This chapter focuses on recent applications of flow hydrogenation in medicinal chemistry. Flow reactors can enhance laboratory safety, reducing the risks associated with pyrophoric catalysts, due to their containment in catalyst cartridges or omnifit columns. Flow hydrogenation reduces the risks arising from hydrogen gas, with either hydrogen generated in situ from water, or precise management of the gas flow rate through tube-in-tube reactors. There is an increasing body of evidence that flow hydrogenation enhances reduction outcomes across nitro, imine, nitrile, amide, azide, and azo reductions, together with de-aromatisation and hydrodehalogenation. In addition, olefin, alkyne, carbonyl, and benzyl reductions have been widely examined. Further, protocols involving multistage flow reactions involving hydrogenation are highlighted.
Part of the book: New Advances in Hydrogenation Processes
Chalcones in their various guises have been considered either valid and critically important lead compounds in the development of novel anticancer agents or as pan assay interference compounds, PAINS. Medicinal chemistry is replete with exemplars from both “camps” progressing to clinical utility. Chalcones offer a simple starting point for the development of specific compounds with high levels of activity toward key biological targets. Chalcones have been shown to display a wide array of anticancer compounds. This chapter seeks to offer an overview of key examples in an effort to encourage further reading and research in development in this intriguing space.
Part of the book: Translational Research in Cancer