Appropriate precursors, kinetic of activation, and type of porosity usually obtained for the most common activating agents (information gathered from reference literature [8, 12, 24, 29]).
\r\n\tThis book will aim to survey the most recent diagnostic techniques as well as the most promising therapeutic options we can count on to deal with optic nerve disorders. The audience of the book is quite wide and it aims at being the main entry to this fascinating topic for students, clinicians, and researchers.
",isbn:"978-1-80356-774-7",printIsbn:"978-1-80356-773-0",pdfIsbn:"978-1-80356-775-4",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"e3d02512ccae0638a73c5c2839e50015",bookSignature:"Prof. Felicia M. Ferreri",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11704.jpg",keywords:"Toxic Neuropathy, Ethambutol, Methanol, Leber Neuropathy, Congenital Anomalies, Coloboma, Optic Disc Excavation, Systemic Anomalies, Optic Disc Swelling, Anterior ION, Posterior ION, ION Variants",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 25th 2022",dateEndSecondStepPublish:"June 2nd 2022",dateEndThirdStepPublish:"August 1st 2022",dateEndFourthStepPublish:"October 20th 2022",dateEndFifthStepPublish:"December 19th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"24 days",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Prof. Felicia M. Ferreri graduated summa cum laude from the University of Messina, Italy in 1998. She served as co-investigator for many national and international clinical trials. Since 2002, she is an Assistant Professor in Ophthalmology at the University of Messina",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"32442",title:"Prof.",name:"Felicia M.",middleName:null,surname:"Ferreri",slug:"felicia-m.-ferreri",fullName:"Felicia M. Ferreri",profilePictureURL:"https://mts.intechopen.com/storage/users/32442/images/system/32442.png",biography:"Felicia M. Ferreri graduated summa cum laude from the University of Messina, Italy, in 1998 and completed her ophthalmology residency at the Policlinico Universitario, Messina, in 2002. She interned at the Corneal Section of San Raffaele Hospital in Milan and at the Pediatric Ophthalmology Diseases Section of Hospital Careggi in Florence. She spent research periods at Virginio del Rocio hospital in Seville, San Carlos hospital in Madrid, the Royal Bolton Hospital in Manchester, and Universidade Fluminense in Rio de Janeiro. She served as co-investigator of many national and international clinical trials. Since 2002, she is an Assistant Professor in Ophthalmology at the University of Messina. Her research interests are in the areas of glaucoma, neuro-ophthalmology, pediatric ophthalmology, and cataract. She authored more than 50 scientific papers and edited two IntechOpen Books.",institutionString:"University of Messina",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Messina",institutionURL:null,country:{name:"Italy"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"444318",firstName:"Nika",lastName:"Karamatic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/444318/images/20011_n.jpg",email:"nika@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9500",title:"Recent Advances in Bone Tumours and Osteoarthritis",subtitle:null,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",slug:"recent-advances-in-bone-tumours-and-osteoarthritis",bookSignature:"Hiran Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"58429",title:"Nanoporous Carbon Synthesis: An Old Story with Exciting New Chapters",doi:"10.5772/intechopen.72476",slug:"nanoporous-carbon-synthesis-an-old-story-with-exciting-new-chapters",body:'Carbon is the main element of the entire world’s flora, and its atomic structure allows unique bonding possibilities leading to various structures with distinct properties. As consequence, carbon materials are used for so long that it is hard to determine the very first moment.
At the beginning, carbon was used in the form of charcoal that consists of carbonized wood, coal or partially devolatilized coals, and also carbon black obtained by incomplete burning of vegetable oil. After centuries of use of these man-made forms of carbon, the discovery of the processes to perform the activation of charcoal allowed to greatly improve the properties and performances of carbon materials. These new materials where pores (voids) are enclosed by carbon atoms are known as activated carbons or active carbons and, more recently, also named as nanoporous carbons.
The oldest known man-made carbon forms—charcoal and carbon black—were used in the Stone Age as a black color pigment for cave painting [1]. For example, charcoal was used as color pigment to draw the black lines of the illustrations in the Cave of Altamira (Spain) that represents the apogee of Paleolithic cave painting art developed across Europe, from 35,000 to 11,000 BC. At about 8,000 BC, charcoal was used in metal production [1]. In 3,750 BC, the Egyptians and Sumerians used it in the reduction of copper, tin, and zinc minerals in the bronze manufacturing process and also as smokeless fuel [2, 3, 4]. The first proof of the medicinal use of carbons was found in an Egyptian papyrus, dated of 1,550 BC, where it is reported the use of charcoal for the adsorption of odors from putrefying wounds and also to treat problems of the intestinal tract [5, 6]. The therapeutic value of carbon was later explored by the Greeks (Hippocrates, ca. 460–370 BC) and Romans (Pliny the Elder, AD 23–79) in the treatment of various diseases, including food poisoning, epilepsy, chlorosis, and anthrax [1, 7]. Hippocrates also recommended that the water should be filtered with carbonized wood before its consumption, so as to eliminate bad flavor and odor [8]. Also, Hindu documents from 450 BC mention the use of sand and charcoal filters for drinking water purification [5, 6]. Recent studies also concluded that in Phoenicians ships (460 BC) drinking water was stored in carbonized wood barrels to keep it fresh, a practice that was continued until the eighteenth century. In 157 AD, a medical treatise from Claudius Galvanometer indicated the use of carbons of both vegetable and animal origin for the treatment of various diseases [9]. A Sanskrit document (AD 200) recommended that after being stored in copper vessels and exposed to sunlight, water should be filtrated with coal [6]. This is most probably one of the earliest manuscripts describing the degradation of contaminants from water to assure its disinfection.
It was only during the eighteenth century that the mechanisms underlying the properties of charcoals started to be recognized. In 1773, Scheele measured the adsorptive properties of charcoals from distinct sources using various gases; a decade later, Lowitz studied the abilities of charcoals to adsorb odors from wounds [7, 9]. This author published results regarding the adsorption of a range of organic vapors and also studied systematically the adsorption in various aqueous solutions, namely in the decolorization of contaminated tartaric acid solutions. The discussion of the contribution of charcoals to control odors from gangrenous ulcers was made by Kehl, in 1793, who also discovered that charcoal from animal origin (animal tissues) could be used to remove color from solution, including from sugar solutions [7, 9]. The introduction of carbon materials in industrial processes took place in England, in 1794, when wood charcoals were applied as bleaching agents in the processing of sugar. By that time, the method for preparing the wood charcoals was kept a secret [9]. In 1805, the first large-scale sugar refining facility was introduced in France by Gruillon, working with ground and washed wood char [9]. Between 1805 and 1808, Delessert demonstrated the effectiveness of charcoal for decolorizing sugar-beet liquor contributing for the growth of this industry in France [9]. In 1808, all European sugar refineries were using charcoal as a decolorizer [9]. The discovery of bone-derived char as a more efficient raw sugar syrups decolorizing agent was made by Figuier in 1811, and quickly the sugar industry replaced wood charcoal by this improved material [5, 9]. The regeneration of bone-derived char by heating was discovered in 1811, and sometime later granular bone-derived char started to be produced, thus enabling an easier regeneration [9]. In 1815, the majority of sugar refining facilities were using granular bone-derived char [9]. The dependence of the decolorizing properties on the char’s source, the thermal processing and particle size was demonstrated by Bussy in 1822 [9]. He also produced a carbon material with higher decolorizing ability than bone-derived char by heating blood with potash, being this the first recorded example of an “activated carbon” material obtained by thermal and chemical processes [5, 9].
The first large-scale application in gas phase took place in 1854 [8], with the installation of carbon filters in London sewage ventilation systems. In 1872, carbon filters were also used in the masks of the chemical industry workers for preventing the inhalation of mercury vapors.
Besides thousands of years of history, and the already large range of applications for charcoals, it was only in the beginning of the twentieth century that one of the most outstanding abilities of carbon materials was explored: the possibility of enclosing a huge porosity into the carbon material structure. This “revolution” was due to the discoveries of Raphael von Ostrejko that, between 1900 and 1903, patented two different methods for the industrial activation of charcoal and the production of activated carbon materials [10]. This set of patents mentions the bases of the chemical activation process (carbonization of lignocellulosic materials with metallic chlorides) and of the thermal or physical activation (slight gasification of chars with water vapor or carbon dioxide at elevated temperatures) and also the specific equipment for thereof. The factory for full-scale activated carbon production was built by that time in Ratibor, now named Raciborz (Poland), and still operates, being so the world’s oldest industrial activated carbon manufacturing plant [10, 11].
Although sugar industry was the first to apply activated carbons, in this case for whitening purposes, the starting point for the great development in the production and application of activated carbons was undoubtedly World War I, when these materials were used in gas masks [7, 8]. The production and search for new activated carbons has been boosted decade after decade due to their fundamental role in various technological applications which are related to, namely, restricted environmental regulations, recovery of valuable chemical compounds, and catalysts support [8, 12, 13, 14].
Nowadays, the driving forces for the research in nanoporous carbons are related with the properties of the most recent carbon materials: fullerenes [15], carbon nanotubes [16] and graphene [17]. However, the excellent properties of these novel carbon forms also fostered the interest in the traditional porous carbons and, in the recent years, a considerable number of studies searching for new synthetic approaches have been published. The main objective is the preparation of highly porous materials with controlled porosity, and often also with tuned surface chemistry, to present enhanced behavior as, for example, electrode materials for supercapacitors.
Describing nanoporous carbon materials as carbon structures with enclosed porosity is correct but it is somewhat incomplete since properties, as for example, surface chemistry, chemical composition, morphology or electrical conductivity are also essential to understand their potential and performance in a given application.
Regarding the physical properties of nanoporous carbon materials, porosity is undoubtedly the most important one. IUPAC defines
Due to their relevance for the adsorption process, micropores can be further distinguished between
The limits for this pore classification were suggested by nitrogen adsorption-desorption data at −196°C [18] and rely on the fact that each pore size range corresponds to different pore filling mechanisms disclosed by the isotherm profile [19]. Micropore filling is regarded as a primary physisorption process and occurs at low relative pressures. Firstly, at very low relative pressure, adsorption occurs in the ultramicropores where due to the close vicinity of pore walls there is an overlapping of the adsorption forces favoring the enhancement of the adsorbent-adsorbate interaction, this process is termed “primary micropore filling.” After this initial filling in the most energetic sites, the cooperative adsorbate-adsorbate interactions inside the supermicropores become more relevant (secondary process) occurring up to relative pressures ≈ 0.15 [18]. In mesopores, the physisorption comprises three stages: monolayer adsorption (i.e. all adsorbate molecules are in contact with the surface of the adsorbent) followed by consecutive adsorbate layers (multilayer adsorption) and finishing with capillary condensation [18]. The adsorption onto mesopores commonly presents a hysteresis loop [19]. The macropores are so wide that do not allow capillary condensation since behave as an open space (cannot be characterized by nitrogen adsorption whose maximum relative pressure occurs near the unity) [19].
In nanoporous carbons, the porosity results from the voids between the randomly cross-linked graphite-like crystallites that constitute the structure of the carbon skeleton, from the consumption of less organized carbonaceous matter and also from the removal of reactive carbon atoms in the crystallite during activation process (Figure 1). Surface area and pore size distribution (PSD) are the physical properties that will greatly influence the performance of nanoporous carbons in a given process. These parameters are commonly obtained from the analysis of nitrogen adsorption isotherm at −196°C. The surface area (apparent surface area for microporous materials) is commonly obtained applying the Brunauer-Emmett-Teller (BET) equation. Regarding the PSD, there are various mathematic models available, being those using the Non-Local Density Functional Theory (NLDFT) the most advanced ones. The use of nitrogen as adsorptive at −196°C has however diffusional limitations in ultamicroporous carbon materials; thus, for an accurate characterization of the micropore network, carbon dioxide adsorption at 0°C has been repeatedly proposed as a better alternative to nitrogen [20, 21, 22]. Besides the limitation of nitrogen for the characterization of ultramicropores, it is known that, due to its quadrupole moment, nitrogen molecule orientation during adsorption will be dependent on the surface chemistry of the adsorbent [18, 22]. To overcome this issue, other adsorptive gases like argon or krypton can be used.
Schematic representation of pore structure (bottom rectangle) and surface chemistry—oxygen, nitrogen, and sulfur groups (top circles)—in nanoporous carbons.
Carbon atoms are the major element of nanoporous carbon skeleton but the elemental composition of these materials also includes hydrogen and oxygen and, depending on the precursor, preparation route and post-synthesis functionalization may also have nitrogen, sulfur or phosphorus containing groups. These heteroatoms are mainly located at the edges of the basal planes due to the presence of unsaturated carbon atoms that are highly reactive. Figure 1 summarizes the most relevant oxygen, nitrogen, and sulfur-containing surface groups that may be present in the surface of nanoporous carbon materials, being important to mention that oxygen surface groups are, by far, the most common ones. These materials may also contain inorganic matter, sometimes attaining 20% (wt.), being this ash content mainly inherited from the carbon precursor [12].
The elemental composition and type of surface groups of a nanoporous carbon influence its performance in both gaseous and liquid phase processes, due to specific interactions with the adsorptive and also the solvent in the case of adsorption from solution. Properties like hydrophobicity/hydrophilicity or acid/base behavior are highly dependent on the surface chemistry of these materials. Carbons are in general hydrophobic, but the presence of increasing amounts of oxygen surface functionalities favors the adsorption of water molecules due to the formation of hydrogen bonds and, consequently, its wettability. This ability of porous carbon materials may be advantageous, or not, depending on the desired application. For example, in the impregnation of carbon supports with catalysts in aqueous phase, a high wettability will increase the impregnation degree; but in the adsorption of organic compounds from diluted aqueous solutions, higher wettability may led to the formation of water molecule clusters that hinder the diffusion of the target compounds towards the adsorption active sites (the same being valid for gas steams purification).
Regarding acid/base character, nanoporous carbons are considered amphoteric materials due to the presence of both acid and basic sites in their surface. Thus, depending on the amount and strength of all the surface groups, the materials may present net acid, basic or neutral surfaces. The surface chemistry of nanoporous carbons can be assessed through numerous techniques, and the best way to get a good characterization is to employ complementary techniques and combine the analysis of the results. For example, Boehm and potentiometric titrations provide qualitative and quantitative information on the surface of the nanoporous carbons, while temperature programmed desorption (TPD) detects more oxygen groups than Boehm titration, although with less quantitative information. On the other hand, X-ray photoelectron spectroscopy (XPS) and diffuse reflectance infrared spectroscopy (DRIFT) provide qualitative information about the surface of the nanoporous carbons [23].
Other properties of nanoporous carbon materials that may play important roles in specific applications are the morphology (powdered (PAC) and granular (GAC) forms are the most common ones), electrical conductivity, hardness and density.
For more specific information regarding properties of nanoporous carbon materials and characterization methods, several reference texts are available [8, 21, 23, 24, 25, 26, 27].
There are a large range of carbon-rich precursors namely from vegetable (e.g. wood, fruit shells, stones or peels) or petrochemical origin that can be successfully transformed into activated carbons. However, the economically viable large-scale production of activated carbons requests the use of raw materials that gather high availability and constancy with high density and hardness, low inorganic content and, last but not the least, low cost. Thus, commercially available activated carbons are mainly produced from coal (i.e. lignite, sub-bituminous, bituminous and anthracite), coconut shell charcoal and wood charcoal. The raw material is a key issue for activated carbon producers since the development of the porous network occurs by consumption of the (char)coal precursor and the preparation yields can reach values as low as 10% (wt.). Consequently, assuring the supply of high quality precursors at a cost-effective price is of paramount importance to control the quality of the final material and the production cost. In 2015, the global activated carbon market was valued by Markets and Markets at USD 4.74 billion corresponding to 2743.7 kton being expected to continue to growth, mainly driven by more stringent government regulations to assure human and environmental protection. As already mentioned, (char)coal is the most important raw material for activated carbon producers but they are not the major (char)coal consumer. In fact, activated carbons are only a “by-product” of (char)coal production, which have the energy sector as major market (mainly for metallurgical, industrial and cooking fuel) that actually controls demand and prices. This reality, allied to the fact that most of raw materials came from the Asian continent, and that external factors (e.g. natural disasters) may compromise the quality, availability and cost of (char)coal, continues to drive the research for finding new, and more sustainable, raw materials and preparation routes for activated carbon production.
Conventional methods for activated carbon production request the use of high temperature kilns where, under a controlled atmosphere, the carbon-rich raw materials are transformed into nanoporous carbons. There are numerous procedures for the production of activated carbons, although the great majority of synthetic routes published and patents registered worldwide, including those allowing nowadays industrial production, fall in two major categories: the selective gasification of raw materials’ carbon atoms (physical or thermal activation), and the co-carbonization of the precursor with oxidizing and/or dehydrating agents (chemical activation). The number of steps requested for the production of activated carbons depends on the characteristics of the raw material, morphological specifications of the final product, and on the type of activation. A general process flowsheet is presented in Figure 2.
General flowsheet for conventional physical (thermal) and chemical activation processes.
The most commonly used
Chemical activation has advantages over physical process related with the use of a single heating step and lower temperatures, usually higher yields, shorter activation time (hours) and higher surface area and pore volumes. All these add-ons came with a price since this activation process is more corrosive (e.g. ZnCl2 or KOH) than the physical one, and activating agents can be hazardous for the environment (i.e. ZnCl2 and H3PO4). Also, regardless the activating agent, a time-consuming washing step is needed to remove chemicals from the newly formed pore network and, if possible, to recover the activating agent. Actually, ZnCl2 use is declining due to the environmental issues associated with zinc residues [12], low recovery efficiencies, corrosion problems and presence of residual zinc in final carbon [8].
Zinc chlorine and phosphoric acid lead to higher activation yields (≈40%) compared to physical activation since the use of these compounds inhibit the formation of tar and other by-products formed in physical activation [12]. In the case of potassium hydroxide, the more complex activation mechanism gathering K intercalation in carbon lattice and gasification allows to prepare activated carbon with a large range of yields depending on the precursor: from 80 and 70% [31, 32, 33] to values, as low as, 20–10% [34, 35, 36]. KOH allows obtaining superactivated carbons (over 3000 m2 g−1) when high KOH/precursor weight ratios (i.e. between 2 and 4) are used.
Table 1 gathers information regarding the most suitable precursors for the commonly used activating agents, as well as, the type of porosity obtained, and the effect of experimental conditions on the pore size distribution. It is important to emphasize that the effect of experimental conditions on pore size distribution presented in Table 1 is a general trend; thus, for an in-depth knowledge of the effect of activating agent and experimental conditions on the porous characteristics of a given raw material, a comprehensive study is always needed.
The above-mentioned precursors and activating agents are those more representative for industrial scale production of activated carbons. However, regarding the production of specialty carbons (low volume processes) and for research works, the number of options increases exponentially. Regarding raw materials, hard biomass residues like shells and stones allow to obtain high quality PACs or GACs; phenol formaldehyde polymers yield high surface area porous carbons, while polyacrylonitrile (PAN), acrylonitrile textile or rayon are adequate to synthetize activated carbon fibers or cloths [24]. When aiming nitrogen doped materials, for example for the adsorption of sulfur species, the use of polymers containing nitrogen (e.g. PAN) is a common synthetic route. In what concerns activating agents, besides ZnCl2, H3PO4 and KOH, alkali hydroxides and salts (e.g. NaOH, K2CO3, Na2CO3) and metal chlorides (e.g. AlCl3, FeCl3, NH4Cl, CuCl2) can also be used [24].
At industrial scale, steam activation continues to be the most widely used method to produce activated carbons. The advantages of steam activation are related with the fact that does not request post-activation work-up, namely a final washing step, is less expensive and has less environmental constrains than the chemical activation. Besides, for precursors with less than 10% of ash, carbon materials with surface areas of 1000 m2 g−1 can be easily obtained with activation yields of 50% [8], thus allowing a good compromise between production cost and porosity development.
In general, the above-described activating methodologies produce activated carbons with wide pore size distributions, so the need for carbon materials with more regular porosity prompted the research on the synthesis of ordered mesoporous carbons (OMCs) by applying hard or soft templating approaches. The advantages of OMCs over conventional activated carbons are related with the ordered and hierarchical pore network, but their multi-step preparation procedures are time consuming, use hazardous chemicals to remove the inorganic templates and, consequently, have very low atomic economy and high production costs. This class of nanostructured materials is out of the scope of the present chapter since the first works were published in the late 1990s, and comprehensive reviews are available in the literature, providing a broad overview and up-to-date information on synthesis and properties of this class of porous carbon materials [37, 38, 39]. In the following, the recent developments regarding new synthesis approaches—i.e. precursors, activating agent and routes—for preparing nanoporous carbon materials are presented.
As already mentioned, classical preparation of activated carbons usually requests an initial thermochemical process (carbonization) to remove other elements than carbon and transform the raw material (i.e. coal or biomass) in a carbon-rich material (charcoal) that will be subsequently activated to improve the pore network. This thermochemical conversion is particularly important when using biomass whose carbon content usually is between 30 and 50% (wt.) [25]. However, the need for more specialized porous carbon materials, as well as the growing interest in developing more sustainable and greener processes, has prompted the research community to explore alternatives to the conventional carbonization step which, in some cases, also allow to make feasible the use of novel precursors.
In the category of alternative methods to obtain carbon-rich materials for further activation
The first resorcinol-formaldehyde organic gel was synthetized by Pekala in 1989 being the aqueous polycondensation performed under alkaline conditions [40]. One of the major advantages of this process is its flexibility since the main properties of the gel can be tuned during the synthesis and drying process. The synthesis starts with the formation of the wet gel and, during this step, the most important parameters controlling the properties of the final gel are the precursors’ concentration, the catalyst type and concentration and the time and temperature of curing [41]. After drying, aerogels (supercritical drying), xerogels (subcritical drying), and cryogels (freeze drying) can be obtained. The drying procedure is one of the most important steps regarding the porous properties of the organic gel and is also crucial when the preparation of a thermally stable carbon gel is foreseen. The organic gels are mainly mesoporous materials thus if the preparation of a micro + mesoporous material is envisage a thermochemical step involving carbonization and/or activation must be considered. The first works focused on the carbonization and activation of organic gels were published during the 1990s, and nowadays, these methodologies continue to be studied to better tune the pore network of these materials and explore novel applications.
A great advantage of conventional activation of organic gels over the previously mentioned carbon precursors is the possibility of coupling the mesopore network of the organic gels with micropores created during carbonization or activation step. Tamon et al. studied the effect of carbonization on the porous properties of aerogels and cryogels proving that both precursors preserved the mesoporous structure after the thermal treatment and that cryogels are more prone to develop micropores [42]. Regarding activation, literature data reveal that the gasification of aerogels with CO2 allows retaining the mesopore network of the organic gels and increasing the volume of micropores [43, 44]. Moreno-Castilla and co-workers reported the activation of a mesoporous aerogel with CO2 showing that for a 22% burn-off the increase and widening of the precursor micropore network practically did not change the mesopore structure [44]. In a recent work, Ania and co-workers [45] evaluated the effect of carbonization and activation (physical and chemical) of xerogels which, due to their drying in subcritical conditions, may suffer stronger changes upon thermal treatment. In fact, both carbonization and CO2 activation lead to the increase of the micropore volume at the expense of a severe decrease in the mesopore volume and shrinkage of the average pore size. However, under controlled experimental conditions (i.e. impregnation methodology and temperature), the chemical activation of the xerogel with KOH or K2CO3 allowed to suppress the shrinkage and structural collapse, forming a micropore structure associated with the enlargement and/or preservation of the mesopore network of the pristine xerogel [45]. For further discussion and information regarding the control of the properties of resorcinol-formaldehyde organic and carbon gels, the reader can refer to the reviews by Al-Muhtaseb and co-workers [41, 46].
Hydrothermal carbonization (HTC) is probably one of the most promising alternatives to conventional carbonization of biomass, as it is clearly shown by the ever-increasing number of publications focused in this process since the beginning of the twentieth century. HTC is inspired in the natural processes of coal formation that take millions years and request temperature and pressure in a nonoxidizing atmosphere to transform biomass into a carbon-rich material. Interestingly, the first research work on HTC was published in 1913 by Friedrich Bergius, a Nobel Laureate in recognition of his studies regarding carbon-water reactions at high pressure and mild temperature to successfully produce H2 by avoiding CO generation [47]. When performing the experiments, Bergius noticed that when peat was used as carbon source the solid residue obtained had an elemental composition similar to that of coal, leading him to investigate the HTC decomposition of plant-based compounds into coal-like materials [48]. As reported in [49], with the exception of the works by Berl and Schmidt (1932) and van Krevelen et al. (1960), the interest in the solid carbon materials obtained from HTC process was forgotten until the work published by Wang et al. [50] in 2001. These authors reported the synthesis of carbon spheres from sugar under hydrothermal conditions (190°C and self-generated pressure in a high-pressure vessel). HTC is a cost effective and eco-friendly process; since to convert biomass into carbon-rich materials, it uses water as solvent, mild temperatures, self-generated pressure and occurs in few hours with no CO2 emission. Since 2001, the interest in this carbonization process has been exponentially increasing, and in 2016, around 400 papers mentioning hydrothermal carbonization were published, and the works focusing in this process received more than 11,000 citations (source Web of Science, Sept 2017). Some advantages of HTC-derived materials, commonly known as hydrochars, over charcoals obtained by conventional carbonization is their high content in oxygenated groups and the possibility of morphological control (e.g. spherical morphology).
Hydrochars have an incipient pore network; thus, conventional activation has been commonly employed to obtain specialized nanoporous carbon materials, mainly regarding surface functionalization, morphology features and ultrahigh surface areas and pore volumes. The use of hydrochars as activated carbon precursors was first reported by Zhao et al. [51] aiming to prepare a nitrogen-containing porous carbon material to be used as supercapacitor. The authors performed HTC of D-glucosamine (carbon source) and the hydrochar containing 6.7% of nitrogen was further activated with KOH allowing to obtain a nitrogen-doped porous carbon with a BET area of 600 m2 g−1.
As it can be clearly seen in the overview of hydrochar-derived activated carbons presented in Table 2, the great majority of studies concerning hydrochar activation used KOH as activating agent, mainly because, in general, this oxidizing agent allows obtaining the most developed microporosities reaching BET surface areas higher than 3000 m2 g−1. It is also interesting to notice that there are studies reporting the use of hydrochars for the synthesis of micro + mesoporous materials
Type of activation | Activating agent | Appropriate precursors | Porosity | General trend of experimental conditions on pore size distribution (PSD) |
---|---|---|---|---|
Physical | CO2 | Coals and, in less extend, hard lignocellulosic materials | Micro | - High activation degree leads to high volume of micropores with similar pore size distribution (PSD) |
Steam | Coals and, in less extend, hard lignocellulosic materials | Micro (+ meso) | - Widening of PSD with increase in activation degree - Micro + mesopore networks are obtained at high activation degree (yield 20%) and/or high activation temperatures | |
Chemical | ZnCl2 | Lignocellulosic materials (high volatile and oxygen content) | Micro + meso | - Uniform microPSD that widens to the border of micro/mesopore with the increase of Zn/precursor ratio |
H3PO4 | Lignocellulosic materials (high volatile and oxygen content) | Micro + meso | - PSD mainly in the border of micro/mesopore and dependent on heat treatment temperature (<450°C) | |
KOH | High rank coals (low volatile and high carbon content) | Micro | - KOH/precursor ratio has more influence on adsorption capacity and PSD than activation temperature - Increase of KOH/precursor ratio widens pores from narrow to large micropores and, in less extend, to small mesopores; also hinders the granular morphology (particle disintegration leads to powders) |
Activating agent | Carbon precursor | BET area (m2 g−1) | Observations | Ref. |
---|---|---|---|---|
ZnCl2 | 839–1308 | [68] | ||
Coconut shell (+ H2O2) | 1652–1744 | VMeso/VTotal = 50–60% | [52] | |
Sewage sludge | 417–519 | VMeso/VTotal = 53–66% and N,S-doped | [53] | |
Tobacco stem | 297–1347 | [69] | ||
H3PO4 | Glucose, sucrose | 1750–2120 | Spherical particles | [60] |
Rattan sawdust ( | 1151 | [70] | ||
KOH | D-Glucosamine | 600 | N-doped | [51] |
Glucose | 1283 | Spherical particles | [59] | |
Starch, cellulose, sawdust | 1260–2850 | [71] | ||
Furfural, glucose, starch, cellulose, eucalyptus sawdust | 1200–2370 | [72] | ||
Potato starch, eucalyptus sawdust (+ melamine) | 3280–3420 | VMeso/VTotal = 50–55% and N-doped | [56] | |
Cellulose, potato starch, eucalyptus sawdust | 2125–2967 | [73] | ||
Glucose, cellulose, rye straw | 891–2250 | Controlled PSD | [58] | |
Spruce and corncob hydrolysis products | 2220–2300 | [74] | ||
Hazelnut | 1700 | [75] | ||
Paper pulp mill sludge | 1470–2980 | Sponge-like particles | [76] | |
Sucrose | 1169–2431 | Controlled PSD | [35] | |
Glucose, sucrose | 1312–3152 | [60] | ||
Jujum grass, | 1050–3537 | [77] | ||
Bagasse waste + sewage sludge | 2296 | Hierarchical porosity | [78] | |
Sucrose | 1635–3036 | [79] | ||
Sucrose | 1534 | [80] | ||
Tobacco rods | 1761–2115 | VMeso/VTotal = 79–89% and N-doped | [54] | |
Eucalyptus sawdust, | 1202–2783 | [81] | ||
Tobacco stem | 217–501 | [69] | ||
Microalgae ( | 1260–2370 | N-doped | [63] | |
Algae ( | 747–1538 | N-doped | [62] | |
NaOH | Glucose, sucrose | 532–2129 | Spherical particles | [60] |
Palm date seed | 1282 | [82] | ||
Rattan stalks ( | 1135 | VMeso/VTotal = 72% | [55] | |
K2CO3 | Sucrose | 694–1375 | Spherical particles and controlled PSD | [35] |
964–1469 | [68] | |||
Golden shower pods | 812–903 | [83] | ||
Tobacco stem | 355–553 | [69] | ||
CO2 | Pinewood sawdust and rice husk | 292–569 | [84] | |
Sunflower stem, walnut shells, olive stones | 379–438 | [85] | ||
Glucose, sucrose | 923–2555 | Spherical particles | [60] | |
Steam | Starch (+ acrylic acid) | 785–1148 | Spherical particles with blackberry morphology | [61] |
Sucrose | 814 | Spherical particles | [35] | |
Air | Sunflower stem, walnut shells, olive stones | 213–434 | [85] | |
— | Bamboo shoots (+ H2SO4 conc.) | 972 | VMeso/VTotal = 46–54% and N-doped | [57] |
Overview of the properties of hydrochar-derived activated carbons (2010–2017).
VMeso and VTotal, microporous and total pore volume, respectively; PSD, pore size distribution.
When starting from simple carbohydrates, the use of HTC followed by activation may enable preparing carbons with spherical morphology (diameters in the micrometer range) and smooth surfaces [34, 35, 59, 60]. It is also possible to obtain a nanoporous carbon material with spherical shape, but with blackberry morphology, by adding acrylic acid to starch during the HTC step [61].
The use of water as solvent constitutes a major advantage of HTC over convention carbonization that requests dry biomass. In fact, HTC makes feasible the use of wet biomass as is the case of algae [62, 63] or sewage sludge [53] that after being carbonized can be activated to obtain a carbon material with well-developed pore structure and also heteroatom-rich surface (i.e. nitrogen and sulfur). HTC is, in fact, a valuable process when envisaging heteroatom-doped carbon materials, since if precursors with nitrogen and/or sulfur—e.g. glucosamine, algae, sewage sludge, tobacco rods or bamboo shoots—were selected this methodology allows retaining higher percentages of heteroatoms compared to conventional carbonization, and thus assures relevant amounts of these atoms after the activation step [53, 54, 57, 62, 63].
Following a somewhat different approach, White et al. reported the preparation of nitrogen-doped carbogel materials by reacting glucose and ovalbumin (secondary biomass precursor) in HTC conditions [64]. The novelty was the saturation of the monolithic hydrochar with ethanol followed by extraction under supercritical conditions, resembling the last step of the synthesis of organic aerogels. The final material was obtained after carbonization (350–900°C). When using 550°C, a material with an interconnected 3D pore system, BET area of 476 m2 g−1 and 5–7% (wt.) nitrogen content was obtained.
Very recently, Sevilla et al. proposed an alternative to KOH activation of biomass-derived hydrochars by using potassium oxalate (K2C2O4) and melamine to obtain N-doped superactivated carbons with high yields (40–46%) [65]. The materials attained BET areas near 3000 m2 g−1, presenting mainly micropores (70%) and nitrogen content between 0.5 and 0.9% irrespectively the amount of melamine used. Although the mixture of potassium oxalate/melamine is presented by the authors as an alternative to the corrosive KOH, it is important to highlight that this synthesis route is restricted for lab-scale (under restricted security conditions) since the KCN present in the solid will generate dangerous toxic vapors of HCN during the washing with HCl.
For a deeper overview regarding the HTC process and derived carbon materials, a recent book chapter by Titirici et al. [48] and a minireview [66] are recommended, and for deeper analysis on hydrochar-derived activated carbons, the following review [67] can be consulted.
Acid-mediated carbonization (AMC) is so far the less studied alternative method to obtain a carbon-rich material. However, considering that acid catalysis is a common practice to extract sugars from lignocellulosic biomass [86] and that, as just discussed, sugars can be successfully used as activated carbon precursors (i.e.
Wang et al. evaluated sulfuric acid hydrolysis of rice husk followed by the dehydration, polymerization and carbonization of the sugars to yield chars, which can be named as acidchars. These materials were activated with H3PO4 [87, 88] and KOH [88] to produce nanoporous carbons with BET areas higher than 2400 m2 g−1, and in the case of phosphoric acid activation, materials with micro + mesopore networks. In 2010, the authors reported the effect of H2SO4 concentration during carbonization step, as well as the reaction temperature and time onto the yield of the obtained acidchar that attained 32% (wt.) for the reaction at 95°C during 10 h when 72% H2SO4 solution was used in both hydrolysis and carbonization [88]. Regarding the effect of the H2SO4 concentration (42–72%) during acid carbonization onto the textural properties of the activated carbon obtained by H3PO4 activation, the authors concluded that although acidchars prepared under distinct acid concentrations present similar elemental analysis, the BET area and pore volumes increase as the concentration of the H2SO4 decreases [87]. These findings were rationalized by the authors considering that high H2SO4 concentrations promote the aggregation of carbon nanoparticles during carbonization, limiting the uniform H3PO4 impregnation of the particles and consequently the development of the pore network in the inner particle [87].
In a recent publication, Cui and Atkinson [89] systematically investigated liquid glycerol AMC using various acid catalysts (i.e. H2SO4, H3PO4, HCl and CH3COOH) aiming to study the effect of the acid carbonization conditions onto the textural properties of glycerol-derived nanoporous carbon materials obtained by subsequent physical activation with steam and CO2. The AMC of glycerol was made under nitrogen between 400 and 800°C, and the highest carbonization yields were obtained at 400°C for 10:3 volumetric mixtures glycerol:acid (30% yield for H2SO4 and 50% yield for H3PO4). Upon activation, materials with BET area values ranging between 990 and 2470 m2 g−1 and tailored porosity were obtained. The H3PO4-char originated micro + mesoporous carbon materials with the volume of mesopores being more than 50% of the total porosity regardless the physical activating agent and the amount of acid during the AMC, while the steam activation of the H2SO4-char lead to materials with 40–44% mesopore volume, and the CO2 activation only 22–25% mesopore volume. The elemental analysis of the nanoporous carbon materials obtained by H2SO4 carbonization revealed the presence of 0.35–0.71% of sulfur and the materials carbonized with H3PO4 and activated with CO2 attained even higher heteroatom doping with phosphorus content between 2.04 and 4.34%.
In parallel with the studies centered in the activation of hydrochars, in the last few years, the scientific community also started to explore new synthesis routes to obtain a porous structure during the HTC step, being prepared porous carbons with BET surface areas up to 700m2 g−1. The methodologies proposed avoid the need of further thermal or chemical activation, may enable the synthesis of heteroatom-doped solids [90] and can also allow the synthesis of hierarchical materials [91].
Fechler et al. reported the synthesis of porous carbon materials with BET areas between 425 and 672 m2 g−1 through HTC (180°C overnight) of glucose mixed with several eutectic salt mixtures (i.e. LiCl/ZnCl2, NaCl/ZnCl2, and KCl/ZnCl2) in the presence of a small amount of water [90]. The authors proved that both the amount of water added and the salt composition are determinant for the successful synthesis of materials, which are formed by very small particles aggregation, identical to aerogels. The use of the eutectic mixture LiCl/ZnCl2 originated the carbon materials with the highest surface area. When 2-pyrrol-carboxyaldehyde was added as co-reagent of the mixture glucose and ZnCl2, a material with 3% of nitrogen and BET area of 576 m2 g−1 was obtained. Fellinger et al. used glucose as carbon source and borax (Na2B4O7) as both catalyst and structure-directing agent to prepare hierarchical structured carbogels under HTC conditions [91]. Further carbonization under nitrogen at 550 or 1000°C allowed to obtain a carbon material with a BET area of 614 m2 g−1 and 70% of mesopore volume.
In 2010, Zhou and co-workers developed mesoporous carbons by the carbonization of organic salts (magnesium and barium citrates) evaluating the influence of the temperature of the thermal treatment (600–800°C) [92]. In the case of magnesium salt, BET areas up to 2322 m2 g−1 were attained, and the increase of temperature resulted in a progressive increase of the mesopore volume percentage (from 50 to 100%). The barium citrate-derived materials are mainly mesoporous (>90%) and, independently of the temperature, pores between 10 and 20 nm are obtained. Calcium citrate was tested by other authors who reported the paramount importance of temperature in the textural properties of the mesoporous carbons [93].
Atkinson and Rood proposed the use of dichloroacetates of alkaline metals as carbon precursors for the synthesis of nanoporous carbons, being the pore networks, once again, dependent on the cation [94]. The pore structure is produced by fast pyrolysis (15 s to 7 min) under nitrogen flow at temperatures between 300 and 1100°C, and materials attained BET areas of 740 m2 g−1. This methodology allowed the synthesis of microporous materials when lithium salt was used and micro + mesoporous solids for the other two metals. In the same research line, Xu and co-workers reported the pyrolysis of EDTA salts to obtain nitrogen-doped porous carbons with BET areas reaching 1800 m2 g−1 and porosity characteristics dependent on the thermal treatment temperature (higher the temperature, higher the mesopore volume) [95, 96].
The protocol of organic salts carbonization was extended to gluconates and alginates along with citrates to understand the mechanism of the porosity development [97, 98, 99]. The results shown that the textural properties of the porous carbon materials obtained by this methodology are heavily dependent on the type of the cation in the organic salt: while potassium salts originate essentially microporous solids, for sodium and calcium the amount of mesopores is also relevant [98]. In the case of calcium citrate-derived material, the development of the mesoporosity was attributed to the formation of CaO nanoparticles, which act as endotemplates during the carbonization. It was also shown that the nature of the organic salt has a great impact on the morphology, with sodium gluconate leading to the formation of large carbon nanosheets, while sodium citrate originates sponge-like particles. The synthesis of nitrogen-doped porous carbons was also explored by mixing potassium gluconate with melamine, which allowed to obtain a microporous material gathering 22.9% of nitrogen with 660 m2 g−1 of BET area [97]. The endotemplate approach on the carbonization of organic salts was further explored with iron, calcium and zinc citrates [99]. The carbonization of these nonalkali organic salts produces mesoporous materials with BET areas between 950 and 1610 m2 g−1 and distinct pore size distributions: monomodal distribution centered at 11 nm for calcium citrate, bimodal distribution centered at 9 and 20 nm for iron citrate, and bimodal distribution centered at 3 and 10 nm for iron citrate. These carbons can be post-functionalized by heat treatment in the presence of melamine to obtain materials gathering high BET area and mesopore volume with high nitrogen content (8–9%).
The synthesis of porous carbon materials
The preparation of carbon materials following the ionothermal principles is reported in the literature as both ionothermal and molten salt synthesis processes. Nowadays, there is still not a generally accepted terminology for these processes what turns difficult to understand the classifications and underlying procedures followed by the distinct authors. In fact, the use of ionothermal/molten salt process can be linked either to the preparation of carbon materials with incipient porosity obtained at temperatures ≈ 200°C (ionothermal carbonization—ITC) [102] or to the preparation of porous carbons by a two-step process including the previously mentioned ITC followed by a thermal treatment of the ionothermal derived carbon at high temperatures (attaining 1000°C or more) [103, 104]. Ionothermal/molten salt process is also considered in the case where the mixture of the carbon precursor and the ionic solvent is directly thermally treated at high temperature [105, 106].
The first studies reporting the preparation of porous carbon materials through ionothermal process used ionic liquids as carbon precursors. In 2009, Lee et al. synthesized N-doped materials (2–3%) with BET area values between 640 and 780 m2 g−1, and the authors demonstrated the influence of the ionic liquid nature on the development of mainly microporous or micro + mesoporous materials [107]. In a further work, the authors report a similar process for obtaining materials with up to 17% of nitrogen content, although with lower porosity development [108]. In 2010, other approach of the same research group gathered an ionic liquid with simple carbohydrates allowing to obtain carbon materials with a highly developed mesopore network after treatment at only 200°C during 20 h in a nonpressurized chamber [102]. Xie et al. reported the synthesis of magnetic hierarchical porous carbons by using several carbohydrates and an iron containing ionic liquid, and the authors proposed that the ionic liquid has a triple role: salt template, solvent and catalyst [103].
In the subsequent research in ionothermal approaches (Table 3), the introduction of salts as co-reagents became common and generally accepted as a hard template route. Zinc chloride is by far the most frequently reported salt, used alone or in mixtures (eutectic or not) with other salts. This strategy allowed to synthesize porous carbons with ultrahigh surface area (easily around 2000 m2 g−1), hierarchical structure and high heteroatom doping (i.e. nitrogen (>5%) and sulfur). All these features are of fundamental importance for boosting the application of these materials in energy storage processes. Actually, in the great majority of publications, the authors report high performance of the ionothermal-derived porous carbons as supercapacitors. While initially nitrogen-containing ionic liquids were used as carbon precursors [109, 110, 111], along the years, the number of studies exploring carbohydrates, or even biomass, as carbon source has increased [105, 106, 112, 113, 114, 115, 116, 117, 118, 119, 120].
Reagents | Thermal treatment | BET area (m2 g−1) | Observations | Ref. |
---|---|---|---|---|
Imidazolium-based ionic liquids | 800 °C (N2) 1 h | 640–780 | Micropores or micro + mesopores depending of ionic liquid used 2–3% N-doping | [107] |
Imidazolium-based ionic liquids | 800 °C (N2) 1 h | <100 | 11.4–17.6% N-doping | [108] |
Ionic liquid + glucose or fructose | 160–200°C, 2–20 h, open air | 6–288 | Micro + mesopores | [102] |
Glucose, fructose, xylose, or starch + iron containing ionic liquid | 180°C 24 h Autoclave + 750°C (N2) 4 h | 44–155 160–404 | Hierarchical pores and magnetic Ionic liquid triple role: salt template, solvent, catalyst | [103] |
N-containing and N,B-containing ionic liquids + eutectic salt mixtures (alkaline metal and zinc chlorides) | 1000°C or 1400°C (N2) | 1100–2000 | 5% N-doping 6% N + 6% B double doping Pore network dependent on salt mixture and amount | [109] |
Glucose, cellulose, or lignin + eutectic salt mixture (KCl/ZnCl2) | 1000°C (N2) linear or two-step regime | 866–2025 | VMeso/VTotal = 63–92% | [112] |
Glucose + molten salt LiCl/KCl + activating oxysalts (KOH, NaBO2, K2CO3, KNO3, KH2PO4, K2SO4 or KClO3) | 600–1300°C (N2) | 997–1912 | Oxysalt influences morphology VMeso/VTotal = 21–52% oxysalt dependent | [113] |
Glucose, cellulose, or sugar cane bagasse + metal free ionic liquids | 200°C 24 h (autoclave) + 600–900°C (N2) | 16–627 | 2.8–6.6% N-doping Micro + mesopores | [104] |
Peanut shell + salt mixtures (Na2CO3/K2CO3, Li2CO3/Na2CO3/K2CO3, CaCl2, CaCl2/NaCl) | 850°C (N2) 1 h | 316–408 | [120] | |
Imidium ionic liquid + eutectic salt mixture (KCl/ZnCl2) | 850°C (N2) 2 h | 1056 | 2.8% N-doping and 5.16% S-doping | [110] |
Imidazolium ionic liquid + salt mixture (NaCl/ZnCl2) | 1000°C (N2) 2 h | 1410–1770 | 3.7–4.5% N-doping | [111] |
Molten ZnCl2 + common organic solvents (e.g. ethanol, acetonitrile, dimethylsulfoxide, glycerol) | 550 °C Schlenck-type reactor | 750–1650 | 14% N-doping or 13% S-doping Aerogel, nanosheet or hyperbranch morphology dependent on solvent | [121] |
ZnCl2 + glucose or glucosamine dissolved in H2O (+ 2-thiophenecarboxylic acid (TCA)) | 900–1000°C (N2) | 881–1246 | Hierarchical pores N,S-doping (5.6% N and 1.8%S) Carbon aerogels | [122] |
Glucose and melamine + eutectic salt mixture (LiCl/KCl) | 550–1000°C 5 h (N2) | 387–1190 | 6–24% N-doping | [106] |
Melamine and terephthalaldehyde + salt mixture (KCl/ZnCl2) | 700°C (N2) 2 h | 426–1992 | [114] | |
Glucose, cellulose, lignin (+ melamine) + eutectic salt mixture (KCl/ZnCl2) | 800 °C (N2) two-step regime | 1273–1834 | 11.9% N-doping VMeso/VTotal = 69.2–97.5% | [115] |
Glucose + eutectic and noneutectic salt mixture (KCl/ZnCl2) | 350°C 2 h + 900°C 1 h (N2) | 1000–2160 | VMeso/VTotal > 50% | [105] |
Phloroglucinol + glyoxylic acid + pluronic F127 + H2O + salts (LiCl, NaCl, KCl); pH control | 600–900°C (Ar) | 535–1815 | VMeso/VTotal = 15–60% | [123] |
Lignin from beech wood + nitration + eutectic salt mixture (KCl/ZnCl2) | 850°C | 1381–1589 | 5.3–6.1% N-doping | [117] |
Adenine + eutectic and noneutectic salt mixture (NaCl/ZnCl2) | 900 °C (N2) 1 h | 1770–2900 | 5.9–7.7% N-doping Pore structure dependent on NaCl proportion (micro + mesopores) | [116] |
Tofu + LiCl/KCl + LiNO3 | 850°C (Ar) 2 h | 1200 | 1.54–4.72% N-doping Micropores | [119] |
Wheat straws + salt mixture (LiCl/KCl) + LiNO3 | 650–850°C (N2) 2 h | 1067 | 4.28% N-doping | [118] |
Chronological overview of porous carbon synthesis by ionothermal approaches (2009–2017).
More elaborated synthesis schemes have been reported, as is the case of the work developed by Chang et al. [121] where organic solvents were added dropwise to molten ZnCl2 at 550°C. By changing the solvent, the authors were able to obtain nitrogen (14%) or sulfur (13%) doped porous carbons with different morphologies (i.e. aerogel, nanosheets or hyperbranch). There are also reports on ITC of biomass with nitrogen-containing ionic liquid followed by conventional KOH activation to yield nitrogen doping up to 1.59% and apparent surface areas of 2838 m2 g−1 [124]. The ionothermal approach is actually a powerful route to synthesize porous carbon materials with valuable graphene-like (2D) structures [125, 126, 127, 128].
It is also possible to found reports on highly mesoporous carbon materials obtained by ZnCl2-mediated ionothermal/molten salt synthesis [129, 130, 131]. Although these routes are presented as novel synthesis procedures, the high mesopore volumes reported are most probably the result of the complex ZnCl2 activation mechanism when very high amount of ZnCl2 is added. As it was previously mentioned, the behavior of chemical activating agents as templates during carbonization cannot be disregarded, and for the particular case on ZnCl2, the results obtained by Molina-Sabio and Rodríguez-Reinoso [30] allowed the authors to conclude that this chemical acts as template for the creation of porosity. So, although new materials are being produced under “novel” synthesis procedures with appealing names, in some cases, the experimental route and underlying mechanism for pore creation seems to be the one accepted for conventional chemical activation.
For more information regarding the preparation of porous carbon materials
The technological relevance of porous carbon materials continues to prompt the scientific community and companies to explore alternative routes to the conventional methods, in order to develop specialized materials or improve the production process (e.g. optimizing energy costs and minimizing wastes).
The great majority of conventional and innovative processes allowing the synthesis of porous carbons involve heat treatments at moderate-to-high temperatures for carbonization to occur and subsequent formation of the porous carbon skeleton. In the case of chemical activation or ionothermal/molten salt processes, a washing step with water or 10% HCl is required to remove chemical compounds clog the porosity.
Conventional methods are based on a solid and structured carbon material and therefore activation occurs by gasification, selective oxidation of the most reactive carbon atoms and heteroatoms or intercalation processes. Thus, the conventional methodologies are considered top-down processes. Regarding innovative approaches both top-down and bottom-up routes are reported in the literature. HTC or inonothermal reactions promote a top-down process when the carbon precursor is a biomass, but is a bottom-up route when discrete entities (e.g. carbohydrates or ionic liquids) are the starting materials. The acid-mediated degradation of biomass is a top-down route that converts biomass in a carbohydrate-rich acid liquor that is carbonized in a bottom-up approach. Some of the advantages of these novel approaches over the conventional ones are related to the possibility of producing highly porous carbon materials with easier pore size distribution tuning, high amounts of heteroatoms in the surface, and fine control of morphology (e.g. sponge-like, aerogel-like, spherical, sheets (2D)). In light of a more sustainable and circular economy, it is also relevant that some of the novel synthetic approaches (e.g. HTC) allow enabling future large-scale production based on high moisture containing biomass residues and even liquids (e.g. glycerol).
The driving force for the development of new porous carbons throughout these nonconventional methods is the search for high performing materials for electrochemical applications and energy storage, which request hierarchically porous structures ideally doped with electron-rich nonmetallic elements (e.g. nitrogen, sulfur) to increase the conductivity.
The carbon atom is a versatile element that since the Stone Age has reinvented itself. So, the overlook of this chapter allows to predict that in the near future the number of novel synthesis routes to feed the demand for even more specialized porous carbons will continue to increase. This may occur by revisiting synthesis routes established for other classes of materials or by the discovery of completely novel processes.
The authors thank Fundação para a Ciência e Tecnologia (FCT), Portugal, for financial support to CQB through the strategic project UID/MULTI/00612/2013. ASM thanks the financial support of FCT for the Post-doc grant SFRH/BPD/86693/2012. J. Conceição is acknowledged for the illustration of Figure 1.
Food grains play a pivotal role in maintaining a healthy and active lifestyle. Every food has distinctiveness in its composition with a wide variety of macro and micronutrients in a different composition. Food grains that are rich sources of carbohydrates (rice, wheat, maize, etc.), protein (pulses, legumes, etc.), fats (groundnut, oilseeds), or minerals (pearl millet, etc.), while some are nutrient-dense and have optimum combinations of nutrients with good digestibility (most of the minor millets, quinoa, etc.) [1]. These nutrient-dense food grains are an adequate mix of nutrients with good bioavailability. On the other hand, pseudocereals are considered as “sub-exploited foods” or “under-utilized foods” defined as food groups that comprise non-grasses plant species not belonging to the cereals family but with similar properties and uses [1].
Currently, interest is arising regarding the use of an alternative source of cereals that can be pertinent to multiple reasons. All over the world, there is a bang regarding gathering knowledge about healthy eating options and incorporating it into the diet. Several trending terms are floating on the internet, magazines, books like healthy, wholesome, natural, or minimally processed and within cereals; for example, wholegrain, gluten-free, rich in dietary fiber or resistant starch, low carb, or digestibility have arisen and so on [2]. In the above context, pseudocereals fit properly as well as acknowledged for their several health benefits. Elevated consumption of pseudocereals for human consumption leads the food producers to develop novel and convenient food products which require not only know-how about the chemical composition of these raw materials, but also fundamental information about their physical and functional properties for processing [2].
Since agriculture is considered a cornerstone of the nation and therefore utilizing a handful of crops has placed global food security at risk [3]. Presently, the agro-industry is facing a crisis to assure adequate food supply to the 7 billion population of the world by maintaining high productivity and quality standards [3]. To confront this problem, a multidisciplinary approach is required to strengthen the food basket as well as make access to nutritious foods through nutritional supplements, enrichment, biofortification, and so on which act as a backbone of food security. The mentioned facts infuriate the researchers and scientists to explore and disseminate the knowledge regarding sub-exploited foods. These grains are rich in high-quality proteins, starch, minerals, vitamins, bioactive compounds, and nutraceuticals. This composition elaborates the potential of pseudocereals to replace or supplement conventionally utilized cereals. Since the content of gluten is also either very low or gluten-free; it can be incorporated in celiac diseases as well as also various health benefits [4]. This chapter is designed to portray the different variety of pseudocereals with their health benefits that ultimately pave the path towards healthy living which is well depicted in Figure 1.
Health benefits of pseudocereals. The figure was modified from the following research paper by Thakur et al. [
In the human diet, pseudocereals play a remarkable role to meet the necessities of the population suffering from coeliac diseases as well as other health consequences due to their wide range of nutrients like carbohydrates, proteins, fats, vitamins, minerals, and nutraceuticals. Here, in this chapter mainly four types of pseudocereals are discussed namely amaranth, buckwheat, chia seeds, and quinoa. These pseudocereals are discussed below:
Amaranth is known as one of the New World’s oldest crops, originated in Mesoamerica [6]. It is a dicotyledonous pseudocereal that belongs to the family of Amaranthaceae. The word Amaranthus is derived from the Greek word “anthos” (flower) which means everlasting or unwilting. Presently, it is widely cultivated and consumed throughout India, Nepal, Southern, and Eastern Africa, Malaysia, Indonesia, Philippines, Central America, and Mexico [6]. The common species of Amaranthus grown for alleviating the dietary beneficiaries for human consumption includes
It is considered a superfood because of its high nutraceutical properties like the high quality of proteins with multiple essential amino acids, a good source of unsaturated fats like omega-3 and omega-6 fatty acids, squalene, tocopherols, phenolic compounds, flavonoids, phytates, vitamins, minerals, and dietary fibers [7] which is well represented from Tables 1–3.
Parameters | Amaranth | Buckwheat | Chia | Quinoa |
---|---|---|---|---|
Water (g) | 11.3 | — | 5.8 | 13.3 |
Ash (g) | 2.88 | — | 4.8 | 2.38 |
Energy (kcal) | 371 | 333 | 486 | 368 |
Protein (g) | 13.6 | 13.3 | 16.5 | 14.1 |
Carbohydrate by difference (g) | 65.2 | 62.2 | 42.1 | 64.2 |
Total lipid/fat (g) | 7.02 | 2.22 | 30.7 | 6.07 |
Fiber, total dietary (g) | 6.7 | 2.2 | 34.4 | 7 |
Fatty acids, total saturated (g) | 1.46 | 0 | 3.33 | 0.706 |
Fatty acids, total monounsaturated (g) | 1.68 | — | 2.31 | 1.61 |
Fatty acids, total polyunsaturated (g) | 2.78 | — | 23.7 | 3.29 |
Parameters | Amaranth | Buckwheat | Chia | Quinoa |
---|---|---|---|---|
Calcium, Ca (mg) | 159 | 67 | 631 | 47 |
Iron, Fe (mg) | 7.61 | 2 | 7.72 | 4.57 |
Magnesium, Mg (mg) | 248 | — | 335 | 197 |
Phosphorus, P (mg) | 557 | — | 860 | 457 |
Potassium, K (mg) | 508 | 311 | 407 | 563 |
Sodium, Na (mg) | 4 | 0 | 16 | 5 |
Zinc, Zn (mg) | 2.87 | — | 4.58 | 3.1 |
Copper, Cu (mg) | 0.525 | — | 0.924 | 0.59 |
Manganese, Mn (mg) | 3.33 | — | 2.72 | 2.03 |
Selenium, Se (μg) | 18.7 | — | 55.2 | 8.5 |
Parameters | Amaranth | Buckwheat | Chia | Quinoa |
---|---|---|---|---|
Vitamin A (IU) | 0 | — | 54 | 14 |
Vitamin B1, Thiamine (mg) | 0.116 | — | 0.62 | 0.36 |
Vitamin B2, Riboflavin (mg) | 0.2 | — | 0.17 | 0.318 |
Vitamin B3, Niacin (mg) | 0.923 | — | 8.83 | 1.52 |
Vitamin B5, Pantothenic acid (mg) | 1.46 | — | — | 0.772 |
Vitamin B6, Pyridoxine (mg) | 0.591 | — | — | 0.487 |
Folate, total (μg) | 82 | — | 49 | 184 |
Vitamin B12 (μg) | 0 | — | 0 | 0 |
Vitamin C (mg) | 4.2 | — | 1.6 | — |
Vitamin D (IU) | 0 | 0 | — | 0 |
Vitamin E (mg) | 1.19 | — | 0.5 | 2.44 |
Vitamin K (μg) | 0 | — | — | 1.1 |
The grains of amaranth have higher sources of protein especially have a higher content of lysine and tryptophan which is limiting in the conventional cereals like wheat, rice, and maize whereas, it is deficient in leucine. Earlier studies are also stated that the protein content of the amaranth is also relatively rich in sulfur-containing amino acids, which are generally limited in the pulses [12]. Since, it is well known that protein is required for every cell for growth and maintenance of the body, for supporting neurological functions, aids in digestion balances hormones naturally as well as maintaining the immune system [6].
It is well known that inflammation is a normal process of immune response designed to protect the body against infection and injury. If the inflammation process exists in the body; this may be contributed to or be associated with diabetes, cancer, or any other autoimmune diseases [6]. It was also elaborated in earlier studies that consumption of amaranth reduces the inflammation caused by diseases. This is so because extruded amaranth protein hydrolysates prevent inflammation by the activation of bioactive peptides that reduces the expression of several pro-inflammatory markers [6, 13].
Calcium is the main driver in maintaining healthy bones in the human body. As the composition suggests, amaranth contains more calcium than any other seeds making them helpful for preventing osteoporosis and many other diseases related to bone health. Therefore, it was stated earlier in the studies that the intake of extruded amaranth products helps individuals in improving and maintaining the optimum calcium requirement for healthy bone density [6].
Previous studies reported that amaranth’s oil helps the individual in reducing total and LDL (low-density lipoprotein) cholesterol) as well as increases the HDL (high-density lipoprotein) cholesterol in a tested animal model [6, 14]. Also, it was reported that amaranth affects the absorption of cholesterol and bile acid production, hepatic cholesterol content, distribution of cholesterol lipoprotein, and biosynthesis cholesterol [6, 15].
It was revealed from the earlier studies that the duodenal peptic ulcer and chronic gastritis caused by Helicobacter pylori can be cured with Amaranth oil [7, 16].
The incorporation of amaranth helps diabetic patients in regulating the blood glucose level due to its higher content of manganese that helps in the pathway of gluconeogenesis. Besides the above, manganese also helps in maintaining the immune system of the individual, level of cholesterol, skin and bone health as well as the renal function of the individual [7].
Amaranth can be considered as an excellent source of gluten-free protein required for patients of coeliac disease as well as for those who want to incorporate a gluten-free diet into their lifestyle.
Since folic acid is suggested to pregnant women to be incorporated in their diet to prevent the birth defects like spina bifida and heart diseases. As the content of amaranth suggests the folic content is 88.0 mcg which is beneficial for the generation of new cells; therefore, helps pregnant women in decreasing the incidence of organism defects [7].
It is well reported that amaranth is a good source of soluble dietary fibers. As we know dietary fibers aid bowel movements helping the individual in preventing constipation.
Antioxidants are known as “scavengers of free radicals”. These components help in inhibiting oxidation lower the risk of infections, maintain heart health, and prevent several forms of cancers and degenerative diseases. In amaranth, the antioxidant potential is attributed to the presence of phenolics and flavonoids. It was reported that Amaranthus flowers, leaves as well as extracts possess the highest antioxidant activities compared to other parts, rutin being the major radical scavenger [6, 17].
As reported earlier in several studies amaranth supports several physiological processes in the human body by playing the role of antimicrobial, hepato-protective, anti-cancerous, anti-malarial, anti-anemic, supplementary, or nutraceutical foods, and so on. Due to its presence of high content of iron, manganese, calcium, dietary fibers, essential amino acids, lipids, antioxidants, it is labeled as a superfood that is required for sustaining a healthy lifestyle.
Buckwheat is also known as gluten-free pseudocereals belongs to the family of Polygonaceae with the genus Fagopyrum. Common buckwheat that is cultivated for human consumption includes
Buckwheat is considered as a good source of nutrients like proteins, fats, vitamins (like B1, B2, B3, and B6), minerals (like copper, zinc, manganese, selenium, sodium, potassium, calcium, magnesium), dietary fibers, and in combination with other health-promoting components like organic acids, polyphenols, flavonoids and inositol [19]. Due to its composition of the high biological value of proteins and amino acids, it is considered superior to other grains which are well shown in Tables 1–3.
Buckwheat contains antioxidants including flavonoids like oligomeric proanthocyanidins which are found in hulls and seeds as well as present in buckwheat flour. It also contains protective phenolic compounds that help in fighting against cancer or heart diseases [20]. Moreover, antioxidants also support cellular functions of the body by protecting DNA from damage and preventing inflammation or cancerous cell formation [20].
It is well known that proteins are known as “building blocks” as it is required for the growth, development, and maintenance of the body. As stated earlier in the studies buckwheat is a good source of protein as it contains almost 12 amino acids as compared to conventional cereals like rice, wheat, or maize. Furthermore, buckwheat also contains essential amino acids like lysine and arginine that ensure the full range of amino acids required for the proper functioning of the human body [20]. The grains of buckwheat contain roughly 11–14 grams of protein for every 100 grams which are almost higher than most whole grains [20].
It was reported previously that 1 cup serving of buckwheat provides almost 6 gm of dietary fibers; which helps to fill you up and hastens the transit of food through the digestive tract (essential for bowel movement regulation). Moreover, buckwheat also protects the digestive organs from infections, cancers as well as other negative symptoms by preventing oxidative stress within the gastrointestinal tract [20].
Buckwheat has a low glycemic index as compared to other conventional cereals like rice, wheat, and maize. It possesses anti-nutritional factors like polyphenols and enzyme-inhibitors that delay digestion; thus, helping in regulating the blood glucose level [19]. Previously, it was also stated that buckwheat contains rutin and quercetin that helps in reducing insulin resistance conditions by enhancing the capability of hepatic antioxidant enzymes [19, 21]. Nevertheless, it was also revealed from the study that the chemically synthesized D-chiro-inositol (an insulin regulatory component) is used to lower serum glucose concentrations in diabetic patients and is available relatively in high amounts in buckwheat [19, 22].
The size, appearance, texture, and taste of buckwheat are very similar to barley but the main advantage of buckwheat is zero gluten [20]. As a result, buckwheat is safe for individuals suffering from coeliac diseases or for individuals who want to take a gluten-free diet. It also helps in preventing numerous diseases related to the gastrointestinal tract like diarrhea, bloating, constipation, leaky gut syndrome, and so on.
The flours of buckwheat contain minerals like iron, zinc, phosphorus, magnesium, manganese, and folate as well as contains vitamins like B vitamins. It was elaborated that the manganese content of buckwheat helps in improving the digestion process, aid in muscle growth and recovery, and defend against stress’s negative impacts on the body [20]. Nevertheless, B vitamins, manganese, phosphorus, and zinc help the individual in maintaining healthy circulation and blood vessel function, plus they are needed for neurotransmitter signaling in the brain that fights depression, anxiety, and headaches [20].
Several studies reported that buckwheat plays multiple roles in regulating numerous physiological processes by acting as a hypocholesterolemic, hypotensive, hypoglycaemic, neuroprotective, anti-obesity agent as well as anti-aging foods.
Chia seeds are originated from Mexico, belong to the family Lamiaceae with the representative of genus Salvia and species hispanica. The chia seeds are utilized in the form of whole seeds, flour, mucilage as well as seed oil. It is a nutrient-dense superfood that contains superior quality omega-3 fatty acids, gluten-free protein, and high content of anti-oxidants protecting seeds against microbial and chemical degradations [23, 24]. It is an oilseed that contains carbohydrates, proteins, lipids, dietary fibers, vitamins, minerals, and phytochemicals which is well shown in Tables 1–3.
Likewise, other pseudocereals, chia seed is also gluten-free; so, these can be incorporated by individuals who are suffering from health issues like gluten intolerance.
It is well known that protein is a macronutrient, utilized by the body for the generation of energy to perform multiple body functions [23]. Chia seeds possess a significant amount of protein that helps in minimizing the problem of protein-energy malnutrition [23, 25]. Previous studies also enumerated that chia seeds possess an excellent balance of amino acids containing a high concentration of cysteine, lysine, and methionine as compared to the primary cereals [23, 26]. Another study reported that regular consumption of chia seeds having an appreciable amount of protein in the diet proved helpful for the individual suffering from either obesity or overweight and other health-related issues such as diabetes [23, 27].
It is well known that antioxidants are the components that have the potential to neutralize the free radical and thus help the individual in preventing various metabolic disorders. From various clinical studies, it was revealed that chia seeds are a potential source of antioxidants like sterols, tocopherols, and polyphenolic compounds like caffeic acid, myricetin, chlorogenic acid, protocatechuic acid, quercetin, kaempferol, rutin, and so on; exhibits beneficial effects like anti-aging, anti-carcinogenic, neuroprotective, cardioprotective, hepatoprotective as well as prevent some neurological disorders.
Dietary fiber is an important constituent of our diet. According to recommended dietary allowances 2020, it was prescribed to include 25 gm for sedentary women and 32 gm for sedentary men of dietary fiber per day [28]. It was stated in the previous study that the fiber content of chia seeds is almost twice as bran, 4–5 times greater than amaranth, quinoa, soya, and almonds [29]. Several clinical studies stated that optimum intake of dietary fibers helps the individual from several disorders like diseases related to the digestive and circulatory system, hemorrhoids, kidney stones, colorectal cancer, diabetes mellitus, metabolic diseases, and so on.
Quinoa is an annual herbaceous, dicotyledonous plant belonging to the Chenopodiaceae family with the genus with the genus Chenopodium and species quinoa. It is originated in the Andean region and able to adapt to different climatic conditions and soils [30]. This pseudocereal is a rich source of proteins with an exceptional balance of essential amino acids, fats, vitamins, minerals, and fibers which is well depicted in Tables 1–3. It also contains health-beneficial phytochemicals like saponins, phytosterols, and phtoecdysteroids [30]. Above all, it contains top-level protein i.e., lysine and methionine when compared to conventional cereals like wheat, rice, maize, barley [31]. It was also reported in previous studies that the fatty acid composition of quinoa is almost equivalent to soyabean oil [31].
Celiac disease is a condition in which an individual is not able to tolerate the gluten protein which is found in traditional cereals like wheat, rye, barley, and so on. It is well known that quinoa is free from gluten protein; so, it is well tolerated by patients with celiac diseases as well as for individuals who want to include gluten-free food products in their diet.
Reported in earlier studies that the main edible part of the quinoa plant is quinoa seeds, but the leaves too contain rich phenolic compounds that have antioxidant and anti-cancerous properties [32]. The quinoa extracts contain a considerable amount of ferulic, sinapinic, and gallic acids, kaempferol, isorhamnetin, and rutin an inhibitory effect on prostate cancer cell proliferation and motility [32, 33]. It has been also proposed that these compounds help in reducing the risk of neurodegenerative disorders, cardiovascular diseases as well as diabetes [32, 33, 34].
Various clinical studies elaborated that quinoa contains multiple types of bioactive components like peptides, polysaccharides, phenolics, phytosterols, and so on that are proposed to prevent health complications like hyperglycemia, adiposity, and dyslipidemia. The mechanism involved for the above beneficial effects includes reduced lipid absorption and adipogenesis, increased energy expenditure and glucose oxidation, and corrected gut microbiota [35]. It can be stated that quinoa offers several unique attributes that could be harnessed to improve the dietary management of obesity, diabetes as well as cardiovascular diseases [35].
The innovation of nutraceutical foods and its product is one of the captivating shifts of agri-food industries. With the growing awareness of individuals regarding nutritious foods all over the world; the burden arises for researchers and scientists to develop food products that are high in protein content, gluten-free as well as nutrient-dense. As a result, in the last couple of years, interest arouses regarding the development of nutritious healthy products from pseudocereals for living a disease-free and healthy life; that can be beneficial for coeliac patients as well. As we know amaranth, buckwheat, chia seeds as well as quinoa are the major pseudocereals that have a balanced nutrient composition of dietary protein, fats, vitamins, minerals, dietary fibers, antioxidants as well as bioactive components that have beneficial properties like cardioprotective, immunomodulatory, anti-diabetic, anti-obesity, anti-inflammatory, hypocholesterolemic, maintains disorders of the gastrointestinal tract and so on. The gluten-free products which are available in the market are prepared by using starches and additives that are deficient in vital nutrients which are required for the growth and development of individuals suffering from coeliac disease. Therefore, incorporation of these gluten-free pseudocereals (amaranth, buckwheat, chia seeds, and quinoa) in the diet of coeliac patients not only pacifies the nutrient deficiency but also paves the path of blossoming these underutilized food grains.
We pay our profound sense of gratitude to Mr. Nirmal Kumar for his assistance, encouragement, and insightful advice throughout in constructing this book chapter. We also apologize for not citing the research papers of all the authors that helped us in better understanding of this topic.
Authors declare no conflict of interest.
Book - collection of Works distributed in a book format, whose selection, coordination, preparation, and arrangement has been performed and published by IntechOpen, and in which the Work is included in its entirety in an unmodified form along with one or more other contributions, each constituting separate and independent sections, but together assembled into a collective whole.
",metaTitle:"Attribution Policy",metaDescription:"DEFINITION OF TERMS",metaKeywords:null,canonicalURL:"/page/attribution-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"Work - a book Chapter (as well as Conference Papers), including any and all content, graphics, images and/or other materials forming part of, or accompanying, the Chapter/Conference Paper.
\\n\\nAttribution – appropriate credit for the used Work or book.
\\n\\nCreative Commons licenses – enable licensors to retain copyright while allowing others to use their Works in an appropriate way.
\\n\\nWith the purpose of protecting Authors' copyright and the transparent reuse of OA (Open Access) content, IntechOpen has developed Rules of Attribution of Works licensed under Creative Commons licenses.
\\n\\nIn case you reuse or republish any of the Works licensed under CC licenses, you must abide by the guidelines outlined below:
\\n\\nAll rights to Books and other compilations published on the IntechOpen platform and in print are reserved by IntechOpen. The Copyright to Books and other compilations is subject to a separate Copyright from any that exists in the included Works.
\\n\\nA Book in its entirety or a significant part of a Book cannot be translated freely without specific written consent by the publisher. Further information can be obtained at permissions@intechopen.com.
\\n\\nIn instances where permission is obtained from the publisher for reusing or republishing the Book, or significant parts of the Book, all of the following conditions apply:
\\n\\nEvery single Work that is used has to be attributed in the way described. If you are unsure about proper attribution, please write to permissions@intechopen.com.
\\n\\nIndividual Works originally published in IntechOpen books are licensed under Creative Commons licenses and can be freely used under terms of the respective CC license, if properly attributed. In order to properly attribute the Work you must respect all the conditions outlined below:
\\n\\nEvery single Work that is used has to be attributed in the way as described. If you are unsure about proper attribution, please contact Us at permissions@intechopen.com.
\\n\\nIn the event that you use more than one of IntechOpen's Works published in one or more books (but not a significant part of the book that is under separate Copyright), each of these have to be properly attributed in the way described.
\\n\\nIntechOpen does not have any claims on newly created copyrighted Works, but the Works originally published by IntechOpen must be properly attributed.
\\n\\nAll these rules apply to BOTH online and offline use.
\\n\\nParts of the Rules of Attribution are based on Work Attributing Creative Commons Materials published by the Australian Research Council Centre of Excellence for Creative Industries and Innovation, in partnership with Creative Commons Australia, which can be found at creativecommons.org.au licensed under Creative Commons Attribution 2.5 Australia license, and Best practices for attribution published by Creative Commons, which can be found at wiki.creativecommons.org under the Creative Commons Attribution 4.0 license.
\\n\\nAll the above rules are subject to change, IntechOpen reserves the right to take appropriate action if any of the conditions outlined above are not met.
\\n\\nPolicy last updated: 2016-06-09
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Work - a book Chapter (as well as Conference Papers), including any and all content, graphics, images and/or other materials forming part of, or accompanying, the Chapter/Conference Paper.
\n\nAttribution – appropriate credit for the used Work or book.
\n\nCreative Commons licenses – enable licensors to retain copyright while allowing others to use their Works in an appropriate way.
\n\nWith the purpose of protecting Authors' copyright and the transparent reuse of OA (Open Access) content, IntechOpen has developed Rules of Attribution of Works licensed under Creative Commons licenses.
\n\nIn case you reuse or republish any of the Works licensed under CC licenses, you must abide by the guidelines outlined below:
\n\nAll rights to Books and other compilations published on the IntechOpen platform and in print are reserved by IntechOpen. The Copyright to Books and other compilations is subject to a separate Copyright from any that exists in the included Works.
\n\nA Book in its entirety or a significant part of a Book cannot be translated freely without specific written consent by the publisher. Further information can be obtained at permissions@intechopen.com.
\n\nIn instances where permission is obtained from the publisher for reusing or republishing the Book, or significant parts of the Book, all of the following conditions apply:
\n\nEvery single Work that is used has to be attributed in the way described. If you are unsure about proper attribution, please write to permissions@intechopen.com.
\n\nIndividual Works originally published in IntechOpen books are licensed under Creative Commons licenses and can be freely used under terms of the respective CC license, if properly attributed. In order to properly attribute the Work you must respect all the conditions outlined below:
\n\nEvery single Work that is used has to be attributed in the way as described. If you are unsure about proper attribution, please contact Us at permissions@intechopen.com.
\n\nIn the event that you use more than one of IntechOpen's Works published in one or more books (but not a significant part of the book that is under separate Copyright), each of these have to be properly attributed in the way described.
\n\nIntechOpen does not have any claims on newly created copyrighted Works, but the Works originally published by IntechOpen must be properly attributed.
\n\nAll these rules apply to BOTH online and offline use.
\n\nParts of the Rules of Attribution are based on Work Attributing Creative Commons Materials published by the Australian Research Council Centre of Excellence for Creative Industries and Innovation, in partnership with Creative Commons Australia, which can be found at creativecommons.org.au licensed under Creative Commons Attribution 2.5 Australia license, and Best practices for attribution published by Creative Commons, which can be found at wiki.creativecommons.org under the Creative Commons Attribution 4.0 license.
\n\nAll the above rules are subject to change, IntechOpen reserves the right to take appropriate action if any of the conditions outlined above are not met.
\n\nPolicy last updated: 2016-06-09
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6654},{group:"region",caption:"Middle and South America",value:2,count:5945},{group:"region",caption:"Africa",value:3,count:2452},{group:"region",caption:"Asia",value:4,count:12681},{group:"region",caption:"Australia and Oceania",value:5,count:1014},{group:"region",caption:"Europe",value:6,count:17701}],offset:12,limit:12,total:133951},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"16"},books:[{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11273",title:"Ankylosing Spondylitis",subtitle:null,isOpenForSubmission:!0,hash:"e07e8cf78550507643fbcf71a6a9d48b",slug:null,bookSignature:"Dr. Jacome Bruges Armas",coverURL:"https://cdn.intechopen.com/books/images_new/11273.jpg",editedByType:null,editors:[{id:"70522",title:"Dr.",name:"Jacome",surname:"Bruges Armas",slug:"jacome-bruges-armas",fullName:"Jacome Bruges Armas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11566",title:"Periodontology - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"75ef2eae3087ec0c7f2076cc64e2cfc3",slug:null,bookSignature:"Dr. Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/11566.jpg",editedByType:null,editors:[{id:"82453",title:"Dr.",name:"Gokul",surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11568",title:"Staphylococcal Infections - Recent Advances and Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"92c881664d1921c7f2d0fee34b78cd08",slug:null,bookSignature:"Dr. Jaime Bustos-Martínez and Dr. Juan José Valdez-Alarcón",coverURL:"https://cdn.intechopen.com/books/images_new/11568.jpg",editedByType:null,editors:[{id:"59719",title:"Dr.",name:"Jaime",surname:"Bustos-Martínez",slug:"jaime-bustos-martinez",fullName:"Jaime Bustos-Martínez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11569",title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",subtitle:null,isOpenForSubmission:!0,hash:"069d6142ecb0d46d14920102d48c0e9d",slug:null,bookSignature:"Dr. Mihaela Laura Vica",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",editedByType:null,editors:[{id:"189561",title:"Dr.",name:"Mihaela Laura",surname:"Vica",slug:"mihaela-laura-vica",fullName:"Mihaela Laura Vica"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11570",title:"Influenza - New Approaches",subtitle:null,isOpenForSubmission:!0,hash:"157b379b9d7a4bf5e2cc7a742f155a44",slug:null,bookSignature:"Dr. Seyyed Shamsadin Athari and Dr. Entezar Mehrabi Nasab",coverURL:"https://cdn.intechopen.com/books/images_new/11570.jpg",editedByType:null,editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11576",title:"Malaria - Recent Advances, and New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"5a01644fb0b4ce24c2f947913d154abe",slug:null,bookSignature:"Prof. Pier Paolo Piccaluga",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",editedByType:null,editors:[{id:"76041",title:"Prof.",name:"Pier Paolo",surname:"Piccaluga",slug:"pier-paolo-piccaluga",fullName:"Pier Paolo Piccaluga"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11577",title:"Tick-Borne Diseases - A Review and an Update of Knowledge on Infections in Human and Animal Population",subtitle:null,isOpenForSubmission:!0,hash:"3d72ae651ee2a04b2368bf798a3183ca",slug:null,bookSignature:"Prof. Elisa Pieragostini",coverURL:"https://cdn.intechopen.com/books/images_new/11577.jpg",editedByType:null,editors:[{id:"51521",title:"Prof.",name:"Elisa",surname:"Pieragostini",slug:"elisa-pieragostini",fullName:"Elisa Pieragostini"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11583",title:"Parkinson’s Disease - Animal Models, Current Therapies and Clinical Trials",subtitle:null,isOpenForSubmission:!0,hash:"99788a4a7f9ee0b4de55de293a2ed3d0",slug:null,bookSignature:"Prof. Sarat Chandra Yenisetti",coverURL:"https://cdn.intechopen.com/books/images_new/11583.jpg",editedByType:null,editors:[{id:"181774",title:"Prof.",name:"Sarat Chandra",surname:"Yenisetti",slug:"sarat-chandra-yenisetti",fullName:"Sarat Chandra Yenisetti"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11584",title:"Migraine Research",subtitle:null,isOpenForSubmission:!0,hash:"44a6090845f971a215ddf013f1dc2027",slug:null,bookSignature:"Dr. Theodoros Mavridis, Dr. Georgios Vavougios and Associate Prof. Dimos-Dimitrios Mitsikostas",coverURL:"https://cdn.intechopen.com/books/images_new/11584.jpg",editedByType:null,editors:[{id:"320230",title:"Dr.",name:"Theodoros",surname:"Mavridis",slug:"theodoros-mavridis",fullName:"Theodoros Mavridis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11587",title:"Updates on ADHD - New Approaches to Assessment and Intervention",subtitle:null,isOpenForSubmission:!0,hash:"e0718a84e5fda7ed4287095c3ef27dae",slug:null,bookSignature:"Dr. Celestino Rodríguez Pérez and Mrs. Debora Areces",coverURL:"https://cdn.intechopen.com/books/images_new/11587.jpg",editedByType:null,editors:[{id:"85114",title:"Dr.",name:"Celestino",surname:"Rodríguez Pérez",slug:"celestino-rodriguez-perez",fullName:"Celestino Rodríguez Pérez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:40},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:66},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:26},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:124},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:8},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:10},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:207},popularBooks:{featuredBooks:[{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10787",title:"Hepatocellular Carcinoma",subtitle:"Challenges and Opportunities of a Multidisciplinary Approach",isOpenForSubmission:!1,hash:"bc00a66513e51003e5dbbc0294e0fc3d",slug:"hepatocellular-carcinoma-challenges-and-opportunities-of-a-multidisciplinary-approach",bookSignature:"Georgios Tsoulfas",coverURL:"https://cdn.intechopen.com/books/images_new/10787.jpg",editors:[{id:"57412",title:"Prof.",name:"Georgios",middleName:null,surname:"Tsoulfas",slug:"georgios-tsoulfas",fullName:"Georgios Tsoulfas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,isOpenForSubmission:!1,hash:"4e868cde273d65a7ff54b1817d640629",slug:"hydrolases",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",isOpenForSubmission:!1,hash:"2c628f4757f9639a4450728d839a7842",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",bookSignature:"Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10193",title:"Multidisciplinary Experiences in Renal Replacement Therapy",subtitle:null,isOpenForSubmission:!1,hash:"3c4738671bb3e815744d1e04df7ba879",slug:"multidisciplinary-experiences-in-renal-replacement-therapy",bookSignature:"Ane C.F. Nunes",coverURL:"https://cdn.intechopen.com/books/images_new/10193.jpg",editors:[{id:"55270",title:"Prof.",name:"Ane",middleName:null,surname:"Claudia Fernandes Nunes",slug:"ane-claudia-fernandes-nunes",fullName:"Ane Claudia Fernandes Nunes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10983",title:"Conifers",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"3e524d29fc3f95c3389efbd41463dab6",slug:"conifers-recent-advances",bookSignature:"Ana Cristina Gonçalves and Teresa Fonseca",coverURL:"https://cdn.intechopen.com/books/images_new/10983.jpg",editors:[{id:"194484",title:"Prof.",name:"Ana Cristina",middleName:null,surname:"Gonçalves",slug:"ana-cristina-goncalves",fullName:"Ana Cristina Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10539",title:"Ginseng",subtitle:"Modern Aspects of the Famed Traditional Medicine",isOpenForSubmission:!1,hash:"5f388543a066b617d2c52bd4c027c272",slug:"ginseng-modern-aspects-of-the-famed-traditional-medicine",bookSignature:"Christophe Hano and Jen-Tsung Chen",coverURL:"https://cdn.intechopen.com/books/images_new/10539.jpg",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10881",title:"Drug Repurposing",subtitle:"Molecular Aspects and Therapeutic Applications",isOpenForSubmission:!1,hash:"eca3f2d5ca97b457d38a2442b36d3ac7",slug:"drug-repurposing-molecular-aspects-and-therapeutic-applications",bookSignature:"Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/10881.jpg",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4423},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2204,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",publishedDate:"June 15th 2022",numberOfDownloads:1182,editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10787",title:"Hepatocellular Carcinoma",subtitle:"Challenges and Opportunities of a Multidisciplinary Approach",isOpenForSubmission:!1,hash:"bc00a66513e51003e5dbbc0294e0fc3d",slug:"hepatocellular-carcinoma-challenges-and-opportunities-of-a-multidisciplinary-approach",bookSignature:"Georgios Tsoulfas",coverURL:"https://cdn.intechopen.com/books/images_new/10787.jpg",publishedDate:"June 15th 2022",numberOfDownloads:1006,editors:[{id:"57412",title:"Prof.",name:"Georgios",middleName:null,surname:"Tsoulfas",slug:"georgios-tsoulfas",fullName:"Georgios Tsoulfas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,isOpenForSubmission:!1,hash:"4e868cde273d65a7ff54b1817d640629",slug:"hydrolases",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",publishedDate:"June 15th 2022",numberOfDownloads:863,editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",isOpenForSubmission:!1,hash:"2c628f4757f9639a4450728d839a7842",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",bookSignature:"Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",publishedDate:"June 15th 2022",numberOfDownloads:793,editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10193",title:"Multidisciplinary Experiences in Renal Replacement Therapy",subtitle:null,isOpenForSubmission:!1,hash:"3c4738671bb3e815744d1e04df7ba879",slug:"multidisciplinary-experiences-in-renal-replacement-therapy",bookSignature:"Ane C.F. Nunes",coverURL:"https://cdn.intechopen.com/books/images_new/10193.jpg",publishedDate:"June 15th 2022",numberOfDownloads:730,editors:[{id:"55270",title:"Prof.",name:"Ane",middleName:null,surname:"Claudia Fernandes Nunes",slug:"ane-claudia-fernandes-nunes",fullName:"Ane Claudia Fernandes Nunes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2167,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10983",title:"Conifers",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"3e524d29fc3f95c3389efbd41463dab6",slug:"conifers-recent-advances",bookSignature:"Ana Cristina Gonçalves and Teresa Fonseca",coverURL:"https://cdn.intechopen.com/books/images_new/10983.jpg",publishedDate:"June 15th 2022",numberOfDownloads:600,editors:[{id:"194484",title:"Prof.",name:"Ana Cristina",middleName:null,surname:"Gonçalves",slug:"ana-cristina-goncalves",fullName:"Ana Cristina Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10539",title:"Ginseng",subtitle:"Modern Aspects of the Famed Traditional Medicine",isOpenForSubmission:!1,hash:"5f388543a066b617d2c52bd4c027c272",slug:"ginseng-modern-aspects-of-the-famed-traditional-medicine",bookSignature:"Christophe Hano and Jen-Tsung Chen",coverURL:"https://cdn.intechopen.com/books/images_new/10539.jpg",publishedDate:"June 15th 2022",numberOfDownloads:583,editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10881",title:"Drug Repurposing",subtitle:"Molecular Aspects and Therapeutic Applications",isOpenForSubmission:!1,hash:"eca3f2d5ca97b457d38a2442b36d3ac7",slug:"drug-repurposing-molecular-aspects-and-therapeutic-applications",bookSignature:"Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/10881.jpg",publishedDate:"June 1st 2022",numberOfDownloads:2231,editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10774",title:"Model Organisms in Plant Genetics",subtitle:null,isOpenForSubmission:!1,hash:"f6624b58571ac10c9b636c5d85ec5e54",slug:"model-organisms-in-plant-genetics",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/10774.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!1,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:"protein-detection",bookSignature:"Yusuf Tutar and Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Applications of Calorimetry",subtitle:null,isOpenForSubmission:!1,hash:"8c87f7e2199db33b5dd7181f56973a97",slug:"applications-of-calorimetry",bookSignature:"José Luis Rivera Armenta and Cynthia Graciela Flores Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"199",title:"TCM and Alternative Medicine",slug:"tcm-and-alternative-medicine",parent:{id:"16",title:"Medicine",slug:"medicine"},numberOfBooks:8,numberOfSeries:0,numberOfAuthorsAndEditors:186,numberOfWosCitations:83,numberOfCrossrefCitations:85,numberOfDimensionsCitations:162,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"199",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9445",title:"Alternative Medicine",subtitle:"Update",isOpenForSubmission:!1,hash:"3b5a02b419c5277facf2b2e0905bdb64",slug:"alternative-medicine-update",bookSignature:"Muhammad Akram",coverURL:"https://cdn.intechopen.com/books/images_new/9445.jpg",editedByType:"Edited by",editors:[{id:"215436",title:"Dr.",name:"Muhammad",middleName:null,surname:"Akram",slug:"muhammad-akram",fullName:"Muhammad Akram"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8323",title:"Traditional and Complementary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"60eadb1783d9bba245687adf284d4871",slug:"traditional-and-complementary-medicine",bookSignature:"Cengiz Mordeniz",coverURL:"https://cdn.intechopen.com/books/images_new/8323.jpg",editedByType:"Edited by",editors:[{id:"214664",title:"Associate Prof.",name:"Cengiz",middleName:null,surname:"Mordeniz",slug:"cengiz-mordeniz",fullName:"Cengiz Mordeniz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7910",title:"Acupuncture",subtitle:"Resolving Old Controversies and Pointing New Pathways",isOpenForSubmission:!1,hash:"8ee244050594f166365bb63ec51a447a",slug:"acupuncture-resolving-old-controversies-and-pointing-new-pathways",bookSignature:"Marcelo Saad and Roberta de Medeiros",coverURL:"https://cdn.intechopen.com/books/images_new/7910.jpg",editedByType:"Edited by",editors:[{id:"51991",title:"Prof.",name:"Marcelo",middleName:null,surname:"Saad",slug:"marcelo-saad",fullName:"Marcelo Saad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8593",title:"Plant Extracts",subtitle:null,isOpenForSubmission:!1,hash:"93ae18175f7b16937a3dfddc10a51572",slug:"plant-extracts",bookSignature:"Aman Dekebo",coverURL:"https://cdn.intechopen.com/books/images_new/8593.jpg",editedByType:"Edited by",editors:[{id:"191684",title:"Dr.",name:"Aman",middleName:null,surname:"Dekebo",slug:"aman-dekebo",fullName:"Aman Dekebo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3304",title:"Acupuncture in Modern Medicine",subtitle:null,isOpenForSubmission:!1,hash:"b6d3a937281325154720c678283daff0",slug:"acupuncture-in-modern-medicine",bookSignature:"Lucy L. Chen and Tsung O. Cheng",coverURL:"https://cdn.intechopen.com/books/images_new/3304.jpg",editedByType:"Edited by",editors:[{id:"49147",title:"Dr.",name:"Lucy L",middleName:null,surname:"Chen",slug:"lucy-l-chen",fullName:"Lucy L Chen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3369",title:"Alternative Medicine",subtitle:null,isOpenForSubmission:!1,hash:"e5a330fdcaea1dbe6b571b1f2ee93b56",slug:"alternative-medicine",bookSignature:"Hiroshi Sakagami",coverURL:"https://cdn.intechopen.com/books/images_new/3369.jpg",editedByType:"Edited by",editors:[{id:"82603",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Sakagami",slug:"hiroshi-sakagami",fullName:"Hiroshi Sakagami"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"386",title:"Acupuncture",subtitle:"Concepts and Physiology",isOpenForSubmission:!1,hash:"a1b327d1a93e8dfd07289ab0a701aa39",slug:"acupuncture-concepts-and-physiology",bookSignature:"Marcelo Saad",coverURL:"https://cdn.intechopen.com/books/images_new/386.jpg",editedByType:"Edited by",editors:[{id:"51991",title:"Prof.",name:"Marcelo",middleName:null,surname:"Saad",slug:"marcelo-saad",fullName:"Marcelo Saad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1316",title:"Acupuncture",subtitle:"Clinical Practice, Particular Techniques and Special Issues",isOpenForSubmission:!1,hash:"60c42faaae3504a330936fc3ff4456ee",slug:"acupuncture-clinical-practice-particular-techniques-and-special-issues",bookSignature:"Marcelo Saad",coverURL:"https://cdn.intechopen.com/books/images_new/1316.jpg",editedByType:"Edited by",editors:[{id:"51991",title:"Prof.",name:"Marcelo",middleName:null,surname:"Saad",slug:"marcelo-saad",fullName:"Marcelo Saad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:8,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"65475",doi:"10.5772/intechopen.83790",title:"African Traditional Medicine: South African Perspective",slug:"african-traditional-medicine-south-african-perspective",totalDownloads:3687,totalCrossrefCites:18,totalDimensionsCites:22,abstract:"African traditional medicine (ATM) has been used by African populations for the treatment of diseases long before the advent of orthodox medicine and continues to carry a part of the burden of health for the majority of the population. South Africa, as a member state of the World Health Organisation, has been set on the path of institutionalising African traditional medicine. This chapter outlines the processes and progress pertaining to the acceptance and acknowledgement of the role of ATM in health care. It sets out to describe the strides made with regard to the traditional health practitioners’ Act and other laws, research in ATM, education of both health care and traditional health practitioners, including the role of collaboration. An overview of the practice of African traditional medicine is provided.",book:{id:"8323",slug:"traditional-and-complementary-medicine",title:"Traditional and Complementary Medicine",fullTitle:"Traditional and Complementary Medicine"},signatures:"Mmamosheledi E. Mothibe and Mncengeli Sibanda",authors:[{id:"276601",title:"Dr.",name:"Mmamosheledi",middleName:null,surname:"Mothibe",slug:"mmamosheledi-mothibe",fullName:"Mmamosheledi Mothibe"},{id:"278675",title:"Mr.",name:"Mncengeli",middleName:null,surname:"Sibanda",slug:"mncengeli-sibanda",fullName:"Mncengeli Sibanda"}]},{id:"41698",doi:"10.5772/54003",title:"Propolis: Alternative Medicine for the Treatment of Oral Microbial Diseases",slug:"antifungal-activity-of-propolis-oral-clinical-studies-in-humans",totalDownloads:5414,totalCrossrefCites:13,totalDimensionsCites:20,abstract:null,book:{id:"3369",slug:"alternative-medicine",title:"Alternative Medicine",fullTitle:"Alternative Medicine"},signatures:"Vagner Rodrigues Santos",authors:[{id:"79610",title:"Dr.",name:"Vagner Rodrigues",middleName:"Rodrigues",surname:"Santos",slug:"vagner-rodrigues-santos",fullName:"Vagner Rodrigues Santos"}]},{id:"41492",doi:"10.5772/53333",title:"Application of Saponin-Containing Plants in Foods and Cosmetics",slug:"application-of-saponin-containing-plants-in-foods-and-cosmetics",totalDownloads:6882,totalCrossrefCites:8,totalDimensionsCites:18,abstract:null,book:{id:"3369",slug:"alternative-medicine",title:"Alternative Medicine",fullTitle:"Alternative Medicine"},signatures:"Yukiyoshi Tamura, Masazumi Miyakoshi and Masaji Yamamoto",authors:[{id:"97471",title:"Mr.",name:"Masaji",middleName:null,surname:"Yamamoto",slug:"masaji-yamamoto",fullName:"Masaji Yamamoto"}]},{id:"41526",doi:"10.5772/53868",title:"Network Pharmacology and Traditional Chinese Medicine",slug:"network-pharmacology-and-traditional-chinese-medicine",totalDownloads:2980,totalCrossrefCites:6,totalDimensionsCites:12,abstract:null,book:{id:"3369",slug:"alternative-medicine",title:"Alternative Medicine",fullTitle:"Alternative Medicine"},signatures:"Qihe Xu, Fan Qu and Olavi Pelkonen",authors:[{id:"23803",title:"Prof.",name:"Olavi",middleName:null,surname:"Pelkonen",slug:"olavi-pelkonen",fullName:"Olavi Pelkonen"},{id:"67044",title:"Dr.",name:"Qihe",middleName:null,surname:"Xu",slug:"qihe-xu",fullName:"Qihe Xu"},{id:"162445",title:"Dr.",name:"Fan",middleName:null,surname:"Qu",slug:"fan-qu",fullName:"Fan Qu"}]},{id:"67066",doi:"10.5772/intechopen.86373",title:"Introductory Chapter: Traditional and Complementary Medicine",slug:"introductory-chapter-traditional-and-complementary-medicine",totalDownloads:1181,totalCrossrefCites:7,totalDimensionsCites:10,abstract:null,book:{id:"8323",slug:"traditional-and-complementary-medicine",title:"Traditional and Complementary Medicine",fullTitle:"Traditional and Complementary Medicine"},signatures:"Cengiz Mordeniz",authors:[{id:"214664",title:"Associate Prof.",name:"Cengiz",middleName:null,surname:"Mordeniz",slug:"cengiz-mordeniz",fullName:"Cengiz Mordeniz"}]}],mostDownloadedChaptersLast30Days:[{id:"65475",title:"African Traditional Medicine: South African Perspective",slug:"african-traditional-medicine-south-african-perspective",totalDownloads:3687,totalCrossrefCites:18,totalDimensionsCites:22,abstract:"African traditional medicine (ATM) has been used by African populations for the treatment of diseases long before the advent of orthodox medicine and continues to carry a part of the burden of health for the majority of the population. South Africa, as a member state of the World Health Organisation, has been set on the path of institutionalising African traditional medicine. This chapter outlines the processes and progress pertaining to the acceptance and acknowledgement of the role of ATM in health care. It sets out to describe the strides made with regard to the traditional health practitioners’ Act and other laws, research in ATM, education of both health care and traditional health practitioners, including the role of collaboration. An overview of the practice of African traditional medicine is provided.",book:{id:"8323",slug:"traditional-and-complementary-medicine",title:"Traditional and Complementary Medicine",fullTitle:"Traditional and Complementary Medicine"},signatures:"Mmamosheledi E. Mothibe and Mncengeli Sibanda",authors:[{id:"276601",title:"Dr.",name:"Mmamosheledi",middleName:null,surname:"Mothibe",slug:"mmamosheledi-mothibe",fullName:"Mmamosheledi Mothibe"},{id:"278675",title:"Mr.",name:"Mncengeli",middleName:null,surname:"Sibanda",slug:"mncengeli-sibanda",fullName:"Mncengeli Sibanda"}]},{id:"66855",title:"Traditional Chinese Medicine: From Aqueous Extracts to Therapeutic Formulae",slug:"traditional-chinese-medicine-from-aqueous-extracts-to-therapeutic-formulae",totalDownloads:2060,totalCrossrefCites:3,totalDimensionsCites:6,abstract:"Traditional Chinese medicine (TCM) is one of the most established systems of medicine in the world. The therapeutic formulae used in TCM are frequently derived from aqueous decoctions of single plants or complex multicomponent formulae. There are aspects of plant cultivation and preparation of decoction pieces that are unique to TCM. These include Daodi cultivation, which is associated with high quality medicinal plant material that is grown in a defined geographical area, and Paozhi processing where the decoction pieces can be treated with excipients and are processed, which may fundamentally change the nature of the chemical metabolites. Therefore, a single plant part, processed in a variety of different ways, can each create a unique medicine. The quality of TCM materials, their safety and therapeutic efficacy are of critical importance. The application of metabolomic and chemometric techniques to these complex and multicomponent medicines is of interest to understand the interrelationships between composition, synergy and therapeutic activity. In this chapter, we present a short history of TCM, detail the role of Daodi and Paozhi in the generation of therapeutic formulae and look at the international practices and methodologies currently in use to ensure their sustainable production, quality, safety and efficacy.",book:{id:"8593",slug:"plant-extracts",title:"Plant Extracts",fullTitle:"Plant Extracts"},signatures:"Jinfan Wang, Astrid Sasse and Helen Sheridan",authors:[{id:"288780",title:"Prof.",name:"Helen",middleName:null,surname:"Sheridan",slug:"helen-sheridan",fullName:"Helen Sheridan"},{id:"288781",title:"Ms.",name:"Jinfan",middleName:null,surname:"Wang",slug:"jinfan-wang",fullName:"Jinfan Wang"},{id:"288782",title:"Prof.",name:"Astrid",middleName:null,surname:"Sasse",slug:"astrid-sasse",fullName:"Astrid Sasse"}]},{id:"18907",title:"Yamamoto New Scalp Acupuncture (YNSA): Development, Principles, Safety, Effectiveness and Clinical Applications",slug:"yamamoto-new-scalp-acupuncture-ynsa-development-principles-safety-effectiveness-and-clinical-applica",totalDownloads:21260,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"1316",slug:"acupuncture-clinical-practice-particular-techniques-and-special-issues",title:"Acupuncture",fullTitle:"Acupuncture - Clinical Practice, Particular Techniques and Special Issues"},signatures:"Thomas Schockert",authors:[{id:"51993",title:"Dr.",name:"Thomas",middleName:null,surname:"Schockert",slug:"thomas-schockert",fullName:"Thomas Schockert"}]},{id:"65194",title:"A Review on Natural Antioxidants",slug:"a-review-on-natural-antioxidants",totalDownloads:1252,totalCrossrefCites:2,totalDimensionsCites:5,abstract:"Free radicals and related species have attracted a great deal of attention in recent years. Oxidative stress has been considered a major contributory factor to the diseases. They are mainly derived from oxygen (reactive oxygen species (ROS)) and nitrogen (reactive nitrogen species (RNS)) and are generated in our body by various endogenous systems and exposure to different physicochemical conditions or pathophysiological states. Free radical damage to protein can result in loss of enzyme activity. There are epidemiological evidences correlating higher intake of components/foods with antioxidant abilities to lower incidence of various human morbidities or mortalities. The sources and origin of antioxidants which include fruits and vegetables, meats, poultry, and fish were treated in this study. The classification and characteristics of antioxidant, its measurements and level in food and free radicals, were also documented. The chemistry of antioxidants which includes chain reactions, molecular structures, food antioxidants and reaction mechanisms, biochemical activity, therapeutic properties, and future choice of antioxidants was reported in this review.",book:{id:"8323",slug:"traditional-and-complementary-medicine",title:"Traditional and Complementary Medicine",fullTitle:"Traditional and Complementary Medicine"},signatures:"Arun Rasheed and Rinshana Fathima Abdul Azeez",authors:[{id:"277345",title:"Dr.",name:"Arun",middleName:null,surname:"Rasheed",slug:"arun-rasheed",fullName:"Arun Rasheed"}]},{id:"66587",title:"Introductory Chapter: Plant Extracts",slug:"introductory-chapter-plant-extracts",totalDownloads:1773,totalCrossrefCites:3,totalDimensionsCites:3,abstract:null,book:{id:"8593",slug:"plant-extracts",title:"Plant Extracts",fullTitle:"Plant Extracts"},signatures:"Aman Dekebo",authors:[{id:"191684",title:"Dr.",name:"Aman",middleName:null,surname:"Dekebo",slug:"aman-dekebo",fullName:"Aman Dekebo"}]}],onlineFirstChaptersFilter:{topicId:"199",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:17,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"June 11th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",slug:"andries-engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:19,paginationItems:[{id:"82196",title:"Multi-Features Assisted Age Invariant Face Recognition and Retrieval Using CNN with Scale Invariant Heat Kernel Signature",doi:"10.5772/intechopen.104944",signatures:"Kamarajugadda Kishore Kumar and Movva Pavani",slug:"multi-features-assisted-age-invariant-face-recognition-and-retrieval-using-cnn-with-scale-invariant-",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"82063",title:"Evaluating Similarities and Differences between Machine Learning and Traditional Statistical Modeling in Healthcare Analytics",doi:"10.5772/intechopen.105116",signatures:"Michele Bennett, Ewa J. Kleczyk, Karin Hayes and Rajesh Mehta",slug:"evaluating-similarities-and-differences-between-machine-learning-and-traditional-statistical-modelin",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11578",title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",hash:"3731c009f474c6ed4293f348ca7b27ac",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"225390",title:"Dr.",name:"Asghar Ali",surname:"Kamboh",slug:"asghar-ali-kamboh",fullName:"Asghar Ali Kamboh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12086",title:"Cattle Diseases - Molecular and Biochemical Approach",coverURL:"https://cdn.intechopen.com/books/images_new/12086.jpg",hash:"afdbf57e32d996556a94528c06623cf3",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 5th 2022",isOpenForSubmission:!0,editors:[{id:"219081",title:"Dr.",name:"Abdulsamed",surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11579",title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",hash:"12e4f41264cbe99028655e5463fa941a",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 8th 2022",isOpenForSubmission:!0,editors:[{id:"51520",title:"Dr.",name:"Shao-Wen",surname:"Hung",slug:"shao-wen-hung",fullName:"Shao-Wen Hung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:43,paginationItems:[{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82212",title:"Protein Prenylation and Their Applications",doi:"10.5772/intechopen.104700",signatures:"Khemchand R. Surana, Ritesh B. Pawar, Ritesh A. Khairnar and Sunil K. Mahajan",slug:"protein-prenylation-and-their-applications",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82096",title:"An Important Component of Tumor Progression: Fatty Acids",doi:"10.5772/intechopen.105087",signatures:"Jin Wang, Qifei Wang and Guangzhen Wu",slug:"an-important-component-of-tumor-progression-fatty-acids",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82029",title:"Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety",doi:"10.5772/intechopen.104908",signatures:"Vinayak Adimule, Pravin Kendrekar and Sheetal Batakurki",slug:"synthesis-characterization-and-antimicrobial-properties-of-novel-benzimidazole-amide-derivatives-bea",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:37,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:1,group:"subseries"},{caption:"Metabolism",value:17,count:12,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:14,group:"subseries"},{caption:"Chemical Biology",value:15,count:14,group:"subseries"}],publishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9525",title:"Insights Into Drug Resistance in Staphylococcus aureus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9525.jpg",slug:"insights-into-drug-resistance-in-staphylococcus-aureus",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Amjad Aqib",hash:"98bb6c1ddb067da67185c272f81c0a27",volumeInSeries:10,fullTitle:"Insights Into Drug Resistance in Staphylococcus aureus",editors:[{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9614",title:"Advances in Candida albicans",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9614.jpg",slug:"advances-in-candida-albicans",publishedDate:"November 17th 2021",editedByType:"Edited by",bookSignature:"Xinhui Wang",hash:"31d6882518ca749b12715266eed0a018",volumeInSeries:9,fullTitle:"Advances in Candida albicans",editors:[{id:"296531",title:"Dr.",name:"Xinhui",middleName:null,surname:"Wang",slug:"xinhui-wang",fullName:"Xinhui Wang",profilePictureURL:"https://mts.intechopen.com/storage/users/296531/images/system/296531.jpg",institutionString:"Qinghai Normal University",institution:{name:"University of Luxembourg",institutionURL:null,country:{name:"Luxembourg"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9528",title:"Current Topics and Emerging Issues in Malaria Elimination",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9528.jpg",slug:"current-topics-and-emerging-issues-in-malaria-elimination",publishedDate:"July 21st 2021",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"7f178329cc42e691efe226b32f14e2ea",volumeInSeries:8,fullTitle:"Current Topics and Emerging Issues in Malaria Elimination",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Dr.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:null,institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7981",title:"Overview on Echinococcosis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7981.jpg",slug:"overview-on-echinococcosis",publishedDate:"April 22nd 2020",editedByType:"Edited by",bookSignature:"Fethi Derbel and Meriem Braiki",hash:"24dee9209f3fd6b7cd28f042da0076f0",volumeInSeries:6,fullTitle:"Overview on Echinococcosis",editors:[{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",institutionString:"Clinique les Oliviers",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Bacterial Infectious Diseases",value:3,count:2},{group:"subseries",caption:"Parasitic Infectious Diseases",value:5,count:4},{group:"subseries",caption:"Viral Infectious Diseases",value:6,count:7}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:301,paginationItems:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}},{id:"338856",title:"Mrs.",name:"Nur Alvira",middleName:null,surname:"Pascawati",slug:"nur-alvira-pascawati",fullName:"Nur Alvira Pascawati",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universitas Respati Yogyakarta",country:{name:"Indonesia"}}},{id:"441116",title:"Dr.",name:"Jovanka M.",middleName:null,surname:"Voyich",slug:"jovanka-m.-voyich",fullName:"Jovanka M. Voyich",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Montana State University",country:{name:"United States of America"}}},{id:"330412",title:"Dr.",name:"Muhammad",middleName:null,surname:"Farhab",slug:"muhammad-farhab",fullName:"Muhammad Farhab",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"349495",title:"Dr.",name:"Muhammad",middleName:null,surname:"Ijaz",slug:"muhammad-ijaz",fullName:"Muhammad Ijaz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Veterinary and Animal Sciences",country:{name:"Pakistan"}}}]}},subseries:{item:{id:"9",type:"subseries",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11405,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,series:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343"},editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",slug:"cecilia-cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",slug:"gil-goncalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",slug:"johann-f.-osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",slug:"marco-chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]},onlineFirstChapters:{paginationCount:2,paginationItems:[{id:"82392",title:"Nanomaterials as Novel Biomarkers for Cancer Nanotheranostics: State of the Art",doi:"10.5772/intechopen.105700",signatures:"Hao Yu, Zhihai Han, Cunrong Chen and Leisheng Zhang",slug:"nanomaterials-as-novel-biomarkers-for-cancer-nanotheranostics-state-of-the-art",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:null,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"81778",title:"Influence of Mechanical Properties of Biomaterials on the Reconstruction of Biomedical Parts via Additive Manufacturing Techniques: An Overview",doi:"10.5772/intechopen.104465",signatures:"Babatunde Olamide Omiyale, Akeem Abiodun Rasheed, Robinson Omoboyode Akinnusi and Temitope Olumide Olugbade",slug:"influence-of-mechanical-properties-of-biomaterials-on-the-reconstruction-of-biomedical-parts-via-add",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}}]},publishedBooks:{paginationCount:2,paginationItems:[{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",slug:"animal-feed-science-and-nutrition-production-health-and-environment",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Amlan Kumar Patra",hash:"79944fc8fbbaa329aed6fde388154832",volumeInSeries:10,fullTitle:"Animal Feed Science and Nutrition - Production, Health and Environment",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10496",title:"Advanced Studies in the 21st Century Animal Nutrition",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",slug:"advanced-studies-in-the-21st-century-animal-nutrition",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"László Babinszky, Juliana Oliveira and Edson Mauro Santos",hash:"8ffe43a82ac48b309abc3632bbf3efd0",volumeInSeries:8,fullTitle:"Advanced Studies in the 21st Century Animal Nutrition",editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:16,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:4,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 24th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:314,numberOfPublishedBooks:31,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/306924",hash:"",query:{},params:{id:"306924"},fullPath:"/profiles/306924",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()