Amperometric biosensors for diseases or infectious agents based on immunosensors.
\\n\\n
These books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\\n\\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\\n\\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\\n\\n\\n\\n\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
IntechOpen and Knowledge Unlatched formed a partnership to support researchers working in engineering sciences by enabling an easier approach to publishing Open Access content. Using the Knowledge Unlatched crowdfunding model to raise the publishing costs through libraries around the world, Open Access Publishing Fee (OAPF) was not required from the authors.
\n\nInitially, the partnership supported engineering research, but it soon grew to include physical and life sciences, attracting more researchers to the advantages of Open Access publishing.
\n\n\n\nThese books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\n\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\n\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\n\n\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"7222",leadTitle:null,fullTitle:"Current Topics in Tropical Emerging Diseases and Travel Medicine",title:"Current Topics in Tropical Emerging Diseases and Travel Medicine",subtitle:null,reviewType:"peer-reviewed",abstract:"Tropical emerging diseases pose a significant risk for the circulation of old and new pathogens in areas previously unknown, also implying the possibility of new morbidities and mortalities and new consequences for naïve populations. Globalization, migration and travel are key factors for tropical diseases, and represent the need for integration of tropical medicine, travel medicine and epidemiology in the understanding of such complex situations. Neglected tropical diseases such as leprosy or Chagas disease, arboviral diseases, HIV, Ebola, and arenaviral infections are just a few examples. This book tries to update significant epidemiological and clinical research in many aspects with a multinational perspective.",isbn:"978-1-78984-825-0",printIsbn:"978-1-78984-824-3",pdfIsbn:"978-1-83881-777-0",doi:"10.5772/intechopen.74142",price:119,priceEur:129,priceUsd:155,slug:"current-topics-in-tropical-emerging-diseases-and-travel-medicine",numberOfPages:178,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"35b395a032b539cba98549da7d337bd1",bookSignature:"Alfonso J. Rodriguez-Morales",publishedDate:"December 19th 2018",coverURL:"https://cdn.intechopen.com/books/images_new/7222.jpg",numberOfDownloads:10746,numberOfWosCitations:8,numberOfCrossrefCitations:4,numberOfCrossrefCitationsByBook:1,numberOfDimensionsCitations:17,numberOfDimensionsCitationsByBook:1,hasAltmetrics:1,numberOfTotalCitations:29,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"January 23rd 2018",dateEndSecondStepPublish:"February 13th 2018",dateEndThirdStepPublish:"April 14th 2018",dateEndFourthStepPublish:"July 3rd 2018",dateEndFifthStepPublish:"September 1st 2018",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"11",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1131",title:"Global Health",slug:"global-health"}],chapters:[{id:"63067",title:"Leprosy: The Ancient and Stubborn Disease",doi:"10.5772/intechopen.79984",slug:"leprosy-the-ancient-and-stubborn-disease",totalDownloads:1013,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Leprosy can be caused by an infection of Mycobacterium leprae commonly acquired through contact with an infected person. Clinical presentation depends on the patient’s immune status at the time of infection and during the course of disease. Leprosy is associated with disability and marginalization. The Global Leprosy Strategy 2016–2020 released in April 2016 underscored its goal of “accelerating towards a leprosy free-world.” Today’s leprosy differs from the leprosy of the past, but yet there are still many things that are not immediately known, so it is still a broad socioeconomic challenge for scientists to solve. Leprosy has low pathogenicity, only a small proportion of infected people develop signs of the disease. If leprosy is not diagnosed and treated in the early stages, further progress of the disease is determined by the strength of the patient’s immune response. Various clinical signs can be known during the early phase of leprosy, defined as indeterminate phase, so that it is difficult to diagnose the disease. Multidrug therapy (MDT) was recommended as the standard treatment. The morbidity report of leprosy will be important in epidemiology because it is based on real events and not based on estimate.",signatures:"Prasetyadi Mawardi",downloadPdfUrl:"/chapter/pdf-download/63067",previewPdfUrl:"/chapter/pdf-preview/63067",authors:[{id:"245283",title:"Dr.",name:"Prasetyadi",surname:"Mawardi",slug:"prasetyadi-mawardi",fullName:"Prasetyadi Mawardi"}],corrections:null},{id:"63058",title:"Chagas Disease in the Yucatan Peninsula, Mexico",doi:"10.5772/intechopen.80032",slug:"chagas-disease-in-the-yucatan-peninsula-mexico",totalDownloads:946,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"American trypanosomiasis or Chagas disease is caused by the protozoan Trypanosoma cruzi, which affects a wide variety of hosts including the man, until now treatment options or vaccines developed are not enough to control or prevent infected cases. The main way of transmission is vectorial, through insects of the Reduviidae family, as well by congenital transmission, blood/organ transplants or oral transmission. Chagas disease are considered as endemic in many areas due to the presence and lack of control of insect vectors. Many touristic places in Latin America are located in endemic areas; however, there is a nonexistence of knowledge by touristic service providers about the theme. For that reason, there is a latent risk that tourists who come to vacation in endemic areas are exposed get the infection. The risk factors are well identified, and this allows that well-defined prevention strategies can be established in order to avoid the presentation of cases in visitors to the tourist zones. This chapter aimed to describe the situation of Chagas disease in touristic areas of the Caribbean of America Latina as and to provide a brief review of information that allows visitors to know about the epidemiology and potential risks of this infection.",signatures:"Carlos F. Ortega-Jimenez, Eugenia Guzman-Marin, Eduardo Gutierrez-Blanco, Antonio Ortega-Pacheco and Matilde Jimenez-Coello",downloadPdfUrl:"/chapter/pdf-download/63058",previewPdfUrl:"/chapter/pdf-preview/63058",authors:[{id:"30340",title:"Dr.",name:"Matilde",surname:"Jimenez-Coello",slug:"matilde-jimenez-coello",fullName:"Matilde Jimenez-Coello"},{id:"246883",title:"Dr.",name:"Eugenia",surname:"Guzman-Marin",slug:"eugenia-guzman-marin",fullName:"Eugenia Guzman-Marin"},{id:"246884",title:"Dr.",name:"Antonio",surname:"Ortega-Pacheco",slug:"antonio-ortega-pacheco",fullName:"Antonio Ortega-Pacheco"},{id:"246885",title:"Dr.",name:"Eduardo",surname:"Gutierrez-Blanco",slug:"eduardo-gutierrez-blanco",fullName:"Eduardo Gutierrez-Blanco"},{id:"263502",title:"BSc.",name:"Carlos F.",surname:"Ortega-Jimenez",slug:"carlos-f.-ortega-jimenez",fullName:"Carlos F. Ortega-Jimenez"}],corrections:null},{id:"62284",title:"Neglected Tropical Diseases with an Impact on Kidney Function",doi:"10.5772/intechopen.78981",slug:"neglected-tropical-diseases-with-an-impact-on-kidney-function",totalDownloads:962,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Neglected tropical diseases are a group of infectious diseases caused by infectious and parasitic agents that occur in a large part of the world affecting millions of people and can complicate matters with serious organ damage. The kidneys can be affected in many of these diseases, including Chagas disease, dengue, leishmaniasis, leprosy, and schistosomiasis. In this chapter, we describe the mechanisms by which the kidneys are damaged in the setting of these diseases, the clinical manifestations, and the current available treatment options. We also describe the recent novel biomarkers that are under investigation for the early diagnosis of kidney injury in the course of these diseases and the future perspectives.",signatures:"Geraldo Bezerra da Silva Junior, Ana Amélia Reis Jereissati, Ane Karoline Medina Neri, Danielli Oliveira da Costa Lino, Juliana Gomes Ramalho de Oliveira and Elizabeth De Francesco Daher",downloadPdfUrl:"/chapter/pdf-download/62284",previewPdfUrl:"/chapter/pdf-preview/62284",authors:[{id:"37817",title:"Dr.",name:"Geraldo",surname:"Da Silva Junior",slug:"geraldo-da-silva-junior",fullName:"Geraldo Da Silva Junior"},{id:"43013",title:"Prof.",name:"Elizabeth",surname:"Daher",slug:"elizabeth-daher",fullName:"Elizabeth Daher"},{id:"252861",title:"Dr.",name:"Ana Amelia",surname:"Reis Jereissati",slug:"ana-amelia-reis-jereissati",fullName:"Ana Amelia Reis Jereissati"},{id:"252862",title:"Dr.",name:"Ane Karoline",surname:"Medina Neri",slug:"ane-karoline-medina-neri",fullName:"Ane Karoline Medina Neri"},{id:"252863",title:"Dr.",name:"Danielli",surname:"Oliveira Da Costa Lino",slug:"danielli-oliveira-da-costa-lino",fullName:"Danielli Oliveira Da Costa Lino"},{id:"252864",title:"MSc.",name:"Juliana",surname:"Gomes Ramalho De Oliveira",slug:"juliana-gomes-ramalho-de-oliveira",fullName:"Juliana Gomes Ramalho De Oliveira"}],corrections:null},{id:"62363",title:"Mosquito-Borne Diseases and ‘One Health’: The Northwestern Italian Experience",doi:"10.5772/intechopen.78985",slug:"mosquito-borne-diseases-and-one-health-the-northwestern-italian-experience",totalDownloads:1054,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"In Italy, the surveillance of Mosquito-Borne Diseases (MBDs) is regulated by two national preparedness plans: (1) for West Nile and Usutu viruses, integrating human and veterinary surveillance in order to early detect viruses circulation and to quickly apply control measures aimed at reducing the risk of transmission through blood and blood components and (2) for Arbovirosis transmitted by Aedes mosquitoes, mainly Chikungunya, Dengue and Zika viruses, based on surveillance of both imported and autochthonous human cases. This chapter reports the results of the application of these National Plans in Northwestern Italy and their impact for human health. In detail, we present the coordinated activities enforced in Piemonte and Liguria Regions, as a good example of the ‘One Health approach’ to control MBDs and prevent human transmission.",signatures:"Maria Cristina Radaelli, Federica Verna, Alessandra Pautasso, Veronica Bellavia, Marco Ballardini, Walter Mignone, Loretta Masoero, Alessandro Dondo, Luca Picco, Roberto Moschi, Andrea Mosca, Laura Chiavacci and Cristina Casalone",downloadPdfUrl:"/chapter/pdf-download/62363",previewPdfUrl:"/chapter/pdf-preview/62363",authors:[{id:"57238",title:"Dr.",name:"Cristina",surname:"Casalone",slug:"cristina-casalone",fullName:"Cristina Casalone"},{id:"245663",title:"Dr.",name:"Alessandra",surname:"Pautasso",slug:"alessandra-pautasso",fullName:"Alessandra Pautasso"},{id:"247429",title:"Dr.",name:"Federica",surname:"Verna",slug:"federica-verna",fullName:"Federica Verna"},{id:"247431",title:"Dr.",name:"Veronica",surname:"Bellavia",slug:"veronica-bellavia",fullName:"Veronica Bellavia"},{id:"247432",title:"Dr.",name:"Marco",surname:"Ballardini",slug:"marco-ballardini",fullName:"Marco Ballardini"},{id:"247433",title:"Dr.",name:"Walter",surname:"Mignone",slug:"walter-mignone",fullName:"Walter Mignone"},{id:"250721",title:"Dr.",name:"Maria Cristina",surname:"Radaelli",slug:"maria-cristina-radaelli",fullName:"Maria Cristina Radaelli"},{id:"256569",title:"Dr.",name:"Loretta",surname:"Masoero",slug:"loretta-masoero",fullName:"Loretta Masoero"},{id:"256570",title:"Dr.",name:"Alessandro",surname:"Dondo",slug:"alessandro-dondo",fullName:"Alessandro Dondo"},{id:"256571",title:"Dr.",name:"Laura",surname:"Chiavacci",slug:"laura-chiavacci",fullName:"Laura Chiavacci"},{id:"256572",title:"Dr.",name:"Luca",surname:"Picco",slug:"luca-picco",fullName:"Luca Picco"},{id:"256573",title:"Dr.",name:"Roberto",surname:"Moschi",slug:"roberto-moschi",fullName:"Roberto Moschi"},{id:"256873",title:"Dr.",name:"Andrea",surname:"Mosca",slug:"andrea-mosca",fullName:"Andrea Mosca"}],corrections:null},{id:"64497",title:"Indonesia Dengue Fever: Status, Vulnerability, and Challenges",doi:"10.5772/intechopen.82290",slug:"indonesia-dengue-fever-status-vulnerability-and-challenges",totalDownloads:1982,totalCrossrefCites:0,totalDimensionsCites:8,hasAltmetrics:1,abstract:"In Indonesia, the incidence rate (IR) of dengue fever reported increase almost in every year since the first cases were found in 1968, from 0.05 to ~35–40 per 100,000 population in 2013, with superimposed epidemics demonstrating a similar increasing trend with the highest epidemic occurring in 2010 (IR 85.7). Most currently, about 80% of regencies/cities had been infected and posed as very high vulnerability of spreading the disease. Increased incidence of dengue fever is associated with the increase of rainfall and temperature in particular years. Up to the year of 2038, a climate model of Meteorological, Climatological, and Geophysical Agency shows increasing trend of rainfall and temperature. Along with its unsuccessful of Indonesia dengue fever control program will lead challenges to reduce dengue fever endemic in the future. Revitalization of dengue disease control program in every single stage with close monitoring implementation is urgently needed. Socialization, community capacity building, and participation could also be a joint sectoral action to enhance the dengue fever control program.",signatures:"Budi Haryanto",downloadPdfUrl:"/chapter/pdf-download/64497",previewPdfUrl:"/chapter/pdf-preview/64497",authors:[{id:"139963",title:"Dr.",name:"Budi",surname:"Haryanto",slug:"budi-haryanto",fullName:"Budi Haryanto"}],corrections:null},{id:"63919",title:"RNA Association, RNA Interference, and microRNA Pathways in Dengue Fever Virus-Host Interaction",doi:"10.5772/intechopen.80334",slug:"rna-association-rna-interference-and-microrna-pathways-in-dengue-fever-virus-host-interaction",totalDownloads:1068,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Dengue fever is a fatal vector transmitted disease and is one of the most significant health problems which have magnified its impact globally by afflicting 390 million people across 110 countries. The causative agent of this life-threatening disease is a positive single-stranded RNA arbovirus known as dengue virus (DENV), which uses Aedes aegypti mosquito as an intermediate host. It has been well demonstrated that virus evades mosquito’s RNA interference (RNAi)-mediated antiviral defense and manipulates host microRNA (miRNA) profile to its own benefit. However, the exact mechanisms are still not exclusively elucidated. The molecular mechanisms which characterize the role of novel DENV-encoded small RNAs and other viral proteins in host miRNA modulation and evasion of RNA interference are still elusive. Furthermore, the possibility of small activating RNAs-(RNAa)-mediated activation in mosquitoes in conjunction with dengue virus genes is not fully explored. This book chapter pragmatically overviews intricate interplay between virus-host interactions, how virus invades host antivirus defense mechanisms, and possibly the potential emerging therapeutic role of RNA activation (RNAa) and RNAi for the infections, which can be cured by specific gene activation and gene silencing, respectively.",signatures:"Imran Shahid",downloadPdfUrl:"/chapter/pdf-download/63919",previewPdfUrl:"/chapter/pdf-preview/63919",authors:[{id:"188219",title:"Prof.",name:"Imran",surname:"Shahid",slug:"imran-shahid",fullName:"Imran Shahid"}],corrections:null},{id:"61509",title:"HIV/AIDS in a Community of Western Cameroon",doi:"10.5772/intechopen.77086",slug:"hiv-aids-in-a-community-of-western-cameroon",totalDownloads:894,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"This chapter aims at raising awareness on the prevailing HIV/AIDS situation in a community of West Cameroon. Overall prevalence was 5.21%. Males were more infected than females and individuals ≥ 36 years old recorded highest prevalence. There was no significant difference in prevalence with profession, analysis based on marital status revealed that unmarried were more infected as compared to married, based on the motif of test, those who made the test because of sickness were infected than those who did for pregnancy purpose. The year interval [2014-2016] recorded highest prevalence as compared to other year-intervals; usage of condom in sexual practice for prevention in such individuals showed low prevalence as compared to individuals who did not consider such a prevention option. HIV/AIDS prevails in the Fondonera Community of west region and serious sensitization on its occurrence/level is of vital importance to prevent future infections.",signatures:"Sevidzem Silas Lendzele",downloadPdfUrl:"/chapter/pdf-download/61509",previewPdfUrl:"/chapter/pdf-preview/61509",authors:[{id:"243979",title:"Ph.D. Student",name:"Sevidzem",surname:"Lendzele",slug:"sevidzem-lendzele",fullName:"Sevidzem Lendzele"}],corrections:null},{id:"62148",title:"Ebola Virus Disease: Progress So Far in the Management of the Disease",doi:"10.5772/intechopen.79053",slug:"ebola-virus-disease-progress-so-far-in-the-management-of-the-disease",totalDownloads:1139,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Ebola virus disease is one of the most deadly emerging infectious diseases in the world which causes severe haemorrhagic fever, with a mortality rate of 50–90%. Following the largest outbreak in West Africa in 2014 which was the most deadly of all time challenging global health, so much concern has been tilted towards the management of the disease. Some of the major global challenges that prolonged and escalated the gravity of the 2014 outbreak were the lack of prompt, reliable and affordable diagnostic tools, but most importantly no specific treatment and vaccines were available to manage the infection. Though certain non-licensed experimental drugs as well as vaccines were introduced during the 2014 outbreak that contributed towards the control of the epidemic, their efficacy was yet to be confirmed in randomized trials. Presently, a few rapid diagnostic test kits have been approved by FDA and WHO. Also, several experimental drugs and vaccines are undergoing randomized clinical trials with a few currently at phase III. Thus, it is our hope that most of these drugs and vaccines will be available in future to better manage re-emerging Ebola infections or outbreaks.",signatures:"Godwill Azeh Engwa",downloadPdfUrl:"/chapter/pdf-download/62148",previewPdfUrl:"/chapter/pdf-preview/62148",authors:[{id:"241837",title:"Mr.",name:"Godwill Azeh",surname:"Engwa",slug:"godwill-azeh-engwa",fullName:"Godwill Azeh Engwa"}],corrections:null},{id:"62734",title:"A Reemerging Lassa Virus: Aspects of Its Structure, Replication, Pathogenicity and Diagnosis",doi:"10.5772/intechopen.79072",slug:"a-reemerging-lassa-virus-aspects-of-its-structure-replication-pathogenicity-and-diagnosis",totalDownloads:1690,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:0,abstract:"Lassa virus is a linear, bisegmented, single-stranded RNA virus, which belong to the Arenaviridae family that causes viral hemorrhagic fever transmitted by rats. The virus is endemic in West African countries, which may be due to its zoonotic nature. Lassa virus infection occurs through contact with the vector Mastomys natalensis or infected humans and can lead to wide symptoms from a mild infection to Lassa fever and to a severe fatal viral hemorrhagic fever, which include delayed cellular immunity resulting to fulminant viremia. The virus replicates through a strategy known as the Ambisense, where two RNA strands code for genes in both the sense and antisense direction that is rapid and demonstrate temporal control in replication. Different diagnostic tests for the virus are available, which range from viral culture to serological and molecular diagnostic tests. There is an urgent need to develop drugs and vaccines against the virus because the World Health Organization (WHO) has identified Lassa virus as one of the viruses that is likely to cause a future epidemic, although a research is ongoing to evaluate Lassa virus vaccine immunogenicity in the CBA/J-ML29 mouse model. This chapter gives an overview on the structure, replication cycle, pathogenesis, and diagnosis of the virus.",signatures:"Victor B. Oti",downloadPdfUrl:"/chapter/pdf-download/62734",previewPdfUrl:"/chapter/pdf-preview/62734",authors:[{id:"245062",title:"Mr.",name:"Victor B.",surname:"Oti",slug:"victor-b.-oti",fullName:"Victor B. Oti"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"3432",title:"Current Topics in Public Health",subtitle:null,isOpenForSubmission:!1,hash:"bbfaa5b624db308171170cb70e9de196",slug:"current-topics-in-public-health",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/3432.jpg",editedByType:"Edited by",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editedByType:"Edited by",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"825",title:"Current Topics in Tropical Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ef65e8eb7a2ada65f2bc939aa73009e3",slug:"current-topics-in-tropical-medicine",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/825.jpg",editedByType:"Edited by",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5270",title:"Current Topics in Malaria",subtitle:null,isOpenForSubmission:!1,hash:"d122e43279945caab50f3468168e0008",slug:"current-topics-in-malaria",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/5270.jpg",editedByType:"Edited by",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5103",title:"Current Topics in Chikungunya",subtitle:null,isOpenForSubmission:!1,hash:"6d9bf9299753de5071c9bb65eb2612cd",slug:"current-topics-in-chikungunya",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/5103.jpg",editedByType:"Edited by",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4719",title:"Current Topics in Echinococcosis",subtitle:null,isOpenForSubmission:!1,hash:"9bf40c20335433736665a335834c0ad8",slug:"current-topics-in-echinococcosis",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/4719.jpg",editedByType:"Edited by",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5716",title:"Current Topics in Zika",subtitle:null,isOpenForSubmission:!1,hash:"b8d20b16a485f3fd2f89e45ee050bba4",slug:"current-topics-in-zika",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/5716.jpg",editedByType:"Edited by",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5750",title:"Giardiasis",subtitle:null,isOpenForSubmission:!1,hash:"3aca9cea1fdff766300c4eddb46e0335",slug:"current-topics-in-giardiasis",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/5750.jpg",editedByType:"Edited by",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9528",title:"Current Topics and Emerging Issues in Malaria Elimination",subtitle:null,isOpenForSubmission:!1,hash:"7f178329cc42e691efe226b32f14e2ea",slug:"current-topics-and-emerging-issues-in-malaria-elimination",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/9528.jpg",editedByType:"Edited by",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8990",title:"Current Concepts in Zika Research",subtitle:null,isOpenForSubmission:!1,hash:"f410c024dd429d6eb0e6abc8973ecc14",slug:"current-concepts-in-zika-research",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/8990.jpg",editedByType:"Edited by",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"80612",slug:"corrigendum-to-risk-assessment-and-health-safety-and-environmental-management-of-carbon-nanomaterial",title:"Corrigendum to: Risk Assessment and Health, Safety, and Environmental Management of Carbon Nanomaterials",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/80612.pdf",downloadPdfUrl:"/chapter/pdf-download/80612",previewPdfUrl:"/chapter/pdf-preview/80612",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/80612",risUrl:"/chapter/ris/80612",chapter:{id:"66689",slug:"risk-assessment-and-health-safety-and-environmental-management-of-carbon-nanomaterials",signatures:"Guilherme Lenz e Silva, Camila Viana, Danieli Domingues and Fernanda Vieira",dateSubmitted:null,dateReviewed:"February 26th 2019",datePrePublished:"April 11th 2019",datePublished:"February 19th 2020",book:{id:"8137",title:"Nanomaterials",subtitle:"Toxicity, Human Health and Environment",fullTitle:"Nanomaterials - Toxicity, Human Health and Environment",slug:"nanomaterials-toxicity-human-health-and-environment",publishedDate:"February 19th 2020",bookSignature:"Simona Clichici, Adriana Filip and Gustavo M. do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/8137.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"64160",title:"Prof.",name:"Simona",middleName:null,surname:"Clichici",slug:"simona-clichici",fullName:"Simona Clichici"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"251730",title:"Dr.",name:"Guilherme",middleName:"Fredeico Bernardo",surname:"Lenz E Silva",fullName:"Guilherme Lenz E Silva",slug:"guilherme-lenz-e-silva",email:"guilhermelenz@usp.br",position:null,institution:null},{id:"286148",title:"Dr.",name:"Camila",middleName:null,surname:"Viana",fullName:"Camila Viana",slug:"camila-viana",email:"camilaoviana@gmail.com",position:null,institution:null},{id:"286149",title:"Dr.",name:"Fernanda",middleName:null,surname:"Vieira",fullName:"Fernanda Vieira",slug:"fernanda-vieira",email:"fevieira2001@gmail.com",position:null,institution:null},{id:"286151",title:"M.Sc.",name:"Danieli",middleName:"Silva",surname:"Domingues",fullName:"Danieli Domingues",slug:"danieli-domingues",email:"danielisilva@ymail.com",position:null,institution:null}]}},chapter:{id:"66689",slug:"risk-assessment-and-health-safety-and-environmental-management-of-carbon-nanomaterials",signatures:"Guilherme Lenz e Silva, Camila Viana, Danieli Domingues and Fernanda Vieira",dateSubmitted:null,dateReviewed:"February 26th 2019",datePrePublished:"April 11th 2019",datePublished:"February 19th 2020",book:{id:"8137",title:"Nanomaterials",subtitle:"Toxicity, Human Health and Environment",fullTitle:"Nanomaterials - Toxicity, Human Health and Environment",slug:"nanomaterials-toxicity-human-health-and-environment",publishedDate:"February 19th 2020",bookSignature:"Simona Clichici, Adriana Filip and Gustavo M. do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/8137.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"64160",title:"Prof.",name:"Simona",middleName:null,surname:"Clichici",slug:"simona-clichici",fullName:"Simona Clichici"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"251730",title:"Dr.",name:"Guilherme",middleName:"Fredeico Bernardo",surname:"Lenz E Silva",fullName:"Guilherme Lenz E Silva",slug:"guilherme-lenz-e-silva",email:"guilhermelenz@usp.br",position:null,institution:null},{id:"286148",title:"Dr.",name:"Camila",middleName:null,surname:"Viana",fullName:"Camila Viana",slug:"camila-viana",email:"camilaoviana@gmail.com",position:null,institution:null},{id:"286149",title:"Dr.",name:"Fernanda",middleName:null,surname:"Vieira",fullName:"Fernanda Vieira",slug:"fernanda-vieira",email:"fevieira2001@gmail.com",position:null,institution:null},{id:"286151",title:"M.Sc.",name:"Danieli",middleName:"Silva",surname:"Domingues",fullName:"Danieli Domingues",slug:"danieli-domingues",email:"danielisilva@ymail.com",position:null,institution:null}]},book:{id:"8137",title:"Nanomaterials",subtitle:"Toxicity, Human Health and Environment",fullTitle:"Nanomaterials - Toxicity, Human Health and Environment",slug:"nanomaterials-toxicity-human-health-and-environment",publishedDate:"February 19th 2020",bookSignature:"Simona Clichici, Adriana Filip and Gustavo M. do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/8137.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"64160",title:"Prof.",name:"Simona",middleName:null,surname:"Clichici",slug:"simona-clichici",fullName:"Simona Clichici"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"7383",leadTitle:null,title:"Hydrocultural and Hydroponics Systems",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tHydroculture is classified as a system to grow indoor decorative plant, it is passive system meaning no moving part, catered to make life easier for humans and plant. Hydroculture is a form of passive hydroponics and a way of growing plants without soil. Passive hydroponics systems often use an inert growing medium such as clay pebbles instead of soil. A hydroculture system is often made up of five simple parts – clay pebbles (or a similar inert growing medium), culture pots, water level indicator, pot liners, and fertiliser.
\r\n\r\n\tHydroponics is growing plants in water actively, the water is always moving and never left or it will stagnate. It is focused on plant growth and is used for vegetables or any culture requiring production. There are many systems and way, they all stem from the same concept, how to suspend the plant, oxygenate the water and get the water to the roots. Hydroponic systems integrate the cultivation of plants without the use of soil, but with the use of an inert medium, such as gravel, sand, peat, vermiculite, pumice, perlite, coconut coir, sawdust, rice husks or other substrates, to which is added a nutritive solution that contains all the essential elements that a plant needs to achieve its normal growth and development. These days, there are hydroponic systems for the cultivation of vegetables in space stations to operate in places of very low gravity.
\r\n\r\n\tHydrocultural and hydroponic systems are also being created in the roofing of buildings and some of them use photovoltaic panels to energize the pumping system, which in turn would pump the city's wastewater to irrigate the plants, which would benefit from sunlight.
\r\n\r\n\tThe production of vegetables with hydrocultural and hydroponic systems has been increasing in the world and further research is needed to develop new hydrocultural and hydroponic systems to reduce the cost of energy and materials required for crop production, which is the scope of this book.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"c174b6414bd765e3978f7242ba33d1d1",bookSignature:"Prof. Alejandro Isabel Luna Maldonado, Dr. Humberto Rodriguez-Fuentes, Dr. Juan Antonio Vidales Contreras and Dr. Julia Mariana Márquez Reyes",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/7383.jpg",keywords:"Hydrocultural systems, Indoor plant, Heavy metal toxicity, Rhizosphere, Disease, Soilless, Substrates, Aeration, Biofilters, Urban agriculture, Vertical farm, Smart agriculture",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 1st 2019",dateEndSecondStepPublish:"October 9th 2019",dateEndThirdStepPublish:"December 8th 2019",dateEndFourthStepPublish:"February 26th 2020",dateEndFifthStepPublish:"April 26th 2020",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"3 years",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",middleName:null,surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado",profilePictureURL:"https://mts.intechopen.com/storage/users/105774/images/system/105774.jpeg",biography:"Dr. Alejandro Isabel Luna Maldonado received a PhD in Agricultural Sciences from Kyushu University, Fukuoka, Japan, in 2009. He began his career as a lecturer in the Department of Agricultural Engineering at the Autonomous University of Nuevo León in 1992 and was trained in the design and automation of agro-industrial machinery at the Japan International Cooperation Agency. Professor Luna Maldonado became an assistant professor in 1996 and a professor in 2018. He has published thirty-three articles, five book chapters, and four books. He has advised six doctoral theses, five master\\'s theses, and three undergraduate theses. He has served as the head of the educational program of Food Industry Engineering, which has been internationally accredited by Accreditation Board for Engineering and Technology (ABET), since 2009. He has been a member of the Mexican Council of Science and Technology since 2012, and the Program for the Development Teaching Professional (PRODEP) since 2003. He has also been a member of the American Society of Agricultural Engineering since 2012, and the Japanese Society of Agricultural Machinery since 2007.",institutionString:"Universidad Autónoma de Nuevo León",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Universidad Autónoma de Nuevo León",institutionURL:null,country:{name:"Mexico"}}}],coeditorOne:{id:"130491",title:"Dr.",name:"Humberto",middleName:null,surname:"Rodriguez-Fuentes",slug:"humberto-rodriguez-fuentes",fullName:"Humberto Rodriguez-Fuentes",profilePictureURL:"https://mts.intechopen.com/storage/users/130491/images/system/130491.jpeg",biography:"Dr. Humberto Rodriguez-Fuentes is Professor of Environment and Sustainability at the Autonomous University of Nuevo León, Mexico. He graduated with a doctorate in Agricultural Sciences with a specialty in Water-Soil from the same university. He has forty years of experience in teaching and research. His research is mainly focused in the area of plant factories for the production of highly nutritious vegetables. Since 1990 he has been a national researcher distinguished by the government of Mexico in Biotechnology and Agricultural Sciences. He has published six textbooks, twelve book chapters, and more than fifty articles in journals with strict national/international arbitration. He is also the editor of three books with international distribution.",institutionString:"Universidad Autónoma de Nuevo León",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Universidad Autónoma de Nuevo León",institutionURL:null,country:{name:"Mexico"}}},coeditorTwo:{id:"215230",title:"Dr.",name:"Juan Antonio",middleName:null,surname:"Vidales Contreras",slug:"juan-antonio-vidales-contreras",fullName:"Juan Antonio Vidales Contreras",profilePictureURL:"https://mts.intechopen.com/storage/users/215230/images/system/215230.jpeg",biography:"Juan Antonio Vidales Contreras, MSc, PhD is an agricultural engineer. Since 1985, he has been a full-time professor at the School of Agronomy at the Autonomous University of Nuevo Leon (UANL), Mexico. He received an Agronomy Engineer degree at the same university on 1984. His PhD was awarded by the University of Arizona in 2001. Dr. Vidales Contreras has published more than fifty original research papers in indexed journals, five book chapters, and has participated and contributed in more than twenty scientific meetings.",institutionString:"Universidad Autónoma de Nuevo León",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Universidad Autónoma de Nuevo León",institutionURL:null,country:{name:"Mexico"}}},coeditorThree:{id:"299825",title:"Dr.",name:"Julia Mariana",middleName:null,surname:"Márquez Reyes",slug:"julia-mariana-marquez-reyes",fullName:"Julia Mariana Márquez Reyes",profilePictureURL:"https://mts.intechopen.com/storage/users/299825/images/system/299825.png",biography:"Julia Mariana Márquez Reyes obtained a PhD in Biotechnology from Autonomous University of Nuevo Leon (UANL), Mexico, in 2013. She specializes in bioreactors with anaerobic activity for the removal of contaminants, phytoremediation for the control of heavy metals in water and soil, enzymatic activity and antioxidant capacity of plant organisms used in environmental biotechnology, and development of sustainable technologies. She began her career as a lecturer of Balance of Matter and Energy, Unit Operations, Environmental Microbiology at UANL. Dr. Márquez Reyes became an assistant professor in 2018. She has been a member of the Mexican Council for Science and Technology since 2009. She has published six scientific papers and one book chapter.",institutionString:"Universidad Autónoma de Nuevo León",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Universidad Autónoma de Nuevo León",institutionURL:null,country:{name:"Mexico"}}},coeditorFour:null,coeditorFive:null,topics:[{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"270941",firstName:"Sandra",lastName:"Maljavac",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/270941/images/7824_n.jpg",email:"sandra.m@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6418",title:"Hyperspectral Imaging in Agriculture, Food and Environment",subtitle:null,isOpenForSubmission:!1,hash:"9005c36534a5dc065577a011aea13d4d",slug:"hyperspectral-imaging-in-agriculture-food-and-environment",bookSignature:"Alejandro Isabel Luna Maldonado, Humberto Rodríguez Fuentes and Juan Antonio Vidales Contreras",coverURL:"https://cdn.intechopen.com/books/images_new/6418.jpg",editedByType:"Edited by",editors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1696",title:"Horticulture",subtitle:null,isOpenForSubmission:!1,hash:"2f756a5cc2c7d71dbb94095e58f751c9",slug:"horticulture",bookSignature:"Alejandro Isabel Luna Maldonado",coverURL:"https://cdn.intechopen.com/books/images_new/1696.jpg",editedByType:"Edited by",editors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10359",title:"Landraces",subtitle:"Traditional Variety and Natural Breed",isOpenForSubmission:!1,hash:"0600836fb2c422f7b624363d1e854f68",slug:"landraces-traditional-variety-and-natural-breed",bookSignature:"Amr Elkelish",coverURL:"https://cdn.intechopen.com/books/images_new/10359.jpg",editedByType:"Edited by",editors:[{id:"231337",title:"Dr.",name:"Amr",surname:"Elkelish",slug:"amr-elkelish",fullName:"Amr Elkelish"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"43616",title:"Amperometric Biosensor for Diagnosis of Disease",doi:"10.5772/53656",slug:"amperometric-biosensor-for-diagnosis-of-disease",body:'Our main interest is discussing amperometric biosensors with application in certain disease diagnosis. These biosensors are based on the affinity reaction between antigen/antibody (immunosensor) or DNA/DNA (genosensor) or enzymatic catalytic reaction. The selective interactions will be also discussed in this chapter. In this first part, the central goal is to present and discuss some aspects of working electrode (WE) surface preparation and characterization, electrochemical cell arrangements and (chrono)amperometry as a simple electrochemical technique to evaluate some types of biosensors.
It is well known that in chemical sensors the chemical information is transformed into useful analytical signal. The chemical information can be associated with the concentration of a specific component present in the sample. In a simple way, a molecular receptor in series with a physico-chemical transducer characterizes what is called chemical sensor [1]. When the molecular receptor involves a biochemical component, a biosensor is obtained [2]. In a biosensor, the biological component is responsible for the selectivity while the characteristics of the electrochemical detector determine the sensitivity. It means that the electrochemical detector (transducer) must be carefully selected and prepared. In its selection, the mechanism nature of the biosensor must be known. This mechanism depends basically on the type of active components involved and on the mode of signal transduction. For instance, in enzymatic biosensors, the active site of the enzyme must be preserved after immobilization and satisfactory electrochemical communicability between the redox site and the electrode should be guaranteed.
Different electrochemical techniques can be used to characterize and evaluate biosensors: chrono(amperometry), chronopotentiometry, linear potential sweep (LPS), cyclic voltammetry (CV) (DC techniques), and electrochemical impedance spectroscopy (EIS) and AC voltammetries (AC techniques). For electrochemical characterization of electrode processes, CV and EIS are probably the most used electrochemical techniques. In general, when pre-treated surfaces and modified electrodes are characterized using these techniques, the reversibility, the electron charge transfer (
Details on cyclic voltammetry and its applications are displayed in some textbooks [4-6]. Fundamentals and mathematical analysis of electrochemical impedance spectroscopy can be found in [7,8]. For some applications of CV and EIS to immunosensors characterization, the readers are referred to [9].
The main reasons for the large use of (chrono)amperometry are its simplicity in data collection due to the apparent facility in measuring the current related to the
The electrochemical techniques are not able to identify the chemical nature of the products or reactants involved in certain electrochemical process, and then some non-electrochemical techniques complement and help us to understand the electrochemical processes. They can be associated to surface or bulk (solid, liquid or gas) analysis.
Amperometry is a voltammetric method in which two- or three-electrode cell configurations are used, and the potential applied between the WE and the auxiliary electrode (AE) results in a constant potential at the working
In order to develop an amperometric biosensor, special attention should be devoted to choose the WE, to conveniently prepare and modify its surface, and identify the electrochemical response related to the specific reaction involving any electroactive species present in the biosensor system, which may unequivocally indicate the presence of certain disease. The performance of the biosensor is strongly dependent on the
In order for facilitating the analyses of I-t curves and for getting the best sensitivity for the appropriate electrochemical reaction, the applied potential value can be chosen in such way that the surface concentration (csurf) of the investigated species is zero. If csurf is not zero the current will be lower and dependent on the potential and time. The corresponding equations and mathematical details can be found in [14-17].
Based on the comments presented before, some aspects about the transducer in amperometric biosensors should be considered:
chemical nature of the working electrode, surface preparation and characterization;
choosing the potential value of the working electrode;
repeatability and sensitivity in (chrono)amperometry measurements.
In this section, it will be presented different materials that have been used as transducers, mainly for amperometric immunosensors construction, electrode surface preparation and pre-treatments (when used), and electrochemical cell configurations.
Among these different materials, some can be mentioned, such as: gold, CD-trode, screen-printed electrodes, silver, mercury, graphite, glassy carbon, carbon nanotubes, gold nanowires, gold nanoparticles, metallic oxide nanoparticles, carbon paste, boron-doped diamond and composites. These surfaces can be transformed with different modifiers to form SAMs, and composites which carry or incorporate the active components desired to construct the biosensor.
In aqueous medium, gold presents some advantages compared to platinum since it does not adsorb hydrogen and it has high overpotential for hydrogen-evolution reaction, which is appropriate to study cathodic processes. The real surface area can be determined measuring the charge involved in the reduction of the gold oxide layer formed at high overpotentials. This area can be very different from the geometrical one. In the case of carbon paste electrode, the main advantages are ease of preparation, versatility in the chemical modification and its rapid renewal. Glassy carbon electrode has low cost, high resistivity to chemical attack, very low permeability to gas, large potential window, it is easily polished and treated via potential scanning and it may improve the kinetic of some charge transfer reactions [4].
It is well known that the response of a solid electrode is strongly dependent on the surface preparation, i.e., the mechanical, chemical and electrochemical pre-treatment applied. Different from the liquid electrodes (Hg, Tl), the rate of
Massive or modified gold was also used to produce immunosensors. A gold electrode was repeatedly polished with 1.0 and 0.3 μm alumina slurry, successively sonicated in bi-distilled water and ethanol for 5 min, and dried in air [18]. Kheiri et al. [19] used similar procedure to pre-treat the gold electrode before modifying it with carbon nanotubes (CNTs) and other modifiers. The gold electrode was polished with 0.3 and 0.05 mm alumina powders in succession, thoroughly rinsed with double distilled water between each polishing step, successively sonicated with acetone and double distilled water, and dried at room temperature. Another strategy was adopted to clean and pre-treat the gold electrode surface to construct immunosensors [20]. Gold electrodes were first polished with aqueous alumina slurries of 25 and 1 μm, rinsed with MilliQ water, sonicated for 1 min, dried with argon, treated with cold piranha solution for 30 s, washed with Milli-Q water and argon dried. Afterwards, a preliminary electrochemical cleaning was performed by LPS between −0.2 and −1.8 V in 0.1 mol L-1 KOH, followed by CV in 2 mol L-1 H2SO4 at 0.2 V s-1 for 30 cycles or until stable CVs were recorded.
Gold electrodes array, consisting of 16 gold working electrodes where each WE was placed between an Ag pseudo-reference and a gold AE, were used to prepare amperometric immunosensors for tumor detecting [21]. A thin film of gold or platinum was modified with CNTs to construct an amperometric immunosensor for rheumatoid arthritis [22]. To construct amperometric immunosensors for detection of Chagas disease, transducers were prepared by sputtering gold on Si and Si3N4 in argon atmosphere [23]. The silicon-gold slices were annealed at 1000 oC for 5 s, cooled at air atmosphere and room temperature, vigorously washed with distilled water and dried with purified compressed air.
Gold-based substrates produced by sputtering can be substituted, with advantages, by metallic substrates obtained from recordable compact discs (CD-Rs) [24]. These devices present comparable electrochemical performance to commercial gold electrodes, they are easily constructed and versatile, of low cost to be used and discarded in cases of fouling, surface oxidation, irreversible adsorption, and so on, and are user-friendly because electrode polishing is not necessary [25,26]. In general, the gold CD-R has a gold film thickness of 50-100 nm and it can be also used as WE (CDtrode). As-received CD-R pieces may be treated with 69-70% HNO3 for 5-10 min to remove the polymeric layers, cleaned with 95-98% sulfuric acid and abundantly washed with ethanol and/or water. Recently, Foguel et al. (2011) [27,28] developed an amperometric immunosensor for Chagas disease using CDtrode prepared by the procedure described above. It was observed that the voltammetric response of CDtrode depends on the procedure applied to remove the protective polymeric-based layer, the subsequent chemical or electrochemical treatments, trade of CD-R and also sometimes the region of the CD-R. Foguel [29] also investigated in more detail the use of different CD-R trades, nominated as AA, BB and CC, and different regions (out border, center and inner) of CD-Rs (Fig. 1a). The polymeric layers covering the gold surface were removed by different procedures: (a) careful manual removal with tweezers, vigorous washed with distilled water and dried with purified compressed air; (b) the procedure described by Lowinsohn et al. [26]; (c) the procedure described in (b) and the area of the electrode limited by a mask of toner. Figure 1b illustrates the final setup of the electrode.
Regions of CD-Rs: (1) inner, (2) central and (3) out border. (B) CDtrode: (1) electric contact of copper, (2) PTFE tape to fix the electric contact, (3) 1KFA25 Kapton tape® applied on the surface to delimit the area of the electrode, and (4) area of the working electrode [
Surface roughness, CD track height and thickness, and the distance between CD tracks (cavities thickness) were measured by AFM. For AA CD-R the measured parameters were almost invariable in the inner, center and out border regions of the CD-R; BB CD-R presented almost the same surface roughness and CD track height in all regions, high difference in track thickness, the inner border tracks are thicker and the distance between them is higher; the inner and border parts of the CC CD-R showed similar tracks height, thickness and roughness values, but varied the distance between CD tracks among the different regions of the CD-R, and different values for all parameters in the center compared with the other regions. These results indicated that the AA CD-R is the only one that showed a more homogeneous gold surface and, therefore, it should present the best electrochemical behavior. FE-SEM analysis showed differences in the CDtrodes surface: CD tracks were better defined when the polymeric layers were manually removed and flatter when concentrated HNO3 was used. Unmodified electrode surfaces were initially characterized by CV of 1 x 10-3 mol L-1 Fe(CN)64- in 0.5 mol L-1 H2SO4 aqueous solution (higher
Figure 2 shows cyclic voltammograms (CVs) recorded for unmodified CDtrode, constructed from BB CD-R, in 0.1 mol L-1 phosphate buffer (PB) solution at pH 7.0 containing 1 x 10-3 mol L-1 Fe(CN)63-/4- at 50 mV s-1: (A) after removal the protective layers from the gold surface using the procedure (b); (B) after applying the procedure (b) followed by 10 cycles from +0.2 to +1.5 V / Ag|AgCl|KClsat. in 0.5 mol L-1 H2SO4 solution at 100 mV s-1 and 10 cycles from −0.4 to +0.7 V / Ag|AgCl|KClsat. in 1.0 x 10-3 mol L-1 Fe(CN)63-/4- + 0.1 mol L-1 PB solution at pH 7, at 50 mV s-1.
It is clear that the I-E profile described in Fig. 2B resembles the response of a reversible charge transfer process, while the I-E profile in Fig. 2A suggests a non-reversible charge transfer process. Many factors can be involved in this electrochemical response. All of them are related to the surface nature of the solid electrode: the presence of protective material residues and other dirt, contaminants, oxides generated during the acid attack, defects and heterogeneities on the surface present in the original material or caused by the chemical attack. In this case, the mechanical procedure which is applied in many solid electrodes is not applicable. The chemical etching recommended to gold by using “piranha” or strong alkaline solution may also damage the delicate surface mainly at stressed regions of gold deposit. Therefore, the chemical etching is not recommended for CDtrodes. The adsorbed species can be removed and the electrode surface activated by potential cycling between the potentials of H2 and O2 evolution reactions. This process makes the surface reproducible and repeatable, and may improve the reversibility of the electrode process, as observed in Figure 2.
CVs of 1.0 x 10-3 mol L-1 Fe(CN)63-/4- in 0.1 mol L-1 PB solution at pH 7.0, 50 mV s-1 on gold CDtrode in which the protective layers were removed by procedure
In the case of screen-printed electrodes (SPEs), special care should be taken during handling to avoid irreversible damage. For instance, in recent studies [3,10], screen-printed gold-based electrodes were used as-received. These SPEs are received in aluminum sealed package individually isolated from the atmosphere. The package of each electrode was opened just before using and avoiding surface contamination. Chemical etching is not recommended for SPE gold electrodes. Therefore, the SPEs were thoroughly washed with ethanol and Milli-Q water for further procedures. Similar procedure has been recommended in literature [30,31]. It was observed that some immobilization or electrochemical processes are not significantly influenced by surface pre-treatments [32], and, some cases, they are used as-produced or -received, without pre-treatment [33].
Carbon based materials (graphite, glassy carbon, carbon fibers, carbon-SPE, carbon-epoxy resin composites, nanotubes and boron-doped diamond) have been used in both unmodified and modified forms by incorporation of gold nanoparticles (GNP) or iron oxides nanoparticles (NPs) dispersed in a polystyrene polymer matrix to construct amperometric or other biosensors. Iron oxides NPs exhibit magnetic properties and are constituted by paramagnetic γ-Fe2O3 and Fe3O4 or modified with some specific groups or can be a core-shell structure, with a core (γ-Fe2O3) and shell (styrene-based copolymer). In a recent work, bare graphite electrodes were mechanically treated by wet polished on emery paper, thoroughly washed with distilled water and modified to construct an amperometric biosensor [34]. Glassy carbon was successively wet polished with 1.0, 0.3 and 0.05 mm alumina slurry until a mirror-like surface, and the surface was thoroughly rinsed between each polishing step with doubly distilled water. Afterwards, it was successively sonicated in 1:1 nitric acid, acetone and doubly distilled water, and allowed to dry at room temperature [35]. Carbon fiber electrodes are produced, mainly in connection with the preparation of high-strength composites by high-temperature pyrolysis of polymer textiles or via catalytic chemical vapor deposition [36]. A chitosan-modified carbon fiber electrode was used to develop a biosensor for dengue virus envelope protein detection [37]. The carbon fibers surfaces were sonicated in ultrasonic bath with 10% HNO3 solution for 10 min, rinsed with distilled water and conveniently modified. Commercial available carbon SPE was treated by applying an anodic current of 25 μA for 2 min in 50 μL of 0.1 mol L-1 H2SO4 solution dropped on the SPE carbon electrodes and washed with 0.1 mol L-1 Tris buffer pH 7.2 [38].
Graphite powder may be used to prepare composites which can be modified by NPs and/or magneto NPs and used in amperometric sensor. Recently, graphite powder and epoxy resin were used by Pividori, et al. to develop a sandwich magneto immunoassay [39]. The modified magnetic NPs are captured by the magnetic field on the magneto electrode. Arrays of carbon-SPE electrodes were also used to construct immunosensors. The arrangement was washed with water to remove any adsorbed species and characterized by CV in 5.0 mmol L-1 Fe(CN)63- solutions [40].
The development, properties (good electrical conductivity, nanometer size, high aspect ratio and structure, electrochemical stability, high specific area and surface chemistry) and applications of CNTs, mainly in biosensors construction, were deeply discussed recently [41]. Both its high specific area, which allows the analyte to be accumulated on the surface, and the capability of increasing
Several factors influence the choice of the best potential value to be applied to the working electrode in order to get the best sensitivity of the biosensor. Some criteria may be adopted: (a) all steps of the biosensor construction should be carefully characterized by electrochemical and non-electrochemical techniques; (b) the current peak or wave responsible for the biosensor response must be unequivocally determined; (c) the stability and repeatability of the system should be investigated by obtaining enough number of I-E curves or CVs for a series of biosensors prepared by the same methodology.
Theoretically, the potential to be applied should reduce to zero the surface concentration of active centers responsible for the amperometric biosensor response. At this potential current, is directly proportional to the analyte concentration and the effective electrode surface area. In practice, this potential value frequently corresponds to the peak potential of CV, which does not mean that the surface concentration is zero; it depends on the electrode process. As the current generated at this potential is the sum of all faradaic processes occurring, supposing that no significant charging current is present, the reaction of interest identification may not be easy. Getting satisfactory reproducibility and repeatability of the biosensor response may be a hard task, mainly if low currents are generated, which may require more sophisticated setup and/or more expensive instrumentation. Different studies have applied the peak potential obtained from the CVs or the peak current of CVs at a constant scan rate to evaluate the biosensor response.
For surface-controlled electrode processes (adsorption, new phase formation, surface modifications and so on) the current-time curves recorded at constant potential are strongly dependent on the nature of the substrate, and the reproducibility is strictly related to the similarity between previous and renewed surfaces. At constant temperature and solution composition, the structure of the monoatomic layers at the renewed surface are not strictly similar to that recorded to the previous surface, which may leave to different I-E profiles. Therefore, the best practice is recording a great number of current transients for each investigated condition and using the average current value. In minor grade, the surface conditions also influence the current values even if electroactive species are in solution, due to changes in the surface roughness or adsorption of active or inactive species on the surface. The response of modified surfaces may also depend on the surface roughness, defects, heterogeneities, coating stability, impurities in the medium, etc.
Some techniques are more sensitive than others for specific properties of the system. For instance, EIS presents high sensitivity to any change on the electrode surface. Amperometric response for diffusion-controlled processes depends on cbulk, diffusion coefficient, number of electrons/particle, applied potential and effective surface area, size and geometry of the working electrode, and it is inversely proportional to the square root of time. Therefore, the higher current is obtained at short measuring time and, in general, it exponentially decays, tending to a stationary value. The capacitive current contribution is higher at very short time, the faradaic current depends on the kinetic of the electrode process, and the total current reaches a stationary value for longer times. These two characteristics of the technique may result in lower sensitivity when compared to some other electrochemical techniques. The analytical current density can be increased by convection (flux, stirring or jet the analyte) during the electrolysis or using micro or ultramicroelectrodes. Decreasing the analyte concentration, the faradaic current decreases and approximates to the current background (charging current, surface oxidation or reduction processes, noise). Therefore, in classical polarography the charging current limits the detection from 5 x 10-6 to 1 x 10-5 mol L-1 interval. However, techniques with time dependences for capacitive and analytical currents favoring the analytical one (pulse polarography techniques) may offer lower limit of detection. All these pulse techniques are based on a sampled current potential-step (chronoamperometric) experiment [36].
Also, higher faradaic/capacitive currents ratio (lower limit of detection) can be obtained for redox processes which occur near the potential of zero charge of the working electrode. Therefore, if possible, the working electrode that must be chosen is the one with a potential of zero charge closest to the redox potential of the analyte.
In order to optimize the working conditions of the developed biosensor, other parameters and/or properties influencing its response should be investigated such as pH, operating potential, temperature, stability, repeatability, cut off, limit of detection and sensitivity.
Following biosensor for disease diagnosis based on antigen/antibody (immunosensor) or DNA/DNA (genosensor) or enzymatic catalytic reaction will be described.
The immobilization of antigens or antibodies on the surface of electrochemical transducers led to the development of immunosensors for several substrates of interest in the biological, clinical and industrial areas [43-45]. Immunosensors combine the advantages of the electrode process and the high specificity of immunologic reactions [46]. The methods are very rapid, they have the advantage of requiring small sample volumes affording an increase in the number of analyzed samples, and enabling versatile transducers and different techniques for monitoring, thus lowering costs compared with conventional analytical methods.
The immunosensor is classified as optical, mass-sensitive or electrochemical according to the technique. The electrochemical immunosensor, according to the monitoring, is classified as amperometric, potenciometric, impedimetric and condutometric. As mentioned before, chrono-amperometric technique for the development of amperometric immunosensor compared with other electrochemical techniques, is simple, cheap, sensitive, its potential applied not affected sample and possibly portable measuring amperometric system.
Several amperometric immnunosensors have been developed for disease diagnosis as shown in Table 1.
Cavalcanti et al. [37] developed a chitosan modified fiber electrode for dengue virus envelope (DENV). Antibodies against DENV were covalently immobilized on the chitosan matrix after activation with sodium periodate. Amperometric response of the competitive immunoassays was generated by hydrogen peroxide with peroxidase conjugated to DENV and 2´-azino-bis-(-3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) as mediator. The immunosensor showed a lower limit of detection for DENV (0.94 ng mL−1) than previously described and a linear range from 1.0 to 175 ng mL−1, in concentration levels clinically relevant for dengue virus diagnosis.
A novel amperometric immunosensor for the detection of the p24 antigen (p24Ag) from HIV-1 using gold nanoparticles (GNP), multiwalled carbon nanotubes (MWCNTs), and an acetone extracted propolis (AEP) film was developed by Kheiri et al. The GNP/CNT/AEP film provided a suitable surface for the immobilization of antibodies and prevented direct contact of the biomolecules with the substrate. Moreover, GNPs were synthesized in situ on the amino functionalized MWCNTs (MWCNTNH2) for antibody immobilization, which also improved the electrochemical signal of HRP-anti p24 Ab, thus enhancing the detection sensitivity of the reduction of H2O2 [19].
Two methods to diagnose hepatitis B [18,35] are described in Table 1 and both methods determine hepatitis B surface antigen based on gold nanoparticle. The method developed by Zhuo et al. [18] is based on the gold nanoparticles and horseradish peroxidase (HRP)-modified gold electrode for the determination of hepatitis B surface antigen (HBsAg). The system was optimized for a reliable determination of HBsAg in the range of 2.56-563.2 ng mL-1 with a limit of detection 0.85 ng mL-1. Qiu et al. [35] also determined hepatitis B surface antigen using a glassy carbon electrode modified with an assembly of positively charged poly(allylamine)-branched ferrocene (PAA-Fc) and negatively charged gold nanoparticle. The concentration of the antigen can be quantified in the range 0.1 and 150 ng mL-1, with a limit of detection 40 pg mL-1.
González et al. [38] used screen-printed carbon electrodes to detect pneumolysin (PLY) in human urine. The voltammetric immunosensor is based on the electrochemical detection of indigo blue, produced by alkaline phosphatase (AP) when 3-indoxyl phosphatase (3-IP) is used as enzymatic substrate. It is prepared and evaluated for measuring this toxin in human urine samples. The single-use immunosensor is fabricated by deposition of biotinylated anti-PLY monoclonal antibodies onto pre-oxidised streptavidin coated screen-printed carbon electrodes (SPCEs). Rabbit polyclonal IgGs anti-PLY are used in combination with an anti-rabbit IgG alkaline phosphatase conjugate as detection antibodies.
The determination of the antigliadin antibodies from human serum samples is of vital importance for the diagnosis of an autoimmune disease such as celiac disease. Therefore, Rivera et al. determined antigliadin antibodies in real human serum using an electrochemical immunosensor with control over the orientation and packing of gliadin antigen molecules on the surface of gold electrodes. The orientation of the antigen on the surface has been achieved using a carboxylic ended bipodal alkanethiol that is covalently linked with amino groups of the antigen protein. Amperometric evaluation of the sensor with polyclonal antigliadin antibodies showed stable and reproducible low limits of detection (46 ng mL-1; % RSD = 8.2, n = 5) [20].
Amperometric biosensors for diseases or infectious agents based on immunosensors.
Human serum (Hs); Human urine (Hu)
Pan et al. [47] reported the development of an electrochemical immunosensor for direct detection of the urinary tract infection (UTI) biomarker lactoferrin from infected clinical samples. The electrode surfaces were coated with either a SAM of 11-mercaptoundecanoic acid (MUDA) or a mixed of MUDA and 6-mercapto-1-hexanol. A sandwich amperometric immunoassay was developed for detection of lactoferrin from urine, with a limit of detection 145 pg mL-1.
Honglan et al. developed an electrochemical immunosensor array for the simultaneous detection of multiple tumor markers by incorporating electrochemically addressing immobilization and one signal antibody strategy. As a proof-of-principle, an eight-electrode array including six carbon screen-printed working electrodes was used as a base array for the analysis of two important tumor markers, carcinoembryonic antigen (CEA) and a-fetoprotein (AFP) and a horseradish peroxidase-labeled antibody was used as a signal antibody. The result showed that the steady current density was directly proportional to the concentration of target CEA/AFP in the range from 0.10 to 50 ng mL-1 with a limit of detection 0.03 and 0.05 ng mL-1 for CEA and AFP, respectively [48].
Laboria et al. [21] reported on the development of an amperometric biosensor for detecting CEA in colon cancer detection based on the immobilization of anti-CEA monoclonal antibody on a novel class of bipodal thiolated self-assembled monolayers containing reactive N-hydroxysuccinimide ester end groups. The current variations showed a linear relationship with the concentration of CEA over the range of 0-200 ng mL-1 with a sensitivity of 3.8 nA mL ng-1 and a limit of detection 0.2 ng mL-1, which is much below the commonly accepted concentration threshold (5 ng mL-1) used in clinical diagnosis.
A simple amperometric immunosensor was constructed to be potentially used for the detection of serum anticitrullinated peptide antibodies, which are specific for rheumatoid arthritis (RA) autoimmune disease. Sera of RA patients contain antibodies to different citrullinated peptides and proteins such as fibrin or filaggrin. Herein, a chimeric fibrin-filaggrin synthetic peptide was used as a recognition element anchored to the surface of a multiwalled carbon nanotube-polystyrene-based electrochemical transducer [22].
Malaria is a serious tropical disease transmitted to humans via the female
The
In recent years, devices for the diagnosis of
Sharma et al. developed amperometric immunosensor for the detection of HRP2 in the sera of humans with
Castilho et al. [39] used, for the first time, magneto immunoassay-based strategies for the detection of
Schematic representation of the experimental details for the electrochemical magneto immunosensor [
The electrochemical signal was determined by polarizing the m-GEC electrode at a working potential of −0.100 V / Ag|AgCl. The electrochemical signal was based on the enzymatic activity of the HRP after the addition of hydrogen peroxide as the substrate and hydroquinone as a mediator. The electrochemical magneto immunosensor coupled with magnetic nanoparticles have shown a limit of detection 0.36 ng mL-1 [39].
Chagas disease, also known as American trypanosomiasis, is a neglected tropical disease caused by the hemoflagellate
The detection of antigen in the blood sera could be useful just for the acute phase of Chagas disease. Detection of anti-
The methodology for clinical diagnosis must be sensitive and with high reproducibility and repeatability. Different analytical methodologies were developed and amperometric immunosensors were constructed and applied for diagnosis of various diseases stages.
Antigenic proteins (Ag) of
Scheme of the immobilization of antigenic protein on gold modified with SAMs and immunoassays.
Recently, Belluzo et al. applied strategy orientation recombinant proteins to develop amperometric biosensors to diagnose Chagas disease. The gold electrode was modified with thiol and activated the thiolated surface with carbodiimide which allow the subsequent reaction with the amine moieties of the protein Lys residues. The immunoassay involved serum sample anti-
Electrochemical biosensors that use DNA, also called genosensors, can be used for analysis and determination of base sequences of DNA to diseases diagnose. DNA molecule has structural features that allow its immobilization on electrode surfaces as single or double helix [53]. Several electrode materials can be modified with DNA, and DNA biosensors can be used for hybridization studies in order for disease diagnosis, mutation detection [54] and also for DNA damage [55] analysis and for detection of antioxidant capacity of many compounds [56]. In this part of the chapter, the focus is on amperometric biosensors for hybridization studies.
DNA hybridization technology has been applied in biosensor systems for diagnosis and it can be considered rapid, with simplicity of execution and lower cost. Hybridization process involves the formation of the DNA duplex by annealing two complementary single strands. The single-stranded DNA (ss-DNA) modified electrode identifies the complementary sequence of nucleic acid in the sample solution leading to the formation of a hybrid double-stranded (ds-DNA). This identification is effective and specific even in the presence of non-complementary sequences [57]. The stability of the hybridization depends on the nucleotide sequences of both strands. A perfect match in the sequence of nucleotides produces very stable ds-DNA, whereas one or more base mismatches impart increasing instability that can lead to weak hybridization of strands [58].
The ability to immobilize the probe DNA in a predictable manner while maintaining their affinity for complementary DNA is an important aspect of genosensors development. The appropriate immobilization is strictly dependent on the characteristics of the transducer, since each of the different immobilization strategies can lead to the proper orientation of biomolecules, allowing to control the probes conformational freedom, making them accessible for interaction with target DNA and providing minimal steric hindrance. Random DNA attachment to the electrode surface can result in chemical modifications of genetic material basic components, which consequently may cause the decrease in the specificity of layer recognition.
The hybridization event can be direct or indirectly monitored [57,59,60]. Direct detection or label-free detection involves the measurement of changes in electrochemical signals related to the electroactivity of DNA bases, most commonly guanine oxidation. After the hybridization, the steric conformation of the DNA molecule protects the guanine oxidation, causing an electrochemical signal decrease, since the oxidation sites of the base are in the internal parts ds-DNA molecule [61]. Although this method is simple and sensitive, the direct oxidation of DNA requires relatively high potential. Other disadvantage is that such measurement of the decreased anodic signal of the immobilized probe cannot be used for detecting targets containing guanine bases. An alternative is the use of inosine-substituted probes. Guanines in the probe sequence are substituted by inosine residues (pairing with cytosines) and the appearance of a guanine signal upon hybridization with the target enables a new detection method for DNA hybridization [62].
Indirect hybridization detection protocol can be based on the incorporation of electroactive indicators. These compounds, usually cationic metal complexes or organic compounds, have different affinities for the double-stranded DNA (formed after the hybridization process) when compared with single-stranded DNA, preferentially binding with ds-DNA in the groove, by intercalation or electrostatic interaction. Due to variation of redox indicator concentrations near the electrode surface, the resulting current signal indicates the hybridization event. An example of this kind of biosensor is described by Gao & Tansil [63]. After hybridization, a threading intercalator called PIND-Ru was introduced into the biosensor. PIND-Ru selectively intercalated with double-stranded DNA (ds-DNA) and became immobilized on the biosensor surface. The redox moieties of the interacted PIND-Ru showed excellent catalytic activity towards oxidation of amines observed by amperometry at 0.65 V / Ag|AgCl. The current was proportional to the target DNA concentration and a limit of detection 1.5 pmol L-1 was determined.
The use of enzymes has shown a good sensitivity for indirect electrochemical hybridization detection. The target DNA sequence is previously labeled with a redox active enzyme which catalyses a redox reaction and further generates an electrochemical change [64]. An electrochemical genosensor array for the individual and simultaneous detection of two high-risk human papillomavirus (HPV) DNA sequences using horseradish peroxidase enzyme (HRP) labeled DNA probes was developed by Civit et al. [65,66]. Using polymerase chain reaction (PCR) products of three specific high-risk HPV sequences, HPV 16, 18 and 45, it was possible to detect DNA in picomolar range. A high specificity of the sensor array was observed with negligible hybridization signal with the non-specific target.
A DNA sensor for West Nile Virus (WNV) was developed by Ionescu et al. [67]. In this work, aminated DNA probe was immobilized on the electrode, followed by hybridization of the WNV complementary DNA target and an additional hybridization process with a complementary biotinylated WNV DNA, resulting in an extremely sensitive detection limit (1 fg mL-1) of WNV DNA target.
Genosensors based on enzyme label have also been applied for diagnosis of some kind of cancer, for example, acute promyelocytic leukemia. Lin et al. [68] employed oligonucleotide derivative that hybridizes with very high affinity to perfectly complementary targets. Hybridization event was monitored by the HRP. The biosensor was applied in PCR amplicon from the fusion gene, which plays an important role in leukemogenesis. Another DNA biosensor for detection of promyelocytic leukemia/retinoic acid receptor alpha fusion gene is described by Wang et al. [69]. This biosensor, based on a ‘sandwich’ sensing mode, involves a pair of capture probe immobilized at electrode surface and biotinyl reporter probe as an affinity tag for streptavidin-horseradish peroxidase. It allowed detecting the complementary DNA standard concentration range from 0.05 to 5.0 nmol L-1. A large number of studies describe the use of enzymes to monitor amperometrically DNA or RNA hybridization in order to analyze other diseases or infectious agents and some of them are included in Table 2.
As described above, there are many works about DNA biosensor for disease detection or diagnosis purposes. In our research group, we have been working in the development of genosensors for hepatitis C virus (HCV) detection. According to World Health Organization (WHO), hepatitis C affects about 170 million people worldwide and more than 350,000 people die from hepatitis C-related liver diseases each year. Since it rarely causes specific symptoms, hepatitis C is one of the most serious public health problems [70]. In general, the goal of a detection strategy is the simplification of the analytical methodology to a practical level, with a minimum demand of operator skills. In this way, HCV biosensors have become an alternative for diagnosis.
In the first work, we studied a piezoelectric biosensor [71]. Gold electrodes from quartz crystal microbalance were modified with oligonucleotides for detection of hepatitis C virus in serum. Avidin or streptavidin were immobilized and used for attachment of biotinylated DNA probes from four different sequences. The piezoelectric biosensors were used to monitor the DNA resulting from samples from HCV contaminated patients and the results compared with the standard RT-PCR procedure (test kit Roche Amplicor®). The samples characterized as positive in the Amplicor test were able to hybridize with at least one of the four probes immobilized on the piezosensor. However, some of the samples appearing as negative in the Amplicor assay also provided hybridization with some of the immobilized probes. This inconsistency might be explained by different sequences of probes used in the piezosensor assay and in the Amplicor assay (sequence unknown). These results are considered preliminary as not all parameters affecting the hybridization reaction were optimized and the effect of temperature on the double strand formation and stability of hybridized complex on the surface of piezosensor is critical. In our case, all measurements were carried out at room temperature (25 °C), thus allowing for hybridization and duplex formation probably even in the case of only a partial matching between the probe and the amplicon.
\n\t\t\t | \n\t\t\n\t\t\t | \n\t\t\n\t\t\t | \n\t\t\n\t\t\t | \n\t|
Colorectal Cancer | \n\t\tGold / SAM | \n\t\tSynthetic oligonucleotides | \n\t\t5.85 pmol L-1\n\t\t | \n\t\t[72] | \n\t
Celiac Disease | \n\t\tGold electrode / SAM | \n\t\tSynthetic oligonucleotides | \n\t\t0.01 nmol L-1\n\t\t | \n\t\t[73] | \n\t
Pseudomonas aeruginosa \n\t\t | \n\t\tGold / SAM | \n\t\tTotal RNA isolated from | \n\t\t0.012 pg μL-1\n\t\t | \n\t\t[74] | \n\t
Uropathogenic bacteria | \n\t\tGold array / SAM | \n\t\t16S rRNA from bacterial lysis | \n\t\t0.3 fmol L-1\n\t\t | \n\t\t[75] | \n\t
Gold array / SAM \n\t\t | \n\t\t16S rRNA from bacterial lysis | \n\t\t0.5 ng µL-1\n\t\t\t for | \n\t\t[76] | \n\t|
Biosensor array | \n\t\t16S rRNA from bacterial lysis | \n\t\t104 cfu mL-1\n\t\t | \n\t\t[77] | \n\t|
Gold SPE / SAM | \n\t\t16S rRNA from bacterial lysis | \n\t\t--- | \n\t\t[78] | \n\t|
Escherichia coli \n\t\t | \n\t\tFe2O3@Au core/shell nanoparticle / SAM | \n\t\t\n\t\t\t | \n\t\t0.01 pmol L-1\n\t\t | \n\t\t[79] | \n\t
Screen-printed electrodes- magnetic beads / STA-biotin | \n\t\tPCR products | \n\t\t0.01 cfu mL-1\n\t\t | \n\t\t[80] | \n\t|
Gold electrode array / STA-biotin | \n\t\trRNA from | \n\t\t1000 cells without PCR | \n\t\t[81] | \n\t|
\n\t\t\t | \n\t\tGraphite-epoxy electrodes / adsorption onto a nylon membrane | \n\t\tSynthetic oligonucleotides | \n\t\t--- | \n\t\t[82] | \n\t
\n\t\t\t | \n\t\tGold screen-printed electrodes -magnetic beads / Tetrathiafulvalene | \n\t\tPCR products | \n\t\t5.7 fmol | \n\t\t[83] | \n\t
\n\t\t\t | \n\t\tGold electrode and magnetic beads / STA-biotin | \n\t\tPCR products | \n\t\t1.1 nmol L-1\n\t\t | \n\t\t[84] | \n\t
Amperometric biosensors for diseases or infectious agents based on DNA or RNA hybridization.
SAM: self-assembled monolayer; STA: streptavidin; PCR: polymerase chain reaction; rRNA: Ribosomal ribonucleic acid; cfu: colony-forming unit.
A selective and sensitive label free electrochemical detection method of DNA hybridization for HCV was proposed in cooperation with Dr. M. Josowicz’s research group [85]. DNA probes of specific sequence HCV type-1 were immobilized on polypyrrole films deposited on Pt microelectrodes. The monitoring of the hybridization with the complementary DNA was based on electrostatic modulation of the ion-exchange kinetics of the polypyrrole film and it allowed the detection of HCV-1 with a limit of detection 1.82 x 10-21 mol L-1. With this biosensor, HCV-1 DNA detection did not show unspecific interactions in the presence of mismatched sequences from different HCV genotypes as 2a/c, 2b, and 3.
An advantage of the construction of DNA biosensors is the use of disposable electrodes. These electrodes have a low construction cost, good reproducibility of the area, the possibility of large scale production, and the absence of surface inactivation. Different disposable electrodes as recordable gold CD-R and pencil graphite electrodes (PGE) have being used.
Using PGE, we developed a disposable HCV genossensor with thin films siloxane-poly(propylene oxide) hybrids prepared by sol-gel method and deposited on the electrode surface by dip-coating process [86]. The streptavidin (STA) was encapsulated in the films and biotinylated 18-mer DNA probes for hepatitis C virus (genotypes 1, 2a/c, 2b and 3) were immobilized through STA, since strong interaction occurs between the avidin (or streptavidin) and biotin. The complementary DNA was hybridized to the target-specific oligonucleotide probe immobilized and followed by avidin-peroxidase labeling. Hybridization event was detected by amperometrically monitoring the enzymatic response at −0.45V / Ag|AgCl using H2O2 as enzyme substrate and KI as electron mediator. Negative and positive controls and positive samples of sera patients were analyzed and the HCV 1, 2a/c, 2b and 3 oligonucleotide probes immobilized on PGE were able to distinguish positive and negative sera samples.
Chemometric studies were applied to the development of another biosensor for hepatitis C virus using PGE [87]. Fractional factorial and factorial with center point design were applied in order to simultaneously evaluate the variables of interest that have significant influence on the biosensor response. MINITAB software generated level combinations for all factors used in the assays. Then the sensor current was measured by controlled potential amperometric technique for each of these level combinations. This strategy had several advantages, such as a reduced number of experimental runs, more information obtained and biosensor delineation, in which the biosensor response permitted the optimal experimental conditions to be determined. It was possible to optimized concentration and incubation time for all biomolecules studied with this biosensor using the developed methodology. We also demonstrated the applicability of full factorial and fractional factorial designs to the immobilization of DNA molecules at a gold electrode built using a recordable compact disc (CDtrode) [88].
For DNA immobilization on electrode surfaces, the optimization of many parameters is necessary, such as: biomolecules concentration and incubation time. In this way, the biosensor for HCV, illustrated in Figure 5, was developed using chemometric experiments applied to steps 4-6 (Figure 5). The evaluated variables were the degree of dilution and incubation time of DNA probes for HCV-1, dilution and incubation time of complementary DNA, and concentration and incubation time of conjugate avidin-HRP, which was the label for hybridization accompanied by amperometry measurements. After establishment of all optimized parameters for biomolecule immobilization, the amperometric genosensor was applied to HCV-1 DNA detection in different HCV-infected patients, which had been previously analyzed by the standard qualitative Amplicor hepatitis C Virus Test. The results showed that the current intensities for the positive samples were higher than those for the negative samples. The factorial design procedure enables identification of critical parameters, while knowledge of the chemistry involved enables further refinement of the technique, where necessary. Full and fractional factorial design methods were employed for the optimization of a biosensor for hepatitis C diagnosis, and could be extended to other types of DNA-based biosensors.
Scheme of DNA biosensor construction with gold CDtrodes [
According to the literature, biosensors rank fourth among the techniques used for the detection and classification of pathogens, behind the polymerase chain reaction (PCR), culture and colony counting and ELISA methods [89]. The reason for that is DNA biosensors offer several advantages, such as the ability to analyze complex fluids, high sensitivity, compatibility with compact instrumentation technology and portability, becoming a good alternative for application in clinical chemical analysis.
Enzymes play a critical role in the metabolic activities of all living organisms and are widely applied in biotechnology. Abnormality of the enzyme metabolism systems leads to a number of metabolic diseases [90]. Diseases associated with components of the enzyme metabolism or with the enzyme activities are broadly applied in clinical examinations as special markers as some examples displayed on Table 3.
Diabetes mellitus | \n\t\tglucose oxidase | \n\t\tGold nanocomposite/poly(pyrrole propylic acid) Graphene/nafion Film | \n\t\t50 mmol L-1\n\t\t\t 30 mmol L-1\n\t\t | \n\t\t[91] [92] | \n\t
Uremia | \n\t\turease | \n\t\tRhodium nanoparticles/acrylonitrile copolymer membrane Platinum and graphite composite/ urease covered with dialysis membrane | \n\t\t500 mmol L-1\n\t\t\t \n\t\t\t \n\t\t\t --- | \n\t\t[93] [94] | \n\t
Heart failure, Respiratory insufficiency, Metabolic Disorders | \n\t\tlactate oxidase | \n\t\tCarbon screen-printed/mesoporous silica Carbon screen-printed/polysulfone-carbon nanotubes | \n\t\t18.3 μmol L-1 1.5 mmol L-1\n\t\t\t 3.46 μmol L-1\n\t\t | \n\t\t[95] [96] | \n\t
Idiopathic urolithiasis, intestinal diseases | \n\t\toxalate oxidase | \n\t\tGold electrode/multi-walled carbon nanotube-gold nanoparticle composite Platinum/multi-walled carbon nanotubes-polyaniline composite film | \n\t\t1 μmol L-1\n\t\t\t 3 μmol L-1\n\t\t | \n\t\t[97] [98] | \n\t
Muscle damage | \n\t\tcreatinine amidohydrolase | \n\t\tPlatinum/multi-walled carbon nanotube-polyaniline composite film Platinum/PbO2 layer-polyurethane membrane | \n\t\t0.1 μmol L-1\n\t\t\t 0.8 μmol L-1\n\t\t | \n\t\t[99] [100] | \n\t
Amperometric biosensor for disease based on enzyme.
Cholesterol and its fatty acid ester are extremely important compounds for human beings since they are components of neural and brain cells and are precursors of other biological materials, such as bile acid and steroid hormones. However, high cholesterol accumulation in blood due to excessive ingestion results in fatal diseases, such as arteriosclerosis, cerebral thrombosis, myocardial infarction, coronary diseases and lipid metabolism dysfunction [101]. Brahim et al. [102] developed a rapid, two-step method for constructing cholesterol biosensors by entrapment of cholesterol oxidase within a composite poly(2-hydroxyethyl methacrylate) (p(HEMA))/polypyrrole (p(pyrrole)) membrane. The optimized cholesterol biosensor exhibited a linear response range from 500 μmol L-1 to 15 mmol L-1 and limit of detection 120 μmol L-1 toward cholesterol and was applied in the analysis of serum samples from hospitalized patients. A review on cholesterol biosensor is published by Arya [103].
Choline is used as a marker of cholinergic activity in brain tissue, especially in the field of clinic detection of neurodegenerative disorder diseases, such as Parkinson’s and Alzheimer’s diseases. Zhang et al. [104] presented an electrochemical approach for the detection of choline based on prussian blue (PB) modified iron phosphate nanostructures (PB-FePO4), being the amperometric choline biosensor developed by immobilizing the enzyme choline oxidase on the PB-FePO4 nanostructures and monitoring the formation of H2O2. The biosensor exhibited a low limit of detection (0.4 ± 0.05 μmol L-1) and a wide linear range (2 μmol L-1 to 3.2 mmol L-1). López et al. [105] designed a choline amperometric biosensor using as biological component choline oxidase entrapped in polyacrylamide microgels. The working electrode was prepared by holding the enzyme loaded microgels on a platinum electrode by a dialysis membrane. Under optimal conditions the biosensor presented high sensitivity for choline with limit of detection 8 μmol L-1, and the response linear range from 20 μmol L-1 to 0.2 mmol L-1. On the other hand, Lenigk et al. proposed methodology for the clinical purpose of evaluating anti-Alzheimer medicine based on the inhibition of acetylcholinesterase [106].
Phenylketonuria is a disease characterized by not metabolizing phenylalanine resulting in brain damage and mental retardation in children. A carbon paste electrode composed by paraffin oil, NAD+, phenyalanine dehydrogenase, uricase and electron mediator was proposed [107] for aminoacid determination in urine sample. The reagentless biosensor presented a limit of detection 0.5 mmol L-1.
Among biosensors for substrate determination, the most investigated and more successful on the commercial point of view is for glucose determination; probably because the diabetes mellitus is a world health problem, but also due to the stability of glucose oxidase (GOX).
The stability of enzymatic biosensors is important for the success of these devices as analytical instruments, and it is mainly dependent on the lifetime, or the rate of denaturation or inactivation of the immobilized enzyme [95]. Depending on the conditions of storage, temperature and method of immobilization, the enzyme can retain the activity from days to months [91-100], and is often one of the most important factors to take into account for the commercial viability of such device.
Abnormal enzymes concentration can be related to diseases as shown.
Trypsin and trypsinogen levels are increased with pancreatitis disease like acute pancreatitis, cystic fibroses. Radioimmunoassay tests estimated 248 ± 94,9; 1100 ± 548 and 1399 ± 618 µg L-1 for healthy, chronic renal failure and acute pancreatitis, respectively. Ionescu et al. proposed a biosensor based on the suppression of GOX by steric hindrance due to a gelatin membrane and its reactivation by trypsin digestion of blocking membrane: the GOX was previously mixed with pyrrole and adsorved onto platinum electrode after that the enzyme was entrapped into the polypyrrole film by electropolimerization at +0.8 V / Ag|AgCl|KClsat. LOD was 42 pmol L-1 and response time 10 min [108].
Aspartate aminotranferase is an enzyme to diagnose acute myocardial infarction [109]. A biosensor based on Os-HRP layer and a layer composed by hydroxiethylcellulose, microcrystalline cellulose, aspartic acid, cetoglutaric acid and pyridoxil onto the gold electrode was proposed by Guo, et al. [110]. The LOD was 10 U L-1, shelf stability 2 months, response time 120 s.
Adenosine deaminase (ADA) level is a biomarker for liver disease. A printed Ir/C was modified by xanthine oxidase and purine nucleoside phosphorylase; through the H2O2 measurement at potential of +0.27 V / Ag|AgCl the ADA activities in blood sample were determined. Linear calibration curve from 0 to 36 U L-1 was obtained, which is suitable for discriminating a healthy individual from a person suffering of liver disease, 18 and 31.6 U L-1, respectively [111].
Reviews on age-related disease [112], clinical chemistry [113], cancer clinical testing [114], technology of commercial glucose monitoring [115] and glucose biosensor based on carbon nanomaterials [116] have been recently published.
Two aspects are very important to consider in biosensor development: the biological component determines the selectivity while the transducer determines the sensitivity. To guarantee the maximum selectivity, the active center of a biological molecule must be chemically and/or physically accessible and as freer as possible of steric effects. The surface preparation and modification of the transducer need to be thought mainly to reach this goal. In this case, the affinity reaction between different molecules such as antigen/antibody or DNA/DNA or enzymatic catalytic reaction can be used for quantification of biological substances which are important for the medicine and clinical analysis. The tendency is to produce more and more sophisticated and specific surface transducers using surface engineering and nanotechnological tools to get the best biosensor device. If this happens, health workers will believe more in this bioanalytical methodology and they may get benefits from it in the instant of giving to the patient an unequivocal diagnostic of disease.
The authors thank to FAPESP (Proc. 2008/08990-1, 2011/10707-9, 2008/07729-8, 2010/04663-6), CNPq (Proc. 305890/2010-7, 313307/2009-1), CAPES and PROPe-UNESP for financial support.
In recent years, unmanned aerial vehicles (UAVs) have become a powerful tool for diverse missions including polymerase chain reaction (PCR) samples transportation between hospital and laboratories [1], UAV-based healthcare system to control COVID-19 pandemic [2], infectious diseases containment and mitigation [3], traffic condition analysis in co-operation with deep learning approaches [4], and human behavior understanding via multimedia data analytics in a real-time [5], to name a few. Currently, UAVs integration with the emerging technologies such as block chain, internet of things, cloud computing, and artificial intelligence can pave the way to serve mankind effectively compared to the recent past [6]. Further, the peculiarity of UAVs in terms of performing operations in 3D (dull, dirty, and dangerous) environments, they can play a vital role in realization of the smart cities. Furthermore, UAVs are inevitable tool during emergency planning and disaster management due to their abilities to perform missions aerially. Besides the UAVs applications and use cited above, they can be highly beneficial for military purposes including information collection and analysis, border surveillance, and transporting warfare items. The role of UAVs in agriculture from multiple perspectives have already been recognized across the globe. Recently, world’s leading commerce company (i.e., Amazon) has started using UAVs for delivering their products to customers. Generally, the use of UAVs is expected to rise in many emerging sectors in the near future. We present actual and innovative use of the UAVs during the ongoing pandemic in Figure 1. Majority of the applications given in Figure 1 employed multiple UAVs in order to accomplish the desired tasks.
Innovative applications of the UAVs during the ongoing pandemic (adopted from [
Although UAVs are highly beneficial for mankind through their innovative applications, but there exist plenty of challenges that can hinder their use at a wider scale. For example, payload constraints and power issues can limit their carrier abilities. Similarly, decision making during flight to ensure UAVs safety by avoiding obstacles with sufficient accuracy is a non-trial task mainly due to no human-onboard control. Furthermore, communication from long distances, and co-ordination among multiple UAVs to perform complex tasks jointly are main barriers in the true realization of the UAVs technology. Besides the challenges and issues given above, many issues concerning software and hardware also exist that need rigorous developments and testing. Many solutions have been proposed to address these issues via cross disciplinary approaches. Meanwhile, extensive testing and analysis of these solutions is yet to be explored, especially in urban environments. In this chapter, we mainly focus on the ‘navigation’ that is one of the core challenges in the UAVs technology. The navigation quandary is classified into three cases: (i) where am I now?, (ii) where do I go?, and (iii) How do I get there?. The first two cases belong to the localization and mapping, and the third case is about path planning (PP) [8]. In this work, we cover third case comprehensively, and provide concepts and developments in this regard. We present a comprehensive overview about changing dynamics of the UAV applications in recent times, challenges of the UAV technology, recent developments in the UAV technology, and future research trends in the PP area in Figure 2. With this concise overview, we aim to aid researchers in extracting the contents enclosed in this chapter conveniently.
Overview of changing dynamics of the UAV applications, challenges, recent developments, and future research trends in the PP area.
The rest of this chapter is structured as follows. Section 2 discusses the basic concept of the path planning, and categorizes the path planning approaches based on the information available about underlying environment, and UAV used for the aerial mission. Section 3 describes the three essential components of the PP. Section 4 critically analyzes various approaches that were proposed to lower the computing time of the PP for UAVs. The future prospects of the research in the PP area are discussed in Section 5. Finally, this chapter is concluded in Section 6.
PP is to find a safe (i.e., collision-free) path between two pre-determined locations (e.g., source and destination, denoted with
Generally, there are three possibilities about the availability of information regarding environment where UAVs tend to operate. The operating environment can be fully known in advance (e.g., obstacles’ geometry information is known.), it can be completely unknown, and/or it can be partially known (e.g., few portions are known, and some portions are explored and modeled during the flight.). Based on the degree of information about environment, PP approaches are mostly classified into two categories, local PP (LPP) and global PP (GPP). In LPP, the environment is not known, and UAVs use sensors or other devices in order to acquire information about the underlying environment. In GPP, PP is performed in a fully known environment, meaning all information about environment is known in advance. Based on the availability of the information regarding underlying environment, GPP approaches have lower complexity compared to the LPP approaches. Recently, some PP approaches have jointly employed LPP and GPP concepts in order to find a path for UAVs [9]. In literature, GPP and LPP approaches are also classified as offline and online PP approaches, respectively. Based on the extensive review of the literature, we present a categorization of the PP approaches based on information about environment in Figure 3. We refer interested readers to gain more insights about the LPP approaches in the previous studies [10, 11].
Categorization of the PP approaches based on the availability of information about operating environment.
Apart from the categorization provided above, environment can be classified into rural and urban environments. The tendency of UAVs applications were high in the non-urban environments in the past. Moreover, due to the significant development in control domain, UAVs are increasingly employed in the urban environment these days. For instance, in urban environments, they can be used to monitor people compliance with the social guidelines given by the respective governments in order to control the COVID-19’s spread.
Based on the mission’s type, either one or multiple UAVs can be employed. The scenarios in which only one UAV is deployed are referred as single agent PP problem. In contrast, those scenarios in which multiple UAVs are used are called multiple agent PP problems. PP for multiple agents is relatively complex since UAVs need to avoid collision with the companion UAVs, and obstacles present in an underlying operating environment. In addition, allocating target areas for coverage and optimizing throughput also remain challenging, especially while operating at lower altitudes in urban environments.
Generally, there are three essential components of the PP: (i) modeling of the environment with geometrical shapes by utilizing the obstacles/free spaces knowledge provided by a real-environment map, (ii) task modeling with the help of graphs/trees keeping source and target locations in contact, and (iii) applying search algorithm inclusive of the heuristic function to determine a viable path.
In the first step, a raw environment map is converted into a modeled one, in which obstacles are represented with the help of geometrical shapes. For example, poles information provided by a real environment map can be modeled with the help of cylinders in the modeled map. Similarly, buildings can be modeled with the help of rectangles or polyhedron. In some cases, UAVs do not model the whole environment map, and utilize sense and avoid (SAA) abilities to operate safely in the airspace. We present an example of environment modeling, and well-known obstacles’ representation techniques used for the PP in Figure 4. Each obstacles representation technique has different complexity and accuracy in terms of real environment obstacles representations. In addition, each representation can be adopted considering the UAV operating environment. For example, polygons can be used to model an urban environment populated by various buildings.
Overview of environment modeling and obstacles’ representation techniques.
After modeling environment with the help of geometrical shapes, the next step is task modeling (e.g., generating network of paths with a graph/tree or selecting a desired portion to be modeled). For example, road-map approach is a well-known task modeling approach for the PP, in which a graph is constructed from the starting location to destination location by capturing the connectivity of free spaces and obstacles’ corners. Apart from it, cell-decomposition and potential field are promising solutions for the task modeling. We present most widely used task modeling methods in Figure 5.
Overview of the famous task modeling methods used in the PP adopted from [
Recently, trees-based task modeling methods have been widely used for the task modeling due to their quick convergence in the final solution. We present an overview of the task modeling with the help of tree in Figure 6. Furthermore, in some cases, more than one methods are jointly used to model the tasks on a provided map. In addition, some approaches use task modeling and path searching simultaneously [12].
Overview of task modeling with a random tree.
In the last step, a search algorithm is employed on the graph/tree to find a viable path. During the path search, a heuristic function usually accompany the path search. For example, in the A* algorithm, the low-cost nodes are determined leveraging distance as a heuristic function. Similarly, the heuristic function can be energy consumption or smoothness depending upon the scenario. In literature, many techniques have been suggested to find reliable paths. The path search algorithms, such as differential evolution [13], firefly algorithm [14], ant colony optimization [15], genetic algorithms [16], artificial bee colony [17], particle swarm optimization [18], fuzzy logic [19], central force optimization [20], gravitational search algorithm [21], simulated annealing [22] and their advanced variants are used in the PP. Every algorithm has numerous distinguishing factors over others regarding conceptual simplicity, computational complexity, robustness, and convergence rates etc. We categorize the existing path search methods into five categories, and present representative methods of each category in Figure 7.
Categorization of path searching methods/algorithms.
Every PP approach tends to optimize one or more performance objectives (PO) while finding a viable path for UAVs. The PO can be related to hardware and software. These PO are considered in the previous three components (i.e., environment modeling, task modeling, and path searching) related to the PP. For instance, in order to lower the PS computing time, only some portion of a map can be modeled and a sparse tree/graph can be constructed/used while finding a path. Similarly, memory can be preserved by exploring some portions of a graph/tree rather than loading and exploring whole graph/tree at a same time. The selection of PO solely depend on the nature and urgency of the mission. For example, in search and rescue missions, the PO can be path computing time in order to reach the affected regions quickly. In contrast, in normal circumstances, the PO can be the path length in order to reach the target location in a most economical way by preserving UAV’s resources. We describe various most commonly used PO in Table 1.
PO | Concise description |
---|---|
Computing time | It denotes overall time required to find a path using a graph/tree. |
Path length | It denotes the Euclidean distance between two locations. |
Energy | It denotes amount of energy required/consumed while reaching to target from source. |
Turns | It denotes number of turns (infeasible curvature) a path has in total. |
Smoothness | It denotes a turns in a path with a feasible curvatures. |
Memory | It denotes amount of memory used while computing a path. |
Path nodes | It denotes set of nodes that a UAV follows during flight. |
No. of obstacles | It denotes set of obstacles to be processed during path search. |
Accuracy | It denotes accuracy of obstacles modeling or path clearance from obstacles. |
Problem size | It denotes size of problem on which path is determined. |
Graph size | It denotes size of graph (no. of nodes, edges) employed to find a path. |
Convergence rate | It denotes how quickly a feasible solution can be obtained. |
Constraints handling | It denotes the effective resolution of constrains UAV faces during mission. |
Completeness | It denotes availability/non-availability of solution in a finite time. |
Flexibility | It denotes efforts/time required to make a solution usable for different missions. |
Path re-configuration | It denotes efforts/time required to gain the control of a lost path. |
Path following | It denotes the ability to keep following a path despite disturbances. |
Path safety | It denotes the ability to avoid collisions with static/dynamic obstacles. |
Hyper parameter | It denotes the number and variety of parameters to find a path. |
Obstacle avoidance | It denotes the ability to avoid static/dynamic obstacles with low-cost. |
Generalization | It denotes the ability of a method to be applicable for different types of UAVs. |
Application-speciality | It denotes the ability of a method to yield superior performance in some context. |
Endurance | It denotes the ability of a UAV to fly for a long period of time with low-cost planning. |
Overview of the PO improved by the PP approaches.
Some PO are positively co-related. For example, finding path with less turns can save energy.
Improving two negatively co-related PO (speed and time) require optimization of another PO (problem size).
These PO are usually considered during PP irrespective of the environment whether it is known or unknown. Furthermore, plenty of techniques have been proposed to improve these PO with innovative techniques or employing cross-disciplinary concepts. In addition, many PP approaches have targeted optimizing multiple objectives rather than one/two for practical UAVs application. These PO can be expressed as a functional model while finding a path
In this section, we discuss various PP algorithms that were proposed to lower the time complexity of the PP process. We selected various algorithms that were proposed in last five years (i.e., 2016–2021), and have somewhat identical concepts in terms of space restrictions and problem size reduction etc. We provide brief overview, and technically evaluation of all algorithms and highlight their deficiencies. Consequently, this analysis can pave the ways to improve PP algorithms for future UAVs’ applications.
We present brief overview of the selected algorithms in Table 2. These algorithms have become state-of-the-art for many practical applications of the UAVs in the urban/non-urban environments. They are famous due to their novel working mechanisms, and conceptual simplicity. In addition, they have mainly focused on the UAV applications in urban environments that is focus of research across the globe. Also, the UAVs’ applications in the urban environments are likely to increase in the coming years.
Ref. | Publication year | Environment used | PO improved |
---|---|---|---|
Maini et al. [23] | 2016 | 3D | Computing time and collision-free paths. |
Frontera et al. [24] | 2017 | 3D | Computing speed and solution quality. |
Ahmad et al. [25] | 2017 | 3D | Computing speed and energy-optimized paths. |
Majeed et al. [26] | 2018 | 3D | Computing speed and path quality. |
Han et al. [27] | 2019 | 3D | Feasible paths with reduced time. |
Ghambari et al. [28] | 2020 | 3D | Computing time and memory consumption. |
Majeed et al. [29] | 2021 | 3D | Computing speed and path quality. |
Overview of the latest GPP approaches that were proposed to reduce the computing time of PP process.
All these approaches have used concepts related to search space reduction in order to find time-efficient paths.
In this subsection, we provide concise description of the selected algorithms, and highlight their technical problems. We mainly describe the key steps of the proposed algorithms.
Maini et al. [23] algorithm computes a low-cost path using two-steps approach. In the first step, modified version of the Dijkstra algorithm is used to find an initial path. In the second step, initial path is optimized more by considering the initial path nodes, and reverse path search.
Frontera et al. [24] algorithm computes a low-cost path using three-steps approach. First, the proposed method reduce the search space by considering the obstacles that are on the straight axis between
Ahmad et al. [25] algorithm computes a low-cost path using four-steps approach. Firstly, search space is bounded using obstacles of the straight line only. Later, the bounded space is extended to next level by using the obstacles that hit the boundary of the first bounded space. In the third step, a relatively dense visibility graph is generated from the bounded spaces. In the final step, A* algorithm is employed to find an energy-optimized path.
Majeed et al. [26] algorithm computes a low-cost path using five-steps approach. First, the space is reduced into a half-cylinder form with path guarantees between
Han et al. [27] algorithm computes a low-cost path using three-steps approach. First, critical obstacles are identified through straight-axis between
Ghambari et al. [28] computes a global and local path with the help of four-steps. In the first step, search space is reduced around the straight axis. In the second step, differential evolution algorithm is applied to construct a graph. Later, A* algorithm is used to find a path from a graph constructed in the first step. In the third step, subspace is divided into small portions with alternate routes in each subspace. In the last step, a mechanism is suggested to avoid collision with the dynamic obstacles that may appear unexpectedly during the flight.
Majeed et al. [29] recently proposed a PP method for low-cost pathfinding for UAVs based on the constrained polygonal space and a waypoint graph that is extremely sparse. In proposed approach, search space is restricted into a polygonal form, and its analysis is performed from optimality point of view with the help of six complexity parameters. Later, space can be extended to next level if needed, else a very sparse graph is generated by exploiting the visibility, far-reachability, and direction guidance concepts. The suggested approach computes time-efficient paths without degrading path quality while finding paths from urban environments.
Besides the computing time, these algorithms can indirectly optimize certain PO listed in Table 1. For example, Ahmad et al. [25] PP approach reduces the number of turns also in order to lower the energy consumption. Han et al. [27] PP approach can be applied to the environments with arbitrary shaped obstacles (e.g., there exist no constraint related to the obstacles’ geometries). Hence, it can be applied in different settings (e.g., areas with sparse obstacles or areas with dense obstacles) of the urban environment. Similarly, Majeed et al. [29] PP approach can significantly reduce the problem size, thereby memory requirements can be magnificently lower. Ghambari et al. [28] approach can be used to re-configure paths during the flight when a UAV finds an unexpected obstacle. Hence, this approach can be used in both (i.e., local, and global) environments. Despite the utility of these approaches in many real-world applications, they often yield poor performance due to the local/global constraints. Based on the in-depth review of all studies, we identified potential problems of all approaches that may hinder their use in actual deployment. We describe technical challenges of the existing approaches in Table 3.
Ref. | Technical problems in the proposed approach |
---|---|
Maini et al. [23] | The performance cannot be ensured in each scenario due to heavy reliance on specific maps. Overheads can increase exponential with the problem size. It models the whole map thereby path exploration cost is very high. |
Frontera et al. [24] | Path can collide with the nearby obstacles. In some cases, proposed approach fails to find a path even though it exists. Visibility graph can contain many needless and redundant nodes. Memory consumption is higher due to loading of whole visibility map in the memory. |
Ahmad et al. [25] | Two bounded spaces are used that can increase the computing time of the PP. Visibility graph is constructed using layered approach with many redundant nodes and edges. Visibility check function is expensive since visibility in all directions and nodes is checked. |
Majeed et al. [26] | Path can contain turns due to the strict boundary of the search space. Path optimization cost may increase if initial path has many nodes. |
Han et al. [27] | Path quality cannot be ensured in all scenarios if obstacles’ sizes are large. Path cost can increase exponentially with the point set. Both time and optimality can be impacted if diverse shape obstacles exist in a map. Since this is grid-based approach thereby memory consumption is higher. |
Ghambari et al. [28] | Path computing time can rise with the distance between Recognition and avoiding obstacles in realtime can be costly. Fidelity of the proposed approach were analyzed with limited testing. Since path searching is carried out twice, thereby computing time can rise. |
Majeed et al. [29] | Accurate modeling of the tiny obstacles is not possible. Excessive calculations are performed in space analysis thereby complexity can rise. |
Overview of the technical problems in the proposed GPP approaches.
All these problems have been highlighted by existing studies or reported by the authors.
These challenges lay foundation for the future research in the UAVs area. Furthermore, they can assist researchers to devise better and practical PP approaches in order to address these technical problems. Apart from the challenges provided in Table 3, it is paramount to take into account the local constraints while devising PP methods that have been mostly assumed in the existing approaches.
Majority of the approaches discussed above are the GPP approaches, and LPP approaches have not been discussed. To cover this gap, we discuss various representative LPP approaches in Table 4 along with the methodological specifics.
Ref. | UAV used | Technical aspects of the approach |
---|---|---|
Stecz et al. [30] | Multiple | Indicated sensors based LPP approach. |
Wojciech et al. [31] | Single | EO/IR systems and SARs based navigation. |
Siemiatkowska et al. [32] | Multiple | MILP based LPP using EO/IR camera and SARs. |
Hong et al. [33] | Multiple | MILP-based multi-layered hierarchical architecture. |
Hua et al. [34] | Multiple | Multi-target intelligent assignment model based LPP. |
Cui et al. [35] | Single | Reinforcement learning (RL)-based LPP approach. |
Maw et al. [36] | Single | Graph and learning based LPP approach. |
Wei et al. [37] | Single | Improved ACO for LPP. |
Zhang et al. [38] | Single | Markov decision process (MDP) based LPP approach. |
Zammit et al. [39] | Multiple | LPP in the presence of uncertainties. |
Wu et al. [40] | Single | Interfered fluid dynamic system (IFDS) based LPP. |
Bayerlein et al. [41] | Multiple | Multi-agent reinforcement learning (MARL) approach for LPP. |
Jamshidi et al. [42] | Single | LPP based on improved version of Gray Wolf Optimization. |
Yan et al. [43] | Single | Sampling based LPP approach in urban environments. |
Sangeetha et al. [44] | Single | Gain-based dynamic green ACO (GDGACO) LPP approach. |
Sangeetha et al. [45] | Single | Fuzzy gain-based dynamic ACO (FGDACO) LPP approach. |
Choi et al. [46] | Single | Improved CNN based LPP approach for UAV. |
Overview of the latest LPP approaches used for UAVs.
All these approaches have used the unknown environment during the PP.
These approaches perform PP in environments that are mostly unknown, and are complex compared to the GPP approaches. These approaches enable UAVs to perform tasks in complex environments in real time leveraging low-cost sensors, and robust artificial intelligence (AI) techniques. In addition, these techniques have abilities to co-work with the emerging technologies including cloud, edge, and fog computing etc. for variety of applications. The role of UAVs was dominant during the ongoing pandemic in different countries across the globe. To this end, LPP approaches contributed significantly, and enhanced UAVs role in curbing the pandemic spread via online missions. Barnawi et al. [47] proposed an IoT-based platform for COVID-19 scanning in which UAVs were used as a main source of temperature data collection in the outdoor environments. Apart from the COVID-19 scanning, UAVs were extensively used for spraying and disinfecting multi-use facilities and contaminated places. In some countries, they were used for alerting people to wear masks properly, and stay indoors. The true realization of these innovative application is possible through LPP approaches.
Besides the LPP and GPP, another important subtopic of the PP is coverage path planning (CPP) [48]. In the CPP, a path is determined that enables UAV to cover a target area fully with the help of a device/tool mounted on it. The attached tool/device can be a sensor, camera, speaker, and/or a spray tank depending upon the mission. We present overview of the CPP in Figure 8. In Figure 8(a), a target area in the form of a rectangle is given that need to be covered with a UAV. In In Figure 8(b), a coverage path is shown that a UAV follows in order to cover the target area.
Overview of coverage path planning for UAVs in a 3D urban environments.
In the CPP, most of the POs are identical with that of the PP, but path overlapping, and coverage guarantees are two additional POs. Moreover, ensuring consistent path quality with respect to shape of the target area is very challenging. Therefore, shape of the target area is considered while finding a coverage path. CPP can be performed in five steps, modeling of the operating environment, locating target area on the modeled map, decomposition of the target area into disjoint sub parts, task modeling (mainly traversal order of the sub parts) with the help of a graph, and covering each sub-part using motion pattern (e.g., back and forth, spiral, and circular etc.). In recent years, UAVs’ coverage applications in the urban environments have significantly increased, and a substantial number of CPP approaches have been proposed [49].
In the near future, UAVs will be regarded as an inevitable tool for various practical missions, especially in the urban environments. A substantial number of developments are underway to fully realize smart cities, smart infrastructure, and smart buildings, to name a few. Thence, the use and applications of the UAVs are expected to grow significantly in the near future. Recently, many innovative technologies such as block-chain, IoT, 5G/6G technologies, and deep/machine learning approaches have been integrated with the UAVs technology to serve mankind in effective ways [50]. For example, BloCoV6 scheme [51] is one of the wonderful applications of the UAVs in the new normal (e.g., COVID-19 era). Similarly, many such innovative applications are likely to emerge in the near future as a replacement of human beings for complex tasks. Therefore, refinements in the existing PP approaches in relation with peculiarities of the applications/tasks, and development of robust approaches leveraging cross-disciplinary (e.g., biological inspired, AI-powered, and technology-driven) concepts have become necessary. Considering the emerging applications of the UAVs, we list prospects of the research in the near future in PP area in Figure 9. We categorize the avenues of future research in the PP area on four grounds (e.g., UAV application specific PP approaches, optimization of the existing approaches’ PO, integration of the emerging technologies and their issues handling, and developing PP approaches that can cope up with the dynamics of the UAV operating environment.).
Categorization of the avenues of future research in the PP/UAVs area.
The most important research avenues from the optimization point of view are, devising new environment restriction methods to reduce the problem sizes, devising low-cost methods for reducing the task modeling overheads (i.e., graph/tree sizes), and accelerating the PS methods that enable UAV to reach the target location safely with a significantly reduced cost. Furthermore, improving overall cost of the PP process is an important research direction to increase UAVs’ applications in the urban environments. Optimization of multiple objectives rather than single/two is handy in order to preserve UAV’s resources during aerial missions. From applications point of view, low-cost methods that can improve certain POs and can satisfy the applications features at the same time are needed. To this end, identifying each application’s features/requirements and embedding them into the PP process can enhance the UAVs use in the coming year significantly. Therefore, applications-oriented PP methods will be embraced more in the near future considering the UAVs potential in executing tasks at low costs. From environment dynamics point of view, PP methods that can effectively respond to the uncertainties/dynamics emerging from the environment are paramount. For example, in LPP, decision making to avoid obstacles with as least cost as possible can enhance UAV’s endurance in the aerial missions. In this regard, LPP methods that can cope up with the underlying operating environment variations and can ensure UAV’s safety consistently in the practical applications are paramount.
Recently, many emerging technologies have been integrated with the UAV technology. For example, blockchain, transfer learning, computer vision, federated learning, 5G and 6G technologies, and cloud computing etc. have revolutionized the UAVs’ applications. In this regard, incorporating more emerging technologies in the UAV domain, and extending the current emerging technologies use to more application areas is an important research direction for the future. Furthermore, improving the hardware capabilities of the UAV by integrating latest technologies are important need from technical perspectives. Despite the technical aspects mentioned above, tailoring computer vision applications in the UAV area is a most promising avenue of the research considering UAV abilities to capture images with good resolution [52]. In addition, identifying niche areas (i.e., water quality analysis, target tracking, covering spatially distributed regions, and detection of wildfire smoke, to name a few) where UAVs can perform well compared to humans, and performing cost–benefit analysis of the UAVs versus human is important research direction in the UAVs’ technology. Finally, exploring the possibilities towards joint use of multiple latest technologies in order to serve mankind in an effective way using UAVs is a vibrant area of research. Apart from the PP, devising low-cost CPP methods for UAVs is also an attractive area of research in the near future. Development from hardware perspectives (e.g., battery power, wing-span, payload capabilities, robust decision making abilities, and control aspects) are also a potential avenues for development/research.
In this chapter, we have presented concepts, methods, and future research prospects in the area of path planning (PP) for unmanned aerial vehicles (UAVs). Specifically, we have presented the high-level categorization of the PP approaches based on the availability of information regarding UAV operating environment, and UAV strengths. We have discussed three essential components of the PP approaches that are widely adopted by most of the PP approaches. We have discussed substantial number of performance objectives that are improved/optimized by the PP approaches via new concepts/propositions. Furthermore, we have discussed latest approaches that have been proposed to lower the time complexity of pathfinding and their technical challenges. We have described various PP approaches that are used for the PP in unknown environments (aka local PP). We have briefly described the concepts of coverage path planning (CPP) that is subtopic of the PP. The prospects of future research in the UAVs PP area keeping emerging technologies in the loop have also been discussed. With this concise overview, we aim to provide deep understanding about the PP concepts related to the UAVs, and need of the further developments/research in order to enhance UAVs endurance in the airspace specifically in the urban environments. The contents presented in this chapter can help early researchers to quickly grasp the status of existing developments and potential avenues of the research in this area.
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020R1A2B5B01002145).
The authors declare no conflict of interest.
As a company committed to the wider dissemination of knowledge, IntechOpen supports the OAI Metadata Harvesting Protocol (OAI-PMH Version 2.0).
',metaTitle:"OAI-PMH",metaDescription:"As a firm believer in the wider dissemination of knowledge, IntechOpen supports the OAI Metadata Harvesting Protocol (OAI-PMH Version 2.0).",metaKeywords:null,canonicalURL:"/page/oai-pmh",contentRaw:'[{"type":"htmlEditorComponent","content":"The OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting) is used to govern the collection of metadata descriptions and enables other archives to access our database. The Protocol has been developed by the Open Archives Initiative, based on ensuring interoperability standards in order to ease and promote broader and more efficient dissemination of information within the scientific community.
\\n\\nWe have adopted the Protocol to increase the number of readers of our publications. All our Works are more widely accessible, with resulting benefits for scholars, researchers, students, libraries, universities and other academic institutions. Through this method of exposing metadata, IntechOpen enables citation indexes, scientific search engines, scholarly databases, and scientific literature collections to gather metadata from our repository and make our publications available to a broader academic audience.
\\n\\nAs a Registered Data Provider, metadata for published Books and Chapters are available via our interface at the base URL: http://mts.intechopen.com/oai/index.php
\\n\\nREQUESTS
\\n\\nYou can find out more about the Protocol by visiting the Open Archives website. For additional questions please contact us at ai@intechopen.com.
\\n\\nDATABASES
\\n\\nDatabases, repositories and search engines that provide services based on metadata harvested using the OAI metadata harvesting protocol include:
\\n\\nBASE - Bielefeld Academic Search Engine
\\n\\nOne of the world's most powerful search engines, used primarily for academic Open Access web resources.
\\n\\n\\n\\nA search engine for online catalogues of publications from all over the world.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'The OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting) is used to govern the collection of metadata descriptions and enables other archives to access our database. The Protocol has been developed by the Open Archives Initiative, based on ensuring interoperability standards in order to ease and promote broader and more efficient dissemination of information within the scientific community.
\n\nWe have adopted the Protocol to increase the number of readers of our publications. All our Works are more widely accessible, with resulting benefits for scholars, researchers, students, libraries, universities and other academic institutions. Through this method of exposing metadata, IntechOpen enables citation indexes, scientific search engines, scholarly databases, and scientific literature collections to gather metadata from our repository and make our publications available to a broader academic audience.
\n\nAs a Registered Data Provider, metadata for published Books and Chapters are available via our interface at the base URL: http://mts.intechopen.com/oai/index.php
\n\nREQUESTS
\n\nYou can find out more about the Protocol by visiting the Open Archives website. For additional questions please contact us at ai@intechopen.com.
\n\nDATABASES
\n\nDatabases, repositories and search engines that provide services based on metadata harvested using the OAI metadata harvesting protocol include:
\n\nBASE - Bielefeld Academic Search Engine
\n\nOne of the world's most powerful search engines, used primarily for academic Open Access web resources.
\n\n\n\nA search engine for online catalogues of publications from all over the world.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2459},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"21"},books:[{type:"book",id:"11434",title:"Indigenous Populations - Perspectives From Scholars and Practitioners in Contemporary Times",subtitle:null,isOpenForSubmission:!0,hash:"c0d1c1c93a36fd9d726445966316a373",slug:null,bookSignature:"Dr. Sylvanus Gbendazhi Barnabas",coverURL:"https://cdn.intechopen.com/books/images_new/11434.jpg",editedByType:null,editors:[{id:"293764",title:"Dr.",name:"Sylvanus",surname:"Barnabas",slug:"sylvanus-barnabas",fullName:"Sylvanus Barnabas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11436",title:"Beauty - Evolutionary, Social and Cultural Perspectives on Attractiveness",subtitle:null,isOpenForSubmission:!0,hash:"8f2773e5d4ffe767f38dd15712258e8c",slug:null,bookSignature:"Dr. Farid Pazhoohi",coverURL:"https://cdn.intechopen.com/books/images_new/11436.jpg",editedByType:null,editors:[{id:"470837",title:"Dr.",name:"Farid",surname:"Pazhoohi",slug:"farid-pazhoohi",fullName:"Farid Pazhoohi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11443",title:"Empathy - Advanced Research and Applications",subtitle:null,isOpenForSubmission:!0,hash:"4c1042dfe15aa9cea6019524c4cbff38",slug:null,bookSignature:"Ph.D. Sara Ventura",coverURL:"https://cdn.intechopen.com/books/images_new/11443.jpg",editedByType:null,editors:[{id:"227763",title:"Ph.D.",name:"Sara",surname:"Ventura",slug:"sara-ventura",fullName:"Sara Ventura"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11444",title:"Happiness - Biopsychosocial and Anthropological Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"fa84e7fc3611e5428e070239dcf5a93f",slug:null,bookSignature:"Dr. Floriana Irtelli and Prof. Fabio Gabrielli",coverURL:"https://cdn.intechopen.com/books/images_new/11444.jpg",editedByType:null,editors:[{id:"174641",title:"Dr.",name:"Floriana",surname:"Irtelli",slug:"floriana-irtelli",fullName:"Floriana Irtelli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11478",title:"Recent Advances in the Study of Dyslexia",subtitle:null,isOpenForSubmission:!0,hash:"26764a18c6b776698823e0e1c3022d2f",slug:null,bookSignature:"Prof. Jonathan Glazzard",coverURL:"https://cdn.intechopen.com/books/images_new/11478.jpg",editedByType:null,editors:[{id:"294281",title:"Prof.",name:"Jonathan",surname:"Glazzard",slug:"jonathan-glazzard",fullName:"Jonathan Glazzard"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11777",title:"LGBT Communities",subtitle:null,isOpenForSubmission:!0,hash:"e08bb222c250dcebf093b7ab595a14a7",slug:null,bookSignature:"Dr. Deborah Woodman",coverURL:"https://cdn.intechopen.com/books/images_new/11777.jpg",editedByType:null,editors:[{id:"463750",title:"Dr.",name:"Deborah",surname:"Woodman",slug:"deborah-woodman",fullName:"Deborah Woodman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11781",title:"Family Therapy - Recent Advances in Clinical and Crisis Settings",subtitle:null,isOpenForSubmission:!0,hash:"8c5b7d5e4233594de70d2f830209b757",slug:null,bookSignature:"Dr. Oluwatoyin Olatundun Ilesanmi",coverURL:"https://cdn.intechopen.com/books/images_new/11781.jpg",editedByType:null,editors:[{id:"440049",title:"Dr.",name:"Oluwatoyin Olatundun",surname:"Ilesanmi",slug:"oluwatoyin-olatundun-ilesanmi",fullName:"Oluwatoyin Olatundun Ilesanmi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11782",title:"Personality Traits - The Role in Psychopathology",subtitle:null,isOpenForSubmission:!0,hash:"d3a491e5194cad4c59b900dd57a11842",slug:null,bookSignature:" Vladimir V. Kalinin",coverURL:"https://cdn.intechopen.com/books/images_new/11782.jpg",editedByType:null,editors:[{id:"31572",title:null,name:"Vladimir V.",surname:"Kalinin",slug:"vladimir-v.-kalinin",fullName:"Vladimir V. Kalinin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11783",title:"Motivation and Success",subtitle:null,isOpenForSubmission:!0,hash:"f660b7cd35b9af94bdfc3564df138161",slug:null,bookSignature:"Dr. Simon George Taukeni",coverURL:"https://cdn.intechopen.com/books/images_new/11783.jpg",editedByType:null,editors:[{id:"202046",title:"Dr.",name:"Simon George",surname:"Taukeni",slug:"simon-george-taukeni",fullName:"Simon George Taukeni"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12109",title:"Identifying Occupational Stress and Coping Strategies",subtitle:null,isOpenForSubmission:!0,hash:"09a2f5fe50b90b20637b7aceccf1cfdd",slug:null,bookSignature:"Dr. Kavitha Palaniappan",coverURL:"https://cdn.intechopen.com/books/images_new/12109.jpg",editedByType:null,editors:[{id:"311189",title:"Dr.",name:"Kavitha",surname:"Palaniappan",slug:"kavitha-palaniappan",fullName:"Kavitha Palaniappan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12127",title:"The Psychology of Sports",subtitle:null,isOpenForSubmission:!0,hash:"4bf52abfe589a320744c40ca5fe41a89",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12127.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12135",title:"Parenting",subtitle:null,isOpenForSubmission:!0,hash:"5fcfe3872ea161c9c879e0667a220ca8",slug:null,bookSignature:"",coverURL:"//cdnintech.com/web/frontend/www/assets/cover.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:14},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"19",title:"Pharmacology, Toxicology and Pharmaceutical Science",slug:"pharmacology-toxicology-and-pharmaceutical-science",parent:{id:"3",title:"Health Sciences",slug:"health-sciences"},numberOfBooks:95,numberOfSeries:0,numberOfAuthorsAndEditors:2355,numberOfWosCitations:3048,numberOfCrossrefCitations:1964,numberOfDimensionsCitations:4751,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"19",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editedByType:"Edited by",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9829",title:"Biosimilars",subtitle:null,isOpenForSubmission:!1,hash:"c72171c1d1cf6df5aad989cb07cc8e4e",slug:"biosimilars",bookSignature:"Valderilio Feijó Azevedo and Robert Moots",coverURL:"https://cdn.intechopen.com/books/images_new/9829.jpg",editedByType:"Edited by",editors:[{id:"69875",title:"Dr.",name:"Valderilio",middleName:"Feijó",surname:"Feijó Azevedo",slug:"valderilio-feijo-azevedo",fullName:"Valderilio Feijó Azevedo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10881",title:"Drug Repurposing",subtitle:"Molecular Aspects and Therapeutic Applications",isOpenForSubmission:!1,hash:"eca3f2d5ca97b457d38a2442b36d3ac7",slug:"drug-repurposing-molecular-aspects-and-therapeutic-applications",bookSignature:"Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/10881.jpg",editedByType:"Edited by",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10234",title:"High-Throughput Screening for Drug Discovery",subtitle:null,isOpenForSubmission:!1,hash:"37e6f5b6dd0567efb63dca4b2c73495f",slug:"high-throughput-screening-for-drug-discovery",bookSignature:"Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/10234.jpg",editedByType:"Edited by",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11038",title:"Vaccine Development",subtitle:null,isOpenForSubmission:!1,hash:"2604d260662a3a3cc91971ea07beca61",slug:"vaccine-development",bookSignature:"Yulia Desheva",coverURL:"https://cdn.intechopen.com/books/images_new/11038.jpg",editedByType:"Edited by",editors:[{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10736",title:"Neurotoxicity",subtitle:"New Advances",isOpenForSubmission:!1,hash:"50dfa1a8daaa4a6171a0f6fde2e8d651",slug:"neurotoxicity-new-advances",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/10736.jpg",editedByType:"Edited by",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10502",title:"Aflatoxins",subtitle:"Occurrence, Detoxification, Determination and Health Risks",isOpenForSubmission:!1,hash:"34fe61c309f2405130ede7a267cf8bd5",slug:"aflatoxins-occurrence-detoxification-determination-and-health-risks",bookSignature:"Lukman Bola Abdulra’uf",coverURL:"https://cdn.intechopen.com/books/images_new/10502.jpg",editedByType:"Edited by",editors:[{id:"149347",title:"Dr.",name:"Lukman",middleName:"Bola",surname:"Bola Abdulra'Uf",slug:"lukman-bola-abdulra'uf",fullName:"Lukman Bola Abdulra'Uf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10357",title:"Drug Metabolism",subtitle:null,isOpenForSubmission:!1,hash:"3bd3ae5041cab45020555b49152b1ddc",slug:"drug-metabolism",bookSignature:"Katherine Dunnington",coverURL:"https://cdn.intechopen.com/books/images_new/10357.jpg",editedByType:"Edited by",editors:[{id:"232694",title:"Dr.",name:"Katherine",middleName:null,surname:"Dunnington",slug:"katherine-dunnington",fullName:"Katherine Dunnington"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10735",title:"Metformin",subtitle:"Pharmacology and Drug Interactions",isOpenForSubmission:!1,hash:"fee7e27a0fa000d000c459ff6e4b749e",slug:"metformin-pharmacology-and-drug-interactions",bookSignature:"Juber Akhtar, Usama Ahmad, Badruddeen and Mohammad Irfan Khan",coverURL:"https://cdn.intechopen.com/books/images_new/10735.jpg",editedByType:"Edited by",editors:[{id:"345595",title:"Prof.",name:"Juber",middleName:null,surname:"Akhtar",slug:"juber-akhtar",fullName:"Juber Akhtar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",isOpenForSubmission:!1,hash:"6d200cc031706a565b554fdb1c478901",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",bookSignature:"Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:"Edited by",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10716",title:"Corticosteroids",subtitle:"A Paradigmatic Drug Class",isOpenForSubmission:!1,hash:"d600ff66a3b0544bcbb713ea46287590",slug:"corticosteroids-a-paradigmatic-drug-class",bookSignature:"Celso Pereira",coverURL:"https://cdn.intechopen.com/books/images_new/10716.jpg",editedByType:"Edited by",editors:[{id:"66336",title:"Prof.",name:"Celso",middleName:null,surname:"Pereira",slug:"celso-pereira",fullName:"Celso Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10578",title:"Pharmacogenetics",subtitle:null,isOpenForSubmission:!1,hash:"ca2bc2ff6e15a7b735d662d9664086b1",slug:"pharmacogenetics",bookSignature:"Islam A. Khalil",coverURL:"https://cdn.intechopen.com/books/images_new/10578.jpg",editedByType:"Edited by",editors:[{id:"226598",title:"Dr.",name:"Islam",middleName:null,surname:"A. Khalil",slug:"islam-a.-khalil",fullName:"Islam A. Khalil"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:95,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"64762",doi:"10.5772/intechopen.82511",title:"Mechanism and Health Effects of Heavy Metal Toxicity in Humans",slug:"mechanism-and-health-effects-of-heavy-metal-toxicity-in-humans",totalDownloads:10236,totalCrossrefCites:100,totalDimensionsCites:229,abstract:"Several heavy metals are found naturally in the earth crust and are exploited for various industrial and economic purposes. Among these heavy metals, a few have direct or indirect impact on the human body. Some of these heavy metals such as copper, cobalt, iron, nickel, magnesium, molybdenum, chromium, selenium, manganese and zinc have functional roles which are essential for various diverse physiological and biochemical activities in the body. However, some of these heavy metals in high doses can be harmful to the body while others such as cadmium, mercury, lead, chromium, silver, and arsenic in minute quantities have delirious effects in the body causing acute and chronic toxicities in humans. The focus of this chapter is to describe the various mechanism of intoxication of some selected heavy metals in humans along with their health effects. Therefore it aims to highlight on biochemical mechanisms of heavy metal intoxication which involves binding to proteins and enzymes, altering their activity and causing damage. More so, the mechanism by which heavy metals cause neurotoxicity, generate free radical which promotes oxidative stress damaging lipids, proteins and DNA molecules and how these free radicals propagate carcinogenesis are discussed. Alongside these mechanisms, the noxious health effects of these heavy metals are discussed.",book:{id:"7111",slug:"poisoning-in-the-modern-world-new-tricks-for-an-old-dog-",title:"Poisoning in the Modern World",fullTitle:"Poisoning in the Modern World - New Tricks for an Old Dog?"},signatures:"Godwill Azeh Engwa, Paschaline Udoka Ferdinand, Friday Nweke Nwalo and Marian N. Unachukwu",authors:[{id:"241837",title:"Mr.",name:"Godwill Azeh",middleName:null,surname:"Engwa",slug:"godwill-azeh-engwa",fullName:"Godwill Azeh Engwa"},{id:"274194",title:"BSc.",name:"Paschaline Ferdinand",middleName:null,surname:"Okeke",slug:"paschaline-ferdinand-okeke",fullName:"Paschaline Ferdinand Okeke"},{id:"286975",title:"Dr.",name:"Friday",middleName:null,surname:"Nweke Nwalo",slug:"friday-nweke-nwalo",fullName:"Friday Nweke Nwalo"},{id:"286976",title:"Dr.",name:"Marian",middleName:null,surname:"Unachukwu",slug:"marian-unachukwu",fullName:"Marian Unachukwu"}]},{id:"57717",doi:"10.5772/intechopen.71923",title:"In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages",slug:"in-vitro-cytotoxicity-and-cell-viability-assays-principles-advantages-and-disadvantages",totalDownloads:14761,totalCrossrefCites:74,totalDimensionsCites:144,abstract:"Cytotoxicity is one of the most important indicators for biological evaluation in vitro studies. In vitro, chemicals such as drugs and pesticides have different cytotoxicity mechanisms such as destruction of cell membranes, prevention of protein synthesis, irreversible binding to receptors etc. In order to determine the cell death caused by these damages, there is a need for cheap, reliable and reproducible short-term cytotoxicity and cell viability assays. Cytotoxicity and cell viability assays are based on various cell functions. A broad spectrum of cytotoxicity assays is currently used in the fields of toxicology and pharmacology. There are different classifications for these assays: (i) dye exclusion assays; (ii) colorimetric assays; (iii) fluorometric assays; and (iv) luminometric assays. Choosing the appropriate method among these assays is important for obtaining accurate and reliable results. When selecting the cytotoxicity and cell viability assays to be used in the study, different parameters have to be considered such as the availability in the laboratory where the study is to be performed, test compounds, detection mechanism, specificity, and sensitivity. In this chapter, information will be given about in vitro cytotoxicity and viability assays, these assays will be classified and their advantages and disadvantages will be emphasized. The aim of this chapter is to guide the researcher interested in this subject to select the appropriate assay for their study.",book:{id:"6310",slug:"genotoxicity-a-predictable-risk-to-our-actual-world",title:"Genotoxicity",fullTitle:"Genotoxicity - A Predictable Risk to Our Actual World"},signatures:"Özlem Sultan Aslantürk",authors:[{id:"211212",title:"Dr.",name:"Özlem Sultan",middleName:null,surname:"Aslantürk",slug:"ozlem-sultan-aslanturk",fullName:"Özlem Sultan Aslantürk"}]},{id:"66259",doi:"10.5772/intechopen.85270",title:"Antioxidant Compounds and Their Antioxidant Mechanism",slug:"antioxidant-compounds-and-their-antioxidant-mechanism",totalDownloads:7489,totalCrossrefCites:53,totalDimensionsCites:135,abstract:"An antioxidant is a substance that at low concentrations delays or prevents oxidation of a substrate. Antioxidant compounds act through several chemical mechanisms: hydrogen atom transfer (HAT), single electron transfer (SET), and the ability to chelate transition metals. The importance of antioxidant mechanisms is to understand the biological meaning of antioxidants, their possible uses, their production by organic synthesis or biotechnological methods, or for the standardization of the determination of antioxidant activity. In general, antioxidant molecules can react either by multiple mechanisms or by a predominant mechanism. The chemical structure of the antioxidant substance allows understanding of the antioxidant reaction mechanism. This chapter reviews the in vitro antioxidant reaction mechanisms of organic compounds polyphenols, carotenoids, and vitamins C against free radicals (FR) and prooxidant compounds under diverse conditions, as well as the most commonly used methods to evaluate the antioxidant activity of these compounds according to the mechanism involved in the reaction with free radicals and the methods of in vitro antioxidant evaluation that are used frequently depending on the reaction mechanism of the antioxidant.",book:{id:"8008",slug:"antioxidants",title:"Antioxidants",fullTitle:"Antioxidants"},signatures:"Norma Francenia Santos-Sánchez, Raúl Salas-Coronado, Claudia Villanueva-Cañongo and Beatriz Hernández-Carlos",authors:[{id:"143354",title:"Dr.",name:"Raúl",middleName:null,surname:"Salas-Coronado",slug:"raul-salas-coronado",fullName:"Raúl Salas-Coronado"},{id:"148546",title:"Dr.",name:"Norma Francenia",middleName:null,surname:"Santos-Sánchez",slug:"norma-francenia-santos-sanchez",fullName:"Norma Francenia Santos-Sánchez"},{id:"193718",title:"Dr.",name:"Beatriz",middleName:null,surname:"Hernández-Carlos",slug:"beatriz-hernandez-carlos",fullName:"Beatriz Hernández-Carlos"},{id:"278133",title:"Dr.",name:"Claudia",middleName:null,surname:"Villanueva-Cañongo",slug:"claudia-villanueva-canongo",fullName:"Claudia Villanueva-Cañongo"}]},{id:"40253",doi:"10.5772/50486",title:"Lipid Nanoparticulate Drug Delivery Systems: A Revolution in Dosage Form Design and Development",slug:"lipid-nanoparticulate-drug-delivery-systems-a-revolution-in-dosage-form-design-and-development",totalDownloads:11245,totalCrossrefCites:21,totalDimensionsCites:103,abstract:null,book:{id:"2509",slug:"recent-advances-in-novel-drug-carrier-systems",title:"Recent Advances in Novel Drug Carrier Systems",fullTitle:"Recent Advances in Novel Drug Carrier Systems"},signatures:"Anthony A. Attama, Mumuni A. Momoh and Philip F. Builders",authors:[{id:"142947",title:"Prof.",name:"Anthony",middleName:null,surname:"Attama",slug:"anthony-attama",fullName:"Anthony Attama"}]},{id:"42016",doi:"10.5772/55187",title:"Why are Early Life Stages of Aquatic Organisms more Sensitive to Toxicants than Adults?",slug:"why-are-early-life-stages-of-aquatic-organisms-more-sensitive-to-toxicants-than-adults-",totalDownloads:3477,totalCrossrefCites:35,totalDimensionsCites:99,abstract:null,book:{id:"3408",slug:"new-insights-into-toxicity-and-drug-testing",title:"New Insights into Toxicity and Drug Testing",fullTitle:"New Insights into Toxicity and Drug Testing"},signatures:"Azad Mohammed",authors:[{id:"147061",title:"Dr.",name:"Azad",middleName:null,surname:"Mohammed",slug:"azad-mohammed",fullName:"Azad Mohammed"}]}],mostDownloadedChaptersLast30Days:[{id:"64762",title:"Mechanism and Health Effects of Heavy Metal Toxicity in Humans",slug:"mechanism-and-health-effects-of-heavy-metal-toxicity-in-humans",totalDownloads:10236,totalCrossrefCites:100,totalDimensionsCites:229,abstract:"Several heavy metals are found naturally in the earth crust and are exploited for various industrial and economic purposes. Among these heavy metals, a few have direct or indirect impact on the human body. Some of these heavy metals such as copper, cobalt, iron, nickel, magnesium, molybdenum, chromium, selenium, manganese and zinc have functional roles which are essential for various diverse physiological and biochemical activities in the body. However, some of these heavy metals in high doses can be harmful to the body while others such as cadmium, mercury, lead, chromium, silver, and arsenic in minute quantities have delirious effects in the body causing acute and chronic toxicities in humans. The focus of this chapter is to describe the various mechanism of intoxication of some selected heavy metals in humans along with their health effects. Therefore it aims to highlight on biochemical mechanisms of heavy metal intoxication which involves binding to proteins and enzymes, altering their activity and causing damage. More so, the mechanism by which heavy metals cause neurotoxicity, generate free radical which promotes oxidative stress damaging lipids, proteins and DNA molecules and how these free radicals propagate carcinogenesis are discussed. Alongside these mechanisms, the noxious health effects of these heavy metals are discussed.",book:{id:"7111",slug:"poisoning-in-the-modern-world-new-tricks-for-an-old-dog-",title:"Poisoning in the Modern World",fullTitle:"Poisoning in the Modern World - New Tricks for an Old Dog?"},signatures:"Godwill Azeh Engwa, Paschaline Udoka Ferdinand, Friday Nweke Nwalo and Marian N. Unachukwu",authors:[{id:"241837",title:"Mr.",name:"Godwill Azeh",middleName:null,surname:"Engwa",slug:"godwill-azeh-engwa",fullName:"Godwill Azeh Engwa"},{id:"274194",title:"BSc.",name:"Paschaline Ferdinand",middleName:null,surname:"Okeke",slug:"paschaline-ferdinand-okeke",fullName:"Paschaline Ferdinand Okeke"},{id:"286975",title:"Dr.",name:"Friday",middleName:null,surname:"Nweke Nwalo",slug:"friday-nweke-nwalo",fullName:"Friday Nweke Nwalo"},{id:"286976",title:"Dr.",name:"Marian",middleName:null,surname:"Unachukwu",slug:"marian-unachukwu",fullName:"Marian Unachukwu"}]},{id:"49459",title:"Pharmacokinetics of Drugs Following IV Bolus, IV Infusion, and Oral Administration",slug:"pharmacokinetics-of-drugs-following-iv-bolus-iv-infusion-and-oral-administration",totalDownloads:15401,totalCrossrefCites:15,totalDimensionsCites:22,abstract:null,book:{id:"4491",slug:"basic-pharmacokinetic-concepts-and-some-clinical-applications",title:"Basic Pharmacokinetic Concepts and Some Clinical Applications",fullTitle:"Basic Pharmacokinetic Concepts and Some Clinical Applications"},signatures:"Tarek A. Ahmed",authors:[{id:"175649",title:"Dr.",name:"Tarek A",middleName:null,surname:"Ahmed",slug:"tarek-a-ahmed",fullName:"Tarek A Ahmed"}]},{id:"29240",title:"Oral Absorption, Intestinal Metabolism and Human Oral Bioavailability",slug:"oral-absorption-intestinal-metabolism-and-human-oral-bioavailability-",totalDownloads:27075,totalCrossrefCites:27,totalDimensionsCites:57,abstract:null,book:{id:"672",slug:"topics-on-drug-metabolism",title:"Topics on Drug Metabolism",fullTitle:"Topics on Drug Metabolism"},signatures:"Ayman El-Kattan and Manthena Varma",authors:[{id:"85539",title:"Dr.",name:"Ayman",middleName:null,surname:"El-Kattan",slug:"ayman-el-kattan",fullName:"Ayman El-Kattan"},{id:"88221",title:"Dr.",name:"Manthena",middleName:null,surname:"Varma",slug:"manthena-varma",fullName:"Manthena Varma"}]},{id:"66259",title:"Antioxidant Compounds and Their Antioxidant Mechanism",slug:"antioxidant-compounds-and-their-antioxidant-mechanism",totalDownloads:7490,totalCrossrefCites:53,totalDimensionsCites:135,abstract:"An antioxidant is a substance that at low concentrations delays or prevents oxidation of a substrate. Antioxidant compounds act through several chemical mechanisms: hydrogen atom transfer (HAT), single electron transfer (SET), and the ability to chelate transition metals. The importance of antioxidant mechanisms is to understand the biological meaning of antioxidants, their possible uses, their production by organic synthesis or biotechnological methods, or for the standardization of the determination of antioxidant activity. In general, antioxidant molecules can react either by multiple mechanisms or by a predominant mechanism. The chemical structure of the antioxidant substance allows understanding of the antioxidant reaction mechanism. This chapter reviews the in vitro antioxidant reaction mechanisms of organic compounds polyphenols, carotenoids, and vitamins C against free radicals (FR) and prooxidant compounds under diverse conditions, as well as the most commonly used methods to evaluate the antioxidant activity of these compounds according to the mechanism involved in the reaction with free radicals and the methods of in vitro antioxidant evaluation that are used frequently depending on the reaction mechanism of the antioxidant.",book:{id:"8008",slug:"antioxidants",title:"Antioxidants",fullTitle:"Antioxidants"},signatures:"Norma Francenia Santos-Sánchez, Raúl Salas-Coronado, Claudia Villanueva-Cañongo and Beatriz Hernández-Carlos",authors:[{id:"143354",title:"Dr.",name:"Raúl",middleName:null,surname:"Salas-Coronado",slug:"raul-salas-coronado",fullName:"Raúl Salas-Coronado"},{id:"148546",title:"Dr.",name:"Norma Francenia",middleName:null,surname:"Santos-Sánchez",slug:"norma-francenia-santos-sanchez",fullName:"Norma Francenia Santos-Sánchez"},{id:"193718",title:"Dr.",name:"Beatriz",middleName:null,surname:"Hernández-Carlos",slug:"beatriz-hernandez-carlos",fullName:"Beatriz Hernández-Carlos"},{id:"278133",title:"Dr.",name:"Claudia",middleName:null,surname:"Villanueva-Cañongo",slug:"claudia-villanueva-canongo",fullName:"Claudia Villanueva-Cañongo"}]},{id:"66742",title:"Introductory Chapter: Alkaloids - Their Importance in Nature and for Human Life",slug:"introductory-chapter-alkaloids-their-importance-in-nature-and-for-human-life",totalDownloads:4035,totalCrossrefCites:14,totalDimensionsCites:29,abstract:null,book:{id:"6828",slug:"alkaloids-their-importance-in-nature-and-human-life",title:"Alkaloids",fullTitle:"Alkaloids - Their Importance in Nature and Human Life"},signatures:"Joanna Kurek",authors:[{id:"214632",title:"Dr.",name:"Joanna",middleName:null,surname:"Kurek",slug:"joanna-kurek",fullName:"Joanna Kurek"}]}],onlineFirstChaptersFilter:{topicId:"19",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"82439",title:"Cellular Cytotoxicity and Multiple Sclerosis",slug:"cellular-cytotoxicity-and-multiple-sclerosis",totalDownloads:1,totalDimensionsCites:0,doi:"10.5772/intechopen.105681",abstract:"Multiple sclerosis (MS) is an autoimmune disease in which discrete central nervous system lesions result from perivascular immune cell infiltration associated with damage to myelin (demyelination), oligodendrocytes and neurons. This culminates in debilitating neurological symptoms, primarily affecting women in their child-bearing years. Both the innate and adaptive branches of the immune system have been implicated in disease initiation and progression, and although the underlying cause remains elusive, there is compelling evidence for a complex interaction between genetic and environmental factors, leading to inflammation and neurodegeneration. Both direct cellular toxicity and antibody-dependent cellular cytotoxicity (ADCC) involving several cell types have been identified in playing major roles. These cells and their interactions in the pathogenesis of MS will be discussed.",book:{id:"11678",title:"Cytotoxicity",coverURL:"https://cdn.intechopen.com/books/images_new/11678.jpg"},signatures:"Annie M.L. Willson and Margaret A. Jordan"},{id:"82226",title:"Early Signal Detection: Data Mining of Mental Disorders with Statins",slug:"early-signal-detection-data-mining-of-mental-disorders-with-statins",totalDownloads:3,totalDimensionsCites:0,doi:"10.5772/intechopen.105504",abstract:"Statins are widely prescribed to treat dyslipidemias. It is well-known adverse reaction of these active ingredients related to rhabdomyolysis and myalgia, but there are other signals to be aware of, such as mental disorders. Pharmacovigilance tools help to trace known risks and detect early other unknown effects that appear over time. Data of all the reported suspected adverse drug reactions for statins from the international World Health Organization (WHO) repository Vigibase were analyzed with an adaptation of data mining Bayesian methodology to search for positive signals, threshold of false discovery rate (FDR) < 0.05, and listed candidates for priority clinical investigation. Among positive mental signals observed, some were currently stated as adverse reactions in technical factsheets as insomnia, depression, dementia, and nightmares, but others have not reached this condition as bipolar, psychotic, and emotional disorders or symptoms and suicide. Other diverse central positive signals that can be confounded with mental conditions obtained and not stated were senses impairment, such as blindness, deafness, balance disorder, and events related to suicide. Worrying positive signals proposed as candidates to further investigation are insomnia for pitavastatin, pravastatin, and simvastatin; dementia for atorvastatin and rosuvastatin; and suicide and psychotic disorders for atorvastatin, lovastatin, pravastatin, rosuvastatin, and simvastatin.",book:{id:"11679",title:"Pharmacovigilance and Regulations",coverURL:"https://cdn.intechopen.com/books/images_new/11679.jpg"},signatures:"Maria-Isabel Jimenez-Serrania"},{id:"82398",title:"Computer-Aided Drug Design and Development: An Integrated Approach",slug:"computer-aided-drug-design-and-development-an-integrated-approach",totalDownloads:3,totalDimensionsCites:0,doi:"10.5772/intechopen.105003",abstract:"Drug discovery and development is a very time- and resource-consuming process. Comprehensive knowledge of chemistry has been integrated with information technology to streamline drug discovery, design, development, and optimization. Computer-aided drug design is being utilized to expedite and facilitate hit identification, hit-to-lead selection, and optimize the absorption, distribution, metabolism, excretion, and toxicity profile. Regulatory organizations and the pharmaceutical industry are continuously involved in the development of computational techniques that will improve the effectiveness and efficiency of the drug discovery process while decreasing the use of animals, cost, and time and increasing predictability. The present chapter will provide an overview of computational tools, such as structure-based and receptor-based drug designing, and how the coupling of these tools with a rational drug design process has led to the discovery of small molecules as therapeutic agents for numerous human disease conditions duly approved by the Food and Drug Administration. It is expected that the power of CADD will grow as the technology continues to evolve.",book:{id:"11091",title:"Drug Development Life Cycle",coverURL:"https://cdn.intechopen.com/books/images_new/11091.jpg"},signatures:"Neelima Dhingra"},{id:"81186",title:"Germicidal and Antineoplastic Activities of Curcumin and Curcumin-Derived Nanoparticles",slug:"germicidal-and-antineoplastic-activities-of-curcumin-and-curcumin-derived-nanoparticles",totalDownloads:4,totalDimensionsCites:0,doi:"10.5772/intechopen.103076",abstract:"Curcumin is a major constituent of turmeric and has been shown to have a plethora of health benefits, which include, among many, antimicrobial, anticancer, and reduction of cholesterol. However, it has also been reported that curcumin has less bioaccumulation and is quickly metabolized and cleared from the body. Nanoparticle formulations are known to increase curcumin biocompatibility and targeting. Additionally, the antimicrobial activity of curcumin has been extensively studied and the mechanism of action provides clues for the development of new drugs for drug-resistant microbes. Thus, this chapter will review the biomedical application of curcumin and its nanoformulations against different microbes and other diseases, including cancer.",book:{id:"11323",title:"Antimicrobial and Pharmacological Aspects of Curcumin",coverURL:"https://cdn.intechopen.com/books/images_new/11323.jpg"},signatures:"Lilian Makgoo and Zukile Mbita"},{id:"82304",title:"Nonbiodegradable Hospital Waste Burden and Implications",slug:"nonbiodegradable-hospital-waste-burden-and-implications",totalDownloads:5,totalDimensionsCites:0,doi:"10.5772/intechopen.105009",abstract:"Hospitals and other healthcare facilities are very essential for the cure and care of persons suffering from health issues and also to promote health in society. As the health care services are improving and increasing their reach even in underdeveloped countries, so is the problem of health care waste (HCW) as hospitals generate a relatively huge amount of HCW, which consists of general as well as hazardous waste. The persons handling HCW are at immediate risk, followed by persons residing near HCW dumping/processing areas and the general public. Infectious HCW is a major threat to the health of humans and animals as it has the potential to spread various infectious diseases to the human and animal population. Due to the uncontrolled use of disposable nonbiodegradable materials by healthcare systems and their processing or lack of it, the HCW has emerged as one of the major sources of environmental pollution including the emission of the significant amount of greenhouse gases, which stands from 3 to 10% of total emissions of nations. HCW also leads to leaching chemicals, heavy metals like Pb, Cd, Cr, radioactive substances, and even generating carcinogens like dioxin in the environment contaminating air, soil, and water in general and especially in areas surrounding HCW dumping or processing affecting health and quality of life of not only of humans but cohabiting flora and fauna in those areas. Thus, the HCW is becoming one of the major sources of environmental pollution and collectively contributing to the problem of global warming. The HCW needs to be given the desired attention and priority in actions and policy. The chapter focuses on sources, types, and various environmental and health hazards related to HCW, its global environmental impact and management strategies for minimum effects with an eco-friendly and sustainable approach.",book:{id:"11329",title:"The Toxicity of Environmental Pollutants",coverURL:"https://cdn.intechopen.com/books/images_new/11329.jpg"},signatures:"Deepak S. Khobragade"},{id:"82246",title:"Heavy Metal Contamination of Water and Their Toxic Effect on Living Organisms",slug:"heavy-metal-contamination-of-water-and-their-toxic-effect-on-living-organisms",totalDownloads:17,totalDimensionsCites:0,doi:"10.5772/intechopen.105075",abstract:"Water has become a major threat in today’s world. Collection of heavy metals, a few of them, is potentially toxic and these get distributed to different areas through different pathways. With an increase in the earth’s population, development and industrialization are taking place rapidly and these get the major source of water contamination. With heavy metals in lakes, rivers, groundwater, and various water sources, water gets polluted by the increased concentration of heavy metals and metalloids through release from the suddenly mine tailings, disposal of high metal wastes, growing industrial areas, leaded gasoline and paints, usage of fertilizers inland, animal manures, E-waste, sewage sludge, pesticides, wastewater irrigation, coal, etc. Exposure to heavy metals has been linked to chronic and acute toxicity, which develops retardation; neurotoxicity can damage the kidneys, lead to the development of different cancers, damage the liver and lungs; bones can become fragile; and there are even chances of death in case of huge amount of exposure. This chapter mainly focuses on heavy metal pollution in water and its toxic effect on living organisms.",book:{id:"11329",title:"The Toxicity of Environmental Pollutants",coverURL:"https://cdn.intechopen.com/books/images_new/11329.jpg"},signatures:"Anubhav Singh, Anuj Sharma, Rohit K. Verma, Rushikesh L. Chopade, Pritam P. Pandit, Varad Nagar, Vinay Aseri, Sumit K. Choudhary, Garima Awasthi, Kumud K. Awasthi and Mahipal S. Sankhla"}],onlineFirstChaptersTotal:59},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"23",title:"Education and Human Development",doi:"10.5772/intechopen.100360",issn:null,scope:"\r\n\tEducation and Human Development is an interdisciplinary research area that aims to shed light on topics related to both learning and development. This Series is intended for researchers, practitioners, and students who are interested in understanding more about these fields and their applications.
",coverUrl:"https://cdn.intechopen.com/series/covers/23.jpg",latestPublicationDate:"June 25th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:0,editor:{id:"280770",title:"Dr.",name:"Katherine K.M.",middleName:null,surname:"Stavropoulos",slug:"katherine-k.m.-stavropoulos",fullName:"Katherine K.M. Stavropoulos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRdFuQAK/Profile_Picture_2022-05-24T09:03:48.jpg",biography:"Katherine Stavropoulos received her BA in Psychology from Trinity College, in Connecticut, USA. Dr. Stavropoulos received her Ph.D. in Experimental Psychology from the University of California, San Diego. She completed her postdoctoral work at the Yale Child Study Center with Dr. James McPartland. Dr. Stavropoulos’ doctoral dissertation explored neural correlates of reward anticipation to social versus nonsocial stimuli in children with and without autism spectrum disorders (ASD). She has been a faculty member at the University of California, Riverside in the School of Education since 2016. Her research focuses on translational studies to explore the reward system in ASD, as well as how anxiety contributes to social challenges in ASD. She also investigates how behavioral interventions affect neural activity, behavior, and school performance in children with ASD. She is also involved in the diagnosis of children with ASD and is a licensed clinical psychologist in California. She is the Assistant Director of the SEARCH Center at UCR and is a Faculty member in the Graduate Program in Neuroscience.",institutionString:null,institution:{name:"University of California, Riverside",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:2,paginationItems:[{id:"89",title:"Education",coverUrl:"https://cdn.intechopen.com/series_topics/covers/89.jpg",isOpenForSubmission:!1,editor:{id:"260066",title:"Associate Prof.",name:"Michail",middleName:null,surname:"Kalogiannakis",slug:"michail-kalogiannakis",fullName:"Michail Kalogiannakis",profilePictureURL:"https://mts.intechopen.com/storage/users/260066/images/system/260066.jpg",biography:"Michail Kalogiannakis is an Associate Professor of the Department of Preschool Education, University of Crete, and an Associate Tutor at School of Humanities at the Hellenic Open University. He graduated from the Physics Department of the University of Crete and continued his post-graduate studies at the University Paris 7-Denis Diderot (D.E.A. in Didactic of Physics), University Paris 5-René Descartes-Sorbonne (D.E.A. in Science Education) and received his Ph.D. degree at the University Paris 5-René Descartes-Sorbonne (PhD in Science Education). His research interests include science education in early childhood, science teaching and learning, e-learning, the use of ICT in science education, games simulations, and mobile learning. He has published over 120 articles in international conferences and journals and has served on the program committees of numerous international conferences.",institutionString:"University of Crete",institution:{name:"University of Crete",institutionURL:null,country:{name:"Greece"}}},editorTwo:{id:"422488",title:"Dr.",name:"Maria",middleName:null,surname:"Ampartzaki",slug:"maria-ampartzaki",fullName:"Maria Ampartzaki",profilePictureURL:"https://mts.intechopen.com/storage/users/422488/images/system/422488.jpg",biography:"Dr Maria Ampartzaki is an Assistant Professor in Early Childhood Education in the Department of Preschool Education at the University of Crete. Her research interests include ICT in education, science education in the early years, inquiry-based and art-based learning, teachers’ professional development, action research, and the Pedagogy of Multiliteracies, among others. She has run and participated in several funded and non-funded projects on the teaching of Science, Social Sciences, and ICT in education. She also has the experience of participating in five Erasmus+ projects.",institutionString:"University of Crete",institution:{name:"University of Crete",institutionURL:null,country:{name:"Greece"}}},editorThree:null},{id:"90",title:"Human Development",coverUrl:"https://cdn.intechopen.com/series_topics/covers/90.jpg",isOpenForSubmission:!0,editor:{id:"191040",title:"Dr.",name:"Tal",middleName:null,surname:"Dotan Ben-Soussan",slug:"tal-dotan-ben-soussan",fullName:"Tal Dotan Ben-Soussan",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBf1QAG/Profile_Picture_2022-03-18T07:56:11.jpg",biography:"Tal Dotan Ben-Soussan, Ph.D., is the director of the Research Institute for Neuroscience, Education and Didactics (RINED) – Paoletti Foundation. Ben-Soussan leads international studies on training and neuroplasticity from neurophysiological and psychobiological perspectives. As a neuroscientist and bio-psychologist, she has published numerous articles on neuroplasticity, movement and meditation. She acts as an editor and reviewer in several renowned journals and coordinates international conferences integrating theoretical, methodological and practical approaches on various topics, such as silence, logics and neuro-education. She lives in Assisi, Italy.",institutionString:"Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation",institution:null},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:5,paginationItems:[{id:"82394",title:"Learning by Doing Active Social Learning",doi:"10.5772/intechopen.105523",signatures:"Anat Raviv",slug:"learning-by-doing-active-social-learning",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82310",title:"Knowledge of Intergenerational Contact to Combat Ageism towards Older People",doi:"10.5772/intechopen.105592",signatures:"Alice Nga Lai Kwong",slug:"knowledge-of-intergenerational-contact-to-combat-ageism-towards-older-people",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"81993",title:"Emergent Chemistry: Using Visualizations to Develop Abstract Thinking and a Sense of Scale Within the Preschool Setting",doi:"10.5772/intechopen.105216",signatures:"Karina Adbo",slug:"emergent-chemistry-using-visualizations-to-develop-abstract-thinking-and-a-sense-of-scale-within-the",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82252",title:"Early Childhood: Enriched Environments and Roles of Caring Adults",doi:"10.5772/intechopen.105157",signatures:"Analía Mignaton",slug:"early-childhood-enriched-environments-and-roles-of-caring-adults",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}}]},overviewPagePublishedBooks:{paginationCount:0,paginationItems:[]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11601",title:"Econometrics - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11601.jpg",hash:"bc8ab49e2cf436c217a49ca8c12a22eb",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 13th 2022",isOpenForSubmission:!0,editors:[{id:"452331",title:"Dr.",name:"Brian",surname:"Sloboda",slug:"brian-sloboda",fullName:"Brian Sloboda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12141",title:"Leadership - Advancing Great Leadership Practices and Good Leaders",coverURL:"https://cdn.intechopen.com/books/images_new/12141.jpg",hash:"85f77453916f1d80d80d88ee4fd2f2d1",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 1st 2022",isOpenForSubmission:!0,editors:[{id:"420133",title:"Dr.",name:"Joseph",surname:"Crawford",slug:"joseph-crawford",fullName:"Joseph Crawford"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12139",title:"Global Market and Trade",coverURL:"https://cdn.intechopen.com/books/images_new/12139.jpg",hash:"fa34af07c3a9657fa670404202f8cba5",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 21st 2022",isOpenForSubmission:!0,editors:[{id:"243649",title:"Dr.Ing.",name:"Ireneusz",surname:"Miciuła",slug:"ireneusz-miciula",fullName:"Ireneusz Miciuła"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:3,paginationItems:[{id:"82362",title:"Studies on the Short-Term Effects of the Cease of Pesticides Use on Vineyard Microbiome",doi:"10.5772/intechopen.105706",signatures:"Simona Ghiță, Mihaela Hnatiuc, Aurora Ranca, Victoria Artem and Mădălina-Andreea Ciocan",slug:"studies-on-the-short-term-effects-of-the-cease-of-pesticides-use-on-vineyard-microbiome",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}},{id:"82297",title:"The Climate Change-Agriculture Nexus in Drylands of Ethiopia",doi:"10.5772/intechopen.103905",signatures:"Zenebe Mekonnen",slug:"the-climate-change-agriculture-nexus-in-drylands-of-ethiopia",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}},{id:"81999",title:"Climate Change, Rural Livelihoods, and Human Well-Being: Experiences from Kenya",doi:"10.5772/intechopen.104965",signatures:"André J. Pelser and Rujeko Samanthia Chimukuche",slug:"climate-change-rural-livelihoods-and-human-well-being-experiences-from-kenya",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}}]},subseriesFiltersForOFChapters:[{caption:"Ecosystems and Biodiversity",value:40,count:3,group:"subseries"}],publishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:4},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:9},{group:"subseries",caption:"Chemical Biology",value:15,count:13}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:8},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:301,paginationItems:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}},{id:"338856",title:"Mrs.",name:"Nur Alvira",middleName:null,surname:"Pascawati",slug:"nur-alvira-pascawati",fullName:"Nur Alvira Pascawati",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universitas Respati Yogyakarta",country:{name:"Indonesia"}}},{id:"441116",title:"Dr.",name:"Jovanka M.",middleName:null,surname:"Voyich",slug:"jovanka-m.-voyich",fullName:"Jovanka M. Voyich",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Montana State University",country:{name:"United States of America"}}},{id:"330412",title:"Dr.",name:"Muhammad",middleName:null,surname:"Farhab",slug:"muhammad-farhab",fullName:"Muhammad Farhab",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"349495",title:"Dr.",name:"Muhammad",middleName:null,surname:"Ijaz",slug:"muhammad-ijaz",fullName:"Muhammad Ijaz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Veterinary and Animal Sciences",country:{name:"Pakistan"}}}]}},subseries:{item:{id:"38",type:"subseries",title:"Pollution",keywords:"Human activity, Pollutants, Reduced risks, Population growth, Waste disposal, Remediation, Clean environment",scope:"\r\n\tPollution is caused by a wide variety of human activities and occurs in diverse forms, for example biological, chemical, et cetera. In recent years, significant efforts have been made to ensure that the environment is clean, that rigorous rules are implemented, and old laws are updated to reduce the risks towards humans and ecosystems. However, rapid industrialization and the need for more cultivable sources or habitable lands, for an increasing population, as well as fewer alternatives for waste disposal, make the pollution control tasks more challenging. Therefore, this topic will focus on assessing and managing environmental pollution. It will cover various subjects, including risk assessment due to the pollution of ecosystems, transport and fate of pollutants, restoration or remediation of polluted matrices, and efforts towards sustainable solutions to minimize environmental pollution.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11966,editor:{id:"110740",title:"Dr.",name:"Ismail M.M.",middleName:null,surname:"Rahman",slug:"ismail-m.m.-rahman",fullName:"Ismail M.M. Rahman",profilePictureURL:"https://mts.intechopen.com/storage/users/110740/images/2319_n.jpg",biography:"Ismail Md. Mofizur Rahman (Ismail M. M. Rahman) assumed his current responsibilities as an Associate Professor at the Institute of Environmental Radioactivity, Fukushima University, Japan, in Oct 2015. He also has an honorary appointment to serve as a Collaborative Professor at Kanazawa University, Japan, from Mar 2015 to the present. \nFormerly, Dr. Rahman was a faculty member of the University of Chittagong, Bangladesh, affiliated with the Department of Chemistry (Oct 2002 to Mar 2012) and the Department of Applied Chemistry and Chemical Engineering (Mar 2012 to Sep 2015). Dr. Rahman was also adjunctly attached with Kanazawa University, Japan (Visiting Research Professor, Dec 2014 to Mar 2015; JSPS Postdoctoral Research Fellow, Apr 2012 to Mar 2014), and Tokyo Institute of Technology, Japan (TokyoTech-UNESCO Research Fellow, Oct 2004–Sep 2005). \nHe received his Ph.D. degree in Environmental Analytical Chemistry from Kanazawa University, Japan (2011). He also achieved a Diploma in Environment from the Tokyo Institute of Technology, Japan (2005). Besides, he has an M.Sc. degree in Applied Chemistry and a B.Sc. degree in Chemistry, all from the University of Chittagong, Bangladesh. \nDr. Rahman’s research interest includes the study of the fate and behavior of environmental pollutants in the biosphere; design of low energy and low burden environmental improvement (remediation) technology; implementation of sustainable waste management practices for treatment, handling, reuse, and ultimate residual disposition of solid wastes; nature and type of interactions in organic liquid mixtures for process engineering design applications.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"201020",title:"Dr.",name:"Zinnat Ara",middleName:null,surname:"Begum",slug:"zinnat-ara-begum",fullName:"Zinnat Ara Begum",profilePictureURL:"https://mts.intechopen.com/storage/users/201020/images/system/201020.jpeg",biography:"Zinnat A. Begum received her Ph.D. in Environmental Analytical Chemistry from Kanazawa University in 2012. She achieved her Master of Science (M.Sc.) degree with a major in Applied Chemistry and a Bachelor of Science (B.Sc.) in Chemistry, all from the University of Chittagong, Bangladesh. Her work affiliations include Fukushima University, Japan (Visiting Research Fellow, Institute of Environmental Radioactivity: Mar 2016 to present), Southern University Bangladesh (Assistant Professor, Department of Civil Engineering: Jan 2015 to present), and Kanazawa University, Japan (Postdoctoral Fellow, Institute of Science and Engineering: Oct 2012 to Mar 2014; Research fellow, Venture Business Laboratory, Advanced Science and Social Co-Creation Promotion Organization: Apr 2018 to Mar 2021). The research focus of Dr. Zinnat includes the effect of the relative stability of metal-chelator complexes in the environmental remediation process designs and the development of eco-friendly soil washing techniques using biodegradable chelators.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorThree:null,series:{id:"25",title:"Environmental Sciences",doi:"10.5772/intechopen.100362",issn:"2754-6713"},editorialBoard:[{id:"252368",title:"Dr.",name:"Meng-Chuan",middleName:null,surname:"Ong",slug:"meng-chuan-ong",fullName:"Meng-Chuan Ong",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRVotQAG/Profile_Picture_2022-05-20T12:04:28.jpg",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",institutionURL:null,country:{name:"Malaysia"}}},{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}},{id:"187907",title:"Dr.",name:"Olga",middleName:null,surname:"Anne",slug:"olga-anne",fullName:"Olga Anne",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBE5QAO/Profile_Picture_2022-04-07T09:42:13.png",institutionString:null,institution:{name:"Klaipeda State University of Applied Sciences",institutionURL:null,country:{name:"Lithuania"}}}]},onlineFirstChapters:{paginationCount:6,paginationItems:[{id:"82135",title:"Carotenoids in Cassava (Manihot esculenta Crantz)",doi:"10.5772/intechopen.105210",signatures:"Lovina I. Udoh, Josephine U. Agogbua, Eberechi R. Keyagha and Itorobong I. Nkanga",slug:"carotenoids-in-cassava-manihot-esculenta-crantz",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81576",title:"Carotenoids in Thermal Adaptation of Plants and Animals",doi:"10.5772/intechopen.104537",signatures:"Ivan M. Petyaev",slug:"carotenoids-in-thermal-adaptation-of-plants-and-animals",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Ivan",surname:"Petyaev"}],book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81358",title:"New Insights on Carotenoid Production by Gordonia alkanivorans Strain 1B",doi:"10.5772/intechopen.103919",signatures:"Tiago P. Silva, Susana M. Paixão, Ana S. Fernandes, José C. Roseiro and Luís Alves",slug:"new-insights-on-carotenoid-production-by-gordonia-alkanivorans-strain-1b",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81246",title:"Role of Carotenoids in Cardiovascular Disease",doi:"10.5772/intechopen.102750",signatures:"Arslan Ahmad, Sakhawat Riaz, Muhammad Shahzaib Nadeem, Umber Mubeen and Khadija Maham",slug:"role-of-carotenoids-in-cardiovascular-disease",totalDownloads:34,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81159",title:"Potential of Carotenoids from Fresh Tomatoes and Their Availability in Processed Tomato-Based Products",doi:"10.5772/intechopen.103933",signatures:"Rose Daphnee Ngameni Tchonkouang, Maria Dulce Carlos Antunes and Maria Margarida Cortês Vieira",slug:"potential-of-carotenoids-from-fresh-tomatoes-and-their-availability-in-processed-tomato-based-produc",totalDownloads:30,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"80902",title:"Computational Chemistry Study of Natural Apocarotenoids and Their Synthetic Glycopeptide Conjugates as Therapeutic Drugs",doi:"10.5772/intechopen.103130",signatures:"Norma Flores-Holguín, Juan Frau and Daniel Glossman-Mitnik",slug:"computational-chemistry-study-of-natural-apocarotenoids-and-their-synthetic-glycopeptide-conjugates-",totalDownloads:33,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Norma",surname:"Flores-Holguín"},{name:"Daniel",surname:"Glossman-Mitnik"},{name:"Juan",surname:"Frau"}],book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}}]},publishedBooks:{paginationCount:2,paginationItems:[{type:"book",id:"9883",title:"Biosensors",subtitle:"Current and Novel Strategies for Biosensing",coverURL:"https://cdn.intechopen.com/books/images_new/9883.jpg",slug:"biosensors-current-and-novel-strategies-for-biosensing",publishedDate:"May 5th 2021",editedByType:"Edited by",bookSignature:"Luis Jesús Villarreal-Gómez and Ana Leticia Iglesias",hash:"028f3e5dbf9c32590183ac4b4f0a2825",volumeInSeries:11,fullTitle:"Biosensors - Current and Novel Strategies for Biosensing",editors:[{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"14",title:"Cell and Molecular Biology",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression"},{id:"15",title:"Chemical Biology",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors"},{id:"17",title:"Metabolism",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation"},{id:"18",title:"Proteomics",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/292765",hash:"",query:{},params:{id:"292765"},fullPath:"/profiles/292765",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()