Typical composition of mould fluxes (wt %).
\\n\\n
These books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\\n\\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\\n\\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\\n\\n\\n\\n\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
IntechOpen and Knowledge Unlatched formed a partnership to support researchers working in engineering sciences by enabling an easier approach to publishing Open Access content. Using the Knowledge Unlatched crowdfunding model to raise the publishing costs through libraries around the world, Open Access Publishing Fee (OAPF) was not required from the authors.
\n\nInitially, the partnership supported engineering research, but it soon grew to include physical and life sciences, attracting more researchers to the advantages of Open Access publishing.
\n\n\n\nThese books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\n\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\n\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\n\n\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"8418",leadTitle:null,fullTitle:"Eye Motility",title:"Eye Motility",subtitle:null,reviewType:"peer-reviewed",abstract:"Visual processing refers to the ability to perceive three-dimensional images. To accomplish this, our eyes have to be perfectly tuned and work together. Each eye perceives a slightly different image that the brain then has to unite into a single three-dimensional picture. This book explains the motor and sensory steps necessary for forming binocular and stereo vision, discusses tests to assess the different steps and describes disruptions that can occur in the eyes and the brain. Because of the sensitivity of the developing child's eye, the book also addresses the assessment of children's vision. This book will appeal to ophthalmologists, paediatricians, neurologists and other interested readers.",isbn:"978-1-78984-757-4",printIsbn:"978-1-78984-756-7",pdfIsbn:"978-1-83881-069-6",doi:"10.5772/intechopen.78731",price:100,priceEur:109,priceUsd:129,slug:"eye-motility",numberOfPages:94,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"6f554b86583b2290b7dc0ae067e1d577",bookSignature:"Ivana Mravicic",publishedDate:"July 3rd 2019",coverURL:"https://cdn.intechopen.com/books/images_new/8418.jpg",numberOfDownloads:5942,numberOfWosCitations:1,numberOfCrossrefCitations:2,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:2,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:5,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 28th 2018",dateEndSecondStepPublish:"August 15th 2018",dateEndThirdStepPublish:"October 14th 2018",dateEndFourthStepPublish:"January 2nd 2019",dateEndFifthStepPublish:"March 3rd 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"96701",title:"Dr.",name:"Ivana",middleName:null,surname:"Mravicic",slug:"ivana-mravicic",fullName:"Ivana Mravicic",profilePictureURL:"https://mts.intechopen.com/storage/users/96701/images/system/96701.jpeg",biography:"Dr. Ivana Mravicic has been Assistant professor at MS University of Rijeka, Croatia since 2015 and Scientific assistant at MS University of Rijeka, Croatia since 2011.\r\nShe received her PhD at MS University of Zagreb in 2004. and MSc at MS University of Zagreb in 1994.\r\nAmong here work expiriences are: \t\r\n2007. – Chief of the Paediatric and Oculoplastic Department, Eye Clinic, Svjetlost, Zagreb\r\n2003.-2007. General manager, Eye Policlinic Marin Getaldić Zagreb\r\n1999.-2003. Ophthalmology resident, GH „Sveti Duh', Zagreb\r\n1994.-1999. Scientific bachelor at the Ministry of Science and Technology, Zagreb.\r\nDr. Ivana Mravicic attended the following professional educations and trainings: 2018. Practical training, US Zuerich; 2011, 2010. Practical training LMU Muenich; 1998,1995. Practical training University Eye Clinic Hamburg. She has collaborated on the following projects: 2007.-2011. researcher scientific project, Croatian Ministry of Science and Technology'; and 1995.-1997. Researcher scientific project, Croatian Ministry of Science and Technology'.\r\nDr. Mravicic\\'s selected international awards are: 2018. SOE TG; \r\n2008. SOE YO scolarship; 2005. 1999. SOE travel grant; and 1998. DAAD Stipendium.",institutionString:"School of Medicine of the University of Rijeka",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"191",title:"Ophthalmology",slug:"medicine-ophthalmology"}],chapters:[{id:"66939",title:"Introductory Chapter: Why Is Eye Motility Important?",doi:"10.5772/intechopen.86116",slug:"introductory-chapter-why-is-eye-motility-important-",totalDownloads:763,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Ivana Mravicic",downloadPdfUrl:"/chapter/pdf-download/66939",previewPdfUrl:"/chapter/pdf-preview/66939",authors:[{id:"96701",title:"Dr.",name:"Ivana",surname:"Mravicic",slug:"ivana-mravicic",fullName:"Ivana Mravicic"}],corrections:null},{id:"66120",title:"Binocular Functions",doi:"10.5772/intechopen.84162",slug:"binocular-functions",totalDownloads:1858,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Binocular single vision is the ability to use both eyes simultaneously so that each eye contributes to a common single perception. Normal binocular single vision occurs with bifoveal fixation and normal retinal correspondence in everyday sight. There are various anatomical and physiological factors concerned in the development of Binocular vision. The development of binocular function starts at 6 weeks and is completed by 6 months. Any obstacles, sensory, motor, or central, in the flex pathway is likely to hamper the development of binocular vision. The presence of these obstacles gives rise to various sensory adaptations to binocular dysfunction. Clinically the tests used can be based on either of the two principles: (A) assessment of relationship between the fovea of the fixing eye and the retinal area stimulated in the squinting eye, viz. Bagolini striated glasses test, red filter test, synoptophore using SMP slides for measuring the objective and subjective angles, and Worth 4-dot test; and (B) Assessment of the visual directions of the two foveae, viz. after image test (Hering Bielschowsky); and Cuppers binocular visuoscopy test (foveo-foveal test of Cuppers). Anomalies of binocular vision results in confusion, diplopia, which leads to suppression, eccentric fixation, anomalous retinal correspondence, and amblyopia.",signatures:"Arvind Kumar Morya, Kanchan Solanki, Sahil Bhandari and Anushree Naidu",downloadPdfUrl:"/chapter/pdf-download/66120",previewPdfUrl:"/chapter/pdf-preview/66120",authors:[{id:"270083",title:"Prof.",name:"Arvind",surname:"Morya",slug:"arvind-morya",fullName:"Arvind Morya"},{id:"273705",title:"Dr.",name:"Kalpit",surname:"Jangid",slug:"kalpit-jangid",fullName:"Kalpit Jangid"},{id:"279906",title:"Dr.",name:"Kanchan",surname:"Solanki",slug:"kanchan-solanki",fullName:"Kanchan Solanki"},{id:"279907",title:"Dr.",name:"Sahil",surname:"Bhandari",slug:"sahil-bhandari",fullName:"Sahil Bhandari"},{id:"290171",title:"Dr.",name:"Anushree",surname:"Naidu",slug:"anushree-naidu",fullName:"Anushree Naidu"},{id:"290172",title:"Dr.",name:"Priyanka",surname:"Rathore",slug:"priyanka-rathore",fullName:"Priyanka Rathore"},{id:"290173",title:"Dr.",name:"Sujeet",surname:"Prakash",slug:"sujeet-prakash",fullName:"Sujeet Prakash"},{id:"290174",title:"Dr.",name:"Sonalika",surname:"Gogia",slug:"sonalika-gogia",fullName:"Sonalika Gogia"},{id:"290176",title:"Dr.",name:"Sulabh",surname:"Sahu",slug:"sulabh-sahu",fullName:"Sulabh Sahu"}],corrections:null},{id:"65361",title:"Ophthalmologic Examination of the Child",doi:"10.5772/intechopen.82338",slug:"ophthalmologic-examination-of-the-child",totalDownloads:878,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The ophthalmologic examination of the child consists of an assessment of the physiological function, anatomic eye, and visual system status. A comprehensive eye examination of the child should include history of presenting problem, patient’s and family’s medical histories, estimation of fixation and measurement of visual acuity, assessment of binocular vision, Bruckner test, assessment of ocular motility, Hirschberg’s test, cover/uncover test, and assessment of anterior and posterior segments. The order of examination may vary depending on the child’s cooperation. The record of the child’s level of cooperation during the examination is of great benefit in the interpretation of the results.",signatures:"Suzana Konjevoda, Neda Striber, Samir Čanović and Ana Didović Pavičić",downloadPdfUrl:"/chapter/pdf-download/65361",previewPdfUrl:"/chapter/pdf-preview/65361",authors:[{id:"273907",title:"Dr.",name:"Suzana",surname:"Konjevoda",slug:"suzana-konjevoda",fullName:"Suzana Konjevoda"},{id:"273914",title:"Dr.",name:"Ana",surname:"Didović Pavičić",slug:"ana-didovic-pavicic",fullName:"Ana Didović Pavičić"},{id:"273932",title:"Dr.",name:"Samir",surname:"Čanović",slug:"samir-canovic",fullName:"Samir Čanović"},{id:"275014",title:"Dr.",name:"Neda",surname:"Striber",slug:"neda-striber",fullName:"Neda Striber"}],corrections:null},{id:"65072",title:"Nystagmus",doi:"10.5772/intechopen.82743",slug:"nystagmus",totalDownloads:987,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Nystagmus is an involuntary rhythmical movement of the eyes. The cause of nystagmus is a disruption in the afferent, central or efferent parts of the eye movement system. If it happens in the first few months of life during the sensitive period of visual development, it is most often a case of infantile nystagmus. On the other hand, the majority of nystagmus in adult age is caused by some neurological disorder, and it is usually called acquired nystagmus. The important role of an ophthalmologist is to recognize the origin of nystagmus. Acquired forms are usually caused by some neurological disorders and do not belong in our field of treatment. However, most of the nystagmus types in a child’s age require ophthalmological treatment. When we have a child with nystagmus, we have to enable the development of the visual system and help fixation and fovealization by the dampening of nystagmus. If the reason of nystagmus is of ocular origin, we have to treat the underlying disease. Optical treatment by glasses, contact lenses or magnifying devices is usually reasonable. In some cases when the patient has abnormal head posture, it is possible to treat nystagmus by surgery. Some medications are used in several types of nystagmus as well as some new developing treatments.",signatures:"Ivana Mravicic, Selma Lukacevic, Maja Bohac, Maja Pauk-Gulic and Vlade Glavota",downloadPdfUrl:"/chapter/pdf-download/65072",previewPdfUrl:"/chapter/pdf-preview/65072",authors:[{id:"96701",title:"Dr.",name:"Ivana",surname:"Mravicic",slug:"ivana-mravicic",fullName:"Ivana Mravicic"},{id:"263414",title:"Dr.",name:"Selma",surname:"Lukacevic",slug:"selma-lukacevic",fullName:"Selma Lukacevic"},{id:"263892",title:"Dr.",name:"Vlade",surname:"Glavota",slug:"vlade-glavota",fullName:"Vlade Glavota"},{id:"280405",title:"Dr.",name:"Maja",surname:"Bohac",slug:"maja-bohac",fullName:"Maja Bohac"},{id:"280407",title:"Dr.",name:"Maja",surname:"Pauk-Gulic",slug:"maja-pauk-gulic",fullName:"Maja Pauk-Gulic"}],corrections:null},{id:"65355",title:"Eye Movement Abnormalities in Neurodegenerative Diseases",doi:"10.5772/intechopen.81948",slug:"eye-movement-abnormalities-in-neurodegenerative-diseases",totalDownloads:1458,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:1,abstract:"Neurodegenerative disorders consist in heterogeneous group of neurological conditions characterized by a wide spectrum of clinical features resulting from a progressive involvement of distinct neuron populations. Oculomotor abnormalities take a key place in the clinical picture of these disorders because the neurodegenerative processes involve the brain circuits of eye movements. The most common abnormalities include the saccadic dysfunction, fixation instability, and abnormal smooth pursuit. The clinical assessment of oculomotor function can help to differentiate diagnosis, while electrophysiological measures provide useful biomarkers for the understanding of disease physiopathology and progression. In this chapter, we review the state of the art of the eye movement’s deficits in some neurodegenerative diseases, such as Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, Huntington’s disease, and the hereditary ataxias.",signatures:"Roberto Rodríguez-Labrada, Yaimeé Vázquez-Mojena and Luis Velázquez-Pérez",downloadPdfUrl:"/chapter/pdf-download/65355",previewPdfUrl:"/chapter/pdf-preview/65355",authors:[{id:"261100",title:"Ph.D.",name:"Roberto",surname:"Rodriguez-Labrada",slug:"roberto-rodriguez-labrada",fullName:"Roberto Rodriguez-Labrada"},{id:"261103",title:"Prof.",name:"Luis",surname:"Velázquez-Pérez",slug:"luis-velazquez-perez",fullName:"Luis Velázquez-Pérez"},{id:"261104",title:"MSc.",name:"Yaimeé",surname:"Vazquez-Mojena",slug:"yaimee-vazquez-mojena",fullName:"Yaimeé Vazquez-Mojena"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:[{id:"23",label:"women in science book program"}]},relatedBooks:[{type:"book",id:"8855",title:"Retinoblastoma",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"1686b2f1d697de9d4bc2005a5fa9b998",slug:"retinoblastoma-past-present-and-future",bookSignature:"Hind Manaa Alkatan",coverURL:"https://cdn.intechopen.com/books/images_new/8855.jpg",editedByType:"Edited by",editors:[{id:"223782",title:"Dr.",name:"Hind",surname:"Alkatan",slug:"hind-alkatan",fullName:"Hind Alkatan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6372",title:"Early Events in Diabetic Retinopathy and Intervention Strategies",subtitle:null,isOpenForSubmission:!1,hash:"46ff48bdb1bac8a69372566fff0e2f6d",slug:"early-events-in-diabetic-retinopathy-and-intervention-strategies",bookSignature:"Andrew T.C. Tsin and Jeffery G. Grigsby",coverURL:"https://cdn.intechopen.com/books/images_new/6372.jpg",editedByType:"Edited by",editors:[{id:"310667",title:"Dr.",name:"Andrew",surname:"Tsin",slug:"andrew-tsin",fullName:"Andrew Tsin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7858",title:"A Practical Guide to Clinical Application of OCT in Ophthalmology",subtitle:null,isOpenForSubmission:!1,hash:"8e2d479cc9258dee430f8ba4c353c468",slug:"a-practical-guide-to-clinical-application-of-oct-in-ophthalmology",bookSignature:"Michele Lanza",coverURL:"https://cdn.intechopen.com/books/images_new/7858.jpg",editedByType:"Edited by",editors:[{id:"240088",title:"Prof.",name:"Michele",surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5917",title:"Causes and Coping with Visual Impairment and Blindness",subtitle:null,isOpenForSubmission:!1,hash:"59fe032e3de5e150eab8bf47bd2d8fdd",slug:"causes-and-coping-with-visual-impairment-and-blindness",bookSignature:"Shimon Rumelt",coverURL:"https://cdn.intechopen.com/books/images_new/5917.jpg",editedByType:"Edited by",editors:[{id:"54335",title:"Dr.",name:"Shimon",surname:"Rumelt",slug:"shimon-rumelt",fullName:"Shimon Rumelt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10732",title:"Dry Eye Syndrome",subtitle:"Modern Diagnostic Techniques and Advanced Treatments",isOpenForSubmission:!1,hash:"44a1939cac17b7cfebbef5e156af0b2a",slug:"dry-eye-syndrome-modern-diagnostic-techniques-and-advanced-treatments",bookSignature:"Felicia M. Ferreri",coverURL:"https://cdn.intechopen.com/books/images_new/10732.jpg",editedByType:"Edited by",editors:[{id:"32442",title:"Prof.",name:"Felicia M.",surname:"Ferreri",slug:"felicia-m.-ferreri",fullName:"Felicia M. Ferreri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10345",title:"Infectious Eye Diseases",subtitle:"Recent Advances in Diagnosis and Treatment",isOpenForSubmission:!1,hash:"1d2abb832f0773c90fc9a12d1a41194c",slug:"infectious-eye-diseases-recent-advances-in-diagnosis-and-treatment",bookSignature:"Alejandro Rodriguez-Garcia and Julio C. Hernandez-Camarena",coverURL:"https://cdn.intechopen.com/books/images_new/10345.jpg",editedByType:"Edited by",editors:[{id:"209514",title:"Dr.",name:"Alejandro",surname:"Rodriguez-Garcia",slug:"alejandro-rodriguez-garcia",fullName:"Alejandro Rodriguez-Garcia"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10343",title:"Ocular Hypertension",subtitle:"The Knowns and Unknowns",isOpenForSubmission:!1,hash:"0ff71cc7e0d9f394f41162c0c825588a",slug:"ocular-hypertension-the-knowns-and-unknowns",bookSignature:"Michele Lanza",coverURL:"https://cdn.intechopen.com/books/images_new/10343.jpg",editedByType:"Edited by",editors:[{id:"240088",title:"Prof.",name:"Michele",surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10293",title:"Eyesight and Imaging",subtitle:"Advances and New Perspectives",isOpenForSubmission:!1,hash:"2c4e3e515bebe6053f3f1f57e4854462",slug:"eyesight-and-imaging-advances-and-new-perspectives",bookSignature:"Alireza Ziaei and Michele Lanza",coverURL:"https://cdn.intechopen.com/books/images_new/10293.jpg",editedByType:"Edited by",editors:[{id:"271630",title:"Dr.",name:"Alireza",surname:"Ziaei",slug:"alireza-ziaei",fullName:"Alireza Ziaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10534",title:"Current Cataract Surgical Techniques",subtitle:null,isOpenForSubmission:!1,hash:"7b3bfcd2c690d037d693f31545a36fda",slug:"current-cataract-surgical-techniques",bookSignature:"Xiaogang Wang",coverURL:"https://cdn.intechopen.com/books/images_new/10534.jpg",editedByType:"Edited by",editors:[{id:"243698",title:"M.D.",name:"Xiaogang",surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7703",title:"Ocular Surface Diseases",subtitle:"Some Current Date on Tear Film Problem and Keratoconic Diagnosis",isOpenForSubmission:!1,hash:"3dcf967eb2f185930ce7fb7ae462d4e0",slug:"ocular-surface-diseases-some-current-date-on-tear-film-problem-and-keratoconic-diagnosis",bookSignature:"Dorota Kopacz",coverURL:"https://cdn.intechopen.com/books/images_new/7703.jpg",editedByType:"Edited by",editors:[{id:"271261",title:"Dr.",name:"Dorota",surname:"Kopacz",slug:"dorota-kopacz",fullName:"Dorota Kopacz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"65367",slug:"corrigendum-to-review-of-liquid-filled-optical-fibre-based-temperature-sensing",title:"Corrigendum to Review of Liquid-Filled Optical Fibre-Based Temperature Sensing",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/65367.pdf",downloadPdfUrl:"/chapter/pdf-download/65367",previewPdfUrl:"/chapter/pdf-preview/65367",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/65367",risUrl:"/chapter/ris/65367",chapter:{id:"63471",slug:"review-of-liquid-filled-optical-fibre-based-temperature-sensing",signatures:"Fintan McGuinness, Gabriel Leen, Elfed Lewis, Gerard Dooly, Daniel Toal\nand Dinesh Babu Duraibabu",dateSubmitted:"May 22nd 2018",dateReviewed:"August 1st 2018",datePrePublished:"November 5th 2018",datePublished:"April 24th 2019",book:{id:"8271",title:"Applications of Optical Fibers for Sensing",subtitle:null,fullTitle:"Applications of Optical Fibers for Sensing",slug:"applications-of-optical-fibers-for-sensing",publishedDate:"April 24th 2019",bookSignature:"Christian Cuadrado-Laborde",coverURL:"https://cdn.intechopen.com/books/images_new/8271.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"220902",title:"Dr.",name:"Christian",middleName:null,surname:"Cuadrado-Laborde",slug:"christian-cuadrado-laborde",fullName:"Christian Cuadrado-Laborde"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"27036",title:"Dr.",name:"Daniel",middleName:null,surname:"Toal",fullName:"Daniel Toal",slug:"daniel-toal",email:"daniel.toal@ul.ie",position:null,institution:null},{id:"85846",title:"Prof.",name:"Elfed",middleName:null,surname:"Lewis",fullName:"Elfed Lewis",slug:"elfed-lewis",email:"Elfed.Lewis@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"259703",title:"Dr.",name:"Dinesh Babu",middleName:null,surname:"Duraibabu",fullName:"Dinesh Babu Duraibabu",slug:"dinesh-babu-duraibabu",email:"dineshbabu.duraibabu@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"269578",title:"Dr.",name:"Gabriel",middleName:null,surname:"Leen",fullName:"Gabriel Leen",slug:"gabriel-leen",email:"Gabriel.Leen@ul.ie",position:null,institution:null},{id:"269579",title:"M.Sc.",name:"Fintan",middleName:null,surname:"McGuinness",fullName:"Fintan McGuinness",slug:"fintan-mcguinness",email:"Fintan.McGuinness@ul.ie",position:null,institution:null},{id:"269580",title:"Dr.",name:"Gerard",middleName:null,surname:"Dooly",fullName:"Gerard Dooly",slug:"gerard-dooly",email:"Gerard.Dooly@ul.ie",position:null,institution:null}]}},chapter:{id:"63471",slug:"review-of-liquid-filled-optical-fibre-based-temperature-sensing",signatures:"Fintan McGuinness, Gabriel Leen, Elfed Lewis, Gerard Dooly, Daniel Toal\nand Dinesh Babu Duraibabu",dateSubmitted:"May 22nd 2018",dateReviewed:"August 1st 2018",datePrePublished:"November 5th 2018",datePublished:"April 24th 2019",book:{id:"8271",title:"Applications of Optical Fibers for Sensing",subtitle:null,fullTitle:"Applications of Optical Fibers for Sensing",slug:"applications-of-optical-fibers-for-sensing",publishedDate:"April 24th 2019",bookSignature:"Christian Cuadrado-Laborde",coverURL:"https://cdn.intechopen.com/books/images_new/8271.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"220902",title:"Dr.",name:"Christian",middleName:null,surname:"Cuadrado-Laborde",slug:"christian-cuadrado-laborde",fullName:"Christian Cuadrado-Laborde"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"27036",title:"Dr.",name:"Daniel",middleName:null,surname:"Toal",fullName:"Daniel Toal",slug:"daniel-toal",email:"daniel.toal@ul.ie",position:null,institution:null},{id:"85846",title:"Prof.",name:"Elfed",middleName:null,surname:"Lewis",fullName:"Elfed Lewis",slug:"elfed-lewis",email:"Elfed.Lewis@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"259703",title:"Dr.",name:"Dinesh Babu",middleName:null,surname:"Duraibabu",fullName:"Dinesh Babu Duraibabu",slug:"dinesh-babu-duraibabu",email:"dineshbabu.duraibabu@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"269578",title:"Dr.",name:"Gabriel",middleName:null,surname:"Leen",fullName:"Gabriel Leen",slug:"gabriel-leen",email:"Gabriel.Leen@ul.ie",position:null,institution:null},{id:"269579",title:"M.Sc.",name:"Fintan",middleName:null,surname:"McGuinness",fullName:"Fintan McGuinness",slug:"fintan-mcguinness",email:"Fintan.McGuinness@ul.ie",position:null,institution:null},{id:"269580",title:"Dr.",name:"Gerard",middleName:null,surname:"Dooly",fullName:"Gerard Dooly",slug:"gerard-dooly",email:"Gerard.Dooly@ul.ie",position:null,institution:null}]},book:{id:"8271",title:"Applications of Optical Fibers for Sensing",subtitle:null,fullTitle:"Applications of Optical Fibers for Sensing",slug:"applications-of-optical-fibers-for-sensing",publishedDate:"April 24th 2019",bookSignature:"Christian Cuadrado-Laborde",coverURL:"https://cdn.intechopen.com/books/images_new/8271.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"220902",title:"Dr.",name:"Christian",middleName:null,surname:"Cuadrado-Laborde",slug:"christian-cuadrado-laborde",fullName:"Christian Cuadrado-Laborde"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11741",leadTitle:null,title:"Trends and Innovations in Food Science",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tThe objective of this book is to make the food professionals acquainted with recent directions of the research work in food science. The different sections of this book project will describe the utilization of digital transformation in the food industry using the available applications of digital tools such as the internet of things (IoT), artificial intelligence (AI), sensor technologies, and blockchain. The effect of climate changes on the agro-industry will be discussed through the issues of climate changes, climate adaptation, agro-ecosystems, and environmental aspects and impacts. Recently, the food industry is subjected to unexpected new risks such as pandemics, lack of specific food supply, financial situations, and information technology problems so this too should be taken into consideration in the food science research work. As the food industry is a consumer-driven industry the continual improvement is a cornerstone in this industry. Recent technologies such as nanotechnology, membrane technology, and high-pressure technology besides the advanced analytical methods such as applications of the electron microscope and PCR would be covered.
",isbn:"978-1-80356-066-3",printIsbn:"978-1-80356-065-6",pdfIsbn:"978-1-80356-067-0",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"086633aee9a7b3ec134fb3a465418eac",bookSignature:"Prof. Yehia El-Samragy",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11741.jpg",keywords:"Internet of Things, Artificial Intelligence, Blockchain, Climate Change, Agroecosystems, Pandemics, Information Technology Problems, Lack of Specific Food Supply, Nanotechnology, High-Pressure Technology, PCR, Membrane Technology",numberOfDownloads:54,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"December 2nd 2021",dateEndSecondStepPublish:"December 23rd 2021",dateEndThirdStepPublish:"February 28th 2022",dateEndFourthStepPublish:"May 19th 2022",dateEndFifthStepPublish:"July 18th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"6 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"Professor Emeritus of Food Science, International Expert Trainer of Food Safety and Quality Management Systems, IRCA Lead Auditor/Tutor of QMS, and Food Safety, FSPCA Lead Instructor of PCQI and FSVP courses, registered Tutor of Highfield Food Safety and HACCP",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"81644",title:"Prof.",name:"Yehia",middleName:null,surname:"El-Samragy",slug:"yehia-el-samragy",fullName:"Yehia El-Samragy",profilePictureURL:"https://mts.intechopen.com/storage/users/81644/images/system/81644.jpg",biography:"Dr. El-Samragy has over four decades of a professional career bridged between academia and industry. He is Professor Emeritus of Food Science at Ain Sham University, Cairo, Egypt, and Visiting Research Professor at Cornell University, Ithaca, NY and Utah State University, Logan, UT, USA. He is an International Expert Trainer of Food Safety and Quality Management Systems. He worked as an Expert at some international organizations including FAO, UNIDO, UNDP, JECFA, ISO, USAID, ACDI-VOCA and DANIDA, in different projects of technology transfer, food standards, food product development, waste utilization, cleaner production, implementation of integrated management systems. He is IRCA Lead Auditor/Tutor of QMS, and Food Safety (HACCP & ISO/FSSC 22000) (IRCA Certificate # 01182132), and Lead Instructor, FSPCA Preventive Controls for Human Food Course (FSPCA Certificate # d16e213f) and FSPCA Foreign Supplier Verification Programs (FSPCA Certificate # d26bcf6b). Also, he registered and approved to deliver Food Safety and HACCP training and examinations leading to Highfield Qualifications (Highfield Tutor # 29012). He has extensive experience in delivering training courses on QMS, HACCP and ISO/FSSC 22000 in Egypt, Libya, Sudan, Zambia, Tanzania, Ghana, Sierra Leone, Liberia, Gambia, South Africa, Uganda, Saudi Arabia, Yemen, Jordan, Dubai, Sharjah, Syria, Bahrain, Lebanon, Kazakhstan, Russia, USA and Canada.",institutionString:"Ain Shams University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Ain Shams University",institutionURL:null,country:{name:"Egypt"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"}],chapters:[{id:"81452",title:"High-Intensity Ultrasound and Its Interaction with Foodstuff and Nanomaterials",slug:"high-intensity-ultrasound-and-its-interaction-with-foodstuff-and-nanomaterials",totalDownloads:15,totalCrossrefCites:0,authors:[null]},{id:"81707",title:"The Function of a Coffee Shop as a Social Cultural Entity",slug:"the-function-of-a-coffee-shop-as-a-social-cultural-entity",totalDownloads:17,totalCrossrefCites:0,authors:[null]},{id:"82087",title:"Value-Added Foods: Characteristic, Benefits, and Physical Properties",slug:"value-added-foods-characteristic-benefits-and-physical-properties",totalDownloads:11,totalCrossrefCites:0,authors:[null]},{id:"81983",title:"Pulsed Electric Fields as a Green Pretreatment to Enhance Mass Transfer from Grapes of Bioactive Molecules: Aromatic, Phenolic, and Nitrogen Compounds",slug:"pulsed-electric-fields-as-a-green-pretreatment-to-enhance-mass-transfer-from-grapes-of-bioactive-mol",totalDownloads:12,totalCrossrefCites:0,authors:[null]},{id:"82180",title:"Optimization of Cassava (Manihot esculenta Crantz.) Fermentation Processes for Food-Secured Twenty-First Century Africa",slug:"optimization-of-cassava-manihot-esculenta-crantz-fermentation-processes-for-food-secured-twenty-firs",totalDownloads:1,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"444318",firstName:"Nika",lastName:"Karamatic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/444318/images/20011_n.jpg",email:"nika@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1014",title:"Food Additive",subtitle:null,isOpenForSubmission:!1,hash:"d5d05e31d794c4697626a5616a9fe077",slug:"food-additive",bookSignature:"Yehia El-Samragy",coverURL:"https://cdn.intechopen.com/books/images_new/1014.jpg",editedByType:"Edited by",editors:[{id:"81644",title:"Prof.",name:"Yehia",surname:"El-Samragy",slug:"yehia-el-samragy",fullName:"Yehia El-Samragy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6548",title:"Food Safety",subtitle:"Some Global Trends",isOpenForSubmission:!1,hash:"de67614bdc5a5e48a1cf96f9e34e68a1",slug:"food-safety-some-global-trends",bookSignature:"Yehia El-Samragy",coverURL:"https://cdn.intechopen.com/books/images_new/6548.jpg",editedByType:"Edited by",editors:[{id:"81644",title:"Prof.",name:"Yehia",surname:"El-Samragy",slug:"yehia-el-samragy",fullName:"Yehia El-Samragy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6418",title:"Hyperspectral Imaging in Agriculture, Food and Environment",subtitle:null,isOpenForSubmission:!1,hash:"9005c36534a5dc065577a011aea13d4d",slug:"hyperspectral-imaging-in-agriculture-food-and-environment",bookSignature:"Alejandro Isabel Luna Maldonado, Humberto Rodríguez Fuentes and Juan Antonio Vidales Contreras",coverURL:"https://cdn.intechopen.com/books/images_new/6418.jpg",editedByType:"Edited by",editors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10359",title:"Landraces",subtitle:"Traditional Variety and Natural Breed",isOpenForSubmission:!1,hash:"0600836fb2c422f7b624363d1e854f68",slug:"landraces-traditional-variety-and-natural-breed",bookSignature:"Amr Elkelish",coverURL:"https://cdn.intechopen.com/books/images_new/10359.jpg",editedByType:"Edited by",editors:[{id:"231337",title:"Dr.",name:"Amr",surname:"Elkelish",slug:"amr-elkelish",fullName:"Amr Elkelish"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"38132",title:"Mould Fluxes in the Steel Continuous Casting Process",doi:"10.5772/50874",slug:"mould-fluxes-in-the-steel-continuous-casting-process",body:'\n\t\tDuring the last decades, the continuous casting process has made enormous advances and more than 90% of the world steel production is now continuously cast [1]. In this process, the liquid steel is poured into a water-cooled copper mould through a submerged entry nozzle (SEN), see Figure 1 [2]. At this stage the solidification process begins. In this way semifinished products with specific characteristics such as slabs and billets are obtained. During this process the mould fluxes perform several critical functions to obtain products with the quality required.
\n\t\t\tThe mould fluxes are synthetic slags constituted by a complex mix of oxides, minerals and carbonaceous materials. The main oxides are silica (SiO2), calcium oxide (CaO), sodium oxide (Na2O), aluminum oxide (Al2O3) and magnesium oxide (MgO). The (CaO/SiO2) ratios are 0.7 to 1.3 with fluorite (F2Ca) and carbonaceous materials additions in their compositions. The compounds content ranges and their effects on mould fluxes behaviour at process conditions are summarized in Table 1.
\n\t\t\tThese fluxes can be added through the top of the mould on the liquid steel, manually or automatically, the second way being the one that offers greater stability and constancy of the required properties.
\n\t\t\tSchematic drawing of the continuous casting process [
Glass formers | \n\t\t\t\t\t\tSiO2\n\t\t\t\t\t\t\t Al2O3\n\t\t\t\t\t\t\t B2O3\n\t\t\t\t\t\t\t Fe2O3\n\t\t\t\t\t\t | \n\t\t\t\t\t\t17 – 56 % 0 – 13 % 0 – 19 % 0 – 6 % | \n\t\t\t\t\t
Basic oxides or modifiers | \n\t\t\t\t\t\tCaO MgO BaO SrO | \n\t\t\t\t\t\t22 – 45 % 0 – 10 % 0 – 10 % 0 – 5 % | \n\t\t\t\t\t
Alkalis | \n\t\t\t\t\t\tNa2O Li2O K2O | \n\t\t\t\t\t\t0 – 25 % 0 – 5 % 0 – 2 % | \n\t\t\t\t\t
Fluidizing | \n\t\t\t\t\t\tF MnO | \n\t\t\t\t\t\t2 – 15 % 0 – 5 % | \n\t\t\t\t\t
Melting control | \n\t\t\t\t\t\tC | \n\t\t\t\t\t\t2 – 20 % | \n\t\t\t\t\t
Typical composition of mould fluxes (wt %).
The continuous casting process is a very complex one which involves many variables: casting speed, mould oscillation characteristics, steel grade, mould dimensions and metal flow. All these variables need to be optimized but this is very difficult because it is not possible to see what is occurring inside the mould. In general, it is important to collect information on: analysis of plant data, simulations of different phenomena and measurements of different specific physical properties of the fluxes.
\n\t\t\tThe additions of mould fluxes on the free liquid steel surface form different layers that are described in Figure 2. Each layer in isolation or combined with another one, provides the required functions of the powder.
\n\t\t\tDifferent layers formed by the mould flux on the liquid steel.
The functions of the mould fluxes can be divided into two types, depending on the specific contact zone:
\n\t\t\t\n\t\t\t\t
In this case, the objective is avoiding heat loss that could cause the premature solidification of the liquid steel in the meniscus zone. The properties of the mould fluxes that control these functions are:
\n\t\t\t\tThe mould flux density
The thickness of the flux layer
The carbon content
The particle size distribution in the material
A bad thermal insulation in the meniscus promotes operation problems such as breakouts and could also cause surface defects in the products, such as cracks and oscillation deep marks.
\n\t\t\tThe liquid slag constitutes a barrier to avoid steel reoxidation by contact with air and the entrapment of other gases, such as nitrogen.
\n\t\t\t\tThe steel reoxidation in the surface promotes oxide generation that could be incorporated as inclusions into the liquid steel (i.e. Al2O3) or into slag, changing its physical properties.
\n\t\t\tMould fluxes are also designed to have the capacity to absorb or entrap inclusions in the interface of liquid slag–metal. In this way, it is possible to improve the cleanliness of the steel within certain operation parameters and depending on the process conditions. One of the important conditions is the depth of the liquid pool of slag [1].
\n\t\t\t\tThe control of alumina (Al2O3) pickup in the liquid slag, during a certain period of time gives information of the slag absorption capacity. This oxide is produced by the reaction between the metal and the slag (Eq. 1):
\n\t\t\t\tThe large particles can cross the slag/metal interface easily but the smaller inclusions need more time to do it. Absorption of inclusions can be enhanced using fluxes with high (CaO/SiO2) ratios, high Na2O, Li2O and CaF2 contents or low Al2O3, TiO2 contents.
\n\t\t\t\tGood lubrication is the most important function of the mould fluxes. The lubrication capacity of the liquid slag is related to the viscosity and the solidification temperature. For this reason, it is important to establish the viscosity values at operation temperatures by experimental tests or applying theoretical models. The lubrication is indirectly influenced by process conditions such as casting speed, superheat temperature and submerged nozzle (SEN) design. When the liquid slag layer is interrupted for any reason, sticker breakouts or cracks could occur. Surface cracks in slabs are also promoted by bad lubrication.
\n\t\t\tHeat transfer in the mould can be divided into horizontal and vertical heat transfer. The horizontal heat transfer has the more significant effect on the surface quality of the product. Nevertheless, the control of vertical heat flux permits to overcome problems such as pinholes and deep oscillation marks [1].
\n\t\t\t\tThe heat transfer in the continuous casting mould is largely controlled by the film generated in the gap between the steel shell and the mould, due to the solid and liquid proportion characteristics of the slag. These characteristics are associated with the high or low crystallization tendency of the mould flux, because in this way a greater or lesser heat extraction can be controlled. For this reason, the mould flux has to be specifically selected for each steel grade.
\n\t\t\tSticker breakouts occur when the solidified shell is broken in or out the mould and, as a consequence, the liquid steel can not be contained by the solidified shell. Figure 3 describes a normal shell formation and a distorted shell produced by a sticking.
\n\t\t\t\tA normal steel shell formation and a distorted shell produced by sticking.
As it was mentioned, the mould fluxes are the responsible for providing a continuous lubrication between the mould and the strand This continuous lubrication has to be guaranteed because if it is interrupted, the steel sticks on the mould wall. This fact promotes considerable stresses due to the friction, increasing the risk of breakout.
\n\t\t\t\tIn Figure 3, two solidification patterns are visualized: a normal solidification pattern and the solidification pattern when sticking occurs. In the right part of the figure, the graphics (temperature–time) show the behaviour of thermocouples during both mentioned situations.
\n\t\t\t\tThe control system with thermocouples represents an important and effective tool in order to prevent damage of the steel shell by sticking. Another relevant application is to avoid the equipment detriment caused by the liquid steel leak. Possible causes of sticking problem to consider are:
\n\t\t\t\tChanges of the slag viscosity due to Al2O3 enrichment
Important variation of the liquid steel level
Oscillating system in poor conditions (change in the oscillation curve)
Interrupted lubrication by deficient mould flux supply
Freezing of the meniscus by poor insulation or by altering the flow pattern inside the mold.
It is important to consider that the mould flux consumption gives information about the liquid slag infiltration between the mould and the steel shell, thus estimating the present lubrication. The consumption of mould powder depends on the process conditions and the materials characteristics. Shin et al. [3] reported results on the influence of the casting speed on mould powder consumption. Figure 4 show that when the casting speed increases, the mould powder consumption decreases.
\n\t\t\t\tInfluence of the casting speed on mould powder consumption [
Meng and Thomas [4] studied the influence of the mould oscillation parameters on the flux consumption. The authors concluded that oscillation frequency decrease implies lower powder consumption but higher oscillation amplitude or the increase in positive and negative strip increases the flux consumption.
\n\t\t\t\n\t\t\t\t\t
This type of defect may be associated with flow conditions and the physical properties of the liquid slag at steel meniscus level (see Figure 5). The main causes of this defect are associated with a high flow speed of the liquid steel at meniscus level. These conditions generate important forces that promote the entrapment of slag drops in the liquid steel. The viscosity and surface tension of the liquid slag constitute the primary physical properties related with the phenomenon of slag entrapment. Another reason for this type of entrapment be promoted, in the subsurface of the product, is the excessive changes of level in the mould. When the slag entrapments are large, they can interfere in the normal heat flow producing a thinner (and weaker) steel shell. As a consequence, the risk of breakout increases when the product leaves the mould.
\n\t\t\t\tMechanisms of slag entrapment indicated as 1, 2, 3, 4 and 5.
Steel grades with a chemical composition similar to peritectic steel are susceptible to develop longitudinal cracks. The origin of the problem involves the differences of the contraction coefficient between δ and γ iron that result in an irregular shell. As a consequence of stress concentration, the mentioned cracks are generated. Wolf [5] proposed the use of the carbon equivalent calculation in order to predict the longitudinal crack susceptibility. For example in the case of low alloy steel it is possible to use Eq.2 and Eq.3:
\n\t\t\t\twhere FP is the ferrite potential and Cp is carbon equivalent for peritectic transformation. Here FP > 1 signifies a fully ferritic structure and FP < 0 means fully austenitic structure. This leads to classify the steel grades in two groups: type A with high depression tendency and type B with tendency to sticking and solidification cracking. FP criterion also predicts inner crack sensitivity.
\n\t\t\t\tThe strategy to avoid the longitudinal crack is to obtain a homogeneous shell through a uniform heat extraction. The mould powder is the tool which permits to minimize the crack tendency and these tendencies decrease at higher powder consumption because the film thickness increases. All longitudinal cracks are formed near the meniscus zone.
\n\t\t\tThe knowledge of physicochemical properties of mould powders is necessary to solve problems in industry and to develop mathematical models of the process. Generally, the determination of these properties is very complex due to the high temperatures involved (usually higher than 1000°C) and the reactions with the containers of mould powders. Besides, it is necessary to know a large number of properties such as density, thermal conductivity, viscosity, melting temperatures, surface tension, etc. Due to the complexities of these measurements, mathematical models are often used. Since, the chemical composition is information available through the suppliers; this information is used to estimate the values of physico-chemical properties at high temperature.
\n\t\t\tIn order to estimate these properties more complex models that make use of the structure of the molten mould powders, phase equilibrium diagrams, thermodynamic data, and neural network based models, have been used. In all cases, it should be noted that the model results are compared to experimental data, which in turn, possess a certain degree of error. Accordingly, the accuracy of the results obtained by means of the models can not be greater than those obtained experimentally.
\n\t\t\tTo compute the properties of the mould fluxes several models have been used. They can be classified in [6]: (i) numerical adjustments, (ii) neural networks, (iii) structure based models and (iv) thermodynamic models.
\n\t\t\tThe structure of the mould fluxes is based on silicate chains of the silicon oxide (SiO2), where each Si4+ ion is surrounded by four O2- (tetrahedral structure SiO4\n\t\t\t\t4-). Each of the anion O2- is connected to two others O2- (called bridging oxygen) forming a three dimensional network. This network is broken when entering the cations type Na+ or Ca2+. These cations break silicate chains forming non-bridging oxygens O- and free oxygens O2- that are not bound to cations Si4+ but to the network breakers: Na+, Ca2+, Mg2+, etc. [7].
\n\t\t\tCations of type Al3+ can enter the polymer chain but they should be located close to others cations such Na+ (or Ca2+) to maintain the local charge balance. Cations Fe3+, in low concentrations, act as network modifiers, while in greater proportions, may be incorporated into the chain silicate similarly to Al3+.
\n\t\t\tThus, the properties of the mould powders are affected by the composition and arrangement of the individual compounds. Namely, they depend on the concentration of network formers (SiO2, Al2O3) and network modifiers (Na2O, Li2O, CaO, MgO, K2O).
\n\t\t\tThe viscosity (η) expresses the difficulty with which a layer of liquid moves over another. Thus, when the length of the chains Si-O increases, this difficulty also increases. Therefore, a higher viscosity is associated with a higher degree of polymerization (higher content of network formers).
\n\t\t\t\tOn the one hand, mould powders called "glassy", present a smooth change in viscosity versus the temperature curve when during cooling the material changes from liquid to supercooled liquid at the glass transition temperature (Tg). This temperature is associated to a viscosity of 1013,4 Pa (Figure 6a). On the other hand, for mould powders called “crystalline” the curve logη vs 1/T presents a significant change in slope at the temperature at which crystallization begins (Figure 6b). This temperature is called "break temperature" (Tbr).
\n\t\t\t\tPlots of logη vs. 1/T of (a) glassy and (b) crystalline mould fluxes.
The viscosity of the molten material presents a significant dependence on temperature. This dependence is expressed by an equation of type Arrhenius (Eq. 4):
\n\t\t\t\tOr type Weymann (Eq. 5):
\n\t\t\t\tWhere AA, AW are constants, R is the gas constant, and EA, EW are the activation energies for viscous flow.
\n\t\t\t\tViscosity models of mould powders have been developed on a large amount of experimental data. A review of models based on the chemical composition [8] showed that the minor differences between the estimated values and those determined experimentally were presented by both the Iida and Riboud models. The greatest differences were within 30%.
\n\t\t\t\tThe Riboud model [9] uses the following expression to compute the viscosity (Eq. 6):
\n\t\t\t\twhere T is temperature in Kelvin, and A and B are parameters obtained by means of the mould powder composition. On the other hand, in the Iida model [10] the expression for calculating the viscosity is (Eq. 7):
\n\t\t\t\twhere A and E are parameters set by adjustments to experimental data, ηo is the viscosity of the melted components not forming network and Bi is the modified basicity index.
\n\t\t\t\tAn alternative method to compute the viscosity of mould fluxes was used by Brandaleze et al. [11]. This method is based on the model presented by Moynihan [12] that uses the width of the glass transition, which can be determined by DTA or DSC. According to this model, the viscosity can be calculated using the following equation (Eq. 8):
\n\t\t\t\twhere η is the viscosity in Pa.s, T is the temperature in K, Tg is the glass transition temperature, T´g is the end point of the glass transition and Δ(1/T´g) = 1/Tg-1/T´g.
\n\t\t\t\tUsing Eq.8 the viscosity of two mould powders (10F and PC) between 1200-1450°C was estimated (Figure 7). Powder PC is of commercial origin and 10F was prepared in laboratory, both containing fluorine (for chemical composition see Table 2).
\n\t\t\t\tViscosity values estimated from different methods.
The η-values calculated by this method were compared with those calculated for the Iida and Riboud models. The differences between the values of viscosity obtained by the Moynihan model with respect to these two traditional models were within 33%.
\n\t\t\tThe thermal conductivity of the liquid slag tends to increase as the SiO2 content increases. This behaviour can be attributed to a better thermal conduction along the polymer chains. This transport is hindered by the presence of non-bridging oxygen (O-) and cation breakers at the ends of the polymer chains. This interpretation has been experimentally supported by Eriksson et al. [13] in a work on liquid slags in the system CaO-Al2O3-SiO2.
\n\t\t\t\tOn the other hand the thermal conductivity seems to be affected by the nature of the cations modifiers, according to the following relationship kLiO2> kNa2O> kK2O [14].
\n\t\t\t\tThus, when the content of network formers increases, the higher is the thermal conductivity. Therefore, an increase in the thermal conductivity may be associated with an increase of the viscosity [14]. However, this behaviour is interpreted based on the heat conduction on the network (lattice) kL, but contributions of the heat transfer by convection (kC) in the liquid layer and radiation (kR) are unknown.
\n\t\t\t\tWhen the melted mould flux layer solidifies, forming either crystalline or amorphous structures, it should be noted that heat transfer by radiation in a crystalline solid decreases due to scattering of radiation by the crystal, grain boundaries and pores. Thus, an amorphous solid (glass) has greater heat conduction by radiation than a crystalline one. When comparing a glassy mould flux with a crystalline one, below the onset of crystallisation temperature (Tbr) the conduction by radiation will be lower in the crystalline solid.
\n\t\t\t\tThe low reliability in measurements of thermal conductivity impacts in obtaining a reliable database to develop a secure model to estimate k based on temperature and chemical composition.
\n\t\t\t\tFurthermore, it should be noted that, during the continuous casting process, the first layer of slag that forms against the copper mould is glassy (because of high cooling rate). But then with time, it tends to crystallize. When this layer crystallizes, it contracts (high density) and generates pores, near the crystals, and a rough surface at the interface mould/slag which is equivalent to an air gap in this interface. This air gap is represented by an interfacial resistance RCu/sl. For example, Hanao and Kawamoto [15] calculated an interfacial resistance RCu/sl = 0.2 10-3 m2.W-1.K-1, while Brandaleze et al. [16] measured RCu/sl = 1.9 x 10-3 m2.W-1.K-1. Thus, if the crystallization occurs with the time, this leads to a reduced flow of heat from the steel to the copper mould.
\n\t\t\t\tThe relationship among kR and kL with the degree of crystallization was studied by Ozawa et al. [17]. They observed that: (i) kL tends to increase with the degree of crystallization and (ii) kR decreases until reaching a constant value when the fraction of crystals exceeds 15%. Meanwhile, Nakada et al. [18] studied the heat transfer through a mould flux layer and concluded that the kR constitutes less than 20% of the total heat flow. The authors noted that the extraction of heat was very sensitive to both the thickness and the emissivity of the mould flux layer. So, if two mould powders that do not tend to crystallize on cooling (glassy) are compared, the one presenting a higher viscosity tends to generate a thicker layer of molten powder. This results in a lower extraction of heat in the hottest zone (top) of the mould.
\n\t\t\tThis property is affected primarily by constituents who have the lowest values of surface tension (surfactants), which tend to occupy the surface layer of the liquid. The surface concentration depends on the surface tension (γ) and the activity of the components.
\n\t\t\t\tTo estimate the surface tension different models have been used, being the simplest method that which uses partial molar fractions (Xi) of components [19]. In this model the components are divided into two classes: (i) oxides with high surface tension and (ii) components of lower surface tension or surfactants (such as B2O3, CaF2, Na2O, K2O, Fe2O3) according to Eq. 9.
\n\t\t\t\tThe uncertainties of this model are within ± 10%.
\n\t\t\t\tAnother model [20] also used the molar volume of components and the ionic radii.
\n\t\t\tThe liquidus temperature (Tliq) can be determined by DTA or DSC tests (melting endotherm) or by Hot Stage Microscopy (HSM). In the latter case Tliq must be associated to fluidity temperature (TF). Due to the different components of these materials, the first occurrence of liquid is detected at a temperature lower to melt flow (TF). The fluidity temperature is considered as one in which the material reaches a viscosity apt to flow into the mould-steel gap. Models to calculate Tliq based on chemical composition have a high degree of uncertainty.
\n\t\t\t\tMoreover, the break or crystallisation temperature (Tbr) is usually between 1100-1200 °C. A numerical model to calculate Tbr (within an error of ± 30°C) has been used [21]. These method estimates break temperature according to the following equation (Eq.10):
\n\t\t\t\tAlthough the melting rate depends on process parameters such as casting speed, it is also influenced by the quality and content of free carbon [22]. The melting rate decreases with increasing carbon content and/or its particle size decreases, and increases when the reactivity of the carbonaceous material is larger [23]. An estimation of the reactivity of the carbonaceous material can be performed if decomposition kinetics is known.
\n\t\t\t\tBenavidez et al. [24] conducted a study on the kinetics of decomposition of two carbonaceous materials: petroleum coke (sample C) and synthetic graphite (sample G). Both materials are often used to include free carbon in mould powders composition.
\n\t\t\t\tThe activation energy (Ea) associated with the decomposition of carbonaceous materials was calculated using four methods applied to non-isothermal thermogravimetric curves (TG) performed at different heating rates. An average value of Ea ≈ 48 kJ/mol for the powder with 15 wt% of coke, and Ea ≈ 67 kJ/mol for the powder with 15 wt% of graphite was obtained from the different methods. The lower activation energy of the decomposition process of the coke is associated with increased reactivity of this carbonaceous material relative to the graphite. This behaviour is in agreement with the higher degree of crystallinity observed in the synthetic graphite, since the greater amount of crystals results in the need of a greater amount of energy (heat) to decompose the carbonaceous material (low reactivity).
\n\t\t\tBecause of the strong covalent type bonds that presents SiO2, its coefficient of linear thermal expansion (α) is very low. Thus, as the value of α is proportional to the change of density with temperature (dρ / dT), then the density is slightly affected by the temperature. According to this, the value of α increases when the percentage of cations network modifiers increases. It is also observed that the coefficient of thermal expansion increases to a greater extent for M2O monovalent oxides than for MO bivalent ones. In both cases, the coefficient of thermal expansion increases according to the following cation size relationship: K > Na > Li (oxides M2O) and Ba > Ca > Mg (oxides MO). The density of the slags can be estimated using thermodynamic models [25]. However, considering the density of the liquid slag only slightly dependent on the structure, then one can use a simpler model to calculate its density in the liquid state. In this case molar volume (V) and molecular weight (M) of the mould powder are computed through Eq. 11:
\n\t\t\t\twhere Xi is the mole fraction, Mi is the molecular weight and Vi is the molar volume of component i.
\n\t\t\t\tThe molar heat capacity is not affected by the structure, but rather by the composition. Thus, a good estimation of mould flux (Cp) can be obtained from the mole fraction (Xi) and the heat capacity (Cpi) of each component (Eq.12):
\n\t\t\t\tIf the mould powder is glassy, the value of Cp drops abruptly at glass transition temperature.
\n\t\t\tExperimental techniques are very important to characterize or previously evaluate the behaviour of a mould powder during the continuous casting process. The most important techniques are those that provide information about properties such as:
\n\t\t\tHeat transfer
Melting rate
Viscosity / fluidity
Critical temperatures
Several operating problems and surface quality defects, which occur in the continuous casting process, are determined by the heat transfer through the flux layers. For this reason, it is important to perform measurements of thermal conductivity and compare the behaviours of the various types of fluxes used in the mould.
\n\t\t\t\tMany researchers have developed different experiments to measure thermal properties in melted fluxes trying to represent process conditions. Regardless of the measurement method used, the calculations are mainly based on the heat conduction laws (Eq. 13-15), allowing to determine the heat flow (
The main methods and devices reported in the literature are described below.
\n\t\t\t\tSchwerdtfeger et al. [26] simulated the gap between the steel and the copper mould, moving a cooled copper block to a surface of molten flux on a steel plate heated by electrical resistance. The temperature was registered by three thermocouples (two in the copper mould and one in the steel), which are used to calculate the effective thermal conductivity (kgap) and the radiation and conduction components.
\n\t\t\t\tMikrovas et al. [27] and Jenkins et al. [28] used the "finger test" based on the immersion of a copper cylinder in a molten flux bath. The cylinder is fitted with thermocouples placed strategically from which it is possible to calculate the heat flow and thermal conductivity of the system.
\n\t\t\t\tYamauchi et al. [29] measured the thermal resistance of the powder through the device of Figure 8a which used an AlN plate as hot side and a steel block as refrigerated cold side with the ability to regulate the thickness of mould powder located between them.
\n\t\t\t\tThe laser pulse method was employed by Mills et al. [30] to measure the thermal conductivity on solidified flux samples. The value is obtained from the estimation of the thermal diffusivity, density and specific heat capacity.
\n\t\t\t\tSimilarly to [26, 29] in the device built by Holzhauser et al. [31] the sample is placed on a steel plate. The cold zone is provided by a cooled copper block with thermocouples located at strategic points to determine the thermal conductivity. The system is heated by means of electrical current (Figure 8b).
\n\t\t\t\tExperimental apparatus used to measure heat transfer through mould powder layers: (a) Yamauchi et al., and (b) Holzhauser et al.
Stone and Thomas [32] developed an equipment to simulate the mould conditions, based in a copper block and a steel plate to simulate the gap between mould and steel shell. The heat is applied on the steel plate by a torch. The molten powder is poured between the two plates. The different thermocouples placed in the equipment according to Figure 9 allow to calculate the thermal conductivity of molten flux using the equations 13 to 15.
\n\t\t\t\tHeat transfer equipment developed by Stone and Thomas [
Brandaleze et al. [16] based on the Stone and Thomas design, made changes in both the positions of thermocouples and the cooling system, obtaining results in agreement with literature (Figure 10). Using this device Martin et al. [33] presented a comparison between a mould flux layer taken from a continuous casting machine, with another flux layer extracted from the heat transfer equipment. From the structural and microstructural analysis could be inferred that the thermal conductivity measurement is carried out under thermal conditions similar to those in the continuous casting process.
\n\t\t\t\tHeat transfer of four commercial mould powders.
The melting rate is an important property of the powder because it affects both the powder consumption and the depth liquid pool modifying the lubrication and heat transfer conditions. The main factor governing this property is the free carbon content. The C particles are not wetted by the molten flux and consequently separate the mineral particles delaying the agglomeration of the molten flux globules. For this reason, a higher content of free C promotes more time of agglomeration resulting in a lower melting rate.
\n\t\t\t\tThere are basically two methods to measure this property:
\n\t\t\t\t\n\t\t\t\t\t
In this test 1.5 g of mould powder is placed in combustion capsules (porcelain) with one extreme closed and another open for easy viewing of the sample. Then, the capsule is heated inside a furnace and is observed through a horizontal window disposed for this purpose. The time taken to melt the sample is recorded and the melting rate is calculated. In this test the heat flow is unidirectional.
\n\t\t\t\t\n\t\t\t\t\t
In this test the sample is placed in the conical base of a crucible and then molten mould flux drips out of the furnace. This molten flux is collected and weighted continuously by a balance placed at the bottom of the furnace.
\n\t\t\tAs it was noted above the viscosity of mould flux has a decisive influence on the infiltration of liquid slag in the mould gap, which is probably the most important process in continuous casting because it affects the lubrication between the steel and the mould. The viscosity is also an important factor in the erosion of the refractory nozzle being a function of 1/η.
\n\t\t\t\tHigh viscosity fluxes are frequently used to minimize slag entrapment. But in this case, the pressure developed by the molten slag in the mould-steel gap is high and can influence on the depth of the oscillation marks.
\n\t\t\t\tSeveral methods are used to measure the viscosity of mould powders [34, 35]:
\n\t\t\t\ti. Rotating cylinder method
\n\t\t\t\tii. Oscillating method
\n\t\t\t\tiii. Inclined plane test
\n\t\t\t\tThese viscometers consist of two concentric cylinders (Figure 11) the outer cylinder is usually a crucible and the inner cylinder (bob) is in movement. When a cylinder is rotated, it provides a velocity gradient and the torque developed is measured at different temperatures. There are two methods, (i) the rotating crucible method (RCR), in which the outer cylinder is rotated and (ii) the rotating cylinder method (RCyl) where the inner cylinder is rotated. Generally, all commercial instruments are of the latter type because of the simplicity of its construction. This method is the most widely used for this kind of materials.
\n\t\t\t\tRotating cylinder method used for measuring the viscosity of mould powders [
\n\t\t\t\t\t
The oscillating plate method is a relatively new method in which, subjected to a linear oscillating plate is submerged in the melt. As a result, there is a retarding force proportional to the viscosity of the fluid. When establishing a steady state, it records the amplitude of oscillation in air (\n\t\t\t\t\t\t
\n\t\t\t\t\t
This simple test has been used by some laboratories to estimate viscosities of molten fluxes. A mass of 10 g of powder is placed in a graphite crucible and then is melted at a specific temperature (T). The melted flux is maintained at that temperature for 15 min in order to achieve homogeneity. Then, the melt is fast cooled (quenched), pouring it onto an inclined plane. The length (L) of the ribbon is measured to have an estimation of the mould powder fluidity. In this case, the inverse of the length (1/L) is proportional to the viscosity of material at temperature T. Experimental trials in our laboratory indicated good reproducibility of results and very good relationship between ribbon lengths (L) and (1/η) for viscosities > 1 Poise (see Figure 12).
\n\t\t\t\tSlag ribbon length (L) as a function of fluidity (1/η).
The most widely used test to determine the melting range of a mould powder is the "high temperature microscopy test" (DIN 51730). The sample is pressed into a cylinder and placed in a furnace which continuously monitors the rate of heating and the changes in the sample shape. There are three critical temperatures determined by the cylinder morphology corresponding to the points of "softening", "hemisphere" and "fluidity" (see Figure 13). During the test of a commercial powder, the computer continuously analyzes variations in the shape of the sample and displays the resulting value of the critical temperatures.
\n\t\t\t\tImage sequence showing critical temperatures of a commercial mould powder.
Another technique to determine the critical temperatures of the powders is by analyzing the ash fusibility. The test consists in prepare cones with the test material -mixed with a binder- and place them in a sample holder which is then inserted into the analyzer. Subsequently, the cones are heated to maintain a constant speed. Simultaneously, one sensor monitors the variation of the profile of the cones with temperature. At the end of the trial, the results are presented in form of four characteristic temperatures which are defined according to the morphology adopted by the cone: IT: initial temperature, ST: softening temperature, HT: hemispherical temperature, and FT: fluidity temperature.
\n\t\t\tAs previously mentioned, many of the traditional mould fluxes used in continuous casting contain 4 to 10 wt % of CaF2 in order to adjust their behaviuor according to the requirements of different steel grades casting process. At operation temperatures, harmful gas emissions (SiF4, NaF) are produced and in many cases the gases in contact with water produce HF. These products can cause health problems to workers, affect the environment and they may cause damage to infrastructure of the plant (for example, to cooling system of the mould). Another aspect to consider is that losses of fluorides compounds also affect the chemical composition of the slag and may cause some changes in their behaviuor. For this reason, many researchers are searching substitute compounds for CaF2 that can ensure the quality and behaviour of mould fluxes applied to slabs and long products casting [37-40].
\n\t\t\t\tDifferential thermal analysis (DTA) and thermogravimetric (TG) data provide information about the kinetics of fluoride evaporation. By this technique, Persson et al. [38] report that the evaporation of these compounds occurs in the temperature range between 1400°C to 1600°C, in which the slags are one homogeneous liquid phase. CaF2 is stable up to 900°C, so any emission occurs at temperatures above it. According to the estimates obtained in our laboratory using software FactSage, the temperature of the gas release during the decomposition of pure CaF2 (at normal conditions) begins at 1153°C. The principal reactions that may occur are showed in Eq. 17 (by contact of fluorite and SiO2 ) and in Eq. 18 (by the combination of CaF2 and water vapor of the slag):
\n\t\t\t\tIt is known that the reaction mechanism involves the diffusion of cations and anions in the liquid slag, reactions of ions promotes the formation of SiF4 (gas) with the consequent generation of bubbles. Finally the bubbles migrate to the liquid-gas interface and SiF4 escapes to the atmosphere. The results of the investigation of Persson et al [38] show that the loss of fluoride depends on the temperature and composition of the slag, increasing at higher contents of SiO2.
\n\t\t\tIt is important to consider the role of CaF2 in mould fluxes. One major objective of incorporating such a compound is to decrease the viscosity, the melting temperature and to control cuspidine precipitation during cooling. The latter effect is especially important in the processing of slabs where heat extraction control has a high incidence on the surface quality of the product.
\n\t\t\t\tIn this chapter, the physical properties of mould fluxes containing fluorine in their composition have been developed. A contribution through a comparative study of fluxes with and without fluoride compounds to evaluate the effect of some oxides or compounds which can be used as substitutes of F is presented.
\n\t\t\t\tThe main oxides considered as potential substitutes for CaF2 are: Na2O, Li2O, B2O3 [37, 40, 41]. Several researchers studied the effects of these compounds on the viscosity and the initial temperature of crystallization Tbr. The effect of CaF2 on the increase of percentage of crystallinity is largely known. However, some researchers suggest that MgO and B2O3 can act in opposite manner [37]. For a better understanding of the effects that the new possible oxides additions can have on the behaviour of mould fluxes, a comparison of the obtained results on the behaviour of fluxes with and without CaF2 in relation with viscosity, fluidity and crystallinity, is detailed.
\n\t\t\t\tIn order to determine the effect on: viscosity, fluidity and melting behaviour of the mentioned oxides, different samples of fluxes were prepared in the laboratory for experimental tests: A (10% F), B (6% B2O3 and 4% Li2O), C (10% B2O3) and D (6% B2O3), which simulate the behaviuor of one commercial mould flux identified as PC that contains 10% F. Powder PC is commonly applied in the slab casting. In Table 2, the chemical composition of the samples is presented.
\n\t\t\t\t\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t|||||
SiO2\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t37.1 | \n\t\t\t\t\t\t\t33.2 | \n\t\t\t\t\t\t\t36.6 | \n\t\t\t\t\t\t\t34.6 | \n\t\t\t\t\t\t\t36.3 | \n\t\t\t\t\t\t
Al2O3\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t5.4 | \n\t\t\t\t\t\t\t4.7 | \n\t\t\t\t\t\t\t5.1 | \n\t\t\t\t\t\t\t5 | \n\t\t\t\t\t\t\t5.1 | \n\t\t\t\t\t\t
B2O3\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t- | \n\t\t\t\t\t\t\t5.8 | \n\t\t\t\t\t\t\t9.8 | \n\t\t\t\t\t\t\t5.8 | \n\t\t\t\t\t\t\t- | \n\t\t\t\t\t\t
CaO | \n\t\t\t\t\t\t\t30.6 | \n\t\t\t\t\t\t\t28.6 | \n\t\t\t\t\t\t\t31.2 | \n\t\t\t\t\t\t\t29.6 | \n\t\t\t\t\t\t\t30.9 | \n\t\t\t\t\t\t
Na2O | \n\t\t\t\t\t\t\t12.6 | \n\t\t\t\t\t\t\t18.6 | \n\t\t\t\t\t\t\t12.3 | \n\t\t\t\t\t\t\t19.6 | \n\t\t\t\t\t\t\t12.7 | \n\t\t\t\t\t\t
K2O | \n\t\t\t\t\t\t\t0.1 | \n\t\t\t\t\t\t\t0.1 | \n\t\t\t\t\t\t\t0.1 | \n\t\t\t\t\t\t\t0.1 | \n\t\t\t\t\t\t\t0.7 | \n\t\t\t\t\t\t
MgO | \n\t\t\t\t\t\t\t1.3 | \n\t\t\t\t\t\t\t1.4 | \n\t\t\t\t\t\t\t1.3 | \n\t\t\t\t\t\t\t1.4 | \n\t\t\t\t\t\t\t2.1 | \n\t\t\t\t\t\t
F | \n\t\t\t\t\t\t\t9.5 | \n\t\t\t\t\t\t\t- | \n\t\t\t\t\t\t\t- | \n\t\t\t\t\t\t\t- | \n\t\t\t\t\t\t\t10.5 | \n\t\t\t\t\t\t
Li2O | \n\t\t\t\t\t\t\t- | \n\t\t\t\t\t\t\t3.9 | \n\t\t\t\t\t\t\t- | \n\t\t\t\t\t\t\t- | \n\t\t\t\t\t\t\t- | \n\t\t\t\t\t\t
MnO | \n\t\t\t\t\t\t\t- | \n\t\t\t\t\t\t\t- | \n\t\t\t\t\t\t\t- | \n\t\t\t\t\t\t\t- | \n\t\t\t\t\t\t\t0.1 | \n\t\t\t\t\t\t
Fe2O3\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t3.4 | \n\t\t\t\t\t\t\t3.7 | \n\t\t\t\t\t\t\t3.6 | \n\t\t\t\t\t\t\t3.9 | \n\t\t\t\t\t\t\t1.6 | \n\t\t\t\t\t\t
IB | \n\t\t\t\t\t\t\t0.82 | \n\t\t\t\t\t\t\t0.86 | \n\t\t\t\t\t\t\t0.85 | \n\t\t\t\t\t\t\t0.86 | \n\t\t\t\t\t\t\t0.85 | \n\t\t\t\t\t\t
Chemical composition (in wt %)of the samples with and without CaF2.
The importance of ensuring good lubrication to avoid sticking problems has been previously mentioned. It is known that this leads to require adequate viscosity of the mould flux during operation. For this reason, we analyze the comparative results obtained using the Riboud model to estimate viscosity values and their correlation with temperature (Figure 14).
\n\t\t\t\tCorrelation between viscosity and temperature of samples A, B, C, D and PC.
As it is observed the viscosities of the samples with (6% and 10% de B2O3) are the highest. Sample B that has 6% of the oxide is closest to the behaviour of commercial flux PC. It is noticeable that the addition of 4% Li2O in sample B together with 6% B2O3, adjusts more precisely the viscosity behaviour with respect to PC flux. Higher contents than 6% of Li2O cause a drastic decrease of viscosity and fluidity.
\n\t\t\t\tThis suggests that the oxides considered in this study allow us to manipulate and adjust the viscosity of the mould fluxes to the required values for the processing of medium and low carbon steels. Furthermore, it is also possible to think in compensating a decrease of CaF2 with a Na2O increment in order to adjust the viscosity. In all samples, basicity values are around 0.85 such as PC.
\n\t\t\t\tThe fluidity information obtained by the inclined plane test developed by Mills through the length of the layer (Lc) is consistent with the viscosity results reported in this chapter (Figure 15). The highest content of Na2O in sample D, permits to justify the lowest fluidity obtained. Tandon et al. [42] studied the influence of high contents of Na2O on the type of B-O bonds. The low oxide content promotes planar bonds and constitutes BO3 but higher contents form stronger and tetrahedral bonds of BO4.
\n\t\t\t\tAs it is visualized, sample B (6% B2O3 and 4% Li2O) is the one which presents a flow behaviour closer to the PC of reference. Samples with contents of 6% and 10% of B2O3 show a low fluidity because of their higher viscosity.
\n\t\t\t\tFluidity behaviour of samples A, B, C, D and PC obtained by inclined plane test.
\n\t\t\t\t\t
The effect of the studied oxides on the melting behaviour of mould fluxes was also determined. In this case microscopy tests at high temperature (HSM) are carried out on all samples to determine the softening temperature (Ts), hemisphere temperature (Th) and fluidity temperature (Tf). Figure 16 shows the results of the comparison between all the samples. Sample B (6% B2O3 and 4% Li2O), is the one which presents the lowest critical temperatures.
\n\t\t\t\tMelting behaviour of the samples PC, A, B, C and D.
Similar studies have been performed on mould fluxes applied in the processing of long products. In this application, mould fluxes are characterized by higher viscosities (2 to 3 Poise).
\n\t\t\t\t\n\t\t\t\t\t
The heat extraction in the mould can be controlled by the crystalline proportion generated in the film of mould flux during the cooling stage. For this reason it is relevant to know the temperature at which the crystallization process begins (break temperature, Tbr). Also, it is necessary to increase the knowledge of the crystallization mechanisms and tendency of mould fluxes at interest conditions.
\n\t\t\t\tThe break temperature of the samples revealed that sample B (with 6% B2O3 and 4% Li2O) presents a Tbr = 1071°C and sample D (with 6% B2O3) a Tbr = 1066°C. Both present a good agreement with PC sample in which Tbr = 1064°C.
\n\t\t\t\tIn the case of mould fluxes that are applied to long products casting, it is difficult to identify a clear change to verify the beginning of crystallization process because they are characterized by a high viscosity and a vitreous slag generation (or a supercooled liquid).
\n\t\t\t\tTo evaluate the crystallization mechanisms of the samples, they were melted at 1300°C and then cooled drastically. These samples were identified as quenched (AQ). Then some of them were heat treated at different temperatures between 600°C and 870°C. All the samples were prepared for the microscopy study by light and electron scanning microscopy. Also, parts of the samples were ground to be analyzed by X-Ray Diffraction (XRD) and DTA.
\n\t\t\t\tThe XRD results in PC at different temperatures show the evolution of the structure from a vitreous state to a crystalline one. The AQ sample is completely glassy. Nevertheless, samples treated at from 600°C produce a pronounced crystallization. In Figure 17a it is possible to observe the evolution of the crystal phases between 600°C and 850°C. By DTA, it was possible to identify the crystallization peaks of cuspidine (3 CaO.2SiO2.CaF2) present at all temperatures from 610°C, nepheline (Al4Ca0 K0.8Na2Si4016) at 729°C and villiaumite (NaF) at 854°C (Figure 17b).
\n\t\t\t\tSamples B and D, with (6% B2O3 and 4% Li2O) and (6% B2O3) respectively, present different temperatures of crystallization. Sample B starts the crystallization at 610°C and sample D at 670°C. In Figure 18a, it is possible to observe the crystallization peaks of samples B and D and also the evolution of the crystallization peaks determined by DTA curves. It is found that the main phase in both cases is combeite (Na2Ca2Si3O9). In sample D the combeite crystallization peak is at 670°C and in sample B is at 610°C. The lower temperature in the crystallization peak of sample B could be due to the presence of Li2O.
\n\t\t\t\tCrystallization evolution with temperature of sample PC: (a) XRD and (b) DTA.
Crystallization evolution with temperature of samples B and D (a) XRD, (b) DTA.
Microscopy observations of all the samples permit to corroborate the information obtained by X ray diffraction and DTA curves. The crystallization mechanism begins at the surface of the samples where columnar crystals are developed. In samples PC and A crystals are constituted by cuspidine phase and in samples B and D by combeite phase. At higher temperatures (> 800°C), nuclei of irregular crystals appear in the inner part of the sample PC (Figure 19).
\n\t\t\t\tMorphology of sample PC at 850°C.
Liquid immiscibility phenomena observed at 610°C in sample B.
Liquid immiscibility phenomena observed at 680°C in sample D.
Samples B and D, present a liquid immiscibility phenomena (supercooled liquid effect), previous to the onset of the crystallization process (Figures 20, 21).
\n\t\t\t\tMorphology of sample B at 870°C.
In spite of liquid immiscibility and phase differences observed, the crystallization mechanism in the sample B at 870°C (Figure 22) is quite similar to sample PC. The presence of immiscible liquids phenomenon can be controlled by the degree of supercooling promoting a more homogeneous crystal nucleation.
\n\t\t\tThe authors acknowledge the financial support of the Universidad Tecnológica Nacional (Argentina) and Ternium Siderar SAIC to promote the research in steel continuous casting process.
\n\t\tThe increase in human activities triggers environmental pollution through the generation and disposal of hazardous wastes in aquatic and terrestrial habitats [1]. Most of these pollutants include inorganic (heavy metals) and organic matter (polyaromatic hydrocarbons (PAH), petroleum hydrocarbons compounds (PHC)) which may cause negative effects on the ecosystem and possibly react with other abiotic factors that attribute to the effect on the structural arrangement of terrestrial and aquatic habitats [2].
In terms of the environment and ecology system, the proper and safe disposal of these hazardous wastes is a key priority for a sustainable ecosystem. This involves the use of various treatment procedures to clean up hazardous waste. For detoxifying heavy metals, radionuclide and organic polluted soils, physicochemical techniques such as filtration, precipitation, electrochemical treatment, soil washing and chelating, oxidation/reduction, ion exchange, reverse osmosis, and stabilization/solidification have been employed. These environmental clean-up procedures have various disadvantages, including inefficiency, the need for a large number of chemical reagents, energy, and high cost, as well as the formation of secondary by-products [3].
Bioremediation is a cost-effective and environmentally tolerable technology that employs a biological process to reduce environmental risks caused by toxic substances and other hazardous pollutants. To treat polluted multiphase systems and sustain the native ecosystem, a combination of bioremediation techniques will be effective. The fundamental premise of bioremediation is to reduce contaminant solubility by adjusting pH, modifying redox processes, and adsorbing toxic substances from polluted sites [3]. Environmental remediation always requires human assistance to achieve effective remediation of contaminants and restoration of ecological balance. However, remediation can be destructive to the ecosystem [4], if the application is not properly addressed to meet the eco-friendly standard required to combat the contemporary issues of pollution [4, 5]. Most small-scale applications of bioremediation approaches using bioremediation agents such as bacteria, fungi, plants, and organic materials have been successful with variation in results, although bioremediation on a large scale has not been widely validated [4]. This chapter aims to propose a cost-effective and eco-friendly bioremediation strategies that could reduce or remove contaminants from the environment and thus stabilizing the ecosystem from heavy metal pollution and oil spills.
There are a lot of different physical, chemical, and biological processes commonly termed bioattenuation, which make pollutants smaller in terms of their size and toxicity as well as how much of them there are. Some examples of these processes are sorption, volatilization, chemical or biological stabilization, and the transformation of contaminants. This entails removing pollutant concentrations from the surrounding through biological methods or perhaps incorporating (oxic and anoxic biodegradation, plant and animal sorption), physical occurrences (changes in weather conditions, dispersion, dilution, diffusion, volatilization, sorption/desorption), and chemical reactions (ion exchange, complexation, abiotic change) [6, 7, 8]. For instance, natural biodegradation and biotransformation are incorporated within the broader notion of common restriction [9, 10]. At the point when the site is contaminated with chemicals, the environment acts in 4 different approaches to facilitate remediation [11]:
Microbes or microorganisms living in soil and groundwater may consume just a small number of chemical or manmade chemicals available as dietary nutrients. When they have completely digested the chemical, they can convert it to water and non-toxic gases.
Chemical compounds can stick to or sorb to the soil, which prevents them from contaminating groundwater or escaping the location.
As contamination travels through soil and groundwater, it can blend in with clean water. This diminishes or weakens the contamination.
Certain chemicals, such as oil and solvents, can disappear, hence, they can transform from liquids to gases within the soil or groundwater. As a result, if these gases reach the earth surface via the air, they may be pulverized by sunlight.
Additionally, if natural attenuation is insufficiently rapid or complete, bioremediation will be accelerated or augmented via biostimulation, bioaugmentation, bioventing, or biopile [11, 12].
This bioremediation approach invigorates the activity of native microbes by adjusting the environmental parameters or the introduction of nutrients [11, 13]. This is carried out with the incentive of natural or normally prevailing parasites or microbial communities [7, 11, 13]. Successive steps involve providing manures, development enhancements and minor elements. Also, by giving other natural prerequisites including pH, temperature and oxygen to enhance their digestion rate and degradation pathway [10, 12]. Similarly, the presence of pollutants even in small quantities can act as a stimulant by spinning for bioremediation proteins. Typically, this type of deterioration is followed by the provision of organic or inorganic nutrients and oxygen to promote the metabolism of native microbes for effective remediation [6]. These nutrients are the fundamental building blocks of life, enabling microorganisms to synthesize vital components such as enzymes, energy, and cell biomass required to degrade the toxin [6, 14]. However, nitrogen, phosphorous and carbon are significantly required to enhance metabolism.
This procedure entails sequentially adding contaminant-degrading microbes (inherent/non-native/genetically modified) to improve the biodegradative efficiency of the native microbial community in the polluted site [8, 11]. Thus, to rapidly grow the natural microbial population and accelerate breakdown at the pollutant’s location. Microorganisms that predominate in polluted sites on a global scale, may surely change significant amounts of harmful substances into non-poisonous structures. This process converts pollutants to by-products like carbon (IV) oxide and water, as well as metabolic intermediates that serve as critical nutrients for cell development [15, 16]. Microorganisms can also be isolated from the remediation environment, cultured autonomously, genetically engineered, and then reintroduced to the site [8, 11]. For persuade, all basic microbes are prevalent in locales where soil and groundwater are polluted with chlorinated ethenes, for example, tetrachloroethylene and trichloroethylene [7, 8, 11]. These are employed to facilitate the effective removal and conversion of these pollutants to non-poisonous ethylene and chloride by in situ microbes [10].
Additionally, genetically modified microbes have been shown to degrade a broad range of environmental contaminants effectively. Since the metabolic pathway can be altered to produce less puzzling and harmless end products [8, 17]. Genetically engineered microorganisms (GEM) have shown viability in bioremediation of soil, groundwater and activated sludge, proving effective degradation abilities of extensive integration of chemical and physical contaminations. GEMs have better enzyme abilities, which makes them better at breaking down a wide spectrum of aromatic hydrocarbons and making the soil more fertile [14, 18]. There are several types of hydrocarbon-degrading microorganisms that include the genera
It is the practice of venting oxygen through the soil to encourage the development of natural or injected microbes and fungus in the soil by supplying oxygen to the soil microbes, which has been termed as bioventing [8, 11, 14]. The use of low air flowrates to supply sufficient oxygen to sustain microbial movement has long been a typical practice in aerobic degradation of substances, and it has been for many years. For example, several scientists have demonstrated that bioremediation of oil-contaminated soil utilizing bioventing may be achieved with reasonable success [19]. Consequently, petroleum residuals and their by-products are biodegraded, and volatile organic compounds, when destroyed, release vapors that slowly permeate through the biologically dynamic soil environment.
Biopile, also known as biocells, bioheaps, biomounds and composts piles are employed to minimize the toxicity of total petroleum hydrocarbon constituents via microbial respiration. Biopiles are an ex-situ bioremediation technology that consists of piling polluted soil onto a compost pile (biopiles) or cells (biocells) or mounds (biomounds) or heaps (bioheap) and stimulating oxic metabolism in the soil via aeration or introduction of minerals or nutrients, bulking agents, and subsequently confining it in a treatment bed with polyethylene material to avoid evaporation, surface runoff, and volatile emissions. Biopiles treatments can transform pollutants into low-toxic by-products through biological processes by utilizing already existing microorganisms to breakdown fuels and oils into carbon dioxide and water.
The biopile technology is made up of commercial roll-off dumpsters or containers that have been turned into fully contained bioremediation units. The biopile units have an impermeable liner to decrease the possibility of leachate movement to the subsurface ecosystem. Excavated soils are combined with soil additives and placed on a treatment area with leachate collecting devices and some type of aeration to maximize and regulate the rate of biodegradation. Air is introduced to the biopile mechanism of piping and pumps, which either power air into the heap under a specific tension or draw air through the heap under a negative tension [8, 20]. Microbial movement, for instance, can boost the adsorption and degradability of petroleum pollutants during funneling and siphoning operations. Biopiles, such as biocells, bioheaps, biomounds, and compost, might alleviate public concern about excavated soil contaminated by vigorously remediable hydrocarbons [8, 13, 19].
Utilizing plants for bioremediation is highly dependent on their ability to break down certain pollutants [21, 22, 23, 24]. Phytoremediation is the process of utilizing plants to degrade, eliminate, or convert contaminants to less hazardous chemicals [25]. Even though plants have been used for soil purification for centuries, scientists have contributed to its advancement and expanded its scope of application throughout the years [7, 11, 13, 14, 17, 18]. This involves the removal of metals, pesticides, solvents, explosives, and raw petroleum, as well as a variety of other pollutants from soils, water (surface and subsurface), and vaporous contaminants [7, 11, 14]. When the plants have accumulated enough toxins, they are harvested and disposed of. Figure 1 shows a graphical presentation of different types of phytoremediation as each mechanism is explained as follows:
Phytostabilization: this entails using plants to minimize soil erosion, so immobilizing contaminants by limiting their movement and accessibility in the soil via the plant roots. Additionally, it prevents metals from moving to the soil or the surface of underground water.
Phytovolatilization: this involves the use of plants to minimize soil erosion, so immobilizing contaminants by limiting their movement and accessibility in the soil via the plant roots. Additionally, it prevents metals from moving to the soil or the surface of underground water.
Phytodegradation: this process includes the degradation or modification of pollutants in the plant tissue by enzymes.
Phytoextraction: this approach involved the extraction of contaminants from the soil and their accumulation in the shoots. Upon that, these plants’ leaves are gathered, burned for energy, and the metals retrieved from the ash are regenerated.
Phytofiltration or rhizofiltration use roots to accumulate and sequester contaminants from polluted water.
Phytostimulation or rhizodegradation: plant roots are employed to digest organic pollutants in the rhizosphere environment and through microbial activity.
Schematic presentation of phytoremediation process (adapted from [
This is when two or more bioremediation methods work together to remove contaminants from the environment. This kind of bioremediation technique can be effectively applied in a multi-contaminated environment. The combinative strategy most likely to be suitable and effective in boosting bioremediation of bauxite residue is a combination of bioaugmentation (incorporation of inocula) [8, 11] and biostimulation (introduction of nutrients to enhance the activity of microorganisms) of the indigenous community in bauxite residue [11, 13].
In this scenario, for instance, biostimulation using organic or inorganic compounds can be applied as the first or basic treatment while bioventing or bioaugmentation using engineered microbes can be applied subsequently as a secondary or tertiary treatment to facilitate the removal or degradation of recalcitrant compounds. Combinations of bioaugmentation and biostimulation have also proven effective, albeit they do not always show significant improvements over bioaugmentation alone. Given the nearly consistent advancement seen with bioaugmentation technology, it is anticipated that bioaugmentation will improve on the outcomes obtained so far with biostimulation for bauxite waste cleanup (provided an appropriate choice of the microbes and adequate trials are prioritized). Based on the simplicity of obtaining and introducing the inoculum, the most suited approach for future research and field trials is combinative bioremediation using biostimulation and bioaugmentation technology.
Several bioremediation mechanisms for reducing or oxidizing contaminants have been discovered over time, such as adsorption, physio-biochemical (biosorption and bioaccumulation) bioleaching, biotransformation, biomineralization, and molecular mechanisms [7, 11].
Environmental pollutants (both organic and inorganic) can be absorbed by microorganisms at specific sites in their cell structure that do not require the dissipation of energy. There are many various kinds of chemicals connected with bacterial cell walls, but their extracellular polymeric substances (EPS) are of particular importance since they have been shown to have significant effects on corrosive base characteristics and metal adsorption [10, 26]. Several studies on the metal binding behavior of EPS have revealed that it has a remarkable capacity to absorb complex metals by a variety of processes that combine ion exchange and micro-precipitation of metals [10, 13]. Bioremediation research and application are still limited in the present scenario due to a lack of understanding of the genetic traits and genome-level properties of the organisms used in metal adsorption, the metabolic route, and the kinetics of metal adsorption [7].
In microscopic organisms, inhibition is advanced through two mechanisms: detoxifying (changing the detrimental metal’s state and rendering it inaccessible) and dynamic efflux (siphoning poisonous heavy metals from cells) [7, 9]. In wastewater or soil, the fundamental redox (oxidation and reduction) reaction occurs between hazardous metals and microorganisms. Additionally, microbes oxidize heavy metals, causing them to lose electrons, which are recognized by active electron acceptors (nitrate, sulphate and ferric oxides) [26]. Additionally, the biosorption process, which consists of a biosorbent’s increased affinity for sorbate (metal ions), is repeated till a balance between the two components is established [18, 26]. For instance,
Bioaccumulation is a term referring to the combination of active and passive techniques of hazardous metal bioremediation. Additionally, bioremediation may entail aerobic or anaerobic microbial activity [10, 12, 13]. Aerobic degradation frequently involves the addition of oxygen atoms to the reactions via monooxygenases, dioxygenases, hydroxylases, oxidative dehalogenases, or chemically active oxygen molecules produced via catalysts including ligninases or peroxidases [10, 11, 12, 13]. Anaerobic contaminant corruptions comprise initial enactment reactions followed by oxidative degradation with the assistance of anaerobic electron acceptors. The act of Immobilization refers to the process of reducing the activation of significant metals in a polluted environment by modifying their physical or synthetic state [7, 12]. Microbes muster metals from polluted sites through leaching, filtering, chelation, methylation and redox transformation of harmful metals [12, 17]. Since significant metals cannot be entirely eliminated, the cycle modifies their oxidation state or organic complex to make them more soluble, less poisonous and precipitated [9, 14].
In bioleaching, naturally occurring microorganisms such as bacteria and fungi solubilize metal sulphides and oxides from ores and secondary wastes. Adsorption, ion exchange, membrane separation, and selective precipitation are some of the processes used to purify solubilized metals. It is a cost-effective and environmentally beneficial technique because it consumes less energy and produces no hazardous gases. It has been applied to leach metals from low-grade ores, and it now provides a substantial global business in the extraction of metals like copper, cobalt, gold, nickel, uranium, zinc, and other elements [27].
This is the procedure for altering the structure of a chemical substance to produce a molecule with higher polarity. Moreover, this metal-microbe interaction process converts hazardous metal and organic chemicals into a less poisonous form. This mechanism has emerged in microorganisms to assist them in adjusting to variations in their surroundings. Bacterial cells have a significant surface-volume ratio, a rapid pace of proliferation, a rapid rate of metabolic activities, and are easy to keep sterile [27]. As a result, they are perfect for biotransformation. Various methods, such as condensing and hydrolyses, forming new carbon bonds, isomerization, inserting functional groups, and oxidation, reduction, and methylation, can be used to attain this objective. Metals may be volatized, reducing their lethal nature, as a result of these interactions.
Biomineralization refers to the mechanisms by which microbes produce minerals, and it can lead to metal extraction from solution, which can be used for decontamination and biorecovery. Dead biota and related products may also serve as a model for mineral deposition, with physicochemical parameters determining whether the process is reversible or not. There are several prevalent microbe-precipitated biominerals with unique chemical features such as high metal sorption capacities and redox catalysis. However, some biominerals can be deposited at nanoscale dimensions, resulting in additional physical, chemical, and biological features that can be used in practical applications [28].
Different components of genetically altered bacteria, such as Deinococcus geothemalis, are active in the removal of heavy metals [9, 14, 18]. Hg2+ reduction has been recorded at high temperatures as a result of the expression of meroperon from
The promising bioremediation technique involves the application of bioturbators. Bioturbation is made up of a series of processes triggered by microbenthic fauna that influences sediment physicochemical characteristics and affects the microbial population which partake in the distribution of nutrients [29]. Bioturbation involves a series of activities such as the reworking of particles, bioirrigation, and other benthic biota related behaviors (i.e. nutrition mode and grazing by animals and organisms) that were responsible for transportation and distribution of porewater and particles along the water-sediments interface [30]. The distribution of dissolved contaminants can be a reworking of sediments by bioturbators through facilitating transportation and biomixing efficiency from overlying water and porewater to deep layers of the sediment [31, 32, 33].
The term “bioturbation” relates to the procedure of completely transforming dangerous hazardous substances into harmless or naturally occurring chemicals. Bioturbation can be done in situ (for example, in field conditions) or ex-situ (for instance, in a microcosm or under controlled conditions). Both scenarios entail the utilization of plants, parasites/fungi, and microorganisms as bioremediators for the biodegradation of toxic pollutants, even though individualized end product may be a different component [34, 35, 36]. Thus, complete breakdown of the contaminants by the bioremediators directly or indirectly may influence the residue structure [34, 37]. Figure 2 presents significant types of contaminant improvement approaches by bioturbators (benthic fauna) in the contaminated environment to facilitate residue treatment.
Schematic representation of bioturbators activities in sediments (i) biodiffusors, (ii) upward conveyors, (iii) downward conveyors, and (iv) regenerators.
Biodiffusors: this is performed through microorganisms’ activities, which often result in the biomixing of uniform and irregular sediments over short separations, resulting in particle interchangeability via molecular diffusion.
Upward conveyors: these are organisms that live vertically head-down in the sediments. They transfer particles from the residue’s deep horizons to its surface. Gravity then returns the particles to the base under the influence of feces pellet agglomeration at the sediment surface.
Downward conveyors: these are head-up feeders that actively pick and consume particles near the surface, as well as discharge in deeper residual layers.
Regenerators: these microorganisms dive into the leftovers and constantly maintain burrows, so transferring dirt from depth to the surface.
The role and effectiveness of bioturbators in bioremediation is dependent on several conditions, such as the chemical type and quantities of contaminants, the physicochemical properties of the environment, and their accessibility to microbes [38]. Bioturbators are responsible for vital changes in the biological and physicochemical aspects of soils and water [38, 39]. Additionally, aerobic bioturbation can increase benthic digestion and supplement components by stimulating oxygen-consuming bacterial networks that are concerned with pollutant mitigation [8, 11]. In other words, bioturbators are well-suited for a dual-purpose mechanism, namely the production of degradative enzymes for specific contaminants and resistance or protection from significant relative dangerous substances such as heavy metals [15, 38, 39]. Controlling and simplifying bioremediation procedures is a difficult process due to a large number of components including the presence of a microbial community with the ability to detoxify pollutants, the contaminants’ accessibility to the microbial community, and abiotic conditions (soil type, temperature, pH, oxygen or other electron acceptors, and substrates) [6, 16, 39].
Bioturbation influences the sediment-water interface’s biological, physical, and chemical properties which accounts for the high rate of mineralization of organic matter in the aquatic environment [40]. This operation changes the sediment column distribution of the contaminants [41]. Bioturbation and biotransport can affect the physicochemical characteristics of sediments and sediment pollutants [42, 43, 44]. Bioturbation controls the organic matter and nutrient digestion enhances pollutant mobility and transformation [45, 46, 47, 48]. The biosorption of organic contaminants into the organic matter during bioremediation reduces its bioavailability for plants (phytoremediation) or degrading organisms (bioaugmentation) [49]. Atrazine removal from sediments is promoted and positively influenced by the adjustment of organic matter and earthworm bioturbation activities, which increases contaminant bioavailability and atrazine sorption rate on their microsites [46, 50]. Previous studies reported positive contributions of earthworm bioturbation to organic pollutant transformation and biodegradation [51, 52] by modifying pore size and metabolism of degrading bacteria groups or accelerating mineralization in bioaugmented soils [50].
Moreover, several studies showed that bioturbation alters the physicochemical characteristics of the water-sediment boundary which promotes the bioavailability of inorganic pollutants to degrading organisms. This is achieved through the modification of sediment particle sizes, pore spaces, moisture content, nutrient content, turbidity, and total organic carbon of the vadose water-sediment [41, 43, 53]. Also, the bioturbation of benthic invertebrates through the mixing of sediments in the underground zone enhanced the electron acceptors (oxygen, nitrate and sulphate) entrance into the vadose zone which triggers geochemical changes that influence metal behavior [54]. The presence of these electron acceptors in the unsaturated zone can activate the RedOx reaction to change the chelating of metals affinities between liquid and solid phases to enhance the quantitative distribution and bioavailability of metal in the sediment [55]. The changes created by the bioturbation-attributed redox potentials, pH, organic content, pore spaces can affect metal sorption capacity and improve metal conversion from one phase to another e.g. Cd, Zn [56, 57, 58].
The activities of bioturbators are affected by some factors which modulate the rate of bioturbation for effective remediation of polluted environments. These factors include the variation in salinity, temperature, density, sediment grain size pH, and concentration.
Variation in salinities in the aquatic environment can influence the metabolism of nutrient and metal releases [59, 60], whether naturally and/or through human-related activities. Remaili et al. [61] noted that hypersalinity has a negative effect on the larger bioturbators which affects the activities of benthic organisms. Gonzalez et al. [62] study found that the salinity levels and tolerance of various bioturbators are distinct. The findings however suggest that ammonia release in the aquatic environment is significantly modified due to the effect of modulating conditions and distinguished by a higher salinity than other nutrients such as phosphorus [62, 63].
Regional variability in temperature is also a crucial factor that regulates the impact of bioturbation in pollutant remediation. In microbial response, metabolism, and degradation of organic matter and metals, temperatures played a fair modulatory function [64]. In the presence of bioturbation activities, the rise in temperatures increases the production of ammonium from the sediment, possibly due to the high level of hydrogenase in microbial species and the increased aerobic conditions in the sediment [64, 65]. Gonzalez et al. [62] reported that an increase in temperature is indirectly proportional to the nutrient dispersion as high temperature decreases nutrient flux (phosphorus) in the sediment but extreme temperatures may be devastating to the microbes. However, an increase in temperature corresponds to the increased rate of metal resuspension and metal solubility as a result of higher bioturbation rates [66, 67].
The bioturbator density influences bioturbation, control bioturbation efficiency for contaminant remediation, which correlates with the increased aerobic microbial activity and emission of pollutants. The increased bioturbation density increased phosphorus release and induced aerobic microbial activity but did not increase the release of ammonia. Animal density is a highly imperative factor, as study reveals that higher densities contribute toward greater degradation and mineralization of organic matter but may also increase nutrients in the overlying water and can, depending on the ecosystem studied, have counterproductive effects on recovery [66]. In response to pollution, the population of certain benthic species such as polychaetes [68] may increase as several systems are deprived of the use of other larger bioturbators.
Another element that influences the high level of organic matter and metals accumulation and the structure and metabolism of microbial communities and their metabolism is the sediment grain size [69, 70]. A recent study also shows a positive association between ammonia, phosphorus release, and aerobic microbial activity for the sediment grain size as Martinez-Garcia et al. [70] noted that the grain size showed less effect at low organic enrichments, but instead, at higher enrichments, coarse sediments contain less organic matter and nutrients while metabolism rate is enhanced. The contaminant bioavailability assessment can be affected by the susceptibility, grain size and behavior of microbes used in bioassays or observed on the ground, and the interaction between various species and microbial populations in highly polluted sediments depauperated by larger invertebrates [1, 71].
The concentration of organic or inorganic contaminants is another factor that regulates the activities of the benthic organisms [72] which tend to either reduce or hinder the activities of the benthic organism at a high concentration, beyond the tolerable limit, which can result in the death of these organisms at extreme condition due to toxicity [5]. Benthic organisms have varying tolerance limits for sediment contaminations and tend to possess special features or activities (such as bioaccumulation or biosorption) to enable them to adapt and function effectively in high pollutant concentrations. For metal remediation, abiotic factor-like pH which works closely with concentration may be a crucial modulating variable that determines the impact of bioturbation in the marine environment which can alter metal speciation and reactivity [66].
Therefore, sediment properties like particle size and concentration as well as contaminant shape (sulphides or organic carbon) can affect the bioavailability of the contaminant. Also, in most environments, temperature and type of organism activity or population density can increase or decrease contaminant exposure or bioavailability for bioremediation [61, 73, 74, 75].
Notwithstanding the benefits (such as environmental friendliness, selectivity, adaptability, self-reproducibility, and the ability to recycle bioproducts) of the bioremediation technique, some setbacks have hindered the successful application of this technology. The delay of the operations and the complexity in managing the procedures are the two most significant disadvantages of this technique of treatment. Since the elimination of significant concentrations of heavy metals is a priority, and that the world has become more aware of the environmental concerns caused by other approaches, microbial procedures offer the most rational and long-term answer for treatment. As previously stated, while a variety of microbial contaminant bioremediation techniques to address contamination have been developed, their extensive use and application on a commercial scale are still restricted by some factors. A further point to mention is that the long-term viability of microbial decontamination is still a subject of significant importance, given the paucity of investigations into its long-term performance. Due to the extremely high accumulation of inorganic contaminants (heavy metals) in heavily inhabited places of the world, updating existing microbial bioremediation technologies to an industrial level by making the procedures quicker, more reusable, and easier to regulate will be a big issue in the future. Furthermore, another limitation of bioremediation is that not all substances are biodegradable while some hydrocarbon components are recalcitrant to microbial breakdown, which restricts the scope of the remediation technique. Even when a material is biodegradable, its downstream operation and breakdown can result in the production of harmful by-products in some situations.
The potential for microorganisms to remediate water and soil pollutants to increase treated water consumption and soil fertility for agricultural output is gaining attention [11, 38]. Recently, research has been conducted to enhance the application of altered organisms delineated specifically to boost their affectability toward hazardous metals [11, 16, 38]. An organism whose genetics have been transformed by the use of synthetic methods, which are driven by an artificial genetic exchange between bacteria, is referred to as a “genetically engineered microorganism [11, 18]. By developing GEM, genetic engineering has enhanced the application and disposal of hazardous wastes in laboratory settings. In addition, the following protocols must be considered during the GEM process: (a) alteration of enzyme selectivity and affinity, (b) pathway development and modulation, (c) bioprocess advancement, surveillance, and control, and (d) bioaffinity bioreporter sensor utilization for chemical detecting, toxicity reduction, and endpoint evaluation [13, 18].
As there are several possibilities for improving degradation performance through genetic engineering approaches, such as genetically controlling the rate kinetics of known metabolic pathways to increase degradation rate, or completely infusing bacterial strains with new metabolic pathways for the degradation of previously recalcitrant compounds [6, 8]. Despite important genes for microorganisms are carried on a single chromosome, defining the specific genes needed for the catabolism of some of these novel substrates may be carried on plasmids [18, 76, 77]. Plasmids were entangled in the catabolism process. As a result, GEM can be successfully used for biodegradation purposes, necessitating immediate research and large-scale deployment. Genetically engineer microbes offer the benefit of developing microbial strains which can tolerate unfriendly upsetting circumstances and can be utilized as a bioremediation tool under different and complicated natural conditions [18, 37, 76, 77]. Additionally, GEM has encouraged the development of “microbial biosensors” capable of precisely quantifying the degree of pollution in a contaminated site.
The current advancement in omics technologies, including genomics, proteomics, transcriptomics, and metabolomics, play a critical role in finding characteristics that optimize remediation solutions [7, 11, 78]. Consequently, phytoremediation was developed, a process for eliminating toxins or their metabolites from plant tissues. This usually shortens the life of the plant and finally volatilizes the toxins into the atmosphere [78]. This disadvantage can be mitigated by managing plants’ metal resistance, accumulation, and breakdown capacity in the presence of various inorganic toxins. To improve metal decomposition in plants, bacterial genes responsible for metal reduction can be integrated into plant tissues. As a result, plant-based bioremediation for a variety of significant metal poisons is cutting-edge due to its eco-friendliness. They are more effective at reducing dangerous substances than Physicochemical approaches, which are less environmentally friendly and potentially detrimental to human health [7, 8].
Notwithstanding, microbial genes can bridle in the transgenic plant for decontamination and collection of inorganic pollutants [7, 11]. The metal-detoxifying chelators, for example, metallothioneins and phytochelatins can give resistance to the plant by upgrading take-up, transport and amassing of different heavy metals [14, 78]. Similarly, transgenic plants with bacterial reductase can augment the volatilization of Hg and Se while absorbing the arsenic in plant shoots [17, 78]. Also, high-biomass-producing plants including poplar, willow and Jatropha can be applied for both phytoremediation and energy generation [7, 14, 26, 78]. Nonetheless, metals can only be removed from soil or water, which is why consuming metal-contaminated plants is advantageous. Thus, metal-accumulating biomasses should be properly preserved or disposed of to avoid posing an environmental hazard [20, 78].
Bioremediation methods include the introduction of growth stimulators (electron acceptors/donors) or nutrients to the rhizosphere to promote microbial growth and bioremediation characteristics of microbes or genetically engineered plants [6, 26, 78]. Multiple small organisms were generated with heavy metals by drainage using synthesized catalysts such as chromate and uranyl reductase in a particular rhizosphere [19, 26, 78]. Although genomics has been studied and applied mostly in microbial genetics and agriculture, such as genetic crops, and now serve as a bioremediation instrument [26, 76]. The application of genomics to bioremediation enables the microorganism to be dissected based on biochemical constraints as well as sub-atomic levels associated with the component [26, 76, 77].
Bioturbation is a very prolific and appealing technology for remediation, cleaning, management, and recovery of environmental contamination caused by microbial activity [11]. Furthermore, phytoremediation is successful at removing both inorganic and organic pollutants from residues or soils [7, 11, 12]. Nonetheless, investigation of resourceful bioremediation approaches for damaged aquatic environments that are based on these two processes to improve wastewater and soil treatment is necessary [10, 17]. Nonetheless, investigation of resourceful bioremediation technologies based on these two processes is important to improve soil and wastewater treatment [11, 17]. In addition, phytoremediation has been generally illustrated as a bioremediation process for heavy metals, such as lead, cadmium, copper, arsenic removal from contaminated soil or water [76, 77]. In essence, aquatic bioturbation combined with phytoremediation is a more effective and alternative method of removing heavy metals by improving cadmium transfers from overlying water to sediment and then into the root system of plants [15, 38].
Additionally, studies have demonstrated that earthworm movement greatly boosted phytoavailability by increasing soil macroporosity and generating cast around plant roots (Figure 3), implying that the physical effect of the earthworm’s bioturbation is a viable mechanism [20, 26]. Interaction between plants and soil-dwelling microorganisms can also enhance phytoremediation known as rhizosphere bioremediation. The study by Leveque et al. [52] to investigate the contribution of earthworm (as bioremediator or bioturbation agent) to phytoremediation showed that earthworms significantly increased the phyto-availability of metal by generating soil macroporosity and developing cast near plant roots in which the main mechanism appears to be the physical impact of earthworm bioturbation. Moore et al. [21], demonstrated the contribution and the effect of bioturbators in the remediation of organic contaminants using the phytoremediation technique. In the study,
Proffered approach to illustrate metal phytoavailability in earthworms’ activities (adapted from [
The use of nanomaterials is extensively gaining attention for components remediation of heavy metals and recovery of valuable via nanotechnology [8, 34]. Conversely, nanobioremediation, which employs nanoparticles to stimulate microbial activity to clear hazardous chemicals from groundwater and soil [14, 17]. Not only can this nanotechnology greatly cut the cost of cleaning contaminated regions, but it also significantly shortens the procedure’s duration. Metal chelating polymers require damaging solvents for mixing and ultrafiltration for division, which can be avoided by inventing metal limiting substances that can be reclaimed by adjusting their pH, temperature, or form, among other parameters [13, 19, 20]. One of the materials is nanoscale modified biopolymers, produced by microorganisms’ intrinsic and protein structure, and whose size can be adjusted at the subatomic level [13]. For instance, polymers and magnetosomes are fabricated proteins for the remediation of infections,
The technique entails using ecological and environmental engineering expertise to create and monitor a sustainable ecosystem or biological system that benefits both humans and the environment. Table 1 and Figure 4 illustrate how to apply ecological engineering in a way that is more beneficial to humanity while maintaining the natural balance. Nevertheless, the majority of these technologies are typically designed with the following objectives in mind: (i) conservation, (ii) ecosystem restoration, (iii) expanding ecological systems to the quantity, quality, and maintainability of their production, and (iv) assembling new ecological systems that would provide routine types of assistance [16, 39, 76, 77, 80].
Ecological-engineering approaches | Terrestrial examples | Aquatic examples |
---|---|---|
Using ecosystems to solve a pollution problem | Phytoremediation | Wastewater wetland |
Imitating or copying ecosystems to reduce or solve a problem | Forest restoration | Replacement wetland |
Recovering an ecosystem after significant disturbance | Mine land restoration | Lake restoration |
Existing ecosystems are modified in an ecologically sound way | Selective timber harvest | Biomanipulation |
Using ecosystems for benefit without destroying the ecological balance | Sustainable agroecosystems | Multi-species aquaculture |
Application of ecological engineering approach for terrestrial and aquatic systems.
Graphical representation of ecological engineering application to balance the ecosystem.
Bioremediation is a cutting-edge and promising approach for treating contaminated soil and water. Microorganisms are also known to generate and use a variety of detoxification methods, including biosorption, bioaccumulation, biotransformation, and biomineralization for the remediation of the contaminated site during the bioremediation process. However, recent bioremediation research, such as bioturbation, which uses live organisms (macrofauna) directly or indirectly with the environment to eliminate toxins, is gaining momentum. The use of organisms to detoxify and recover polluted soil and water has emerged as the most robust, straightforward, and profitable technique. Microorganisms in water and soil have been studied and equipped to eliminate or detoxify harmful compounds discharged into the ecosystem due to anthropogenic processes such as mineral mining, oil and gas production, pesticides, pigments, plastic, organic solvents, fuel, and industrial operations. Nevertheless, a lack of data on microorganisms’ cell reactivity to minor components and heavy metal poisons precludes their successful implementation. As such, the application of molecular genetic technology will enhance the efficiency and address most of the challenges in the large scale application of bioremediation technology.
Customer Satisfaction is of paramount importance at IntechOpen and we take all complaints very seriously. Our Authors, their institutions, and other purchasers, if dissatisfied with the service provided, or the product purchased, can file a written complaint to IntechOpen, 5 Princes Gate Court, London, SW7 2QJ, UK or via the following e-mail address: info@intechopen.com.
',metaTitle:"Customer Complaints",metaDescription:"Our authors, their institutions and other purchasers, if unsatisfied with the service provided or the product purchased, can file a written complaint at IN TECH d.o.o offices at Janeza Trdine 9, 51000 Rijeka, Croatia, or via the following e-mail address: info@intechopen.com.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\\n\\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\\n\\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\\n\\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\\n\\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\n\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\n\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\n\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\n\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6655},{group:"region",caption:"Middle and South America",value:2,count:5946},{group:"region",caption:"Africa",value:3,count:2452},{group:"region",caption:"Asia",value:4,count:12678},{group:"region",caption:"Australia and Oceania",value:5,count:1014},{group:"region",caption:"Europe",value:6,count:17699}],offset:12,limit:12,total:133952},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"16,19,25"},books:[{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11576",title:"Malaria - Recent Advances, and New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"5a01644fb0b4ce24c2f947913d154abe",slug:null,bookSignature:"Prof. Pier Paolo Piccaluga",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",editedByType:null,editors:[{id:"76041",title:"Prof.",name:"Pier Paolo",surname:"Piccaluga",slug:"pier-paolo-piccaluga",fullName:"Pier Paolo Piccaluga"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11596",title:"Liver Cancer - Genesis, Progression and Metastasis",subtitle:null,isOpenForSubmission:!0,hash:"e3cb7992178195f360d05f905f7f33d4",slug:null,bookSignature:"Prof. Mark Feitelson and Dr. Alla Arzumanyan",coverURL:"https://cdn.intechopen.com/books/images_new/11596.jpg",editedByType:null,editors:[{id:"252092",title:"Prof.",name:"Mark",surname:"Feitelson",slug:"mark-feitelson",fullName:"Mark Feitelson"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11731",title:"Nephrolithiasis - From Bench to Bedside",subtitle:null,isOpenForSubmission:!0,hash:"2ea5ea58b6f360fd378153fe35413100",slug:null,bookSignature:"Prof. M Hammad Ather",coverURL:"https://cdn.intechopen.com/books/images_new/11731.jpg",editedByType:null,editors:[{id:"88868",title:"Prof.",name:"M Hammad",surname:"Ather",slug:"m-hammad-ather",fullName:"M Hammad Ather"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11594",title:"Melanoma - Standard of Care, Challenges, and Updates in Clinical Research",subtitle:null,isOpenForSubmission:!0,hash:"ed8a0af96af7b311ef7f9bbbde152d0f",slug:null,bookSignature:"Dr. Sonia Maciá",coverURL:"https://cdn.intechopen.com/books/images_new/11594.jpg",editedByType:null,editors:[{id:"281982",title:"Dr.",name:"Sonia",surname:"Maciá",slug:"sonia-macia",fullName:"Sonia Maciá"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11709",title:"Type 1 Diabetes Mellitus",subtitle:null,isOpenForSubmission:!0,hash:"cc0e61f864a2a8a9595f4975ce301f70",slug:null,bookSignature:"Dr. Shilpa Mehta and Dr. Resmy Palliyil Gopi",coverURL:"https://cdn.intechopen.com/books/images_new/11709.jpg",editedByType:null,editors:[{id:"342545",title:"Dr.",name:"Shilpa",surname:"Mehta",slug:"shilpa-mehta",fullName:"Shilpa Mehta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11703",title:"Fluorescence Imaging - Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"728ff3bfc75ad2c9a39c338b52ae1893",slug:null,bookSignature:"Dr. Raffaello Papadakis",coverURL:"https://cdn.intechopen.com/books/images_new/11703.jpg",editedByType:null,editors:[{id:"251885",title:"Dr.",name:"Raffaello",surname:"Papadakis",slug:"raffaello-papadakis",fullName:"Raffaello Papadakis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11577",title:"Tick-Borne Diseases - A Review and an Update of Knowledge on Infections in Human and Animal Population",subtitle:null,isOpenForSubmission:!0,hash:"3d72ae651ee2a04b2368bf798a3183ca",slug:null,bookSignature:"Prof. Elisa Pieragostini",coverURL:"https://cdn.intechopen.com/books/images_new/11577.jpg",editedByType:null,editors:[{id:"51521",title:"Prof.",name:"Elisa",surname:"Pieragostini",slug:"elisa-pieragostini",fullName:"Elisa Pieragostini"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11729",title:"Circumcision - Advances and New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"d4761c03b5694edec9f7fc48092549ce",slug:null,bookSignature:"Dr. Ahmad Zaghal and Dr. Ali El Safadi",coverURL:"https://cdn.intechopen.com/books/images_new/11729.jpg",editedByType:null,editors:[{id:"240621",title:"Dr.",name:"Ahmad",surname:"Zaghal",slug:"ahmad-zaghal",fullName:"Ahmad Zaghal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11710",title:"Lifestyle-Related Diseases and Metabolic Syndrome",subtitle:null,isOpenForSubmission:!0,hash:"c556d78df6bb93e8e3973ce0a9547ea8",slug:null,bookSignature:"Dr. Naofumi Shiomi",coverURL:"https://cdn.intechopen.com/books/images_new/11710.jpg",editedByType:null,editors:[{id:"163777",title:"Dr.",name:"Naofumi",surname:"Shiomi",slug:"naofumi-shiomi",fullName:"Naofumi Shiomi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11702",title:"Eye Diseases - Recent Advances, New Perspectives and Therapeutic Options",subtitle:null,isOpenForSubmission:!0,hash:"228ecdcbf2ffae4e8cfeedfc7e0fa922",slug:null,bookSignature:"Dr. Salvatore Di Lauro",coverURL:"https://cdn.intechopen.com/books/images_new/11702.jpg",editedByType:null,editors:[{id:"244950",title:"Dr.",name:"Salvatore",surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11881",title:"Ventricular Assist Devices - Advances and Applications in Heart Failure",subtitle:null,isOpenForSubmission:!0,hash:"4c5136113dda974a93f03ba12724b31b",slug:null,bookSignature:"Associate Prof. Enkhsaikhan Purevjav, Dr. Hugo R. Martinez, Dr. Mohammed Absi, Dr. Jeffrey Allen Towbin and Dr. Umar Boston",coverURL:"https://cdn.intechopen.com/books/images_new/11881.jpg",editedByType:null,editors:[{id:"231585",title:"Associate Prof.",name:"Enkhsaikhan",surname:"Purevjav",slug:"enkhsaikhan-purevjav",fullName:"Enkhsaikhan Purevjav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:40},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:66},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:26},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:124},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:8},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:10},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:137},popularBooks:{featuredBooks:[{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10787",title:"Hepatocellular Carcinoma",subtitle:"Challenges and Opportunities of a Multidisciplinary Approach",isOpenForSubmission:!1,hash:"bc00a66513e51003e5dbbc0294e0fc3d",slug:"hepatocellular-carcinoma-challenges-and-opportunities-of-a-multidisciplinary-approach",bookSignature:"Georgios Tsoulfas",coverURL:"https://cdn.intechopen.com/books/images_new/10787.jpg",editors:[{id:"57412",title:"Prof.",name:"Georgios",middleName:null,surname:"Tsoulfas",slug:"georgios-tsoulfas",fullName:"Georgios Tsoulfas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,isOpenForSubmission:!1,hash:"4e868cde273d65a7ff54b1817d640629",slug:"hydrolases",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",isOpenForSubmission:!1,hash:"2c628f4757f9639a4450728d839a7842",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",bookSignature:"Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10193",title:"Multidisciplinary Experiences in Renal Replacement Therapy",subtitle:null,isOpenForSubmission:!1,hash:"3c4738671bb3e815744d1e04df7ba879",slug:"multidisciplinary-experiences-in-renal-replacement-therapy",bookSignature:"Ane C.F. Nunes",coverURL:"https://cdn.intechopen.com/books/images_new/10193.jpg",editors:[{id:"55270",title:"Prof.",name:"Ane",middleName:null,surname:"Claudia Fernandes Nunes",slug:"ane-claudia-fernandes-nunes",fullName:"Ane Claudia Fernandes Nunes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10983",title:"Conifers",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"3e524d29fc3f95c3389efbd41463dab6",slug:"conifers-recent-advances",bookSignature:"Ana Cristina Gonçalves and Teresa Fonseca",coverURL:"https://cdn.intechopen.com/books/images_new/10983.jpg",editors:[{id:"194484",title:"Prof.",name:"Ana Cristina",middleName:null,surname:"Gonçalves",slug:"ana-cristina-goncalves",fullName:"Ana Cristina Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10539",title:"Ginseng",subtitle:"Modern Aspects of the Famed Traditional Medicine",isOpenForSubmission:!1,hash:"5f388543a066b617d2c52bd4c027c272",slug:"ginseng-modern-aspects-of-the-famed-traditional-medicine",bookSignature:"Christophe Hano and Jen-Tsung Chen",coverURL:"https://cdn.intechopen.com/books/images_new/10539.jpg",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10881",title:"Drug Repurposing",subtitle:"Molecular Aspects and Therapeutic Applications",isOpenForSubmission:!1,hash:"eca3f2d5ca97b457d38a2442b36d3ac7",slug:"drug-repurposing-molecular-aspects-and-therapeutic-applications",bookSignature:"Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/10881.jpg",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4423},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2204,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",publishedDate:"June 15th 2022",numberOfDownloads:1182,editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10787",title:"Hepatocellular Carcinoma",subtitle:"Challenges and Opportunities of a Multidisciplinary Approach",isOpenForSubmission:!1,hash:"bc00a66513e51003e5dbbc0294e0fc3d",slug:"hepatocellular-carcinoma-challenges-and-opportunities-of-a-multidisciplinary-approach",bookSignature:"Georgios Tsoulfas",coverURL:"https://cdn.intechopen.com/books/images_new/10787.jpg",publishedDate:"June 15th 2022",numberOfDownloads:1006,editors:[{id:"57412",title:"Prof.",name:"Georgios",middleName:null,surname:"Tsoulfas",slug:"georgios-tsoulfas",fullName:"Georgios Tsoulfas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,isOpenForSubmission:!1,hash:"4e868cde273d65a7ff54b1817d640629",slug:"hydrolases",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",publishedDate:"June 15th 2022",numberOfDownloads:863,editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",isOpenForSubmission:!1,hash:"2c628f4757f9639a4450728d839a7842",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",bookSignature:"Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",publishedDate:"June 15th 2022",numberOfDownloads:793,editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10193",title:"Multidisciplinary Experiences in Renal Replacement Therapy",subtitle:null,isOpenForSubmission:!1,hash:"3c4738671bb3e815744d1e04df7ba879",slug:"multidisciplinary-experiences-in-renal-replacement-therapy",bookSignature:"Ane C.F. Nunes",coverURL:"https://cdn.intechopen.com/books/images_new/10193.jpg",publishedDate:"June 15th 2022",numberOfDownloads:730,editors:[{id:"55270",title:"Prof.",name:"Ane",middleName:null,surname:"Claudia Fernandes Nunes",slug:"ane-claudia-fernandes-nunes",fullName:"Ane Claudia Fernandes Nunes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2167,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10983",title:"Conifers",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"3e524d29fc3f95c3389efbd41463dab6",slug:"conifers-recent-advances",bookSignature:"Ana Cristina Gonçalves and Teresa Fonseca",coverURL:"https://cdn.intechopen.com/books/images_new/10983.jpg",publishedDate:"June 15th 2022",numberOfDownloads:600,editors:[{id:"194484",title:"Prof.",name:"Ana Cristina",middleName:null,surname:"Gonçalves",slug:"ana-cristina-goncalves",fullName:"Ana Cristina Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10539",title:"Ginseng",subtitle:"Modern Aspects of the Famed Traditional Medicine",isOpenForSubmission:!1,hash:"5f388543a066b617d2c52bd4c027c272",slug:"ginseng-modern-aspects-of-the-famed-traditional-medicine",bookSignature:"Christophe Hano and Jen-Tsung Chen",coverURL:"https://cdn.intechopen.com/books/images_new/10539.jpg",publishedDate:"June 15th 2022",numberOfDownloads:583,editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10881",title:"Drug Repurposing",subtitle:"Molecular Aspects and Therapeutic Applications",isOpenForSubmission:!1,hash:"eca3f2d5ca97b457d38a2442b36d3ac7",slug:"drug-repurposing-molecular-aspects-and-therapeutic-applications",bookSignature:"Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/10881.jpg",publishedDate:"June 1st 2022",numberOfDownloads:2231,editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10774",title:"Model Organisms in Plant Genetics",subtitle:null,isOpenForSubmission:!1,hash:"f6624b58571ac10c9b636c5d85ec5e54",slug:"model-organisms-in-plant-genetics",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/10774.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!1,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:"protein-detection",bookSignature:"Yusuf Tutar and Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Applications of Calorimetry",subtitle:null,isOpenForSubmission:!1,hash:"8c87f7e2199db33b5dd7181f56973a97",slug:"applications-of-calorimetry",bookSignature:"José Luis Rivera Armenta and Cynthia Graciela Flores Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1414",title:"Osteology",slug:"osteology",parent:{id:"197",title:"Physical Medicine and Rehabilitation",slug:"physical-medicine-and-rehabilitation"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:25,numberOfWosCitations:0,numberOfCrossrefCitations:1,numberOfDimensionsCitations:1,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1414",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10323",title:"Osteoporosis",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"08e07eb8b6c4997a39a2d04b99ac2ffc",slug:"osteoporosis-recent-advances-new-perspectives-and-applications",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/10323.jpg",editedByType:"Edited by",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"76507",doi:"10.5772/intechopen.97549",title:"Osteoporosis: A Multifactorial Disease",slug:"osteoporosis-a-multifactorial-disease",totalDownloads:208,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"A great achievement of modern medicine is the increased lifespan of the human population. Unfortunately, the comorbidities of aging have created a large economic and health burden on society. Osteoporosis is the most prevalent age-related disease. It is characterized by uncoupled bone resorption that leads to low bone mass, compromised microarchitecture and structural deterioration that increases the likelihood of fracture with minimal trauma, known as fragility fractures. These fractures lead to disproportionally high mortality rate and a drastic decline in quality of life for those affected. While estrogen loss is one known trigger of osteoporosis, a number of recent studies have shown that osteoporosis is a multifactorial condition in both humans and rodent models. The presence or absence of certain factors are likely to determine which subset of the population develop osteoporosis. In this chapter, we review the factors that contribute to osteoporosis with an emphasis on its multifactorial nature and the therapeutic consequences.",book:{id:"10323",slug:"osteoporosis-recent-advances-new-perspectives-and-applications",title:"Osteoporosis",fullTitle:"Osteoporosis - Recent Advances, New Perspectives and Applications"},signatures:"Di Wu, Anna Cline-Smith, Elena Shashkova and Rajeev Aurora",authors:[{id:"339667",title:"Associate Prof.",name:"Rajeev",middleName:null,surname:"Aurora",slug:"rajeev-aurora",fullName:"Rajeev Aurora"},{id:"347366",title:"Mr.",name:"Di",middleName:null,surname:"Wu",slug:"di-wu",fullName:"Di Wu"},{id:"347367",title:"Ms.",name:"Anna",middleName:null,surname:"Cline-Smith",slug:"anna-cline-smith",fullName:"Anna Cline-Smith"},{id:"347579",title:"Dr.",name:"Elena",middleName:null,surname:"Shashkova",slug:"elena-shashkova",fullName:"Elena Shashkova"}]},{id:"75660",doi:"10.5772/intechopen.96487",title:"Bone Quality of the Dento-Maxillofacial Complex and Osteoporosis. Opportunistic Radiographic Interpretation",slug:"bone-quality-of-the-dento-maxillofacial-complex-and-osteoporosis-opportunistic-radiographic-interpre",totalDownloads:350,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Research suggests the use of different indexes on panoramic radiography as a way to assess BMD and to be able to detect changes in bone metabolism before fractures occur. Therefore, the objective of this chapter is to describe the use of these parameters as an auxiliary mechanism in the detection of low bone mineral density, as well as to characterize the radiographic findings of patients with osteoporosis.",book:{id:"10323",slug:"osteoporosis-recent-advances-new-perspectives-and-applications",title:"Osteoporosis",fullTitle:"Osteoporosis - Recent Advances, New Perspectives and Applications"},signatures:"Plauto Christopher Aranha Watanabe, Giovani Antonio Rodrigues, Marcelo Rodrigues Azenha, Michel Campos Ribeiro, Enéas de Almeida Souza Filho, Rafael Angelo Soares Vieira and Fabio Santos Bottacin",authors:[{id:"76171",title:"Prof.",name:"Plauto C. A.",middleName:null,surname:"Watanabe",slug:"plauto-c.-a.-watanabe",fullName:"Plauto C. A. Watanabe"},{id:"337631",title:"Dr.",name:"Giovani Antonio",middleName:null,surname:"Rodrigues",slug:"giovani-antonio-rodrigues",fullName:"Giovani Antonio Rodrigues"},{id:"350577",title:"Dr.",name:"Fabio",middleName:null,surname:"Santos Bottacin",slug:"fabio-santos-bottacin",fullName:"Fabio Santos Bottacin"},{id:"350578",title:"Dr.",name:"Rafael Angelo",middleName:null,surname:"Soares Vieira",slug:"rafael-angelo-soares-vieira",fullName:"Rafael Angelo Soares Vieira"},{id:"350579",title:"Dr.",name:"Enéas de Almeida",middleName:null,surname:"Souza Filho",slug:"eneas-de-almeida-souza-filho",fullName:"Enéas de Almeida Souza Filho"},{id:"350580",title:"Dr.",name:"Michel",middleName:null,surname:"Campos Ribeiro",slug:"michel-campos-ribeiro",fullName:"Michel Campos Ribeiro"},{id:"350581",title:"Dr.",name:"Rodrigues Azenha",middleName:null,surname:"Rodrigues Azenha",slug:"rodrigues-azenha-rodrigues-azenha",fullName:"Rodrigues Azenha Rodrigues Azenha"}]},{id:"75742",doi:"10.5772/intechopen.96772",title:"Osteoporosis and Dietary Inflammatory Index",slug:"osteoporosis-and-dietary-inflammatory-index",totalDownloads:233,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Healthy bones are constantly being renewed and proper nutrition is an important factor in this process. Anti-inflammatory diet is designed to improve health and prevent the occurrence and development of chronic diseases associated with inadequate diet. Proper nutrition is based on the anti-inflammatory pyramid and changes in poor eating habits are the long-term strategy for preventing inflammation and chronic diseases. Inflammatory factors from food may play a role in the development of osteoporosis and an anti-inflammatory diet may be a way to control and reduce long-term inflammation and prevent bone loss. Pro-inflammatory cytokines from the fat tissue, through activation of the RANKL/RANK/OPG system could intervene with bone metabolism in a way of increased bone loss. Therefore the special attention need to be given to obese patients due to twofold risk, one related to pro-inflammatory cytokines release and the other related to the deprivation of the vitamin D in the fat tissue.",book:{id:"10323",slug:"osteoporosis-recent-advances-new-perspectives-and-applications",title:"Osteoporosis",fullTitle:"Osteoporosis - Recent Advances, New Perspectives and Applications"},signatures:"Olga Cvijanović Peloza, Sandra Pavičić Žeželj, Gordana Kenđel Jovanović, Ivana Pavičić, Ana Terezija Jerbić Radetić, Sanja Zoričić Cvek, Jasna Lulić Drenjak, Gordana Starčević Klasan, Ariana Fužinac Smojver and Juraj Arbanas",authors:[{id:"339281",title:"Associate Prof.",name:"Olga",middleName:null,surname:"Cvijanović Peloza",slug:"olga-cvijanovic-peloza",fullName:"Olga Cvijanović Peloza"},{id:"346420",title:"Prof.",name:"Sandra",middleName:null,surname:"Pavičić Žeželj",slug:"sandra-pavicic-zezelj",fullName:"Sandra Pavičić Žeželj"},{id:"346421",title:"BSc.",name:"Ivana",middleName:null,surname:"Pavičić",slug:"ivana-pavicic",fullName:"Ivana Pavičić"},{id:"346423",title:"Prof.",name:"Ana Terezija",middleName:null,surname:"Jerbić Radetić",slug:"ana-terezija-jerbic-radetic",fullName:"Ana Terezija Jerbić Radetić"},{id:"346424",title:"Prof.",name:"Sanja",middleName:null,surname:"Zoričić Cvek",slug:"sanja-zoricic-cvek",fullName:"Sanja Zoričić Cvek"},{id:"346426",title:"MSc.",name:"Jasna",middleName:null,surname:"Lulić Drenjak",slug:"jasna-lulic-drenjak",fullName:"Jasna Lulić Drenjak"},{id:"346427",title:"Prof.",name:"Gordana",middleName:null,surname:"Starčević Klasan",slug:"gordana-starcevic-klasan",fullName:"Gordana Starčević Klasan"},{id:"346428",title:"MSc.",name:"Ariana",middleName:null,surname:"Fužinac Smojver",slug:"ariana-fuzinac-smojver",fullName:"Ariana Fužinac Smojver"},{id:"346429",title:"Prof.",name:"Juraj",middleName:null,surname:"Arbanas",slug:"juraj-arbanas",fullName:"Juraj Arbanas"},{id:"350011",title:"Dr.",name:"Gordana",middleName:null,surname:"Kenđel Jovanović",slug:"gordana-kendjel-jovanovic",fullName:"Gordana Kenđel Jovanović"}]},{id:"76351",doi:"10.5772/intechopen.97416",title:"Glucocorticoid-Induced Osteoporosis",slug:"glucocorticoid-induced-osteoporosis",totalDownloads:254,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The use of glucocorticoids (GC) in the medium and long term, causes several considerable side effects, being one of the main ones the reduction of bone mineral density (BMD). Prolonged corticosteroid therapy reduces BMD by up to 20% in trabecular bone and approximately 2–3% in cortical bone in the first year of use. This loss rate declines and stabilizes at approximately 2% in subsequent years. Therefore, there is a considerable increase in the incidence of pathological fractures, whether clinically symptomatic or asymptomatic (detected as a radiological finding), which varies between 30 and 50% of patients who use GC for more than three months. In view of the above, it is essential to prevent fractures and treat osteoporosis in patients using glucocorticoids for long periods (in particular, greater than or equal to 3 months), which may or may not be associated with clinical risk factors or previous fractures. The guidelines for the treatment and prevention of this comorbidity are well established for postmenopausal women and men over 50 years of age. However, for patients below this range, studies are still lacking.",book:{id:"10323",slug:"osteoporosis-recent-advances-new-perspectives-and-applications",title:"Osteoporosis",fullTitle:"Osteoporosis - Recent Advances, New Perspectives and Applications"},signatures:"José Renan Vieira da Costa Júnior and Sérgio Luchini Batista",authors:[{id:"164388",title:"Prof.",name:"Sergio",middleName:null,surname:"Luchini Batista",slug:"sergio-luchini-batista",fullName:"Sergio Luchini Batista"},{id:"354032",title:"Dr.",name:"José Renan",middleName:null,surname:"Vieira Da Costa Júnior",slug:"jose-renan-vieira-da-costa-junior",fullName:"José Renan Vieira Da Costa Júnior"}]},{id:"76677",doi:"10.5772/intechopen.97760",title:"Introductory Chapter: Osteoporosis Overview",slug:"introductory-chapter-osteoporosis-overview",totalDownloads:176,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"10323",slug:"osteoporosis-recent-advances-new-perspectives-and-applications",title:"Osteoporosis",fullTitle:"Osteoporosis - Recent Advances, New Perspectives and Applications"},signatures:"Luis Rodrigo",authors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}]}],mostDownloadedChaptersLast30Days:[{id:"75660",title:"Bone Quality of the Dento-Maxillofacial Complex and Osteoporosis. Opportunistic Radiographic Interpretation",slug:"bone-quality-of-the-dento-maxillofacial-complex-and-osteoporosis-opportunistic-radiographic-interpre",totalDownloads:350,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Research suggests the use of different indexes on panoramic radiography as a way to assess BMD and to be able to detect changes in bone metabolism before fractures occur. Therefore, the objective of this chapter is to describe the use of these parameters as an auxiliary mechanism in the detection of low bone mineral density, as well as to characterize the radiographic findings of patients with osteoporosis.",book:{id:"10323",slug:"osteoporosis-recent-advances-new-perspectives-and-applications",title:"Osteoporosis",fullTitle:"Osteoporosis - Recent Advances, New Perspectives and Applications"},signatures:"Plauto Christopher Aranha Watanabe, Giovani Antonio Rodrigues, Marcelo Rodrigues Azenha, Michel Campos Ribeiro, Enéas de Almeida Souza Filho, Rafael Angelo Soares Vieira and Fabio Santos Bottacin",authors:[{id:"76171",title:"Prof.",name:"Plauto C. A.",middleName:null,surname:"Watanabe",slug:"plauto-c.-a.-watanabe",fullName:"Plauto C. A. Watanabe"},{id:"337631",title:"Dr.",name:"Giovani Antonio",middleName:null,surname:"Rodrigues",slug:"giovani-antonio-rodrigues",fullName:"Giovani Antonio Rodrigues"},{id:"350577",title:"Dr.",name:"Fabio",middleName:null,surname:"Santos Bottacin",slug:"fabio-santos-bottacin",fullName:"Fabio Santos Bottacin"},{id:"350578",title:"Dr.",name:"Rafael Angelo",middleName:null,surname:"Soares Vieira",slug:"rafael-angelo-soares-vieira",fullName:"Rafael Angelo Soares Vieira"},{id:"350579",title:"Dr.",name:"Enéas de Almeida",middleName:null,surname:"Souza Filho",slug:"eneas-de-almeida-souza-filho",fullName:"Enéas de Almeida Souza Filho"},{id:"350580",title:"Dr.",name:"Michel",middleName:null,surname:"Campos Ribeiro",slug:"michel-campos-ribeiro",fullName:"Michel Campos Ribeiro"},{id:"350581",title:"Dr.",name:"Rodrigues Azenha",middleName:null,surname:"Rodrigues Azenha",slug:"rodrigues-azenha-rodrigues-azenha",fullName:"Rodrigues Azenha Rodrigues Azenha"}]},{id:"76677",title:"Introductory Chapter: Osteoporosis Overview",slug:"introductory-chapter-osteoporosis-overview",totalDownloads:176,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"10323",slug:"osteoporosis-recent-advances-new-perspectives-and-applications",title:"Osteoporosis",fullTitle:"Osteoporosis - Recent Advances, New Perspectives and Applications"},signatures:"Luis Rodrigo",authors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}]},{id:"76507",title:"Osteoporosis: A Multifactorial Disease",slug:"osteoporosis-a-multifactorial-disease",totalDownloads:208,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"A great achievement of modern medicine is the increased lifespan of the human population. Unfortunately, the comorbidities of aging have created a large economic and health burden on society. Osteoporosis is the most prevalent age-related disease. It is characterized by uncoupled bone resorption that leads to low bone mass, compromised microarchitecture and structural deterioration that increases the likelihood of fracture with minimal trauma, known as fragility fractures. These fractures lead to disproportionally high mortality rate and a drastic decline in quality of life for those affected. While estrogen loss is one known trigger of osteoporosis, a number of recent studies have shown that osteoporosis is a multifactorial condition in both humans and rodent models. The presence or absence of certain factors are likely to determine which subset of the population develop osteoporosis. In this chapter, we review the factors that contribute to osteoporosis with an emphasis on its multifactorial nature and the therapeutic consequences.",book:{id:"10323",slug:"osteoporosis-recent-advances-new-perspectives-and-applications",title:"Osteoporosis",fullTitle:"Osteoporosis - Recent Advances, New Perspectives and Applications"},signatures:"Di Wu, Anna Cline-Smith, Elena Shashkova and Rajeev Aurora",authors:[{id:"339667",title:"Associate Prof.",name:"Rajeev",middleName:null,surname:"Aurora",slug:"rajeev-aurora",fullName:"Rajeev Aurora"},{id:"347366",title:"Mr.",name:"Di",middleName:null,surname:"Wu",slug:"di-wu",fullName:"Di Wu"},{id:"347367",title:"Ms.",name:"Anna",middleName:null,surname:"Cline-Smith",slug:"anna-cline-smith",fullName:"Anna Cline-Smith"},{id:"347579",title:"Dr.",name:"Elena",middleName:null,surname:"Shashkova",slug:"elena-shashkova",fullName:"Elena Shashkova"}]},{id:"75742",title:"Osteoporosis and Dietary Inflammatory Index",slug:"osteoporosis-and-dietary-inflammatory-index",totalDownloads:233,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Healthy bones are constantly being renewed and proper nutrition is an important factor in this process. Anti-inflammatory diet is designed to improve health and prevent the occurrence and development of chronic diseases associated with inadequate diet. Proper nutrition is based on the anti-inflammatory pyramid and changes in poor eating habits are the long-term strategy for preventing inflammation and chronic diseases. Inflammatory factors from food may play a role in the development of osteoporosis and an anti-inflammatory diet may be a way to control and reduce long-term inflammation and prevent bone loss. Pro-inflammatory cytokines from the fat tissue, through activation of the RANKL/RANK/OPG system could intervene with bone metabolism in a way of increased bone loss. Therefore the special attention need to be given to obese patients due to twofold risk, one related to pro-inflammatory cytokines release and the other related to the deprivation of the vitamin D in the fat tissue.",book:{id:"10323",slug:"osteoporosis-recent-advances-new-perspectives-and-applications",title:"Osteoporosis",fullTitle:"Osteoporosis - Recent Advances, New Perspectives and Applications"},signatures:"Olga Cvijanović Peloza, Sandra Pavičić Žeželj, Gordana Kenđel Jovanović, Ivana Pavičić, Ana Terezija Jerbić Radetić, Sanja Zoričić Cvek, Jasna Lulić Drenjak, Gordana Starčević Klasan, Ariana Fužinac Smojver and Juraj Arbanas",authors:[{id:"339281",title:"Associate Prof.",name:"Olga",middleName:null,surname:"Cvijanović Peloza",slug:"olga-cvijanovic-peloza",fullName:"Olga Cvijanović Peloza"},{id:"346420",title:"Prof.",name:"Sandra",middleName:null,surname:"Pavičić Žeželj",slug:"sandra-pavicic-zezelj",fullName:"Sandra Pavičić Žeželj"},{id:"346421",title:"BSc.",name:"Ivana",middleName:null,surname:"Pavičić",slug:"ivana-pavicic",fullName:"Ivana Pavičić"},{id:"346423",title:"Prof.",name:"Ana Terezija",middleName:null,surname:"Jerbić Radetić",slug:"ana-terezija-jerbic-radetic",fullName:"Ana Terezija Jerbić Radetić"},{id:"346424",title:"Prof.",name:"Sanja",middleName:null,surname:"Zoričić Cvek",slug:"sanja-zoricic-cvek",fullName:"Sanja Zoričić Cvek"},{id:"346426",title:"MSc.",name:"Jasna",middleName:null,surname:"Lulić Drenjak",slug:"jasna-lulic-drenjak",fullName:"Jasna Lulić Drenjak"},{id:"346427",title:"Prof.",name:"Gordana",middleName:null,surname:"Starčević Klasan",slug:"gordana-starcevic-klasan",fullName:"Gordana Starčević Klasan"},{id:"346428",title:"MSc.",name:"Ariana",middleName:null,surname:"Fužinac Smojver",slug:"ariana-fuzinac-smojver",fullName:"Ariana Fužinac Smojver"},{id:"346429",title:"Prof.",name:"Juraj",middleName:null,surname:"Arbanas",slug:"juraj-arbanas",fullName:"Juraj Arbanas"},{id:"350011",title:"Dr.",name:"Gordana",middleName:null,surname:"Kenđel Jovanović",slug:"gordana-kendjel-jovanovic",fullName:"Gordana Kenđel Jovanović"}]},{id:"76351",title:"Glucocorticoid-Induced Osteoporosis",slug:"glucocorticoid-induced-osteoporosis",totalDownloads:254,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The use of glucocorticoids (GC) in the medium and long term, causes several considerable side effects, being one of the main ones the reduction of bone mineral density (BMD). Prolonged corticosteroid therapy reduces BMD by up to 20% in trabecular bone and approximately 2–3% in cortical bone in the first year of use. This loss rate declines and stabilizes at approximately 2% in subsequent years. Therefore, there is a considerable increase in the incidence of pathological fractures, whether clinically symptomatic or asymptomatic (detected as a radiological finding), which varies between 30 and 50% of patients who use GC for more than three months. In view of the above, it is essential to prevent fractures and treat osteoporosis in patients using glucocorticoids for long periods (in particular, greater than or equal to 3 months), which may or may not be associated with clinical risk factors or previous fractures. The guidelines for the treatment and prevention of this comorbidity are well established for postmenopausal women and men over 50 years of age. However, for patients below this range, studies are still lacking.",book:{id:"10323",slug:"osteoporosis-recent-advances-new-perspectives-and-applications",title:"Osteoporosis",fullTitle:"Osteoporosis - Recent Advances, New Perspectives and Applications"},signatures:"José Renan Vieira da Costa Júnior and Sérgio Luchini Batista",authors:[{id:"164388",title:"Prof.",name:"Sergio",middleName:null,surname:"Luchini Batista",slug:"sergio-luchini-batista",fullName:"Sergio Luchini Batista"},{id:"354032",title:"Dr.",name:"José Renan",middleName:null,surname:"Vieira Da Costa Júnior",slug:"jose-renan-vieira-da-costa-junior",fullName:"José Renan Vieira Da Costa Júnior"}]}],onlineFirstChaptersFilter:{topicId:"1414",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:16,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:4,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"June 10th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"3",title:"Bacterial Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/3.jpg",isOpenForSubmission:!1,editor:null,editorTwo:null,editorThree:null},{id:"4",title:"Fungal Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",isOpenForSubmission:!0,editor:{id:"174134",title:"Dr.",name:"Yuping",middleName:null,surname:"Ran",slug:"yuping-ran",fullName:"Yuping Ran",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9d6QAC/Profile_Picture_1630330675373",biography:"Dr. Yuping Ran, Professor, Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China. Completed the Course Medical Mycology, the Centraalbureau voor Schimmelcultures (CBS), Fungal Biodiversity Centre, Netherlands (2006). International Union of Microbiological Societies (IUMS) Fellow, and International Emerging Infectious Diseases (IEID) Fellow, Centers for Diseases Control and Prevention (CDC), Atlanta, USA. Diploma of Dermatological Scientist, Japanese Society for Investigative Dermatology. Ph.D. of Juntendo University, Japan. Bachelor’s and Master’s degree, Medicine, West China University of Medical Sciences. Chair of Sichuan Medical Association Dermatology Committee. General Secretary of The 19th Annual Meeting of Chinese Society of Dermatology and the Asia Pacific Society for Medical Mycology (2013). In charge of the Annual Medical Mycology Course over 20-years authorized by National Continue Medical Education Committee of China. Member of the board of directors of the Asia-Pacific Society for Medical Mycology (APSMM). Associate editor of Mycopathologia. Vice-chief of the editorial board of Chinses Journal of Mycology, China. Board Member and Chair of Mycology Group of Chinese Society of Dermatology.",institutionString:null,institution:{name:"Sichuan University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null},{id:"5",title:"Parasitic Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",isOpenForSubmission:!0,editor:{id:"67907",title:"Dr.",name:"Amidou",middleName:null,surname:"Samie",slug:"amidou-samie",fullName:"Amidou Samie",profilePictureURL:"https://mts.intechopen.com/storage/users/67907/images/system/67907.jpg",biography:"Dr. Amidou Samie is an Associate Professor of Microbiology at the University of Venda, in South Africa, where he graduated for his PhD in May 2008. He joined the Department of Microbiology the same year and has been giving lectures on topics covering parasitology, immunology, molecular biology and industrial microbiology. He is currently a rated researcher by the National Research Foundation of South Africa at category C2. He has published widely in the field of infectious diseases and has overseen several MSc’s and PhDs. His research activities mostly cover topics on infectious diseases from epidemiology to control. His particular interest lies in the study of intestinal protozoan parasites and opportunistic infections among HIV patients as well as the potential impact of childhood diarrhoea on growth and child development. He also conducts research on water-borne diseases and water quality and is involved in the evaluation of point-of-use water treatment technologies using silver and copper nanoparticles in collaboration with the University of Virginia, USA. He also studies the use of medicinal plants for the control of infectious diseases as well as antimicrobial drug resistance.",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},{id:"6",title:"Viral Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",isOpenForSubmission:!0,editor:{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:10,paginationItems:[{id:"82380",title:"Evolution of Parasitism and Pathogenic Adaptations in Certain Medically Important Fungi",doi:"10.5772/intechopen.105206",signatures:"Gokul Shankar Sabesan, Ranjit Singh AJA, Ranjith Mehenderkar and Basanta Kumar Mohanty",slug:"evolution-of-parasitism-and-pathogenic-adaptations-in-certain-medically-important-fungi",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:null,authors:null,book:{title:"Fungal Infectious Diseases - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11400.jpg",subseries:{id:"4",title:"Fungal Infectious Diseases"}}},{id:"82367",title:"Spatial Variation and Factors Associated with Unsuppressed HIV Viral Load among Women in an HIV Hyperendemic Area of KwaZulu-Natal, South Africa",doi:"10.5772/intechopen.105547",signatures:"Adenike O. Soogun, Ayesha B.M. Kharsany, Temesgen Zewotir and Delia North",slug:"spatial-variation-and-factors-associated-with-unsuppressed-hiv-viral-load-among-women-in-an-hiv-hype",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:null,authors:null,book:{title:"HIV-AIDS - Updates, Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82193",title:"Enterococcal Infections: Recent Nomenclature and emerging trends",doi:"10.5772/intechopen.104792",signatures:"Kavita Raja",slug:"enterococcal-infections-recent-nomenclature-and-emerging-trends",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82207",title:"Management Strategies in Perinatal HIV",doi:"10.5772/intechopen.105451",signatures:"Kayla Aleshire and Rima Bazzi",slug:"management-strategies-in-perinatal-hiv",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"HIV-AIDS - Updates, Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}}]},overviewPagePublishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}]},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",biography:"Dr. Kasenga is a graduate of Tumaini University, Kilimanjaro Christian Medical College, Moshi, Tanzania and Umeå University, Sweden. He obtained a Master’s degree in Public Health and PhD in Public Health and Epidemiology. He has a background in Clinical Medicine and has taken courses at higher diploma levels in public health from University of Transkei, Republic of South Africa, and African Medical and Research Foundation (AMREF) in Nairobi, Kenya. Dr. Kasenga worked in different places in and outside Malawi, and has held various positions, such as Licensed Medical Officer, HIV/AIDS Programme Officer, HIV/AIDS resource person in the International Department of Diakonhjemet College, Oslo, Norway. He also managed an Integrated HIV/AIDS Prevention programme for over 5 years. He is currently working as a Director for the Health Ministries Department of Malawi Union of the Seventh Day Adventist Church. Dr. Kasenga has published over 5 articles on HIV/AIDS issues focusing on Prevention of Mother to Child Transmission of HIV (PMTCT), including a book chapter on HIV testing counseling (currently in press). Dr. Kasenga is married to Grace and blessed with three children, a son and two daughters: Happy, Lettice and Sungani.",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}]}]},openForSubmissionBooks:{paginationCount:5,paginationItems:[{id:"11451",title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",hash:"8c918a1973786c7059752b28601f1329",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 4th 2022",isOpenForSubmission:!0,editors:[{id:"179007",title:"Dr.",name:"Erman Salih",surname:"Istifli",slug:"erman-salih-istifli",fullName:"Erman Salih Istifli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11453",title:"Biomimetics - Bridging the Gap",coverURL:"https://cdn.intechopen.com/books/images_new/11453.jpg",hash:"173e62fa4d7bf5508cec3bdd8e3cb32d",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 16th 2022",isOpenForSubmission:!0,editors:[{id:"222709",title:"Prof.",name:"Ziyad S.",surname:"Haidar",slug:"ziyad-s.-haidar",fullName:"Ziyad S. Haidar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11983",title:"Biomedical Signal and Image Processing - Advanced Imaging Technology and Application",coverURL:"https://cdn.intechopen.com/books/images_new/11983.jpg",hash:"81ebecb28b5cad564075e6f5b2dc7355",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 29th 2022",isOpenForSubmission:!0,editors:[{id:"257388",title:"Distinguished Prof.",name:"Lulu",surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11984",title:"Current Advances in Nanomedicine",coverURL:"https://cdn.intechopen.com/books/images_new/11984.jpg",hash:"3d98881cc9e323438670710d3aaaf71d",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 6th 2022",isOpenForSubmission:!0,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11452",title:"Cryopreservation - Applications and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/11452.jpg",hash:"a6c3fd4384ff7deeab32fc82722c60e0",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 12th 2022",isOpenForSubmission:!0,editors:[{id:"300385",title:"Dr.",name:"Marian",surname:"Quain",slug:"marian-quain",fullName:"Marian Quain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:2,paginationItems:[{id:"82297",title:"The Climate Change-Agriculture Nexus in Drylands of Ethiopia",doi:"10.5772/intechopen.103905",signatures:"Zenebe Mekonnen",slug:"the-climate-change-agriculture-nexus-in-drylands-of-ethiopia",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}},{id:"81999",title:"Climate Change, Rural Livelihoods, and Human Well-Being: Experiences from Kenya",doi:"10.5772/intechopen.104965",signatures:"André J. Pelser and Rujeko Samanthia Chimukuche",slug:"climate-change-rural-livelihoods-and-human-well-being-experiences-from-kenya",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}}]},subseriesFiltersForOFChapters:[{caption:"Ecosystems and Biodiversity",value:40,count:2,group:"subseries"}],publishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"9883",title:"Biosensors",subtitle:"Current and Novel Strategies for Biosensing",coverURL:"https://cdn.intechopen.com/books/images_new/9883.jpg",slug:"biosensors-current-and-novel-strategies-for-biosensing",publishedDate:"May 5th 2021",editedByType:"Edited by",bookSignature:"Luis Jesús Villarreal-Gómez and Ana Leticia Iglesias",hash:"028f3e5dbf9c32590183ac4b4f0a2825",volumeInSeries:11,fullTitle:"Biosensors - Current and Novel Strategies for Biosensing",editors:[{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",slug:"biomedical-signal-and-image-processing",publishedDate:"April 14th 2021",editedByType:"Edited by",bookSignature:"Yongxia Zhou",hash:"22b87a09bd6df065d78c175235d367c8",volumeInSeries:10,fullTitle:"Biomedical Signal and Image Processing",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",institutionString:"University of Southern California",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9973",title:"Data Acquisition",subtitle:"Recent Advances and Applications in Biomedical Engineering",coverURL:"https://cdn.intechopen.com/books/images_new/9973.jpg",slug:"data-acquisition-recent-advances-and-applications-in-biomedical-engineering",publishedDate:"March 17th 2021",editedByType:"Edited by",bookSignature:"Bartłomiej Płaczek",hash:"75ea6cdd241216c9db28aa734ab34446",volumeInSeries:9,fullTitle:"Data Acquisition - Recent Advances and Applications in Biomedical Engineering",editors:[{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9905",title:"Biometric Systems",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9905.jpg",slug:"biometric-systems",publishedDate:"February 10th 2021",editedByType:"Edited by",bookSignature:"Muhammad Sarfraz",hash:"c730560dd2e3837a03407b3a86b0ef2a",volumeInSeries:8,fullTitle:"Biometric Systems",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",institutionString:"Kuwait University",institution:{name:"Kuwait University",institutionURL:null,country:{name:"Kuwait"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8622",title:"Peptide Synthesis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8622.jpg",slug:"peptide-synthesis",publishedDate:"December 18th 2019",editedByType:"Edited by",bookSignature:"Jaya T. Varkey",hash:"de9fa48c5248dbfb581825b8c74f5623",volumeInSeries:0,fullTitle:"Peptide Synthesis",editors:[{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",institutionString:"St. Teresa’s College",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7497",title:"Computer Vision in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7497.jpg",slug:"computer-vision-in-dentistry",publishedDate:"September 18th 2019",editedByType:"Edited by",bookSignature:"Monika Elzbieta Machoy",hash:"1e9812cebd46ef9e28257f3e96547f6a",volumeInSeries:7,fullTitle:"Computer Vision in Dentistry",editors:[{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",editedByType:"Edited by",bookSignature:"Anna Nowinska",hash:"da2c90e8db647ead30504defce3fb5d3",volumeInSeries:6,fullTitle:"Novel Diagnostic Methods in Ophthalmology",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska",profilePictureURL:"https://mts.intechopen.com/storage/users/261466/images/system/261466.jpeg",institutionString:"Medical University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7437",title:"Nanomedicines",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7437.jpg",slug:"nanomedicines",publishedDate:"February 13th 2019",editedByType:"Edited by",bookSignature:"Muhammad Akhyar Farrukh",hash:"0e1f5f6258f074c533976c4f4d248568",volumeInSeries:5,fullTitle:"Nanomedicines",editors:[{id:"63182",title:"Dr.",name:"Muhammad Akhyar",middleName:null,surname:"Farrukh",slug:"muhammad-akhyar-farrukh",fullName:"Muhammad Akhyar Farrukh",profilePictureURL:"https://mts.intechopen.com/storage/users/63182/images/system/63182.png",institutionString:"Forman Christian College",institution:{name:"Forman Christian College",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",institutionString:"University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",value:9,count:1},{group:"subseries",caption:"Bioinspired Technology and Biomechanics",value:8,count:2},{group:"subseries",caption:"Bioinformatics and Medical Informatics",value:7,count:9}],publicationYearFilters:[{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2019",value:2019,count:5},{group:"publicationYear",caption:"2018",value:2018,count:3}],authors:{paginationCount:301,paginationItems:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}},{id:"338856",title:"Mrs.",name:"Nur Alvira",middleName:null,surname:"Pascawati",slug:"nur-alvira-pascawati",fullName:"Nur Alvira Pascawati",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universitas Respati Yogyakarta",country:{name:"Indonesia"}}},{id:"441116",title:"Dr.",name:"Jovanka M.",middleName:null,surname:"Voyich",slug:"jovanka-m.-voyich",fullName:"Jovanka M. Voyich",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Montana State University",country:{name:"United States of America"}}},{id:"330412",title:"Dr.",name:"Muhammad",middleName:null,surname:"Farhab",slug:"muhammad-farhab",fullName:"Muhammad Farhab",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"349495",title:"Dr.",name:"Muhammad",middleName:null,surname:"Ijaz",slug:"muhammad-ijaz",fullName:"Muhammad Ijaz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Veterinary and Animal Sciences",country:{name:"Pakistan"}}}]}},subseries:{item:{id:"19",type:"subseries",title:"Animal Science",keywords:"Animal Science, Animal Biology, Wildlife Species, Domesticated Animals",scope:"The Animal Science topic welcomes research on captive and wildlife species, including domesticated animals. The research resented can consist of primary studies on various animal biology fields such as genetics, nutrition, behavior, welfare, and animal production, to name a few. Reviews on specialized areas of animal science are also welcome.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11415,editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null,series:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517"},editorialBoard:[{id:"258334",title:"Dr.",name:"Carlos Eduardo",middleName:null,surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves",profilePictureURL:"https://mts.intechopen.com/storage/users/258334/images/system/258334.jpg",institutionString:null,institution:{name:"Universidade Paulista",institutionURL:null,country:{name:"Brazil"}}},{id:"191123",title:"Dr.",name:"Juan José",middleName:null,surname:"Valdez-Alarcón",slug:"juan-jose-valdez-alarcon",fullName:"Juan José Valdez-Alarcón",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBfcQAG/Profile_Picture_1631354558068",institutionString:"Universidad Michoacana de San Nicolás de Hidalgo",institution:{name:"Universidad Michoacana de San Nicolás de Hidalgo",institutionURL:null,country:{name:"Mexico"}}},{id:"161556",title:"Dr.",name:"Maria Dos Anjos",middleName:null,surname:"Pires",slug:"maria-dos-anjos-pires",fullName:"Maria Dos Anjos Pires",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS8q2QAC/Profile_Picture_1633432838418",institutionString:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}},{id:"209839",title:"Dr.",name:"Marina",middleName:null,surname:"Spinu",slug:"marina-spinu",fullName:"Marina Spinu",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLXpQAO/Profile_Picture_1630044895475",institutionString:null,institution:{name:"University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca",institutionURL:null,country:{name:"Romania"}}},{id:"92185",title:"Dr.",name:"Sara",middleName:null,surname:"Savic",slug:"sara-savic",fullName:"Sara Savic",profilePictureURL:"https://mts.intechopen.com/storage/users/92185/images/system/92185.jfif",institutionString:'Scientific Veterinary Institute "Novi Sad"',institution:{name:'Scientific Veterinary Institute "Novi Sad"',institutionURL:null,country:{name:"Serbia"}}}]},onlineFirstChapters:{paginationCount:10,paginationItems:[{id:"82196",title:"Multi-Features Assisted Age Invariant Face Recognition and Retrieval Using CNN with Scale Invariant Heat Kernel Signature",doi:"10.5772/intechopen.104944",signatures:"Kamarajugadda Kishore Kumar and Movva Pavani",slug:"multi-features-assisted-age-invariant-face-recognition-and-retrieval-using-cnn-with-scale-invariant-",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"82063",title:"Evaluating Similarities and Differences between Machine Learning and Traditional Statistical Modeling in Healthcare Analytics",doi:"10.5772/intechopen.105116",signatures:"Michele Bennett, Ewa J. Kleczyk, Karin Hayes and Rajesh Mehta",slug:"evaluating-similarities-and-differences-between-machine-learning-and-traditional-statistical-modelin",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81471",title:"Semantic Map: Bringing Together Groups and Discourses",doi:"10.5772/intechopen.103818",signatures:"Theodore Chadjipadelis and Georgia Panagiotidou",slug:"semantic-map-bringing-together-groups-and-discourses",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79491",title:"Fuzzy Perceptron Learning for Non-Linearly Separable Patterns",doi:"10.5772/intechopen.101312",signatures:"Raja Kishor Duggirala",slug:"fuzzy-perceptron-learning-for-non-linearly-separable-patterns",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Raja Kishor",surname:"Duggirala"}],book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81331",title:"Machine Learning Algorithm-Based Contraceptive Practice among Ever-Married Women in Bangladesh: A Hierarchical Machine Learning Classification Approach",doi:"10.5772/intechopen.103187",signatures:"Iqramul Haq, Md. Ismail Hossain, Md. Moshiur Rahman, Md. Injamul Haq Methun, Ashis Talukder, Md. Jakaria Habib and Md. Sanwar Hossain",slug:"machine-learning-algorithm-based-contraceptive-practice-among-ever-married-women-in-bangladesh-a-hie",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"80937",title:"Assessing Heterogeneity of Two-Part Model via Bayesian Model-Based Clustering with Its Application to Cocaine Use Data",doi:"10.5772/intechopen.103089",signatures:"Ye-Mao Xia, Qi-Hang Zhu and Jian-Wei Gou",slug:"assessing-heterogeneity-of-two-part-model-via-bayesian-model-based-clustering-with-its-application-t",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"78846",title:"Clustering Algorithms: An Exploratory Review",doi:"10.5772/intechopen.100376",signatures:"R.S.M. Lakshmi Patibandla and Veeranjaneyulu N",slug:"clustering-algorithms-an-exploratory-review",totalDownloads:146,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"78463",title:"Clustering by Similarity of Brazilian Legal Documents Using Natural Language Processing Approaches",doi:"10.5772/intechopen.99875",signatures:"Raphael Souza de Oliveira and Erick Giovani Sperandio Nascimento",slug:"clustering-by-similarity-of-brazilian-legal-documents-using-natural-language-processing-approaches",totalDownloads:156,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},publishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9753",title:"Terpenes and Terpenoids",subtitle:"Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/9753.jpg",slug:"terpenes-and-terpenoids-recent-advances",publishedDate:"July 28th 2021",editedByType:"Edited by",bookSignature:"Shagufta Perveen and Areej Mohammad Al-Taweel",hash:"575689df13c78bf0e6c1be40804cd010",volumeInSeries:21,fullTitle:"Terpenes and Terpenoids - Recent Advances",editors:[{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",slug:"oxidoreductase",publishedDate:"February 17th 2021",editedByType:"Edited by",bookSignature:"Mahmoud Ahmed Mansour",hash:"852e6f862c85fc3adecdbaf822e64e6e",volumeInSeries:19,fullTitle:"Oxidoreductase",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour",profilePictureURL:"https://mts.intechopen.com/storage/users/224662/images/system/224662.jpg",institutionString:"King Saud bin Abdulaziz University for Health Sciences",institution:{name:"King Saud bin Abdulaziz University for Health Sciences",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8094",title:"Aflatoxin B1 Occurrence, Detection and Toxicological Effects",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8094.jpg",slug:"aflatoxin-b1-occurrence-detection-and-toxicological-effects",publishedDate:"June 3rd 2020",editedByType:"Edited by",bookSignature:"Xi-Dai Long",hash:"44f4ad52d8a8cbb22ef3d505d6b18027",volumeInSeries:14,fullTitle:"Aflatoxin B1 Occurrence, Detection and Toxicological Effects",editors:[{id:"202142",title:"Prof.",name:"Xi-Dai",middleName:null,surname:"Long",slug:"xi-dai-long",fullName:"Xi-Dai Long",profilePictureURL:"https://mts.intechopen.com/storage/users/202142/images/system/202142.jpeg",institutionString:"Youjiang Medical University for Nationalities",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8004",title:"Nitrogen Fixation",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8004.jpg",slug:"nitrogen-fixation",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Everlon Cid Rigobelo and Ademar Pereira Serra",hash:"02f39c8365ba155d1c520184c2f26976",volumeInSeries:11,fullTitle:"Nitrogen Fixation",editors:[{id:"39553",title:"Prof.",name:"Everlon",middleName:"Cid",surname:"Rigobelo",slug:"everlon-rigobelo",fullName:"Everlon Rigobelo",profilePictureURL:"https://mts.intechopen.com/storage/users/39553/images/system/39553.jpg",institutionString:"São Paulo State University",institution:{name:"Sao Paulo State University",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8028",title:"Flavonoids",subtitle:"A Coloring Model for Cheering up Life",coverURL:"https://cdn.intechopen.com/books/images_new/8028.jpg",slug:"flavonoids-a-coloring-model-for-cheering-up-life",publishedDate:"March 11th 2020",editedByType:"Edited by",bookSignature:"Farid A. Badria and Anthony Ananga",hash:"6c33178a5c7d2b276d2c6af4255def64",volumeInSeries:10,fullTitle:"Flavonoids - A Coloring Model for Cheering up Life",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8170",title:"Chemical Properties of Starch",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8170.jpg",slug:"chemical-properties-of-starch",publishedDate:"March 11th 2020",editedByType:"Edited by",bookSignature:"Martins Emeje",hash:"0aedfdb374631bb3a33870c4ed16559a",volumeInSeries:9,fullTitle:"Chemical Properties of Starch",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Emeje",slug:"martins-emeje",fullName:"Martins Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8019",title:"Alginates",subtitle:"Recent Uses of This Natural Polymer",coverURL:"https://cdn.intechopen.com/books/images_new/8019.jpg",slug:"alginates-recent-uses-of-this-natural-polymer",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Leonel Pereira",hash:"61ea5c1aef462684a3b2215631b7dbf2",volumeInSeries:7,fullTitle:"Alginates - Recent Uses of This Natural Polymer",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira",profilePictureURL:"https://mts.intechopen.com/storage/users/279788/images/system/279788.jpg",institutionString:"University of Coimbra",institution:{name:"University of Coimbra",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8504",title:"Pectins",subtitle:"Extraction, Purification, Characterization and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/8504.jpg",slug:"pectins-extraction-purification-characterization-and-applications",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Martin Masuelli",hash:"ff1acef627b277c575a10b3259dd331b",volumeInSeries:6,fullTitle:"Pectins - Extraction, Purification, Characterization and Applications",editors:[{id:"99994",title:"Dr.",name:"Martin",middleName:"Alberto",surname:"Masuelli",slug:"martin-masuelli",fullName:"Martin Masuelli",profilePictureURL:"https://mts.intechopen.com/storage/users/99994/images/system/99994.png",institutionString:"National University of San Luis",institution:{name:"National University of San Luis",institutionURL:null,country:{name:"Argentina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",institutionString:"Kogakuin University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:16,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:4,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 24th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:314,numberOfPublishedBooks:31,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/309963",hash:"",query:{},params:{id:"309963"},fullPath:"/profiles/309963",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var t;(t=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(t)}()