This chapter presents a novel dual stator-winding induction generator (DSWIG) system for wind power generation, and an optimal scheme to decrease the capacity of static excitation converter (SEC) is also given. The main result is represented by the finding that reactive excitation power released by the excitation capacitor and SEC is not only correlated to generator parameters, speed range, and load but also affected by wind turbine power curve. This chapter also investigates the optimal excitation capacitor selection process. Considering the objective of minimizing the capacity of SEC, several methods are tested here to identify an appropriate excitation capacitor value. Using the general d-q model in the stator-voltage-orientation synchronous frame of the DSWIG control algorithm and model of SEC, a decoupling control strategy using the space vector modulation (SVM) is determined for the six-phase DSWIG. Based on the obtained models, the computer simulation and experimental investigations of a test prototype orated at 18 kW with six stator phases and three-phase wound rotor DSWIG wind power system were carried out to validate the optimal solution for the system The matching results (simulation and teststand measurements) demonstrate the correctness and effectiveness of this optimization scheme.
Part of the book: Applied Electromechanical Devices and Machines for Electric Mobility Solutions