The problem of obtaining an analytical description of the radiation characteristics of a circular waveguide closed by a flat homogeneous dielectric plate is solved. The radiation characteristics include: the radiation field; the conductivity of the aperture radiation; and the fields of surface, flowing, and side waves, as well as energy characteristics. In such a statement, a strict solution of Maxwell’s equations is required. The paper uses the method of integral transformations and the method of eigenfunctions. In this case, the assumption is used that the electrical parameters of the dielectric plate (thermal protection) and the geometric dimensions do not depend on time. The relations describing the directional diagram of a circular waveguide with dielectric thermal protection and taking into account the electrical parameters of thermal protection and its thickness are obtained. Expressions are also obtained for the fields of lateral, surface, and outflow waves, from which it is possible to calculate the power taken away by these fields. Numerical calculations were made for some of the obtained relations. The results showed that the power of the side waves is zero. It also follows from the calculations that the radiation field of surface and flowing waves is absent, that is, their contribution to the directional diagram is not.
Part of the book: Electromagnetic Propagation and Waveguides in Photonics and Microwave Engineering