniformity of the ion current, while an increase in pressure to 1.5 Pa leads to a drop in the values of the ion current.
\nAt the next stage of the work, the plasma parameters were studied during the simultaneous operation of both the magnetron discharge and inductive RF discharges with external magnetic field. Experiments have shown that the joint operation of magnetron and inductive RF discharges results in a decrease in the threshold pressure, at which magnetron is capable of operating. Titanium spectral lines appeared in the glow spectrum of the magnetron discharge only and at the argon pressure of 0.7 Pa. When magnetron and RF inductive discharges were operating together, the plasma glow spectrum was enriched with titanium lines already at the pressure of 0.3 Pa.
\nFigure 12 shows the current-voltage characteristics of the magnetron operating at DC mode both independently and together with the gas-discharge source. As can be seen, the sputtering apparatus is capable of operating at substantially lower voltages applied to the cathode.
\nCurrent-voltage characteristics of the magnetron operating independently (black curve) and together with the inductive RF discharge with magnetic field (red curve).
To test the effect of ionic stimulation on the properties of functional coatings, thin films were deposited using the magnetron only and using the magnetron and RF sources together with and without applying an additional bias to the substrate. Coatings made of the following materials were used as test samples: Ti, Al, SiAl, SiO2, and C.
\nThe experiments involving deposition of titanium coatings were aimed at the studying of the effects of the assisting ionic flux magnitude on electro-physical properties of films and their microhardness. It was shown that increase in the power of RF power supply connected to antenna in the range from 0 to 500 W results in almost twofold increase in specific resistivity of the films; at the same time, the microhardness of the films increases by 25%. The observed changes are obviously the result of a change in the film structure. Titanium film morphology studies have shown that the irradiation of films with a flux of accelerated ions leads to a slight decrease in the grain size in the structure of the films. Application of a DC bias to the substrate was accompanied by the smoothing of the surface of films.
\nThe reduction of grain size in the structure of films in the presence of stimulating ion flux is most clearly seen in the film surface images and the images of aluminum film cleavages, shown in Figure 13.
\nAluminum film surface (a and c) and cross-section (b and d).
Interesting results were obtained while depositing silicon with 10% aluminum content. The sample film surface morphology and cleavage are shown in Figures 14–16. As can be seen, the samples treated using ionic assistance acquire a columnar structure. When a bias is applied to the substrate, the columnar structure grows at an angle to the normal.
\nFilm surface and cross-section: Si (Al 10%) deposition, without ionic assistance.
Film surface and cross-section: Si (Al 10%) magnetron deposition with ionic assistance without applying a bias to substrate.
Film surface and cross-section: Si (Al 10%) magnetron deposition with ionic assistance plus a bias applied to the substrate.
It is known that the ionic stimulation results in significant change in the electro-physical properties of carbon films [28]. Figure 17 shows the dependence of resistance of a various series of carbon films on the bias voltage [29]. As can be seen, there is a sharp increase in the resistance of the films at the assisting ion energy of 45 eV.
\nDependence of the ratio of film resistance to its thickness on the bias Ucm applied to its substrates.
The results of the study of plasma parameters in a plasma reactor based on a combination of magnetron and magnetically activated RF discharge indicate the promising outlook as regards to industrial application of the innovative facility. Approaching the region of resonant absorption of RF power by optimizing the magnitude and configuration of the external magnetic field makes it possible to obtain a uniform within 10% radial distribution of the ion current across the diameter of 150 mm. When the RF power supply power is 1000 W, the ion current density on the substrate can be adjusted in the range of 0.1–3 mA/cm2. The use of ion assisting results in a fundamental change in the structure and properties of functional coatings, deposited using a magnetron.
\nThe work was carried out under partial financial support of the RFBR grant 16-02-00646.
\nWater shortage is an emerging limitation to crop production due to climate change. It critically influences development and growth of crops and results in significant production loss. It is important to recognize morphological, physiological and bio-chemical effects of drought in relation to nutrient uptake in crops [1]. Drought impairs mineral transport and effects stomatal conductance. By considering nutrients role in plants growth, negative consequences of drought can be avoided by management strategies [2, 3]. Previously, many scientists have worked to understand the role of mineral nutrients in alleviation of drought stress, but more is to be done. Among minerals that are essential for plant growth, macronutrients has significant importance because their shortage lead to quick response and plants become more susceptible to other abiotic and biotic stresses. On the other hand, micronutrients deficiency effect at molecular level and results in altered enzymatic activity and blockage in signal transduction pathways [4]. Those plants that have capability to attain and retain water in large amount, as well as better water usage efficiency, are more tolerant to drought stress. Response in the direction of water stress depends upon crop growth stage, intensity and severity of drought [5, 6].
There are many reports available previously that addresses the consequences of drought on different physiological parameters like photosynthesis, respiration, homeostasis and assimilates transportation but very few discourses the drought effects on mineral in crops. Albeit, if crops are grown on mineral-rich soils, water limitations can be the reason of disruption in nutrient uptake. Minerals are taken up by plants in inorganic ionic forms. When a plant is subject to drought, due to low soil moisture, the diffusion of minerals is disrupted and ultimately transport is affected [3, 7, 8].
Field crops are simultaneously subjected to more than one abiotic stress during their complete life cycle. Drought and high temperature are the most detrimental abiotic stresses. It is continuous task for scientists to make crops hardy against biotic and more importantly abiotic stresses to increase food productivity. The simulation model predicts that to cope with rising food demand, supply must be increased to 70% till the year 2050 [9, 10, 11, 12].
Drought stress influences crops by disturbing their physiological and biochemical functioning [13, 14, 15, 16]. Previously, work is done making crops vigorous to deal with climatic challenges [9, 16, 17, 18] but more is still to be done.
Early droughts due to changing climate can reduce crop productivity [19]. The struggle of water use among domestic, industrial and agricultural sector is making situation worse for irrigated agriculture [20]. This problematic situation is shifting agriculture from irrigated to rainfed areas where periodic drought events are occurring due to disturbed rainfall pattern [21, 22].
Crops when subjected to drought stress show different behavior. Some crops are resistant to drought while others are susceptible [23]. Those crops that have taproot system are more tolerant to short term drought events. They can stand with mild to moderate drought condition. On the other hand, prolonged drought can affect all crops likewise and can cause significant yield loss [24].
Seed germination is the most critical stage in complete life cycle; it is influenced by water availability for imbibition [25]. Drought stress at this stage can results in irregular germination and deprived seedlings [26, 27]. In rainfed areas, absence of shower at seedling establishment stage critically reduces field emergence [28, 29].
Water shortage at vegetative stage disturbs growth and development through impaired turgor and stomatal conductance [30]. The reduction of water potential inside cytosol increases solute level. This leads to damage of cell structure and functioning. Cell division and expansion is also inhibited [31]. Under drought stress, nutrient uptake is also exaggerated that primes to reduction in leaf area and photosynthesis [32, 33]. Several traits of crops that are affected by drought at vegetative stage include leaf area, assimilation rate, total dry matter and chlorophyll [34, 35]. Root length and dry weight of leaves and stem is also reduced [36].
The loss of crop yield due to drought stress is decided by many factors like intensity, duration and ability of crop to tolerate drought stress. In higher plants, anthesis is the most drought susceptible stage [37]. Water shortage at that stage can results in substantial yield loss [30].
In oilseed crops, almost all yield related traits are affected by drought [38, 39, 40]. Severity of drought is also an important aspect; it distresses all growth stages regardless of crop, eventually results in considerable yield loss [41, 42, 43, 44].
Among oilseed crops, sunflower has significant importance because it is rich in linoleic acid. Drought stress at reproductive stage reduces oil quality in oilseed crops and deteriorates its texture [45]. Drought stress also reduces quality of end products. It disturbs biochemical enzymes [46] and gene regulation that are responsible for oil constituents in sunflower [47].
Crops are responsive to abiotic stresses from molecular to morphological level. Those crops that are tolerant to drought stress modify their cells at molecular level like increasing concentration of osmolytes in cytosol under harsh environment [48, 49, 50, 51, 52]. However, in susceptible crops, drought can affect at biochemical level [53, 54, 55, 56].
The key phenotypic adoption in drought tolerant crops is tap root system. They can extract water from deeper soil layer even under severe environment. Those plants that have shallow root system, when subjected to drought, it affects their water potential inside cell [57]. The low water potential leads to turgor loss and interrupted stomatal conductance [36, 41]. Transport of nutrients through xylem is concerned under drought [58, 59].
The metabolic process of carbon fixation that occurs in leaves in the presence of light is called as photosynthesis. This is the main energy harvesting phenomenon that is accountable for growth and development. It is affected by different environmental factors like, availability of moisture, sunshine, humidity and temperature [60].
The plants that have C4 carbon fixation pathway are more efficient in carbon harvesting [61], but under drought, they perform in the same way as C3 plants. Stomatal closure is triggered by water deficit condition that eventually restricts CO2 diffusion [62], thus diminishes photosynthesis [36]. Ribulose bisphosphate is a vital enzyme in carbon fixation. The activity of RuBP is affected under drought stress. Those crops that can maintain RuBP production are more resistant to drought stress [63, 64, 65, 66, 67, 68].
Under drought, absorption capacity of roots is affected that condenses nutrient uptake. Nitrogen, being a vital constituent of plants, is required in high quantity. The reduction of soil moisture reduces ability of roots to absorb adequate moisture. Phosphorus uptake, transport and translocation are also affected in drought conditions [6]. It lessens NPK uptake in sunflower [41].
Free radicals of oxygen, that are also known as reactive oxygen species has significant role in cell signaling. Their production remains continue unceasingly inside cell in controlled amount. When a plant is subjected to any environmental stress, its production increases. This augmented concentration induces oxidative stress to crops. They are highly reactive in action; they can cause injury to cellular structure [69]. In oilseeds like sunflower, drought overproduces ROS [70]. Malondialdehyde is an indicator of cell membrane damage in plants. Water deficiency increases MDA production that specifies increment in cellular injury [71, 72, 73].
Optimum nutrient supply not only improves growth of crops but is also helpful for plants under adversative climatic conditions. There are seventeen nutrients that are crucial for plant growth [74]. Upon their requirement, these are grouped as macronutrient and micronutrient. This review deals with role of essential nutrients in drought stress mitigation.
Under dry climatic conditions, water use efficiency and growth of crops is restricted due to less accessibility of water. Efficient nitrogen application can serve the purpose under drought stress [75, 76]. Plants facing drought stress are more susceptible to heat tremors as well. Nitrogen deficiency in drought stress outcomes as biomass reduction in crops [77, 78]. Previous studies have suggested that shoot biomass is more affected under drought-cum-nitrogen stress, while root biomass is not much exaggerated primarily [79]. On the other hand, plants become drought hardy under sufficient soil nitrogen availability [75, 80, 81]. Increasing nitrogen significantly improved crop performance under drought stress. Nitrogen also play significant role in prevention of plasma membrane damage and osmotic adjustment. Application of N under water deficiency also enhances other major nutrient uptake like potassium and calcium [82].
Nitrogen availability diminishes malondialdehyde content that alleviates in drought stress [80]. It recovers photosynthetic contents and improves cell division that lead to leaf area increment [83]. At molecular level, drought stress greatly influences photosystem-II efficiency that is recovered by optimum nitrogen accessibility [51, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93].
Previously, many researchers have testified that phosphorus application under water deficiency in many crops significantly enhance their water usage ability and helps in drought resistance [74, 94, 95]. It is also well known that optimum phosphorus in crops improves root growth and stomatal activity [96, 97]. Phosphorus availability also optimizes leaf area [98], plasma membrane stability and water use efficiency [99, 100, 101, 102]. It was observed that phosphorus in leaves was relatively higher under drought condition as compared to optimum water availability which suggests that phosphorus has contribution in drought tolerance [94, 96].
Phosphorus also improves nitrogen mobility under water deficiency [103]. Morphological and physiological parameters were also improved when phosphorus was applied at high rate in drought such as, plant height, leaf area, dry weight and water use efficiency [102, 104]. Application method of phosphorus also influences crop growth in drought, deep phosphorus placement (DPP) method works excellently for drought affected areas that ultimately promotes root growth [101, 105].
Potassium is well-known for its osmoregulatory functions in crops. It regulates stomatal conductance and water uptake; the optimum K application increases WUE [106, 107]. Potassium soothes aquaporins and osmotic pressure that regulates water uptake, stomatal regulation, carbon intake, cell elongation and ROS detoxification [108, 109]. In grasses like sorghum, K application under drought improves photosynthesis which leads to growth and yield [106, 110]. In maize, potassium plays role photosynthates assimilation [111]. Potassium availability is correlated with aquaporins activity and stem cell expansion [112].
The hydraulic conductivity of root and anatomical traits has great influence on crop performance. The increment in hydraulic conductivity is associated with drought tolerance [113]. In higher plants, reduction in K influences aforementioned traits, hence compromised yield. Drought simulates ethylene production that in return hinders abscisic acid activity. The starvation of K further worsen the situation, it delays stomatal conductance [109]. Potassium also play role in ROS detoxification and promotes photosynthesis process [114, 115].
Magnesium has central place in chlorophyll molecule, thus has significant importance. It has great role in dry matter partitioning from sink to source. Passable Mg is required at reproductive stage to avoid flower sterility. Foliage application also improves nutrient mobility and helps in growth maintenance under stressful environment [116, 117]. Magnesium is highly mobile nutrient. It has positive correlation with nitrogen and potassium. Adequate magnesium increases their mobility; they are helpful in stress tolerance [118].
Drought stress in field crops affects magnesium uptake from soil. This deficiency can be fulfilled by foliar Mg application [119]. Earlier, it is known that foliage applied Mg can satisfy plant’s need [120]. The mechanisms of Mg that are responsible for drought stress induction include growth of root, NPK uptake and improvement of WUE [74].
Drought stress leads to overgeneration of ROS that result in cell damage [121, 122, 123, 124]. Calcium has its role in detoxification of ROS [125]. It is known that in the activity of aquaporins, pH and calcium are of significance importance [126, 127]. Exogenous application of Ca induces drought resistance in wheat cultivars. Calcium has cell signaling mechanism, which simulates proline accumulation.
Calcium, when it is applied under drought stress, it improves chlorophyll and catalase activity and decreases plasma membrane damage. It also maintains osmolytes like proline and other soluble antioxidants [128, 129]. Foliage applied Ca under drought stress helps to improves drought stress alleviation by refining catalase, peroxidase and superoxide dismutase activity [130].
The role of sulfur application in mitigation of drought stress is very little known previously. It has a substantial role in stress signaling pathway. It improves crop growth, morphological parameters and nutrient contents [131]. In counter stress mechanism, increment in glutathione also has significant importance. It aids in ROS detoxification [132]. The uptake of sulfur in adequate amount helps crops to stand with drought events. Its transport and assimilation is among one of the drought stress responses [133, 134].
Zinc has role in various physiological processes like activity of catalytic, carboxypeptidase, superoxide dismutase, RNA polymerase and alkaline phosphates [4, 118, 135, 136]. Under water shortage, zinc has been known to improve drought resistance by improving WUE and water activity [4, 137, 138]. The reduction in zinc uptake, that is caused by water shortage, leads plants toward stress condition. Under limited soil moisture, zinc is immobile [118].
In cereals like wheat, when drought is subjected at anthesis and grain filling, it constrains nutrient uptake which become cause of stunted growth [139]. The process of photosynthesis and water activity is affected under zinc-cum-drought stress, however, when zinc is present in optimum amount, it helps crop to stand with drought. It aids in deactivation of ROS [4, 140]. At reproductive stage, plants are highly susceptible to Zn shortage [141]. When plants are subjected to prolonged drought, it impairs activity of different cell metabolic contents like NADPH. Zinc application inhibits photooxidative damage, reduces ROS generation, and promoting osmolytes concentration like SOD [74, 142, 143, 144, 145].
It is vital micronutrient that has several functions in plants. It assists in activation of various metabolic enzymes of tricarboxylic cycle. It is the part of photosystem-II, also aids in ATP synthesis and RuBP carboxylase activity. It helps to maintain balance among superoxide dismutase activity and chlorophyll contents, even under water stress [130].
The role of manganese is well known for detoxification of ROS like superoxide and hydrogen peroxide [146]. On the other hand, manganese shortage leads to oxidative stress in plants that causes chlorophyll damage thus stunted photosynthetic activity [4]. Water shortage can also be responsible for manganese deficiency. Low soil availability of manganese as it occurs under dry conditions makes it unavailable for plants [147]. The starvation of manganese leads to WUE reduction. In cereals like barley, lower WUE is correlated with abrupt stomatal control during the day and imperfection in stomatal closure during night. This leads to degradation of waxy layer of plasma membrane that is consequence of ROS activity [148].
It is involved in chlorophyll pigments production. It is the part of enzymes that are involved in transfer of energy, reduction of nitrogen and formation of lignin. It creates compounds along with sulfur that are the catalysts for other vital bio-chemical procedures in plants. The iron deficiency results in chlorosis which is the consequent of low chlorophyll concentration. Severe deficiency of iron turns leaf color from yellow to white that is sign of leaf death. Under high soil pH, iron uptake is affected. It also has antagonistic effects with phosphorus and manganese [149].
The moisture in soil greatly inhibits iron uptake [150]. The iron has vital protagonist in oxidative damage protection of leaves under stress. Its deficiency is highly dreadful for plants growth [4]. Sufficient iron amount in plant is essential for activities of antioxidants [151].
Boron is unavailable in soil barring basic pH and low moisture. It is highly immobile in pedosphere as well as plant. The continuous supply of boron can prevent crops from its deficiency and detrimental effects [152].
Low soil moisture greatly hampers boron uptake from rhizosphere. Its uptake via roots involve passive uptake frequently that is maintained by water uptake. As the water decreases in soil, its uptake is compromised [153]. Main function of boron is to take part in synthesis of cell wall and its extension. It also recovers biosynthesis of lignin and differentiation of xylem. It increases photosynthetic activity and plasma-membrane integrity. It facilitates assimilate transportation [4, 74].
It is necessarily required for H-ATPase activity and the coding involved for it. It also influences uptake of other nutrients like K and deteriorate cell expansion [4]. Boron is also involved in lessening of photochemical damage of cell. Among reasons for low photoinhibition, boron deficiency and drought are well known [153].
Among micronutrients, copper is essential for growth of plants. It has vital role in electron transport chain and cell wall loosening. It also involves in sensing ethylene, metabolism of cell wall and oxidative stress protection [154, 155]. The well-known function of copper is its involvement in formation of pollens and upholding their viability [4, 155].
There are many enzymes in which this metal acts as cofactor like ascorbic oxidase, laccase, amino oxidase and polyphenols. At molecular level, copper is also involved in cell signaling, trafficking of proteins, mobilization of iron and oxidative phosphorylation. The reproductive parts of plants are more susceptible to cooper deficiency [155, 156].
The changing climate is making situation worse for field crop production. Abrupt variations in rainfall and temperature is limiting crop yield. Under field condition, more than one abiotic stresses are disturbing plant growth simultaneously. Drought stress is among the major agricultural yield limiting factor worldwide. Different agronomic practices like optimum plant nutrition management are greatly obliging for crops under drought stress. It can alleviate drought consequences affectively. Drought stress greatly inhibits different physiological functions and biochemical processes. It leads to ROS over-generation that significantly damages cell structure. Optimal nutrients supply like NPK and Ca be accommodating for ROS detoxification and maintenance of cell functions. Under drought stress, they also facilitate in antioxidant generation like catalase, superoxide dismutase and peroxidase. They inhibit photooxidation of vital cell molecules and maintain cell membrane integrity. Likewise, micronutrients such as Zn and Mg also play role in antioxidant generation. Other mechanisms that are maintained by nutrients to induce drought stress are water uptake and stomatal conduction regulation. Optimum supply of K and Ca helps to regulate water activity and aquaporin function. In a nutshell, efficient nutrient management will be helpful in mitigation of drought stress in field crops. The best practice should be adopted to increase their availability to plants. Effective nutrient utilization cultivars need to be focused on.
IntechOpen's Authorship Policy is based on ICMJE criteria for authorship. An Author, one must:
',metaTitle:"Authorship Policy",metaDescription:"IN TECH's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, one must:",metaKeywords:null,canonicalURL:"/page/authorship-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\\n\\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\\n\\nCHANGES IN AUTHORSHIP
\\n\\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\\n\\nAFFILIATION
\\n\\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\\n\\nPolicy last updated: 2017-05-29
\\n"}]'},components:[{type:"htmlEditorComponent",content:"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\n\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\n\nCHANGES IN AUTHORSHIP
\n\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\n\nAFFILIATION
\n\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\n\nPolicy last updated: 2017-05-29
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5681},{group:"region",caption:"Middle and South America",value:2,count:5161},{group:"region",caption:"Africa",value:3,count:1683},{group:"region",caption:"Asia",value:4,count:10200},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15610}],offset:12,limit:12,total:117095},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:17},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:60},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7796",title:"Human 4.0",subtitle:"From Biology to Cybernetic",isOpenForSubmission:!1,hash:"5ac5c052d3a593d5c4f4df66d005e5af",slug:"human-4-0-from-biology-to-cybernetic",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7796.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9711",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,isOpenForSubmission:!1,hash:"12cf675f1e433135dd5bf5df7cec124f",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10178",title:"Environmental Emissions",subtitle:null,isOpenForSubmission:!1,hash:"febf21ec717bfe20ae25a9dab9b5d438",slug:"environmental-emissions",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/10178.jpg",editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9534",title:"Banking and Finance",subtitle:null,isOpenForSubmission:!1,hash:"af14229738af402c3b595d7e124dce82",slug:"banking-and-finance",bookSignature:"Razali Haron, Maizaitulaidawati Md Husin and Michael Murg",coverURL:"https://cdn.intechopen.com/books/images_new/9534.jpg",editors:[{id:"206517",title:"Prof.",name:"Razali",middleName:null,surname:"Haron",slug:"razali-haron",fullName:"Razali Haron"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5126},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7796",title:"Human 4.0",subtitle:"From Biology to Cybernetic",isOpenForSubmission:!1,hash:"5ac5c052d3a593d5c4f4df66d005e5af",slug:"human-4-0-from-biology-to-cybernetic",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7796.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9711",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,isOpenForSubmission:!1,hash:"12cf675f1e433135dd5bf5df7cec124f",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10178",title:"Environmental Emissions",subtitle:null,isOpenForSubmission:!1,hash:"febf21ec717bfe20ae25a9dab9b5d438",slug:"environmental-emissions",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/10178.jpg",editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"741",title:"Electronic Engineering",slug:"electronic-engineering",parent:{title:"Electrical and Electronic Engineering",slug:"electrical-and-electronic-engineering"},numberOfBooks:6,numberOfAuthorsAndEditors:123,numberOfWosCitations:131,numberOfCrossrefCitations:112,numberOfDimensionsCitations:185,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"electronic-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6765",title:"Flexible Electronics",subtitle:null,isOpenForSubmission:!1,hash:"cff79f8bf37b0651dec3f20a936fd498",slug:"flexible-electronics",bookSignature:"Simas Rackauskas",coverURL:"https://cdn.intechopen.com/books/images_new/6765.jpg",editedByType:"Edited by",editors:[{id:"195783",title:"Dr.",name:"Simas",middleName:null,surname:"Rackauskas",slug:"simas-rackauskas",fullName:"Simas Rackauskas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6592",title:"Green Electronics",subtitle:null,isOpenForSubmission:!1,hash:"9e9601377edfbf1502eab5f0c7baba86",slug:"green-electronics",bookSignature:"Cristian Ravariu and Dan Mihaiescu",coverURL:"https://cdn.intechopen.com/books/images_new/6592.jpg",editedByType:"Edited by",editors:[{id:"43121",title:"Prof.",name:"Cristian",middleName:null,surname:"Ravariu",slug:"cristian-ravariu",fullName:"Cristian Ravariu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4535",title:"Superconductors",subtitle:"New Developments",isOpenForSubmission:!1,hash:"76b077f4e902ec5e2f51692ed7ff5222",slug:"superconductors-new-developments",bookSignature:"Alexander Gabovich",coverURL:"https://cdn.intechopen.com/books/images_new/4535.jpg",editedByType:"Edited by",editors:[{id:"142100",title:"Dr.",name:"Alexander",middleName:null,surname:"Gabovich",slug:"alexander-gabovich",fullName:"Alexander Gabovich"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4598",title:"Ferroelectric Materials",subtitle:"Synthesis and Characterization",isOpenForSubmission:!1,hash:"0a1b887e8f700fddbf9686538317a660",slug:"ferroelectric-materials-synthesis-and-characterization",bookSignature:"Aime Pelaiz Barranco",coverURL:"https://cdn.intechopen.com/books/images_new/4598.jpg",editedByType:"Edited by",editors:[{id:"14679",title:"Dr.",name:"Aimé",middleName:null,surname:"Peláiz-Barranco",slug:"aime-pelaiz-barranco",fullName:"Aimé Peláiz-Barranco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2184",title:"Superconductors",subtitle:"Materials, Properties and Applications",isOpenForSubmission:!1,hash:"7f461cfafd2559bdba19a2189359a046",slug:"superconductors-materials-properties-and-applications",bookSignature:"Alexander Gabovich",coverURL:"https://cdn.intechopen.com/books/images_new/2184.jpg",editedByType:"Edited by",editors:[{id:"142100",title:"Dr.",name:"Alexander",middleName:null,surname:"Gabovich",slug:"alexander-gabovich",fullName:"Alexander Gabovich"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3333",title:"Micro Electronic and Mechanical Systems",subtitle:null,isOpenForSubmission:!1,hash:"587c603004cde573fc9fca7baef0c060",slug:"micro-electronic-and-mechanical-systems",bookSignature:"Kenichi Takahata",coverURL:"https://cdn.intechopen.com/books/images_new/3333.jpg",editedByType:"Edited by",editors:[{id:"4541",title:"Prof.",name:"Kenichi",middleName:null,surname:"Takahata",slug:"kenichi-takahata",fullName:"Kenichi Takahata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:6,mostCitedChapters:[{id:"61428",doi:"10.5772/intechopen.76161",title:"Printing Technologies on Flexible Substrates for Printed Electronics",slug:"printing-technologies-on-flexible-substrates-for-printed-electronics",totalDownloads:1912,totalCrossrefCites:11,totalDimensionsCites:16,book:{slug:"flexible-electronics",title:"Flexible Electronics",fullTitle:"Flexible Electronics"},signatures:"Sílvia Manuela Ferreira Cruz, Luís A. Rocha and Júlio C. Viana",authors:[{id:"15565",title:"Prof.",name:"Julio",middleName:null,surname:"Viana",slug:"julio-viana",fullName:"Julio Viana"},{id:"238389",title:"Ph.D.",name:"Sílvia",middleName:null,surname:"Cruz",slug:"silvia-cruz",fullName:"Sílvia Cruz"},{id:"247716",title:"Prof.",name:"Luís",middleName:null,surname:"Rocha",slug:"luis-rocha",fullName:"Luís Rocha"}]},{id:"6629",doi:"10.5772/7009",title:"Micro-Electro-Discharge Machining Technologies for MEMS",slug:"micro-electro-discharge-machining-technologies-for-mems",totalDownloads:5447,totalCrossrefCites:12,totalDimensionsCites:15,book:{slug:"micro-electronic-and-mechanical-systems",title:"Micro Electronic and Mechanical Systems",fullTitle:"Micro Electronic and Mechanical Systems"},signatures:"Kenichi Takahata",authors:null},{id:"6621",doi:"10.5772/7001",title:"A Review of Thermoelectric MEMS Devices for Micro-power Generation, Heating and Cooling Applications",slug:"a-review-of-thermoelectric-mems-devices-for-micro-power-generation-heating-and-cooling-applications",totalDownloads:5800,totalCrossrefCites:10,totalDimensionsCites:15,book:{slug:"micro-electronic-and-mechanical-systems",title:"Micro Electronic and Mechanical Systems",fullTitle:"Micro Electronic and Mechanical Systems"},signatures:"Chris Gould and Noel Shammas",authors:null}],mostDownloadedChaptersLast30Days:[{id:"61428",title:"Printing Technologies on Flexible Substrates for Printed Electronics",slug:"printing-technologies-on-flexible-substrates-for-printed-electronics",totalDownloads:1912,totalCrossrefCites:11,totalDimensionsCites:16,book:{slug:"flexible-electronics",title:"Flexible Electronics",fullTitle:"Flexible Electronics"},signatures:"Sílvia Manuela Ferreira Cruz, Luís A. Rocha and Júlio C. Viana",authors:[{id:"15565",title:"Prof.",name:"Julio",middleName:null,surname:"Viana",slug:"julio-viana",fullName:"Julio Viana"},{id:"238389",title:"Ph.D.",name:"Sílvia",middleName:null,surname:"Cruz",slug:"silvia-cruz",fullName:"Sílvia Cruz"},{id:"247716",title:"Prof.",name:"Luís",middleName:null,surname:"Rocha",slug:"luis-rocha",fullName:"Luís Rocha"}]},{id:"6621",title:"A Review of Thermoelectric MEMS Devices for Micro-power Generation, Heating and Cooling Applications",slug:"a-review-of-thermoelectric-mems-devices-for-micro-power-generation-heating-and-cooling-applications",totalDownloads:5800,totalCrossrefCites:10,totalDimensionsCites:15,book:{slug:"micro-electronic-and-mechanical-systems",title:"Micro Electronic and Mechanical Systems",fullTitle:"Micro Electronic and Mechanical Systems"},signatures:"Chris Gould and Noel Shammas",authors:null},{id:"48777",title:"Role of Ca off-Centering in Tuning Ferroelectric Phase Transitions in Ba(Zr,Ti)O3System",slug:"role-of-ca-off-centering-in-tuning-ferroelectric-phase-transitions-in-ba-zr-ti-o3system",totalDownloads:2104,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"ferroelectric-materials-synthesis-and-characterization",title:"Ferroelectric Materials",fullTitle:"Ferroelectric Materials - Synthesis and Characterization"},signatures:"Desheng Fu and Mitsuru Itoh",authors:[{id:"27794",title:"Prof.",name:"Desheng",middleName:null,surname:"Fu",slug:"desheng-fu",fullName:"Desheng Fu"},{id:"38996",title:"Prof.",name:"Mitsuru",middleName:null,surname:"Itoh",slug:"mitsuru-itoh",fullName:"Mitsuru Itoh"}]},{id:"47744",title:"New Prospective Applications of Heterostructures with YBa2Cu3O7-x",slug:"new-prospective-applications-of-heterostructures-with-yba2cu3o7-x",totalDownloads:1141,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"superconductors-new-developments",title:"Superconductors",fullTitle:"Superconductors - New Developments"},signatures:"M. I. Faley, O. M. Faley, U. Poppe, U. Klemradt and R. E. Dunin-\nBorkowski",authors:[{id:"24663",title:"Prof.",name:"Michael",middleName:"I.",surname:"Faley",slug:"michael-faley",fullName:"Michael Faley"}]},{id:"61708",title:"Fabrication and Applications of Flexible Transparent Electrodes Based on Silver Nanowires",slug:"fabrication-and-applications-of-flexible-transparent-electrodes-based-on-silver-nanowires",totalDownloads:933,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"flexible-electronics",title:"Flexible Electronics",fullTitle:"Flexible Electronics"},signatures:"Peiyun Yi, Yuwen Zhu and Yujun Deng",authors:[{id:"240672",title:"Prof.",name:"Peiyun",middleName:null,surname:"Yi",slug:"peiyun-yi",fullName:"Peiyun Yi"},{id:"252593",title:"Dr.",name:"Yuwen",middleName:null,surname:"Zhu",slug:"yuwen-zhu",fullName:"Yuwen Zhu"},{id:"252594",title:"Dr.",name:"Yujun",middleName:null,surname:"Deng",slug:"yujun-deng",fullName:"Yujun Deng"}]},{id:"40025",title:"X-Ray Spectroscopy Studies of Iron Chalcogenides",slug:"x-ray-spectroscopy-studies-of-iron-chalcogenides",totalDownloads:2518,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"superconductors-materials-properties-and-applications",title:"Superconductors",fullTitle:"Superconductors - Materials, Properties and Applications"},signatures:"Chi Liang Chen and Chung-Li Dong",authors:[{id:"146575",title:"Dr.",name:"Chi-Liang",middleName:null,surname:"Chen",slug:"chi-liang-chen",fullName:"Chi-Liang Chen"},{id:"146584",title:"Dr.",name:"Chung-Li",middleName:null,surname:"Dong",slug:"chung-li-dong",fullName:"Chung-Li Dong"}]},{id:"48467",title:"RE2O3 Nanoparticles Embedded in SiO2 Glass Matrix — A Colossal Dielectric and Magnetodielectric Response",slug:"re2o3-nanoparticles-embedded-in-sio2-glass-matrix-a-colossal-dielectric-and-magnetodielectric-respon",totalDownloads:1130,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"ferroelectric-materials-synthesis-and-characterization",title:"Ferroelectric Materials",fullTitle:"Ferroelectric Materials - Synthesis and Characterization"},signatures:"S. Mukherjee, T. H. Kao, H. C. Wu, K. Devi Chandrasekhar and H. D.\nYang",authors:[{id:"173508",title:"Prof.",name:"Hung Duen",middleName:null,surname:"Yang",slug:"hung-duen-yang",fullName:"Hung Duen Yang"}]},{id:"48734",title:"Biasing Effects in Ferroic Materials",slug:"biasing-effects-in-ferroic-materials",totalDownloads:2744,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"ferroelectric-materials-synthesis-and-characterization",title:"Ferroelectric Materials",fullTitle:"Ferroelectric Materials - Synthesis and Characterization"},signatures:"Vladimir Koval, Giuseppe Viola and Yongqiang Tan",authors:[{id:"173585",title:"Dr.",name:"Vladimir",middleName:null,surname:"Koval",slug:"vladimir-koval",fullName:"Vladimir Koval"},{id:"173586",title:"Dr.",name:"Giuseppe",middleName:null,surname:"Viola",slug:"giuseppe-viola",fullName:"Giuseppe Viola"},{id:"173587",title:"MSc.",name:"Yongqiang",middleName:null,surname:"Tan",slug:"yongqiang-tan",fullName:"Yongqiang Tan"}]},{id:"60223",title:"Optimizing of Convolutional Neural Network Accelerator",slug:"optimizing-of-convolutional-neural-network-accelerator",totalDownloads:1018,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"green-electronics",title:"Green Electronics",fullTitle:"Green Electronics"},signatures:"Wenquan Du, Zixin Wang and Dihu Chen",authors:[{id:"233947",title:"Prof.",name:"Dihu",middleName:null,surname:"Chen",slug:"dihu-chen",fullName:"Dihu Chen"},{id:"234308",title:"MSc.",name:"Du",middleName:null,surname:"Wenquan",slug:"du-wenquan",fullName:"Du Wenquan"},{id:"234313",title:"Prof.",name:"Zixin",middleName:null,surname:"Wang",slug:"zixin-wang",fullName:"Zixin Wang"}]},{id:"40026",title:"Superconducting Magnet Technology and Applications",slug:"superconducting-magnet-technology-and-applications",totalDownloads:4238,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"superconductors-materials-properties-and-applications",title:"Superconductors",fullTitle:"Superconductors - Materials, Properties and Applications"},signatures:"Qiuliang Wang, Zhipeng Ni and Chunyan Cui",authors:[{id:"13242",title:"Prof.",name:"Qiuliang",middleName:null,surname:"Wang",slug:"qiuliang-wang",fullName:"Qiuliang Wang"},{id:"153840",title:"Dr.",name:"Zhipeng",middleName:null,surname:"Ni",slug:"zhipeng-ni",fullName:"Zhipeng Ni"},{id:"153841",title:"Dr.",name:"Chunyan",middleName:null,surname:"Cui",slug:"chunyan-cui",fullName:"Chunyan Cui"}]}],onlineFirstChaptersFilter:{topicSlug:"electronic-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/316366/anna-nadorova",hash:"",query:{},params:{id:"316366",slug:"anna-nadorova"},fullPath:"/profiles/316366/anna-nadorova",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()