Summary of anti-HAV natural products.
\\n\\n
IntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\\n\\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\\n\\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\\n\\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\\n\\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\\n\\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\\n\\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\\n\\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\\n\\nFeel free to share this news on social media and help us mark this memorable moment!
\\n\\n\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/237"}},components:[{type:"htmlEditorComponent",content:'
After years of being acknowledged as the world's leading publisher of Open Access books, today, we are proud to announce we’ve successfully launched a portfolio of Open Science journals covering rapidly expanding areas of interdisciplinary research.
\n\n\n\nIntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\n\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\n\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\n\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\n\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\n\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\n\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\n\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\n\nFeel free to share this news on social media and help us mark this memorable moment!
\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"8813",leadTitle:null,fullTitle:"Introduction to Diesel Emissions",title:"Introduction to Diesel Emissions",subtitle:null,reviewType:"peer-reviewed",abstract:"The first invention and development of the functional diesel engine was in 1897 by Rudolf Christian Karl Diesel, German inventor. Until now, this invention has been superseded by the development of very productive engines and mechanics. Current diesel engines are well known to many people around the world and serve in innumerable applications for various types of public transport, light and heavy duty transportation, for automotive, railway, maritime or aviation transportation, in different harsh environments, in construction, in mining, and for diverse industries. The light duty or heavy-duty diesel engines have some drawbacks. One of the main concerns is connected with exhaust emissions generated by diesel engines. This book discusses the generation of diesel exhaust emissions and mitigations, performance, emissions and combustion evaluations, utilisation of alternative biodiesel fuels, comparison of different techniques for measurement of soot and diesel particulate matter, analyses of diesel particulate matter flow pattern, and chemical composition of diesel particulate matter. The main concern of this book is to expand knowledge of readers and bring together the latest research findings related to diesel engine exhaust emissions.",isbn:"978-1-78984-036-0",printIsbn:"978-1-78984-035-3",pdfIsbn:"978-1-78985-506-7",doi:"10.5772/intechopen.80733",price:119,priceEur:129,priceUsd:155,slug:"introduction-to-diesel-emissions",numberOfPages:132,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"693a8757f50c6f257cca62961cba76c2",bookSignature:"Richard Viskup",publishedDate:"March 18th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/8813.jpg",numberOfDownloads:4741,numberOfWosCitations:1,numberOfCrossrefCitations:4,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:5,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:10,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 11th 2018",dateEndSecondStepPublish:"October 30th 2018",dateEndThirdStepPublish:"December 29th 2018",dateEndFourthStepPublish:"March 19th 2019",dateEndFifthStepPublish:"May 18th 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup",profilePictureURL:"https://mts.intechopen.com/storage/users/103742/images/7778_n.jpg",biography:"Richard Viskup was born in Bratislava in the Slovak Republic, formerly Czechoslovakia. He received his Master of Science, Doctor in Natural Science, and Doctor of Philosophy in Physics, Plasma Physics, and Laser Physics, respectively, from Comenius University, Bratislava. He obtained his postgraduate Master of Philosophy in Photonics from Strathclyde University, Glasgow, Scotland, and a Doctor of Engineering in Applied Physics from Johannes Kepler University, Linz, Austria.\nDr. Viskup’s research interests include physics, plasma, lasers, material science and analyses, radiation physics, analytical chemistry, spectroscopy, combustion processes, and environmental science, among others.",institutionString:"Johannes Kepler University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"Johannes Kepler University of Linz",institutionURL:null,country:{name:"Austria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"767",title:"Petrochemical Engineering",slug:"engineering-energy-engineering-petrochemical-engineering"}],chapters:[{id:"67011",title:"Diesel Exhaust Emissions and Mitigations",doi:"10.5772/intechopen.85248",slug:"diesel-exhaust-emissions-and-mitigations",totalDownloads:1049,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"This chapter presents a concise treatment of diesel engine exhaust emissions and its mitigations. The working principle of the diesel engine is first given to establish the background and further to describe the influence of various parameters that affect the formation of engine exhaust emissions. The factors that influence exhaust emissions are linked to the engine design and the operating factors that promote good fuel-air mixing and combustion. These factors are air induction, fuel injection equipment, fuel injection schemes, in-cylinder gas exchange process and heat transfer. Thermochemistry essentially gives insight to the global reaction kinetics and how this is applied in practical engine combustion determinations in terms of equivalence ratios. Based on these, the fuel spray structure, atomization, penetration and the spray combustion model are described. The formation of exhaust emissions such as carbon monoxide, unburnt hydrocarbon and its intermediates, oxides of nitrogen and soot in diesel engines has been discussed. The techniques of their mitigation from the view of internal factors that deals with the optimization of engine design and it performance, as well as various exhaust after-treatment techniques used for NOx and soot reduction have been briefly discussed.",signatures:"Nehemiah Sabinus Alozie and Lionel Christopher Ganippa",downloadPdfUrl:"/chapter/pdf-download/67011",previewPdfUrl:"/chapter/pdf-preview/67011",authors:[{id:"252214",title:"Dr.",name:"Nehemiah Sabinus",surname:"Alozie",slug:"nehemiah-sabinus-alozie",fullName:"Nehemiah Sabinus Alozie"},{id:"284200",title:"Prof.",name:"Lionel Christopher",surname:"Ganippa",slug:"lionel-christopher-ganippa",fullName:"Lionel Christopher Ganippa"}],corrections:null},{id:"65576",title:"Performance, Emissions, and Combustion Evaluations of a Diesel Engine Fuelled with Biodiesel Produced from High FFA Crude Mahua (Madhuca longifolia) Oil",doi:"10.5772/intechopen.83845",slug:"performance-emissions-and-combustion-evaluations-of-a-diesel-engine-fuelled-with-biodiesel-produced-",totalDownloads:633,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Biodiesel is one of the environment-friendly alternative fuels need to be developed in order to meet the increasing demand for mineral fuels for transportation. In this study, nonedible crude Mahua oil has been used to extract biodiesel. Performance, emission and combustion characteristics of Mahua oil biodiesel blends with conventional diesel are compared on a single cylinder, natural aspirated, water-cooled direct injection (DI) diesel engine. Brake thermal efficiency of an engine fuelled with Mahua biodiesel blend B30 has been shown nearly same or insignificant lower compare to mineral diesel. The optimum engine operating condition based on lower brake specific fuel consumption and higher brake thermal efficiency was observed at 60% load for blend B30 of crude Mahua oil biodiesel. From an emissions point of view blend, B30 was found to be the best fuel as it showed lesser exhaust emission such as CO, HC, CO2, and NOx. Heat and pressure curve with respect to crank angle showed the details of combustion characteristics and revealed that combustion starts earlier for higher biodiesel blends. Results show that biodiesel obtained from nonedible Mahua oil gave better results and can be used as an excellent substitute for fossil fuels.",signatures:"Aman Hira, Debasish Das and Ranjna Thakur",downloadPdfUrl:"/chapter/pdf-download/65576",previewPdfUrl:"/chapter/pdf-preview/65576",authors:[{id:"277428",title:"Mr.",name:"Aman",surname:"Hira",slug:"aman-hira",fullName:"Aman Hira"},{id:"286519",title:"Dr.",name:"Debasish",surname:"Das",slug:"debasish-das",fullName:"Debasish Das"},{id:"286528",title:"Mrs.",name:"Ranjna",surname:"Thakur",slug:"ranjna-thakur",fullName:"Ranjna Thakur"}],corrections:null},{id:"70150",title:"Alcohol Contribution over Conventional Fuel",doi:"10.5772/intechopen.89084",slug:"alcohol-contribution-over-conventional-fuel",totalDownloads:751,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Biofuels have caught the eye of engine specialists as far back as the oil emergency and heightening expenses of petro-synthetic compounds cropped up in the 1970s. Ethanol and methanol were the most broadly inquired alcohols in IC engines. Higher alcohols are alluring second/third era biofuels that can be created from sugary, dull and lignocellulosic biomass feedstocks utilizing reasonable pathways. Developing worries of petroleum product consumption, oil-value variances, heightening vitality requests and stringent discharge guidelines are driving established researchers to discover elective sustainable biofuels for use in diesel engines. Among the biofuels like biogas, bioalcohol and biodiesel, alcohol is by all accounts generally appealing. Biogas requires high weight for its utilization in vehicle and its spillage can be risky. Biodiesel from consumable vegetable oil can cause insufficiency in sustenance supply. Everything being considered, the utilization of lower alcohols like methanol and ethanol in slow speed engines shows certain complexities because of their low cetane number, high inert warmth of vaporization and high protection from auto-start. Further the less calorific respect and poor miscibility with diesel limit their utilization in diesel motors.",signatures:"Melvin Victor Depoures, Damodharan Dillikannan and Gopal Kaliyaperumal",downloadPdfUrl:"/chapter/pdf-download/70150",previewPdfUrl:"/chapter/pdf-preview/70150",authors:[{id:"277430",title:"Dr.",name:"Melvin Victor",surname:"Depoures",slug:"melvin-victor-depoures",fullName:"Melvin Victor Depoures"},{id:"277431",title:"Dr.",name:"Damodharan",surname:"Dillikannan",slug:"damodharan-dillikannan",fullName:"Damodharan Dillikannan"},{id:"277432",title:"Dr.",name:"Gopal",surname:"Kaliyaperumal",slug:"gopal-kaliyaperumal",fullName:"Gopal Kaliyaperumal"}],corrections:null},{id:"71028",title:"Comparison of Different Techniques for Measurement of Soot and Particulate Matter Emissions from Diesel Engine",doi:"10.5772/intechopen.91186",slug:"comparison-of-different-techniques-for-measurement-of-soot-and-particulate-matter-emissions-from-die",totalDownloads:772,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The research presented here is the comparison studies between different commercially available techniques for measurement of soot and particulate matter (PM) emissions from passenger car diesel engine. The compared devices are filter paper-type smoke meter, photoacoustic spectrometer, opacimeter, differential mobility spectrometer and laser-induced incandescence. The focus is to study static and dynamic transient exhaust emissions from the location position closer to the actual combustion event—downstream of the turbine, position characterised by the higher temperature and higher pressure of the emission gas—than the standard measurement position, in the tailpipe of the exhaust manifold. The main task is to compare an accuracy and sensitivity of individual devices at static and dynamic soot and PM emissions.",signatures:"Richard Viskup",downloadPdfUrl:"/chapter/pdf-download/71028",previewPdfUrl:"/chapter/pdf-preview/71028",authors:[{id:"103742",title:"Dr.",name:"Richard",surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],corrections:null},{id:"65839",title:"Analysis of Diesel Particulate Matter Flow Patterns in Different Ventilation and Operational Conditions of Underground Mines",doi:"10.5772/intechopen.84651",slug:"analysis-of-diesel-particulate-matter-flow-patterns-in-different-ventilation-and-operational-conditi",totalDownloads:760,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Diesel-operated vehicles are commonly used by personnel in underground mines. Although these vehicles facilitate travel within the mine, their main disadvantage is that they generate diesel particulate matter (DPM), a known carcinogenic agent. This calls for research to control the spread of DPM in underground mines in order to ensure the safety of mine personnel. In this article, the flow patterns of DPM generated by two types of diesel-operated vehicles are modeled using computational fluid dynamics (CFD) simulations. The simulation results are validated using field experimental measurements. The models show that if the vehicle is stationary, DPM particles are dispersed towards the center of the gallery and occupy the entire cross section of the road way. Vehicle movement induces air currents that may result in the miners being exposed to high DPM concentrations. The results show that if the DPM and the intake air counter-flow (flow in opposite directions), the DPM spread occurs throughout the entire cross-section of the roadway. This research is expected to contribute to the formulation of effective DPM control strategies in underground mines.",signatures:"Ramakrishna Morla, Shivakumar Karekal and Ajit Godbole",downloadPdfUrl:"/chapter/pdf-download/65839",previewPdfUrl:"/chapter/pdf-preview/65839",authors:[{id:"280734",title:"Mr.",name:"Ramakrishna",surname:"Morla",slug:"ramakrishna-morla",fullName:"Ramakrishna Morla"},{id:"280738",title:"Prof.",name:"Shivakumar",surname:"Karekal",slug:"shivakumar-karekal",fullName:"Shivakumar Karekal"},{id:"280739",title:"Dr.",name:"Ajit",surname:"Godbole",slug:"ajit-godbole",fullName:"Ajit Godbole"}],corrections:null},{id:"70456",title:"Major Chemical Elements in Soot and Particulate Matter Exhaust Emissions Generated from In-Use Diesel Engine Passenger Vehicles",doi:"10.5772/intechopen.90452",slug:"major-chemical-elements-in-soot-and-particulate-matter-exhaust-emissions-generated-from-in-use-diese",totalDownloads:776,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:1,abstract:"In this research we apply a sensitive laser optical technique for the measurement of main chemical elements present in the exhaust emissions generated from different in-use Diesel engine passenger vehicles. We use the laser-induced breakdown spectroscopy (LIBS) technique for diagnostics of miscellaneous Diesel particulate matter (DPM) formed from combustion Diesel engine exhaust emissions. Here we analysed particulate matter (PM) extracted from exhaust manifold part, from 67 different passenger vehicles of major brands from European car producers, that are used in daily life environment. The aim of this study is to develop LIBS technique for measurement of PM and to compare the emission matrix composition and major chemical elements within the Diesel particulate matter from exhaust manifold part. The presence of these elements in PM is linked with various processes inside the Diesel combustion engine.",signatures:"Richard Viskup, Christoph Wolf and Werner Baumgartner",downloadPdfUrl:"/chapter/pdf-download/70456",previewPdfUrl:"/chapter/pdf-preview/70456",authors:[{id:"103742",title:"Dr.",name:"Richard",surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"},{id:"305127",title:"M.Sc.",name:"Christoph",surname:"Wolf",slug:"christoph-wolf",fullName:"Christoph Wolf"},{id:"310228",title:"Dr.",name:"Werner",surname:"Baumgartner",slug:"werner-baumgartner",fullName:"Werner Baumgartner"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"5236",title:"High Energy and Short Pulse Lasers",subtitle:null,isOpenForSubmission:!1,hash:"481d4221e58d2c90fe398be93d898f43",slug:"high-energy-and-short-pulse-lasers",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/5236.jpg",editedByType:"Edited by",editors:[{id:"103742",title:"Dr.",name:"Richard",surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7377",title:"Diesel and Gasoline Engines",subtitle:null,isOpenForSubmission:!1,hash:"dab9fe312a28dd603ac4b21628070d59",slug:"diesel-and-gasoline-engines",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/7377.jpg",editedByType:"Edited by",editors:[{id:"103742",title:"Dr.",name:"Richard",surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10178",title:"Environmental Emissions",subtitle:null,isOpenForSubmission:!1,hash:"febf21ec717bfe20ae25a9dab9b5d438",slug:"environmental-emissions",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/10178.jpg",editedByType:"Edited by",editors:[{id:"103742",title:"Dr.",name:"Richard",surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1901",title:"Advances in Natural Gas Technology",subtitle:null,isOpenForSubmission:!1,hash:"2c996f3b02b7e5d906637d28b2f3712c",slug:"advances-in-natural-gas-technology",bookSignature:"Hamid A. Al-Megren",coverURL:"https://cdn.intechopen.com/books/images_new/1901.jpg",editedByType:"Edited by",editors:[{id:"104672",title:"Dr.",name:"Hamid",surname:"Al-Megren",slug:"hamid-al-megren",fullName:"Hamid Al-Megren"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3584",title:"Natural Gas",subtitle:null,isOpenForSubmission:!1,hash:"980fe69f1b1faa61079f6c9b5045a784",slug:"natural-gas",bookSignature:"Primoz Potocnik",coverURL:"https://cdn.intechopen.com/books/images_new/3584.jpg",editedByType:"Edited by",editors:[{id:"10338",title:"Dr.",name:"Primož",surname:"Potocnik",slug:"primoz-potocnik",fullName:"Primož Potocnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2189",title:"Natural Gas",subtitle:"Extraction to End Use",isOpenForSubmission:!1,hash:"eaf411f3f9e4972eb7c6e2164a6e4e18",slug:"natural-gas-extraction-to-end-use",bookSignature:"Sreenath Borra Gupta",coverURL:"https://cdn.intechopen.com/books/images_new/2189.jpg",editedByType:"Edited by",editors:[{id:"148206",title:"Dr.",name:"Sreenath",surname:"Gupta",slug:"sreenath-gupta",fullName:"Sreenath Gupta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2882",title:"New Technologies in the Oil and Gas Industry",subtitle:null,isOpenForSubmission:!1,hash:"6d8a67b1947505d46a3fde931cf574e9",slug:"new-technologies-in-the-oil-and-gas-industry",bookSignature:"Jorge Salgado Gomes",coverURL:"https://cdn.intechopen.com/books/images_new/2882.jpg",editedByType:"Edited by",editors:[{id:"137837",title:"Dr.",name:"Jorge Salgado",surname:"Gomes",slug:"jorge-salgado-gomes",fullName:"Jorge Salgado Gomes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1605",title:"Petrochemicals",subtitle:null,isOpenForSubmission:!1,hash:"cc04b8c922e6b886453baa0438bd5e44",slug:"petrochemicals",bookSignature:"Vivek Patel",coverURL:"https://cdn.intechopen.com/books/images_new/1605.jpg",editedByType:"Edited by",editors:[{id:"99391",title:"Mr.",name:"Vivek",surname:"Patel",slug:"vivek-patel",fullName:"Vivek Patel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4600",title:"Advances in Petrochemicals",subtitle:null,isOpenForSubmission:!1,hash:"70fc9464f2d1beb7343ed79b5d41f923",slug:"advances-in-petrochemicals",bookSignature:"Vivek Patel",coverURL:"https://cdn.intechopen.com/books/images_new/4600.jpg",editedByType:"Edited by",editors:[{id:"99391",title:"Mr.",name:"Vivek",surname:"Patel",slug:"vivek-patel",fullName:"Vivek Patel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8234",title:"Sustainable Alternative Syngas Fuel",subtitle:null,isOpenForSubmission:!1,hash:"724739fd3ad7e2392f69c4650b19477b",slug:"sustainable-alternative-syngas-fuel",bookSignature:"Chaouki Ghenai and Abrar Inayat",coverURL:"https://cdn.intechopen.com/books/images_new/8234.jpg",editedByType:"Edited by",editors:[{id:"178090",title:"Dr.",name:"Chaouki",surname:"Ghenai",slug:"chaouki-ghenai",fullName:"Chaouki Ghenai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"74512",slug:"corrigendum-to-many-core-algorithm-of-the-embedded-zerotree-wavelet-encoder",title:"Corrigendum to: Many-Core Algorithm of the Embedded Zerotree Wavelet Encoder",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/74512.pdf",downloadPdfUrl:"/chapter/pdf-download/74512",previewPdfUrl:"/chapter/pdf-preview/74512",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/74512",risUrl:"/chapter/ris/74512",chapter:{id:"70013",slug:"many-core-algorithm-of-the-embedded-zerotree-wavelet-encoder",signatures:"Jesús Antonio Alvarez-Cedillo, Teodoro Alvarez-Sanchez, Mario Aguilar-Fernandez and Jacobo Sandoval-Gutierrez",dateSubmitted:"May 18th 2019",dateReviewed:"August 22nd 2019",datePrePublished:"December 7th 2019",datePublished:"March 11th 2020",book:{id:"7623",title:"Coding Theory",subtitle:null,fullTitle:"Coding Theory",slug:"coding-theory",publishedDate:"March 11th 2020",bookSignature:"Sudhakar Radhakrishnan and Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/7623.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"118717",title:"Ph.D.",name:"Jesús Antonio",middleName:null,surname:"Álvarez-Cedillo",fullName:"Jesús Antonio Álvarez-Cedillo",slug:"jesus-antonio-alvarez-cedillo",email:"jaalvarez@ipn.mx",position:null,institution:{name:"Instituto Politécnico Nacional",institutionURL:null,country:{name:"Mexico"}}},{id:"305584",title:"Dr.",name:"Teodoro",middleName:null,surname:"Alvarez-Sanchez",fullName:"Teodoro Alvarez-Sanchez",slug:"teodoro-alvarez-sanchez",email:"talvares@citedi.mx",position:null,institution:{name:"Instituto Politécnico Nacional",institutionURL:null,country:{name:"Mexico"}}},{id:"305586",title:"Dr.",name:"Jacobo",middleName:null,surname:"Sandoval-Gutierrez",fullName:"Jacobo Sandoval-Gutierrez",slug:"jacobo-sandoval-gutierrez",email:"jacobosandoval@hotmail.com",position:null,institution:{name:"Universidad Autónoma Metropolitana",institutionURL:null,country:{name:"Mexico"}}},{id:"305587",title:"Dr.",name:"Mario",middleName:null,surname:"Aguilar-Fernandez",fullName:"Mario Aguilar-Fernandez",slug:"mario-aguilar-fernandez",email:"maguilarf@ipn.mx",position:null,institution:{name:"Instituto Politécnico Nacional",institutionURL:null,country:{name:"Mexico"}}}]}},chapter:{id:"70013",slug:"many-core-algorithm-of-the-embedded-zerotree-wavelet-encoder",signatures:"Jesús Antonio Alvarez-Cedillo, Teodoro Alvarez-Sanchez, Mario Aguilar-Fernandez and Jacobo Sandoval-Gutierrez",dateSubmitted:"May 18th 2019",dateReviewed:"August 22nd 2019",datePrePublished:"December 7th 2019",datePublished:"March 11th 2020",book:{id:"7623",title:"Coding Theory",subtitle:null,fullTitle:"Coding Theory",slug:"coding-theory",publishedDate:"March 11th 2020",bookSignature:"Sudhakar Radhakrishnan and Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/7623.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"118717",title:"Ph.D.",name:"Jesús Antonio",middleName:null,surname:"Álvarez-Cedillo",fullName:"Jesús Antonio Álvarez-Cedillo",slug:"jesus-antonio-alvarez-cedillo",email:"jaalvarez@ipn.mx",position:null,institution:{name:"Instituto Politécnico Nacional",institutionURL:null,country:{name:"Mexico"}}},{id:"305584",title:"Dr.",name:"Teodoro",middleName:null,surname:"Alvarez-Sanchez",fullName:"Teodoro Alvarez-Sanchez",slug:"teodoro-alvarez-sanchez",email:"talvares@citedi.mx",position:null,institution:{name:"Instituto Politécnico Nacional",institutionURL:null,country:{name:"Mexico"}}},{id:"305586",title:"Dr.",name:"Jacobo",middleName:null,surname:"Sandoval-Gutierrez",fullName:"Jacobo Sandoval-Gutierrez",slug:"jacobo-sandoval-gutierrez",email:"jacobosandoval@hotmail.com",position:null,institution:{name:"Universidad Autónoma Metropolitana",institutionURL:null,country:{name:"Mexico"}}},{id:"305587",title:"Dr.",name:"Mario",middleName:null,surname:"Aguilar-Fernandez",fullName:"Mario Aguilar-Fernandez",slug:"mario-aguilar-fernandez",email:"maguilarf@ipn.mx",position:null,institution:{name:"Instituto Politécnico Nacional",institutionURL:null,country:{name:"Mexico"}}}]},book:{id:"7623",title:"Coding Theory",subtitle:null,fullTitle:"Coding Theory",slug:"coding-theory",publishedDate:"March 11th 2020",bookSignature:"Sudhakar Radhakrishnan and Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/7623.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11453",leadTitle:null,title:"Biomimetics - Bridging the Gap",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tBiomimetics can be described as an innovative form of technology that imitates (or mimics) nature to improve human lives via creating desirable solutions. Indeed, it is the study of nature and natural phenomena, in an attempt to understand the principles and elucidate the underlying mechanisms, obtain ideas from nature, and apply concepts that may benefit science, engineering, pharmacy, dentistry, and medicine. Smart/Intelligent Biomaterials for tissue engineering and regenerative medicine is a fine example. Yet, biomimicry can go above and beyond the simplistic inspiration and use of natural properties as the basis for the innovation of new products. It bridges the gap between the lab and the industry, via the intra-disciplinary design and formulation of functional solutions combining knowledge, methods, techniques, and advances in the fields of chemistry, biology, architecture, engineering, medicine, pharmaceutics, dentistry, and biomedical engineering. Three-Dimensional Printing, Self-Healing nanoCoatings, biomechanical Carbon nanoTubes, Stimuli-sensitive and -responsive Cell/Drug Delivery Systems, and Robotics are good examples. Those are some of the topics that will be covered in this new book, with the objective to provide the interested reader, whether a student or an expert, with a practical reference approaching biomimetics from a realistic and translational perspective, discussing problems and offering solutions, via including studies from basics to the clinic to scale-up and industrial or go-to-market obstacles.
",isbn:"978-1-80356-897-3",printIsbn:"978-1-80356-896-6",pdfIsbn:"978-1-80356-898-0",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"173e62fa4d7bf5508cec3bdd8e3cb32d",bookSignature:"Prof. Ziyad S. Haidar",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11453.jpg",keywords:"BioMechanics, 3D Printing, BioInspired Chemistry, Adaptive Structure, Self-Healing, Bioinspired Thermal Control, Self-Organization, Visco-Elastic Materials, Artificial Intelligence, Implantable Devices, Molecule Recognition, In Vitro",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 5th 2022",dateEndSecondStepPublish:"June 16th 2022",dateEndThirdStepPublish:"August 15th 2022",dateEndFourthStepPublish:"November 3rd 2022",dateEndFifthStepPublish:"January 2nd 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"21 days",secondStepPassed:!1,areRegistrationsClosed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"DDS, Cert Implantol, MSc OMFS, FRCS(C), with an MBA in HealthCare Organizations Management and Ph.D. in BioEngineering and nanoPharmaceuticals (McGill University, Montréal, Canada). Presently, a Full Professor, leading the BioMAT’X R&D&I HAIDAR LAB at the CiiB, UAndes, Santiago de Chile.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"222709",title:"Prof.",name:"Ziyad S.",middleName:null,surname:"Haidar",slug:"ziyad-s.-haidar",fullName:"Ziyad S. Haidar",profilePictureURL:"https://mts.intechopen.com/storage/users/222709/images/system/222709.jpg",biography:"Ziyad S. Haidar, DDS, Cert Implantol, MSC, FRCSc, MBA, Ph.D., is a Full Professor of Biomaterials and Tissue Engineering and the scientific director of the Facultad de Odontología (Faculty of Dentistry), Universidad de los Andes (UAndes), Santiago, Chile. He is also the founder and head of the Biomaterials, Pharmaceutical Delivery, and Cranio-Maxillo-Facial Tissue Engineering Laboratory (BioMAT\\'X R&D&I Chile – HAIDAR Lab). In addition, he serves as the head of innovation at the Centro de Investigación e Innovación Biomédica (CiiB), a faculty/theses member in the bioMedicine Doctoral (Ph.D. bioMedicina) Program at UAndes, and a visiting clinical and surgical professor at the MaxilloFacial Division of the Universidad de la Frontera and the Department of Head and Neck Surgery, Lautaru Hospital, both in Temuco, Chile.\n\nDr. Haidar is a trained dentist, implantologist, and an oral and maxillofacial surgeon with a Ph.D. in Nanobiomaterials, Pharmaceuticals, and Tissue Engineering from McGill University, Montréal, Canada. He completed a post-doctoral training residency in orthopedics at the Montréal Shriners Hospital, McGill University Health Center, Montréal, Canada. Before moving to Chile, he served as Associate Professor of Bioceramics and the Chair of Excellence in BioEngineering at the Université de Limoges, Limoges, France and was an assistant professor in the Department of Pharmaceutics and Pharmaceutical Chemistry (cross-appointment with the Department of BioEngineering), University of Utah, Salt Lake City, UT, USA. Between 2010 and 2012 Dr. Haidar served as an adjunct professor of Head and Neck Surgery and the scientific director of the joint Utah–Inha R&D Center, Inha University Hospital, Incheon, Seoul, South Korea. \n\nHe has won several prestigious awards from the International Bone and Mineral Society, Society for Biomaterials, Canadian Biomaterial Society, and the Canadian and Lebanese Societies of Plastic Surgeons, to name a few. His R&D&I focus on patient-oriented development and evaluation of bionanotechnology, biopolymers, bioceramics, and drug delivery systems for the repair, restoration, reconstruction, and regeneration of challenging craniofacial and orthopedic defects. Dr. Haidar is an international speaker with more than 125 publications, conference proceedings, textbooks, and patents to his credit. He is also an editorial board member of several national and international scientific journals and periodicals.",institutionString:"Universidad de los Andes, Santiago de Chile",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of the Andes",institutionURL:null,country:{name:"Chile"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"280415",firstName:"Josip",lastName:"Knapic",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/280415/images/8050_n.jpg",email:"josip@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"71774",title:"Antiviral Natural Products against Hepatitis-A Virus",doi:"10.5772/intechopen.91869",slug:"antiviral-natural-products-against-hepatitis-a-virus",body:'The role of purified natural products in prophylaxis, palliative and curative treatment of myriad diseases of bacterial, fungal and viral origin cannot be overemphasized. Novel antiviral drugs have been sourced from natural agents and developed into products for prophylactic and therapeutic purposes [1]. These natural agents have been shown to demonstrate antiviral activity by interfering with viral life cycle, replication, assemblage, release, as well as targeting virus-host specific interactions [1]. Antiviral natural products can be sourced generally from plants or herbs, microbes, animals and humans. In this chapter, the antiviral natural products against hepatitis-A virus (HAV), their sources as well as their treatment approach and their application were adequately discussed.
Hepatitis A virus is among the pathogens that find their way into the human system through ingestion of food contaminated with them, and most of these food-borne viruses lack licensed antivirals. Vaccine development and immunization against several viruses including hepatitis A virus lack preventive and efficient antiviral therapies, as they are often challenged by counter-production of viral escape mutants that evade the immune system [1]. Also, the development of efficient and low-cost vaccines for economically unprivileged countries will be difficult, including countries with low prevalence where vaccine is recommended only for high-risk individuals [2]. Post-exposure of the human system to viral infections requires an efficient therapeutic approach to clear infections off the human system. It is imperative to develop effective antiviral therapeutic agents against these viruses, and interest in the employment of natural products as effective antiviral therapeutic agents has widely increased.
Flavonoids, polyphenols, saponin, proanthocyanins, polysaccharides, organic acids, proteins, polypeptides, and essential oils obtained from plant, animals or microorganisms can control and eradicate food-borne viral infections including hepatitis A [3, 4]. Over the past two decades, much effort has been aimed at identifying natural products, mostly of plant origin, to control food-borne viruses. Extracts from natural plants potentially have several applications, not limited to increasing the safety of food products and enhancing their quality, but also to serve as natural antiviral agents. For instance, these extracts possess several natural compounds that have been reported to demonstrate virucidal activity against surrogates of the human novovirus, a known food-borne virus [5]. In this section, we will discuss the antiviral therapeutic activities of several natural products and herbal medicines against hepatitis A viral infection.
Green tea extract (GTE) is produced from the leaves of cultivated evergreen tea plant,
Recent
Grape seed extract (GSE),
GSE demonstrates antimicrobial activity against many food-borne bacterial pathogens including
However, this success may not be reproducible in the human system as the HAV strain, HM175, used during the study was a lab-adapted strain that was not sensitive to low pH as observed in the wild type strain. Again, some studies showed that GSE anti-HAV activity decreased in the presence of increasing concentrations of 0.02 and 0.2% dried milk or lettuce extract, where a higher dose is required to inactivate viral replication [24]. This implies that proteins could interfere with GSE antiviral activity and consequently decreases its effectiveness for treatments. Also, at concentrations ranging from 0.25 to 1 mg/ml GSE was said to diminish food-borne viral contamination levels on food produce (lettuce and peppers) without causing notable color changes on them. Therefore, GSE could be considered as a control measure for hepatitis A virus contamination on food produce before consumption, though may require a synergistic approach to combat persistent contamination of food produce.
The antiviral mechanisms of GSE are not yet well expounded. However, some studies suggest that resveratrol (RV), a nonflavonoid polyphenol found in grapes modulate some intracellular signaling pathways of the influenza virus [25]. In a study evaluating the effect of GSE on the adsorption and replicativity of HAV, it was revealed that treatment of the host cells with GSE prior to viral infection caused significant decline in HAV titer [26]. Post-viral infection of the host cells showed that HAV titers decreased insignificantly. This implies that GSE may have a moderate antiviral effect on adsorption of HAV on the host cells but with less effect on its replication [26]. Likewise, GSE was reported to down-regulate the expression of HIV entry coreceptors, implying that GSE may interrupt the binding of the virus to the cell receptors and in turn prevent HIV entry into normal lymphocytes [27]. Presently, GSE appears not to cause any structural damage to the viral capsid of HAV, rather it is more likely to exert greater antiviral activity by potentially blocking the host cell receptors and consequently prevents viral entry, replication, and infection.
Seagrass is a critical part of the marine ecosystem and is generally distributed along the tropical and temperate coastal zones of the world [28]. It was said to be the only marine flowering plant that completes its lifecycle in sea water and often lives entirely submerged [29]. It is of ecological importance and is employed in folklore medicine for therapeutic purposes [30, 31]. The Egyptian Red Sea seagrass,
Compounds isolated from the sea grass crude extract have been shown to exhibit antioxidant and cytotoxic activities [28]. The crude extract demonstrated 100% inhibition of hepatitis A (HAV) and Herpes Simplex (HSV-1) viruses at 20 μg/mL. The antiviral activity of the crude extract against HAV was lost by fractionation, which could be explained by the synergistic action of several compounds in the crude extract [28]. Moreover, knowledge about the mechanism of anti-HAV activity of
Essential oils (EOs) are aromatic oily liquids derived from plant materials such as flowers, buds, seeds, leaves, branches, bark, grass, wood, fruit, and roots. Production of essential oils is majorly by steam distillation or by other methods such as solvent-heat extraction, pressing, fermentation or enfleurage [33]. Chemical components contained in these essential oils have been shown to be effective in combating pathogens [34, 35]. Few essential oils have been tested for their antiviral activities against food-borne viruses, particularly for HAV [36].
The anti-HAV activity of essential oils obtained from lemon (
Essential oil treatment of ATCC/HM-175 strain of HAV propagated in Frp3 cells revealed that after an hour incubation at room temperature, the greatest reduction in cell infectivity was observed for rosemary cineole EO, followed by grapefruit and lemon EOs, while orange EO, although reducing HAV infectivity was not statistically significant [33]. Orange and grapefruit EOs were found to be cytotoxic for Frp3 cells at concentrations that exceeded 0.1%, while lemon and rosemary cineole EOs were cytotoxic at concentrations exceeding 0.5% and 0.05%, respectively. Studies have also revealed that treatment of contaminated berries with all four EOs from lemon, orange, grapefruit and rosemary cineole reduced the viral titer of HAV at room temperature. Essential oil from rosemary cineole was shown to be the most effective, as it significantly reduced the HAV titer on the berries followed by essential oils from grapefruit and lemon respectively [33]. Anti-HAV activity of essential oil from orange was not significant though there was a reduction in the HAV titer on the berries. However, application of these essential oils alone may not be sufficient to decontaminate soft fruits (berries) laden with higher viral (HAV) loads [33]. Therefore, it is imperative that the essential oils be considered for use in food sterilization in combination with other treatments. It is also necessary to evaluate the minimum time it takes for EOs to reduce the maximum HAV loads on food produce so that adequate awareness is made to individuals to achieve food product safety before consumption [33]. Moreover, the mechanisms of anti-HAV activity of EOs have not yet been elucidated.
Ginseng (
Studies have shown that red ginseng extract and its ginsenosides inactivate food borne viruses such as the human norovirus (huNoV) surrogates (feline calicivirus and murine norovirus) [43]. A plaque assay performed on FRhK-4 cell lines pre-treated and co-treated with varied concentrations of Korean red ginseng (KRG) extract and purified ginsenosides (Rg1 and Rb1) showed that after inoculation of HAV HM-175 strain on the cell lines, KRG and the ginsenosides reduced significantly the HAV concentration [3, 4]. Korean red ginseng’s extract demonstrated cytotoxicity at concentration above 10 μg/mL, while the purified ginsenosides showed no cytotoxic activity even up to 40 μg/mL. Although co-treatment of cell lines with KRG and the ginsenosides exhibited significant reduction of HAV concentration in the study, anti-HAV activity of the pretreated cell lines was quite higher [3, 4]. Hence, pretreatment with ginseng may be effective in preventing HAV infection. Also co-treatment of cell lines with KRG and the ginsenosides may be evaluated in further study using
The anti-HAV mechanisms of KRG extract and its ginsenosides are not clearly defined. However, reports from studies have shown that HAV-infected FRhK-4 cells activate the 2′-5′ oligoadenylate synthetase/RNaseL pathway [48]. Activation of RNase L degrades viral RNA and cellular single-stranded RNA; hence, KRG extract and its ginsenosides may tour a similar path. In addition, previous studies have reported that ginseng polysaccharides and ginsenosides have the capacity to boost the production of cytokines via stimulation of immune cells [3, 4]. Interferons induced by this pathway also contribute to the antiviral response.
Blueberries are said to contain about 88–261 mg of proanthocyanidin/100 g of edible portion according to the USDA database for flavonoid content (USDA Database for the proanthocyanidin Content of Selected Foods, August 2004). Again, blue berries possess some other structurally related polyphenols such as anthocyanins and flavonoids [49]. Blueberry juice and its polyphenols have been found to have promising health benefits which include their cardioprotective, neuroprotective, anticarcinogenic, antibacterial, and antiviral properties [50]. Ethanol and water extracts of blueberries were reported to decrease
Recent study evaluated the antiviral activities of Blueberry juice and its proanthocyanidins (B-type) against HAV and some of human norovirus surrogates [50]. It was shown that in suspension, HAV titers were reduced by proanthocyanidins (2 and 5 mg/ml) to undetectable levels after 30 min, and after 3 h by 1 mg/ml proanthocyanidins. HAV titer was only reduced to by 2 log PFU/ml with Blue berry juice at pH 2.8 and 37°C after 24 h [50]. FRhK4 cells pre-infected and post-infected with HAV (strain; HM175) were also investigated for viral adsorption and replication upon treatment with the Blueberry juice and isolated proanthocyanidins [50]. The Blue berry proanthocyanidins showed promising preventive capacity as it moderately reduced HAV infectivity in the pre-infected cells but did not affect the replication of HAV in the post-infected cells. Hence, the Blue berry proanthocyanidins interrupt HAV binding and entry much more than it can limit its replication in the host cells; suggesting that it’s antiviral efficacy is more preventive than therapeutic.
Recent study evaluated the antiviral activity of
Coumarin was first isolated from tonka beans,
A more recent study demonstrated that some coumarin derivatives possess anti-HAV activity. Newly modified 4-phenylcoumarin-based compounds were developed and evaluated for inhibition of 3C proteases [63]. Similar to other picornaviruses, HAV genome encodes a key processing protease, known as HAV 3C protease (HAV 3Cpro), which is a nonstructural cysteine protein responsible for the cleavage process within the viral polyprotein (250 kDa) that is critical for the replication process [63]. These proteases are responsible for processing the polyprotein precursor and also cleaving specific cellular factors needed for transcription and translation processes as well as nucleo-cytoplasmic trafficking in order to alter cell physiology to enhance viral replication; thus 3Cpro is vital to viral life cycle, making the viral 3C proteases choice targets for antiviral therapy [63]. Evaluation of the target compounds for their antiviral activity against hepatitis A virus revealed that the derivative, 1-(2-(2-Oxo-4-phenyl-2H-chromen-7-yloxy)acetyl) 4-ethylthiosemicarbazide had the most potent virucidal activity (IC50 = 3.1 μg/ml, TI = 83). The derivatives, 2-(2-Oxo-4-phenyl-2H-chromen-7-yloxy)-N′-(1-(4-chlorophenyl)ethylidene)acetohydrazide and 2-(2-Oxo-4-phenyl-2H-chromen-7-yloxy)-N′-(1-(4-bromophenyl)ethylidene)acetohydrazide demonstrated the strongest virustatic effects against HAV adsorption and replication, respectively (IC50 = 8.5 μg/ml, TI =88; IC50 = 10.7 μg/ml, TI = 91). Furthermore, studies reported that the three newly derived compounds were tested against HAV 3C protease and they exhibited remarkable inhibition effects (Ki = 1.903, 0.104 and 0.217 μM, respectively) indicating strong binding to HAV 3Cpro [63]. Also, the three compounds were docked within the pocket site of HAV 3C protease (PDB code: 2HAL) which illustrated that they had strong H-profiles with the amino acids Gly170 and Cys172. Findings suggested that the target compounds inhibited virus infection through the interrupting virus adsorption to the cell surface. This may have occurred via blocking of the cellular surface receptors by the target compounds which consequently led to an anti-HAV effect. Deduction from the post-treatment assay suggested that the target compounds inhibited the activities of some viral enzymes needed to complete the replication cycle or that they interfered with one or more steps in the viral life cycle.
Protamine, a cationic peptide, is generally obtained from fish milt (spermatic cells) and is applied medically as a heparin antagonist, an injectable insulin-carrier, and recently as an antibacterial ingredient in some food products [68]. Taxifolin (dihydroquercetin) is a flavononol amply found in grapes, olive oil, citrus fruits and onions [69]. It has been shown to possess strong pharmacological activities, including antioxidative, hepatoprotective, cardioprotective, anti-diabetic, anti-inflammatory, antitumor, neuroprotective effects, and had played a remarkable role in the preclusion of Alzheimer’s disease [69]. Atropine is naturally occurring compound (alkaloid) majorly found in belladonna (Solanaceae) plants. It is a muscuranic receptor antagonist and is used medically to modulate muscular contractions and dilations which consequently regulate blood flow to cells and tissues [70].
A previous study investigated the inhibitory potential of protamine, atropine and taxifolin against HAV replication in PLC/PRF/5 cells, and found out that the trio exhibited some significant but not drastic effects on HAV replication [2]. Atropine demonstrated a concentration–dependent reduction in the infectivity of HAV but the antigenicity of the virus was not affected. HAV titer was reduced at the maximum concentration of 50, 59 and 50 μg/ml of protamine, taxifolin and atropine, respectively. It was suggested that further studies be done to determine the effect of these compounds on several multiplicities of HAV infection and also investigate possible synergistic effects of these compounds with other substances that have potential for clinical use against HAV infection [2]. The mechanisms of HAV titer reduction by the compounds are not yet clearly elucidated.
Koji, also known as
Conventional Korean soy sauce is generally made with germinated soybean, salt and water [74]. The soy sauce is fermented after cooking and crushing soybean, then mold it into a block form (Meju) with concurrent addition of salt (NaCl) and water before exposing it to natural conditions [3, 4]. The percentage salt content of traditional Korean soy sauce is around 16.3–20.8% NaCl [75]. Studies have shown that soy sauce possesses diverse biological activities such as angiotensin inhibitory, anti-platelet, anticarcinogenic, and anti-oxidant activities [74]. Also, there is a report about the antibacterial activity of soy sauce against
A study that evaluated the antiviral activity of the Korean soy sauce on HAV inoculated in raw fresh crabs (
Evaluated natural products | Concentration | Result | Proposed mechanism of action | References |
---|---|---|---|---|
Green Tea Extract | 5 mg/ml for 2 h at 37°C and pH of 7.2 | Complete inactivation of HAV in suspension | Interfers with viral attachment to cell membrane receptors upon binding to them | [7, 15] |
Grape Seed Extract | 2 mg/ml for 6 h at 37°C | Reduced HAV titer to undetectable levels under simulated gastrointestinal conditions | Interrupt the binding of HAV to the cell receptors, preventing adsorption. | [23, 24, 28] |
Egyptian Red Sea Seagrass Crude Extract | 20 μg/mL | 100% inhibition of HAV in a plaque assay | — | [28] |
Essential Oils (EO) from lemon, grapefruit and rosemary cineole | 0.1% (EO from grapefruit); 0.5% (EO from lemon); 0.05% (EO from rosemary cineole) | Significant reduction in cell infectivity in the order; rosemary cineole > grapefruit > lemon. | — | [33] |
Korean Red Ginseng Extract and Ginsenosides | 5–10 μg/mL For 24 h at 37°C | Significant reduction of HAV titer with dose-dependent manner in pretreated FRhk-4 cells | (1) Activation of the 2′-5′oligoadenylate synthetase/RNaseL pathway; (2) boost the production of cytokines | [3, 4, 5, 49] |
Blueberry Juice | pH 2.8 at 37°C for 24 h | Reduced HAV titer by 2 log PFU/ml | Interfers with HAV binding to host cells | [50] |
Blueberry Proanthocyanidins | 2 and 5 mg/ml for 30 min at 37°C | Reduced HAV titer to undetectable levels in suspension | Interrupt HAV binding and entry into host cells | [50] |
Aqueous extracts of | 100 mg/ml and 40 mg/ml at 37°C for 24 h | Reduced HAV titer to undetectable levels in suspension | — | [22, 23] |
4-phenylcoumarin derivatives | 10 μl at 37°C | Inhibited the activity of HAV 3C protease | Interrupt HAV adsorption on cell surface | [63] |
Protamine | 50 μg/ml | Reduced HAV infectivity | — | [2] |
Taxifolin | 59 μg/ml | Reduced HAV infectivity | — | [2] |
Atropine | 50 μg/ml | Reduced HAV infectivity | — | [2] |
Japanese rice-koji miso extracts | — | Inhibited HAV replication | Inhibited HAV replication by enhancing the expression of GRP78 in human hepatocytes | [71] |
Korean Soy Sauce | Containing 20% NaCl | over 90% reduction of the HAV titer | Inhibition of viral enzymes’ activity | [74] |
Summary of anti-HAV natural products.
Duck hepatitis A virus type-1(DHAV-1) is a variant of hepatitis A virus that attacks ducks. It has been proposed that duck hepatitis A is a small animal model for the human hepatitis A [78]. It may be correct to say that antiviral agents against DHAV-1 will also demonstrate appropriate antiviral activity against human hepatitis A virus. Several natural agents have been under study to explore their antiviral potentials against DHAV-1 and they include phosphorylated
It was reported that
Currently, studies exploring potential anti-HAV natural products are still emerging and had attracted little attention, possibly because a vaccine has been developed to mitigate the spread of the viral infection to a considerable length of years. However, there is need for development of more efficient and effective anti-HAV therapeutic, prophylactic and adjunctive agents, and as at now, none has been licensed. Investigations into natural products with anti-HAV hold a promising outlook as several of them have demonstrated remarkable potential to control HAV infection and replication. In addition, studies should be aimed at mimicking more closely the features of the human hepatitis A virus
The foundations of the textile industry were laid in Britain; spinning and weaving technologies developed here. However, in the aftermath of this development, in the nineteenth century, textile production shifted to Europe and North America following pace with the industrial modernization in these regions. In the preceding years, almost all countries have realized industrialization and development processes via the textile industry. Countries undergoing the development process continue to produce more traditional textile products, whereas countries that have already completed their development processes and have achieved an advanced level of technology continue to produce high-tech technical textiles [1].
While the textile industry was initially in a traditional position that met basic requirements, such as yarn and fabric production, clothing, and home textiles, the development of technology over time and the increase in human needs have resulted in the industry being much more technological and functional today as a result of diversification [1].
Looking at the global textile market volume in 2015 and beyond, it is observed that it reached $667.5 billion in 2015. Europe accounted for 54.6% of this volume and the Asia-Pacific region 20.6%. When the 2018 data is examined, the global textile market volume is estimated to be $858 billion, up to 5% from 2019, and estimated to reach $1.207 billion by 2025 [1, 2]. It is also estimated that interest in high-tech textile products will continue to increase in the coming years and that the market in this field will continue to grow in Europe (especially Germany, France, and Italy) [2].
In recent years, consumers’ desire to feel comfort, be hygienic, feel good and control odor, and be protected from microorganisms has led to the rapid growth of the market of antimicrobial textiles [1, 3, 4]. The current uses of antimicrobial textiles range from outdoor applications such as tents, tarpaulins, awnings, blinds, parasols, sails, and waterproof clothing to indoor applications such as shower curtains and mattress ticking. They are also used in some consumer textiles such as sportswear, T-shirts, and socks and also in medical purpose such as masks, surgical clothing, wound dresses, and bandages [5]. Global antimicrobial textile market volume in 2019 reached $9468 million. And it is estimated to reach $12,313 million in 2024 [6]. According to the 2015 data, the market volume of global finishing chemicals is 1.14 million tons, and there is an increase of 6.1% each year by 2025. A significant portion of this amount consists of antimicrobial finishing agents [7]. The volume of the global wet wipe and wet napkin market is thought to have the potential to increase by $5.75 billion between 2020 and 2024 [8]. And by 2016, the volume of diapers will be $46.50 billion and is estimated to reach $67.46 billion by the end of 2022 [9].
By 2025, the world’s population is estimated to be 8.2 billion. Growing world populations, rising living standards, and fast fashion trends are causing the global textile industry to grow day-by-day. This also means large amounts of raw materials and resource usage, ultimately producing pollution and a high rate of waste [1, 10].
In this section, the issue of antimicrobial textile production (especially metal-based antimicrobial textile production, triclosan-based antimicrobial textile production) and subsequent product life spans are investigated.
The word waste is defined as things that people do not need and want to get rid of. Waste according to their physical form can be classified as solid, liquid, and gas. It is also possible to classify waste according to its original uses (packaging waste, textile waste, etc.), according to its materials (glass, metal, fiber, etc.), according to its physical characteristics (recyclable, composite, fuel, fertilization, etc.), according to its origin (domestic, commercial, industrial, agricultural, etc.), and according to its safety level (dangerous or hazardous) [9]. Household waste and commercial waste are classified together as solid municipal wastes. Excessive and unnecessary consumption in all areas of daily life increases the burden of a clogged-up world [10].
European Union member states have targeted a 50% reduction of municipal waste by 2020 through reuse and recycling [10].
In the textile industry, during the production of textile products, high amounts of solid, liquid, and gas in the form of wastes are produced as well as during the lifetime of textile products by the consumer and after the end of its lifespan [1, 10, 11].
Aged textile processes, which include pre-finishing, dyeing, printing, and finishing processes, usually consist of chemical applications, fixation, washing, and drying steps. In particular dyeing and finishing processes are processes where the highest amount of water is used [1, 11]. In textile production, a very large amount of water, chemicals, dyeing, and auxiliary chemicals are used. Therefore, textile wastewater is contaminated with these substances, has alkaline at high concentrations, is sharply scented, has the need for high biological oxygen (BOD) and for chemical oxygen (COD), and contains highly dissolved solids if it is not properly removed, which can cause environmental complications [1, 11].
Textile products other than disposable products are repeatedly exposed to washing, drying, ironing, and dry cleaning during their lifetime [12]. Wastewater contaminated with detergent, stain remover, and softener in washing baths are toxic to marine creatures [13]. With each washing, the active finishing chemicals applied on the textile product also leave the textile surface and pass on to the washing water subsequently increasing the waste load. Active finishing chemicals can leave the textile surface not only with bathing but also when faced with bodily fluids during use. This condition can cause itching, skin sensitivity, and allergies in people with sensitive skin [14].
The average life expectancy of textile products is 2 years, and then they continue to be waste loads by being stored in landfills. The amount of textile waste that has completed its life span is 10.5 million tons per year in the United States, 350,000 tons in the UK, and 287,000 tons in Turkey [10]. In particular, some studies and trends have been initiated to evaluate textile products that have completed their life spans in the United States and Europe. These studies can be summarized as recycling, reuse, energy production, second-hand clothing trends, vintage clothing trends, and slow fashion trends [10, 15]. According to 2009 data, only 15% of the textile products that have completed their life in the United States are utilized through recycling or donation, and the remaining 85% are left to solid waste landfills. However, it is thought that it is possible to utilize up to 95% with successful waste management [10].
The textile industry also produces waste in gas form, causing air pollution. Especially in spinning and weaving processes, a large amount of dust and sublimates are emitted into the operating environment. This condition can cause respiratory diseases and chronic lung diseases in workers [10].
From an environmental point of view of the textile industry, energy consumption, gas emissions, solid waste, and odor problems are also important issues, but the main problem is the chemical waste load produced in large quantities of wastewater and the chemicals in the wastewater [10].
Toxic or hazardous waste is waste that is dangerous for the environment and human health or has the potential to create harmful effects. Toxic and hazardous waste can occur in the form of solid, liquid, gas, and sludge as a result of various industrial production activities [16].
There are many toxic and dangerous chemicals in textile wastewater caused by different production processes [10]. Some of these are as follows [10]:
Chlorinated solvents: chlorinated solvents are used in many processes such as bleaching, scouring, and dyeing in the textile industry. They are known to have allergic, carcinogenic, and toxic properties for human and environmental health.
Hydrocarbon solvents-aliphatic hydrocarbons: hydrocarbons of organically structured compounds consisting of aliphatic compounds and carbon and hydrogen elements are aliphatic. They can be straight-chained, branched, or ringed and are divided into two: saturated and unsaturated. They are flammable and have sultry properties. They are known to cause nervous system diseases and cancer.
Hydrocarbon solvents-aromatic hydrocarbons: it is very difficult to purify textile wastewater from aromatic hydrocarbons. Aromatic hydrocarbons are not easily dissolved in water. Most aromatic hydrocarbons stick to solid particles, settling in lake and riverbeds and blending into groundwater. These compounds are known to cause cancer in the long term.
Oxygenated solvents (alcohols/glycollics/ethers/esters/ketones/aldehydes): oxygenated solvents are solvents with a high solvent feature containing an oxygen molecule. These solvents (methanol, ethanol, propane, ethylene glycol, etc.) are widely used in textile processes. They are harmful to both human health and all flora and fauna. Exposure to high amounts of these compounds can lead to sudden deaths. Prolonged exposure can cause blindness, irregular heartbeat, and damage to the kidney and lungs. Some of these compounds are in the carcinogenic category for humans. Glycol ethers can cause developmental impairment in the fetus and infertility in men. Regular exposure to these solvents can cause memory and hearing loss, depression, headache, coordination disorders, and skin disorders. Exposure to the vapors of these solvents can cause ailments such as asthma or shortness of breath.
Grease and oil contaminated waste: grease can be animal-based, oil-based, and synthetic-based. Wastewater contaminated with grease is toxic to marine life in the long run.
Used oils: some of the oils used in textile processes are carcinogenic to human health if they are in physical contact with humans or digested.
Dye materials and pigments containing harmful substances: the presence of dye substances and treatment of textile wastewater are serious problems because most dye materials are stable and are not easy to parse with traditional treatment methods. The chemical structures and contents of the dyes have an effect on toxicity sites:
Organohalogens: pigments can contain fluorocarbon, chlorocarbon, bromo-carbon, or iodo-carbon bond and contains toxic elements such as lead, cadmium, mercury, valve, chromium, cobalt, nickel, arsenic, etymon, and selenium and are toxic and dangerous.
Organic compounds (such as benzyte, methane, paraffin) are made up of carbon and hydrogen elements; they are found in coal, crude oil, natural gas, and vegetables. Hydrocarbons, pesticides, dyes, and plastics are the cornerstone of numerous product groups.
Antimicrobial finishing applied to textile material should be effective against microorganisms as well as meet a number of requirements including the fact that antimicrobial finishing is suitable for the textile process; is resistant to washing, dry cleaning, and hot press; and is not harmful to the environment [17].
Different antimicrobial methods of finishing may be preferred depending on the genus, structure, surface characteristics, and usage area of textile material. Antimicrobial finishing can be carried out during the phase of finishing procedures, as well as the application of antimicrobial agents into the polymeric matrix during the production phase of synthetic fiber. The activity against microorganisms occurs through contact and/or diffusion. There are no antimicrobial agent disperses in activity through contact and show impact on the microorganism at the time of contact. In the event of diffusion, the antimicrobial agent reaches the outer environment away from the fiber surface, or polymer matrix, and shows activity on the microorganism [17, 18, 19, 20, 21].
A living germ, bacteria, or fungal has a cell wall of polysaccharides on the outermost surfaces. This structure ensures their integrity and protects them against the external environment. There is a semipermeable cell membrane on the cell wall. The cell wall and membrane stores, protects, and performs the cell’s vital organelles, enzymes, genetic information, and transport. The type of activity of the antimicrobial agent against the microorganism is the main factor in its classification. If the antimicrobial agent only prevents the growth of the microorganism, it is called a biostatic effect; if it kills microorganisms, it is called biocidal effect [22, 23, 24].
Antimicrobial finishing processes have three different mechanisms [25]:
Most antimicrobial substances operate with a controlled oscillation mechanism. In this mechanism, the antimicrobial substance, which has already been applied to the textile material, is released at a certain speed in a controlled manner during use. This type of antimicrobial substance, which is removed when the textile material is washed, is very effective against microbes on or around the fiber surface. However, since it is constantly released during use, the amount of the textile material is gradually depleted at the end of the antimicrobial substance, and therefore the exhaustion process is depleted. On the other hand, the environmentally released antimicrobial substances are toxic to beneficial microorganisms and other creatures [24, 25, 26].
In recent years, studies have increased the use of silica carriers such as zeolite and microencapsulation technology for controlled oscillation in order to increase the strength of antimicrobial process or effect and cause less damage to the environment [25, 26, 27].
The renewal model was formulated by Gagliardi in 1962. This model, described in Gagliardi’s article, is based on the application of a chemical finishing process product to fabrics that produce active germ killer (antiseptic) substances that are constantly renewed by adding bleaching substances during washing or exposure to ultraviolet light. This regeneration occurs when the covalent bonds in the chemically modified fiber are severed as a result of washing or photochemical effects, so that the model has an unlimited antimicrobial repository [27]. Although the regeneration technique has not yet been implemented, the microencapsulation technique is close to performing the function of this model. However, although the surface is suitable for a long period of time, microencapsulated antimicrobial substance storage is not unlimited [25, 27, 28].
The blocking or blocking mechanism for the protection of fabrics from microorganisms can be divided into two: (a) inert (ineffective) physical obstacle layers or coatings that are simply resistant to the passage of microorganisms into fabric or (b) layers or coatings with direct surface contact effect against microbial proliferation [27].
Fire, water, weather, and mildew resistant (FWWMR) end process is an example of obstacle coating. In this process, fabrics are coated with a mixture of organic and anorganic compounds containing fungicide. The blocking or blocking mechanism has been used to protect fabrics from mold yeast and decaying fungi with resin applications or chemical modification of cellulose with cyanoetylation or acetylation. When the finishing process containing flame-retardent agents and resins forms of finishing agent with covalent bonds, they are the most effective products against mold [27].
The product of the only antibacterial finishing process based directly on the concept of surface contact attachment obstruction is an organosilicon polymer containing hanging quaternary ammonium groups that form a biobarrier in the fabric [27].
Most of the antimicrobial agents used to manufacture commercial textiles have biocidal effects, but they show activity on microorganism in different ways [17]:
They damage or inhibit the synthesis of the cell wall, which is critical for life and survival.
They damage intracellular and non-cell matter transport by inhibiting cell membrane function.
They cause the death of the microorganism by inhibiting the synthesis of the proteins that make up the building rocks of the cell and enzymes.
By inhibiting nucleic acid (DNA and RNA) synthesis, they prevent the survival and proliferation of the cell.
By inhibiting metabolic processes, they cause the death of the microorganism.
The most common antimicrobial substances used to give textile materials antimicrobial properties are quaternary ammonium compounds (QAC), polyhexamethylene biguanide (PHMB), chitosan, regenerated N-halamine compounds, peroxy acids, metal/metal salts, and triclosan. In addition, there are antimicrobial-enabled paints (e.g., metallic paints) that allow simultaneous dyeing and antimicrobial finishing processes [25]. The chapter is about metal-based antimicrobial finishing and triclosan-based antimicrobial finishing.
Many heavy metals are toxic to microorganisms, both freely and in compounds, even at very low concentrations. Other heavy metals such as copper, zinc, and cobalt are also used in the production of antimicrobial textiles, but the most preferred are silver and silver compounds for this purpose [17, 29, 30]. In recent years, the nano-forms of metal and metal compounds have attracted attention as new generation biocides [30]. According to 2018 data, the most commonly used antimicrobial substances in the production of antimicrobial medical textiles are metal/metal salts (39.6%) [31]. The most commonly used metallic salts are silver, copper, zinc, and cobalt [31, 32, 33]. The global nano-silver market volume is estimated to exceed $3.3 billion in 2024 [34].
Metal and metal compounds cause oxidative stress in the microorganism, causing damage to microorganism lipid, protein, and DNA, resulting death [30]. The mechanism of action of the nano-forms of metal/metal compounds is similar. Silica such as zeolite, polymer matrixes, and various cross linking agents are used to stabilize nanoparticles in the structure, to provide controlled oscillation, and to ensure washing durability [30].
In synthetic fibers, metal and metal compounds can be added to the environment before fiber extraction or in the polymer stage before electrospinning and nano-fiber production. During its lifetime, metal ions are released causing biocidal effects in the presence of moisture. The amount of metal ion released varies depending on the chemical structure of the fiber, its surface feature, and the amount of metal/metal salt on the fiber [29].
The application of metals to natural fibers can only be done during the finishing process. Various strategies have been developed to improve binding and durability. Cotton was pre-treated with succinct acid anhydrites. Succinic acid anhydride acts as a ligand (atom, molecule, or ion attached to the central atom) for metal ions and provides very effective antibacterial activity by increasing the retention of metal salts (Ag+ and Cu2+) on the surface. In protein fibers (e.g., wool), aspartyl and glutamyl residues are thought to be binding groups for free carboxyl groups, most likely metal ions. Binding capacity can be further increased with EDTA with the ability to skip the tannin acid or metal ions that increase the serious restrictions due to technical and environmental problems; therefore, it is not accepted in commercial production [29].
Silver has been used in many areas for centuries as a broad-spectrum antimicrobial substance with antibacterial, antifungal, and antiviral properties. Metallic silver, silver nitrate, and silver sulfadiazine forms have been used for many years to treat burns, wounds, and numerous bacterial infections [35]. Most metal ions are also known to have antimicrobial properties, but silver is best effective against bacteria, viruses, and other eukaryotic microorganisms [35]. Silver has very important advantages as an antibacterial substance. These benefits include the fact that silver is a very broad-spectrum antibiotic and has almost no bacterial resistance to silver, and there is no toxicity in low concentrations [35, 36, 37].
It is known that the use of silver in the treatment of burns and chronic ulcers in water disinfection dates back to the 1000 BC. In the literature, it is mentioned that silver was used as an eye drop in the 1800s, and then its used was reduced with the presence of penicillin, but 0.5% silver nitrate solution in the 1960s was widely used in burn treatment. In these years, silver’s effectiveness against bacteria such as
Concentrations greater than 0.5% are not generally preferred in silver solutions used for medical purposes. In these concentrations, silver allergy is not reported. However, when using wound dress containing a high amount of silver ion in large wounds, a disease called argyrism can be found in the form of bluish and brown lesions in the skin and mucous membrane. This disease causes the removal of silver ions from the open wound for a long time [35, 39].
Metallic silver is actually inert, but when it comes into contact with the skin, the moisture and fluid of the wound on the skin make it ionized. Iodine silver is highly reactive. It connects to tissue proteins, causing structural changes in the bacterial cell wall and then the nuclear membrane, causing the death of the microorganism [35].
The mechanism of killing microorganisms by silver is still not very clear. The mechanism was attempted to be clearer by examining morphological and structural changes caused by metallic silver, silver ions, and silver nanoparticles in the bacterial cell. In light of the studies, it is known that silver is connected to the bacterial cell wall and cell membrane, interacting with thiol groups to inhibit respiratory enzymes, thus leading to the death of the microorganism [35, 36].
Liau and his colleagues studied the effect of silver ions on amino acids containing thiol (–SH) groups in 1997 [40].
A 2000 study by Feng and colleagues examined the morphological changes that silver ions have on gram-positive
In his 2005 study, Holt and colleagues reported that the increase in the amount of potassium in the environment was detoxicated by the toxicity of silver against microorganisms [42].
Li and colleagues studied the antibacterial effect mechanism of silver nanoparticles on
Many studies are being conducted on the antimicrobial mechanism of nano-silver particles, but there is not enough work on toxicity. A limited number of studies conducted in in vitro conditions show that nano-silver particles are much more toxic than conventional silver and other heavy metals [35, 44]. Shapes, particle sizes, crystalline, surface properties, ambient humidity, ambient pH, cations in the environment, and their concentrations are among the particles that affect the toxicity of silver nanoparticles [45]. In vitro studies reveal that nano-silver particles cause damage to the brain, liver, and reproductive cells in mammals. In 1999, the FDA warned that the use of colloidal silver solutions containing micro- or nanoparticles could lead to neurological problems, headaches, skin irritation, weakness, stomach ailments, and kidney ailments. It is also reported that silver nanoparticles will affect rivers, lakes, and all living things that make up the ecosystem by blending into the food chain by mixing into the water. Washing machines produced in recent years, using nano-silver technology, are also objectionable in this context. In order to further clarify this issue, a large number of independent animal and clinical trials that are not supported by producers must be performed [35, 43, 46].
Silver and its different forms are wide spectrum antibiotics. They have low risk of bacterial resistance, and their low concentrations are not toxic, and they have ease of application and low cost. Because of these advantages, silver and other forms of it are widely used in most areas and surfaces, which are being antimicrobial desired. It is also widely used in the production of antimicrobial textiles in different forms of Ag and silver (colloidal silver, silver salts, and elemental silver in powder form) [35, 36, 37].
Ag particles are applied to the textile surface using binder or cross-binding substances; it is possible to increase washing resistance. However, as a result of washing both during antimicrobial textile production and throughout its life cycle, most of the Ag particles on the textile surface mix into rivers, lakes, and groundwater along with wastewater, causing the accumulation of silver in the ecosystem. Disposable hygiene products are a similar situation [36]. Most antimicrobial textile products are released into washing water for 50% of the amount of silver at the end of three washings. And the textile products release 10–98% content of the silver into washing water at the end of 10 washings [47]. According to a study, up to 75% of silver may be released from textiles impregnated with Ag NPs in one washing cycle [48]. It is clear that silver accumulated in the ecosystem, water or soil, will have a toxic effect on all living organisms and reach the food chain [14, 35].
According to a study conducted in 64 countries on the release of silver from different products into nature, the United States is the country that releases the most silver into the environment, globally. The Asian continent is the continent which has the most silver emissions directly into the aquatic environment and land [49]. According to a report, 68% of the global silver consumption is used for water treatment and 32% for other uses. And 3.4–40 metric tons of silver are used in textiles per year [5]. In the United States, 29% of the silver used in different industries is released into the aquatic environment, and 69% are known to be dumped in solid waste storage [50]. In recent years nano-silver consumption in textiles like other industries has been increasing rapidly also [51]. The regions where antimicrobial medical textiles containing metallic salts such as copper, zinc, cobalt, mainly silver most used are North America (39% of market volume), Europe (23% of market volume), the Asia Pacific regions (30% of market volume) and the rest of the world (7% of the market volume) respectively [31, 48]. The highest use rate belongs to North America because hospital infection and cardiovascular disease rates are high in this region [31].
Triclosan has been widely used in commercial products for many years as an antimicrobial substance used in soaps, deodorants, cosmetics, cleaning lotions, plastics, toothpastes, and antibacterial textiles [52, 53, 54, 55, 56]. The European Union’s consumption of triclosan in 2006 is reported to be approximately 450 tons. It is reported that 85% of this is used in personal care products, 5% in textile products, and 10% in plastics and products that come into contact with food [54, 57]. Triclosan is also frequently used in the textile industry. Triclosan is used to prevent the formation of bad odor in wool; to prevent the reproduction of bacteria and fungi in synthetic, mixtures, and non-woven textile materials; and to keep mites away from textile materials [57].
75–210 metric tons of triclosan are used in textiles per year globally [5]. According to a 2009 report by the Australian government, between 2001 and 2005, the amount of triclosan contained in textile products exported to Australia varied between 1 and 20%. The report stated that between 2001 and 2005, textile products containing approximately 1 ton of triclosan were used. In the same report, it is stated that triclosan in used in Australia in wool bed-duvet production, upholstery fabrics, towels, woolly textile products, preparatory fabric production, marine and sports clothes, socks, underwear, shoe linings, zippers, gloves, surgical masks, non-woven products, sleeping bags, and insulation textiles [57]. Triclosan can be added to the textile materials during the fiber production stage and can be applied as a finishing process or transferred in the form of coating [57].
Triclosan is known to have bacteriologic effects on gram-positive and gram-negative bacteria, as well as antifungal and antiviral properties [53, 56]. Triclosan inhibits lipid synthesis by blocking enoyl-acyl reductase (ENR) of the microorganism. Thus, it prevents the development of the microorganism and its proliferation of division [53].
In 1986 in accordance with the European Union Cosmetics Directive, triclosan has been confirmed that it can be used in materials in contact with foods of up to 0.3% concentration as protective material, 5 mg/kg textile materials (especially in sportswear), and 0.3% concentration of plastic (plastic packaging, brushes) materials [54]. The Japanese government has stated that in cosmetics, the maximum amount of triclosan that can be used is 0.1%. In oral care in Canada, the amount of triclosan allowed in their products is 0.03%, and in cosmetic products it is 0.3%. According to a 2009 report by the Australian government, with regard to triclosan, eyes, respiratory system, and skin have been described as being irritating and toxic to inhalation [57].
Studies on the effects of triclosan on human health are usually carried out with mice, rabbits, dogs, and monkeys [53, 54]. Triclosan is taken into the body through the skin, nose, and mouth during contact with products containing triclosan. In addition, triclosan has contaminated the sea, lake, and groundwater and has reached the food chain, especially from foods such as seafood; triclosan enters the human body [53]. A study of 36 breastfeeding mothers who stated that they used personal care products containing triclosan as a result of a series of studies in America found triclosan in the mothers’ milks [53]. Studies have shown that triclosan affects androgens in the male body and estrogen in the female body. Triclosan was found to affect the transport between the fetus and the placenta in the bodies of pregnant sheep, which has been reported that this can cause abnormal development. It has also been reported that triclosan can trigger breast cancers, especially in females. A number of studies on rabbits have been reported to reduce the sperm count in male rabbits and cause tissue destruction in reproductive organs, disrupting masculinity hormones [53].
The thyroid is known to have vital effects on development and metabolism. The thyroid hormone is a highly effective hormone in the development of fetuses and young children. Studies have shown that triclosan lowers thyroid hormone levels in rabbits and changes metamorphosis time in frogs [53, 58].
Water supplies all over the world have been contaminated with triclosan due to wide commercial use in commercial products. In a 1999–2000 study conducted in the United States, samples from different water sources were examined in terms of 95 different chemicals, and as a result, one of the chemicals with the highest concentration was triclosan. Again, the researchers found a very high amount of triclosan in the bodies of marine creatures in particular. The Environmental Protection Agency reported that some of the triclosan in the environment was disrupted by the effect of ultraviolet rays and turned into toxic dioxins. It is reported that the access of dioxins to the food chain will have bad consequences [52]. Because the demolition products of triclosan are also toxic [59]. Again, the formation of cancer is associated with triclosan exposure [59]. According to a study, antimicrobial textile products containing triclosan are sold in 64–84% of the triclosan wash water at the end of 10 washings [57].
Bio-functionalization of textiles with natural bioactive agents with antimicrobial properties is becoming increasingly important because they are not toxic, skin, and environment-friendly. These antimicrobial compounds extracted from most plants are phenols, polyphenols (simple phenols, phenolic acids, quinines, flavonoids, tannin, coumarin, etc.), terpenoids, essential oils, alcoholicoids, lectins polypeptides, and polyacethylenes. Most of these substances obtained from plants are colorful and are natural antimicrobial dyes and pigments used for the dyeing of both natural and synthetic fibers [30, 60, 61, 62, 63, 64, 65]. Eco-friendly pigments can be obtained with fermentation of bacteria and fungi [30, 66, 67]. Different methods are mentioned in the literature to increase washing habits of bioactive vegetable-based antimicrobial compounds uncinated on textile fiber: resin application with cross-binding agent, glyoxal, and glycol [30, 68]; sol-gel matrix of liquid bioactive compounds, such as essential oils [30, 69]; and application with microcaps or with the pad-dry-cure method [30, 70, 71, 72].
Hydrogen peroxide is a natural antimicrobial produced against invasive bacteria in human cells. It is also found in honey as a preservative. Antimicrobial activity of hydrogen peroxide against bacteria, mold, fungi, algae, and viruses is known. The finishing processes and substances with hydrogen peroxide have become popular and commercialized in recent years [14].
It is thought that the importance of antimicrobial-effective herbal (such as vegetable wastes etc.) and animal-derived natural materials will increase for reducing the waste load (production, during its lifetime, and at the end of its lifespan) and engaging in more environment-friendly manufacturing [14].
In today’s world, the role of the textile industry is very important. While the textile industry initially met traditional human needs such as dressing with yarn and fabric production and home textiles, today due to rising living standards, textiles have become much more technological and functional with diversified human requirements. It is also an important industry sector for both countries in the growth and development process (rather than traditional textile production) and countries that have completed their development (rather than high technological textile production). However, despite all these advantages, the textile industry causes a large amount of waste and environmental pollution.
At different stages of textile production, numerous chemicals and auxiliary substances are used, many of which are toxic and harmful to the environment and human beings. As a result of these production stages, a large amount of solid, liquid, gas, and sludge form waste is exposed and causes pollution. Noise pollution is also another negative result of the textile industry. Textile finishing operations are the processes where high amounts of water are used, so high amounts of wastewater (with high chemical load) occur. Therefore, the biggest problem of the textile industry is this wastewater burden. According to some studies, 20% of all fresh water pollution is made by textile treatment and dyeing [73]. Textile wastewater needs to be properly purified to reduce environmental damage. In this context, the selection of chemicals and dyes with less environmental damage or environment-friendly finishing operations is also important in this context.
Any textile product has been subjected to washing, dry cleaning, and ironing many times during its service life. With each wash, the active chemical finishing agent in its structure is mixed into washing water, which then threatens the entire ecosystem by mixing into the sea, lakes, and underground waters, and is consequently used by water and soil plants contaminated with antimicrobial lice chemicals to be included in the food chain. Again, the seas and rivers contaminated with antimicrobial substances threaten water creatures and the human health as a result of consuming these creatures.
Studies on antimicrobial textiles have focused mainly on the synthesis of antimicrobial matter and its performance against microorganisms and washing durability. However, the effects of waste/wastewater content on the user’s skin and health and all other creatures through contact/respiratory/consumption are needed to be further studies during the production of antimicrobial textiles, during and at the end of its lifecycle [74]. Antimicrobial agents derived from natural sources are safe for human and the environment, but the spectrum of activity and efficiency is not as good as the synthetic ones. To achieve this, more research work is needed in the field. Hence, natural antimicrobial agents derived from plant sources would be of prime importance in the future [75]. It is so urgent to protect and conserve the natural ecosystem of the earth, thereby restoring the global sustainability.
IntechOpen publishes different types of publications
",metaTitle:"Types of publications",metaDescription:"IntechOpen publishes different types of publications",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"IntechOpen Edited Volumes are integrated collections of chapters about particular topics that present new areas of research or novel syntheses of existing research and, as such, represent perspectives from various authors.
\\n\\nEdited Volumes can be comprised of different types of chapters:
\\n\\nRESEARCH CHAPTER – A research chapter reports the results of original research thus contributing to the body of knowledge in a particular area of study.
\\n\\nREVIEW CHAPTER – A review chapter analyzes or examines research previously published by other scientists, rather than reporting new findings thus summarizing the current state of understanding on a topic.
\\n\\nCASE STUDY – A case study involves an in-depth, and detailed examination of a particular topic.
\\n\\nPERSPECTIVE CHAPTER – A perspective chapter offers a new point of view on existing problems, fundamental concepts, or common opinions on a specific topic. Perspective chapters can propose or support new hypotheses, or discuss the significance of newly achieved innovations. Perspective chapters can focus on current advances and future directions on a topic and include both original data and personal opinion.
\\n\\nINTRODUCTORY CHAPTER – An introductory chapter states the purpose and goals of the book. The introductory chapter is written by the Academic Editor.
\\n\\nMonographs is a self-contained work on a particular subject, or an aspect of it, written by one or more authors. Monographs usually have between 130 and 500 pages.
\\n\\nTYPES OF MONOGRAPHS:
\\n\\nSingle or multiple author manuscript
\\n\\nCompacts provide a mid-length publishing format that bridges the gap between journal articles, book chapters, and monographs, and cover content across all scientific disciplines.
\\n\\nCompacts are the preferred publishing option for brief research reports on new topics, in-depth case studies, dissertations, or essays exploring new ideas, issues, or broader topics on the research subject. Compacts usually have between 50 and 130 pages.
\\n\\nCollection of papers presented at conferences, workshops, symposiums, or scientific courses, published in book format
\\n"}]'},components:[{type:"htmlEditorComponent",content:"IntechOpen Edited Volumes are integrated collections of chapters about particular topics that present new areas of research or novel syntheses of existing research and, as such, represent perspectives from various authors.
\n\nEdited Volumes can be comprised of different types of chapters:
\n\nRESEARCH CHAPTER – A research chapter reports the results of original research thus contributing to the body of knowledge in a particular area of study.
\n\nREVIEW CHAPTER – A review chapter analyzes or examines research previously published by other scientists, rather than reporting new findings thus summarizing the current state of understanding on a topic.
\n\nCASE STUDY – A case study involves an in-depth, and detailed examination of a particular topic.
\n\nPERSPECTIVE CHAPTER – A perspective chapter offers a new point of view on existing problems, fundamental concepts, or common opinions on a specific topic. Perspective chapters can propose or support new hypotheses, or discuss the significance of newly achieved innovations. Perspective chapters can focus on current advances and future directions on a topic and include both original data and personal opinion.
\n\nINTRODUCTORY CHAPTER – An introductory chapter states the purpose and goals of the book. The introductory chapter is written by the Academic Editor.
\n\nMonographs is a self-contained work on a particular subject, or an aspect of it, written by one or more authors. Monographs usually have between 130 and 500 pages.
\n\nTYPES OF MONOGRAPHS:
\n\nSingle or multiple author manuscript
\n\nCompacts provide a mid-length publishing format that bridges the gap between journal articles, book chapters, and monographs, and cover content across all scientific disciplines.
\n\nCompacts are the preferred publishing option for brief research reports on new topics, in-depth case studies, dissertations, or essays exploring new ideas, issues, or broader topics on the research subject. Compacts usually have between 50 and 130 pages.
\n\nCollection of papers presented at conferences, workshops, symposiums, or scientific courses, published in book format
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6630},{group:"region",caption:"Middle and South America",value:2,count:5911},{group:"region",caption:"Africa",value:3,count:2404},{group:"region",caption:"Asia",value:4,count:12562},{group:"region",caption:"Australia and Oceania",value:5,count:1009},{group:"region",caption:"Europe",value:6,count:17573}],offset:12,limit:12,total:132971},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"ebgfFaeGuveeFgfcChcyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:42},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:24},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:18},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:11},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:124},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:3},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"913",title:"Proteomics",slug:"structural-biology-proteomics",parent:{id:"152",title:"Structural Biology",slug:"structural-biology"},numberOfBooks:8,numberOfSeries:0,numberOfAuthorsAndEditors:194,numberOfWosCitations:71,numberOfCrossrefCitations:56,numberOfDimensionsCitations:121,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"913",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10424",title:"Homology Molecular Modeling",subtitle:"Perspectives and Applications",isOpenForSubmission:!1,hash:"b1e441eeee1e41b634c8f8086fa4283c",slug:"homology-molecular-modeling-perspectives-and-applications",bookSignature:"Rafael Trindade Maia, Rômulo Maciel de Moraes Filho and Magnólia Campos",coverURL:"https://cdn.intechopen.com/books/images_new/10424.jpg",editedByType:"Edited by",editors:[{id:"212393",title:"Prof.",name:"Rafael",middleName:"Trindade",surname:"Trindade Maia",slug:"rafael-trindade-maia",fullName:"Rafael Trindade Maia"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",isOpenForSubmission:!1,hash:"af6880d3a5571da1377ac8f6373b9e82",slug:"ubiquitin-proteasome-pathway",bookSignature:"Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",editedByType:"Edited by",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9352",title:"Proteoforms",subtitle:"Concept and Applications in Medical Sciences",isOpenForSubmission:!1,hash:"0f0288da2d32c0c0fcda6be0d4d45d67",slug:"proteoforms-concept-and-applications-in-medical-sciences",bookSignature:"Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/9352.jpg",editedByType:"Edited by",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8301",title:"Ubiquitin Proteasome System",subtitle:"Current Insights into Mechanism Cellular Regulation and Disease",isOpenForSubmission:!1,hash:"ec9eada73dbddb8b41315a3b089302b4",slug:"ubiquitin-proteasome-system-current-insights-into-mechanism-cellular-regulation-and-disease",bookSignature:"Matthew Summers",coverURL:"https://cdn.intechopen.com/books/images_new/8301.jpg",editedByType:"Edited by",editors:[{id:"204371",title:"Associate Prof.",name:"Matthew",middleName:null,surname:"Summers",slug:"matthew-summers",fullName:"Matthew Summers"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5989",title:"Ubiquitination Governing DNA Repair",subtitle:"Implications in Health and Disease",isOpenForSubmission:!1,hash:"d9892e3c8d2c928119619d7425c9e371",slug:"ubiquitination-governing-dna-repair-implications-in-health-and-disease",bookSignature:"Effrossyni Boutou and Horst-Werner Stürzbecher",coverURL:"https://cdn.intechopen.com/books/images_new/5989.jpg",editedByType:"Edited by",editors:[{id:"58579",title:"Dr.",name:"Effrossyni",middleName:null,surname:"Boutou",slug:"effrossyni-boutou",fullName:"Effrossyni Boutou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6649",title:"Peripheral Membrane Proteins",subtitle:null,isOpenForSubmission:!1,hash:"dd98f01959b3ba6cc9483c03e75b9e0a",slug:"peripheral-membrane-proteins",bookSignature:"Shihori Tanabe",coverURL:"https://cdn.intechopen.com/books/images_new/6649.jpg",editedByType:"Edited by",editors:[{id:"48635",title:"Dr.",name:"Shihori",middleName:null,surname:"Tanabe",slug:"shihori-tanabe",fullName:"Shihori Tanabe"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6635",title:"Protein-Protein Interaction Assays",subtitle:null,isOpenForSubmission:!1,hash:"1bed553d74f0565c89758a7159647634",slug:"protein-protein-interaction-assays",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/6635.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"780",title:"Proteomics",subtitle:"Human Diseases and Protein Functions",isOpenForSubmission:!1,hash:"a90c4e5b369d27036134a3c66ce1cb26",slug:"proteomics-human-diseases-and-protein-functions",bookSignature:"Tsz-Kwong Man and Ricardo J. Flores",coverURL:"https://cdn.intechopen.com/books/images_new/780.jpg",editedByType:"Edited by",editors:[{id:"35047",title:"Prof.",name:"Tsz Kwong",middleName:null,surname:"Man",slug:"tsz-kwong-man",fullName:"Tsz Kwong Man"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:8,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"28196",doi:"10.5772/31776",title:"Exploring the Role of Biomarkers for the Diagnosis and Management of Traumatic Brain Injury Patients",slug:"exploring-the-role-of-biomarkers-for-the-diagnosis-and-management-of-traumatic-brain-injury-patients",totalDownloads:2936,totalCrossrefCites:9,totalDimensionsCites:22,abstract:null,book:{id:"780",slug:"proteomics-human-diseases-and-protein-functions",title:"Proteomics",fullTitle:"Proteomics - Human Diseases and Protein Functions"},signatures:"Linda Papa",authors:[{id:"88648",title:"Dr.",name:"Linda",middleName:null,surname:"Papa",slug:"linda-papa",fullName:"Linda Papa"}]},{id:"66145",doi:"10.5772/intechopen.83426",title:"New Insights into the Mechanisms Underlying NEDD8 Structural and Functional Specificities",slug:"new-insights-into-the-mechanisms-underlying-nedd8-structural-and-functional-specificities",totalDownloads:982,totalCrossrefCites:6,totalDimensionsCites:9,abstract:"Ubiquitin (Ub) and ubiquitin-like (Ubl) proteins are small polypeptides that are conjugated to substrates affecting their activity and stability. Cells encode “receptors” containing Ub-/Ubl-binding domains that interpret and translate each modification into appropriate cellular responses. Among the different Ubls, NEDD8, which is the ubiquitin’s closest relative, retains many of the structural determinants that enable ubiquitin the ability to target proteins to degradation. Nevertheless, the direct involvement of NEDD8 conjugation to proteasome recruitment has been proved only in a few cases. To date, well-defined major NEDD8 substrates are primarily members of the cullin family, and cullin neddylation does not appear to mark these proteins for degradation. Various studies have demonstrated that selectivity between ubiquitin and NEDD8 is guaranteed by small but substantial differences. Nevertheless, several issues still need to be addressed, mainly concerning which interaction surfaces mediate NEDD8 function and what domains recognize them. Recently, two novel domains identified in KHNYN and N4BP1 proteins have shed new light on this research area. Here, I discuss some recent reports that contributed to shed light on the mechanisms underlining the discrimination between ubiquitin and NEDD8. Understanding the details of these molecular mechanisms represents a prominent facet for the identification of new therapeutic targets.",book:{id:"8301",slug:"ubiquitin-proteasome-system-current-insights-into-mechanism-cellular-regulation-and-disease",title:"Ubiquitin Proteasome System",fullTitle:"Ubiquitin Proteasome System - Current Insights into Mechanism Cellular Regulation and Disease"},signatures:"Elena Santonico",authors:[{id:"271923",title:"Dr.",name:"Elena",middleName:null,surname:"Santonico",slug:"elena-santonico",fullName:"Elena Santonico"}]},{id:"28199",doi:"10.5772/31082",title:"F0F1 ATP Synthase: A Fascinating Challenge for Proteomics",slug:"f0f1-atp-synthase-a-fascinating-challenge-for-proteomics",totalDownloads:5529,totalCrossrefCites:2,totalDimensionsCites:8,abstract:null,book:{id:"780",slug:"proteomics-human-diseases-and-protein-functions",title:"Proteomics",fullTitle:"Proteomics - Human Diseases and Protein Functions"},signatures:"Federica Dabbeni-Sala, Amit Kumar Rai and Giovanna Lippe",authors:[{id:"85523",title:"Prof.",name:"Giovanna",middleName:null,surname:"Lippe",slug:"giovanna-lippe",fullName:"Giovanna Lippe"},{id:"149272",title:"Dr.",name:"Federica",middleName:null,surname:"Dabbeni-Sala",slug:"federica-dabbeni-sala",fullName:"Federica Dabbeni-Sala"},{id:"149273",title:"Dr.",name:"Amit",middleName:null,surname:"Kumar Rai",slug:"amit-kumar-rai",fullName:"Amit Kumar Rai"}]},{id:"65025",doi:"10.5772/intechopen.82883",title:"E3 Ubiquitin Ligases in Cancer and Their Pharmacological Targeting",slug:"e3-ubiquitin-ligases-in-cancer-and-their-pharmacological-targeting",totalDownloads:1663,totalCrossrefCites:2,totalDimensionsCites:8,abstract:"Ubiquitination plays many critical roles in protein function and regulation. Consequently, mutation and aberrant expression of E3 ubiquitin ligases can drive cancer progression. Identifying key ligase-substrate relationships is crucial to understanding the molecular basis and pathways behind cancer and toward identifying novel targets for cancer therapeutics. Here, we review the importance of E3 ligases in the regulating the hallmarks of cancer, discuss some of the key and novel E3 ubiquitin ligases that drive tumor formation and angiogenesis, and review the clinical development of inhibitors that antagonize their function. We conclude with perspectives on the field and future directions toward understanding ubiquitination and cancer progression.",book:{id:"8301",slug:"ubiquitin-proteasome-system-current-insights-into-mechanism-cellular-regulation-and-disease",title:"Ubiquitin Proteasome System",fullTitle:"Ubiquitin Proteasome System - Current Insights into Mechanism Cellular Regulation and Disease"},signatures:"Joseph Y. Ong and Jorge Z. Torres",authors:[{id:"186645",title:"Dr.",name:"Jorge",middleName:null,surname:"Torres",slug:"jorge-torres",fullName:"Jorge Torres"},{id:"264944",title:"Mr.",name:"Joseph",middleName:null,surname:"Ong",slug:"joseph-ong",fullName:"Joseph Ong"}]},{id:"57410",doi:"10.5772/intechopen.71404",title:"The Cross Talk among Autophagy, Ubiquitination, and DNA Repair: An Overview",slug:"the-cross-talk-among-autophagy-ubiquitination-and-dna-repair-an-overview",totalDownloads:1221,totalCrossrefCites:2,totalDimensionsCites:4,abstract:"Cellular plasticity is modulated by protein posttranslational modifications, which act on most intracellular pathways. Ubiquitination is a versatile posttranslational modification (PTM) that influences protein fate, controlling their degradation or modulating their activity and subcellular localization. The ubiquitin proteasome system, UPS, and the autophagic pathway are the main degradative intracellular machineries, which rely on ubiquitination for their activation and/or the selective recycling of proteins and organelles. Recent findings indicate that the cross talk between UPS and autophagy plays a key role in controlling DNA repair pathways. Even being a cytoplasmic process, it is now clear that autophagy can directly impact on the correct activation of DNA repair. Of note, defects on autophagy are related to the impairment of homologous recombination repair and to an increase of the nonhomologous end joining repair activity. These evidences give new insights into the molecular processes underlying the DNA damage response and provide further explanation for the tumorigenesis associated with autophagy impairment. Moreover, these findings introduce new examples of synthetic lethality between autophagy and DNA repair genes and lead to the possible development of target therapies for tumors with defective autophagy.",book:{id:"5989",slug:"ubiquitination-governing-dna-repair-implications-in-health-and-disease",title:"Ubiquitination Governing DNA Repair",fullTitle:"Ubiquitination Governing DNA Repair - Implications in Health and Disease"},signatures:"Francesca Nazio, Emiliano Maiani and Francesco Cecconi",authors:[{id:"204392",title:"Prof.",name:"Francesco",middleName:null,surname:"Cecconi",slug:"francesco-cecconi",fullName:"Francesco Cecconi"},{id:"204393",title:"Dr.",name:"Emiliano",middleName:null,surname:"Maiani",slug:"emiliano-maiani",fullName:"Emiliano Maiani"},{id:"204394",title:"Dr.",name:"Francesca",middleName:null,surname:"Nazio",slug:"francesca-nazio",fullName:"Francesca Nazio"}]}],mostDownloadedChaptersLast30Days:[{id:"70577",title:"Proteoforms: General Concepts and Methodological Process for Identification",slug:"proteoforms-general-concepts-and-methodological-process-for-identification",totalDownloads:908,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"The term proteoform is used to denote all the molecular forms in which the protein product of a single gene can be found. The most frequent processes that lead to transcript modification and the biological implications of these changes observed in the final protein product will be discussed. Proteoforms arising from genetic variations, alternatively spliced RNA transcripts and post-translational modifications will be commented. This chapter will present an evolution of the techniques used to identify the proteoforms and the importance of this identification for understanding of biological processes. This chapter highlights the fundamental concepts in the field of top-down mass spectrometry (TDMS), and provides numerous examples for the use of knowledge obtained from the identification of proteoforms. The identification of mutant proteins is one of the emerging areas of proteogenomics and has the potential to recognize novel disease biomarkers and may point to useful targets for identification of therapeutic approaches.",book:{id:"9352",slug:"proteoforms-concept-and-applications-in-medical-sciences",title:"Proteoforms",fullTitle:"Proteoforms - Concept and Applications in Medical Sciences"},signatures:"Jucélia da Silva Araújo and Olga Lima Tavares Machado",authors:[{id:"30130",title:"Dr.",name:"Olga Lima Tavares",middleName:null,surname:"Machado",slug:"olga-lima-tavares-machado",fullName:"Olga Lima Tavares Machado"},{id:"310148",title:"Dr.",name:"Jucelia",middleName:null,surname:"Da Silva Araujo",slug:"jucelia-da-silva-araujo",fullName:"Jucelia Da Silva Araujo"}]},{id:"65025",title:"E3 Ubiquitin Ligases in Cancer and Their Pharmacological Targeting",slug:"e3-ubiquitin-ligases-in-cancer-and-their-pharmacological-targeting",totalDownloads:1665,totalCrossrefCites:2,totalDimensionsCites:8,abstract:"Ubiquitination plays many critical roles in protein function and regulation. Consequently, mutation and aberrant expression of E3 ubiquitin ligases can drive cancer progression. Identifying key ligase-substrate relationships is crucial to understanding the molecular basis and pathways behind cancer and toward identifying novel targets for cancer therapeutics. Here, we review the importance of E3 ligases in the regulating the hallmarks of cancer, discuss some of the key and novel E3 ubiquitin ligases that drive tumor formation and angiogenesis, and review the clinical development of inhibitors that antagonize their function. We conclude with perspectives on the field and future directions toward understanding ubiquitination and cancer progression.",book:{id:"8301",slug:"ubiquitin-proteasome-system-current-insights-into-mechanism-cellular-regulation-and-disease",title:"Ubiquitin Proteasome System",fullTitle:"Ubiquitin Proteasome System - Current Insights into Mechanism Cellular Regulation and Disease"},signatures:"Joseph Y. Ong and Jorge Z. Torres",authors:[{id:"186645",title:"Dr.",name:"Jorge",middleName:null,surname:"Torres",slug:"jorge-torres",fullName:"Jorge Torres"},{id:"264944",title:"Mr.",name:"Joseph",middleName:null,surname:"Ong",slug:"joseph-ong",fullName:"Joseph Ong"}]},{id:"65109",title:"Ubiquitin Signaling in Regulation of the Start of the Cell Cycle",slug:"ubiquitin-signaling-in-regulation-of-the-start-of-the-cell-cycle",totalDownloads:1560,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"The small protein ubiquitin plays a vital role in virtually all aspects of cellular life. Among the diverse signaling outcomes associated with ubiquitination, the most well-established is the targeted degradation of substrates via the proteasome. During cell growth and proliferation, ubiquitin plays an outsized role in promoting progression through the cell cycle. In particular, ubiquitin-mediated degradation is critically important at transition points where it provides directionality and irreversibility to the cell cycle, which is essential for maintaining genome integrity. Specifically, the boundary between G1 and S-phase is tightly regulated by the ubiquitin proteasome system. Notably, the G1/S boundary represents a major barrier to cell proliferation and is universally dysfunctional in cancer cells, allowing for the unbridled proliferation observed in malignancy. Numerous E3 ubiquitin ligases, which facilitate the ubiquitination of specific substrates, have been shown to control G1/S. In this chapter, we will discuss components in the ubiquitin proteasome system that are implicated in G1/S control, how these enzymes are interconnected, gaps in our current knowledge, and the potential role of these pathways in the cancer cycle and disease proliferation.",book:{id:"8301",slug:"ubiquitin-proteasome-system-current-insights-into-mechanism-cellular-regulation-and-disease",title:"Ubiquitin Proteasome System",fullTitle:"Ubiquitin Proteasome System - Current Insights into Mechanism Cellular Regulation and Disease"},signatures:"Michael James Emanuele and Taylor Paige Enrico",authors:[{id:"264977",title:"Dr.",name:"Michael",middleName:null,surname:"Emanuele",slug:"michael-emanuele",fullName:"Michael Emanuele"},{id:"282200",title:"Ms.",name:"Taylor",middleName:null,surname:"Enrico",slug:"taylor-enrico",fullName:"Taylor Enrico"}]},{id:"60432",title:"Protein-Based Detection Methods for Genetically Modified Crops",slug:"protein-based-detection-methods-for-genetically-modified-crops",totalDownloads:1403,totalCrossrefCites:3,totalDimensionsCites:4,abstract:"The generation of genetically modified (GM) crops is rapidly expanding each and every year around the world. The well-being and quality assessment of these harvests are vital issues with respect to buyers’ interests. This drove the administrative specialists to execute an arrangement of extremely strict strategies for the endorsement to develop and use GMOs and to produce an interest in scientific techniques equipped for identifying GM crops. The GM crops have been added to the effective fuse of various attributes by presenting transgenes, for example, Bacillus thuringiensis (Bt) insecticidal qualities, in various crop species. GM crops give critical financial, natural, well-being and social advantages to both small and large agriculturists. The detection strategies incorporate either DNA-based or protein-based measures. Different immunoassays or catalyst connected immunosorbent tests are delicate and more affordable; however, they need experienced technicians. A very simple method, that is, immunochromatographic (ICS) test, is set up in the world, which is modest, compact and simple to utilize. The ICS is a semiquantitative method for indicative screening and semi-measurement of new remote proteins presented through hereditary change of plants. The strip is the easiest method for the assessment of several Bt crop plants for insecticidal quality.",book:{id:"6635",slug:"protein-protein-interaction-assays",title:"Protein-Protein Interaction Assays",fullTitle:"Protein-Protein Interaction Assays"},signatures:"Kausar Malik, Haleema Sadia and Muhammad Hamza Basit",authors:[{id:"238750",title:"Prof.",name:"Kausar",middleName:null,surname:"Malik",slug:"kausar-malik",fullName:"Kausar Malik"},{id:"243713",title:"Dr.",name:"Haleema",middleName:null,surname:"Sadia",slug:"haleema-sadia",fullName:"Haleema Sadia"},{id:"243714",title:"Mr.",name:"Muhammad Hamza",middleName:null,surname:"Basit",slug:"muhammad-hamza-basit",fullName:"Muhammad Hamza Basit"}]},{id:"60064",title:"Rapid Endosomal Recycling",slug:"rapid-endosomal-recycling",totalDownloads:1315,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"Peripheral membrane proteins are endocytosed by constitutive processes of membrane invaginations, followed by internalization driven by diverse endocytic machinery available at the cell surface. It is believed that after endocytic uptake, cargo proteins proceed either through the endosomal recycling circuit of the cell or travel toward late endosomes for degradation. In this chapter, we analyzed trafficking of seven cargo molecules (transferrin receptor, fully conformed MHC-I, non-conformed MHC-I, cholera-toxin B subunit, CD44, ICAM1, and G-protein-coupled receptor Rae-1) known to use the distinct endocytic route. For that purpose, we developed the software for multicompartment analysis of intracellular trafficking. We demonstrate that all endocytosed molecules are rapidly recycled and propose that the rapid recycling is a constitutive process that should be considered in the analysis of intracellular trafficking of peripheral membrane proteins.",book:{id:"6649",slug:"peripheral-membrane-proteins",title:"Peripheral Membrane Proteins",fullTitle:"Peripheral Membrane Proteins"},signatures:"Hana Mahmutefendić, Gordana Blagojević Zagorac, Senka Maćešić\nand Pero Lučin",authors:[{id:"152008",title:"Prof.",name:"Pero",middleName:null,surname:"Lučin",slug:"pero-lucin",fullName:"Pero Lučin"},{id:"245873",title:"Prof.",name:"Hana",middleName:null,surname:"Mahmutefendić",slug:"hana-mahmutefendic",fullName:"Hana Mahmutefendić"},{id:"245875",title:"Prof.",name:"Gordana",middleName:null,surname:"Blagojević Zagorac",slug:"gordana-blagojevic-zagorac",fullName:"Gordana Blagojević Zagorac"},{id:"245876",title:"Prof.",name:"Senka",middleName:null,surname:"Maćešić",slug:"senka-macesic",fullName:"Senka Maćešić"}]}],onlineFirstChaptersFilter:{topicId:"913",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81188",title:"Structure- and Design-Based Difficulties in Recombinant Protein Purification in Bacterial Expression",slug:"structure-and-design-based-difficulties-in-recombinant-protein-purification-in-bacterial-expression",totalDownloads:24,totalDimensionsCites:0,doi:"10.5772/intechopen.103958",abstract:"Protein purification is not a simple task. Yet, overexpression at bacterial systems with recombinant modifications brings further difficulties. Adding a tag, an affinity label, and expressing particular domains of the whole protein, especially hydrophobic sections, make purification a challenging process. Protein folding pattern may perturb N- or C-terminal tag and this terminal preference may lead to poor purification yield. Codon optimization, solvent content and type, ionic conditions, resin types, and self-cleavage of recombinant proteins bring further difficulties to protein expression and purification steps. The chapter overviews problems of protein purification through a small peptide overexpression in bacteria (Recombinant anti-SARS Coronavirus 2 (SARS-Cov-2) Spike protein Receptor Binding Domain (RBD) antibody (Clone Sb#14). The chapter also covers troubleshooting at distinct steps and highlights essential points to solve crucial issues of protein purification.",book:{id:"10839",title:"Protein Detection",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg"},signatures:"Kubra Acikalin Coskun, Nazlıcan Yurekli, Elif Cansu Abay, Merve Tutar, Mervenur Al and Yusuf Tutar"},{id:"79353",title:"Protein Detection in Clinical Diagnosis and Management of Prevalent Neurodegenerative Diseases and Metabolic Disorders",slug:"protein-detection-in-clinical-diagnosis-and-management-of-prevalent-neurodegenerative-diseases-and-m",totalDownloads:88,totalDimensionsCites:0,doi:"10.5772/intechopen.101051",abstract:"An accurate diagnosis gives leeway to cost-effective treatments. However, many diseases continue to evolve; hence, their etiology is sometimes missed due to the procedures used during diagnosis. Protein-related diseases include proteopathies (proteinopathies) such as neurodegenerative diseases and metabolic disorders like protein-energy malnutrition and some hormonopathies. Hormonopathies are associated with the change in the production of hormones. Diabetes mellitus, a type of hormonopathy, is reviewed in this work alongside neurodegenerative diseases and protein-energy malnutrition. This chapter aims to elucidate more on the diagnosis of these diseases considering the structure and function of their proteins viz-a-viz their deficiencies and hyper-production in man. Their pathogenesis and the principles underlying their diagnosis are further discussed to optimize the management of these diseases among patients.",book:{id:"10839",title:"Protein Detection",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg"},signatures:"Ohanube A.K. Goodluck, Obeta M. Uchejeso and Ikeagwulonu R. Chinaza"}],onlineFirstChaptersTotal:2},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:288,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 24th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:9,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",slug:"ana-isabel-flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",slug:"christian-palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",slug:"azhar-rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",slug:"anca-pantea-stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",slug:"attilio-rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",slug:"yanfei-(jacob)-qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",slug:"arli-aditya-parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",slug:"cesar-lopez-camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",slug:"shymaa-enany",fullName:"Shymaa Enany",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRqB9QAK/Profile_Picture_1626163237970",institutionString:null,institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]},overviewPageOFChapters:{paginationCount:18,paginationItems:[{id:"81778",title:"Influence of Mechanical Properties of Biomaterials on the Reconstruction of Biomedical Parts via Additive Manufacturing Techniques: An Overview",doi:"10.5772/intechopen.104465",signatures:"Babatunde Olamide Omiyale, Akeem Abiodun Rasheed, Robinson Omoboyode Akinnusi and Temitope Olumide Olugbade",slug:"influence-of-mechanical-properties-of-biomaterials-on-the-reconstruction-of-biomedical-parts-via-add",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:null,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:1,paginationItems:[{id:"11601",title:"Econometrics - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11601.jpg",hash:"bc8ab49e2cf436c217a49ca8c12a22eb",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 13th 2022",isOpenForSubmission:!0,editors:[{id:"452331",title:"Dr.",name:"Brian",surname:"Sloboda",slug:"brian-sloboda",fullName:"Brian Sloboda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:50,paginationItems:[{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"81681",title:"Immunomodulatory Effects of a M2-Conditioned Medium (PRS® CK STORM): Theory on the Possible Complex Mechanism of Action through Anti-Inflammatory Modulation of the TLR System and the Purinergic System",doi:"10.5772/intechopen.104486",signatures:"Juan Pedro Lapuente",slug:"immunomodulatory-effects-of-a-m2-conditioned-medium-prs-ck-storm-theory-on-the-possible-complex-mech",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81580",title:"Graft-Versus-Host Disease: Pathogenesis and Treatment",doi:"10.5772/intechopen.104450",signatures:"Shin Mukai",slug:"graft-versus-host-disease-pathogenesis-and-treatment",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81533",title:"Prenylation of Natural Products: An Overview",doi:"10.5772/intechopen.104636",signatures:"Kantharaju Kamanna and Aravind Kamath",slug:"prenylation-of-natural-products-an-overview",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kantharaju",surname:"Kamanna"}],book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"81067",title:"Encapsulation of Essential Oils and Their Use in Food Applications",doi:"10.5772/intechopen.103147",signatures:"Hamdy A. Shaaban and Amr Farouk",slug:"encapsulation-of-essential-oils-and-their-use-in-food-applications",totalDownloads:50,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:3,group:"subseries"},{caption:"Metabolism",value:17,count:10,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:17,group:"subseries"},{caption:"Chemical Biology",value:15,count:19,group:"subseries"}],publishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"9883",title:"Biosensors",subtitle:"Current and Novel Strategies for Biosensing",coverURL:"https://cdn.intechopen.com/books/images_new/9883.jpg",slug:"biosensors-current-and-novel-strategies-for-biosensing",publishedDate:"May 5th 2021",editedByType:"Edited by",bookSignature:"Luis Jesús Villarreal-Gómez and Ana Leticia Iglesias",hash:"028f3e5dbf9c32590183ac4b4f0a2825",volumeInSeries:11,fullTitle:"Biosensors - Current and Novel Strategies for Biosensing",editors:[{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",slug:"biomedical-signal-and-image-processing",publishedDate:"April 14th 2021",editedByType:"Edited by",bookSignature:"Yongxia Zhou",hash:"22b87a09bd6df065d78c175235d367c8",volumeInSeries:10,fullTitle:"Biomedical Signal and Image Processing",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",institutionString:"University of Southern California",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9973",title:"Data Acquisition",subtitle:"Recent Advances and Applications in Biomedical Engineering",coverURL:"https://cdn.intechopen.com/books/images_new/9973.jpg",slug:"data-acquisition-recent-advances-and-applications-in-biomedical-engineering",publishedDate:"March 17th 2021",editedByType:"Edited by",bookSignature:"Bartłomiej Płaczek",hash:"75ea6cdd241216c9db28aa734ab34446",volumeInSeries:9,fullTitle:"Data Acquisition - Recent Advances and Applications in Biomedical Engineering",editors:[{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9905",title:"Biometric Systems",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9905.jpg",slug:"biometric-systems",publishedDate:"February 10th 2021",editedByType:"Edited by",bookSignature:"Muhammad Sarfraz",hash:"c730560dd2e3837a03407b3a86b0ef2a",volumeInSeries:8,fullTitle:"Biometric Systems",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",institutionString:"Kuwait University",institution:{name:"Kuwait University",institutionURL:null,country:{name:"Kuwait"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8622",title:"Peptide Synthesis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8622.jpg",slug:"peptide-synthesis",publishedDate:"December 18th 2019",editedByType:"Edited by",bookSignature:"Jaya T. Varkey",hash:"de9fa48c5248dbfb581825b8c74f5623",volumeInSeries:0,fullTitle:"Peptide Synthesis",editors:[{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",institutionString:"St. Teresa’s College",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7497",title:"Computer Vision in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7497.jpg",slug:"computer-vision-in-dentistry",publishedDate:"September 18th 2019",editedByType:"Edited by",bookSignature:"Monika Elzbieta Machoy",hash:"1e9812cebd46ef9e28257f3e96547f6a",volumeInSeries:7,fullTitle:"Computer Vision in Dentistry",editors:[{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",editedByType:"Edited by",bookSignature:"Anna Nowinska",hash:"da2c90e8db647ead30504defce3fb5d3",volumeInSeries:6,fullTitle:"Novel Diagnostic Methods in Ophthalmology",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska",profilePictureURL:"https://mts.intechopen.com/storage/users/261466/images/system/261466.jpeg",institutionString:"Medical University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7437",title:"Nanomedicines",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7437.jpg",slug:"nanomedicines",publishedDate:"February 13th 2019",editedByType:"Edited by",bookSignature:"Muhammad Akhyar Farrukh",hash:"0e1f5f6258f074c533976c4f4d248568",volumeInSeries:5,fullTitle:"Nanomedicines",editors:[{id:"63182",title:"Dr.",name:"Muhammad Akhyar",middleName:null,surname:"Farrukh",slug:"muhammad-akhyar-farrukh",fullName:"Muhammad Akhyar Farrukh",profilePictureURL:"https://mts.intechopen.com/storage/users/63182/images/system/63182.png",institutionString:"Forman Christian College",institution:{name:"Forman Christian College",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",institutionString:"University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",value:9,count:1},{group:"subseries",caption:"Bioinspired Technology and Biomechanics",value:8,count:2},{group:"subseries",caption:"Bioinformatics and Medical Informatics",value:7,count:9}],publicationYearFilters:[{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2019",value:2019,count:5},{group:"publicationYear",caption:"2018",value:2018,count:3}],authors:{paginationCount:617,paginationItems:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",biography:"Prof. Dr. Yusuf Tutar conducts his research at the Hamidiye Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Division of Biochemistry, University of Health Sciences, Turkey. He is also a faculty member in the Molecular Oncology Program. He obtained his MSc and Ph.D. at Oregon State University and Texas Tech University, respectively. He pursued his postdoctoral studies at Rutgers University Medical School and the National Institutes of Health (NIH/NIDDK), USA. His research focuses on biochemistry, biophysics, genetics, molecular biology, and molecular medicine with specialization in the fields of drug design, protein structure-function, protein folding, prions, microRNA, pseudogenes, molecular cancer, epigenetics, metabolites, proteomics, genomics, protein expression, and characterization by spectroscopic and calorimetric methods.",institutionString:"University of Health Sciences",institution:null},{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",biography:"Hiroyuki Kagechika received his bachelor’s degree and Ph.D. in Pharmaceutical Sciences from the University of Tokyo, Japan, where he served as an associate professor until 2004. He is currently a professor at the Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU). From 2010 to 2012, he was the dean of the Graduate School of Biomedical Science. Since 2012, he has served as the vice dean of the Graduate School of Medical and Dental Sciences. He has been the director of the IBB since 2020. Dr. Kagechika’s major research interests are the medicinal chemistry of retinoids, vitamins D/K, and nuclear receptors. He has developed various compounds including a drug for acute promyelocytic leukemia.",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",country:{name:"Japan"}}},{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",biography:"Dr. Rizwan Ahmad is a University Professor and Coordinator, Quality and Development, College of Medicine, Imam Abdulrahman bin Faisal University, Saudi Arabia. Previously, he was Associate Professor of Human Function, Oman Medical College, Oman, and SBS University, Dehradun. Dr. Ahmad completed his education at Aligarh Muslim University, Aligarh. He has published several articles in peer-reviewed journals, chapters, and edited books. His area of specialization is free radical biochemistry and autoimmune diseases.",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",country:{name:"Saudi Arabia"}}},{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",biography:"Farid A. Badria, Ph.D., is the recipient of several awards, including The World Academy of Sciences (TWAS) Prize for Public Understanding of Science; the World Intellectual Property Organization (WIPO) Gold Medal for best invention; Outstanding Arab Scholar, Kuwait; and the Khwarizmi International Award, Iran. He has 250 publications, 12 books, 20 patents, and several marketed pharmaceutical products to his credit. He continues to lead research projects on developing new therapies for liver, skin disorders, and cancer. Dr. Badria was listed among the world’s top 2% of scientists in medicinal and biomolecular chemistry in 2019 and 2020. He is a member of the Arab Development Fund, Kuwait; International Cell Research Organization–United Nations Educational, Scientific and Cultural Organization (ICRO–UNESCO), Chile; and UNESCO Biotechnology France",institutionString:"Mansoura University",institution:{name:"Mansoura University",country:{name:"Egypt"}}},{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",biography:"Dr. Singh received a BPharm (2003) and MPharm (2005) from Panjab University, Chandigarh, India, and a Ph.D. (2013) from Punjab Technical University (PTU), Jalandhar, India. He has more than sixteen years of teaching experience and has supervised numerous postgraduate and Ph.D. students. He has to his credit more than seventy papers in SCI- and SCOPUS-indexed journals, fifty-five conference proceedings, four books, six Best Paper Awards, and five projects from different government agencies. He is currently an editorial board member of eight international journals and a reviewer for more than fifty scientific journals. He received Top Reviewer and Excellent Peer Reviewer Awards from Publons in 2016 and 2017, respectively. He is also on the panel of The International Reviewer for reviewing research proposals for grants from the Royal Society. He also serves as a Publons Academy mentor and Bentham brand ambassador.",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",country:{name:"India"}}},{id:"142388",title:"Dr.",name:"Thiago",middleName:"Gomes",surname:"Gomes Heck",slug:"thiago-gomes-heck",fullName:"Thiago Gomes Heck",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/142388/images/7259_n.jpg",biography:null,institutionString:null,institution:{name:"Universidade Regional do Noroeste do Estado do Rio Grande do Sul",country:{name:"Brazil"}}},{id:"336273",title:"Assistant Prof.",name:"Janja",middleName:null,surname:"Zupan",slug:"janja-zupan",fullName:"Janja Zupan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/336273/images/14853_n.jpeg",biography:"Janja Zupan graduated in 2005 at the Department of Clinical Biochemistry (superviser prof. dr. Janja Marc) in the field of genetics of osteoporosis. Since November 2009 she is working as a Teaching Assistant at the Faculty of Pharmacy, Department of Clinical Biochemistry. In 2011 she completed part of her research and PhD work at Institute of Genetics and Molecular Medicine, University of Edinburgh. She finished her PhD entitled The influence of the proinflammatory cytokines on the RANK/RANKL/OPG in bone tissue of osteoporotic and osteoarthritic patients in 2012. From 2014-2016 she worked at the Institute of Biomedical Sciences, University of Aberdeen as a postdoctoral research fellow on UK Arthritis research project where she gained knowledge in mesenchymal stem cells and regenerative medicine. She returned back to University of Ljubljana, Faculty of Pharmacy in 2016. She is currently leading project entitled Mesenchymal stem cells-the keepers of tissue endogenous regenerative capacity facing up to aging of the musculoskeletal system funded by Slovenian Research Agency.",institutionString:null,institution:{name:"University of Ljubljana",country:{name:"Slovenia"}}},{id:"357453",title:"Dr.",name:"Radheshyam",middleName:null,surname:"Maurya",slug:"radheshyam-maurya",fullName:"Radheshyam Maurya",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/357453/images/16535_n.jpg",biography:null,institutionString:null,institution:{name:"University of Hyderabad",country:{name:"India"}}},{id:"311457",title:"Dr.",name:"Júlia",middleName:null,surname:"Scherer Santos",slug:"julia-scherer-santos",fullName:"Júlia Scherer Santos",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/311457/images/system/311457.jpg",biography:"Dr. Júlia Scherer Santos works in the areas of cosmetology, nanotechnology, pharmaceutical technology, beauty, and aesthetics. Dr. Santos also has experience as a professor of graduate courses. Graduated in Pharmacy, specialization in Cosmetology and Cosmeceuticals applied to aesthetics, specialization in Aesthetic and Cosmetic Health, and a doctorate in Pharmaceutical Nanotechnology. Teaching experience in Pharmacy and Aesthetics and Cosmetics courses. She works mainly on the following subjects: nanotechnology, cosmetology, pharmaceutical technology, aesthetics.",institutionString:"Universidade Federal de Juiz de Fora",institution:{name:"Universidade Federal de Juiz de Fora",country:{name:"Brazil"}}},{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNVJQA4/Profile_Picture_2022-03-07T13:23:04.png",biography:"Dr. Kükürt graduated from Uludağ University in Turkey. He started his academic career as a Research Assistant in the Department of Biochemistry at Kafkas University. In 2019, he completed his Ph.D. program in the Department of Biochemistry at the Institute of Health Sciences. He is currently working at the Department of Biochemistry, Kafkas University. He has 27 published research articles in academic journals, 11 book chapters, and 37 papers. He took part in 10 academic projects. He served as a reviewer for many articles. He still serves as a member of the review board in many academic journals.",institutionString:null,institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"178366",title:"Associate Prof.",name:"Volkan",middleName:null,surname:"Gelen",slug:"volkan-gelen",fullName:"Volkan Gelen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178366/images/system/178366.jpg",biography:"Volkan Gelen is a Physiology specialist who received his veterinary degree from Kafkas University in 2011. Between 2011-2015, he worked as an assistant at Atatürk University, Faculty of Veterinary Medicine, Department of Physiology. In 2016, he joined Kafkas University, Faculty of Veterinary Medicine, Department of Physiology as an assistant professor. Dr. Gelen has been engaged in various academic activities at Kafkas University since 2016. There he completed 5 projects and has 3 ongoing projects. He has 60 articles published in scientific journals and 20 poster presentations in scientific congresses. His research interests include physiology, endocrine system, cancer, diabetes, cardiovascular system diseases, and isolated organ bath system studies.",institutionString:"Kafkas University",institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"418963",title:"Dr.",name:"Augustine Ododo",middleName:"Augustine",surname:"Osagie",slug:"augustine-ododo-osagie",fullName:"Augustine Ododo Osagie",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/418963/images/16900_n.jpg",biography:"Born into the family of Osagie, a prince of the Benin Kingdom. I am currently an academic in the Department of Medical Biochemistry, University of Benin. Part of the duties are to teach undergraduate students and conduct academic research.",institutionString:null,institution:{name:"University of Benin",country:{name:"Nigeria"}}},{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",biography:"Prof. Shagufta Perveen is a Distinguish Professor in the Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. Dr. Perveen has acted as the principal investigator of major research projects funded by the research unit of King Saud University. She has more than ninety original research papers in peer-reviewed journals of international repute to her credit. She is a fellow member of the Royal Society of Chemistry UK and the American Chemical Society of the United States.",institutionString:"King Saud University",institution:{name:"King Saud University",country:{name:"Saudi Arabia"}}},{id:"49848",title:"Dr.",name:"Wen-Long",middleName:null,surname:"Hu",slug:"wen-long-hu",fullName:"Wen-Long Hu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49848/images/system/49848.jpg",biography:"Wen-Long Hu is Chief of the Division of Acupuncture, Department of Chinese Medicine at Kaohsiung Chang Gung Memorial Hospital, as well as an adjunct associate professor at Fooyin University and Kaohsiung Medical University. Wen-Long is President of Taiwan Traditional Chinese Medicine Medical Association. He has 28 years of experience in clinical practice in laser acupuncture therapy and 34 years in acupuncture. He is an invited speaker for lectures and workshops in laser acupuncture at many symposiums held by medical associations. He owns the patent for herbal preparation and producing, and for the supercritical fluid-treated needle. Dr. Hu has published three books, 12 book chapters, and more than 30 papers in reputed journals, besides serving as an editorial board member of repute.",institutionString:"Kaohsiung Chang Gung Memorial Hospital",institution:{name:"Kaohsiung Chang Gung Memorial Hospital",country:{name:"Taiwan"}}},{id:"298472",title:"Prof.",name:"Andrey V.",middleName:null,surname:"Grechko",slug:"andrey-v.-grechko",fullName:"Andrey V. Grechko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/298472/images/system/298472.png",biography:"Andrey Vyacheslavovich Grechko, Ph.D., Professor, is a Corresponding Member of the Russian Academy of Sciences. He graduated from the Semashko Moscow Medical Institute (Semashko National Research Institute of Public Health) with a degree in Medicine (1998), the Clinical Department of Dermatovenerology (2000), and received a second higher education in Psychology (2009). Professor A.V. Grechko held the position of Сhief Physician of the Central Clinical Hospital in Moscow. He worked as a professor at the faculty and was engaged in scientific research at the Medical University. Starting in 2013, he has been the initiator of the creation of the Federal Scientific and Clinical Center for Intensive Care and Rehabilitology, Moscow, Russian Federation, where he also serves as Director since 2015. He has many years of experience in research and teaching in various fields of medicine, is an author/co-author of more than 200 scientific publications, 13 patents, 15 medical books/chapters, including Chapter in Book «Metabolomics», IntechOpen, 2020 «Metabolomic Discovery of Microbiota Dysfunction as the Cause of Pathology».",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",biography:'Natalia Vladimirovna Beloborodova was educated at the Pirogov Russian National Research Medical University, with a degree in pediatrics in 1980, a Ph.D. in 1987, and a specialization in Clinical Microbiology from First Moscow State Medical University in 2004. She has been a Professor since 1996. Currently, she is the Head of the Laboratory of Metabolism, a division of the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russian Federation. N.V. Beloborodova has many years of clinical experience in the field of intensive care and surgery. She studies infectious complications and sepsis. She initiated a series of interdisciplinary clinical and experimental studies based on the concept of integrating human metabolism and its microbiota. Her scientific achievements are widely known: she is the recipient of the Marie E. Coates Award \\"Best lecturer-scientist\\" Gustafsson Fund, Karolinska Institutes, Stockholm, Sweden, and the International Sepsis Forum Award, Pasteur Institute, Paris, France (2014), etc. Professor N.V. Beloborodova wrote 210 papers, five books, 10 chapters and has edited four books.',institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"354260",title:"Ph.D.",name:"Tércio Elyan",middleName:"Azevedo",surname:"Azevedo Martins",slug:"tercio-elyan-azevedo-martins",fullName:"Tércio Elyan Azevedo Martins",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/354260/images/16241_n.jpg",biography:"Graduated in Pharmacy from the Federal University of Ceará with the modality in Industrial Pharmacy, Specialist in Production and Control of Medicines from the University of São Paulo (USP), Master in Pharmaceuticals and Medicines from the University of São Paulo (USP) and Doctor of Science in the program of Pharmaceuticals and Medicines by the University of São Paulo. Professor at Universidade Paulista (UNIP) in the areas of chemistry, cosmetology and trichology. Assistant Coordinator of the Higher Course in Aesthetic and Cosmetic Technology at Universidade Paulista Campus Chácara Santo Antônio. Experience in the Pharmacy area, with emphasis on Pharmacotechnics, Pharmaceutical Technology, Research and Development of Cosmetics, acting mainly on topics such as cosmetology, antioxidant activity, aesthetics, photoprotection, cyclodextrin and thermal analysis.",institutionString:null,institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"334285",title:"Ph.D. Student",name:"Sameer",middleName:"Kumar",surname:"Jagirdar",slug:"sameer-jagirdar",fullName:"Sameer Jagirdar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334285/images/14691_n.jpg",biography:"I\\'m a graduate student at the center for biosystems science and engineering at the Indian Institute of Science, Bangalore, India. I am interested in studying host-pathogen interactions at the biomaterial interface.",institutionString:null,institution:{name:"Indian Institute of Science Bangalore",country:{name:"India"}}},{id:"329795",title:"Dr.",name:"Mohd Aftab",middleName:"Aftab",surname:"Siddiqui",slug:"mohd-aftab-siddiqui",fullName:"Mohd Aftab Siddiqui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329795/images/15648_n.jpg",biography:"Dr. Mohd Aftab Siddiqui is currently working as Assistant Professor in the Faculty of Pharmacy, Integral University, Lucknow for the last 6 years. He has completed his Doctor in Philosophy (Pharmacology) in 2020 from Integral University, Lucknow. He completed his Bachelor in Pharmacy in 2013 and Master in Pharmacy (Pharmacology) in 2015 from Integral University, Lucknow. He is the gold medalist in Bachelor and Master degree. He qualified GPAT -2013, GPAT -2014, and GPAT 2015. His area of research is Pharmacological screening of herbal drugs/ natural products in liver and cardiac diseases. He has guided many M. Pharm. research projects. He has many national and international publications.",institutionString:"Integral University",institution:null},{id:"255360",title:"Dr.",name:"Usama",middleName:null,surname:"Ahmad",slug:"usama-ahmad",fullName:"Usama Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255360/images/system/255360.png",biography:"Dr. Usama Ahmad holds a specialization in Pharmaceutics from Amity University, Lucknow, India. He received his Ph.D. degree from Integral University. Currently, he’s working as an Assistant Professor of Pharmaceutics in the Faculty of Pharmacy, Integral University. From 2013 to 2014 he worked on a research project funded by SERB-DST, Government of India. He has a rich publication record with more than 32 original articles published in reputed journals, 3 edited books, 5 book chapters, and a number of scientific articles published in ‘Ingredients South Asia Magazine’ and ‘QualPharma Magazine’. He is a member of the American Association for Cancer Research, International Association for the Study of Lung Cancer, and the British Society for Nanomedicine. Dr. Ahmad’s research focus is on the development of nanoformulations to facilitate the delivery of drugs that aim to provide practical solutions to current healthcare problems.",institutionString:"Integral University",institution:{name:"Integral University",country:{name:"India"}}},{id:"30568",title:"Prof.",name:"Madhu",middleName:null,surname:"Khullar",slug:"madhu-khullar",fullName:"Madhu Khullar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/30568/images/system/30568.jpg",biography:"Dr. Madhu Khullar is a Professor of Experimental Medicine and Biotechnology at the Post Graduate Institute of Medical Education and Research, Chandigarh, India. She completed her Post Doctorate in hypertension research at the Henry Ford Hospital, Detroit, USA in 1985. She is an editor and reviewer of several international journals, and a fellow and member of several cardiovascular research societies. Dr. Khullar has a keen research interest in genetics of hypertension, and is currently studying pharmacogenetics of hypertension.",institutionString:"Post Graduate Institute of Medical Education and Research",institution:{name:"Post Graduate Institute of Medical Education and Research",country:{name:"India"}}},{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",biography:"Xianquan Zhan received his MD and Ph.D. in Preventive Medicine at West China University of Medical Sciences. He received his post-doctoral training in oncology and cancer proteomics at the Central South University, China, and the University of Tennessee Health Science Center (UTHSC), USA. He worked at UTHSC and the Cleveland Clinic in 2001–2012 and achieved the rank of associate professor at UTHSC. Currently, he is a full professor at Central South University and Shandong First Medical University, and an advisor to MS/PhD students and postdoctoral fellows. He is also a fellow of the Royal Society of Medicine and European Association for Predictive Preventive Personalized Medicine (EPMA), a national representative of EPMA, and a member of the American Society of Clinical Oncology (ASCO) and the American Association for the Advancement of Sciences (AAAS). He is also the editor in chief of International Journal of Chronic Diseases & Therapy, an associate editor of EPMA Journal, Frontiers in Endocrinology, and BMC Medical Genomics, and a guest editor of Mass Spectrometry Reviews, Frontiers in Endocrinology, EPMA Journal, and Oxidative Medicine and Cellular Longevity. He has published more than 148 articles, 28 book chapters, 6 books, and 2 US patents in the field of clinical proteomics and biomarkers.",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",country:{name:"China"}}},{id:"297507",title:"Dr.",name:"Charles",middleName:"Elias",surname:"Assmann",slug:"charles-assmann",fullName:"Charles Assmann",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/297507/images/system/297507.jpg",biography:"Charles Elias Assmann is a biologist from Federal University of Santa Maria (UFSM, Brazil), who spent some time abroad at the Ludwig-Maximilians-Universität München (LMU, Germany). He has Masters Degree in Biochemistry (UFSM), and is currently a PhD student at Biochemistry at the Department of Biochemistry and Molecular Biology of the UFSM. His areas of expertise include: Biochemistry, Molecular Biology, Enzymology, Genetics and Toxicology. He is currently working on the following subjects: Aluminium toxicity, Neuroinflammation, Oxidative stress and Purinergic system. Since 2011 he has presented more than 80 abstracts in scientific proceedings of national and international meetings. Since 2014, he has published more than 20 peer reviewed papers (including 4 reviews, 3 in Portuguese) and 2 book chapters. He has also been a reviewer of international journals and ad hoc reviewer of scientific committees from Brazilian Universities.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",country:{name:"Brazil"}}},{id:"217850",title:"Dr.",name:"Margarete Dulce",middleName:null,surname:"Bagatini",slug:"margarete-dulce-bagatini",fullName:"Margarete Dulce Bagatini",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/217850/images/system/217850.jpeg",biography:"Dr. Margarete Dulce Bagatini is an associate professor at the Federal University of Fronteira Sul/Brazil. She has a degree in Pharmacy and a PhD in Biological Sciences: Toxicological Biochemistry. She is a member of the UFFS Research Advisory Committee\nand a member of the Biovitta Research Institute. She is currently:\nthe leader of the research group: Biological and Clinical Studies\nin Human Pathologies, professor of postgraduate program in\nBiochemistry at UFSC and postgraduate program in Science and Food Technology at\nUFFS. She has experience in the area of pharmacy and clinical analysis, acting mainly\non the following topics: oxidative stress, the purinergic system and human pathologies, being a reviewer of several international journals and books.",institutionString:"Universidade Federal da Fronteira Sul",institution:{name:"Universidade Federal da Fronteira Sul",country:{name:"Brazil"}}},{id:"226275",title:"Ph.D.",name:"Metin",middleName:null,surname:"Budak",slug:"metin-budak",fullName:"Metin Budak",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/226275/images/system/226275.jfif",biography:"Metin Budak, MSc, PhD is an Assistant Professor at Trakya University, Faculty of Medicine. He has been Head of the Molecular Research Lab at Prof. Mirko Tos Ear and Hearing Research Center since 2018. His specializations are biophysics, epigenetics, genetics, and methylation mechanisms. He has published around 25 peer-reviewed papers, 2 book chapters, and 28 abstracts. He is a member of the Clinical Research Ethics Committee and Quantification and Consideration Committee of Medicine Faculty. His research area is the role of methylation during gene transcription, chromatin packages DNA within the cell and DNA repair, replication, recombination, and gene transcription. His research focuses on how the cell overcomes chromatin structure and methylation to allow access to the underlying DNA and enable normal cellular function.",institutionString:"Trakya University",institution:{name:"Trakya University",country:{name:"Turkey"}}},{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",slug:"anca-pantea-stoian",fullName:"Anca Pantea Stoian",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",biography:"Anca Pantea Stoian is a specialist in diabetes, nutrition, and metabolic diseases as well as health food hygiene. She also has competency in general ultrasonography.\n\nShe is an associate professor in the Diabetes, Nutrition and Metabolic Diseases Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania. She has been chief of the Hygiene Department, Faculty of Dentistry, at the same university since 2019. Her interests include micro and macrovascular complications in diabetes and new therapies. Her research activities focus on nutritional intervention in chronic pathology, as well as cardio-renal-metabolic risk assessment, and diabetes in cancer. She is currently engaged in developing new therapies and technological tools for screening, prevention, and patient education in diabetes. \n\nShe is a member of the European Association for the Study of Diabetes, Cardiometabolic Academy, CEDA, Romanian Society of Diabetes, Nutrition and Metabolic Diseases, Romanian Diabetes Federation, and Association for Renal Metabolic and Nutrition studies. She has authored or co-authored 160 papers in national and international peer-reviewed journals.",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",country:{name:"Romania"}}},{id:"279792",title:"Dr.",name:"João",middleName:null,surname:"Cotas",slug:"joao-cotas",fullName:"João Cotas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/279792/images/system/279792.jpg",biography:"Graduate and master in Biology from the University of Coimbra.\n\nI am a research fellow at the Macroalgae Laboratory Unit, in the MARE-UC – Marine and Environmental Sciences Centre of the University of Coimbra. My principal function is the collection, extraction and purification of macroalgae compounds, chemical and bioactive characterization of the compounds and algae extracts and development of new methodologies in marine biotechnology area. \nI am associated in two projects: one consists on discovery of natural compounds for oncobiology. The other project is the about the natural compounds/products for agricultural area.\n\nPublications:\nCotas, J.; Figueirinha, A.; Pereira, L.; Batista, T. 2018. An analysis of the effects of salinity on Fucus ceranoides (Ochrophyta, Phaeophyceae), in the Mondego River (Portugal). Journal of Oceanology and Limnology. in press. DOI: 10.1007/s00343-019-8111-3",institutionString:"Faculty of Sciences and Technology of University of Coimbra",institution:null},{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/279788/images/system/279788.jpg",biography:"Leonel Pereira has an undergraduate degree in Biology, a Ph.D. in Biology (specialty in Cell Biology), and a Habilitation degree in Biosciences (specialization in Biotechnology) from the Faculty of Science and Technology, University of Coimbra, Portugal, where he is currently a professor. In addition to teaching at this university, he is an integrated researcher at the Marine and Environmental Sciences Center (MARE), Portugal. His interests include marine biodiversity (algae), marine biotechnology (algae bioactive compounds), and marine ecology (environmental assessment). Since 2008, he has been the author and editor of the electronic publication MACOI – Portuguese Seaweeds Website (www.seaweeds.uc.pt). He is also a member of the editorial boards of several scientific journals. Dr. Pereira has edited or authored more than 20 books, 100 journal articles, and 45 book chapters. He has given more than 100 lectures and oral communications at various national and international scientific events. He is the coordinator of several national and international research projects. In 1998, he received the Francisco de Holanda Award (Honorable Mention) and, more recently, the Mar Rei D. Carlos award (18th edition). He is also a winner of the 2016 CHOICE Award for an outstanding academic title for his book Edible Seaweeds of the World. In 2020, Dr. Pereira received an Honorable Mention for the Impact of International Publications from the Web of Science",institutionString:"University of Coimbra",institution:{name:"University of Coimbra",country:{name:"Portugal"}}},{id:"61946",title:"Dr.",name:"Carol",middleName:null,surname:"Bernstein",slug:"carol-bernstein",fullName:"Carol Bernstein",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61946/images/system/61946.jpg",biography:"Carol Bernstein received her PhD in Genetics from the University of California (Davis). She was a faculty member at the University of Arizona College of Medicine for 43 years, retiring in 2011. Her research interests focus on DNA damage and its underlying role in sex, aging and in the early steps of initiation and progression to cancer. In her research, she had used organisms including bacteriophage T4, Neurospora crassa, Schizosaccharomyces pombe and mice, as well as human cells and tissues. She authored or co-authored more than 140 scientific publications, including articles in major peer reviewed journals, book chapters, invited reviews and one book.",institutionString:"University of Arizona",institution:{name:"University of Arizona",country:{name:"United States of America"}}},{id:"182258",title:"Dr.",name:"Ademar",middleName:"Pereira",surname:"Serra",slug:"ademar-serra",fullName:"Ademar Serra",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/182258/images/system/182258.jpeg",biography:"Dr. Serra studied Agronomy on Universidade Federal de Mato Grosso do Sul (UFMS) (2005). He received master degree in Agronomy, Crop Science (Soil fertility and plant nutrition) (2007) by Universidade Federal da Grande Dourados (UFGD), and PhD in agronomy (Soil fertility and plant nutrition) (2011) from Universidade Federal da Grande Dourados / Escola Superior de Agricultura Luiz de Queiroz (UFGD/ESALQ-USP). Dr. Serra is currently working at Brazilian Agricultural Research Corporation (EMBRAPA). His research focus is on mineral nutrition of plants, crop science and soil science. Dr. Serra\\'s current projects are soil organic matter, soil phosphorus fractions, compositional nutrient diagnosis (CND) and isometric log ratio (ilr) transformation in compositional data analysis.",institutionString:"Brazilian Agricultural Research Corporation",institution:{name:"Brazilian Agricultural Research Corporation",country:{name:"Brazil"}}}]}},subseries:{item:{id:"41",type:"subseries",title:"Water Science",keywords:"Water, Water resources, Freshwater, Hydrological processes, Utilization, Protection",scope:"